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Shallow water acoustic channel estimation techniques are presented at the intersection of time,

frequency, and sparsity. Specifically, a mathematical framework is introduced that translates the

problem of channel estimation to non-uniform sparse channel recovery in two-dimensional fre-

quency domain. This representation facilitates disambiguation of slowly varying channel compo-

nents against high-energy transients, which occupy different frequency ranges and also exhibit

significantly different sparsity along their local distribution. This useful feature is exploited to

perform non-uniform sampling across different frequency ranges, with compressive sampling

across higher Doppler frequencies and close to full-rate sampling at lower Doppler frequencies,

to recover both slowly varying and rapidly fluctuating channel components at high precision.

Extensive numerical experiments are performed to measure relative performance of the proposed

channel estimation technique using non-uniform compressive sampling against traditional com-

pressive sampling techniques as well as sparsity-constrained least squares across a range of obser-

vation window lengths, ambient noise levels, and sampling ratios. Numerical experiments are

based on channel estimates from the SPACE08 experiment as well as on a recently developed

channel simulator tested against several field trials. VC 2016 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4967448]
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I. INTRODUCTION

Undersea communications and related signal processing

techniques have been richly investigated over the last few

decades.1–9 Despite phenomenal advancements in underwater

acoustic (UWA) propagation models and related channel rep-

resentations,9,10 tracking the UWA channel in shallow water

depths in real time is still an active challenging problem.

While several complementary approaches have been

suggested toward shallow water acoustic channel estima-

tion,1–9 the fundamental challenges to real-time channel

tracking remain a bottleneck. Specifically, these challenges

are posed by two well-known properties of the shallow water

acoustic channel:

(1) Long time-varying delay spread of the shallow water

acoustic channel due to primary and secondary multipath

reflections from the moving ocean surface and static sea

bottom;11 and

(2) Unpredictable high-energy transients in the UWA chan-

nel delay spread due to oceanographic events such as

caustics and other forms of ephemeral oceanic events

such as surface wave focusing.12 This adds another layer

of challenge by leading to non-stationarity in the under-

lying channel distribution.1

These challenges are discussed in more detail below in

the context of different types of multipath arrivals.

A. Different components of channel delay spread

Reflections from the moving ocean surface as well as

the sea bottom which functions as a diffuse reflector, lead to

multipath arrivals from the transmitter to the receiver. This

results in a non-stationary time-varying channel impulse

response, popularly referred to as the delay spread,1–6,8,9

which typically stretches over 100–200 delay taps (e.g., refer

to results from experimental field data in Ref. 8).

Figure 1 shows a typical time-varying delay spread

(�30 msec long) of an UWA channel (estimated from field

data of SPACE08 experiment, Sec. II of Ref. 13) at 15 m

depth and 200 m range. Delay refers to delay taps constituting

the channel impulse response at a given point in time on the x
axis. The direct arrival path, the primary multipath region,

and the secondary multipath region are marked in Fig. 1.

This is to note that the channel delay spread comprises

three distinct arrival regions:

(1) The direct arrival representing the line-of-sight arrival of

the acoustic waves from the transmitter to the receiving

hydrophone. The direct arrival path manifests as the

steady bright line at the bottom of Fig. 1, and is rela-

tively constant over time, unless there is relative motion

between the transmitter and receiver;

(2) Primary multipath reflections that are, typically, the

combined effect of one or a few surface wave reflec-

tions.1,8,11 These delay taps, henceforth referred to as the

primary delay taps, are highly transient in nature. They

occupy a significant fraction of the channel energy anda)Electronic mail: naushada@iiitd.ac.in
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support, and occasionally exhibit high-energy peaks12

and transient oceanographic events as highlighted in Fig.

1; and

(3) Secondary multipath reflections resulting from several

reflections between the moving ocean surface and sea

bottom. Due to attenuation at each reflection, these mul-

tipath arrivals do not have large energy within the delay

spread, but collectively constitute a significant portion of

the channel support. The secondary multipath arrivals

are more relevant over medium range and shallow water

depths as greater water depths and longer ranges attenu-

ate their energy to ambient noise levels.

B. Uncertainty principles dictating underlying channel
tap distribution

Non-stationary shifts in the channel delay spread due

to oceanographic fluctuations limit the ability of adaptive

signal processing techniques, with and without sparsity con-

straints, to track the shallow water channel in real time. In

particular, uncertainty principle dictating localization of the

non-stationary channel delay spread in time and frequency

need to further consider the shifting sparseness of channel

support.11 The three-way uncertainty involving time, fre-

quency, and sparsity across the transient delay taps render

direct application of sparse sensing methods challenging in

the shallow water domain. This is particularly true under

moderate to rough sea conditions. Data-driven evidence of

the shifting sparsity has been provided in Ref. 14.

C. Summary of related work and scope

The scope of this work is geared toward real-time chan-

nel estimation over medium ranges and shallow water

depths, though signal processing techniques proposed here

are equally applicable to greater water depths and longer

ranges. The focus of this work is on the medium range

because the joint effect of the primary and secondary multi-

path arrivals are most pronounced in this paradigm and

hence, this is the more daunting scenario to solve. To pro-

vide field-driven evidence to the proposed methods, channel

ground truths derived from experimental field data collected

at 200 m range and 15 m depth are chosen as a representative

scenario for this paradigm.

Localization of time-varying channel delay spread is

challenging due to rapidly fluctuating multipath arrivals dis-

cussed in Sec. I A and uncertainty principles governing

localization as discussed in Sec. I B. Current state-of-the-art

in shallow water channel estimation addresses these chal-

lenges in four complementary thrusts:

(1) Non-uniform methods that attempt to discover and predict

the shallow water channel using ray theory models;1,15

(2) Adaptive signal processing methods based on least-

squared techniques;1,6,16

(3) Sparse recovery methods in optimization framework that

exploit the sparse support of high-energy transients;17–19

and

(4) Channel estimation using multiple input multiple output

(MIMO) framework.17,18,20

Sparse recovery methods21–23 are well-known to pro-

vide improvements over traditional adaptive least squares

techniques,24 when the signal to be recovered has sparse sup-

port. In such scenarios, regularization terms are added as

constraints in the optimization framework to enable signal

recovery.25 Sparse recovery methods are closely tied but

separate from Compressive Sampling/Compressed Sensing

(CS)26–29 techniques that solve the problem of signal recov-

ery from an underdetermined system of linear equations

under sparsity constraint. Recently, Orthogonal Matching

Pursuit (OMP) and Compressive Sampling Matching Pursuit

(CoSaMP) optimization methods have been employed to

solve the channel estimation problem17 wherein an underde-

termined system of linear equations is solved under sparsity

constraint. However, no compressive sensing per se has been

carried out that targets the shallow water acoustic channel

with its intricate interplay of multipath structure showing a

non-uniform structure with varying degrees of sparsity

between slow-varying components and rapid fluctuations.

