
A Framework for Online Clustering Based
on Evolving Semi-Supervision∗

Guilherme Alves1, Maria Camila N. Barioni1, Elaine R. Faria1

1Faculdade de Computação (FACOM/UFU)
Universidade Federal de Uberlândia, MG - Brasil

{guilhermealves,camila.barioni,elaine}@ufu.br

Abstract. The huge amount of currently available data puts considerable con-
straints on the task of information retrieval. Automatic methods to organize
data, such as clustering, can be used to help with this task allowing timely
access. Semi-supervised clustering approaches employ some additional infor-
mation to guide the clustering performed based on data attributes to a more
suitable data partition. However, this extra information may change over time
imposing a shift in the manner by which data is organized. In order to help cope
with this issue, we propose the framework called CABESS (Cluster Adaptation
Based on Evolving Semi-Supervision), for online clustering. This framework
is able to deal with evolving semi-supervision obtained through user binary
feedbacks. To validate our approach, the experiments were run over hierar-
chical labeled data considering clustering splits over time. The experimental
results show the potential of the proposed framework for dealing with evolving
semi-supervision. Moreover, they also show that our framework is faster than
traditional semi-supervised clustering algorithms using lower standard semi-
supervision.

1. Introduction
The advent of ubiquitous computing is the one of the reasons most responsible for the
tremendous increase in data generation. However, notwithstanding the valuable informa-
tion contained in this huge amount of data, without the support of appropriate approaches
the user may end up drowning in the data. Data mining approaches, such as clustering,
aim at helping to obtain useful information from large datasets. Clustering approaches
have been designed with the purpose of grouping data in order to detect patterns, to sum-
marize information or help in the arrangement thereof [Barioni et al. 2014]. When there
is some additional background knowledge available or a subset of labeled data, this ad-
ditional information may be used to guide the clustering process to a desirable or more
suitable data partition. Techniques that employ this additional information, referred to
here as constraints, constitute the research area called semi-supervised clustering. Con-
sidering that the desired organization for the data may change over time, semi-supervised
approaches may be useful for guiding clustering algorithms in the adaptation process.

The motivation for the work described herein is illustrated through the following
example. Suppose that a marketing company aims to segment customers into groups, as
well as monitor the evolution of these groups over time. In order to find these groups

∗This work has been supported by CAPES, CNPq, and FAPEMIG.

32nd SBBD – Full Papers – ISSN 2316-5170 October 2-5, 2017 – Uberlândia, MG, Brazil

paper:171369

16

(a) Grouping tree. (b) Execution results vs. ground truth over time.
Figure 1. An illustrative example. (a) Grouping trees showing the desired data
partition highlighted by the dotted region in two different timestamps. (b) The
evolution of the clustering structure as new data arrives and the constraint
change over time. The numbers represent semi-supervision labels and the black
circles represent the data instances without semi-supervision.

there is an available set of characteristics that represent each customer (such as monthly
income, age) and additional information concerning the preferences of a small number of
customers. Thus, a semi-supervised clustering algorithm is used at first. However, as time
goes by, the preferences of the customers may change leading to new clustering structures.
That is, at another time the preferences of the customers of a group change and cause the
appearance of a new subgroup of costumers. Therefore, constraints, derived from the new
preferences of the customers, impose a new clustering structure splitting a previous group
into two newer groups. Noteworthy here is that more customers may still appear, but the
characteristics do not change, that is, the representation of the customers does not change
over time only their preferences.

The previously described scenario is an instance of the problem addressed herein.
Figure 1 illustrates the evolution of the clustering structure as the constraints change over
time. Figure 1a depicts a grouping tree, describing the different levels of the possible
data organization. The desired organization is highlighted by the dotted regions. Thus,
one observes that there are two possible types of targeted data organization. On the left-
hand side, Figure 1b describes the following sets over time: (I) the cluster transitions
detected, (II) the resulted partition set after a semi-supervised clustering, and (III) the
ground truth, that is, the optimal partition set desired by a user at each timestamp. By
analyzing the clustering results from the timestamp t0 to t3, one notes that the user criteria
for partitioning the data has changed according to the level of hierarchy desired (Figure
1a). The feedbacks define constraints that guide the clustering process (see numbers as
labels in Figure 1b).

