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Abstract

This thesis develops Monte Carlo algorithms based on the walk on spheres (WoS) method to reli-
ably solve fundamental partial differential equations (PDEs) like the Poisson equation on geomet-
rically complex domains. Elliptic PDEs are a basic building block of algorithms and applications
throughout science, engineering, and geometric computing. Yet despite decades of research on
methods for solving such PDEs, conventional solvers still struggle to deal with the level of ge-
ometric complexity found in the natural world. A constant challenge is the need for spatial
discretization, which traditionally involves dividing the domain into a high-quality volumetric
mesh or grid to perform PDE-based analysis. Unfortunately, this approach does not scale well
to modern computer architectures as it is inherently sequential and memory intensive. It also
falters when dealing with imperfect data containing poorly-shaped elements or self-intersections.
These shortcomings together hinder the ability of scientists, engineers and designers to analyze
geometric data and iterate on designs.

Walk on spheres makes a radical departure from conventional PDE solvers by reformulating
the problem in terms of recursive integral equations that can be solved using the Monte Carlo
method, allowing it to avoid volumetric mesh generation and function space approximation
altogether. Furthermore, since these integral equations closely resemble those found in light
transport theory, one can leverage deep knowledge from Monte Carlo rendering to build new
algorithms for solving PDEs.

In this work, we take inspiration from rendering to generalize WoS to solve a much broader
set of linear elliptic PDEs on solid regions of RN . We develop complete “black box” solvers
encompassing integration, variance reduction and acceleration. Our solvers share many benefits
with Monte Carlo methods from rendering: no volumetric meshing, trivial parallelism, output-
sensitive evaluation of the PDE solution and its gradient without the need to solve a globally-
coupled system of equations, and the ability to handle geometric data of size and complexity
that is essentially hopeless for grid-based techniques.
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Chapter 1

Introduction

Figure1.1: Grid-free Monte Carlo methods developed in this work can signi�cantly speedup the engineering design
cycle by eliminating the major bottleneck of discretization in conventional solvers for partial differential equations
(left). Lifting the dependence on discretization and global solves improves robustness, and like Monte Carlo ray
tracing allows computation effort to be focused entirely on local regions of interest (right).

1.1 Motivation

The ability to accurately model and analyze large amounts of geometric information is funda-
mental to many scienti�c and engineering disciplines, ranging from geology to medicine, and
autonomous driving to industrial design. Subtle differences in �ne-scale geometry can have a
major impact on the large-scale behavior of many physical systems—consider, for instance, the
in�uence of millions of tiny alveolar air sacs on the dispersion of oxygen in the lungs, the impact
of intricate grille patterns on the acoustic performance of a microphone, and the role of all the
wiring and plumbing in a building information model on the thermal response of a structure.
At all scales, detailed and irregular geometry plays a crucial role in our ability to understand the
function of a physical system, evaluate its performance and predict its failure modes.

Techniques based onpartial differential equations (PDEs)provide powerful tools for analyzing
many such physical phenomena. Unfortunately, despite the drastic increase in our ability to cap-
ture and generate complex geometric models in recent years, conventional methods for solving
PDEs are not yet at a stage where they “just work” on problems of real-world complexity. Basic
tasks involving PDEs still entail careful preprocessing or parameter tuning, and solvers regularly
exhibit poor scaling in time or memory. Even more broadly, models of real physical systems must
often integrate disparate phenomena, such as light transport and heat transfer, which classically
demand very different computational tools that do not “play well together”. For these reasons,
there remains a large divide between our ability to visualizeand simulatethe natural world, and
we tend to shy away from simulating it at its original level of complexity by either making gross
approximations via model reduction and homogenization—or by tempering our ambition.
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Figure 1.2: Real-world geometry has rich surface detail (left) and intricate internal structure (center). On such
domains, FEM-based geometric algorithms struggle to mesh, setup, and solve PDEs—in this case taking more than
14 hours and30GB of memory just for a basic Poisson equation. Our Monte Carlo solver uses about1GB of memory
and takes less than a minute to provide a preview (center right) that can then be progressively re�ned (far right).

Figure 1.3: The bottleneck in conventional PDE solvers
like FEM is often not the solve itself, but rather the cost
of meshing (top). Robust meshing algorithms [105] can
also sacri�ce spatial detail–here destroying key features like
blood vessels (bottom).

Figure 1.4: Unlike FEM and Monte Carlo, traditional
BEM does not consider volumetric functions (e.g., coef-
�cients and source terms) that affect the PDE solution.

A signi�cant issue with traditional numeri-
cal methods for solving PDEs, such as the�nite
element method (FEM), is the end-to-end cost of
the pipeline: even if the FEM solver is fast, one
must �rst convert the boundary description of
the input geometry into a “simulation-ready”
volumetric mesh. Unfortunately, meshing is
brittle and often requires intervention from ex-
pert engineers: it can easily fail on data with
minor imperfections such as self-intersections,
and a few badly-shaped elements can spoil an
entire FEM solution. Furthermore, state-of-
the-art robust meshing algorithms can be ex-
tremely time consuming and memory inten-
sive on intricate geometric domains ( e.g., Fig.
1.2, 8.1 & 8.4). Though performance can be im-
proved with more powerful processors, the in-
herently sequential nature of mesh generation
makes it dif�cult to truly leverage increasingly
parallel architectures. Moreover, even when
meshing succeeds, important geometric detail
can be lost in the discretization (Fig. 1.3 &
8.1), which results in aliasing artifacts in the
PDE solution (Fig. 8.9 & 8.15).

The cost and dif�culty of mesh genera-
tion for conventional FEM sparked the devel-
opment of meshless FEMand boundary element
methods (BEM), though all of these approaches
suffer from a common problem: the need
to spatially discretize ( e.g., mesh or point-
sample) the domain interior. BEM must be integrated with volumetric methods like FEM to han-
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Figure1.5: So-called “meshless” methods still perform a process akin to global meshing, which can result in spatial
aliasing of �ne features. One ends up with a mesh-like structure that must satisfy stringent sampling criteria to
avoid numerical blowup, and must solve a large globally coupled linear system. Figure adapted from [199, Figure6].

dle interior terms (Fig. 1.4), while even so-called meshless methods must carefully place nodes
over the entire domain (Fig. 1.5). Furthermore, for problems with volumetric heterogeneities,
the discretization must be carefully adapted to regions where material coef�cients exhibit �ne
detail (Fig. 5.1 & 8.10). As a result, many engineering and scienti�c disciplines today suffer
from non-interactive work�ows due to the bottleneck of needing to �rst convert large amounts
of geometric information into a form suitable for PDE-based analysis and simulation (Fig. 1.1,
left). This limits experts and non-experts alike from making sense of their data, and analyzing it
quickly to solve geometric problems.

1.2 Approach & Scope

Figure1.6: The basic idea behind walk on spheres is that at
any point x, the value of a harmonic function u(x) equals
the average over a sphere around x [9]. Hence we recur-
sively take a single Monte Carlo sample to estimate this
average until we hit the boundary. No spatial discretiza-
tion is needed since the largest empty sphere can be deter-
mined using a closest point query.

To address these challenges, this thesis makes
a major break from conventional PDE solvers,
and instead explores how to solve basic, yet
fundamental PDEs in geometric computing
with grid-free Monte Carlo methodsbased on
Muller's walk on spheres (WoS)algorithm [ 174].
This shift mirrors an analogous development
in the 1990s for photorealistic rendering: for
reasons nicely summarized by Jensen et al.
[116], algorithms built around �nite element ra-
diosity [85] gave way to Monte Carlo ray trac-
ing of the light transport equation [ 121]. A key
motivation was to simulate more complex illu-
mination, but the shift also made it possible to
work with scenes of extreme geometric com-
plexity—modern renderers today can handle
trillions of effective polygons [ 76] and, in stark
contrast to FEM, provide high-quality results without any preconditions on the input geometry.
As all geometric computation boils down to simple ray intersection queries, Monte Carlo render-
ers also work with representations other than polygon meshes. They exhibit excellent scaling,
offer a trivial parallel implementation, and allow for view-dependent evaluation. Collectively,
these features of Monte Carlo rendering have helped it revolutionize industries such as �lm,
architecture and industrial design by enabling practitioners to iterate on their designs quickly.
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Figure 1.7: As with Monte Carlo ray tracing, grid-free Monte Carlo methods like walk on spheres can solve PDEs
directly on a variety of geometric representations without needing to discretize the boundary or volume. Unlike
traditional PDE solvers, WoS also exactly captures discontinuous boundary conditions and provides a meaningful
solution even on geometry with poor element quality; the solution degrades gracefully in the presence of noise.

The Monte Carlo methods described in this work provide an analogous approach for geomet-
ric computing: the main idea is to express elliptic PDEs, arising in countless physical problems
such as the diffusion of heat, electrostatic potentials, and incompressible �uid �ows, as recursive
integral equations that look a lot like the rendering equation[121]. This reformulation enables use
of Monte Carlo integration to solve these integral equations. Samples are generated by replacing
recursive ray tracing with the recursive walk on spheres algorithm (Fig. 1.6) and its generaliza-
tions, which use the uniform distribution over a sphere to exactlymodel large steps of continuous
random processes such asBrownian motion[191]. This approach shares a number of bene�ts with
Monte Carlo rendering:

• Geometric Flexibility. It can work directly with implicit surfaces, NURBS/subdivision
surfaces, constructive solid geometry, procedural/instanced geometry, etc., without explicit
tessellation (Fig. 1.7).

• Geometric Robustness. Geometry need not be watertight, manifold, nor free of self-
intersections; sharp edges, small details, and thin features are exactly preserved.

• Scalability. The main cost is a bounding volume hierarchy (BVH)for distance queries, which
is O(n log n) in time and memory with respect to the size of the boundary (Fig. 1.8).

• Parallelism. It is trivial to achieve near-perfect parallel scaling, and many operations are
easily vectorized.

• Correctness. Since there is no discretization of space or approximation of function spaces,
one obtains the exact solution in expectation, i.e., error is almost entirely due to the variance
of the Monte Carlo estimator, and can be reduced by simply taking more samples.

• Adaptivity. Adaptive sampling akin to radiance caching[266] can signi�cantly reduce cost
in smooth regions (Fig. 7.7); progressive sampling enables rapid previews of PDE solutions
(Fig. 1.2 & 4.2).

• Output Sensitivity. The solution can be evaluated in local regions of interest, like a small
window (Fig. 1.9 & 6.1) or a slice (Fig. 8.6), without having to �rst perform a global solve.

• Compatibility. Monte Carlo methods �t easily into standard pipelines for geometric com-
puting, as they can be used as “black box” solvers that return reliable and accurate solution
values at any given query point ( e.g., at mesh vertices).
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Figure 1.8: Finite element methods exhibit unpredictable performance, as models with simple geometry but poor
element quality (left) can confound even robust meshing algorithms (center, via Hu et al. [105]). The Monte Carlo
approach only needs to build a standard bounding volume hierarchy (right), which dramatically reduces precompu-
tation time for solving PDEs.

Monte Carlo methods are not, however, a silver bullet. On simple domains with smooth
boundary conditions, solvers like FEM are quite mature and hard to beat in terms of solve time;
here Monte Carlo can be slow to eliminate high-frequency noise (though see Ch. 7 for variance
reduction strategies). Yet for more complex problems, end-to-end performance depends on many
factors beyond just the rate of convergence of the core solve, such as mesh generation, parallel
scaling, and visualization; Ch. 8 provides an in-depth discussion on tradeoffs with conventional
PDE solvers. It may also not be straightforward to formulate a Monte Carlo estimator for any
given PDE. Here we do not strive for full feature compatibility with traditional solvers and all
the PDEs they can solve—we instead focus on a speci�c class of problems, namely 2nd order
linear elliptic equations(reviewed in Ch. 2), which power a large array of applications in geometric
computing such as surface reconstruction [129, 130] and shape optimization [ 204] (using mea-
surements of physical quantities like temperature [ 277]). Monte Carlo solvers are not limited just
to WoS [101, 134, 172, 217]—we compare against some of these techniques in Ch. 8.

On the whole, we �nd that Monte Carlo methods have a number of attractive computa-
tional features that make them well-suited to PDE-based geometric computing. By avoiding the
daunting challenge of mesh generation, these methods offer a framework that is scalable, paral-
lelizable, easy-to-tune, and numerically robust (Fig. 1.1, right). They also occupy a unique place
in the broader landscape of numerical solvers for PDEs, as they complement the strengths of
existing grid-based techniques (e.g., local versus global evaluation of solutions).

1.3 Related Work

The biggest issue preventing broader adoption of grid-free Monte Carlo methods like WoS (dis-
cussed in detail in Sec. 3.2) is that estimators have been developed only for a narrow set of PDEs
beyond the original Laplace Dirichlet problem studied by Muller [ 174]—these include the Pois-
son and screened Poisson equations [51, 61], the heat equation [48, 95], the biharmonic equation
[84, 154] and certain (mildly) nonlinear PDEs [ 28]. WoS has previously been used for speci�c
problems in, e.g., molecular dynamics [ 160], integrated circuit design [ 146], porous media [ 109],
and electrostatics [108]. A few variants of WoS have also been developed, such as walking on
rectangles [49, 216], on the boundary [ 217, 242], off-centered walks [ 110], and Green's function
�rst passage (GFFP) methods [81, 107]; we draw on some of these techniques in this work.

Unfortunately, most prior work on grid-free Monte Carlo methods lacks thorough numerical
evaluation, and even then only considers very simple geometry such as a box or cylinder. More-
over, questions essential for real applications like how to solve larger classes of equations, deal
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with defective or highly detailed geometry, reduce variance and build high-performance systems
have not been suf�ciently explored. Despite some very close analogs in photorealistic rendering
[147, 171], researchers and practitioners in high-performance computing also seem to be largely
unaware of grid-free methods for PDEs. It is for this reason that we �nd this approach exciting:
the computer graphics community has made Monte Carlo integration the workhorse of photo-
realistic rendering, and we believe that it can have a similar impact on PDE-based techniques
which are central to computer-aided design and engineering.

Since our initial publication which introduced WoS to computer graphics [ 221], we have
designed robust and ef�cient WoS estimators for a much broader set of fundamental PDEs [ 167,
223, 223, 224], which we will detail over the course of this text. Other graphics researchers have
followed suit, and concurrently expanded the capabilities of WoS to, e.g., support exterior and
time-dependent problems [ 47, 179], simulate �uids and the coupled physics of radiation and
diffusion [ 14, 211], solve inverse problems via differentiable formulations [ 272], and improve
estimation quality through variance reduction [ 11, 151, 206].

1.4 Contribution

We develop a holistic Monte Carlo framework encompassing integration, variance reduction
and accelerated geometric queries to solve linear elliptic PDEs in volumetric domains, i.e., an
N-dimensional solid region in R N (we focus on N = 2 and 3). In particular, we provide:

1. a uni�ed discussion of previously developed WoS estimators for elliptic PDEs (Ch. 3).

2. a new grid-free method called walk on stars (WoSt), which generalizes WoS to solve PDEs
with any arbitrary mix of Dirichlet, Neumann and Robin boundary conditions (Ch. 4)—
these boundary conditions are a basic component of virtually every real physical system.

3. a new integral formulation and subsequent WoS estimators for PDEs with variable mate-
rial coef�cients, by establishing a close connection with null-scattering techniques [188] for
rendering heterogeneous participating media (Ch. 5).

4. easy-to-implement estimators for spatial derivatives of PDE solutions (Ch. 3 & 5).

5. Ef�cient BVH-based geometric queries to accelerate the above estimators (Sec.6.2).

6. several variance reduction strategies (Ch. 7), including:

a) importance sampling of source terms, adaptive sampling of the solution, and control
variates for spatial derivatives.

b) a boundary value caching (BVC)scheme, similar in spirit to virtual point light methods in
rendering [ 46, 132], that greatly amortizes the cost of long walks and suppresses the
typical salt-and-pepper noise characteristic of independent Monte Carlo estimates.

c) a reverseWoSt estimator that splats known boundary and source data to multiple
points in the interior of a domain, by extending the recently developed bidirectional
formulation of WoS [ 206] from PDEs with Dirichlet conditions to those with Neumann
and Robin conditions as well.

d) a weight windowstrategy from neutron transport [ 25, 102] that signi�cantly reduces
noise and improves ef�ciency in problems with high-frequency material coef�cients.
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Figure1.9: Thermal analysis of NASA's Curiosity Mars rover. Keeping temperatures within speci�ed thermal limits
is critical to mission success—but thermal modeling is historically dif�cult to integrate into the design phase, due
to intricate geometry not easily captured via �nite element models (Fig.8.1). Here our walk on stars solver (Ch.
4) computes realistic temperature estimates quickly and progressively even for extremely complex geometry, without
needing to volumetrically mesh the domain. A “deferred shading” approach provides output-sensitive evaluation,
computing temperature values only at the points visible in screen space (top right). We can hence analyze temperature
in local regions of interest, without computing a global solution (bottom row).

Our approach connects to a large body of work on Monte Carlo rendering [ 203]. From the
PDE point of view, the major difference is that the differential equation governing radiative
transfer is �rst order in space, whereas the PDEs we seek to solve have second order, diffusive
terms that demand different numerical techniques. There are of course many parallels between
these problems from a mathematical, computational, and system design point of view, which
we explore throughout this text. More broadly, by framing PDE-based geometric computing in
terms of stochastic processes, we build a bridge to rich tools not just from Monte Carlo rendering,
but also reinforcement learning, stochastic control and mathematical �nance. We evaluate the
capabilities of our solvers in analyzing physical systems with complex geometry (see e.g., Fig.
1.9) in Ch. 8, and end with a discussion on future directions in Ch. 9.
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Chapter 2

Background: Differential & Integral Equations

We rely on concepts from the theory of partial differential equations, integral equations and
stochastic calculus to develop Monte Carlo algorithms for solving PDEs. We provide essential
background here as few readers will be familiar with all of these topics, and scope out the speci�c
types of PDEs we will consider in this work. Chapter 3 then describes the Monte Carlo walk on
spheres algorithm, which is the starting point for the generalizations of WoS we develop in Ch.
4 - 7 for solving these equations.

2.1 Partial Differential Equations

Many natural phenomena are described by relating rates of change. An ordinary differential equa-
tion (ODE) describes how a quantity changes in time. For instance, d2p(t)/ dt2 = � g implicitly
describes the trajectory of a particle p(t) under the in�uence of a gravitational acceleration g.
Only by solving this ODE for p(t) do we obtain an explicit description of the trajectory. Like-
wise, a PDE implicitly describes a function via relationships between partial derivatives in space.
A prototypical example is the Laplace equationd2u(x,y,z)/ dx2 + d2u(x,y,z)/ dy2 + d2u(x,y,z)/ dz2 = 0 (or more
compactly Du = 0), which describes the steady-state of a diffusion process, i.e., the way heat dif-
fuses smoothly from the domain boundary into the interior. Just like ODEs, we must ultimately
solve for an explicit function u satisfying this relationship. Since most PDEs do not have analyti-
cal solutions (including the Laplace equation), we rely on numerical methods to solve them.

Given the vast number of PDEs and the diverse phenomena they model such as thermody-
namics, electromagnetism, �uid mechanics, elasticity, quantum mechanics, and even the move-
ment of stock prices, numerical methods are often specialized to consider speci�c classes of
equations. PDEs can be classi�ed based on their form and properties, as we describe below:

Order And Linearity. The orderof a PDE refers to the highest-order degree of any derivative
appearing in the PDE. For instance, the Laplace equation is 2nd order as it involves spatial
derivatives no higher than degree two, whereas a biharmonic equationD2u = 0 is 4th order. A
PDE is linear if it is a linear polynomial in the function and its derivatives. The Laplace equation
is linear, but the inviscid Burger's equation¶

¶t u(x, t) = � u(x, t) ¶
¶x u(x, t) is nonlinear as it multiplies

the function by one of its derivatives. We will consider 2nd order linear PDEs in this text.

Ellipticity. Roughly speaking, elliptic equations are those whose solutions are captured by the
idea of “repeated local averaging”. These PDEs often describe steady-state processes, like the
distribution of temperature in a stationary object. The Laplace equation is elliptic, as its solution
at any point in a domain W equals the average value in some small neighborhood (i.e., the mean
value property, see Eq. 2.13). ParabolicPDEs instead describe time-dependent processes, like
the changing temperature in an object over time. The canonical example is the heat equation
Du(x, t) = ¶u(x,t)/ ¶t, whose solution u becomes progressively smoother and eventually reaches an
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Figure 2.1: A non-negative Robin coef�cientm linearly interpolates between Dirichlet (m = ¥ ) and Neumann
(m= 0) boundary conditions, which prescribe solution values and derivatives on the boundary, respectively.

equilibrium described by the Laplace equation as t ! ¥ . HyperbolicPDEs, on the other hand,
are often associated with processes that involve wave propagation, such as sound waves.

We will focus on elliptic problems in this work, as their solutions can be computed by taking
averages of local estimates via Monte Carlo integration (Sec. 3.1). Formally, a 2nd order linear
PDE with constant coef�cients is elliptic if its principal symbol(i.e., the polynomial corresponding
to its highest-order term) is greater than zero away from the origin. For PDEs with variable
coef�cients such as r � (K(x)r u) = 0, ellipticity requires the diffusion matrix K(x) : W 7! R N � N

to be positive de�nite, i.e., å n
i,j= 1 Ki j (x)hihj > 0 for all non-zero h 2 R N [64, 72].

