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ABSTRACT

Genomic alignment of small RNA (smRNA) sequences such as microRNAs poses considerable challenges due to their short length
(∼21 nucleotides [nt]) as well as the large size and complexity of plant and animal genomes. While several tools have been
developed for high-throughput mapping of longer mRNA-seq reads (>30 nt), there are few that are specifically designed for
mapping of smRNA reads including microRNAs. The accuracy of these mappers has not been systematically determined in the
case of smRNA-seq. In addition, it is unknown whether these aligners accurately map smRNA reads containing sequence
errors and polymorphisms. By using simulated read sets, we determine the alignment sensitivity and accuracy of 16 short-read
mappers and quantify their robustness to mismatches, indels, and nontemplated nucleotide additions. These were explored in
the context of a plant genome (Oryza sativa, ∼500 Mbp) and a mammalian genome (Homo sapiens, ∼3.1 Gbp). Analysis of
simulated and real smRNA-seq data demonstrates that mapper selection impacts differential expression results and
interpretation. These results will inform on best practice for smRNA mapping and enable more accurate smRNA detection and
quantification of expression and RNA editing.
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INTRODUCTION

Small noncoding RNAs are functional mature transcripts
with a length ≤300 nt that do not encode proteins (Mattick
and Makunin 2006). This abundant superfamily exists in
all domains of life and includes several subclasses that are dis-
tinguished by their size, homology, and mechanisms of bio-
genesis. These include microRNA, siRNA, piRNA, snoRNA,
eRNA, and the number of subclasses continues to expand
(Morris and Mattick 2014). In plants and animals, micro-
RNAs form complexes with Argonaute family proteins to
guide silencing of genes (Farazi et al. 2008). In animals,
this occurs by directing post-transcriptional RNA cleavage
and translational inhibition (Bartel 2004). In plants and fungi
there are descriptions of small RNA-directed silencing via
chromatin modification (Bernstein and Allis 2005). Micro-
RNAs (miRs) are the prototypical small RNA class due to
their relatively large gene number in plant and animal ge-
nomes, relatively high expression and interspecies sequence
conservation (Axtell et al. 2011). The first described roles
for microRNAs were in development in Caenorhabditis
elegans, Drosophila melanogaster, and Arabidopsis thaliana

(Carrington and Ambros 2003), however, more recent stud-
ies demonstrate the importance of microRNAs in signaling,
stress response, and disease (Zhang et al. 2006; Mendell
and Olson 2012).
Expression analysis is crucial for the understanding of

small RNA regulation and is a starting point for initiating re-
verse genetic functional studies. Quantitative PCR, micro-
array hybridization, and high-throughput sequencing are
commonly used methods for profiling small RNAs (Pritch-
ard et al. 2012). High-throughput small RNA sequencing
(smRNA-seq) offers advantages compared to the other
methods, specifically by distinguishing very similar smRNA
sequences, its unbiased nature allows detection of novel
smRNAs and sequence read count measures provide highly
accurate quantification of gene expression at high sequencing
coverages.
Despite these advantages, there are many bioinformatic

challenges in the processing of high-throughput small RNA
sequence data. The short sequence length makes these
smRNAs difficult to map in large, complex, and repetitive
reference genomes. Many small RNAs including biologically
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important microRNAs are composed of near-identical family
members. MicroRNA biogenesis and maturation mecha-
nisms generate fragment lengths of 18–25 nt (Ameres and
Zamore 2013) and the current version of miRbase (v21) con-
tains 68 mature human miRs shorter than 18 nt (Kozomara
and Griffiths-Jones 2014). Extensive RNA editing introduces
sequence differences that make mapping more difficult.
Nontemplated extension (NTE) of microRNAs by addition
of adenosine and uracil bases to 3′ ends is widespread in an-
imals and plants and may play a role in controlling miR turn-
over (Ameres and Zamore 2013). Deep sequencing of mouse
reveals 3′NTE to affect∼20%ofmiRNAmolecules in the hip-
pocampus and∼15% in reprogrammed stemcells (Zhou et al.
2012). Deamination of adenosine to inosine is common for
some microRNAs (termed A-to-I editing) (Kawahara et al.
2007; Ameres and Zamore 2013), which leads to the appear-
ance of single nucleotide mismatches (SNMs) in sequence
data. In human, it is estimated that 10%–15% of miRNAs
undergo A-to-I RNA editing (Blow et al. 2006). Given these
challenges in smRNA-seq read mapping, understanding the
limitations of the most commonly used short read mapping
software is important to facilitate accurate smRNA-seq bioin-
formatics analysis.
Previous evaluations have quantified the accuracy and