Considering that the user constraints may change over time, the following clus-
tering transitions may occur: birth, split or merge. The work described herein is focused
on splits and assumes that the evolving semi-supervision can impact the modifications
in the clustering structures over time, implying in new splits. Therefore, the main goal
of our work is to provide a framework that is able to use and maintain semi-supervision

32nd SBBD – Full Papers – ISSN 2316-5170 October 2-5, 2017 – Uberlândia, MG, Brazil

17

correctly to enable efficient and effective online clustering processes. The main contribu-
tions of the work described herein can be summarized as follows: (1) The introduction
of CABESS (Cluster Adaptation Based on Evolving Semi-Supervision) (Section 3), a
framework which aims at allowing efficient and effective online clustering using semi-
supervision in the form of feedback. (2) The proposal of a strategy that extracts semi-
supervision information from feedback given in the form of labels (Section 4.1). (3) An
approach to keep the labels consistent over time (Section 4.2).

This paper is organized as follows. Section 2 presents the related works. Section
3 formalizes the problem addressed in this paper and describes our framework CABESS.
Section 4 presents Pointwise CABESS, an instantiation of our framework, and its partic-
ularities. Section 5 explains the experimental setup and Section 6 presents and discusses
the experimental results. The conclusions and the future works are discussed in Section
7.

2. Related Work
The strategies employed in the framework CABESS are related to the research performed
on semi-supervised clustering with online learning and tracking clustering. Therefore,
Section 2.1 briefly presents the fundamental concepts of batch and online semi-supervised
clustering. Following on from this, Section 2.2 describes the related works regarding
monitoring evolving clusters.

2.1. Semi-supervised Clustering

The semi-supervised clustering approaches described in the scientific literature provide
different approaches in order to allow for the guiding of the clustering process, and the
obtainment of meaningful clusters [Barioni et al. 2014]. Generally, traditional semi-
supervised clustering algorithms are divided into two categories: similarity-adapting
methods that adapt the similarity measure employed in the clustering process in order to
satisfy the labels or constraints in the data; and methods that employ labels or constraints
provided by the users to modify the clustering assignment step [Basu et al. 2008].

There is also a variety of ways to express and to obtain these constraints. A sub-
stantial part of the works described in the scientific literature explores the specification
of these restrictions in the form of instance-level constraints [Bilenko et al. 2004], which
are composed of two types of constraints: must-link (ML) and cannot-link (CL). A ML
constraint indicates that two data instances must be in the same cluster. A CL constraint
implies that two data instances must not be in the same cluster. Other means for ex-
pressing constraints are attribute-level constraints [El Moussawi et al. 2016], cluster-level
constraints [Dubey et al. 2010], relative constraints [Liu et al. 2011], and labels [Castel-
lano et al. 2013].

Several research works have extended classical clustering methods to be able to
deal with additional information. MPCK-Kmeans [Bilenko et al. 2004], for example, is
an extension of the widely used K-MEANS algorithm [Jain and Dubes 1988] that incor-
porates metric learning and semi-supervision in the form of ML and CL. C-DBScan [Ruiz
et al. 2007] and SSDBScan [Lelis and Sander 2009] extended the well known DBScan
algorithm [Ester et al. 1996]. While the first one deals with pairs of constraints, the latter
receives a set of labeled instances as semi-supervision input. These methods require that

32nd SBBD – Full Papers – ISSN 2316-5170 October 2-5, 2017 – Uberlândia, MG, Brazil

18

the entire dataset and all the semi-supervision information be available at the beginning
of the data clustering process.

Examples of online approaches are described in [Castellano et al. 2013] and [Lai
et al. 2014]. The first presents an extension of SSFCM for automatic image annotation
based on semi-supervised clustering. It assumes that instances belonging to some clusters
are available over time and can be clustered as chunks. The authors in [Lai et al. 2014]
propose a semi-supervised clustering technique that improves the clustering effectiveness
interactively from user feedbacks in the form of positive, negative and displacement feed-
back. A positive feedback means that a data instance was correctly assigned to the current
cluster. A displacement feedback means that a data instance must not belong to the current
cluster and points to the appropriate cluster. Although feedback arrives continually, [Lai
et al. 2014] consider that it has all data instances at the beginning of the execution. Fur-
thermore, all of these approaches assume that the user feedback is always coherent among
different iterations.