Boundary Conditions. PDEs are often paired with an additional set of constraints called bound-
ary conditions. Boundary conditions can be used to specify various physical constraints such as
temperatures, voltages, forces and velocities on the boundary ¶W of a domain W � R N , and typi-
cally have a major impact on the solution of a PDE. They come in many �avors: for instance with
a Laplace equation, Dirichlet boundary conditions specify the solution value along ¶W (e.g., a
surface held at a �xed temperature), which uniquely determines the solution inside W. Neumann
conditions instead specify the value of the normal derivative of the solution along ¶W (e.g., the
heat �ux across a surface); the solution inside W is determined only up to an additive constant.
Robinconditions linearly combine both solution values and their derivatives on ¶W, which means
that the PDE solution interpolates between the solution with pure Dirichlet conditions and pure
Neumann conditions inside W (Fig. 2.1), and is uniquely determined. More generally, one can
prescribe different boundary conditions on disjoint parts of ¶W. For a Laplace equation, this
yields a boundary value problem (BVP)of the form

Du(x) = 0 on W,
u(x) = g(x) on ¶WD ,
¶u(x)
¶nx

= h(x) on ¶WN ,
¶u(x)
¶nx

+ m(x)u(x) = `(x) on ¶WR,

(2.1)

where the boundary is partitioned into a Dirichlet part ¶WD with prescribed values g : ¶WD ! R,
a Neumann part ¶WN with prescribed derivatives h : ¶WN ! R, and a Robin part ¶WR with
prescribed right hand side ` : ¶WR ! R. Here nx is the unit outward normal to ¶W at x, and
m2 R � 0 is a non-negative Robin coef�cient that can vary over ¶WR (negative values of moccur
less frequently in natural physical systems [ 86, Sec. 1], and we do not consider them here).
Since Robin conditions serve as general �rst-order boundary conditions, we recover Neumann
conditions when m = 0, and Dirichlet conditions as m ! ¥ . A function u is harmonic if it
satis�es Eq. 2.1 on W. We will provide Monte Carlo estimators for BVPs with any combination
of Dirichlet, Neumann and Robin boundary conditions in Ch. 3 & 4.
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Exterior Problems, Open Domains And Double-Sided Boundary Conditions. One may also
solve PDEs in the exterior of a domain, i.e., R N nW. The domain W need not be closed/watertight,
and can have different boundary conditions prescribed on either side of ¶W. We will describe
how to handle such generalizations with our method in Sec. 3.2.4 and App. B.

2.1.1 Linear Elliptic Equations

Beyond a basic Laplace equation which essentially interpolates boundary values, 2nd order linear
elliptic PDEs can also model rich spatially varying material properties of a medium. In thermo-
dynamics, for example, PDEs with variable coef�cients model how heterogeneous composite
materials conduct or insulate heat—much as early algorithms for photorealistic rendering were
motivated by predictive lighting design [ 144], such models can be used to predict and improve
thermal ef�ciency in building design [ 276]. Likewise, variable permittivity in electrostatics im-
pacts the design of antennas [194] and the simulation of biomolecules [ 66]; in hydrology, variable
transmissivity of water through soil impacts remediation strategies for groundwater pollution
[269]. More directly connected to our work, variable coef�cients in the light transport equation
are used to model heterogeneity in participating media [ 188]. Beyond spatially varying materials,
variable coef�cients can also be used to model curved geometry by using PDE coef�cients on a
�at domain to encode an alternative Riemannian metric(Fig. 8.8). Below, we discuss generaliza-
tions of the Laplace equation we will consider in this text:

Source term. Continuing with the heat analogy for a Laplace equation, a source term f: W ! R
adds additional “background temperature” to a PDE (Fig. 2.2, center left). For instance, aPoisson
equationhas the form

Du(x) = � f (x) on W (2.2)

subject to Dirichlet, Neumann or Robin boundary conditions.

Diffusion. The rate of diffusion in a spatially varying medium is modeled by replacing the
operator D with r � (k(x)r ), where k : W ! R> 0 is the diffusion coef�cient(Fig. 2.2, center).

Drift. A drift coef�cient, given by a vector �eld #�w : W ! R N , models the motion of a material in
a particular direction. For instance, the steady-state advection equation#�w(x) � r u(x) = 0 describes
a quantity u that is unchanged as it �ows along #�w; adding this term to a Poisson equation causes
heat to drift as it diffuses (Fig. 2.2, center right).

Absorption. An absorption (or screening) coef�cients : W ! R> 0 models “cooling” of the solution
due to the background medium; larger coef�cient values dampen the solution more. E.g., a
screened Poisson equation(seen in Fig. 2.2, far right) is given by

Du(x) � s(x)u(x) = � f (x) on W, (2.3)

again subject to boundary conditions.
Combining all these terms and coef�cients then yields a linear elliptic equation of the form

r � (k(x)r u(x)) + #�w(x) � r u(x) � s(x)u(x) = � f (x) on W. (2.4)

Here we do not require the source term f : W ! R to be continuous, but we will assume the
diffusion coef�cient k : W ! R> 0 is twice-differentiable, the drift coef�cient #�w : W ! R N is a
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Figure2.2: Effect of each spatially-varying term of Eq.2.4 on the PDE solution.

vector �eld expressible as the gradient of a scalar �eld, and the absorption coef�cient s : W !
R � 0 is continuous (C0). Though these coef�cients can be generalized further (for instance, k
can be any arbitrary positive de�nite matrix and s can be negative), the conditions we impose
on them are suf�cient to ensure ellipticity [ 64, 72]. Moreover, these conditions will enable us
to derive Monte Carlo estimators for variable-coef�cient equations in Ch. 5 that do not have
to resort to numerical homogenization[52], and can directly resolve the original, detailed solution
(see,e.g., Fig. 5.1).

2.1.2 Fundamental Solutions

Figure2.3: The Green's function and its normal derivative
are singular at the point they are centered on, but decay
smoothly and fall-off quickly away from the singularity.

A Green's functioncaptures the in�uence of the
source term f on the solution of a linear el-
liptic equation with constant coef�cients. In par-
ticular, it describes the (fundamental) solution
when the source is a Dirac delta distribution
dx centered at a single point x 2 W. For in-
stance, in the case of Eq. 2.2, the Green's
function GW(x, y) is the solution to the Pois-
son equation Du(y) = � dx(y). In general,
Green's functions will depend on the shape
of the domain W and the choice of boundary
conditions—as a result, they are typically not known in closed-form. However, explicit expres-
sions are available for important special cases,e.g., the free spaceGreen's function GR N

on W = R N ,
and the Green's function GB for a ball W = B with zero-Dirichlet boundary conditions (App. A).
The walk on spheres and walk on stars algorithms we describe in the following chapters will
effectively provide a bridge between closed-form Green's functions on special domains, and so-
lutions to PDEs on more general domains.

The Poisson kernellikewise captures the in�uence of the boundary conditions on the solution,
e.g., when the Dirichlet function g is a Dirac delta distribution dx centered on a single boundary
point x 2 ¶W. At any point y 2 W with associated normal ny, it can be expressed as the normal
derivative of a Green's function:

PW(x, y) := �
¶GW(x, y)

¶ny
. (2.5)

As with Green's functions, common Poisson kernels are known explicitly in R N and for a ball.
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2.2 Boundary Integral Equation

One can often reformulate linear elliptic PDEs as recursive integral equations, akin to the classic
rendering equation[121]. As in rendering, these equations can be solved without discretizing
space, by recursively applying Monte Carlo integration (as will be discussed in Ch. 3). In this
section, we provide a boundary integralformulation for PDEs with constant coef�cients ( e.g., Eq.
2.2). Section2.3 then describes astochatic integralformulation for Eq. 2.4 with varying coef�cients.

Derivation. The solution u to a Poisson equation Du = � f can be expressed via an integral
involving the associated Green's function and Poisson kernel. Assume for now that the domain
W is watertight with smooth boundary ¶W, and let x be an evaluation point in the interior of W.
We �rst multiply the Poisson equation with its Green's function GW, and integrate over W to get

0 =
Z

W
GW(x, y) Du(y) dy +

Z

W
GW(x, y) f (y) dy. (2.6)

Applying integration by parts to the �rst integral, we have

0 =
Z

¶W
GW(x, z)

¶u(z)
¶nz

dz �
Z

W
r GW(x, y) � r u(y) dy +

Z

W
GW(x, y) f (y) dy. (2.7)

Applying integration by parts again to the second integral, and rearranging terms then yields

Z

W
u(y) DGW(x, y) dy =

Z

¶W

¶GW(x, z)
¶nz

u(z) � GW(x, z)
¶u(z)
¶nz

dz

�
Z

W
GW(x, y) f (y) dy. (2.8)

From the de�nitions DGW(x, y) = � dW
x (y) and PW(x, z) = � ¶GW(x,z)/ ¶nz, we arrive at

u(x) =
Z

¶W
PW(x, z) u(z) + GW(x, z)

¶u(z)
¶nz

dz

+
Z

W
GW(x, y) f (y) dy. (2.9)

This equation determines the solution u at x entirely through the solution values u(z) and normal
derivatives ¶u(z)/ ¶nz on the boundary ¶W, and the source values f (y) inside the domain W. From
Eq. 2.1, the Dirichlet, Neumann and Robin parts of the boundary have prescribed values g, h and
k, respectively, while f is speci�ed inside the domain for a Poisson equation. To use Eq. 2.9, we
must then determine unknown solution values u(z) on the Neumann boundary ¶WN , unknown
derivative values ¶u(z)/ ¶nz on the Dirichlet boundary ¶WD , and either u(z) and ¶u(z)/ ¶nz on the
Robin boundary ¶WR, via the relation ¶u/ ¶n + mu = ` when m> 0.

2.2.1 General Setting

In practice, Eq. 2.9 cannot be used directly since the Green's function
and Poisson kernel for an arbitrary domain W are unknown. Fortu-
nately, this equation can be generalized to the boundary integral equa-
tion (BIE) [41, Section2] where these functions are no longer tied to the
domain W. Instead one may use,e.g., the closed-form Green's function
and Poisson kernel for a ball or for R N . Moreover, while we ultimately
seek a solution on W, the BIE applies to arbitrary subdomains in W:
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Boundary Integral Equation

For any two sets A � W and C � R N , and for any point x 2 R N , the solution to a Poisson
equation satis�es

a(x) u(x) =
Z

¶A
PC(x, z) u(z) + GC(x, z)

¶u(z)
¶nz

dz

+
Z

A
GC(x, y) f (y) dy, (2.10)

where

a(x) :=

8
><

>:

1, x 2 A,

1/2, x 2 ¶A,

0, x /2 A.

(2.11)

Hunter and Pullan [ 106, Chapter 3.3] provide a derivation. We note that if ¶A is a non-smooth
curve in the plane, then a = 1 � q/2 p at a corner with interior angle q. To keep things simple,
we will assume ¶A is smooth, letting a = 1/2 at all boundary points.

Though we focus on Poisson equations for simplicity, the BIE extends immediately to screened
Poisson equationsDu � su = � f with constant absorption coef�cient s 2 R � 0: the only mod-
i�cation to Eq. 2.10 is to replace the Green's function and Poisson kernel with their screened
counterparts (App. A. 2). Likewise, for a constant diffusion coef�cient k 2 R> 0, the Green's
function simply scales by a factor k. Constant drift along a �xed direction #�w 2 R N can be cap-
tured via the von Mises–Fisher distribution[75, 215]. Boundary integral equations are also readily
available for a variety of other PDEs not directly considered in this work, such as the Helmholtz
equation [106, Chapter 3], linear elasticity [ 106, Chapter 4] and the biharmonic equation [ 111].
Below, we discuss a few special cases of Eq.2.10 with different choices for the sets A and C, and
describe how the BIE can be generalized to support double-sided boundary conditions in closed
and open domains.

Boundary Element Formulation

Conventional numerical solvers like the boundary element method integrate Eq. 2.10 over the
PDE domain (A = W) using free-space kernels (C= R N ). BEM does not directly support source
terms f , leading to the integral

a(x) u(x) =
Z

¶W
PR N

(x, z) u(z) + GR N
(x, z)

¶u(z)
¶nz

dz. (2.12)

To determine the unknown data u and ¶u/ ¶n on ¶W, BEM uses a �nite basis of functions (asso-
ciated with mesh nodes on a discretized boundary) to solve a dense linear system—resulting in
the tradeoffs discussed in Sec.8.2.1.

Mean Value Property Of Harmonic Functions

Monte Carlo methods like walk on spheres (Sec. 3.2) instead integrate the BIE over a ball
B(x, R) � W of radius R centered at x, adopting kernels from the ball (A = C = B(x, R)).
At points z 2 ¶B, these kernels then simplify to GB(x, z) = 0 and PB(x, z) = 1/ j¶Bj (i.e., 1 over
the surface area of the ball boundary), yielding the mean value property of harmonic functions
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Figure 2.4: Left: Ass is increased, the Green's function Gs,B(x, y) for a screened Poisson equation becomes more
localized around the point x, and the magnitude of the Poisson kernel Ps,B(x, z) shrinks. These functions revert to
the harmonic Green's function and Poisson kernel ass ! 0. Right: The functions Gs,B and Ps,B are not rotationally
symmetric when the point x does not coincide with the center of the ball.

when f = 0:

u(x) =
1

j¶B(x, R)j

Z

¶B(x,R)
u(z) dz (2.13)

This setup greatly simpli�es the BIE by eliminating dependence on ¶u/ ¶n. Unlike BEM, a non-zero
source term f is accounted for by adding the integral

Z

B(x,R)
GB(x, y) f (y) dy. (2.14)

More importantly, WoS evaluates 2.13 by recursively estimating u(z) on ¶B. It therefore does not
need to discretize the domain W or its boundary ¶W, nor solve a global system of equations.

Off-Centered Mean Value Property

The point of evaluation x in Eq. 2.13 need not coincide with the center c 2 W of a ball B(c, R).
With a screened Poisson equation, this leads to the following more general off-centeredformula-
tion [ 55, 110] of the mean value property:

u(x) =
Z

¶B(c,R)
Ps,B(x, z) u(z) dz +

Z

B(c,R)
Gs,B(x, y) f (y) dy. (2.15)

We provide explicit expressions for off-centered versions of the functions Gs,B and Ps,B in App.
A.2.2. As shown in Fig. 2.4, the Poisson kernel Ps,B(x, z) reduces to 1/ j¶B(x,R)j when x = c and
s = 0, recovering the usual mean value property. In Sec. 5.2.2, we will use Eq. 2.15 to design a
WoS estimator for solving variable-coef�cient PDEs.

Double-Sided Boundary Conditions

The BIE for double-sided boundary conditions in an open domain W � R N is given by [ 41]

a(x) u(x) =
Z

¶W
P+ (x, z)

�
u+ (z) � u� (z)

�
+ G(x, z)

�
¶u+ (z)

¶n+
z

�
¶u� (z)

¶n�
z

�
dz

+
Z

W
G(x, y) f (y) dy, (2.16)

where n+ and n� denote unit normals on either side of ¶W (respectively), u+ and u� represent
corresponding solution values on ¶W, and P+ (x, z) := � ¶G(x,z)/ ¶n+

z . Since all points are either on
the boundary or the domain interior, a = 1/2 on ¶W and 1 otherwise. In App. B, we discuss how
to apply the walk on stars algorithm for BVPs with Dirichlet, Neumann and Robin boundary
conditions (Ch. 4) to open domains and double-sided boundaries.
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2.3 Feynman–Kac Formula

In general, we do not have boundary integral representations of PDEs with variable coef�cients
(like Eq. 2.4), due to the unavailability of Green's functions in R N , on a ball, or elsewhere.
However, the solution to an elliptic PDE can also be described in terms of continuous stochastic
processes such asBrownian motion, via the Feynman–Kac formulafrom stochastic calculus [191,
Ch. 8]. This formula will provide a critical starting point in Ch. 5 for solving variable-coef�cient
equations, as it is more general than the BIE from the previous section. Moreover, it has close
parallels with volume rendering, providing us with key techniques for numerical integration.

Here we provide essential background on stochastic processes (Sec.2.3.1) and their associated
integral representations of PDEs (Sec. 2.3.2), which at present are not widely used in computer
graphics (we refer to Øksendal [ 191] for a more comprehensive introduction). In particular, the
central object that we would like to simulate is Brownian motion, as it captures the phenomenon
of diffusion described by elliptic equations through the Feynman–Kac formula. Unfortunately,
simulating Brownian motion directly is both expensive and introduces statistical error, especially
in domains with complex geometry. We will see later that walk on spheres and its generalizations
(Ch. 3 - 5) enable a far more ef�cient simulation with signi�cantly less statistical error.

2.3.1 Stochastic Processes

A stochastic process is a collection of random variables X t that represents the evolution of a
system over time t � 0. The process is continuous if it can be observed continuously with time.
A key characteristic of a stochastic process is that it incorporates some form of randomness or
unpredictability, which means that even if the initial state X0 = x is known, the future evolution
of a process cannot be predicted with certainty. Such a process is therefore typically modelled
by a probability density function (PDF)that is non-negative everywhere, and integrates to 1 over
the domain on which it is de�ned. We can use a PDF to calculate the probability with which
future random states X t> 0 of the process take on a permissible range of values. In particular, for
a real-valued random variable X t , integrating the PDF p over an arbitrary interval [a, b] gives the
probability that X t lies inside the interval:

P f a � X t � bg =
Z b

a
p(x) dx. (2.17)

A cumulative density function (CDF) P(x) represents the probability that X t takes on a value less
than or equal to x, i.e., P(x) := P f X t � xg.

For our purposes, we will consider a continuous time-parameterized family of R N -valued
random variables X t on a domain A with PDF pA . The expected value—or mean of all possible
values—of any L1-integrable function f : A ! R is then given by

E [f (X t )] =
Z

A
f (x) pA (x) dx. (2.18)

Throughout, we will informally refer to a realization of a stochastic process as a random walk.

Brownian Motion

The central example of a continuous stochastic process is Brownian motion, which is more for-
mally known as a Wiener process. Intuitively, a Wiener process describes a random walk by
repeatedly taking small Gaussian steps, and letting the variance of the Gaussian go to zero (Fig.
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Figure2.5: Brownian motion can be thought of as the limit of taking small, normally distributed steps.

2.5). This motion is hence isotropic, i.e., there is no preferred direction, and it has no “memory”,
i.e., the direction of motion at each point in time is independent of all past motion. More formally,
a (multidimensional) Wiener process starting at a point x0 2 R N is a time-parameterized family
of R N -valued random variables Wt characterized by the following criteria:

• W0 = x0

• The process has Gaussian increments, i.e., for all t, s � 0, the increments Wt+ s � Wt �
N (0,s) are normally distributed with mean 0 and variance s.

• These increments are independent of all previous random variables Wr for 0 � r � t.

• The process is almost surely continuous with respect to t, i.e., random walks have continu-
ous paths in R N .

Diffusion Process

Just as Brownian motion will help us model isotropic diffusion, we will use more general stochas-
tic processes to model diffusion that is anisotropic or exhibits drift in a particular direction (Fig.
2.6, center). Such processes can be de�ned by combining a deterministic velocity with stochastic
“noise”, modeled via Brownian motion. In particular, the stochastic differential equation (SDE)

dX t = #�w(X t ) dt + dWt (2.19)

describes a stochastic process whose increments dX t behave exactly like Brownian increments
dWt , offset by a deterministic vector #�w (for a more formal treatment of the notation d X t , see
Øksendal [191, Ch. 5]). More generally, a diffusion processis any stochastic process of the form

dX t = #�w(X t ) dt + K(X t ) dWt , (2.20)

where for each time t and location X t ,
#�w(X t ) 2 R N gives a direction of drift, and K(X t ) is a

symmetric positive de�nite N � N matrix that controls the rate and directional bias of diffusion
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Figure 2.6: Components of a diffusion process. Note that a diffusion process starting at x will not in general have
a uniform exit distribution over a sphere, as it is not isotropic like Brownian motion. Left: the diffusion coef�cient
k(x) modulates the size of random increments. Center: the drift coef�cient�! w (x) adds deterministic offsets to the
trajectory. Right: the screening coef�cients(x) > 0 describes the probability of a random walk being absorbed,
whereass(x) < 0 essentially describes emission of new random walks (which we do not consider in this work).

(i.e., the variance and covariance of the random increments). In our setting, we will typically
consider a simpler special case, namely

dX t = #�w(X t ) dt +
q

k(X t ) dWt , (2.21)

where k : R N ! R> 0 is a scalar- rather than matrix-valued function that determines the standard
deviation of the normal distribution associated with Wt (Fig. 2.6, left). We assume that neither #�w
or k depend on time.

Killed Diffusion Process

We can enrich our model of stochastic processes by also allowing a diffusion process to be prob-
abilistically killed—intuitively, a random walk realized from such a process can be absorbed into
the background medium (Fig. 2.6, right). This process will be essential for making the connection
to PDEs with an absorption coef�cient s 2 R � 0. We assume that the probability with which a
random walk is absorbed is exponentially decaying for any value of s. Then p(t) = se� st gives
the probability density of a killed diffusion process, and for a total time T, the corresponding
probability is [ 203, Sec.13.3.1]

Z T

0
se� st dt = 1 � e� sT. (2.22)

Here a larger value of s yields a higher probability of absorption.

Restriction To Bounded Domains

So far we've assumed that a diffusion process X t is free to wander around all of R N , but suppose
we are interested in a particular domain W � R N . A common question we might ask is, “where
does X t �rst exit the domain W?” In other words, what is the probability that X t �rst hits any
given point on the boundary ¶W. This information will be central to our approach to solving
PDEs, as it corresponds to the Poisson kernel discussed in Sec.2.1.2.
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Figure2.7: A random walk terminates when it hits an absorbing Dirichlet boundary¶WD (left), but is pushed back
into the domain along the normal to a re�ecting Neumann¶WN (center) or Robin boundary¶WR (right). The walk
continues forever with¶WN , but is eventually absorbed on¶WR.

In the study of stochastic processes [27], the presence of a boundary ¶W is often described
by using another random variable t called stopping time, which is a path-dependent quantity
describing when a diffusion process starting at x 2 W �rst hits the boundary, i.e., t := inf f t �
0 : x + X t 2 ¶Wg. Then, the corresponding exit location X t on ¶W is a random variable as well,
and the probability density of an associated random trajectory of the process in W is given by
the Poisson kernel PW [191, Ch. 7]. One could also consider the distribution of exit times on
R � 0: though the exit time density is well-de�ned for time-independent elliptic PDEs [ 68, 95], it
is generally not needed to estimate their solution.

As we will discuss in Sec. 2.3.2, PDEs with Dirichlet boundary conditions require simulating
random walks that are stopped when they �rst hit ¶W (Fig. 2.7, left). Hence from the perspective
of stochastic processes, Dirichlet conditions model absorbing boundaries. However, a random
walk need not always stop when it hits the boundary—as shown in Fig. 2.7, Neumann and
Robin boundary conditions instead require random walks to re�ect off ¶Win the normal direction
[86, 87]. Walks eventually stop on Robin boundaries, as they are both re�ecting andabsorbing.