Furthermore, non-uniform channel impulse response (i.e.,

delay spread) due to multipath arrivals in UWAs communica-

tion provides background motivation to formulate the chan-

nel estimation problem in a compressive sampling

framework.17,18,20

FIG. 1. (Color online) Shallow water acoustic channel [estimated from field

data of SPACE08 experiment (Ref. 13)], plotted as a 2D image (Delay vs

Time) showing significant time-variability in primary and secondary multi-

path regions. High-energy clusters of delay spread components in the pri-

mary multipath region are also pointed out (a) with linear colorbar (b) with

log scale colorbar.
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The confluence of adaptive signal processing, compres-

sive sampling, and sparse recovery in the context of UWA

communications is indeed encouraging and recently gained

momentum in the shallow water acoustic communications

literature.1,6,14,16–18,20

Motivated with the above discussion, the objective of this

research is to contribute to this momentum with a two-

dimensional (2D) frequency-domain formulation of the under-

water channel that complements existing formulations and

enables robust localization of dominant components of the fun-

damentally non-stationary shallow water acoustic channel.

As discussed above and elaborated in Ref. 11, the three-

way uncertainty involving time, frequency, and sparsity pro-

vides localization challenges for direct application of sparse

sensing methods with appropriate observation windows. As

such, the precise localization of the shallow water channel in

time, frequency, and sparsity is not possible without precise

real-time knowledge of ocean ground truths that is impracti-

cal to determine in real-life experiments. Thus, accuracy of

channel estimation is inherently tied to parameter localiza-

tion within the three-way uncertainty constraints that drive

field experiments. The key intuition is that, with suitable for-

mulation, the dominant components of the shallow water

channel may be localized robustly in real time. This work is

aimed to address this fundamental localization and channel

estimation challenge by bridging the above complementary

approaches discussed in Sec. I C. Specifically, the inherent

physical properties of a multipath within the shallow

water channel are harnessed with adaptive sparse sensing

approaches and partial sampling methods.

Key contributions of this work can be summarized as

below:

(1) A 2D frequency domain representation is obtained via a

carefully chosen transmitted signal design. This model-

ing transforms the problem of channel estimation to

channel recovery in 2D Fourier domain. Interestingly,

this framework is similar to K-space based image recon-

struction used in Magnetic Resonance Imaging (MRI)

where CS is used extensively as the default method for

signal recovery. Similar to the MRI domain, the UWA

channel (vis-�a-vis signal in MRI) is sparse in the 2D

Fourier domain. Figure 2 shows the 2D Fourier trans-

form of the channel. While the existing sparse recovery

methods in UWA channel estimation utilize sparseness

of the channel in the time domain, the channel is sparser

in the frequency domain. For example, refer to Fig. 3

which plots the sorted magnitude of coefficients of the

channel (of Fig. 1) in the 2D time domain and the 2D

frequency domain (Fig. 2). It is observed that the sorted

magnitude of coefficients of channel in the 2D frequency

domain drops off more rapidly as compared to that of

coefficients of channel in the 2D time domain and hence,

the channel is sparser in the 2D Fourier domain. Thus,

the proposed frequency domain representation allows CS

framework to be inherited naturally. Here, it is pertinent

to add that this framework has been proposed for the first

time in UWA and is a significantly novel contribution of

this work.

(2) This paper introduces non-uniform compressing sampling

for shallow water acoustic communications. Specifically,

techniques presented in this work perform random com-

pressive sampling at different sampling rates across differ-

ent frequency bands in the 2D frequency domain. Later in

this work, it has been shown that simply using CS frame-

work with the basis pursuit denoising (BPDN) method does

not yield good results because there is a need of detection

of high-energy transients along with high-precision track-

ing of stationary but smaller delay taps. Thus, this paper

proposes non-uniform compressive sensing with prior

information and non-uniform modified-CS30 with the prior

information method for channel estimation wherein appli-

cation domain knowledge is utilized with reference to fre-

quency domain characteristics of the shallow water

channel. Thus, this paper illustrates the use of CS methods

but by appropriately rooting them in this application

domain. It should be noted that some of the existing meth-

ods use the CS framework by setting up the problem as an

underdetermined system of linear equations under sparsity

constraint.8,17,18 However, non-uniform compressing sens-

ing has not been used per se in shallow water acoustic chan-

nel estimation. In particular, we present non-uniform

compressive sampling that is cognizant of the intricate

interplay of a multipath structure showing a non-uniform

structure with varying degrees of sparsity between slow-

varying components and rapid fluctuations. This work actu-

ally uses compressively sensed data for channel recovery.

(3) Extensive numerical validation of proposed techniques

against existing techniques are provided based on chan-

nel estimates from field experiments as well as a public-

domain channel simulator that has recently been tested

against data from different field trials.

D. Organization, notation, and units

This paper is organized in five sections. Section II

presents details of the experimental setup for ground truth

on channel using channel estimates obtained from field

experiments. Section III presents the proposed framework of

FIG. 2. (Color online) 2D Fourier Transform of channel in baseband [esti-

mated from field data of SPACE08 experiment (Ref. 13)] shown in Fig. 1;

Note: colorbar is linear.
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dictionary design and partial Fourier sampling for channel

estimation along with the simulation results. This section

considers transmission of dictionary signals over all fre-

quency sub-channels for the purpose of channel estimation

and employs non-uniform compressed sensing frameworks

for channel estimation. This section presents results on

SPACE08 channel data. Section IV presents results on

another simulated channel obtained from a recently proposed

channel simulator in order to further substantiate the pro-

posed work. Section V summarizes results of this paper.

Notations. Lowercase bold letters denote vectors, upper-

case bold letters denote matrices, and lowercase italics let-

ters denote scalars.

Units. Unless stated otherwise, delay taps are expressed

as numerical indices with appropriate time windows stated

in msec and frequency units are given in Hz. Channel delay

spread estimates are interpreted in voltage units. This is

because the delay taps are most directly reflective of a

“voltage” at the A/D converter and can be related to uPa at

the receiver through hydrophone specifications.

II. EXPERIMENTAL SETUP FOR USING CHANNEL
ESTIMATES FROM FIELD EXPERIMENTS

Numerical experiments presented in the work are based

on channel simulations derived from two independent

sources:

(i) Channel estimates employing the non-convex mixed

norm solver (NCMNS) algorithm8 on experimental

field data collected using Binary Phase Shift Keying

(BPSK)-signaling in the SPACE08 experiment con-

ducted from October 18–27, 2008.13 These channel

estimates are used as ground truths for testing the effi-

cacy of the proposed methods.

(ii) An independent channel simulator proposed

recently6,31 and unrelated to channel estimates in (i)

above. This channel simulator is chosen because it

models different multipath effects commonly encoun-

tered in shallow water acoustic communications, and

has also successfully interpreted SPACE08 data as

well as data from other field trials. Thus, the data

from this simulator are used to demonstrate the gener-

alization of results on shallow water channels from

different sources.