computation speed of aligners for short read genomic DNA
and mRNA sequence data (Lindner and Friedel 2012;
Shang et al. 2014). Several smRNA-seq pipelines have been
evaluated for their sensitivity and accuracy in detecting and
quantifying microRNA expression, however many of these
pipelines are not open-source, cannot be run on a local com-
puter, can be run only for small subset of species or depend
on preexisting alignment software for read mapping (Li et al.
2012; Williamson et al. 2013; Tam et al. 2015). Key informa-
tion on several of these popular miRNA analysis pipelines is
summarized (Table 1).
While mapping to known microRNA precursor data-

bases can be a faster and more direct method to quantify

microRNA expression, mapping smRNA reads to the entire
genome is emerging as a consensus standard procedure
(Motameny et al. 2010, Farazi et al. 2012, Stokowy et al.
2014). Genome mapping allows identification of novel
smRNAs, and can effectively identify transcripts of RNA clas-
ses such as rRNA, tRNA, and mRNA. Differences in smRNA-
seq read mapping sensitivity have been observed for different
aligners, suggesting that mapper accuracy may be affecting
downstream data analysis (Farazi et al. 2012; Williamson
et al. 2013). Using spike-ins of several Arabidopsis thaliana
microRNA sequences that do not occur in the human genome
it was shown that BWA gave truer quantifications of original
concentrations than Bowtie, Bowtie2, or Novoalign (Tam
et al. 2015).
Despite the importance of accurate smRNA-seq mapping

in the confident identification of novel transcripts and ex-
pression quantification, rigorous evaluations of short-read
mapping software using simulated smRNA-seq data are cur-
rently lacking in the scientific literature. In this evaluation, we
test the ability of a panel of aligners to accurately map simu-
lated smRNA-seq data sets for human and rice. In addition to
studying mapping accuracy of uniquely placed reads, we also
investigate the accuracy of multimapping reads which are
often ignored in many smRNA-seq studies. These results
should provide a framework for best practise in smRNA-
seq analysis, enhance detection of smRNA editing and accu-
racy of differential expression studies.

RESULTS

Assessment of microRNA length distribution
and sequence modifications

Given the multitude of short read mappers available, we
wanted to identify those most suited to small RNA analysis.
One of the biggest challenges to microRNA mapping is the
sequence length distribution. To explore this, the distribution

TABLE 1. SmRNA/microRNA-seq analysis pipelines in common use

Tool Alignment engine Reference sequence
Limited
species Local computer Open source Citation

miRExpress Smith-Waterman miRbase All miRbase Yes Yes Wang et al. 2009
DSAP Smith-Waterman miRbase All miRbase Web-server only NA Huang et al. 2010
MIReNA MEGABLAST Whole genome Any Yes Yes Mathelier and Carbone

2010
miRDeep MEGABLAST Whole genome Any Yes Yes Friedländer et al. 2008
miRDeep2 Bowtie1 Whole genome Any Yes Yes Friedländer et al. 2012
miRanalyzer Bowtie1 miRbase and whole

genome
34 species Web-server only No Hackenberg et al. 2011

Shortran Bowtie1 Whole genome Any Yes Yes Gupta et al. 2012
mirTools2 SOAP2 Whole genome 32 species Yes, and web-server Wu et al. 2013b
MiRNAkey BWA miRbase All miRbase Yes Yes Ronen et al. 2010
UEA sRNA workbench PatMaN Whole genome Any Yes Yes Stocks et al. 2012
ShortStack Any Whole genome Any Yes Yes Axtell 2013