Discretized Random Walks

The standard approach for simulating a diffusion process in R N is to use explicit time stepping
[101, 134, 172], akin to ray marching [ 248] or forward Euler. The Euler-Maruyama method, for
instance, uses the following update rule to integrate the SDE in Eq. 2.21 with time step h > 0:

Xk+ 1 = Xk + #�w(Xk)h +
q

k(Xk) (Wk+ 1 � Wk) , Wk+ 1 � Wk � N (0,h) (2.23)

Figure 2.8: Discretized ran-
dom walks can leave the do-
main, biasing results.

Unfortunately, this approach introduces several sources of error in
bounded domains. E.g., random walks can easily leave a domain W
and must be clamped to the boundary (Fig. 2.8); shrinking h reduces
discretization error, but signi�cantly slows down computation from
needing to take many small steps inside W. Error is exacerbated in
problems with variable diffusion and drift coef�cients, which implic-
itly modify the ideal step size. Though there exist integration schemes
with better convergence properties [ 42, 148, 155, 168], SDE integrators
are fundamentally not well-suited for simulating continuous random
processes in bounded domains—in Sec. 8.3.1, we will demonstrate
that techniques based on WoS offer a much more favorable runtime-to-bias tradeoff for both
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boundary-dominated and variable-coef�cient problems, as they exactly model large steps of a
Brownian random walk.

2.3.2 Stochastic Representation of PDEs

Notice that parameters k, #�w and s of a diffusion process resemble the coef�cients of the PDEs
from Sec. 2.1.1. The Feynman–Kac formula makes this relationship explicit by expressing the
solution to Eq. 2.4 as an expectation over random trajectories of X t . We refer to Øksendal
[191, Sec.8.2] for a derivation of this result (via a fundamental tool in stochastic calculus called
Ito's lemma[191, Ch. 4]). Here we build up to the Feynman–Kac formula by starting with the
important special case of Kakutani's principle, which effectively tells us how to solve a Laplace
equation with Dirichlet boundary conditions by taking many random walks to the boundary.

Kakutani's Principle

Consider the Laplace equation

Du(x) = 0 on W,
u(x) = g(x) on ¶W

(2.24)

on a domain W � R N , and let Wt be a Brownian process starting at a point W0 = x 2 W. In this
case, Kakutani's principle [ 122] states that

u(x) = E [g(Wt )], (2.25)

where as before t is the (random) time when Wt �rst hits the domain boundary ¶W. In other
words, the solution to a Laplace equation is just the average boundary value “seen” by random
walks starting at x.

Connection To Mean Value Property. Kakutani's principle can be viewed as a generalization of
the mean value property (Eq. 2.13), since in the special case where the domainW is a ball B(x, R)
of (any) radius R centered at the start of a random walk, the exit distribution of Brownian motion
is uniform over the boundary sphere ¶B (i.e., it equals 1/ j¶Bj). Hence, Kakutani's principle in this
case gives just the mean value integral

u(x) = E [g(Wt )] =
1

j¶B(x, R)j

Z

¶B(x,R)
g(z) dz. (2.26)

Source Term

For PDEs with a source term f , such as the Poisson equationDu = � f , the solution u additionally
picks up a term capturing the average heat “felt” by a random walk along its path [ 191, Ch. 9]:

E

� Z t

0
f (Wt ) dt

�
. (2.27)

Connection To Green's function. The solution to a Poisson equation can also be expressed by
convolving f with the Green's function GW of the domain, if we assume the domain boundary
¶W only has zero Dirichlet conditions ( g = 0), and GW = 0 on ¶W. In this case, the BIE in Eq. 2.9
simpli�es to

u(x) =
Z

W
GW(x, y) f (y) dy. (2.28)
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Comparing against Eq. 2.27, we thus have

E

� Z t

0
f (Wt ) dt

�
=

Z

W
GW(x, y) f (y) dy, (2.29)

which implies that the Green's function in fact describes the locations where a Brownian random
walk is likely to spend time within the domain W [191, Sec9.2].

Screening Term

To model the effect of absorption, as in a screened Poisson equationDu � su = � f , we incorpo-
rate the absorption coef�cient s 2 R � 0 into the boundary and source terms to get

E
�
e� st g(Wt )

�
and E

� Rt
0 e� st f (Wt ) dt

�
, (2.30)

respectively [191, Ch. 8]. Notice that larger values of s yield smallercontributions. This expo-
nential downweighting of the solution is accounted for in the boundary integral equation for a
screened Poisson equation through its Green's function and Poisson kernel (App. A. 2). For a
spatially varying coef�cient s(x), we simply replace � st with �

Rt
0 s(Wt ) dt in both terms.

Feynman–Kac

Finally, to account for spatially varying diffusion k(x) 2 R> 0 and drift #�w(x) 2 R N , we replace the
Brownian motion Wt with a general diffusion process X t from Eq. 2.21. Combining expressions
for the boundary, source, and absorption terms from Eqs. 2.25–2.30, we then arrive at:

The Feynman–Kac formula

For any point x 2 W, the solution to Eq. 2.4 with Dirichlet boundary conditions satis�es

u(x) = E

�
e�

Rt
0 s(X t ) dt g(X t ) +

Z t

0
e�

Rt
0 s(Xs) ds f (X t ) dt

�
. (2.31)

With Dirichlet conditions, a random walk terminates when X t 2 ¶WD . With Neumann and Robin
conditions, the primary change to the Feynman–Kac formula is that X t must be re�ected off ¶WN

and ¶WR (Fig. 2.7). We refer to Morillon [ 172] for details on how to augment Eq. 2.31 with
contributions from non-zero Neumann and Robin data h and ` respectively (Eq. 2.1).

Direct Estimation Using Discretized Random Walks. To approximately compute the solution
to an elliptic PDE, one can use, e.g., Euler-Maruyama with step-size h to simulate M random
walks in W starting from x (Eq. 2.23). We can then estimate each walk's contribution by discretiz-
ing Eq. 2.31, and averaging results as follows:

1
M

M

å
i= 1

Yi , where Yi := e� h�å N � 1
k= 0 s(Xk) g(XN ) + h �

N � 1

å
k= 0

e� h�å k� 1
l= 0 s(X l ) f (Xk). (2.32)

Here N is the number of steps a random walk takes before it terminates on ¶WD . In addition
to the inef�ciencies of discretized walks described in Sec. 2.3.1, a direct summation of this kind
introduces further discretization error into the solution. Error also arises from naive estimation
of the function exp (�

Rt
0 s(X t ) dt), since nonlinear functions f do not in general commute with

expectations (E [f (X)] 6= f (E [X ])). We brie�y turn to volume rendering next, as it will inspire
techniques for solving variable-coef�cient PDEs with WoS that avoid discretization entirely.
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Figure 2.9: Left: The Feynman–Kac formula describes how a source term f and boundary data g contribute to the
solution of an elliptic PDE with spatially varying coef�cients along the trajectory of a random process Xt . Right:
The volume rendering equation likewise describes the radiance L(x, �! w ) as a function of scattering, emission f , and
the radiance g leaving the boundary, but along a straight light path rather than a random walk.

Similarity To The Volume Rendering Equation. In computer graphics, the radiative transport
equation (RTE) [35] is used to describe the behavior of light in heterogeneous media that absorb,
scatter and emit radiation (Fig. 2.9, left). Unlike Eq. 2.4, the RTE is only 1st order in space. It
states that the radiance L(x, #�w) at each point x 2 W and in each direction #�w 2 Rn satis�es

#�w � r L(x, #�w) � s(x)L(x, #�w) = � f (x, #�w, L) on W,
L(x, #�w) = g(x, #�w, L) on ¶W.

(2.33)

This equation is recursive, since the source term f (x, #�w, L) depends on the radiance Ls(x, #�w) in-
scatteredat x (as well as any emission Le(x, #�w)); likewise, the function g(x, #�w, L) describes radiance
leaving the boundary. The spatially varying extinction coef�cients(x) speci�es the density of
scattering or absorbing particles at x.

The integral representation of the RTE is called the volume rendering equation (VRE)[203, Ch.
15.1]. The VRE gives the radiance L(x, #�w) as an integral along a ray xt := x � #�wt of length d:

L(x, #�w) = e�
Rd

0 s(xt ) dt g(xd, #�w, L) +
Z d

0
e�

Rt
0 s(xs) ds f (xt ,

#�w, L) dt. (2.34)

It shares a close resemblance with the Feynman–Kac formula (Eq.2.31).

Delta tracking. The VRE is typically solved using volumetric path tracing (VPT)[141], but a spa-
tially varying s(x) presents challenges akin to those for the Feynman–Kac formula: approximat-

ing the transmittance functionexp(�
Rd

0 s(xt ) dt) via explicit steps along xt can yield signi�cant
error. Delta tracking[207, 270] instead rewrites Eq. 2.33 so that all spatial variation in the extinc-
tion coef�cient s(x) is captured by a source term on the right-hand side—leaving only a constant
absorption coef�cient s := max(s(x)) [74, 139]:

#�w � r L(x, #�w) � sL(x, #�w) = � ( f (x, #�w, L) + ( s � s(x)) L(x, #�w)
| {z }

= : f 0(x,#�w ,L)

). (2.35)

Conceptually, �ctitious null matter is added to the initially heterogeneous medium so that it has
a constant density (Fig. 2.10, left). Eq. 2.35 then has the integral representation

L(x, #�w) = e� sdg(xd, #�w, L) +
Z d

0
e� st f 0(xt ,

#�w, L) dt. (2.36)
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Figure 2.10: Left: The delta tracking method in volume rendering arti�cially �lls a heterogeneous medium with
�ctitious null matter (indicated bysn(x)) so that the combined densitys is constant everywhere. Right: With VPT
[70, Algorithm 2], we then re-weight the radiance bys � s(x) to account for the original heterogeneity ins(x),
which corresponds to probabilistically sampling null-events inside the medium. Likewise in Sec.5.2.1, our delta
tracking WoS estimator will solve variable-coef�cient PDEs by introducing null-events into the random walk.

This representation is more amenable to Monte Carlo integration, since the transmittance func-
tion e � st can be evaluated in closed form. Spatial variations in s(xt ) are accounted for by weight-
ing the radiance L by s � s(xt ) inside the modi�ed source term f 0.

In Ch. 5, we will derive a generalized mean value expression for the variable-coef�cient PDEs
from Sec. 2.1.1 by applying the delta tracking transformation to the Feynman–Kac formula. This
will lead to an integral representation amenable to walk on spheres.
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Chapter 3

Basic PDE Estimators

From here on, we use the Monte Carlo method to solve the PDEs from the previous chapter,
via their integral formulations. In this chapter, we �rst explain how we can use Monte Carlo
to numerically evaluate integrals that do not have analytic solutions. We then introduce Muller
[174]'s walk on spheres algorithm for simulating Brownian motion (Sec. 2.3.1) in bounded do-
mains, which allows us to apply Monte Carlo integration to mean value expressions (Sec. 2.2)
for constant-coef�cient PDEs with Dirichlet boundary conditions.

3.1 Background: Monte Carlo Integration

We review elementary facts about Monte Carlo integration, and refer to Veach [ 251, Chapter
2] and Pharr et al. [203, Chapter 13] for a more thorough introduction. The basic idea is that
an integral can be estimated by simply sampling the integrand at randomly-chosen points, and
averaging results from several trials. This makes Monte Carlo easy to implement and generally
applicable to a wide variety of integrands, including those containing discontinuities or singular-
ities. It is also the only practical numerical integration technique for high-dimensional integrals,
since the performance of quadrature schemes becomes exponentially worse as dimensionality
increases [251, Sec. 2.2]. As a randomized algorithm, Monte Carlo gives different results de-
pending on the random numbers used, but on average the results are statistically close to the
true answer. In particular, let f be an L1-integrable function on a domain A. Then the integral

I :=
Z

A
f (x) dx (3.1)

can be approximated by the Monte Carlo estimator

bIN := jA j
1
N

N

å
i= 1

f (xi ), xi � U (A ), (3.2)

where N is any positive integer, xi � U (A ) indicates that xi are independent random samples
drawn from the uniform distribution on A, and jA j denotes A's volume. In this text, we will
express all PDE estimators assingle-sample estimatorsbI (dropping the subscript N = 1 for brevity),
with the expectation that their values will be averaged over many trials to improve accuracy.

Importantly, although bIN is called an “estimator”, it does not provide merely an estimate—
rather, a well-designed estimator will give the exactvalue of the integral, in expectation. More
precisely, an estimator is unbiasedif its expected value equals the true value, E [bIN ] = I , for any
number of samples N. We quantify the accuracy of an estimator using its expected squared error
E [(bIN � I )2], which for an unbiased estimator equals its variance

V[bIN ] := E [(bIN � E [bIN ])2]. (3.3)

Assuming independent samples xi , variance goes to zero at a rate ofO(1/ N), irrespective of the
dimensionality of the integral. This means that Monte Carlo algorithms converge at the rate of
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Figure 3.1: An importance sampling estimator concentrates samples where the integrandf is large (left), often by
using an easy-to-sample approximation off as its PDF p (right).

O(1/
p

N) to the correct result, i.e., to cut error in half, we require four times as many samples.
We must therefore apply variance reduction techniques, discussed next, to reduce noise in the
estimated results given a �xed sample budget. In practice, we use Welford's online algorithm[267]
to compute to a numerically stable estimate of the sample variance

bV[bIN ] =
1

N � 1

N

å
i= 1

"

xi �

 
1
N

N

å
j= 1

x j

!# 2

, (3.4)

which is an unbiased estimator of Eq. 3.3. We say that two Monte Carlo estimators are correlated
if they use the same set of independent samples to compute their respective sums.

3.1.1 Variance Reduction

Designing ef�cient estimators is of central importance to the adoption of Monte Carlo algorithms
in downstream applications. The ef�ciency of an estimator E[bIN ] is determined not just by its
variance V[bIN ], but also by the time T [bIN ] needed to compute its value. Together, V and T de�ne

E[bIN ] :=
1

V[bIN ] T[bIN ]
, (3.5)

which states that one estimator is more ef�cient than another if it either takes less time to produce
the same variance, or if it produces less variance in the same amount of time.

Here we review variance reduction strategies from the broader Monte Carlo literature, which
we will adapt to our setting in the next few chapters (but primarily in Ch. 7). This list is not
exhaustive, as there likely exist other strategies for improving ef�ciency we do not consider here.

Importance Sampling

Let pA be any PDF on the domain A that is nonzero on the support of the function f . Then the
integral of f in Eq. 3.1 also equals the expected value of the estimator [203, Sec.13.2]

bI IS
N :=

1
N

N

å
i= 1

f (xi )
pA (xi )

, xi � pA . (3.6)

Importance samplingrefers to concentrating samples in regions where f has large values, by sam-
pling from a density pA that is similar to the integrand f (Fig. 3.1). The theoretical best choice is
to set pA = cf , where the constant of proportionality c equals 1 over the unknown value I of the
integral

R
A f (x) dx we are estimating. In this case, the expected squared error is zero, since the

importance sampling estimator bI IS
N equals I . In practice, variance is reduced even when pA only

approximately matches f , with importance sampling becoming especially helpful if integrands
are localized or have singularities. In the remainder of this text, we will use Eq. 3.6 as the default
estimator for all the PDEs we consider, and drop the superscript on bI IS for brevity.
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Control Variates

Suppose we want to estimate the integral
R

A f (x) dx, and have a func-
tion f̃ (x) with known integral c. A control variatestrategy then is

bI CV
N := c+

1
N

N

å
i= 1

f (xi ) � f̃ (xi )
pA (xi )

, xi � pA (3.7)

i.e., estimate the differencebetween f and f̃ , and shift by c. Intuitively, if f̃ is similar to f , then the
difference is a nearly constant function that will have smaller variance than f itself (inset). This
strategy will be useful for reducing noise when estimating derivatives of PDEs (Sec. 7.2).

Antithetic Variates

Antithetic variates are most useful when the integrand f is smooth and approximately linear.
The basic idea is to add two estimators that use the same random samples and are negatively
correlated, as the variance of the estimators together is smaller than if the samples are inde-
pendent. Assume for simplicity that we want to estimate

R1
0 f (x) dx. Then, an antithetic variate

strategy is

bI AV
N :=

1
N

N

å
i= 1

f (ui ) + f (1 � ui )
2

, xi � U ([0, 1]). (3.8)

This estimator has zero variance when f is a linear function, and extends easily to unit hyper-
cubes [0, 1]s of dimension s using sample pairs f ui

1, . . . ,ui
sg and f 1 � ui

1, . . . , 1� ui
sg. It can also

be used on more general domains via a transformation between distributions [ 203, Sec.13.5]. We
will apply antithetic variates in conjunction with control variates to estimate PDE derivatives.

Strati�ed Sampling

Variance can also be reduced by subdivid-
ing the integration domain A into n nonover-
lapping subdomains a 1, a2, . . . , an, such that
[ n

i= 1ai = A. Samples are then generated in
each subdomain ai using probability densities
pai . Compared to randomly sampling over all
of A, this sort of strati�ed placement ensures
that samples are more evenly distributed and
do not clump together as much (see inset),
making them less likely to miss important fea-
tures of the integrand. A number of sophisticated sample placement schemes have been de-
veloped [251, Sec. 13.8] such as Latin hypercube sampling, orthogonal array sampling, and
quasi-Monte Carlo (QMC) methods. QMC generally demonstrates asymptotically faster rates of
convergence than standard Monte Carlo, but often at the cost of increased computation. We will
stratify samples in the interior and on the boundary of a PDE domain in Sec. 7.5.

Adaptive Sampling

While importance sampling concentrates samples in regions where the integrand is large, adap-
tive sampling instead places samples in regions where the estimator has most variation. This

35



information can be computed directly from the estimated variance bV[bIN ] in Eq. 3.4 to inform
placement of future samples. One can then change the sampling PDF as more information about
the integrand is gathered while taking more samples. Unlike importance sampling, the main
disadvantage of adaptive sampling is that it can produce biased results. However, bias can be
justi�ed if cost is signi�cantly reduced—in Sec. 7.4, we will demonstrate that this is the case in
regions where the integrand is smooth.

Sample Reuse And Caching

Generating samples from a probability density pA can be expensive. For instance, when eval-
uating high-dimensional integrals with random walks (as we will see in Sec. 3.2), each sample
depends on a sequence of nested decisions constitutingk steps of a walk. In situations where
several similar integrals need to be evaluated at nearby points in a domain, one can improve
ef�ciency by reusing the same set of independent samples to evaluate more than one integral.
Sample reuse introduces correlations between results which slow down the rate of convergence,
but it can also greatly amortize the cost of generating expensive samples corresponding to, e.g.,
long walks. Reuse may require storing samples in a cache, before their contribution can be shared
between different estimators. We will develop a caching strategy for PDEs in Sec. 7.5.

Russian Roulette And Splitting

In particle transport [ 26, 102], Russian rouletteand splitting are closely related techniques that
improve the ef�ciency of an estimator by controlling the sample density in a domain. Unlike
adaptive sampling, they do not introduce any bias, and ensure that each sample makes a signi�-
cant contribution to the result.

Russian Roulette. Russian roulette provides an unbiased mechanism to discard samples that
are expensive to evaluate but make little contribution to the estimator, e.g., a random walk in
a highly absorbing medium (Sec. 2.3.2). Russian roulette skips these samples by replacing the
single-sample estimator bI with a new estimator of the form

bI RR :=

(
bI/ q with probability q,

0 otherwise.
(3.9)

Here the survival probability q can be determined in any number of ways. For instance, q for a
killed diffusion process (Sec. 2.3.1) can be based on the value of the exponential e� st in Eq. 2.30.
The estimator bI RR then has the same expected value asbI :

E [bI RR] = q �
1
q

E [bI ] + ( 1 � q) � 0 = E [bI ], (3.10)

implying that it is free from bias whenever bI is unbiased. Though Russian roulette does not
reduce variance, it can improve ef�ciency by reducing the average time spent evaluating bI .

Splitting. Splitting on the other hand places more samples in important or high-contribution
regions of the domain. In the context of random walks, this amounts to splitting a single walk into
M new independent walks, each with 1/ M 'th the contribution of the original walk. Concretely,
the splitting estimator replaces bI with

bI split :=
1
M

M

å
i= 1

bIi , (3.11)
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Figure 3.2: To generate samples from a probability density p, inverse transform sampling requires computing and
inverting the cumulative density function P.

where the M estimates bIi are independent from bI but have the same expectation. Like Russian
roulette, this decomposition leads to an unbiased estimator bI split via linearity of expectations.
Since splitting promotes better exploration of the domain, variance is reduced but at the expense
of increased runtime.

To improve ef�ciency, we will use Russian roulette to terminate random walks in domains
with absorbing media (Sec. 3.2.2) and Robin boundary conditions (Sec. 4.3.4). In Sec. 7.7, we
will also combine Russian roulette and splitting into a uni�ed weight windowstrategy for PDE
estimators with variable coef�cients.

3.1.2 Sample Generation

To evaluate any of the Monte Carlo estimators from the previous section, we need to be able to
draw random samples from a probability density. Here we describe a few standard sampling
procedures which we will use later to sample from Green's functions. In the next section, we
then turn to walk on spheres, which at its core is a sample generation algorithm as well, but
speci�cally for generating realizations of Brownian motion in bounded domains.

Inverse Transform Sampling

Inverse transform sampling uses the following recipe to sample from a real-valued PDF p:

1. Compute the cumulative density function P(x) =
Rx

0 p(x0) dx0.

2. Compute the inverse CDF P� 1(y).

3. Generate a uniform random number u � U ([0, 1]).

4. Generate a random sample x0 = P� 1(u).

As shown in Fig. 3.2 (right), the intuition behind this technique is that a value in [0, 1] on
the vertical axis maps uniquely to the probability of an “outcome” x0 on the horizontal axis—
outcomes chosen for a set of uniform random numbers will therefore be distributed according
to the PDF p. As an example, consider the PDF p(x) = se� sx of a killed diffusion process from
Sec. 2.3.1, and its corresponding CDF P(x) = 1 � e� sx. This CDF is easy to invert, P� 1(y) =
� ln (1 � y)/ s, and thus easy to generate samples from,x0 = ln (1 � u)/ s for u � U ([0, 1]).

For discrete outcomes, we can compute a CDF by summing up the known probability of each
outcome, and using steps 3 and 4 to generate samples. The main challenge with using inverse

37



transform sampling on continuous PDFs is that it is not always possible to compute and invert
CDFs. Rejection and weighted importance sampling relax these requirements.