A. SPACE08 experimental setup

The SPACE08 setup included one transmitter and four

fixed receiving stations, each of which is equipped with

several hydrophones, deployed at Martha’s Vineyard

Coastal Observatory (MVCO) and operated by Woods Hole

Oceanographic Institution (WHOI). The experimental field

data were collected in shallow waters at a depth of 15 m over

a range of 200 m wherein the ocean floor of the area could

be considered relatively flat and the temperature of the water

column was constant. Multiple repetitions of a 4095 point

BPSK modulated signal was transmitted at a symbol rate of

6.5 kbps at 13 kHz carrier frequency. For more details on the

experimental setup, interested readers can refer to Ref. 13.

Figures 4 and 5 show channel estimates using Ref. 8, from

the above mentioned experimental data, plotted as a function

of time for 30 msec duration collected over moderate to

rough sea conditions.

B. Justification for algorithm choice for obtaining
channel estimates for SPACE08 data

Normalized prediction error is a robust statistical indica-

tor of the true channel estimation error32 and therefore, an

accurate metric to measure efficacy of channel estimation

techniques over experimental field data where the ground

truth is unknown. NCMNS channel estimates are chosen in

this work because NCMNS achieved minimum prediction

error among several widely used competing sparse recovery

techniques over the experimental field data collected in the

SPACE08 experiment. An in-depth analysis of relative

performance of different mixed norm algorithms over

SPACE08 data as well as extensive computer simulations is

provided in Ref. 8. In particular, the NCMNS technique pro-

vided best adaptability to sudden changes in the underlying

distribution (Figs. 1 and 2 of Ref. 8), which is a practical

challenge of shallow water acoustic channels due to

FIG. 3. Sorted magnitude coefficients of 2D time domain channel shown in

Figs. 1 and 2D Fourier transform of channel shown in Fig. 2.

FIG. 4. (Color online) Representative channel estimates at time i, using

Ref. 8 as kernel solver estimated from the field data of SPACE08 exper-

iment (Ref. 13).
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unpredictable multipath effects. This relative robustness of

the NCMNS technique to unpredictable shifts is primarily

due to agile navigation of the non-convex cost function, that

offers faster convergence to multiple equivalent local min-

ima that each represent the underlying channel scattering

function (Secs. 4 and 5 of Ref. 8).

III. CHANNEL ESTIMATION EMPLOYING
FREQUENCY-SELECTIVE NON-UNIFORM
COMPRESISVE SAMPLING AT THE RECEIVER

In this section, a 2D frequency-domain characteriza-

tion of the shallow water acoustic channel is introduced

to facilitate channel estimation that is cognizant of slow

and rapid temporal fluctuations across the channel compo-

nents. Specifically, frequency-selective non-uniform com-

pressive sampling is introduced, which exploits the 2D

frequency characterization. The interesting outcome of

the proposed framework is that it transforms the problem

of channel estimation to non-uniform sparse recovery in

2D Fourier domain. A discussion of channel recovery

using traditional compressive sampling (basic-CS) is also

provided as background information on the related state-

of-the-art.

A. Mathematical formulation of channel model in the
2D frequency domain

The following notations for channel parameters are

introduced for the shallow water acoustic channel model, in

addition to general notations discussed in Sec. I D:

• K: total number of delay taps;
• L: total number of Doppler frequencies;
• i: time index;
• k: delay tap index, k¼ 0, 1, …, K�1;
• l: Doppler frequency (dual domain to time dimension)

index, l¼ 0, 1, …, L�1;
• x: delay frequency (dual domain to delay dimension)

index, omega is quantized to the same number of elements

as delay taps, i.e., x¼ 0, 1, …, K� 1;
• H[i, k], k¼ 1, …, K: channel impulse response at time

index i, measured at kth delay tap; Thus, H denotes 2D

channel matrix in time-delay (i, k) domain;
• U: 2D channel matrix in dual frequency or 2D frequency

(l, x) domain.

This section introduces a non-uniform compressive sam-

pling and sparse recovery scheme that exploits the separation

of non-sparse structure at low frequencies and the sparse

structure at higher frequencies in the 2D frequency represen-

tation presented in the sequel [refer to Eq. (4)]. The key idea

behind the mathematical formulation is that transmitted

signals will be constructed as an orthogonal basis in (l, x)

domain, thus reducing the channel estimation problem to

spectral sampling problem in the 2D Fourier domain.

Consider the complex exponential input signal x½i;x�
¼ ejð2pix=KÞ, corresponding to delay frequencies x¼ 0, 1, …,

K� 1 across parallel K number of sub-channels. These K
sub-channels may be easily designed in baseband using

appropriate frequency selective techniques. In addition,

consider L Doppler frequencies l¼ 0, 1, …, L� 1 for sam-

pling the channel in the Doppler domain. On transmission of

the above designed input signal over the time-varying K-

length channel impulse response H[i, k], one obtains

y½i;x� ¼
XK�1

k¼0

H½i; k�x½i� k;x�

¼
XK�1

k¼0

H½i; k�ejð2pði�kÞx=KÞ

¼ ejð2pix=KÞ
XK�1

k¼0

H½i; k�e�jð2pkx=KÞ: (1)

On multiplying both sides of Eq. (1) with e�jð2pix=KÞ, one

obtains

y½i;x�e�jð2pix=KÞ ¼
XK�1

k¼0

H½i; k�e�jð2pix=KÞ: (2)

On computing the one-dimensional Fourier transform of

the time variable i in Eq. (2), that corresponds to Doppler

frequency, one obtains

U½l;x� ¼
XL�1

i¼0

y½i;x�e�jð2pix=KÞe�jð2pil=LÞ

¼
XL�1

i¼0

XK�1

k¼0

H½i; k�e�jð2pkx=KÞe�jð2pil=LÞ; (3)

where Eq. (3) represents 2D Fourier transform of the channel

impulse response H[i, k], x¼ 0, 1, 2, …, K� 1 and l¼ 0,

1, 2, …, L� 1. Equation (3) can be re-written as

U ¼ F1HF2 ¼ FH; (4)

where U is the matrix form of U[l, x] of size L�K, H is the

matrix form of channel impulse response H[i, k] of size

L�K, F1 is the L� L Fourier transform matrix, F2 is the

K�K Fourier transform matrix, and F is the symbolic nota-

tion of the 2D Fourier transform operator.

The above formulation clearly shows that perfect chan-

nel recovery can be done in a noise free scenario via 2D

inverse Fourier transform of the post-processed received

signal U. Thus, designing the transmitted signal and post-

processing the received signal in the 2D (x, l) domain has

transformed the problem of channel estimation in time-

domain to channel recovery from its salient spectral features:

both along delay frequency dimension x, signifying channel

micro-structure, and the Doppler frequency dimension l,
signifying fast or slowly varying trends. As discussed in the

sequel, the support of these channel features, while exhibit-

ing high spikes against the background, varies significantly

between low and high Doppler frequencies, thus motivating

the case for non-uniform compressive sampling in the 2D

frequency domain.