2.2. Tracking and Evolving Clustering

An important research issue that has recently come to be explored is related to the un-
derstanding of the clusters behavior over time. The MONIC [Spiliopoulou et al. 2006]
and MClusT [Oliveira and Gama 2010] frameworks are some well-known examples that
deal with this issue. The first of these two frameworks models and tracks cluster changes
in order to understand the nature of the change. The cluster transitions are formalized
and an algorithm for detecting transitions is proposed. MClusT builds a bipartite graph
for modeling the cluster transitions, where vertexes are clusters and edges represent the
relationship between a pair of clusters. Thus, a user may well attain knowledge into what
happened with instances of a cluster that split at a particular period. Other approaches
have been proposed, such as [Pereira and Moreira 2016], but it is noteworthy that none of
these explored the analysis of the evolution of constraints over time.

3. The CABESS Framework
We revisited the semi-supervised clustering model described in [Lai et al. 2014] in or-
der to propose CABESS, a generic framework that aims at using a limited amount of
additional information to provide efficient and effective online clustering. It also uses an
approach that detects external clustering transitions in order to manage evolving semi-
supervision over time. CABESS receives as input a massive sequence of data instances
(x1, ..., xn), D = {xi}ni=1, and a limited sequence of feedbacks F = {f j

i }mj=1, |F| � |D|.
Each instance is described as a d-dimensional feature vector xi = [xj

i]
d
j=1 that belongs to

a continuous feature space Ω. Each user feedback f j
i relates to a data instance xi ∈ D and

expresses either two types of feedbacks: positive and displacement.

The clustering process performed by CABESS contains five steps (see Figure 2).
Considering that no feedback information is available at first, the clustering process starts
summarizing the dataset using a micro-clustering approach based on CF-Vectors (step
1). Among the approaches that can be used in these situations, one finds BIRCH [Zhang
et al. 1996] and CluStream [Aggarwal et al. 2003]. A CF-Vector summarizes data of a
group of N instances as a triplet CF = (N,

−→
LS, SS) where

−→
LS is the linear sum of the

data instances and SS is the sum of the squared data instances. CF-vectors have important

32nd SBBD – Full Papers – ISSN 2316-5170 October 2-5, 2017 – Uberlândia, MG, Brazil

19

Figure 2. The framework CABESS. Test A verifies if new instances have been
generated or the user has been satisfied with the cluster quality (feedback gen-
eration). Test B verifies if it is the first clustering performed.

properties that are useful in CABESS. It is easy to compute centroid, radius, and diameter
of any group of the data instances from the sufficient statistics of a CF-vector. Moreover, a
CF-vector also has properties that allow us to update the group information by using only
the sufficient statistics, for example: adding a new data instance, merging two clusters,
and subtracting a data instance from a group.

In the second step, CABESS performs a macro-clustering over the resulted sum-
marized representation St using an unsupervised clustering algorithm. This step can em-
ploy either DBSCAN or K-MEANS algorithms. Following these steps, CABESS allows
the user to provide instance-level feedback regarding a data partition set Πt, which is used
to adjust the clustering process performed at the next timestamp (t + 1). In order to do
so, the instance-level feedbacks are used to deduce the summarized-level constraints Rt

(step 3). As the deduction process is a contribution derived from this particular work, it is
detailed in Sections 4.1 and 4.2.

After the semi-supervision deduction, a semi-supervised clustering algorithm is
used to re-organize the data partitions (step 4). Examples of algorithms that are suitable to
use in this step are SSDBSCAN and MPCK-MEANS. There arises the need to emphasize
that the semi-supervision required by the semi-supervised clustering algorithm must be
the same type as the semi-supervision deduced in step 3. Thus, if we choose SSDBSCAN,
step 3 must deduce semi-supervision in the form of labels, as SSDBSCAN deals with
labels. The last step is responsible for detecting transitions between the current partition
set Πt and the previous partition set Πt−1 (step 5). Both MONIC and MCLusT can be
chosen for use in this step. The CABESS clustering process finishes when the resulted
partition set satisfies the user and when there are no new instances generated in D.