Rejection Sampling

Rejection sampling draws samples from non-negative functions f (x)
that need not be normalized, i.e., f does not have to integrate to 1,
and hence is not necessarily a PDF. Assume we have access to a PDF
g that is easy to sample from (via, e.g., inverse transform sampling),
and a constant c such that f (x) � cg(x). We then repeat the following
procedure till it returns a correctly distributed sample x0:

1. Generate a uniform random number u � U ([0, 1]).

2. Generate a samplex0 � g(x).

3. Return x0 if u < f (x0)/ cg(x0).

Intuitively, when the PDF g is uniform, more samples are rejected in regions where f is small.
Tighter bounds cg(x) can therefore signi�cantly improve performance.

Weighted Importance Resampling

Assume we want to again sample according to an unnormalized function f (x), but only have
access to a stream of samplesf x1, x2, . . .g generated using a PDF g(x). We can choose a represen-
tative sample distributed proportionally to f by processing the stream one element at a time, and
selecting—from the M samples seen so far—anxi with probability w(xi )/ å M

j= 1 w(x j ), where the

weight w(x) := f (x)/ g(x) [23, Alg. 3]. The next stream sample xM+ 1 replacesxi with probability
w(xM+ 1)/ å M+ 1

j= 1 w(x j ). The stream length M need not be known ahead of time.

3.2 Walk On Spheres

Suppose we want to evaluate the solution to a basic Laplace equation Du = 0 with Dirichlet
boundary conditions g (Eq. 2.24) at some point x0 2 W. The mean value property (Eq. 2.13) says
that u(x0) is equal to the average of u over the boundary of any ball B (x0, R) � W. Alternatively,
Kakutani's principle (Eq. 2.25) says that u(x0) equals the expected value of u where continuous
Brownian random walks �rst hit the ball boundary ¶B. We therefore have

u(x0) =
1

j¶B(x0, R)j

Z

¶B(x0,R)
u(z) dz = E [u(Wt )], (3.12)

where by symmetry a random walk Wt starting at a point x0 is equally
likely to exit through any point on ¶B—independent of how long the
walk takes, or where it goes inside B (Fig. 3.3).

The mean value and stochastic perspectives both point to the same
strategy for estimating u(x0): uniformly sample a point x1 on a sphere
around x0. If x1 is extremely close to the domain boundary ( i.e., within
the #-shell ¶W#

D), grab the boundary value g(x1) at the closest point
x1 2 ¶WD (inset). Otherwise, evaluate u(x1). Repeated evaluation of
Eq. 3.12 results in a random walk on the points x0 ! x1 ! . . . , where
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Figure 3.3: At any point x, the solution u to a Laplace problem is equal to the average boundary value reached
by random walks (left), and the average value of u over a sphere¶B(x) around x (right). Both quantities can be
estimated by recursively sampling points x0on a sphere.

for k � 0, each point xk+ 1 lies on a sphere centered at the previous point xk. This reasoning leads
to the recursiveWoS estimator by Muller [ 174]:

bu(xk) :=

(
g(xk) xk 2 ¶W#

D ,
1

j¶B(xk,R)j
bu(xk+ 1)

p¶B(xk+ 1) otherwise.
(3.13)

To achieve fast convergence to ¶WD , we draw a single point xk+ 1 from the uniform density
p¶B := 1/ j¶Bj on the largestsphere around xk with radius R = kxk � xkk (Fig. 1.6), which can
be computed ef�ciently via a closest point query (Sec. 6.1). In this case, one can show that
the number of steps needed to reach the #-shell ¶W#

D is typically O( log 1/ #) [22], and that error
vanishes quickly as # is decreased (Sec.6.3). Alg. 1 provides pseudocode.

Unlike SDE integration schemes (Sec. 2.3.1), WoS provides an exact statistical simulation
of Brownian motion without introducing discretization error at every step of a random walk.
Moreover, numerical quadrature is not a practical alternative to Monte Carlo here, since the
recursively expanded integration domain is high-dimensional. In the remainder of this section,
we describe known extensions of WoS to other constant coef�cient PDEs such as the Poisson and
screened Poisson equations. We also discuss estimation of derivatives, and treatment of re�ecting
boundary conditions.

3.2.1 Poisson Equation

We can solve a Poisson equation (Eq. 2.2) by incorporating a source
term f : W ! R into the WoS estimator as follows:

bu(xk) :=

8
<

:

g(xk) xk 2 ¶W#
D ,

1
j¶B(xk,R)j

bu(xk+ 1)
p¶B(xk+ 1) + GB(xk,R) (xk, yk+ 1) f (yk+ 1)

pB(yk+ 1) otherwise.
(3.14)

A good default strategy for the second term, shown in the inset, is to importance sample the
Green's function GB at every step of a walk by drawing a single sample yk+ 1 2 B(xk, R) from
the density pB := GB(xk, yk+ 1)/ jGB(xk)j. Here jGB(xk)j is the integral of GB over B (App. A. 6).
We can use either rejection sampling or inverse transform sampling to generate samples from
GB (App. A. 1.2), and can use more than one sample at each step to reduce variance if needed.
We refer to Delaurentis and Romero [ 51, Sec. 2] for a proof that this single-sample estimator
converges to the true solution u(x).
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ALGORITHM 1: Walk OnSpheres (x, #)
Input: Starting position x 2 W of random walk, and #-shell.
Output: Single-sample MC estimate bu(x) of Poisson equation with Dirichlet conditions.

1: d, x  Closest Pt (¶WD , x) . Compute distance to absorbing boundary¶WD (Sec.6.1)
2: if d < #then return g(x) . Return boundary value g at closest ptx if x 2 ¶W#

D

3: v  Sample Unit Sphere () . Sample direction v uniformly on unit sphere
4: p  x + d v . Set next walk position on sphere with radius d
5: bI f  Source Estimate (x, d) . Estimate contribution from source term f (Sec.3.2.1)

6: return Walk OnSpheres (p, #) + bI f . Repeat from next walk position p

3.2.2 Screened Poisson Equation

To incorporate a constant absorption coef�cient s 2 R � 0 (Eq. 2.3), we simply replace the func-
tions 1/ j¶Bj and GB in the estimator for a Poisson equation with the corresponding Poisson
kernel Ps,B and Green's function Gs,B for a screened Poisson equation [61]; App. A. 2.2 provides
explicit expressions. As discussed in Sec. 2.3.2, a nonzero s dampens the PDE solution, which
can also be observed through the following relation (from Eq. A. 17) between Poisson kernels:

Ps,B(x, y) =
1

j¶B(x, R)j
Qs,B(x, y), (3.15)

where Qs,B 2 [0, 1) for s > 0. Hence, if we use the uniform density pB = 1/ j¶Bj to sample the
next walk position xk+ 1, then the solution estimate bu accumulates a throughput Õ k Qs,B(xk, xk+ 1)
over k steps that downweights both the boundary and source contribution g and f , respectively.

We use the term throughput in analogy with the throughput of a light path in Monte Carlo
rendering [ 203]—in the context of a screened Poisson equation, the throughput of a walk equals
the probability with which a killed Brownian motion (Sec. 2.3.1) does not get absorbed in the do-
main W. With WoS, we can use Russian roulette (Sec.3.1.1) to realize absorptions: we terminate
walks at step k with probability 1 � Qs,B(xk, xk+ 1), and cancel out the contribution Qs,B(xk, xk+ 1)
in the walks that survive. This allows us to terminate walks early, instead of waiting for them
to reach ¶W#

D while their throughput continues to shrink. In practice, Russian roulette provides
large ef�ciency gains when solving screened Poisson equations with WoS.

3.2.3 Biharmonic Equation

Several algorithms in geometric computing require solving two or more PDEs that depend on
one another, e.g., computing deformations [ 240] and geodesic distances [45], solving eigenvalue
problems via power iterations. Here we consider the simpler example of a biharmonic equation

D2u = 0 on W,
u = g on ¶W,

Du = h on ¶W,
(3.16)

which can be formulated as a system of two 2nd order PDEs via the substitution v := Du:

Du = v on W, Dv = 0 on W,
u = g on ¶W, v = h on ¶W.

(3.17)
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Figure 3.4: A comparison of the “tree walking” strategy for a biharmonic equation to a na�̈ve nested strategy with
the same number of outer walks, and1, 10, and 100 inner walks; for this example each outer walk takes about15
steps. The tree walking result is slightly noisier, but many times more ef�cient.

To evaluate u at a point x0 2 W, we can apply the standard Poisson
estimator (Eq. 3.14), using the Laplace estimator (Eq. 3.13) to estimate
v at each step of a walk. However, this na �̈ve strategy is quite expensive
since we now have to simulate whole walks inside each step (inset, top).
This requires O(SN2) steps, where N is the number of walks used for
the Poisson and Laplace estimators, and each walk takesO(S) steps.

To address the inef�ciency above, we propose a “tree walking”
strategy that re-uses partial walks to reduce cost to O(SN) [221, Sec.
4.3]. In particular, at each step xk of the “outer” walk, we still use a
single point yk+ 1 to sample the source term. But rather than using the
basic WoS estimator for v(yk+ 1) (Eq. 3.13), we instead use the estimate
bv(yk+ 1) = PB(yk+ 1, xk+ 1)h(xN ), where PB is the off-centeredPoisson ker-
nel for the ball B (Sec. 2.2.1), and xN is the �nal point in the walk used
to estimate u(x0). In other words, we connect a walk of length one (from yk+ 1 to xk+ 1) to the
longer walk from xk+ 1 to xN , then use the boundary value (inset, bottom). Though the walks are
now more strongly correlated due to reuse ( xk+ 1 is connected to both xk and yk+ 1), they are also
signi�cantly cheaper to compute—in practice, we get reduced variance for equal compute time
(Fig. 3.4). Similar strategies can in principle be applied to other nested sequences of PDEs.

3.2.4 Exterior Problems

The WoS estimators from the previous sections can be used to solve PDEs on the domainexterior,
i.e., the complement of W in R N . Unfortunately, there is a non-zero probability for a random
walk to wander off to in�nity in an open domain, or in the exterior of a closed domain; this
corresponds to the non-recurrentbehavior of Brownian motion in dimensions greater than 1 [27,
Ch. 2]. A simple strategy then is to apply Russian roulette to terminate walks that wander far
from the domain boundary—examples are shown in Fig. 1.7. Nabizadeh et al. [179] instead
propose an approach based on the spherical inversion of the domain via a Kelvin transformation,
and demonstrate that WoS solves exterior problems with signi�cantly lower variance under this
inversion. We refer to their work for further details.

3.2.5 Spatial Derivatives

One often requires computing not just the solution to a PDE, but also its spatial derivatives for
tasks involving, e.g., shape optimization [ 204] and gradient �ows (Fig. 8.5 & 7.10). Surpris-
ingly little has been said about estimating derivatives via WoS—one such work is by Elepov
and Mikhailov [ 61], which brie�y discusses gradients but ignores other differential operators,
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higher-order derivatives, and variance reduction strategies (Sec. 7.2 & 7.5). We provide basic
estimators for spatial derivatives [ 221, Sec. 3] derived using harmonic analysis [ 9]. The more
general framework of Malliavin calculus [17] provides tools for also computing sensitivities with
respect to quantities such as PDE coef�cients (termed Greeksin �nancial engineering [ 71]).

Gradient

We can express the gradient of a harmonic function u, with respect to an evaluation point x 2 W,
via a mean value-like integral [ 221, App. A]

r xu(x) =
1

jB(x, R)j

Z

¶B(x,R)
u(y) ny dy, (3.18)

where for a d-dimensional ball of radius R, ny := ( y � x)/ R is the outward unit normal at y. A
basic WoS estimator for the gradient then is

[r x0u(x0) :=
d
R

bu(x1) nx1, x1 � U (¶B(x0, R)) , (3.19)

i.e., just uniformly sample a point x1 on a ball around x0, and multiply
the normal nx1 by the usual WoS estimate for u(x1) (Eq. 3.13). The
coef�cient d/ R comes from the surface area to volume ratio for an d-
dimensional ball. We note that estimating the gradient adds virtually
no cost on top of computing the solution at x0, apart from a multipli-
cation with the normal. Eq. 3.19 also makes no assumptions about the
boundary conditions imposed on the domain boundary ¶W—it simply
requires access to an estimate ofu at x1 2 W. However, Eq. 3.19 does
not apply when x0 2 ¶WD , since R = 0.

More generally, the gradient of the (off-centered) mean value property for a screened Poisson
equation (Sec.2.2.1) is given by

r xu(x) =
Z

¶B(c,R)
r xPs,B(x, z) u(z) dz +

Z

B(c,R)
r xGs,B(x, y) f (y) dy, (3.20)

where c is the center of the ball B. The WoS estimator for this expression requires only a single
sample for the second integral at the �rst step of a walk. We recover the spatial gradient for a
Poisson equation when s = 0, and the gradient for the Laplace equation in Eq. 3.18 when f = 0
and c = x. App. A gives expressions for the functions r xP and r xG, while Ch. 7 provides
variance reduction strategies for gradient estimators.

First-Order Differential Operators

Given an estimate for the gradient r xu, an estimate of the directional derivative DZu along any
direction Z 2 Rn is then given by

DZu(x) = Z � r xu(x). (3.21)

All other �rst-order differential operators, such as divergence or curl, can be expressed via the
partial derivatives ¶u/ ¶ei = Dei u along the coordinate directions e1, . . . ,en.
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Figure 3.5: To simulate re�ecting random walks with WoS, a standard approach [156, 160] is to offset a walk that
approaches the Neumann boundary back into the domain by a �xed distance along the inward normal n to the
boundary (left). This approach introduces discretization error into the re�ecting walk simulation. Moreover, the
resulting walks tend to stick to the boundary as they are attracted to it, leading to long walk lengths (right).

Higher Order Derivatives

If u is the solution to a Poisson equation (Eq. 2.2), then its Hessian H u can be expressed via the
integral formula

H u(x) = d2

R4
1

j¶B(x,R)j

R
¶B(x,R) u(y)(y � x)(y � x)T dy

� d
R2

1
j¶B(x,R)j

R
¶B(x,R) u(y) I dy

+
R

B(x,R) H G(x, y) f (y) dy,

(3.22)

where I 2 Rd� d is the identity matrix. A single-sample WoS estimator could in principle be
written as

bu(x1)
�

d2

R4 (x1 � x0)( x1 � x0)T �
d

R2 I
�

+ jB(x0, R)jH G(x0, y1) f (y1), (3.23)

where x1 � U (¶B(x0, R)) and y1 � U (B(x0, R)) . Here we run into some dif�culty as the Hessian
of the Green's function H G involves terms that behave like Dirac deltas: without an importance
sampling strategy akin to those used for point sources (Sec. 7.1), important contributions will
be missed. However, we can apply integration by parts to obtain a different expression for this
term, namely

Z

B(x,R)
f (y)(y (x, y)(y � x)(y � x)T � f (x, y) I ) � r y f (y)r xG(x, y) dy, (3.24)

where y and f are functions that depend on the particular choice of Green's function (see [ 221,
App. B.2.2]), and r y denotes the gradient with respect to y. This quantity can be estimated
via a single Monte Carlo sample, though we now also need access to the gradient of the source
function f . As with the gradient estimator (Sec. 3.2.5), other 2nd-order differential operators can
be estimated via a Hessian estimate. See Fig.7.4 for a numerical example and convergence plot.

3.2.6 Re�ecting Boundary Conditions

So far, we have presented WoS estimators for PDEs with absorbing Dirichlet boundary conditions.
For mixed boundary value problems containing re�ecting Neumann conditions (Eq. 2.1), the
standard approach [160] is again to terminate walks when they reach the #-shell ¶W#

D . However,
if a walk ever reaches a point exk in the #-shell ¶W#

N around the Neumann boundary, then the
Neumann data h at the closest point xk 2 ¶WN is approximated via �nite differences, e.g.,

h(xk) �
u(xk + znxk) � u(xk)

z
, (3.25)
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Figure 3.6: For a Poisson equation with pure Neumann conditions, local details in the PDE solution are often
resolved by the �rst few steps of a Brownian random walk (simulated here using the walk on stars algorithm from
Ch. 4), with near-constant contributions from later steps (left). However, more steps are typically needed to resolve
lower frequency global details (right).

where z > # is a constant. The solution estimate at xk is then

bu(xk) := bu(xk + znxk) � zh(xk) � u(xk). (3.26)

In other words, � zh(xk) is added to the running estimate, and the walk continues as usual from
the point xk + znxk obtained by nudging xk back into the domain by a �xed distance z along the
inward unit normal (Fig. 3.5, left). Mascagni and Simonov [160] call this procedure a boundary
re�ection; Maire and Tanr é [156] and Zhou et al. [ 283] provide more sophisticated approximations
using higher-order differences. Similar approximations are also available for Robin boundary
conditions [ 236, 282].

Unfortunately, such re�ections are often impractical for problems with a large Neumann
boundary ¶WN : the �nite difference approximation introduces signi�cant bias if z is much larger
than #. Yet if z is only slightly larger than #, then random walks “stick” to ¶W#

N , and take many
small steps before escaping toward the interior (Fig. 3.5, right). Fig. 8.16 (left) shows that,
in practice, boundary re�ections yield both slow runtime and large accumulated bias. In the
next chapter, we develop a walk on stars estimator for BVPs with mixed boundary conditions
[167, 224]. WoSt avoids these issues by considering larger spheres that contain the Neumann and
Robin boundaries, which greatly improve both accuracy and ef�ciency.

Pure Neumann Conditions The solution to a Poisson equation with pure Neumann boundary
conditions is determined only up to an additive constant. From the random walk perspective,
there is no Dirichlet boundary to terminate on, hence contributions from the Neumann data h
accumulate forever. However, shorter walks tend to resolve high-frequency details in the solution,
whereas the contribution from independent longer walks is more spatially uniform (see Fig.
3.6). Based on this observation, Maire and Tanré [156] describe a WoS estimator that stops
the simulation once walks become longer than a certain length, implicitly pinning an additive
constant to the solution. For WoSt we will instead apply Tikhonov regularization, which makes the
solution unique by adding a small absorption coef�cient s to the PDE (resulting in a screened
Poisson equation). In particular, we will switch to this PDE when a walk gets longer than a user-
speci�ed length (Fig. 7.5), which adds a small but controlled amount of bias. As described in Sec.
3.2.2, we can then terminate walks via Russian roulette, using a survival probability proportional
to the Poisson kernel of a screened Poisson equation.
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Chapter 4

Estimators For PDEs With Mixed Boundary Conditions

The original walk on spheres method solves Dirichlet problems by simulat-
ing random walks that ultimately get absorbed into the boundary. Rather
than simulate many small steps of an isotropic Brownian motion (Fig. 2.7,
left), this process is greatly accelerated by sampling the next point from the
largest empty ball around the current walk position (Fig. 4.1, left). In this
chapter, we take a basic but important step forward by developing practi-
cal strategies for incorporating Neumann and Robin boundary conditions
(Eq. 2.1), which are an essential component of virtually every real physical
model. To model these boundary conditions, one must additionally simu-
late re�ecting random walks that “bounce” off the boundary (Fig. 2.7, center
& right) [86, 87]. In a half space, re�ecting walks amount to just taking the
absolute value of Brownian motion in one coordinate direction. Hence, for
polyhedral domains, a na �̈ve strategy for simulating re�ections is to sample
the largest ball that intersects only a single boundary face, and to perform
a re�ection across the boundary plane if the sampled point falls outside the domain (see inset).
However, the ef�ciency of this strategy drops quickly as the boundary mesh is re�ned.

Our strategy, which we call walk on stars (WoSt)[167, 224], is both more ef�cient and more
general—it is a Monte Carlo estimator for the boundary integral equation of a Laplace problem
(Sec. 2.2). In short, we identify a large star-shaped regionaround the current walk position, and
sample a point on its boundary by picking a random direction (Fig. 4.1, center& right). Like
WoS, WoSt takes large steps inside the domain to quickly reach the Dirichlet boundary (these
techniques are in fact equivalentfor pure Dirichlet problems). Yet unlike prior WoS schemes for
Neumann and Robin boundaries (Sec. 3.2.6), WoSt can also take large steps that are independent
of the level of tessellation near a re�ecting boundary. In Sec. 8.3, we will demonstrate that this
strategy works reliably in both convex and non-convex domains without incurring large bias or
variance, unlike other grid-free Monte Carlo approaches [ 63, 217, 235, 236, 242].

To use WoSt, the only question that must be answered is: how do we �nd star-shaped regions?
We propose one strategy here, using thevisibility silhouette, which is easy to implement ef�ciently
without much overhead (Sec. 6.2). Fundamentally, however, the WoSt approach relies only on
the use of star-shaped regions, and not on any particular method used to compute them, or
on any particular representation of the domain boundary. Importantly, WoSt requires only few
changes to an existing WoS implementation, and provides the same advantages as WoS such as
progressive and output sensitive evaluation, trivial parallelization, and robustness to defective
geometry, while being applicable to a broader class of problems (see, e.g., Fig. 1.9 & 4.2).

We �rst develop the WoSt estimator for Neumann problems in Sec. 4.2, and then describe
modi�cations for Robin conditions in Sec. 4.3. We limit the discussion to Poisson equations here,
and address more general linear elliptic PDEs in the next chapter. We also assume for simplicity
that the domain W is a compact subset of R N , and provide extensions to open domains and
double-sided boundary in App. B.
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Figure 4.1: WoSt solves BVPs with any combination of Dirichlet, Neumann and Robin boundary conditions. Left:
With a purely absorbing Dirichlet boundary¶WD , WoSt is equivalent to WoS, which repeatedly jumps to a random
point on the largest sphere around the current walk location, and terminates when the walk enters an#-shell¶W#

D .
Center: For a re�ecting Neumann boundary¶WN , WoSt generalizes to using star-shaped regions—speci�cally a
sphere containing a subset of¶WN . The next walk location is determined by intersecting a uniformly sampled ray
direction against the current sphere and the visible portion of¶WN it contains, and picking the �rst hit point. Right:
For a Robin boundary that is both re�ecting and absorbing, the walk can additionally terminate on¶WR.

4.1 Star-Shaped Regions

In lieu of balls, WoSt considers regions that are star-shaped with re-
spect to a point x 2 W, i.e., regions whose boundary is visible from
x. Though in principle any star-shaped region could be used, we use
regions St(x, R) given by the intersection B (x, R) \ W containing x,
for a particular choice of radius R for the ball B (see Sec.4.2.2). Sim-
ilar to Eq. 2.1, we partition the region boundary into a Neumann part
¶StN := ¶WN \ ¶St with prescribed normal derivatives ¶u/ ¶n = h, and a
spherical part ¶StB := ¶B \ ¶St. For a Robin boundary ¶WR, we likewise
de�ne ¶StR := ¶WR \ ¶St with prescribed values ¶u/ ¶n + mu = ` .