Interestingly, this framework is similar to K-space based

image reconstruction used in MRI.33,34 CS is one of the most

successful approaches in MRI image reconstruction where a
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less number of MRI samples are sensed for reconstruction.

This motivates us to explore CS based channel recovery in

the proposed framework that is the focus of Sec. III B. This

is to note that the above formulation is a completely new

way of presenting channel estimation problem.

B. Justification for 2D Fourier representation

A snapshot of 2D Fourier transform or Fourier dual of

delay spread and time is illustrated in Fig. 2. It is noteworthy

that the 2D frequency representation shows clusters of

slowly varying channel components across the low Doppler

frequencies, while variability along the impulse response
structure of these slowly varying channel components are
recorded along the x axis. The transient channel compo-

nents are recorded along the higher Doppler frequencies.

Key benefits behind this representation are threefold:

(i) Channel microstructure specific to slowly varying

channel components gets highlighted along the x
(delay-frequency) axis; this allows high-precision

recovery of these components, which are critical to

effective underwater communication systems;

(ii) Slow-varying channel components, localized in lower

Doppler frequencies, are easily disambiguated against

rapidly fluctuating channel components localized in

higher Doppler frequencies; and

(iii) This representation allows a non-uniform compressive

sampling framework, where the slowly-varying com-

ponents in the lower Doppler frequencies occupy a sig-

nificantly broader support than the high-energy channel

transients along the higher Doppler frequencies.

C. Partial Fourier sampling based channel
estimation—Basic CS

In general, the received UWA signal will be corrupted

with noise. This transforms the above problem to denoising

based channel recovery in the 2D Fourier domain. Since

additive white Gaussian noise (AWGN) will remain AWGN

under any orthogonal transformation, it will remain AWGN

under Fourier transform of the received signal in Eq. (3).

Thus, Eq. (4) can be re-written in the presence of noise as

below

Un ¼ FHþ N; (5)

where Un is the noisy version of U and N is the complex

white Gaussian noise matrix. Since channel H is known to

be sparse in the underwater communication literature,1,8 the

problem can be formulated as the BPDN problem35 and is,

mathematically, given by

min
H
jjHjj1 subject to jjUn � FHjj22 � r; (6)

where jjVjj1 denotes the sum of the absolute values of V,

jjVjj22 denotes the sum of the squares of the values of V, and

r is the standard deviation or the measure of the noise level.

Equivalently, the problem can also be modeled mathe-

matically as

min
H
jjUn � FHjj22 subject to jjHjj1 � s: (7)

The above formulation is termed as the Least Absolute

Shrinkage and Selection Operator (LASSO)25 and s is the

measure of the sparsity of the channel H. Incorporating the

theory of CS, channel H can be estimated using partial

Fourier sampling of H as explained below.

Consider the compressively sensed version of U as

below

Usub ¼ <FHþ N; (8)

where Usub is the sub-sampled and noisy measurement of U

and < is the random binary sub-sampling operator or a

matrix consisting of 1’s and 0’s that allows random selection

of positions in the 2D Fourier domain leading to different

sampling ratios. S% sampling ratio implies bLK � S=100c
number of samples is being captured randomly. The channel

recovery in denoising-based basic CS framework can be for-

mulated as

min
H
jjUsub �<FHjj22 subject to jjHjj1 � s: (9)

From Figs. 1, 4, and 5, it can be noted that channel

exhibits fewer areas of high activity that dominate over

lower and diffused spread of smaller taps. Interestingly, it is

noticed from Figs. 2 and 5 that the 2D Fourier transform of

channel, i.e., FH is sparser than the channel itself. Thus, it is

proposed to estimate channel H in the CS based denoising

framework considering the sparsity of U as below

min
U
jjUsub �<Ujj22 subject to jjUjj1 � s; (10)

where U ¼ FH and s is the measure of the sparsity of U.

In the following experiments, the value of s is set to

0:5
ffiffiffiffiffiffiffi
LK
p

, where L is the granularity of Doppler frequencies

and K is the number of delay frequencies. This value of s is

found to provide a good estimate of channel in all the experi-

ments presented in this paper and is found empirically.

FIG. 5. (Color online) Representative channel estimates at time (iþ d),

using Ref. 8 as kernel solver estimated from the field data of SPACE08

experiment (Ref. 13).

4000 J. Acoust. Soc. Am. 140 (5), November 2016 Ansari et al.



Figure 6 shows the variation of the normalized mean squared

error (NMSE) of reconstructed channel with c, where

s ¼ c
ffiffiffiffiffiffiffi
LK
p

for three window length, 7.68, 9.22, and 10.75

msec. The experiment is carried out at the 70% sampling

ratio at noisy channel signal-to-noise ratio (SNR) of 5 dB.

This figure illustrates that NMSE is reasonably low with

c¼ 0.5 or when s ¼ 0:5
ffiffiffiffiffiffiffi
LK
p

for all three window lengths.

The same scenario is observed with all other results in the

sequel and hence, this value of s is chosen.

The problem has been solved with the MATLAB toolbox

SPGL1.36,37

In order to test the performance of the proposed channel

estimation method with basic CS, Monte Carlo simulations

are carried out over 200 iterations for each noise level. The

performance is evaluated via NMSE measured in decibels

(dB). Results are displayed over additive white complex

Gaussian noise of varying variance. In addition, different

window lengths are considered for channel estimation. The

SNR of noisy channel is computed as below

SNR of Noisy Channel

¼10log10

1

LK

XL�1

i¼0

XK�1

k¼0

jH i;kð Þj2

r2
n

0
BB@

1
CCA
; (11)

where r2
n represents the noise variance.

The NMSE of estimated channel Ĥ ½i; k� measured in dB

is computed as below

NMSE ¼ 10 log10

XL�1

i¼0

XK�1

k¼0

jH i; kð Þ � Ĥ i; kð Þj

XL�1

i¼0

XK�1

k¼0

jH i; kð Þj2

0
BBBBB@

1
CCCCCA
: (12)

Figures 7 and 8 represent NMSE results on channel recovery

using the basic CS approach given in Eq. (10).

Corresponding to CS, impact of varying sampling percent-

age in the 2D Fourier domain on channel recovery is studied.

As the SNR decreases from 10 to 5 dB, an increase in NMSE

is observed with a most pronounced increase (�3 dB) at a

100% sampling ratio. Further, it is observed that the sam-

pling ratio increase leads to progressively superior perfor-

mance, with the lowest NMSE attained at 100% (i.e., no

compressive sampling that is actually sparsity-constraint
least squares). Thus, it is concluded that traditional compres-

sive sampling as used in Eq. (10) does not lead to good chan-

nel recovery.

D. Proposed channel estimation using compressive
sensing with prior information

In Sec. III C, it is observed that the traditional CS with-

out modifications is unable to recover the channel. Thus, it is

proposed to introduce channel-cognizant constraints to

improve estimator’s performance. First, consider the follow-

ing observations from Figs. 1–5:

(1) Direct arrival and primary multipath regions dominate

the channel support (Figs. 1 and 2).