It is worth mentioning here that the clustering algorithms performed in steps 2
and 3 consider the summarized information obtained from the original data. After the
clustering process, the user can provide feedback. Thus, a summarized data instance s1 ∈
St of cluster Πt

i ∈ Πt, in fact, may represent more than one data instance. Hence, semi-
supervision information involving s1 imposes constraints on all instances represented by
s1.

32nd SBBD – Full Papers – ISSN 2316-5170 October 2-5, 2017 – Uberlândia, MG, Brazil

20

(a) (b) (c) (d)

Figure 3. Example of the extraction of the labels from feedback (a,b) and the
deduction labels from instance-level to summarized-level (c,d).

4. Pointwise CABESS

In order to illustrate an instantiation of the CABESS framework we will present the
Pointwise CABESS. This CABESS instance employs the BIRCH algorithm in order
to summarize the data (step 1). The other algorithms used in Pointwise CABESS were
the DBSCAN in step 2 to perform the first clustering without any semi-supervision, then
SSDBSCAN was adopted to detect clusters with summarized-level labels in step 4, and
in the final step, MONIC was used to detect external transitions.

Pointwise CABESS deals with labels as semi-supervision information. In the
next section, we explain how Pointwise CABESS extract instance-level labels and how
it deduces the summarized-level labels.

4.1. Extracting labels from feedbacks

The summarized-level labels are obtained in two phases, firstly the instance-level labels
are extracted from feedback (see Figures 3a, 3b) and then the summarized-level labels are
deduced from instance-level labels (see Figures 3c, 3d).

Instance-level labels. The main idea behind the extraction process concerns to the con-
cept of neighborhood. A neighborhood is defined as a set of instances that must be in
the same cluster. CABESS computes the neighborhoods as in our main reference [Lai
et al. 2014] by following two rules. The first states that all instances of the same clus-
ter that received positive feedback at a previous timestamp are assigned to the equivalent
neighborhood. The second states that all instances of different clusters that received dis-
placement feedback at a previous timestamp are assigned to the neighborhood of the initial
rule, since the the destination/actual cluster is the same as the instances in the initial rule.
Following this, we assign identical labels for instances that are in the same neighborhood.
One notes that in Fig. 3b the neighborhood associated with Π1 will be assigned to label 1
at the end of the process (Fig. 3d)

Summarized-level labels. The deduction of summarized-level labels is performed as a
propagation task. CABESS aims to assign labels to Cluster Feature Vectors (CFs) in
Fig. 3c. For each summarized instance that contains labeled instances, we assign the
instance-level label to the summarized-level label. If one of the summarized instances
has labeled instances with different labels, then we need to split it in order to obtain
purified summarized instances, i.e., summarized instances that contain only the same label
in labeled instances. Noted in Fig. 3d is that CF1 and CF2 received label 1, as these
summarized instances which are in neighborhood N1.

32nd SBBD – Full Papers – ISSN 2316-5170 October 2-5, 2017 – Uberlândia, MG, Brazil

21

Table 1. Datasets employed in the experiments.
Name # instances d # classes Reference Type
DB7 9,050 2 8 [Silva et al. 2015]

SyntheticSYN3 5,000 2 3 streamMOA
SYN4 10,000 3 5 streamMOA

FROGS 1,484 8 4 [Colonna et al. 2016]
RealIPEA 5,564 5 27 IPEA

KDD’995 24,692 19 11 UCI

4.2. Dealing with obsolete labels

Obsolete labels are labels assigned to instances, for which the clusters do not exist any-
more. The data instances are still active but they are assigned to other clusters. These
labels appear when an external cluster transition happens. For example, let us suppose
there is a cluster Π0

1 at the timestamp t = 0 and also that at the next time, Π0
1 splits into

two new clusters Π1
10 and Π1

11. Thus, the label associated with Π0
1 is not valid at t = 1,

because it does not help the semi-supervised clustering process.

In order to minimize the problem of obsolete labels, CABESS adopts a detector of
transitions. This approach aims at allowing for better neighborhood management. Neigh-
borhoods are responsible for generating new labels and removing obsolete labels. Thus,
when a cluster survives both neighborhood and associated labels are preserved. When a
split transition is detected, the label associated with the previous cluster is removed and
the neighborhood is divided in order to create two or more neighborhoods and new labels
are generated accordingly.