4.2 Walk On Stars With Neumann Conditions

Letting A := St and C := B in Eq. 2.10, the boundary integral for a Poisson equation becomes

a(x)u(x) =
Z

¶St(x,R)
PB(x, z)u(z) dz +

Z

¶StN (x,R)
GB(x, z)h(z) dz +

Z

St(x,R)
GB(x, y) f (y) dy. (4.1)

As with the mean value property used by WoS (Eq. 2.13), the solution value u(z) is the only
unknown in this equation: at points z 2 ¶StN , the normal derivative ¶u/ ¶n is given by the �xed
Neumann data h along ¶WN , and is not needed at points z 2 ¶StB where GB(x, z) = 0. Since only
one quantity is unknown, estimators for this equation need not branch.

Simonov [235], and later Ermakov and Sipin [ 63], take a parallel approach on domains W
with convexNeumann boundaries ¶WN . In particular, they use regions formed by intersecting W
with a ball B whose radius is the distance to the Dirichlet boundary, dDirichlet := kx � xk. Hence,
B can contain a subset of the Neumann boundary ¶WN . In the convex case, such regions are
automatically star-shaped. To handle arbitrary domains, WoSt instead uses visibility information
to obtain star-shaped regions even near nonconvex Neumann boundaries (which in general can
yield a radius R � dDirichlet ), as we will see in Sec.4.2.2.
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Figure 4.2: The walk on stars method handles mixed boundary conditions, enabling it to model a richer class of
problems than the original walk on spheres method. Here for instance we simulate conductive heat transfer from a
toaster with Dirichlet conditions to a piece of bread with Neumann conditions, by solving a Laplace equation (top and
bottom right), complementing the radiative transfer computed via ray tracing (bottom left). As with ray tracing, we
can simulate directly on the full high-resolution data (bottom center) without generating a volume mesh or forming
a global stiffness matrix. Since results are progressive, we can get a preview of how the toast will look faster than it
takes to toast a real piece of bread (top left).

4.2.1 Monte Carlo Estimation

The Walk On Stars Estimator With Dirichlet-Neumann Conditions

A single-sample Monte Carlo estimator for Eq. 4.1 is given by

bu(xk) =
PB(xk, xk+ 1) bu(xk+ 1)
a(xk) p¶St(xk,R) (xk+ 1)

+
GB(xk, zk+ 1) h(zk+ 1)

a(xk) p¶StN (xk,R) (zk+ 1)
+

GB(xk, yk+ 1) f (yk+ 1)
a(xk) pSt(xk,R) (yk+ 1)

, (4.2)

where for k � 0,

• the points xk+ 1 2 ¶St, zk+ 1 2 ¶StN , and yk+ 1 2 St are sampled from the probability
densities p¶St, p¶StN and pSt (respectively).

• R is chosen so that St(xk, R) is star-shaped.

The WoSt estimator is recursiveas bu appears on both sides of Eq. 4.2. Applying it iteratively leads
to a random walk from one star-shaped region to another—hence the name walk on stars. At a
high level, each step of WoSt accumulates contributions from the (non-recursive) Neumann data
h and source term f . For mixed Dirichlet-Neumann problems, the walk terminates when it enters
the #-shell ¶W#

D , using the Dirichlet data g at the closest point xk 2 ¶WD as the solution estimate,
i.e., bu(xk) := g(xk). For pure Dirichlet problems, WoSt reduces to WoS; for pure Neumann
problems, we apply Tikhonov regularization to terminate walks at the expense of some bias (Sec.
7.3). We �rst discuss how to sample the next step xk+ 1 and choose the radius R (Sec. 4.2.2),
followed by sampling procedures for h and f (Sec.4.2.3 & 4.2.4).
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Figure4.3: Left: For a ballB(xk, R) whose radius R is the distance to the Dirichlet boundary¶WD , the solution to a
Poisson equation has to be estimated at all ray intersections, sampled proportional to signed solid angle. Center and
right: WoSt instead restrictsB \ W to be star-shaped relative to xk to avoid more than one intersection, and estimates
the PDE solution at the �rst intersection point xk+ 1 on either¶B insideW, or the Neumann boundary¶WN inside
B. The radius R of a star-shaped regionSt(xk, R) is the minimum of the distance to the closest silhouette point on
the Neumann boundary¶WN and the closest point on the Dirichlet boundary¶WD .

4.2.2 Random Walk On Star-Shaped Region

The next walk location is importance sampled from the Poisson kernel of a ball centered at the
current point xk, i.e., xk+ 1 � p¶St = PB(xk, xk+ 1). For a Poisson equation in R3, this kernel equals

PB
3D(xk, xk+ 1) =

nxk+ 1 � (xk+ 1 � xk)

4p kxk+ 1 � xkk
3 . (4.3)

We use the same sampling density for a screened Poisson equation, as its corresponding kernel
simply multiplies PB by a constant in [0, 1) determined by the absorption coef�cient (Eq. A. 15).

Eq. 4.3 coincides with the signed solid anglesubtended by ¶St at xk+ 1 with respect to xk
[12, 114]. In rendering, this term appears in the light transport equation (LTE)[203, Eq. 14.15].
Unlike the BIE, the LTE multiplies PB with a binary visibility V (x, y) that equals 1 if x and y are
mutually visible. Visibility ensures the product V (xk, y)PB(xk,R) (xk, y) is nonnegative: positive if
y is visible from xk, and zero otherwise. Through a change of variables, this product can then
be importance sampled via directional sampling, i.e., cast a ray from xk in a direction v uniformly
sampled from the unit sphere, and �nd its �rst intersection with ¶St:

xk+ 1 := xk + t¶v, t¶ := min f t 2 [0,+ ¥ ) : xk + tv 2 ¶St(xk, r)g. (4.4)

We refer to Veach [251] for further details on the relationship between area and directional sam-
pling. If xk lies on the boundary, then the ray origin should be offset slightly along the inward
boundary normal to avoid self-intersections, as described in W ächter and Binder [257].

Non-Visible Regions

Since Brownian motion can effectively “walk around corners” (Fig. 2.7), the BIE has no visibility
term. Hence, the solution value at xk can depend on non-visible points xk+ 1, complicating use of
directional sampling. In particular, if the region around xk is nonconvex, then a nä�ve strategy is
to estimate u at all intersections along a ray from xk (Fig. 4.3, left), yielding a branching walk that
increases in size exponentially. One could instead use just a single randomly selected intersection,
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Figure 4.4: WoSt uses balls with radius no smaller than# to prevent walks from stopping near concave Neumann
boundaries. Left: We only sample parts of¶WN directly visible to xk inside any ballB(xk, #), implicitly assuming
the function u is zero elsewhere. Right: Hemispherical boundary sampling ensures the next walk location xk+ 1 does
not leave the domain, but also incurs a small bias inbu when xk lies on a concave boundary.

but this approach yields extremely high variance (see Fig. 8.17 & 8.18), for two reasons. First, the
recursive solution estimate must be multiplied by the number of intersections to account for the
expected contribution from each intersection, causing a blowup in value as walk length increases.
Second, the Poisson kernel alternates sign between consecutive intersection points along a ray,
yielding unstable estimates due to cancellation [ 125, Ch. 4]. These issues are also the root cause
of high variance in the walk on boundary (WoB)method [ 217, 242], which we compare against in
Sec.8.3.2. Moreover, using just the �rst intersection leads to a biased estimator, as the solution u
is then effectively assumed to be zero on non-visible parts of the boundary.

Sampling Star-Shaped Regions

To avoid these issues, some past work assumes theentire Neumann boundary ¶StN is convex
[63, 235], yielding only one intersection for any region B (xk, R) \ W where R := dDirichlet (xk). This
assumption of course limits the applicability of such estimators.

We instead let R be the minimum of the distance dDirichlet (xk) to the Dirichlet boundary, and
the distance dsilhouette (xk) to the closest point on the visibility silhouette of ¶WN . The connected
component of B(xk, R) \ W containing xk then de�nes a star-shaped region St(xk, R). Fig. 4.3
(center& right) shows several examples. We can thus sample points on the region boundary ¶St
by simply taking the �rst point along a ray from xk that intersects either ¶B(xk, R) or ¶WN . Like
the original WoS algorithm (and unlike the re�ections in Fig. 3.5), WoSt can therefore take large
steps when far from the Dirichlet boundary. Though other star-shaped sets could be also used,
our approach is motivated by the fact that the closest silhouette point is easy to compute—as will
be discussed in Sec.6.2.1.

Epsilon Clamp For Star-Shaped Regions

Figure4.5: The distance to the visibility silhouette shrinks
as a query point approaches a concave part on¶WN .

Near concave parts of the Neumann bound-
ary, the distance to the closest silhouette point
on ¶WN shrinks to zero (Fig. 4.5), stalling the
progress of random walks. We hence limit the
radius R used to de�ne St (xk, R) to be greater
than a user-de�ned #, but still use only the �rst
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ALGORITHM 2: Walk OnStars (x, nx, #)
Note: Changes to WoS from Alg. 1 are annotated with comments in blue.

Input: Starting position x 2 W of random walk, normal nx at x (unde�ned if x /2 ¶WN ), and #-shell.
Output: Single-sample MC estimate bu(x) of Poisson equation with Dirichlet-Neumann conditions.

1: d, x  Closest Pt (¶WD , x) . Compute distance to absorbing boundary¶WD (Sec.6.1)
2: if d < #then return g(x) . Return boundary value g at closest ptx if x 2 ¶W#

D

3: R  Max(Star Region Radius (¶WN , x, d), #) . Compute star regionSt radius,# � R � d (Sec.6.2.1)
4: v  Sample Unit Sphere () . Sample direction v uniformly on unit sphere
5: if x 2 ¶WN and nx � v > 0 then v  � v . Ensure v is sampled on hemisphere with axis� nx if x 2 ¶WN

6: hit, p, np  Intersect (¶WN , x, v, R) . Intersect¶StN with ray x + Rv, and get �rst hit
7: if not hit then p  x + R v . If there is no hit with¶StN , set next walk position on¶StB
8: bIh  Reflecting Boundary Estimate (x, R) . Estimate contribution from boundary term h (Sec.4.2.3)
9: bI f  Source Estimate (x, p, v, R) . Estimate contribution from source term f (Sec.4.2.4)

10: return Walk OnStars (p, np, #) + bIh + bI f . Repeat from next walk position p (np unde�ned if x /2 ¶WN )

ray intersection to sample the next point xk+ 1. This scheme incurs a small amount of bias when
St is not star-shaped, since we assume the solution u is zero on any piece of ¶St not visible
from xk (Fig. 4.4, left). As with the epsilon parameter for the Dirichlet shell ¶W#

D , a smaller #
value reduces bias near concave regions of¶WN at the expense of performance. We study this
performance-bias tradeoff in Sec. 6.3. In practice our star-shaped regions tend to be much larger
than #, even slightly away from a concave boundary.

Hemispherical Sampling On The Neumann Boundary

When xk lies on ¶WN , sampling v from the unit sphere can yield points
xk+ 1 outside W (inset). Here we instead sample v from the hemisphere
around the normal nxk. This scheme effectively invokes the re�ection
principle of Brownian motion [ 113], across the halfplane at the base of
the hemisphere. A useful consequence is that the a(xk) = 1/2 in the
denominator of the �rst term in Eq. 4.2 is canceled by the factor 1/2 we
get from sampling a hemisphere, rather than a sphere. This prevents
our recursive estimator from picking up a multiplicative factor of two each time a walk reaches
¶WN . Note that if ¶WN is concave at xk, we again incur a small amount of bias (Fig. 4.4, right).

4.2.3 Sampling Neumann Boundary Conditions

For problems with nonzero Neumann conditions, we must evaluate the second term in Eq. 4.2.
We could in theory use xk+ 1 to estimate both boundary terms, however, this approach yields
biased results, as direction sampling (Eq. 4.4) never samples a point xk+ 1 on a �at Neumann
boundary when xk 2 ¶WN , even if h is non-zero there. This is because the Poisson kernelPB in
Eq. 4.3 is zero at points xk+ 1 where nxk+ 1 ? (xk+ 1 � xk). Moreover, even for non-�at boundaries,
the ratio GB/ p¶StN := GB/ PB in the second term in Eq. 4.2 results in high-variance estimates, as the
Poisson kernel can take on both very large and small values.

Instead, we sample a point zk+ 1 uniformly on the Neumann boundary ¶WN , and add a con-
tribution h(zk+ 1) only if zk+ 1 is also contained in ¶StN . This estimate remains unbiased, since we
effectively integrate the same function ( h restricted to ¶StN ) over a larger domain. However, sam-
pling the entire Neumann boundary can lead to high variance in the estimator, as most samples
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will not lie on ¶StN . Likewise, rejection sampling (Sec. 3.1.2) can be prohibitively expensive since
¶StN can be much smaller than ¶WN . In Sec. 6.2.4, we hence describe a strategy for ef�ciently
generating visiblesamples zk+ 1 close to xk, which signi�cantly reduces variance.

4.2.4 Sampling The Source Term

Finally, we sample a point yk+ 1 2 B(xk, R) to evaluate the third term
in Eq. 4.2. We reuse the ray direction v we sampled to generate xk+ 1
(Eq. 4.4), and set yk+ 1 := xk + t f v, where we sample the distance t f

proportionally to GB (App. A. 1.2). If the sampled distance t f is greater
than t¶ := kxk+ 1 � xkk, then the point yk+ 1 lies outside the star-shaped
region St(xk, R), and we reject it (inset). As in Sec. 4.2.2, (re)using a
hemispherical direction cancels a(xk) = 1/2 when xk 2 ¶WN .

4.2.5 Final Estimator

Our �nal WoSt estimator is de�ned recursively as

bu(xk) :=

(
g(xk), xk 2 ¶W#

D ,

bu(xk+ 1) + bIh + bI f otherwise,
(4.5)

where xk+ 1 is the next walk location in W or on ¶WN , and bIh and bI f are non-recursive Neumann
and source contributions, respectively. This estimator maintains the general structure of a WoS
estimator, and thus introduces little implementation overhead. Alg. 2 provides pseudocode.

4.3 Walk On Stars With Robin Conditions

WoSt can take long walks when the boundary conditions are mostly Neumann: it must re�ect off
the Neumann boundary, and can terminate only on the Dirichlet boundary (Fig. 4.1, center). This
is analogous to path tracing a scene where all materials have albedo one, such as a room of perfect
mirrors. Here we extend WoSt to support Robin conditions, which provide greater physical
realism in describing real-world thermal, electromagnetic, elastic and �uidic materials [ 86, 90,
94, 228] than purely absorbing or re�ecting boundaries, corresponding to, e.g., a blackbody or
perfect insulator (respectively). Monte Carlo estimators for Robin problems are also, in general,
more ef�cient than estimators for Neumann-dominated problems, as random walks simulating
partially re�ecting Brownian motion[86] can be absorbed on¶WR (Fig. 2.7, right), whereas Neumann
walks may require many steps to reach ¶WD , resulting in high computation time.

To add support for Robin boundary to WoSt, our main modi�cation is to change how we
select the radius R of the balls B(x, R) used to form star-shaped regions, leaving the rest of the
algorithm largely unchanged. As shown in Fig. 4.6, the Robin coef�cient mfrom Eq. 2.1 linearly
interpolates between Neumann conditions ( m = 0) and Dirichlet conditions ( m = ¥ ), which
means that as mincreases, a Robin boundary ¶WR becomes less re�ecting and more absorbing.
Intuitively, we expect m to have a similar interpolatory impact on R: in Fig. 4.7, we show R
achieves its maximal value R0 on a boundary when m= 0 (i.e., ¶WR � ¶WN ), with B expanding
freely through ¶WN until it encounters a silhouette point. On the other hand, R equals its minimal
value R¥ when m= ¥ (i.e., ¶WR � ¶WD), as B cannot cross through¶WD . Otherwise, R transitions
smoothly from R0 to R¥ as mincreases, with ¶WR becoming less “permeable” as B expands.
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Figure4.7: By increasing the coef�cientmin Eq. 2.1, the radius of a star-shaped region for a Robin boundary reduces
continuously from the distance to the closest silhouette point on the Neumann boundary wherem= 0, to the distance
to the closest point on the Dirichlet boundary wherem= ¥ .

Figure4.6: As mincreases and the boundary becomes less
re�ecting, Russian roulette helps make WoSt more ef�cient
by probabilistically terminating walks on the Robin bound-
ary, which reduces the average number of steps per walk.

In the rest of this section, we formalize this
intuition for the ball size in three steps: in Sec.
4.3.1 & 4.3.2, we introduce a re�ectance function
r m, which adds support for Robin conditions
to the BIE we use to design our WoSt estima-
tor. In Sec. 4.3.3, we explain why the intro-
duction of r m necessitates selecting a radiusR
smaller than the one used with Neumann con-
ditions, and how to use r m to facilitate this se-
lection (Fig. 4.8). Finally in Sec. 4.3.4, we show
how r m allows random walks to be terminated
early through Russian roulette (Sec. 3.1.1) to
improve ef�ciency (Fig. 4.6). Alg. 3 highlights
these changes in green. Notably, this construc-
tion yields an estimator that demonstrates re-
liable Monte Carlo convergence with increas-
ing number of walks for any combination of
Dirichlet, Neumann and Robin conditions (Sec. 6.3). It also typically has orders of magnitude
less error than other grid-free techniques for BVPs, like the walk on boundary method (Fig. 8.18).

4.3.1 Boundary Integral Formulation

To derive a boundary integral that accounts for Robin conditions, we follow largely the same
derivation as that in Sec. 4.2. The main difference is that we use the Brakhage-Werner trickfrom
potential theory [ 182] to substitute ¶u/ ¶n = ` � m� u (from the Robin condition in Eq. 2.1) on
¶StR := ¶WR \ ¶St. Rearranging terms then yields:

a(x) u(x) =
Z

¶St(x,R)
r m(x, z) PB(x, z) u(z) dz

+
Z

¶StR(x,R)
GB(x, z) ` (z) dz +

Z

St(x,R)
GB(x, y) f (y) dy, (4.6)
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where the spatially-varying function r m is de�ned as

r m(x, z) :=

(
1 � m(z) GB(x,z)

PB(x,z) , on ¶StR,

1, on ¶StB.
(4.7)

Eq. 4.6 is nearly identical to Eq. 4.1 for Neumann problems, and even reduces to it when m= 0.
We will treat Neumann conditions as special case of Robin moving forward. Importantly, u is
the only (recursively-de�ned) unknown in this equation. Similar to Sec. 4.2.1, we can therefore
use single-sample Monte Carlo to derive a recursive WoSt estimator with Robin conditions.

4.3.2 Monte Carlo Estimation

The Walk On Stars Estimator With Robin Conditions

A single-sample Monte Carlo estimator for Eq. 4.6 is given by

bu(xk) =
r m(xk, xk+ 1) PB(xk, xk+ 1) bu(xk+ 1)

a(xk) p¶St(xk,R) (xk+ 1)

+
GB(xk, zk+ 1) ` (zk+ 1)

a(xk) p¶StR(xk,R) (zk+ 1)
+

GB(xk, yk+ 1) f (yk+ 1)
a(xk) pSt(xk,R) (yk+ 1)

. (4.8)

Given how similar the integrands are in Eq. 4.1 and 4.6, we can sample the points xk+ 1 2 ¶St,
zk+ 1 2 ¶StR, yk+ 1 2 St using the same densitiesp¶St, p¶StR, pSt (respectively) as those in Sec.4.2.1–
4.2.4. Apart from the introduction of r m, the WoSt estimator with Robin conditions is unchanged
from the estimator with Neumann conditions. Next, we show how to select a radius R for each
star-shaped region St(xk, R), and terminate random walks on ¶WR—these are the only two places
where estimation deviates from Sec. 4.2 (see Alg. 3). We treat Dirichlet conditions as separate
from Robin for algorithmic convenience, even though they are a special case with m= ¥ .

4.3.3 Using Re�ectance To Select Ball Radius

As a �rst attempt, we could choose R to equal the distance dsilhouette to the closest silhouette
point on ¶WR from x, i.e., the radius R0 we use for Neumann problems (Fig. 4.8, center). To
understand why this is a bad choice for R, we must consider the values r m(x, z) (Eq. 4.7) assumes
on different parts of ¶St(x, R). In particular, irrespective of m, r m(x, z) = 1 at points z 2 ¶StB,
since GB(x, z) = 0. When m= 0, r m(x, z) likewise simpli�es to 1 at points z 2 ¶StR, recovering
the original setup for Neumann problems. However, when m> 0, r m in general varies between
� ¥ and 1 if we use R = R0 � dsilhouette (x). This choice of radius then leads to extremely high
variance in the recursiveestimator in Eq. 4.8, for two reasons. First, the solution estimate bu
accumulates athroughput1 Õ k r m(xk, xk+ 1) that becomes unbounded in magnitude as walk length
k increases. Second, the functionr m, and thus throughput, can change sign along a walk, which
results in unstable estimates due to cancellations [125, Ch. 4]. In App. C, we provide an operator-
theoretic analysis of boundary integral equations to more formally explain the issues with na �̈ve
estimation of Eq. 4.6 and our solution to it, which we discuss below.

1Unlike the throughput of an estimator for a screened Poisson equation (Sec. 3.2.2), the throughput of a walk in
this setting represents the probability with which Brownian motion is re�ected off (and hence not absorbed on) ¶WR.
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Figure4.8: We use re�ectance valuesr m on the Robin boundary¶WR to help determine the radius R of a star-shaped
regionSt(xk, R). Left: For a ballB(xk, R) where R is the distance to the Dirichlet boundary¶WD , the PDE solution
must be estimated at all ray intersections sampled proportional to signed solid angle. Center: WoSt with Neumann
conditions avoids multiple intersections by instead restrictingB \ W to be star-shaped relative to xk, and estimating
the solution at a single intersection point xk+ 1 2 ¶St. Right: For Robin conditions withm > 0, R is restricted
further to ensure thatr m has a value between0 and1.