(2) The zero Doppler frequency column U½0;x�K�1
x¼0, in

Fig. 2 is the most dominant component of the channel.

Physically, it represents the time-invariant slowly

FIG. 6. Reconstruction accuracy of channel in terms of NMSE versus the

value of c where s ¼ c
ffiffiffiffiffiffiffi
LK
p

.

FIG. 7. NMSE results on channel estimation using the traditional CS at

noisy channel SNR of 10 dB; implements Eq. (10).

FIG. 8. NMSE results on channel estimation using the traditional CS at

noisy channel SNR of 5 dB; implements Eq. (10).
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changing component due to direct arrival and persistent

multipath arrivals.

(3) Rest of the support U½l 6¼ 0;x�L�1;K�1
l¼1;x¼0 is dominated by

slower Doppler frequency components, particularly,

U½61;x�K�1
x¼0.

(4) Rapidly fluctuating multipath arrivals (observed in

higher numbered delay taps in Fig. 4 and Fig. 5) occupy

high-frequency columns of U½l 6¼ 0;x�L�1;K�1
l¼2;x¼0 as high-

energy components, i.e., for l� 2.

The above observations imply co-existence of dominant

slowly varying component and high-energy transients owing

to ephemeral oceanic events.12 Another possible reason for

high-energy transients can be constructive interference from

multipaths due to intersecting surface waves. Current sparse

sensing literature21–23 as well as the proposed framework in

Sec. III C ignores these physical constraints posed on

U½l;x�L�1;K�1
l¼0;x¼0 due to multipath propagation in the shallow

water acoustic paradigm.

This establishes motivation for employing acoustic

physics-cognizant channel knowledge to densely sample in

the zero- and low-Doppler frequency regions that correspond

to dominant oceanographic activity. This proposed frame-

work is hereby called non-uniform compressive sensing with

prior knowledge.

In order to formulate it mathematically, assume that T
denotes the support of U that contains dominant slowly vary-

ing components of the channel. All samples on the support T
are considered and partial sensing is carried out on

jTcj ¼ n� jTj, where j:j denotes the cardinality of a set and

n denotes the dimension of U. Subsequently, channel H is

estimated in CS with prior information based denoising

framework as below

min
U
jjUsub �<Tc Ujj22 subject to jjUjj1 � s; (13)

where U ¼ FH and <Tc denotes restricted sampling operator

that does partial sensing on Tc.

1. Frequency-selective noise suppression using
Eq. (13)

Sparse recovery using Eq. (13) differs from the tradi-

tional CS formulation Eq. (10) in two significant ways:

(a) Sparse recovery is imposed on the entire space, i.e., the

solution is heavily biased toward picking the highest

components of the channel across the whole support.

(b) Partial sampling is limited to outside the main support.

In order to test bullet point (b) above, results are pre-

sented on the SPACE08 channel with no partial sampling or

full sampling of zero Doppler in Figs. 9 and 10 and, full

sampling of zero Doppler and first low-Doppler frequency

columns in Figs. 11 and 12. The combination of these two

criteria biases the channel recovery solution in Eq. (13)

toward selecting the frequency channel components belong-

ing to the main support of the channel, e.g., in this case the

zero and low Doppler frequency components. This is partly

due to the dominance of these components over the rest of

the support as well as noise averaging over the lower fre-

quency components, relative to higher frequency transients.

Therefore, channel components in higher frequency region

represented by outer columns experience a lower SNR

compared to channel components in inner columns due to

different rates of noise averaging. This leads to frequency-

selective noise suppression using sparse recovery techniques

along the l axis. It is noteworthy that the exact choice of

what constitutes low Doppler depends on the state of the

ocean, e.g., for really rough ocean with high wind activity,

significant surface wave phenomena can push the choice of

low Doppler boundaries [5–10 Hz] to higher ranges.

For the experimental SPACE08 field data used in this

section, limiting Doppler activity observations to only 61

column next to zero Doppler was sufficient for capturing

most multipath activity leaving outer columns for high-

transient observations. The low-Doppler region of the chan-

nel is notated as U½jlj � h;x�h;K�1
l¼0;x¼0, where h is the chosen

upper bound of the low Doppler frequency range. Choosing

<Tc with a smaller sampling ratio will select all the dominant

low-frequency activity around U½jlj � h;x�h;K�1
l¼0;x¼0 and select

only some of the high-energy components from the rest of

the support.

FIG. 9. NMSE results on channel estimation using CS with prior informa-

tion, i.e., with full sampling of zero Doppler frequency; with noisy channel

SNR¼ 10 dB; implements Eq. (13).

FIG. 10. NMSE results on channel estimation using CS with prior informa-

tion, i.e., with full sampling of zero Doppler frequency; with noisy channel

SNR¼ 5 dB; implements Eq. (13).
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NMSE results on channel estimation are presented con-

sidering full sampling in:

(a) zero Doppler frequency region of U at 10 dB (Fig. 9)

and 5 dB (Fig. 10) of noisy channel SNR,

(b) zero Doppler and first (61) column adjacent to zero

Doppler at 5 dB noisy channel SNR (Fig. 11), and

(c) zero Doppler and first two columns (62) adjacent to

zero Doppler components at 5 dB noisy channel SNR

(Fig. 12).

In Figs. 9–12, a clear minimum error is observed for

each sampling ratio, even though the minimum may be

achieved over different observation windows. This is due to

the inherent uncertainty principle governing time, frequency,

and sparsity localization, discussed in Ref. 11 The minimum

is achieved when the observation window is long enough to

capture U½0;x�K�1
x¼0, i.e., the zero-Doppler column precisely,

for the given sampling ratio. Beyond this point, increasing

the observation window length will not add to the precision

of detecting U½0;x�K�1
x¼0 but may reduce the precision of esti-

mating higher Doppler columns, as high-energy transients

may get averaged over longer window choices.

Further discussion of results regarding relative perfor-

mance between different sampling ratios are given below.

2. Understanding NMSE behavior with different
sampling ratios

In order to further understand NMSE results on channel

estimation using CS with prior information, the performance

of Figs. 9 and 10 are compared with those of Figs. 7 and

8 for noisy channel SNR¼ 10 and 5 dB, respectively.

Significantly improved performance is observed over the tra-

ditional basic CS. This is to be expected as Eq. (10) is agnos-

tic of channel support and blindly attempts recovery of the

channel based on sparsity defined randomly over the whole

space. On the other hand, Eq. (13) assumes basic physical

knowledge of the channel support and therefore, samples it

more efficiently.