5. Experiments

The experiments were conducted using 6 datasets1, 3 with real data and the other 3 with
synthetic data. The details concerning each one are summarized on Table 1. All these
datasets share a common feature that allows us to run our experiments, each of its data
instances is multi-labeled where labels are in a hierarchical structure.

From the three synthetic datasets, with Gaussian distribution, SYN3 and SYN4

were generated using the RandomRBFGenerator available at streamMOA2, an inter-
face of MOA3 (Massive Online Analysis) developed for the R programming language.
Let us now consider a third synthetic dataset, denominated as DB7, this is a 2D dataset
that contains clusters of different spatial distributions. The grouping trees for the above-
mentioned synthetic datasets were simulated according to the distance among clusters.
Thus, we consider two or more clusters belonging to a large cluster if they are closer than
the other clusters.

Considering the real datasets, in IPEA dataset4, each tuple corresponds to one of
the 5,564 Brazilian cities among within its Federative unit and Region, and is composed
of 5 features with localization information (latitude and longitude) and continuous val-
ues related to the following development indexes: IDHM-Longevity, IDHM-Education,

1Available at: http://guilhermealves.eti.br/research/data/
2Documentation available at: https://cran.r-project.org/web/packages/streamMOA/streamMOA.pdf.
3A framework for data stream mining: http://moa.cms.waikato.ac.nz/
4Brazilian Institute of Applied Economics Research, IPEA: http://www.ipeadata.gov.br

32nd SBBD – Full Papers – ISSN 2316-5170 October 2-5, 2017 – Uberlândia, MG, Brazil

22

Table 2. Parameters setting for each dataset.
Algorithm Parameter IPEA KDD’995 FROGS DB7 SYN3 SYN4

BIRCH B and L 500 10k 500 500 50 50
T 0.07 0.01 0.25 0.01 0.0075 0.0075

DBSCAN eps 0.075 0.02 0.5 0.075 0.075 0.075

and IDHM-Income. In the FROGS dataset, each tuple corresponds to an audio recording
of Anura, an order of the Amphibian class, and is composed using information concern-
ing specie, genus, and family. KDD’995

5 is a dataset generated by sampling 5% of data
instances from the 10% subset of the original KDD Cup 99 dataset, maintaining the pro-
portion of instances in each class. Moreover, this sampled dataset was processed with
PCA in order to reduce the dimensionality, as it is the dataset with the highest number of
dimensions. We consider two levels of labels found in KDD’995; (1) if the access is an
intrusion or not, and (2) if it is an intrusion, what is the type of intrusion.

The main goals of the experiments were to assess the effectiveness and the ef-
ficiency of our proposed framework instance, Pointwise CABESS, in comparison with
three baseline approaches, two semi-supervised and one unsupervised, considering the
four questions presented in Sections 6.1, 6.2, 6.3, and 6.4.

The Unsupervised Approach consists in periodically executing a clustering algo-
rithm without any semi-supervision. In our experiments, we adopted DBScan, an efficient
well-known unsupervised clustering algorithm. The semi-supervised approaches were run
considering two strategies, those being static and window based. The Static Approach
consists in periodically applying a semi-supervised clustering algorithm. In our experi-
ments, we adopted SSDBScan providing the true labels as semi-supervision. Notice that
this approach does not discard any label over time. The Window-based Approach is a
variation of the previous approach, where instead of executing the clustering algorithm
over all the semi-supervision set, we remove old semi-supervision information (labels).

All experiments were implemented within the same platform using the Java pro-
gramming language. In order to evaluate the effectiveness of the approaches we com-
pared the clustering results against the optimal partition set using the Adjusted Rand Index
(ARI) [Hubert and Arabie 1985]. ARI is an external criteria indicated when researchers
have a-priori information about the desirable partition set. In our experiments, the desir-
able partition set is obtained from the true labels in the datasets. For each timestamp t
only one label is considered valid for a data instance according to the grouping tree.

Each experiment over Pointwise CABESS was performed based on the Prequen-
tial Protocol. Hence, the effectiveness of Pointwise CABESS is evaluated before the user
provides current feedback. The other approaches are evaluated periodically without any
delay between the new partition set and new feedback.