Shrinking The Radius

To ensure throughput remains positive and bounded regardless of walk length, we choose a
radius R � R0 such that r m 2 [0, 1]. To achieve this, we substitute expressions for the 3D Green's
function and Poisson kernel of a ball B (x, R) (App. A. 1.2) into Eq. 4.7. For any point z 2 ¶StR,

r m(x, z) = 1 �
m(z) r
cosq

�
1 �

r
R

�
, (4.9)

where r = kz � xk and cosq = nz�(z� x)/ r. The terms 1 � r/ R and cosq are both positive, since
r � R and ¶StR is front-facing by construction (as St is star-shaped). To restrict r m 2 [0, 1], we
therefore require

m(z) r
cosq

�
1 �

r
R

�
� 1. (4.10)

Rearranging terms then gives an upper bound on the radius R,

R �
r

1 � cosq
m(z) r

when r >
cosq
m(z)

, (4.11)

which must hold at all points z 2 ¶StR (Fig. 4.8, right). When r � cosq/ m(z), r m 2 [0, 1] for any
r < R; in this case we setR equal to the distance dDirichlet (x) to ¶WD , or ¥ when ¶WD = Æ.

As mincreases from 0 to ¥ on ¶WR, the bound in Eq. 4.11 reduces continuously from R0 �
dsilhouette (x) to R¥ � dDirichlet (x). It asymptotically recovers the radii R0 and R¥ WoSt uses
for pure Neumann and Dirichlet conditions as mapproaches 0 and ¥ (respectively). With this
bound for the star-shaped region radius R, we call r m the re�ectancefor the Robin boundary inside
St(x, R), as it encodes the probability with which a random walk is re�ected off ¶StR. In Sec.6.2.2,
we describe how to compute R ef�ciently on triangle meshes, with only small modi�cations to
how dsilhouette is computed for ¶WN (Sec.6.2.1). App. D provides corresponding expressions for
the re�ectance and radius bound in 2D domains.
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ALGORITHM 3: Walk OnStars (x, nx, #)
Note: Changes to WoSt from Alg. 2 are annotated with comments in green.

Input: Starting position x 2 W of random walk, normal nx at x (unde�ned if x /2 ¶WR), and #-shell.
Output: Single-sample MC estimate bu(x) of Poisson equation with Dirichlet-Robin conditions.

1: d, x  Closest Pt (¶WD , x) . Compute distance to absorbing boundary¶WD (Sec.6.1)
2: if d < #then return g(x) . Return boundary value g at closest ptx if x 2 ¶W#

D

3: R  Max(Star Region Radius (¶WR, x, d), #) . Compute star regionSt radius,# � R � d (Sec.6.2.2)
4: v  Sample Unit Sphere () . Sample direction v uniformly on unit sphere
5: if x 2 ¶WR and nx � v > 0 then v  � v . Ensure v is sampled on hemisphere with axis� nx if x 2 ¶WR

6: hit, p, np  Intersect (¶WR, x, v, R) . Intersect¶StR with ray x + Rv, and get �rst hit
7: if not hit then p  x + R v . If there is no hit with¶StR, set next walk position on¶StB
8: bI`  Reflecting Boundary Estimate (x, R) . Estimate contribution from boundary term̀(Sec.4.2.3)
9: bI f  Source Estimate (x, p, v, R) . Estimate contribution from source term f (Sec.4.2.4)

10: r m  Clamp (1 � m(p)GB(x,R) (x, p)/ PB(x,R) (x, p), 0, 1) . Compute and clamp re�ectance to[0, 1]
11: if r m < Sample Uniform (0, 1) then return bI` + bI f . Attempt to terminate walk using Russian roulette

12: return Walk OnStars (p, np, #) + bI` + bI f . Repeat from next walk position p (np unde�ned if x /2 ¶WR)

Epsilon Clamp

Irrespective of the value of m, the radius R of a star-shaped region St(xk, R) shrinks to zero as xk
approaches concave parts of¶WR (Fig. 4.5). As in Sec. 4.2.2, we clamp R � # to prevent walks
from stalling near ¶WR. As St(xk, #) may no longer be star-shaped (Fig. 4.4), we additionally
clamp r m to [0, 1] to ensure throughput remains bounded (Alg. 3, line 10). This clamping is justi-
�ed by the fact that as we make #(and thus St) smaller, the value of r m automatically approaches
1. In Fig. 6.6, we use different #values to empirically study the impact clamping has on bias and
performance.

4.3.4 Using Russian Roulette To Terminate Walks

Using direction sampling (Eq. 4.4) to select the next walk location xk+ 1 perfectly importance
samples (and hence cancels out) the Poisson kernelPB(xk, xk+ 1) in Eq. 4.8, but not the re�ectance
r m(xk, xk+ 1). As our choice of R guarantees r m(xk, xk+ 1) 2 [0, 1], we can also cancel out this term
using Russian roulette: we terminate walks at step k with probability 1 � r m(xk, xk+ 1), and cancel
out the contribution r m(xk, xk+ 1) in the walks that survive (Alg. 3, line 11). Using Russian roulette
allows us to maintain a constant throughput of 1 in our walks and terminate them early, instead
of waiting for walks to reach ¶W#

D while their throughput continues to shrink. This often leads
to large ef�ciency gains, as we show in Fig. 4.6. We note that Russian roulette is not possible
with Neumann conditions, where re�ectance always equals 1. In this case, a walk must continue
until it reaches ¶W#

D . Otherwise it never terminates when ¶WD = Æ, which necessitates using
Tikhonov regularization (Sec. 3.2.6).
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Chapter 5

Estimators For PDEs With Spatially Varying Coef�cients

In this chapter, we directly resolve detailed effects of spa-
tially varying material densities (inset)—without resorting
to homogenization of PDE coef�cients (Fig. 5.1). WoS has
previously been applied to a limited set of problems with
piecewise constant coef�cients [ 148, 155]; ours is the �rst
grid-free method [ 223] for fairly general continuously-
varying coef�cients. Though the Monte Carlo estimators
we have developed till now cannot handle the variable co-
ef�cients k(x), #�w(x) and s(x) from Sec. 2.1.1, they can
solve PDEs with a variable source term f (x). We hence
apply a series of transformations (Fig. 5.2) that convert
a variable-coef�cient PDE such as Eq. 2.4 into an equiv-
alent constant-coef�cient screened Poisson equation (Eq.
2.3); we then use the integral version of screened Poisson
(Eq. 2.15) to design modi�ed walk on spheres algorithms.
From a stochastic perspective, these transformations are
equivalent to writing the Feynman–Kac formula purely in
terms of Brownian motion, rather than a generic diffusion process (Sec. 2.3).

Our method applies whenever the PDE

r � (k(x)r u(x)) � s(x)u(x) = � f (x) on W,
u(x) = g(x) on ¶WD

(5.1)

is elliptic—which holds if the diffusion coef�cient k(x) is strictly positive and the absorption
coef�cient s(x) is nonnegative [64, 72]. For brevity, we omit the drift term #�w(x) � r u(x) in Eq.
2.4 here, though the approach remains unchanged for equations with drift (see App. E). We focus
on Dirichlet boundary conditions, and discuss extensions to re�ecting conditions in Sec. 5.3.2.
For readers not interested in the derivation, Eq. 5.9 gives the �nal integral formulation of Eq. 5.1
and Sec.5.2 discusses algorithms, which we will evaluate in Ch. 8.

5.1 Transformations

Second order. We �rst expand the 2nd order term r � (k(x)r u) in Eq. 5.1 via the product rule.
We then divide the resulting equation by k(x), and apply the identity r ln (k(x)) = r k(x)/ k(x)
to get

Du(x) + r ln (k(x)) � r u(x) �
s(x)
k(x)

u(x) = �
f (x)
k(x)

. (5.2)

At this point the 2nd order term Du no longer has variable coef�cients, but spatial variation in
the lower order terms remains.
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Figure5.1: Distribution of heat (inset) radiating from in�nitely many blackbodies—about600M effective boundary
vertices are visible from this viewpoint alone (we visualize a2D slice of the full3D solution). Our Monte Carlo
PDE solver (Sec.5.2.1) directly captures �ne geometric detail and intricate spatially varying coef�cients without
volumetric meshing, sampling, or homogenizing the3D domain, by building on techniques from volume rendering.

First order. A Girsanov transformationre-expresses a random process under a change of proba-
bility measure, e.g., from a generic diffusion process X t to an ordinary Brownian motion Wt [191,
Ch. 8]. As shown in App. E, applying this transformation to Eq. 5.2 eliminates the 1st order
operator from Eq. 5.2, shifting all spatial variation into the 0th order term:

DU (x) � s0(x)U (x) = � f 0(x) on W,
U (x) = g0(x) on ¶WD .

(5.3)

Here,

U (x) :=
q

k(x) u(x), g0(x) :=
q

k(x) g(x), f 0(x) :=

p
k(x)

k(x)
f (x),

and s0(x) :=
s(x)
k(x)

+
1
2

�
Dk(x)
k(x)

�
jr ln (k(x)) j2

2

�
.

Equation 5.3 is equivalent to our original PDE with variable coef�cients in Eq. 5.1, which can be
veri�ed by substituting the expressions for U, g0, f 0 and s0 back into this equation.

Unlike the Feynman–Kac formula in Eq. 2.31 which involves a diffusion process X t , the
stochastic formula for Eq. 5.3 uses only simple Brownian motion Wt :

U (x) = E
�
e�

Rt
0 s0(Wt ) dt g0(Wt ) +

Z t

0
e�

Rt
0 s0(Ws) ds f 0(Wt ) dt

�
. (5.4)

Zeroth Order. The only remaining term on the left-hand side of Eq. 5.3 with a spatially varying
coef�cient is the 0th order screening term s0(x)U. We hence apply a transformation inspired by
delta tracking (Eq. 2.35) to shift this heterogeneity to a source term on the right-hand side. In
doing so, we introduce a coef�cient s > 0 by subtracting sU from both sides of Eq. 5.3. The
result is a PDE with the same basic form as a screened Poisson equation:

DU (x) � sU (x) = � f 0(x, U ) on W, (5.5)

U (x) = g0(x) on ¶WD ,

57



Figure 5.2: An overview of the transformations we apply to the variable-coef�cient PDE in Eq.5.1 to derive an
integral formulation amenable to Monte Carlo estimation with WoS.

where
f 0(x, U ) := f (x) + ( s � s0(x))U (x). (5.6)

Though only constant coef�cients now appear on the left-hand side, no approximation of any kind
has been introduced.Unlike a typical linear PDE however, the solution U appears on the right-
hand side. As in volume rendering, we will account for this recursive dependence by applying
recursive Monte Carlo estimation (Sec. 5.1.2)—a strategy not available in the traditional setting
of, e.g., �nite element methods.

Like the transformed VRE in Eq. 2.36 and the stochastic formulas in Eq. 2.30, the stochastic
expression for Eq. 5.5 also has a transmittance function e� st that no longer varies spatially:

U (x) = E
�
e� st g0(Wt ) +

Z t

0
e� st f 0(Wt ,U ) dt

�
. (5.7)

5.1.1 Integral Representation

We can now express the solution to Eq. 5.5 using the integral form of the constant coef�cient
screened Poisson equation (Eq.2.15):

U (x) =
Z

¶B(c,R)
Ps,B(x, z) U (z) dz +

Z

B(c,R)
Gs,B(x, y) f 0(y,U ) dy. (5.8)

Recall that x can be any point inside the ball B (c, R)—not just its center. Finally, we make the
substitution U (x) =

p
k(x) u(x) from Eq. 5.3 to write this integral in terms of the original

function u:

u(x) =
1

p
k(x)

� Z

¶B(c,R)
Ps,B(x, z)

q
k(z) u(z) dz +

Z

B(c,R)
Gs,B(x, y) f 0(y,

p
k u) dy

�
. (5.9)

Unlike Eq. 2.15, we now have an integral equation that has unknown solution values u both in
its boundary and volume terms. We will evaluate this integral via recursive application of Monte
Carlo integration.

5.1.2 Monte Carlo Estimator

A single-sample estimator for Eq. 5.9 at a point xk 2 B(c, R) is given by

bu(xk) :=
1

p
k(xk)

 
evaluate boundary term with probability P¶B

z }| {
Ps,B(xk, xk+ 1)

p
k(xk+ 1) bu(xk+ 1)

p¶B(c,R) (xk+ 1) P¶B(c,R)
+

evaluate volume term with probability PB

z }| {
Gs,B(xk, yk+ 1) f 0(yk+ 1,

p
k bu)

pB(c,R) (yk+ 1) PB(c,R)

!

,

(5.10)
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Figure 5.3: Left: Unlike WoS for constant coef�cient problems, the delta tracking variant jumps to a random point
either inside or on the boundary of the largest ballB(xk) centered at xk. As in volume rendering (center left),
null-events sampled insideB re-weight the solution estimate to account for spatial variations in the PDE coef�cients.
Center right: The next �ight variant of WoS resolves variability in PDE coef�cients by evaluating off-centered
versions of the Green's function and Poisson kernel of a ballB(xl

k) in a random walk. Any walk insideB terminates
at a point x0k+ 1 2 ¶B(x0

k) to avoid branching, similar to the next �ight method for volume rendering which estimates
transmittance along a ray with a predetermined endpoint (right).

where xk+ 1 and yk+ 1 are points sampled on the surface of and inside
B(c, R) according to probability densities p¶B and pB (respectively).
Values P¶B,PB 2 (0, 1] control the probability of sampling the bound-
ary and volume terms. Letting P¶B = PB = 1 yields exponential growth
in the number of steps, since each walk branches into two (see inset),
and walks do not terminate until both xk+ 1 and yk+ 1 are contained in
¶W#

D . In the next section, we develop two WoS algorithms that avoid
branching via a careful choice of P¶B and PB .

5.2 Algorithms

Due to the diversity of heterogeneous phenomena in nature, different algorithms for solving the
volume rendering equation (Eq. 2.34) adopt different strategies to trade off between variance,
bias, and computational cost [188]. Likewise, an algorithm for solving elliptic PDEs will be more
effective when it is well-matched to the way coef�cients are distributed in space. We provide a
uni�ed framework, based on Eq. 5.10, which enables us to explore variants of WoS appropriate
for different problems—akin to the unidirectional estimator in Georgiev et al. [ 77, Eq. 14]. In
particular, we devise two estimators inspired by the delta tracking[207, 270] and next �ight [44]
methods from volume rendering (Fig. 5.3). We also describe how to estimate the spatial gradient
of the solution to Eq. 5.1 in Sec. 5.3.1.

5.2.1 Delta Tracking Variant Of Walk On Spheres

To avoid branching, our delta tracking variant of WoS uses a special property of the Poisson
kernel Ps,B of a screened Poisson equation when xk is at the ball center. Assuming s > 0, and
letting jGs,B(x)j be the integral of Gs,B over B(x, R) (Eq. A.14), we have

Ps,B(xk, xk+ 1) =
1 � s jGs,B(xk)j

j¶B(xk, R)j
. (5.11)

Since s jGs (xk)j 2 (0, 1) (see Eq. A.18), we can sample the boundary and volume terms with
probabilities P¶B := 1 � s jGs,B(xk)j and PB := 1 � P¶B, yielding a non-branching estimator:
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ALGORITHM 4: Delta Tracking WoS(x, #)
Input: Starting position x 2 W of random walk, and #-shell.
Output: Single-sample MC estimate bu(x) of Eq. 5.1 with Dirichlet conditions.

1: d, x  Closest Pt (¶WD , x) . Compute distance to absorbing boundary¶WD (Sec.6.1)
2: if d < #then return g(x) . Return boundary value g at closest ptx if x 2 ¶W#

D

3: y � Gs,B(x, y)/ jGs,B(x)j . Sample point y from Gs,B inside ballB(x, d) (Sec. A.2.2)
4: bI f  j Gs,B(x)j � f (y)/

p
k(x)k(y) . Estimate contribution from source term f (Eq.5.3)

5: if Sample Uniform (0, 1) � s jGs,B(x)j then . Sample volume term

6: return

r
k(y)
k(x) �

�
1 � s0(y)

s

�
� Delta Tracking WoS(y, #) + bI f . Repeat from next walk position y

7: else . Sample boundary term
8: z � 1/ j¶B(x, d)j . Sample point z uniformly on¶B(x, d)

9: return
q

k(z)
k(x) � Delta Tracking WoS(z, #) + bI f . Repeat from next walk position z

The Delta Tracking Estimator

bu(xk) :=

8
>><

>>:

g(xk), xk 2 ¶W#
D ,

1
s
p

k(xk)
f 0(yk+ 1,

p
k bu), u � U (0, 1) � s jGs,B(xk)j,

p
k(xk+ 1)/ k(xk) bu(xk+ 1) otherwise.

(5.12)

This estimator importance samples xk+ 1 and yk+ 1 via the densities
p¶B := 1/ j¶B(xk, R)j and pB := Gs,B(xk, yk+ 1)/ jGs,B(xk)j, respectively.
Use of constant-coef�cient kernels Ps,B and Gs,B is critical, as kernels
for the varying coef�cient s0(x) from Eq. 5.3 are not known in closed
form. However, spatial variation in s0(x) is still accounted for by the
recursive source term f 0 (Eq. 5.6), which corresponds to probabilisti-
cally sampling null-events (Fig. 5.3, left). Alg. 4 provides pseudocode.

The coef�cient s is the only free parameter in this algorithm, and must be strictly positive to
ensure that PB > 0. In volume rendering one typically lets s = max(s(x)) , which enables closed-
form sampling of volumetric events (absorption, scattering, or null scattering) and boundary
re�ections. We instead let s = max(s0(x)) � min (s0(x)) , since in general s0(x) can have both
positive and negative values at different points x 2 W. More recent volume rendering research
treats s as a control variate rather than a bound [ 77, 188], to reduce variance based on the pro�le
of the coef�cients. In conjunction with clever choices for p¶B and pB, these strategies can be more
ef�cient than delta tracking; we leave such extensions to future work.

5.2.2 Next Flight Variant Of Walk On Spheres

The delta tracking variant of WoS takes more steps as s increases (Fig.5.4, left), since the Green's
function becomes more localized (Fig. 2.4) and it becomes more likely that we sample a point in
the volume than on the boundary ( PB > P¶B). Longer walks are ultimately more expensive, as
distance queries are usually the bottleneck for WoS (much like ray intersections in path tracing).

We hence propose a variant based on thenext �ight scheme of Cramer [44], which takes big
steps even when s is large (Fig. 5.3, right). As usual we walk along points x0

0, x0
1, . . . sampled

from successive spheres¶B(xk� 1, R), always estimating both boundary and volume terms ( P¶B =
PB = 1). But rather than start a new walk to the boundary for the volume term, we take a “short
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Figure 5.4: Left: As s increases, the delta tracking variant of WoS requires more distance queries which reduces
run-time performance, while the number of queries for the next �ight strategy remain unchanged. Right: For smaller
coef�cientss(x), next �ight exhibits higher variance due to greater correlation among samples. For larger coef�cients
s(x) + 10, delta tracking exhibits more variance at equal compute time due to more distance queries.

off-center walk” x1
k, x2

k, . . . ,xM
k within each ball B (x0

k, R), and re-use the estimate of the boundary
contribution at x0

k+ 1 for all steps in this short walk. An expression for this estimator is obtained
by recursively expanding the de�nition of bu in the volume term of Eq. 5.10:

The Next Flight Estimator

bu(x0
k) :=

1
q

k(x0
k)

� q
k(x0

k+ 1) bu(x0
k+ 1) bT(x0

k, x0
k+ 1) + bI f (x0

k)
�

,

where bT(x0
k, z) :=

M

å
j= 0

Ps,B(x j
k, z)

p¶B(z)

j � 1

Õ
l= 0

W( l ),

bI f (x0
k) :=

M

å
j= 1

f (x j
k)q

k(x j
k) (s � s0(x j

k))

j � 1

Õ
l= 0

W( l ),

W( l ) :=
Gs,B(xl

k, xl+ 1
k ) (s � s0(xl+ 1

k ))

pB(xl+ 1
k )

. (5.13)

For each point xl
k, the subscript k indexes steps in the walk; the superscript l indexes points

along the short walk in B (x0
k, R). The number of terms M is determined by using the throughput

Õ
j � 1
l= 0 W( l ) as a probability for Russian roulette. Parameters s, pB and p¶B are the same as in

Sec.5.2.1, but the Green's function Gs,B and Poisson kernel Ps,B must now be either evaluated or
sampled using general off-centered formulas (App. A. 2.2). Alg. 5 provides pseudocode.

A key bene�t of next �ight is that additional distance queries are not needed to evaluate bT and
bI f within B (xk, R). However, decreased computation comes at the cost of increased correlation
and variance in bT from reuse of bu(xk+ 1) and evaluation of off-centered kernels; see Fig. 5.4 (right).

5.3 Extensions

5.3.1 Spatial Gradient

Applications often require computing not just the solution to a PDE, but also the spatial gradient
of the solution. Fortunately, estimating the gradient of Eq. 5.9 adds virtually no cost on top of
estimating the solution itself. In particular, either of our variable-coef�cient WoS algorithms can
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ALGORITHM 5: Next Flight WoS(x, #)
Input: Starting position x 2 W of random walk, and #-shell.
Output: Single-sample MC estimate bu(x) of Eq. 5.1 with Dirichlet conditions.

1: d, x  Closest Pt (¶WD , x) . Compute distance to absorbing boundary¶WD (Sec.6.1)
2: if d < #then return g(x) . Return boundary value g at closest ptx if x 2 ¶W#

D

3: bT  0, bI f  0, W  1 . Initialize series from Eq.5.13
4: z � 1/ j¶B(x, d)j . Sample point z uniformly on ball boundary¶B(x, d)
5: xc  x . Initialize temporary variable xc to track walk position
6: while True do . Perform “off-center walk” insideB
7: bT  bT + j¶B(x, d)j � Ps,B(xc, z) � W . Accumulate boundary contribution
8: PRR  min (1,W) . Compute survival probability (Sec.3.1.1)
9: if PRR < Sample Uniform (0, 1) then break . Attempt to terminate walk using Russian roulette

10: W  W/ PRR . Update path throughput with survival probability
11: xl � 1/ jB(x, d)j . Sample next walk position xl insideB
12: W  j B(x, d)j � Gs,B(xc, xl ) � (s � s0(xl )) � W . Update path throughput
13: bI f  bI f + f (xl ) � W/

p
k(xl ) � (s � s0(xl )) . Accumulate source contribution

14: xc  xl . Update current walk position

15: return 1p
k(x)

� p
k(z) � Next Flight WoS(z, #) � bT + bI f

�
. Repeat from next walk position z

be used to evaluate the following integral expression for r xu(x) in a ball B(x, R):

r xu(x) =
1

p
k(x)

� Z

¶B(c,R)
r xPs,B(x, z)

q
k(z) u(z) dz +

Z

B(c,R)
r xGs,B(x, y) f 0(y,

p
k u) dy

�

�
u(x)
2k(x)

r xk(x). (5.14)

Similar to Sec. 3.2.5, the value of r xu(x) only needs to be estimated for the �rst ball in any
walk—the solution values u, on ¶B and inside B, that the gradient estimate depends on can be
computed recursively using the delta tracking or next �ight estimator. The parameters s, pB, p¶B,
PB and P¶B remain unchanged from Sec. 5.2 with either estimator.