Further, it is observed that NMSE converges across all

sampling ratios to a cross-over point in Figs. 9 and 10 as the

observation window increases followed by a reversal in per-

formance across the sampling ratios in terms of NMSE per-

formance. This is attributed to the NMSE Eq. (14) being

dominated by the error in estimating the zero-Doppler col-

umn U½0;x�K�1
x¼0, as demonstrated by Tables I and II,

NMSE in dBð Þ ¼ 10 log10

XK�1

x¼0

jU i;xð Þ � Û i;xð Þj2

XK�1

x¼0

jU i;xð Þj2

0
BBBBB@

1
CCCCCA
;

(14)

where i corresponds to

(a) column (a) in Tables I and II—zero Doppler or the

center column of Fig. 2,

(b) column (b) in Tables I and II—squared sum of errors

in the I column to the left and right of the center

column (zero Doppler) of Fig. 2, and

(c) column (c) in Tables I and II—squared sum of errors

in the II column to the left and right of the center col-

umn (zero Doppler) of Fig. 2.

Channel recovery with the smallest sampling ratio

(40%) recovers the zero-Doppler column U½0;x�K�1
x¼0 fastest,

due to heavy noise suppression along the higher Doppler col-

umns (Sec. III D 1), whereas higher sampling ratios need to

FIG. 11. NMSE results on channel estimation using CS with prior informa-

tion, i.e., with full sampling of zero- and first low-Doppler frequency; with

noisy channel SNR¼ 5 dB; implements Eq. (13).

FIG. 12. NMSE results on channel estimation using CS with prior informa-

tion, i.e., with full sampling of zero- and first two low-Doppler frequencies;

noisy channel SNR¼ 5 dB; implements Eq. (13).

TABLE I. NMSE in dB in channel estimation in certain columns

(SNR¼ 10 dB).

Window

length

Sampling

ratio

(in %)

NMSE in zero

Doppler

column (a)

NMSE in first

Doppler

column (b)

NMSE in second

Doppler

column (c)

30 40 �24.3629 �1.237 �0.9177

30 100 �22.2622 �2.0794 �1.3027

50 40 �25.4511 �1.4963 �0.8712

50 100 �23.4827 �2.9483 �1.2379

70 40 �26.21 �1.8396 �0.9369

70 100 �24.2814 �4.0119 �1.3836
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observe the channel longer to resolve noise suppression.

This is further evidenced by the shift in the cross-over point

from approximately 7 msec in Fig. 9 to approximately

13 msec in Fig. 10 as the SNR is decreased from 10 to 5 dB.

Figures 11 and 12 correspond to full sampling of zero

and first Doppler columns, i.e., U½jlj � 1;x�1;K�1
l¼0;x¼0 (Fig. 11)

and zero Doppler and first two Doppler columns, i.e., U½jlj
� 2;x�2;K�1

l¼0;x¼0 (Fig. 12). Figures 11 and 12 do not display a

significant difference because activity from second Doppler

column, i.e., U½jlj ¼ 2;x�K�1
x¼0 is not that significant relative

to energy in U½0;x�K�1
x¼0. Both figures exhibit a progressively

lower NMSE for smaller sampling ratios, without any cross-

over point like in Figs. 9 and 10. This is to be expected, as

all estimators in both figures sample the lower Doppler col-

umns, i.e., U½jlj � h;x�h;K�1
l¼0;x¼0 with a 100% sampling ratio

(h¼ 1 for Fig. 11 and h¼ 2 for Fig. 12). In Figs. 11 and 12,

sampling ratios differ only across higher Doppler frequency

columns that capture high-energy transients and other

ephemeral events. Thus, both these figures demonstrate a

similar performance in channel estimation. The difference in

performance across different sampling ratios as well as

between corresponding curves in Figs. 11 and 12 depend

only on the ability of the algorithm to pick up transient mul-

tipath energy at higher frequencies. The lower sampling

ratios are heavily biased toward capturing only the high-

energy transients in this domain due to their superior noise

suppression and hence, achieve a lower NMSE than higher

sampling ratios. Furthermore, higher energy transients aver-

age out with increasing window length, and hence, the per-

formances of all estimators deteriorate after achieving

minimal NMSE point at approximately 10.8 msec.

The above analysis shows that one needs to choose the

appropriate window length and the appropriate sampling

ratio in order to perform channel estimation. From Figs. 11

and 12, it is observed that when the observation window is

long enough to capture slowly varying components, the

performance of the method stabilizes, i.e., increasing the

window length beyond, say, 9.22 msec does not change per-

formance much. Figure 13 shows NMSE vs noisy channel

SNR for window length from 6.14 to 15.36 msec using CS

with prior information, i.e., with full sampling of zero- and

first two low-Doppler frequency and overall sampling ratio

of 70%. It is observed that curves of different window

lengths run almost together between nearly 5–10 dB of noisy

channel SNR. Thus, any window length between 9.22 to

15.36 msec is appropriate to provide good performance at

these SNRs.

Figure 14 shows the variation of NMSE versus sampling

ratio at a noisy channel SNR of 5 dB (corresponding to Fig.

12) to carefully look at the impact of the sampling ratio on

NMSE at different window lengths. It is observed that at

5 dB channel SNR, window lengths from 10.75 to 23.04

msec provide almost a consistent performance from 60%

sampling ratio onwards (with an NMSE change within

60.5 dB). Better performance is observed at lower sampling

ratios with an improvement of 0.5 to 0.8 dB compared to a

100% sampling ratio because the channel is sparse in the 2D

frequency domain where the proposed CS based method is

applied. Also, since the channel SNR is low (5 dB), the chan-

nel is noisy and hence, a lower sampling ratio will help in

picking less but higher energy transients that are more likely

to be higher SNR points in the frequency domain.

3. Adaptive approach to selecting observation window
length and sampling ratio

An adaptive approach similar to Ref. 14 is presented for

appropriate selection of the observation window length and

TABLE II. NMSE in dB in channel estimation in certain Doppler columns

(SNR¼ 5 dB).

Window

length

Sampling

ratio (in %)

NMSE in zero

Doppler

column (a)

NMSE in first

Doppler

column (b)

NMSE in second

Doppler

column (c)

70 40 �21.2888 �1.142 �0.5903

70 100 �19.6378 �2.0201 �0.8047

90 40 �21.8233 �1.3136 �0.6645

90 100 �20.274 �2.5956 �0.996

110 40 �22.2825 �1.5632 �0.751

110 100 �20.7156 �3.2496 �1.1618

FIG. 13. NMSE vs noisy channel SNR using CS with prior information, i.e.,

with full sampling of zero- and first two low-Doppler frequency and with

70% sampling ratio; at different window lengths.

FIG. 14. Perturbation analysis for the case when full sampling is done of

zero- and first two low-Doppler frequency with noisy channel SNR¼ 5 dB

(i.e., corresponding to Fig. 12).
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sampling ratio that minimizes the normalized prediction

error. The approach is described in steps as follows:

(a) Step 1: Initialize window length and sampling ratio at

some point, called the current operating point.

(b) Step 2: Choose window length on either side of the cur-

rent operating point. If the prediction error decreases,

go until the optimum point is reached.