Considering that our datasets have no online arrival for instances neither for feed-
back, and our main reference simulates the online aspects of getting user binary feedback,
we also simulated the temporal aspects of the data instances and the user interaction phase
for obtaining the semi-supervision. Hence, the arrival of the data instances and the user
feedback are given according to the uniform distribution. Furthermore, we insert an ex-

5UCI KDD archive: http://kdd.ics.uci.edu/

32nd SBBD – Full Papers – ISSN 2316-5170 October 2-5, 2017 – Uberlândia, MG, Brazil

23

Unsupervised Semi-supervised (α = 0.01)

1 6 11
0

0.2

0.4

0.6

0.8

1

Timestamp

A
R

I

(a) IPEA

1 6
0

0.2

0.4

0.6

0.8

1

Timestamp

A
R

I

(b) KDD’995

1 6
0

0.2

0.4

0.6

0.8

1

Timestamp

A
R

I

(c) FROGS

1 11 20
0

0.2

0.4

0.6

0.8

1

Timestamp

A
R

I

(d) DB7

1 11 20
0

0.2

0.4

0.6

0.8

1

Timestamp

A
R

I

(e) SYN3

1 11 20
0

0.2

0.4

0.6

0.8

1

Timestamp

A
R

I

(f) SYN4
Figure 4. Effectiveness assessment.

ternal cluster transition, according to the grouping tree, at t = 5 in order to evaluate the
ability of the approaches to adapt to new clusters. In each dataset, one or more clusters are
specialized into two or more new clusters and feedback, which are generated according
to these new clusters.

Table 2 shows the parameters used in BIRCH and DBSCAN algorithms for each
dataset. For the other algorithms, the parameters adopted are the SSDBSCAN in step 4,
which used the same value of DBSCAN for minPts = 2, and in the final step, MONIC
was run using τ = 0.7 and τsplit = 0.1. The experiments were run on an Intel Core i7 (3.4
GHz) with 12 GB of RAM, SATA3 HD of 1.31 TB (7,200 rpm) on Windows 7 x64.

6. Results and Discussion
Sections 6.1, 6.2, 6.3 and 6.4 present the discussion of the results obtained throughout the
experiments, which took into consideration four questions.

6.1. How accurately does semi-supervision aid on clustering effectiveness when
there are external clustering transitions over time? (Q1)

In order to answer Q1, we chose to compare the results obtained running the Unsuper-
vised Approach and the Static Approach on each dataset. This question is important for
determining whether a clustering approach can benefit from semi-supervision informa-
tion. Figure 4 shows ARI considering the semi-supervision rate α set to 1% for the Static
Approach. One notes that semi-supervision performs better in most of the datasets. In
KDD’995 semi-supervision improved the clustering quality before the cluster transition
(t = 5). Therefore, the results achieved corroborate that low rates of semi-supervision
contribute to the obtainment of a more effective clustering in a majority of the scenarios.

6.2. Are there major differences between clustering effectiveness when using
semi-supervised clustering approaches based on feedback and labels? (Q2)

One of the main contributions of our approach is its ability of dealing with semi-
supervision specified through feedback. The previous question focused on understand-
ing whether online clustering could benefit from semi-supervision. Next, we evaluated

32nd SBBD – Full Papers – ISSN 2316-5170 October 2-5, 2017 – Uberlândia, MG, Brazil

24

Pointwise CABESS Window-based Static-based Unsupervised

1 6 11
0

0.2

0.4

0.6

0.8

1

Timestamp

A
R

I

(a) IPEA

1 6
0

0.2

0.4

0.6

0.8

1

Timestamp

A
R

I

(b) KDD’995

1 6
0

0.2

0.4

0.6

0.8

1

Timestamp

A
R

I

(c) FROGS

1 11 20
0

0.2

0.4

0.6

0.8

1

Timestamp

A
R

I

(d) DB7

1 11 20
0

0.2

0.4

0.6

0.8

1

Timestamp

A
R

I

(e) SYN3

1 11 20
0

0.2

0.4

0.6

0.8

1

Timestamp

A
R

I

(f) SYN4

Figure 5. Effectiveness comparison between Pointwise CABESS and the base-
line approaches (α = 0.1 and w1).