5.3.2 Re�ecting Boundary Conditions

It is straightforward to show how re�ecting boundary conditions change under a Girsanov trans-
formation. For instance, assume the normal derivative ¶u/ ¶n = h is prescribed in Eq. 5.1 on a
Neumann boundary ¶WN . Moreover, from Eq. 5.3, we know that the function U (x) =

p
k(x)u(x)

solves a variable screened Poisson equation. Computing its normal derivative yields

¶U (x)
¶nx

+ m0(x)U (x) = h0(x), (5.15)

where m0(x) := �
1
2

¶ ln (k(x))
¶nx

and h0(x) :=
q

k(x) h(x).

A delta tracking or next �ight variant of the walk on stars estimator from Ch. 4 could in prin-
ciple deal with the Robin boundary conditions in Eq. 5.15, and simultaneously resolve spatial
variability in the PDE coef�cients (repeating the derivation in Sec. 5.1 gives an integral expres-
sion similar to Eq. 5.9). However, the Robin coef�cient m0 in this scenario is not a strictly positive
function, which is a key assumption made with the WoSt estimator in Sec. 4.3. We leave a general
treatment of variable-coef�cient PDEs with re�ecting boundary conditions to future work.
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Chapter 6

Solver Implementation & Tuning

Similar to a scene in a renderer, a PDE is encoded by a description of the domain boundary ¶W,
boundary conditions g, h, ` (Eq. 2.1), source term f , and PDE coef�cients k, #�w, s (Sec. 2.1.1 &
App. E). We implement inputs as arbitrary callback routines that return a value for any query
point x 2 W. Unlike conventional solvers such as FEM and �nite differences, problem inputs need
not be discretized or approximated in a �nite-dimensional basis. The gradient and Laplacian of
the coef�cients k(x) and #�w(x) (Eq. 5.3 & E.8) can be evaluated via any standard technique
(e.g., automatic differentiation), while the bounding parameter s := max(s0(x)) � min (s0(x)) is
computed as in volume rendering [ 188], e.g., by regular, random or progressive sampling [ 169].

Figure6.1: Bézier curves with two-
sided boundary conditions and a
source term (left) de�ne a diffusion
curve image (right). Monte Carlo
allows us to zoom in on a region of
interest without computing a global
solution; there is no loss of �delity,
as curves are not discretized.

In this chapter, we describe how
to ef�ciently implement the geomet-
ric queries on ¶W needed by the walk
on spheres and walk on stars algo-
rithms (Sec. 6.1 & 6.2). In Sec. 6.3,
we detail the impact of the #-shell pa-
rameter on the estimated PDE solu-
tion with Dirichlet, Neumann or Robin
conditions, and discuss convergence
with increasing number of walks. We
also provide a reference implementa-
tion of these PDE estimators in an
open-source solver called Zombie [222]
(in homage to “random walks”).

All estimators can evaluate the so-
lution and its gradient at arbitrary
points in the domain without a global
solve. Since values are estimated inde-
pendently at each point, the implemen-
tation is embarrassingly paralleland output-sensitive, i.e., the solve can be performed at any reso-
lution locally (Fig. 1.9, 6.1, 8.4 & 8.6), rather than always on the entirety of a background grid.
Moreover, as in rendering, we can progressively increase the number of walks per point to gen-
erate a “preview” that can be subsequently re�ned (Fig. 1.2, 1.9 & 4.2). This approach provides a
fast iteration cycle (Fig. 6.2 shows an example where the geometry and boundary conditions are
edited interactively), and is especially valuable when working with massive models (Sec. 8.1).

6.1 Closest Point Queries For Walk On Spheres

To �nd an empty ball B (x, R) around a given point x 2 W for the WoS algorithms in Sec. 3.2
and Ch. 5, we need only determine the distance R to the closest point x 2 ¶W, or a conservative
underestimate of this distance. As detailed here, such distances are easily computed for a wide
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ALGORITHM 6: Closest Pt (T  Bvh (¶WD), x, x  null , d  ¥ , dmin
T  0)

Input: Bounding volume hierarchy T, query point x 2 R3, closest point x to be determined,
current estimate d for distance, and minimum distance dmin

T to T's axis aligned bounding
box from x (dmin

T = 0 when x 2 T.aabb).
Output: Distance to ¶WD , and closest point on ¶WD .

1: if dmin
T > d then return d, x . Ignore current BVH node if it is further than d

2: if T.isLeaf then
3: for t in T.triangles do
4: dt , xt  Closest Pt (t, x) . Compute closest ptxt on triangle t from x [62, Sec.5.1.5]
5: if dt < d then d, x  dt , xt . Update d andx if xt is closer than d

6: else
7: visitLeft, dmin

left , dmax
left  Intersect (T.left, x, d) . Check if leftaabb intersects ballB(x, d)

8: if visitLeft then d  min (d, dmax
left ) . d cannot be greater than max distance to leftaabb

9: visitRight, dmin
right , dmax

right  Intersect (T.right , x, d) . Check if rightaabb intersects ballB(x, d)
10: if visitRight then d  min (d, dmax

right ) . d cannot be greater than max distance to rightaabb

11: if visitLeft and visitRight then
12: if dmin

left < dmin
right then . Visit closer node �rst

13: d, x  Closest Pt (T.left, x, x, d, dmin
left )

14: d, x  Closest Pt (T.right , x, x, d, dmin
right )

15: else
16: d, x  Closest Pt (T.right , x, x, d, dmin

right )
17: d, x  Closest Pt (T.left, x, x, d, dmin

left )
18: else if visitLeft then d, x  Closest Pt (T.left, x, x, d, dmin

left ) . Visit left node

19: else if visitRight then d, x  Closest Pt (T.right , x, x, d, dmin
right ) . Visit right node

20: return d, x

variety of shapes; multiple shapes can be combined by taking the minimum over all per-shape
distances, or more generally, by applying Boolean operations (discussed below).

Closest point queries (CPQs) can be accelerated via a spatial hierarchy [203, Ch. 4]. Relative
to ray tracing [ 197, 259], there has been little work on high-performance CPQs [ 138, 232, 273, 287],
though recent GPUs provide opportunities for massive acceleration [ 260]. We employ an axis-
aligned boundary value hierarchy built using the surface area heuristic (SAH)[261], via the FCPW
library [ 220]—unlike ray tracing, oriented bounding volumes [ 62, 143] can provide more effective
culling, and hence further speedups. Alg. 6 provides pseudocode for closest point traversal
with a binary BVH containing triangle primitives. The queries described in Sec. 6.2 for WoSt
will follow the same basic traversal strategy (Alg. 9), but will use slightly modi�ed criteria to
determine whether a node in the hierarchy should be visited (Alg. 10).

Polygon Soup. Real-world geometry is often given as a list of polygons without explicit con-
nectivity, and which satis�es no special conditions (manifold, orientable, etc.). We can solve PDEs
with Dirichlet conditions directly on such “polygon soups” by taking the closest point among all
polygons. Rather than attempt to �x cracks, holes, and self-intersections [ 8, 233], we simply solve
an exterior problem (Sec. 3.2.4), as shown in Fig. 1.7 (right). Note that in contrast to generalized
winding numbers [ 114], the input need not meet any special conditions on orientation.
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Parametric Curves & Surfaces. We use the method of Chen et al. [37] to compute closest points
on 2D cubic Bézier curves. Such a representation is attractive for illustration tools ( e.g., Illustrator
or Inkscape), as it avoids mesh generation and quantization error (consider Fig. 6.1 & 8.7). Closest
points can also be computed directly for NURBS and subdivision surfaces [ 58, 158, 249].

Implicit Surfaces. Many shapes are concisely described by the zero level set of a function
f : R N ! R. When f is a signed distance function, the size of the largest ball around x is
simply jf (x)j. More generally, conservative estimates of the distance to an implicit surface can
be obtained by bounding the gradient jr f j, which in turn gives a Lipschitz constant for f [97,
Theorem 1]. A rich variety of shapes can be described this way [ 97, Table 1]; Fig. 1.7 (left) shows
a smooth blend between two tori.

Figure 6.2: Our Monte Carlo approach operates directly
on the original scene representation (here, signed distance
�elds composed via CSG operations), and provides instant
feedback after updates to the scene geometry and boundary
conditions (edit1) or PDE coef�cients (edit2).

Booleans. Boolean operations are used to
concisely encode complex models, via con-
structive solid geometry (CSG)[209]. Tremen-
dous effort has been put into developing ro-
bust mesh booleans[19, 200, 281], but they gen-
erally remain expensive and error prone, can-
not be mixed with other geometric representa-
tions, and still require meshing of the domain
interior. In contrast, ray tracing can evaluate
booleans via simple arithmetic on intersection
distances [212]. We can likewise combine clos-
est point distances to solve PDEs with Dirich-
let boundary conditions directly on boolean
arrangements (Fig. 1.7 & 6.2). We refer to Hart
[97, Table 1] for operations on distances needed for both hard booleans and soft “blends”.

6.2 Accelerated Geometric Queries For Walk On Stars

In general, WoSt works with any boundary representation that supports the following queries:

1. closest point queries on ¶WD ,

2. closest silhouette point queries on ¶WN ,

3. star region radius queries on ¶WR,

4. ray intersection queries against ¶WN and ¶WR, and

5. point sampling queries on ¶WN and ¶WR.

Since none of these queries require the boundary to have a well-de�ned inside and outside, ¶W
need not be watertight, and can have cracks, holes, or self-intersections—see in particular App.
B for a discussion of open domains and double-sided boundary conditions.

In principle, these queries could be evaluated for, say, spline patches or implicit surfaces
(as in Sec. 6.1); we focus exclusively on triangle meshes here. In particular, ray intersections
are standard in computer graphics, and can be accelerated using a BVH (just like CPQs). Sec.
6.2.1 describes the closest silhouette point query for Neumann boundaries. The star region radius
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Figure6.3: Left: An optimized procedure for �nding silhouettes should avoid visiting �nely-tessellated geometry that
is entirely front- or back-facing relative to the query point. Right: A SNCH tests for a pair of mutually orthogonal
directions in a view cone and a node's normal cone to determine whether the node contains a silhouette edge on the
Neumann boundary. The geometry inside the node can be skipped if no such pair of directions is found.

query for Robin boundaries, detailed in Sec. 6.2.2, functions as a CSPQ when the Robin coef�cient
m= 0, and as a CPQ whenm= ¥ . For intermediate values of m, this query has additional aspects
unique to Robin conditions, which we highlight in green in Alg. 8 & 10. The point sampling
query (Alg. 11) is designed to sample known Neumann data h and Robin data ` on re�ecting
boundaries, and is discussed in Sec.6.2.4.

All queries use a spatial hierarchy to visit only a small fraction of the triangles on the bound-
ary of the input domain; our basic approach is to build a spatialized normal cone hierarchy (SNCH)
[119] by adding normal information to the BVH already used by WoS. In particular, we use a
standard BVH to perform CPQs on the Dirichlet boundary, and a separate SNCH for queries on
the Neumann and Robin boundaries, using normal information only for queries 2 & 3. In prac-
tice, all queries needed to implement WoSt on triangle meshes are supported by the open-source
FCPW library [ 220]; see also App. F for pseudocode.

6.2.1 Closest Silhouette Point Query For Neumann Boundaries

The silhouette of a triangle mesh, relative to a given direction v, occurs along a set of edgesethat
satisfy a local silhouette condition. In particular, e is a silhouette edge if for each distinct pair of
triangles containing e,

(v � n1) � (v � n2) � 0, (6.1)

where n1, n2 are consistently oriented normals (see inset). Note in par-
ticular that every boundary edge is a silhouette edge. A na �̈ve strategy
for �nding the closest silhouette edge is to use a BVH to locate the
closest point to x on all edges, skipping edges not contained in the sil-
houette. However, this strategy is highly inef�cient when BVH nodes
contain large, �nely-tessellated regions that are all front- or back-facing
(Fig. 6.3, left): here each edge is examined (and rejected) exhaustively,
whereas ideally the whole node should simply be culled.

Spatialized Normal Cone Hierarchy

To improve scaling, we hence augment our BVH with information about the orientation of the
geometry inside each node. In particular, we adopt the spatialized normal cone hierarchy of
Johnson and Cohen [119]. Each node of a SNHC stores not only an axis-aligned bounding box
(AABB), but also a normal cone. The cone axis is the average normal of all triangles in the node,
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and the cone half angle q is the maximum angle between the axis and any triangle normal (Fig.
6.3, right). Normal cones can be assembled during BVH construction. We use the surface area
heuristic; performance could possibly be further improved via the surface area orientation heuristic
(SAOH) of Conty Estevez and Kulla [ 39, Sec. 4.4], which clusters primitives according to both
proximity and alignment.

Closest Silhouette Point Traversal

To perform a silhouette query on ¶WN , we traverse the SNCH in depth-�rst order (Alg. 9). For
each node in this traversal we build a view conerooted at x. The cone's axis points toward the
center of the node, and its half-angle tightly bounds the AABB (Fig. 6.3, right); we then check if
the view cone and the node's normal cone contain a pair of mutually orthogonal directions. If
this test fails, all triangles in the node must be front- or back-facing relative to the query point,
and the node can be skipped. In the context of WoSt, an upper bound on the size of a star-shaped
region St(x, R) is given by the distance dDirichlet from x to the Dirichlet boundary (Sec. 4.2.2). To
further improve query ef�ciency we can hence restrict the search to the radius Rmax = dDirichlet .

6.2.2 Star Region Radius Query For Robin Boundaries

The nä�ve approach for computing the radius of a star-shaped region on ¶WR is to �rst perform
a CSPQ relative to a query point x, and then to loop over all triangles within the radius returned
by the CSPQ, estimate the upper-bound on the radius for each triangle t (Eq. 4.11), and take
the minimum of these bounds. Before we describe how to accelerate this computation using an
SNCH, we observe that the radius bound does not have to be approximated numerically for any t.
We can instead compute a tight bound using the maximum coef�cient value mmax := max(m(z)) 1

over all points z 2 t, and a distance h from x to the plane t lies on. In particular, letting r = h/ cosq

in Eq. 4.11, we have:

R �
mmax h2

mmax h cosq � cos3 q
when cosq �

p
mmax h. (6.2)

We now minimize this equation by taking its derivative with respect to cos q, and setting it to
zero. This gives an analytical expression

p
mmaxh/ 3 for the cosine. We clamp this expression

between the minimum and maximum cosine values achieved at the closest and farthest points
on t (respectively), and plug it back into Eq. 6.2 to compute the radius bound for t. Alg. 8
provides pseudocode.

6.2.3 Accelerating Star Region Queries

Not every triangle in a mesh needs to be visited to compute the radius of a star-shaped region.
In fact, as we search for the minimum upper-bound on the radius over all triangles, we can skip
over large parts of ¶WR where the geometry is entirely front- or back-facing relative to the query
point x (akin to a CSPQ). The only alteration we make to the SNCH from Sec. 6.2.1 is to also
store minimum and maximum Robin coef�cient values over all triangles in a node.

1Using mmax to compute the radius bound for a triangle does not alter the original problem description—the WoSt
estimator will still treat m(z) as spatially-varying over the triangle when computing re�ectance in Alg. 3, line 1.
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Query Traversal. Similar to Eq. 6.2, we compute conservativeradius bounds for the nodes we
visit during traversal, using the spatial, angular, and coef�cient information available in a SNCH
node (Alg. 10, lines7-10). We also build a view cone rooted at x to compute the bounds, via Eq.
4.11. We then decide whether a node with only front or back-facing triangles can be skipped, by
checking if our minimum bound for the node is larger than the current estimate of the radius for
the star-shaped region (Alg. 9, line 1). We also use our maximum bound for the node to shrink
the radius estimate (Alg. 9, lines 7 & 9). If instead the node contains a geometric silhouette
(Alg. 10, line 4), we must traverse the node just as with a CSPQ, since Eq. 4.11 only applies to
star-shaped regions which can be no larger in size than the distance returned by a CSPQ.

6.2.4 Point Sampling Query

Recall that for problems with nonzero Neumann and Robin conditions, we sample points on
¶WN and ¶WR respectively (Sec. 4.2.3). To increase the likelihood that these points lie on ¶StN
and ¶StR, we adopt a hierarchical importance samplingstrategy used in rendering to accelerate next-
event estimation [39]. In particular, during each step of a BVH traversal, we select only a single
randomchild whose AABB intersects St(x, R). To give preference to nodes closer to the query
point x, we sample according to the free-space Green's function GR N

(Alg. 12, lines11-14), rather
than the Green's function for a ball (which becomes negative outside St (x, R)). Once we reach a
leaf node, we uniformly sample a point from the leaf triangles with respect to surface area (Alg.
11, line 3). This point is not guaranteed to lie on ¶StN or ¶StR, but is much more likely to do so
compared to uniformly sampling all of ¶WN or ¶WR (respectively). Conty Estevez and Kulla [ 39,
Sec.5.4] describe further improvements to this traversal strategy.

6.3 Epsilon Parameter & Convergence Of Estimators

Our solvers use a single parameter to control the thickness of the epsilon shell ¶W#, irrespective
of the type of boundary condition prescribed on ¶W. This parameter trades bias in the solution
estimate with the number of steps in a random walk, and in general requires little-to-no hand-
tuning, as bias drops predictably with decreasing values of #.

Dirichlet Boundary. Early stopping extends boundary values into an epsilon-neighborhood
¶W#

D , and the solution in turn exhibits a small bias toward these values. Dirichlet boundary
conditions are hence still enforced with the given data, but the location of enforcement may be
off by a tiny distance #. Though in principle bias can be completely eliminated via a Green's
function �rst passageapproach [81, 159], a pragmatic solution is to simply use a small value of #.

In practice, an accurate solution is obtained for fairly large # values, even in the presence of
tiny features (Fig. 6.4). Importantly, arbitrarily small geometric features will alwaysappear in
the solution, since there will always be evaluation points x in their Voronoi region, independent
of #. Moreover, such features will still have a global effect on the solution, since a random walk
has a nonzero probability of reaching any boundary component of �nite size. The only potential
problem is if spacing betweenfeatures is smaller than #, which is easily avoided by (universally
or adaptively) using a small #. Note that shrinking # by a few orders of magnitude does not
signi�cantly increase cost due to the exponential shrinking of balls [ 22]. In contrast, mesh-
based solvers can eliminate small features entirely, and their time/memory cost often blows up
dramatically with smaller tolerances #(Fig. 1.3, 8.1, 8.4 & 8.10).
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Figure 6.4: Tiny features are preserved for any value of#. For very large values of#, WoS algorithms jump to
the closest point, producing a Voronoi-like solution (left). Decreasing# quickly eliminates any bias. Since small#
values do not signi�cantly increase the average number of steps per walk, it is generally unnecessary to hand-tune
this parameter. (Note that if the box above represents a domain1 meter in width, then10� 4 is about the width of a
human hair; small bacteria are on the order of10� 6.)

Figure 6.5: WoSt uses an#-shell to also ensure that ran-
dom walks make progress near concave parts of a re�ect-
ing boundary. Walks generally converge faster with larger
values of#, with run-time improvements outweighing the
relative increase in bias.

Neumann And Robin Boundaries. Enforc-
ing a minimum radius on the size of a star-
shaped region (Sec.4.2.2) also incurs bias near
concave parts of ¶WN and ¶WR. This bias man-
ifests as a global darkening of the estimated
solution as # is increased. Fig. 6.5 exam-
ines the effect of this parameter on a Neu-
mann problem—compared to Dirichlet con-
ditions, here the performance-bias tradeoff is
more sensitive to values of #. However as
before, the relative rate at which bias grows
with increasing # values is outweighed by the
performance improvement from walks taking
larger steps on ¶WN , and terminating faster
on ¶WD . Adaptively picking # based on local
boundary curvature should yield better per-
formance and lower bias.

Fig. 6.6 examines the impact of # on
a Robin problem with both more absorbing
(m > 1) and more re�ecting ( m < 1) bound-
ary conditions—in the limit, we recover the affect of #on pure Dirichlet and Neumann problems
respectively. In all other experiments, we scale models to �t in a unit sphere, and use # = 0.001
with all boundary conditions.

Convergence. All PDE estimators from Ch. 3–5 exhibit the expected O(1/
p

N ) Monte Carlo
rate of convergence with respect to the number of walks N (Sec. 3.1), suggesting that any bias
from the sole #-shell parameter has little impact on overall accuracy; see Fig. 5.4, 6.6, 8.2, 8.14,
8.16& 8.17. In general, variance tends to be larger (but still predictable) with recursive estimation
of higher-dimensional integrals, i.e., it is larger in regions where walks are longer—examples
include Neumann dominated problems (Fig. 8.17, bottom center), and PDEs with high spatial
variability in their coef�cients (Fig. 7.20). We describe variance reduction strategies for these
estimators in the next chapter, which do not increase the rate of convergence, but they do lower
the magnitude of the error in the estimated results ( e.g., Fig. 7.4, 7.17 & 7.20).
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Figure 6.6: Top two rows: For more re�ecting Robin boundaries with smaller coef�cientsm, bias manifests as a
global darkening in the solution estimate for large#. Bottom row: For more absorbing Robin boundaries with larger
coef�cientsm, a large#-shell extends prescribed boundary values further into the domain interior, similar to the bias
observed with pure Dirichlet problems.
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Chapter 7

Variance Reduction

Like any other Monte Carlo method, we can reduce the noise in our PDE estimators by simply
taking more samples, i.e., by performing more random walks from an evaluation point. However,
in many application scenarios, the solution must be estimated within a �xed time constraint, or
using a given sample budget. Therefore, it is often not enough to just design Monte Carlo
estimators—we must also look for ways to make them more ef�cient (Eq. 3.5).