(c) Step 3: Choose the sampling ratio on either side of the

current setting and move in the direction of decrease of

NMSE and choose the one with minimum NMSE.

E. Proposed channel estimation using modified CS
with prior information

Section III D utilized non-uniform CS with prior infor-

mation. In addition to the observations made in Sec. III D, it

can be noted from Fig. 2 that Fourier transform of the chan-

nel U is sparser on the support Tc rather than the entire sup-

port (refer to Fig. 15). So, imposing the sparsity of U on Tc,

unlike Eq. (13) that imposes sparsity on the entire support of

U, can increase the performance of channel estimation. This

can be easily formulated in the context of modified CS.30

Here, non-uniform modified CS with full sampling of zero

Doppler frequency component of the channel transform U is

utilized. In addition, the support of U is split into two non-

overlapping subspaces S1 and S2:

(a) Subspace S1 corresponds to support Tc where sparsity

is imposed and partial sampling is carried out. This

subspace is noisy and sparse, and corresponds to multi-

ple reflections between the ocean surface and rough

sea bottom, transient signal spikes from unpredictable

wave focusing events, and low energy fluctuations due

to attenuated multipath arrivals.

(b) Subspace S2, the less noisy subspace complementary to

(i) above, i.e., support T, where neither partial sam-

pling is done nor sparsity is imposed. This subspace

corresponds to relatively stable and higher-energy

components that occupy the low-Doppler regions.

The proposed modified CS with prior information

framework is now formulated as below

min
U
jjUsub �<Tc Ujj22 subject to jjUTc jj1 � s; (15)

where U ¼ FH and <Tc is the restricted sampling operator

that does partial sensing on Tc. Channel estimation results

are presented using the modified CS approach considering

support T to be zero Doppler frequency region of U at 10 dB

(Fig. 16) and 5 dB (Fig. 17) of a noisy channel SNR.

F. Discussion of results

Figures 16 and 17 present NMSE results with modified
CS with prior information as given in Eq. (15) and reveal

that a lower NMSE is achieved with a 100% sampling ratio

compared to a 40% sampling ratio. This is to be expected as

the contribution of the high-energy regions in the low-

Doppler frequency space S2 is explicitly accounted for in the

sparsity and partial sampling considerations in Eq. (15),

unlike Eq. (13). Thus, due to explicit prior setting in Eq. (15)

lower sampling ratios do not offer any bias toward estimat-

ing the high-energy low-Doppler components. Furthermore,

the partial sampling operator <Tc only captures sparsity in S1

while suppressing background noise. Also, these results are

in consonance with compressive sensing theory, whereby,

the 100% sampling ratio provides the lowest NMSE and

NMSE increases with decreasing sampling ratio.38,39

G. Comparative results

In this section, comparative results on channel estima-

tion are presented with direct denoising based framework,

i.e., least squares with sparsity regularization,40 traditional

basic CS (Sec. III C), CS with prior information (Sec.

III D),41 and modified CS with prior information (Sec. III E).

In traditional basic CS, CS with prior information, and modi-

fied CS with prior information, partial sampling is employed

at the receiver end. A key novelty of this work is the 2D

Fourier domain representation of the UWA channel, which

FIG. 15. (Color online) 2D Fourier representation of channel with labeling

of subspaces and support.

FIG. 16. NMSE results on channel estimation at 10 dB SNR with modified

CS, support T is zero Doppler frequency; implements Eq. (15).
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enables localization of slowly-varying channel components

against transient and potentially high-energy taps due to

ephemeral oceanic events. For the current 2D Fourier

domain setting, traditional basic CS within this framework

(Figs. 7 and 8) and least squares with sparsity regularization

(direct denoising framework) are considered as the base per-

formance standards to ensure a fair comparison against the

state-of-the-art.

Figures 18 and 19 present NMSE results of an estimated

channel with different window lengths and varying sampling

ratios for noisy channel SNRs of 10 and 5 dB, respectively.

It is observed that the modified CS with prior information,

i.e., with full sampling of zero Doppler, Eq. (15) provides

the best performance with a marginal performance gap

between 40% and 100% sampling ratios. This is to be

expected given the results and related discussions in Secs.

III D and III E.

IV. RESULTS ON SIMULATED CHANNEL

In order to demonstrate the efficacy of the proposed

method, this section presents results on a public-domain

simulated channel that emulates multipath channel effects.

This channel simulator has been proposed recently6,31 and is

unrelated to channel estimates used in Sec. III above.

This channel simulator models different multipath effects

commonly encountered in shallow water acoustic communi-

cations, and has also successfully interpreted specular reflec-

tions and multipath arrivals in the shallow water channel

across several field trials6,31 including SPACE08 and other

experimental channel data. Channel parameters used in this

simulation work are presented in the Appendix. A 2D delay-

time snapshot of channel for 0.5 s duration is shown in Fig.

20 with corresponding 2D Fourier domain representation

shown in Fig. 21.

Figures 20 and 21 clearly show that this channel is very

distinct from the NCMNS channel estimates used for numer-

ical simulations setup in Sec. III (refer to Figs. 1 and 5).

Figure 22 shows a sorted magnitude of 2D time domain and

2D frequency domain channel coefficients. Compared to

the 2D time-domain, this channel is also sparser in the 2D

frequency domain, although the relative sparsity is less com-

pared to the previous SPACE08 experimental data.

Channel estimation results are presented on this channel

with modified CS with prior information. As evident from

FIG. 17. NMSE results on channel estimation at 5 dB SNR with modified

CS, support T is zero Doppler frequency; implements Eq. (15).

FIG. 18. Comparative performance of channel estimation with different

sparse sensing techniques at 10 dB SNR; results on modified CS with prior

relate to full sampling of zero Doppler.

FIG. 19. Comparative performance of channel estimation at 5 dB SNR;

results on modified CS with prior relate to full sampling of zero Doppler.

FIG. 20. (Color online) Simulated channel in delay-time (2D time domain)

using Channel Simulator (Ref. 31); colorbar is in log scale.
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Fig. 21, this channel is dense at zero Doppler and few low

Doppler frequencies. Hence, the support T is considered to

be zero Doppler and first five Doppler frequencies. NMSE

estimation results are presented for noisy channel SNR of 10

and 5 dB in Figs. 23 and 24, and correspond to results pre-

sented in Figs. 16 and 17, which were based on simulations

using NCMNS estimates on SPACE08 field data (200 m

range, 15 m depth, moderate sea conditions). Similar to the

results on a previous channel (Figs. 16 and 17), good results

are obtained with the proposed non-uniform modified CS

with prior information.

It is observed that for this independent numerical experi-

ment, the NMSE variation shows two consistent similarities

between Figs. 16 and 23: (i) NMSE performance of all sam-

pling ratios converge up to a critical averaging window,

which represents the minimum observation length to capture

the dominant “steady-state,” i.e., slowly varying channel

components corresponding to low Doppler frequencies. (ii)

While the lowest NMSE is obtained for the highest sampling

rate, the difference in NMSE performance between different

sampling ratios is within 1 dB for observation windows close

to this critical window length.