the performance of traditional semi-supervised approaches against our approach. Figure
5 shows ARI for all the baseline approaches considered and the Pointwise CABESS.
In this experiments, we adopted α = 0.1 and the largest semi-supervision window size
w1. By analyzing the obtained results, one notes that Pointwise CABESS performed
better than other approaches above all after the external transition when considering the
datasets KDD’995 and FROGS. For the other datasets, the effectiveness obtained for the
semi-supervised approaches were equivalent. Emphasis is given here to the fact that the
semi-supervision information used by Pointwise CABESS is lower standard when com-
pared to the semi-supervision used by the other approaches. Note that our framework
receives feedback instead of labels. Thus, it needs to infer and maintain labels correct
over time. The experimental results obtained showed that there are no major differences
in the clustering quality by using using semi-supervision in the form of labels or inferring
labels from feedback, as is the case in our approach.

6.3. How the feedback window size variation affects semi-supervision information
and clustering effectiveness? (Q3)

In data stream mining literature there is a common assumption that small windows mit-
igate the adaptation time of the clustering process [Gama 2010]. In order to answer Q3
we adopted six different semi-supervision window sizes to assess it. Figure 6 shows the
Pointwise CABESS ARI for each window setting: w6 < w4 < w3 < w2 < w1. Some
curves are overlapped, e.g, w6 and w5 in DB7. Analyses of the obtained results shows
that the small window w6 showed quicker adaptation but in some cases, the quality was
unstable. This occurs due to some change of instance over the cluster at each iteration.
Note that when we have a large window size w1, there is a notable slow adaptation but we
can see stable results. The use of the detector of transitions is responsible for producing
this behavior. Moreover, running Pointwise CABESS over small label windows is the
same as the Window-based Approach, due to the fact that a small window size mitigates
the benefic effects obtained when using the detector of transitions.

32nd SBBD – Full Papers – ISSN 2316-5170 October 2-5, 2017 – Uberlândia, MG, Brazil

25

w1 w2 w3 w4 w6

1 6 11

0.2

0.4

0.6

0.8

1

Timestamp

A
R

I

(a) IPEA

1 3 5 7 9
0.2

0.4

0.6

0.8

1

Timestamp

A
R

I

(b) KDD’995

1 3 5 7 9
0.2

0.4

0.6

0.8

1

Timestamp

A
R

I

(c) FROGS

1 6 11 16
0.2

0.4

0.6

0.8

1

Timestamp

A
R

I

(d) DB7

1 6 11 16
0.2

0.4

0.6

0.8

1

Timestamp

A
R

I

(e) SYN3

1 6 11 16
0.2

0.4

0.6

0.8

1

Timestamp

A
R

I

(f) SYN4
Figure 6. Effectiveness assessment considering different window sizes.

Pointwise CABESS Window-based Static-based

IP
EA

FR
OGS

SY
N3

DB7

SY
N4

KDD’9
9 5

0

1

2

·106

Dataset

Ti
m

e
(m

s)

(a) α = 0.1 and w1

IP
EA

FR
OGS

SY
N3

DB7

SY
N4

KDD’9
9 5

0

1

2

·106

Dataset

Ti
m

e
(m

s)

(b) α = 0.01 and w6

Figure 7. Mean runtime to cluster different datasets using high (a) and low (b)
semi-supervision rates.

6.4. How efficient is our approach compared to existing semi-supervised
approaches? (Q4)

Another contribution of our approach is its ability to summarize data instances and semi-
supervision information. Here, we quantified the efficiency of our approach and compared
it against the efficiency of the existing semi-supervised algorithms. Figure 7 shows the
run times for Pointwise CABESS and the other semi-supervised approaches. Through an
analysis of these results, one observes that our framework instance performed faster than
the other approaches. The main reason for this behavior is the summarizing algorithm
used in its first step. Then, the semi-supervised clustering algorithm considers a smaller
number of summarized instances compared to the number of instances considered by the
other semi-supervised approaches.

7. Conclusion
The goal of the proposed framework presented herein, CABESS, is to assist online clus-
tering in coping with external transitions. Our experiments and analyses were performed
driven by four research questions on three real datasets and three synthetic datasets. The
results showed that our approach presents a higher efficiency when compared to other
semi-supervised approaches while keeping an equivalent effectiveness.