In this chapter, we develop several variance reduction strategies for the estimators developed
in Ch. 3–5, by leveraging the special structure of integral equations corresponding to elliptic
PDEs. Some of these strategies are inspired by analogous methods in Monte Carlo rendering as
the integrals share similarities ( e.g., Sec.7.1, 7.4, 7.5 & 7.6), while others are speci�cally designed
for elliptic equations ( e.g., Sec7.2, 7.3 & 7.7). Most strategies are complementary to each other
(and can hence be used in conjunction), as they target different facets of our estimators. Though
we achieve noticeable improvement in estimation quality here, there remains signi�cant scope
for further variance reduction—as will be discussed in Ch. 9.

7.1 Importance Sampling Of Source Terms

Figure7.1: Uniform (left) vs
importance sampling (right)
of the Green's function.

Recall that the integral formula for a Poisson equation involves a termR
B(x,R) GB(x, y) f (y) dy, where GB is the harmonic Green's function on

B(x, R). One way to importance sample this term is to simply draw
y from the distribution pB := GB/

R
B(x,R) G(x, y) dy, as previously dis-

cussed in Sec. 3.2.1. Such samples can be generated via standard
techniques, e.g., rejection sampling (App. A. 1.2 & A. 2.2); in 3D we use
Ulrich's polar method[54, Section 9.4]. In principle, one could extend
this strategy to PDEs where the Green's function can only be tabulated
numerically, akin to importance sampling of measured BRDFs [ 145].

We can also sample the source term f . An important case is a point source fz := cdz, where
c 2 R is a constant, and dz is the Dirac delta centered at a point z 2 W. If a single dz is inside the
current ball B (x, R), we can use an importance density pB = dz, yielding the estimator

GB(x, y) f (y)
pB(y)

=
GB(x, y) cdz(y)

dz(y)
= cGB(x, z), (7.1)

i.e., just use a single sample aty = z. Similarly, consider a curve source fg := cdg , where dg is the
(1-Hausdorff) measure of a curve g � W, and c is a function along g. When g intersects B, we
can sample points y1, . . . ,yM uniformly from gB := g \ B, and use the estimator

jgBj
1
M

M

å
i= 1

c(yi )G(x, yi ). (7.2)

Alternatively, one can just uniformly sample the whole curve g, and drop the contribution of
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Figure 7.3: Here we use multiple importance sampling [252] of the Green's function Gs,B and source term f to
robustly sample screened Poisson equations for different coef�cient valuess with area sources of varying size.

Figure 7.2: Source terms can be importance sampled by
randomly picking points on the source where it is non-zero,
restricted to the current ball in a random walk. Without
importance sampling, only the area source fA would ap-
pear on the right; the point source fz and curve source fg
would never get sampled.

points outside B. This strategy is easily gen-
eralized to any m-dimensional subset; Fig. 7.2
shows an example.

The importance sampling strategies de-
scribed above, with GB and f as the sampling
densities, can also be combined usingmultiple
importance sampling[252], as in Fig. 7.3. We
note that Monte Carlo is often better suited
than quadrature methods for integrands with
singularities—importance sampling can be ap-
plied to handle such integrands effectively,
even in situations where there is no analytic
transformation to remove the singularity.

7.2 Control Variates

Suppose we let f̃ be a low-order Taylor approximation of f in Eq. 3.7
around some point x0. Then the function f � f̃ will look “�at” in a
small neighborhood of x0, and estimating it will yield low variance.
This control variate is useful for WoS estimators, which seek to inte-
grate a function over a typically small sphere or ball. It also applies
to WoSt if we use an empty ball, in place of a star-shaped region, for
just the �rst step of a random walk. Though we do not know the
terms of the Taylor series a priori, we can use running derivative estimates to get an increasingly
good guess. In fact, when both the solution and gradient strategies decribed below are used in
conjunction, they reinforce each other: the variance of the solution estimator is reduced by the
gradient estimate, and vice versa. In practice, we use these two strategies for all PDEs.

Control Variate For Solution

For a PDE with solution u, let dr uk(x0) be the running estimate of the gradient for the �rst k
walks at x0 (computed as in Sec.3.2.5). Since the linear term r u(x0) � (x � x0) in the Taylor series
for u(x0) integrates to zero over any ball around x0 (i.e., c = 0 in Eq. 3.7), we can replace an
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Figure7.4: Control variates provide modest variance reduction for the solution, but become more important for higher
derivatives of the solution. Here we plot the Hessian's principal values and axes as ellipses; notice that variance is
higher near the boundary, and axes are harder to estimate in regions where the Hessian has small magnitude.

existing WoS estimator bu with

1
N

N

å
i= 1

bu(xi
1) � dr ui � 1(x0) � (xi

1 � x0), xi
1 � U (¶B(x0, R)) , (7.3)

where xi
1 denotes the �rst step in the ith walk. Note also that the estimate dr ui � 1 is statistically

independent of the ith walk. In practice even this simple strategy can help reduce variance—see
for example Fig. 7.4.

Control Variate For Gradient

Variance reduction for derivatives is especially important, since differentiation ampli�es high
frequencies. Our control variate strategy for the gradient is complementary to the one for the
solution: let buk(x0) be the running estimate of the solution u(x0) for the �rst k walks. Then we
can replace the gradient estimate for the boundary term (Eq. 3.18) with

d
R

1
N

N

å
i= 1

( bu(xi
1) � ui � 1(x0)) � nxi

1
. (7.4)

Since by symmetry the normal nxi
1

integrates to zero over a sphere, the expected value of the
estimator is unchanged (i.e., c = 0), but the variance is typically lower as the control variate
approaches the true value of u(x0). Likewise, if fk := 1

k å k
i= 1 f (yi ) is the running average of

source values sampled from the initial ball, then we can subtract this value from f (y) in our
estimator for the initial source term in Eq. 3.14.

This strategy parallels methods used in reinforcement learning [ 245, Section 13.4], and is
related to techniques used on discrete grids [183]. We refer to Rioux-Lavoie et al. [ 211, Sec.4] for
an antithetic variate strategy (Sec. 3.1.1) for the gradient estimator, which can be used alongside
our control variate to reduce variance even further. Both strategies are particularly effective when
estimating the gradient in the vicinity of the domain boundary, where the ball size is smaller.
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Control Variate For Hessian

Control variates can also be applied to higher-order derivatives. For example, in the ith term of
our Hessian estimator for the boundary integral (Eq. 3.23), we can replace bu(xi

1) with

bu(xi
1) � bui � 1(x0) � dr ui � 1(x0) � (xi

1 � x0). (7.5)

Alanko and Avellaneda [ 3] discuss a similar approach for grids. Note that both running sums
have already been computed for the source and gradient control variates—these could now be
further improved via the Hessian estimate. Fig. 7.4 shows the effect on variance, which is about
7x lower than the baseline estimator from Eq. 3.23.

7.3 Tikhonov Regularization

Figure 7.5: Top: A small Tikhonov parameters yields
long walks and high variance, while largers values pro-
duce shorter walks with less noise but more bias. Bot-
tom: Since the solution is often well-resolved by short
walks, we apply regularization only to walks longer
than a given length—yielding lesser noise and bias.

The solution to a Poisson equation with pure
Neumann conditions is determined only up to
an additive constant. When we solve such a PDE
with WoSt, we observe that high frequency de-
tails in the PDE solution are often resolved by
the �rst few steps of a random walk, while the
contribution from later steps is closer to con-
stant; see Fig. 3.6. As mentioned in Sec. 4.2,
we use Tikhonov regularization (Sec. 3.2.6) to
more effectively handle such problems—Fig. 7.5
shows this approach provides estimates without
much noise or bias even with substantial regu-
larization, while ensuring walk length is not un-
bounded.In general, the number of steps needed
to resolve the solution is problem-dependent,
and more steps are typically needed when the
solution has low-frequency global features.

7.4 Adaptive Sampling And Denoising

Elliptic PDEs have highly regular solutions away from the source and boundary. Conventional
methods exploit this behavior by interpolating over a mesh; we can likewise interpolate over
scattered samples to dramatically reduce cost. For instance, in Fig. 7.7 (center), we use simple
Poisson disk sampling [ 30] and moving least squares (MLS)interpolation [ 181]. To avoid “bleeding”
artifacts, we shoot rays to exclude neighbors not visible from sample points. There are plenty of
opportunities for improvement and acceleration ( e.g., via fast multipole methods [ 244]); note that
all interpolation schemes introduce bias (including standard nodal interpolation in FEM).

We can also use adaptive sampling to concentrate effort on interesting regions. For instance,
Fig. 7.7 (right) applies a simple scheme in the spirit of irradiance gradients[265]: we �rst estimate
the solution and gradient at a set of seed points. Then, for any candidate sample x, we evaluate
a 1st-order Taylor approximation bu(yi ) + hdr u(yi ), x � yi i for the k nearest neighbors y1, . . . ,yk of
x. If the sample variance (Eq. 3.4) divided by the mean is above a threshold a > 0, we estimate
the value and gradient at x and add it to the set. More sophisticated strategies from rendering
provide ample inspiration for future work [ 288].
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Figure 7.7: Just as mesh-based methods interpolate solution values at a few sparse points, we can rapidly visualize
solutions to PDEs via scattered data interpolation. Here we solve a Laplace problem using either uniform or adaptive
sampling and simple MLS interpolation. Adaptive sampling better resolves high-frequency boundary conditions.

Figure 7.6: Even for a small number of walks per pixel
(left), techniques for denoising renders (center) closely
match the reference solution (right), further increasing
ef�ciency—especially for PDEs with smooth solutions.

Techniques for denoising rendered images
[123, 137, 189, 190, 213, 226] also translate well
to the PDE setting. For instance, in Fig. 7.6,
we apply Intel's deep learning-based Open Im-
age Denoisealgorithm [ 112], using the bound-
ary value at the closest point in place of the
albedo map (no other results in this work use
denoising). Training such a network on PDE
data, rather than rendered images, should fur-
ther reduce bias and improve performance.

7.5 Boundary Value Caching

Grid-free Monte Carlo methods such as walk on spheres independently estimate the solution at
every point, and hence do not take advantage of the high spatial regularity of solutions to elliptic
problems. Here we describe a fast caching strategy [166] for the boundary integral

a(x) u(x) =
Z

¶W
PRd

(x, z) u(z) + GRd
(x, z)

¶u(z)
¶nz

dz
| {z }

= : u¶W(x)

+
Z

W
GRd

(x, y) f (y) dy
| {z }

= : uW(x)

(7.6)

of a (screened) Poisson equation in a domain W, where PRd
and GRd

are free space functions,
rather than functions for the ball. To make use of this BIE, one must somehow determine the
unknown boundary data: Dirichlet values u on the Neumann boundary ¶WN , Neumann values
¶u/ ¶n on the Dirichlet boundary ¶WD , and both, or one of, u and ¶u/ ¶n on the Robin boundary ¶WR.
Schemes such as the boundary element method use a �nite-dimensional space of functions on the
boundary ( e.g., basis functions associated with mesh nodes), and solve a dense, globally-coupled
linear system for the best approximation to the true solution.
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Figure7.8: We obtain far smoother results with BVC com-
pared to directly using pointwise estimators like WoSt at
equal time. BVC uses the same boundary samples to de-
termine the PDE solution across the domain.

Figure 7.9: BVC gradients have considerably less noise
compared to pointwise estimates, as they use known val-
ues of¶u/ ¶n on the Neumann boundary. In contrast, WoSt
gradients become noisier away from the Dirichlet bound-
ary, as estimation requires longer random walks.

BVC takes a completely different ap-
proach, and instead uses WoSt to compute the
unknown boundary values. It hence avoids
global solves, boundary remeshing, and ap-
proximation of the function space; unlike
BEM, it also handles the source term f . More-
over, as random walks can be expensive (espe-
cially in problems with predominantly Neu-
mann boundaries), we cache these boundary
values at a collection of random sample points
along ¶W. We then use a Monte Carlo estimate
of Eq. 7.6 for cheap, output-sensitive evalua-
tion of the solution (or its gradient) at any in-
terior point x 2 W, without taking any further
random walks (Sec. 7.5.1).

Overall, this scheme is easy to parallelize,
and can be computed progressively (e.g., for
interactive preview). It can handle imperfect
geometry (e.g., with self-intersections) and de-
tailed boundary/source terms without repair-
ing or resampling the boundary representa-
tion (Fig. 8.15). We can also focus computation
on a region of interest by caching points only
on the boundary of a small subdomain L � W
(Sec.7.5.2)—unlike BEM which must perform
a global solve over the entire boundary ¶W.

In practice, we obtain far smoother results
across the domain compared to directly using
pointwise estimators like WoS or WoSt (Fig.
7.8, 7.9 & 7.10). This behavior can be attributed
to correlations in the solution estimates at interior evaluation points that use the same boundary
and source samples. On the �ip side, error is now more global akin to traditional PDE solvers
such as FEM and BEM (Fig. 7.16 & 7.17). Unlike pointwise estimators, we also observe boundary
artifacts (Fig. 7.15), as samples are no longer generated in proportion to the singular functions
PRd

and GRd
. We show how to mitigate such artifacts in Sec. 7.5.3.

Sample Reuse In Rendering. Popular sample reuse schemes in rendering such as virtual point
lights [ 46, 132], photon mapping [ 91, 92, 115] and ReSTIR [23, 193] share samples across pixels to
amortize the cost of long ray traced paths, and inject global information into per-pixel radiance
estimates. As a result, they are often more ef�cient at rendering scenes with complex geometry
and lighting than brute-force path tracers.

BVC shares similarities with VPLs and photon mapping, in that samples generated and de-
posited on the scene (for us ¶W) determine the radiance (i.e., the solution u) over the image plane
(which for us is either the entire domain W or a subset thereof). Unlike photon mapping how-
ever, BVC does not require an additional data structure like a kd-treeto store samples; instead
we opt for a progressive formulation that discards boundary and source samples after splatting
solution and gradient estimates in W. Similar to VPL methods, Monte Carlo noise is visually
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Figure7.10: Boundary value caching dramatically reduces the total number of random walks needed to solve PDEs
relative to pointwise Monte Carlo estimators. Here we show streamlines of a potential �ow in a simulated wind tun-
nel, computed directly from a low-quality surface mesh originally intended for visualization rather than simulation.

suppressed [46, Fig. 1] from a combination of introducing correlations between estimates in W,
and the smooth decay of the functions PRd

and GRd
away from the boundary (Fig. 2.3). VPLs are

also prone to singularities, as sharing samples requires sacri�cing perfect importance sampling
[46, Sec. 5 & Fig. 9]; our artifact correction schemes take inspiration from similar techniques
for VPLs [135]. Unlike VPL methods, we do not require testing for occlusion between deposited
samples and evaluation points as the BIE contains no visibility term.

Techniques based on lightcuts [152, 264, 275] render scenes containing thousands of VPLs
in real time. These methods cluster VPLs spatially in a tree, and then probabilistically select a
subset of the VPLs that make the largest contribution at a given point. Akin to Fast Multipole
and Barnes-Hut schemes [88, 202] for BEM, a lightcuts-based strategy should asymptotically
reduce the quadratic complexity of evaluating the BIE with BVC. We leave development of such
a strategy to future work.

7.5.1 Monte Carlo Estimation

We estimate the solution u¶W + uW in Eq. 7.6 at a set of evaluation points evalPts := f xk 2 WgK
k= 1

in a closed domain W � Rd by creating two caches, boundarySamples:= f zi , bu(zi ), [¶u/ ¶n(zi )gN
i= 1

and sourceSamples:= f yj , f (yj )gM
j= 1, where N and M are user-speci�ed cache sizes. The points

zi and yj are sampled on the boundary ¶W and inside the domain W using probability densities

p¶W and pW respectively. The pointwise estimates bu(zi ) and [¶u/ ¶n(zi ) are computed using WoSt
(Ch. 3, Sec.3.2.5 & 7.2), while f (yj ) are evaluations of the known source term.

Dirichlet-Neumann conditions. For BVPs with mixed Dirichlet and Neumann conditions, BVC
then uses the two caches to formcorrelatedMonte Carlo estimates of Eq. 7.6 at all points in evalPts:

du¶W(xk) :=
1
N å N

i= 1

PRd
(xk, zi ) bu(zi ) + GRd

(xk, zi )
b¶u
¶n (zi )

p¶W(zi )
, (7.7)

cuW(xk) :=
1
M å M

j= 1

GRd
(xk, yj ) f (yj )
pW(yj )

. (7.8)
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ALGORITHM 7: A boundary value cachingstrategy to evaluate a d-dimensional boundary
integral equation inside a closed user-de�ned boundary ¶L

1: struct Boundary Sample
2: z, nz  null . Sample location and unit outward normal on¶L

3: bu, c¶u
¶n  0 . Estimates of solution and normal derivative

4: struct Evaluation Point
5: x  null . Location for evaluating the BIE
6: busum

¶L , busum
L  0 . Running sums for solution evaluation

7: N, M  0 . Boundary and source sample count
8: function Get Solution ()
9: return busum

¶L

�
N + busum

L

�
M

Input: A set of evalPts, boundary and source cache sizesN and M, nWalks for pointwise estimation, and
PDFs p¶L and pL for sample generation.

Output: An updated solution estimate at each evaluation point.
10: function Update Solution (evalPts, N, M, nWalks, p¶L , pL )
11: boundarySamples  Boundary Sample [N ] . Initialize N boundary samples
12: parallel for b in boundarySamplesdo
13: b.z, b.nz � p¶L . Generate boundary sample from PDF p¶L

14: b.bu, b.c¶u
¶n  Walk OnStars (b.z, b.nz, nWalks) . UsenWalks to estimate u and¶u/ ¶n with WoSt

15: for b in boundarySamplesdo
16: z, nz  b.z, b.nz
17: parallel for e in evalPts do . Splat boundary contribution from b to allevalPts

18: e.busum
¶L +=

�
PRd

(e.x, z, nz)b.bu + GRd
(e.x, z)b.c¶u

¶n

� �
p¶L (z)

19: e.N += 1
20: for j in Range (M ) do
21: y � pL . Generate source sample from PDF pL

22: parallel for e in evalPts do . Splat source contribution from y to allevalPts

23: e.busum
L += GRd

(e.x, y) f (y)
�

pL (y)
24: e.M += 1

In App. A, we provide expressions for PRd
and GRd

for the Poisson and screened Poisson equa-
tions. Alg. 7 provides pseudocode, and App. B.2 discusses the extension to open domains and
double-sided boundary conditions.

Robin conditions. For BVPs with Robin conditions, we need not estimate both u and ¶u/ ¶n with
WoSt. Instead, substituting ¶u/ ¶n = ` � mu on a Robin boundary ¶WR in Eq. 7.6 gives

a(x) u(x) =
Z

¶WR

�
PRd

(x, z) � m(z)GRd
(x, z)

�
u(z) dz

+
Z

¶WR

GRd
(x, z) ` (z) dz +

Z

W
GRd

(x, y) f (y) dy, (7.9)

for which only the solution u needs to be estimated on ¶WR. As an alternative, we could also
make the substitution u = (` � ¶u/ ¶n) / mwhen m> 0, and instead solve for unknown values of
¶u/ ¶n on ¶WR. We observe that estimating ¶u/ ¶n typically works better when mis large. This is
because BVC does not importance sample the termP � mG in Eq. 7.9 when generating its cache
samples on ¶WR, which means that a large mampli�es noise in estimated values of u on ¶WR.
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Gradient Estimation. We can reusethe samecached boundary and source samples to also form
Monte Carlo estimates of the solution gradient at each evaluation point (Fig. 7.9):

d¶u¶W

¶x
(xk) :=

1
N å N

i= 1

¶PRd

¶x (xk, zi ) bu(zi ) + ¶GRd

¶x (xk, zi )
b¶u
¶n (zi )

p¶W(zi )
, (7.10)

d¶uW

¶x
(xk) :=

1
M å M

j= 1

¶GRd

¶x (xk, yj ) f (yj )
pW(yj )

. (7.11)

We provide expressions for the derivatives of PRd
and GRd

in App. A.

Sampling. We can use a discretecumulative density function (CDF)table [203, Sec. 13.3] with
strati�ed random numbers to generate boundary samples over elements ( e.g., triangles) of a
polygonal mesh. Faster sample generation is possible with an alias table [262, 263]. Source
samples can likewise be generated uniformly inside W with strati�ed sampling [ 203, Sec. 13.8].
We use this sampling setup for all BVC �gures in this text except Fig. 7.10, where we �nd that
results improve signi�cantly if the boundary samples in Eq. 7.7 & 7.10 are weighted by the area
of their associated Voronoi cell. Similar area weighting strategies have proven effective for surface
reconstruction [ 12, Fig. 5], and yield a consistent Monte Carlo estimator that provides provably
better convergence [89].

Progressive Evaluation. BVC is progressive in two ways. First, we can improve estimation
quality at a set of evaluation points, by generating new caches and using them to update ex-
isting estimates (Alg. 7, Update Solution ). Second, we can compute solution estimates at new
evaluation points by iterating over existing caches.

Bias. Assuming the pointwise estimates bu(zi ) and [¶u/ ¶n(zi ) are unbiased, the estimators in Eq.
7.7–7.11 are also unbiased via the linearity of expectation. In reality, most pointwise estimators
have a small amount of controllable bias from the #-shell (Sec. 6.3). Unlike MLS interpolation
and adaptive sampling (Sec. 7.4), BVC does not introduce any additional bias, while improving
ef�ciency noticeably (Fig. 7.8).

7.5.2 Boundary Speci�cation

Figure7.11: We can focus computation on a region of in-
terest by caching points on the region boundary.

When the solution needs to be evaluated
within a localized region L inside the domain
W (Fig. 7.11), we specialize the BIE to this re-
gion by generating source samples in L and
boundary samples on ¶L (Alg. 7, lines 13 &
21). We use uniform densities pL = 1/ jL j and
p¶L = 1/ j¶L j for sample generation, though
we could use densities specialized to a speci�c
PDE to reduce variance further. The solution
integrates to 0 outside L by construction.

When the solution needs to be evaluated
within the entire domain W (i.e., L � W), we
incorporate the known boundary data ¶u/ ¶n =
h on ¶WN directly into our sample estimates,
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