Lowering SNR increases the ambient noise levels, and

therefore, the convergence effect around the critical window

length is reduced in Figs. 17 and 24. However, the conver-

gence effect is still seen in Fig. 24, for the channel in Fig.

20, which has significantly less lower-magnitude channel

components from diffused reflection, and therefore, less vul-

nerable to low SNR issues.

The principal difference between the NMSE results for

the two types of channels (Figs. 1 and 20) is that for the sim-

ulated channel (Fig. 20), NMSE decreases for increasing

window length (refer to Figs. 23 and 24). This is because

this channel has more slowly varying channel components

due to relatively steady multipath arrivals from specular

reflections. Therefore, for the simulated channel (Fig. 20)

the slowly varying components occupying the lower Doppler

frequencies, as seen in Fig. 21, dominate the 2D Fourier

domain than the estimated channel in Fig. 1. Therefore, Figs.

23 and 24 exhibit an improvement in NMSE as the averaging

window length increases whereas Figs. 16 and 17 show an

optimal window length where NMSE is minimized before

increasing again. It is noteworthy that for sufficiently long

window lengths similar minima is expected for Figs. 23 and

24 as well, as the gain in high-precision estimation of the

steady-state components is slowly offset by the loss in preci-

sion to capture the transient variations.

FIG. 21. (Color online) Simulated channel of Fig. 20 in 2D Fourier domain;

colorbar is in linear scale.

FIG. 22. Sorted magnitude coefficients of 2D time domain channel shown

in Figs. 20 and 2D Fourier transform of channel shown in Fig. 21.

FIG. 23. NMSE results on channel estimation at 10 dB SNR with modified

CS, support T is zero and first five non-zero Doppler frequencies; imple-

ments Eq. (15).

FIG. 24. NMSE results on channel estimation at 5 dB SNR with modified

CS, support T is zero and first five non-zero Doppler frequencies; imple-

ments Eq. (15).
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V. CONCLUSIONS

A 2D frequency domain representation is introduced

that captures the time-varying fluctuations of the shallow

water acoustic channel both in delay frequency and Doppler

frequencies. The chief advantage of choosing this 2D fre-

quency domain is that it disambiguates the slowly varying

channel components which occupy the lower frequency

bands, against the transient channel components, which are

difficult to model or predict, and typically occupy the higher

frequency bands. Furthermore, the transient channel compo-

nents occupying the higher frequencies typically manifest a

sparser distribution locally, than their slowly varying coun-

terparts in the lower frequency bands. This disambiguation

of diverse channel effects within the 2D spectra is exploited

to introduce non-uniform compressive sampling, where dif-

ferent sampling ratios are employed at different frequency

bands to take advantage of the relative sparsity of different

types of channel components. This work is scoped to the

channel estimation aspects with no feedback or iteration

between transmitter and receiver. Proposed methods are vali-

dated through extensive numerical simulations. These

numerical experiments employ two independent channels as

the simulation setup: (i) field estimates from the SPACE08

experiment using established techniques, as well as (ii) a

public-domain channel simulator that emulates well-known

oceanic phenomena such as specular reflections, and have

been tested against real channel estimates from field trials.

Overall, the conclusion of these investigations shows consis-

tent results between the two types of independent numerical

experimentation. Simulation results demonstrate that the

optimal operating point of channel observation is an intricate

combination of observation window length, local sparsity of

the channel support (e.g., within a given frequency band), as

well as the sampling ratio appropriate for that local (and typ-

ically unknown in advance) sparsity. An adaptive technique

is also provided that heuristically estimates the locally opti-

mal operating point by minimizing the normalized prediction

error for the estimated channel locally. Simulation results

also demonstrate that while, as expected the NMSE

improves with increasing sampling ratio, the performance

gap between high and low sampling ratios is within 1 dB

when operating around (or close to) this optimal operating

point. This is well-known in compressive sampling, where

the primary gain is achieving similar error rates using drasti-

cally smaller sampling ratios. This work articulates the same

concept for shallow water acoustic communications, and

introduces a non-uniform compressive sampling framework

in a 2D frequency domain, that is cognizant of the funda-

mentally intertwined nature of the shallow water acoustic

channel: between non-stationary transient elements, and rel-

atively steady channel components due to diverse multipath

phenomena.
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APPENDIX

Below is the list of parameters used to simulate an UWA

channel used in Sec. IV (refer to Fig. 20 generated using Ref.

4, with the help of MATLAB code present at Ref. 31).

h0¼ 103; {surface height (depth) [m]}

ht0¼ 58; (Transmitter height [m])

hr0¼ 59; (Receiver height [m])

d0¼ 3000; (channel distance [m])

k¼ 1.7; (spreading factor)

c¼ 1500; (speed of sound in water [m/s])

c2¼ 1200; {speed of sound in bottom [m/s] (>1500 for

hard, <1500 for soft)}

cut¼ 20; (do not consider arrivals whose strength is below

that of direct arrival divided by cut)

fmin¼ 8.5� 103; (minimum frequency [Hz])

B¼ 9� 103; (bandwidth [Hz])

df¼ 25; (frequency resolution [Hz], f_vec¼ fmin:df:fmax;)

dt¼ 50� 10�3; (time resolution [seconds])

T_SS¼ 60; (coherence time of the small-scale variations

[seconds])

Small-Scale (S-S) parameters:

sig2s¼ 1.125; (variance of S-S surface variations)

sig2b¼ sig2s/2; (variance of S-S bottom variations)

B_delp¼ 5� 10�4; [3-dB width of the p.s.d. of intra-path

delays (assumed constant for all paths)]

Sp¼ 20; [number of intra-paths (assumed constant for all

paths)]

mu_p¼ 0.5/Sp; [mean of intra-path amplitudes (assumed

constant for all paths)]

nu_p¼ 1� 10�6; [variance of intra-path amplitudes

(assumed constant for all paths)]

Large-Scale (L-S) parameters:

T_tot¼ 3*T_SS; (total duration of the simulated signal

[seconds])

t_tot_vec¼ (0:dt:T_tot); Lt_tot¼ length(t_tot_vec);

h_bnd¼ [�10 10]; [range of surface height variation (L-S

realizations are limited to hþ h_band)]

ht_bnd¼ [�5 5]; (range of transmitter height variation)

hr_bnd¼ [�5 5]; (range of receiver height variation)

d_bnd¼ [�20 20]; (range of channel distance variation)

sig_h¼ 1; (standard deviation of L-S variations of surface

height)

sig_ht¼ 1; (standard deviation of L-S variations of trans-

mitter height)

sig_hr¼ 1; (standard deviation of L-S variations of receiver

height)

sig_d¼ 1; (standard deviation of L-S variations of distance

height)
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a_AR¼ 0.9; [AR parameter for generating L-S variations

(constant for variables h, ht, hr, d)]
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