32nd SBBD – Full Papers – ISSN 2316-5170 October 2-5, 2017 – Uberlândia, MG, Brazil

26

With CABESS, we can put forward new directions to extend traditional semi-
supervised clustering techniques. Our work could be extended to explore other types of
semi-supervision information such as instance-level constraints (must-link and cannot-
link) that will allow for the employment of other types of semi-supervised clustering
algorithms into CABESS. Another interesting direction for future work is to tackle other
strategies for detecting transitions and to explore other types of external transitions.

References
Aggarwal, C. C., Han, J., Wang, J., and Yu, P. S. (2003). A framework for clustering evolving data

streams. In VLDB, pages 81–92. VLDB Endowment.
Barioni, M. C. N., Razente, H., Marcelino, A. M. R., Traina, A. J. M., and Traina, C. (2014). Open

issues for partitioning clustering methods: An overview. WIREs Data Min. and Knowl. Disc.,
4(3):161–177.

Basu, S., Davidson, I., and Wagstaff, K. (2008). Constrained Clustering: Advances in Algorithms,
Theory, and Applications. Chapman and Hall/CRC.

Bilenko, M., Basu, S., and Mooney, R. J. (2004). Integrating constraints and metric learning in
semi-supervised clustering. In ACM ICML, page 11, New York, NY, USA.

Castellano, G., Fanelli, A. M., and Torsello, M. A. (2013). Shape Annotation by Incremental
Semi-supervised Fuzzy Clustering. In WILF, volume 8256 of LNCS, pages 193–200. Springer.

Colonna, J. G., Gama, J., and Nakamura, E. F. (2016). Recognizing Family, Genus, and Species
of Anuran Using a Hierarchical Classification Approach. pages 198–212. Springer, Cham.

Dubey, A., Bhattacharya, I., and Godbole, S. (2010). A Cluster-Level Semi-supervision Model for
Interactive Clustering. pages 409–424.

El Moussawi, A., Cheriat, A., Giacometti, A., Labroche, N., and Soulet, A. (2016). Clustering
with Quantitative User Preferences on Attributes. In IEEE ICTAI, pages 383–387.

Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996). A density-based algorithm for discovering
clusters in large spatial databases with noise. In KDD, pages 226–231. AAAI Press.

Gama, J. (2010). Knowledge discovery from data streams. Chapman & Hall/CRC.
Hubert, L. and Arabie, P. (1985). Comparing partitions. Journal of Classification, 2(1):193–218.
Jain, A. K. and Dubes, R. C. (1988). Algorithms for Clustering Data. Prentice-Hall, USA.
Lai, H. P., Visani, M., Boucher, A., and Ogier, J.-M. (2014). A new interactive semi-supervised

clustering model for large image database indexing. Pattern Recognition Letters, 37(1):94–106.
Lelis, L. and Sander, J. (2009). Semi-supervised Density-Based Clustering. In IEEE ICDM, pages

842–847.
Liu, E. Y., Zhang, Z., and Wang, W. (2011). Clustering with relative constraints. In ACM SIGKDD,

page 947, New York, NY, USA.
Oliveira, M. D. and Gama, J. (2010). Bipartite graphs for monitoring clusters transitions. In IDA,

pages 114–124. Springer.
Pereira, G. and Moreira, J. (2016). Monitoring clusters in the telecom industry. In New Advances

in Information Systems and Technologies, pages 631–640. Springer.
Ruiz, C., Spiliopoulou, M., and Menasalvas, E. (2007). C-DBSCAN: Density-Based Clustering

with Constraints, volume 4482 of LNCS. Springer.
Silva, W. J., Barioni, M. C. N., de Amo, S., and Razente, H. L. (2015). Semi-supervised clustering

using multi-assistant-prototypes to represent each cluster. In SAC, pages 831–836, New York.
Spiliopoulou, M., Ntoutsi, I., Theodoridis, Y., and Schult, R. (2006). MONIC. In ACM SIGKDD,

page 706, New York, NY, USA. ACM Press.
Zhang, T., Ramakrishnan, R., and Livny, M. (1996). BIRCH: An Efficient Data Clustering Method

for very Large Databases. ACM SIGMOD Record, 25(2):103–114.

32nd SBBD – Full Papers – ISSN 2316-5170 October 2-5, 2017 – Uberlândia, MG, Brazil

27