List is nonexhaustive.
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of read lengths of quality trimmed and
adapter clipped smRNA-seq data from
previous studies in rice (Oryza sativa)
(Barrera-Figueroa et al. 2012; Xu et al.
2014) and human (Homo sapiens)
(Mestdagh et al. 2014; Guo et al. 2015)
were determined (Table 2). In the data
sets analyzed, the proportion of reads
shorter than 21 nt is 10%–29%, reads
21–24 nt comprise 19%–60%, and
reads >24 nt comprise 11%–71%. Of
the reads thatmapped tomicroRNAhair-
pin containing loci (BWA or Bowtie2
with the default parameters), the pro-
portion of reads shorter than 21 nt
is 2%–22%, reads 21–24 nt comprise
43%–76% and reads >24 nt comprise
7%–50%. These results demonstrate
that smRNA-seq data contain a consider-
able number of reads shorter than 21 nt
that pose a challenge for accurate genome
mapping.

In addition to varying lengths, smRNA-seq possess se-
quence modifications such as nontemplated extension
(NTE) and single nucleotide mismatches (SNMs). The prev-
alence of these modifications was quantified in reads mapped
to hairpin loci (Table 2). NTE modification to 3′ termini ac-
counted for up to 0.33% of mapped smRNA bases in human
and up to 0.1% in rice. NTE to 5′ ends accounted for 0.16%
bases in human and 0.1% bases in rice. Whether originating
from genomic polymorphisms or sequencing errors, SNMs
accounted for up to 0.1% of aligned bases in human and
up to 0.4% in rice smRNA-seq data, respectively. Indels
were less common in the Illumina sequence data, at a rate
of 2.3 indels per Mbp in human and 60–140 indels per
Mbp in rice. This result indicates that NTE and SNM are
prevalent in human and rice smRNA-seq data.

Mapper accuracy with simulated 21-nt
hairpin-derived Illumina reads

In order to assess the accuracy of mapping software with
microRNA sequence data, we simulated rice and human
read sets with Illumina Genome Analyzer IIx error profiles
using ART (Huang et al. 2012) using miRbase hairpins as
templates and mapped these to the rice and human genome
with 16 aligners. Software versions and exact parameters used
for these tests are shown in Table 3. Amodified F-measure (β
= 0.25) that emphasizes precision over recall was used to
measure accuracy (Materials and Methods). Hash based
aligners underwent prior optimization (using rice 21-nt hair-
pin-derived reads) as these mappers rely critically on k-mer
parameters (Supplemental Table S1). For each mapper that
estimates mapping quality (mapQ), the optimum mapQ
(based on maximum F-measure) was determined. As expect-

ed, as mapQ threshold increased, so did the precision, albeit
at the expense of sensitivity (Supplemental Table S2).
The results testing 16 aligners with a variety of parameter

settings are shown in Figure 1. In both rice and human tests,
the number of correctly mapped reads identified varied wide-
ly from none to 78% (Fig. 1A,C). Bowtie2, BWA, OLego, and
Bowtie1 (best strata setting) mapping achieved F0.25 scores
greater than 0.95 for rice and human tests (Fig. 1B,D).
Overall, the rankings of mappers based on F0.25 scores for
rice and human were similar (Spearman ρ = 0.97, P = 0).
Subread with default settings did not map 21-nt reads, but
the microRNA-specific options suggested by the developers
yielded an F0.25 score of 0.92 in rice and human. High-speed
aligners STAR and HISAT showed moderate accuracy with
F0.25 scores of 0.90 and 0.92, respectively. Stampy with
default settings showed poor recall (<15%) but with the “sen-
sitive”parameter, this was improved to∼60%.DefaultMicro-
RazerS, Bowtie1, and Segemehl showed a high recall (>70%)
but poor precision (<85%). These results demonstrate a wide
range of precision and recall values for the panel of aligners
and parameters tested with Illumina-like 21-nt tags.
We investigated the large fraction of reads lacking unam-

biguous mappings in default BWA and Bowtie2 alignments
(Fig. 1A,C). Both aligners mapped >96% of reads, but a large
fraction of these reads had a mapQ below the optimized
threshold (27%–29% of the whole-read set). The overlap
of low mapQ aligned reads between BWA and Bowtie2 in
the rice test was 20,876 tags or 26% of the entire rice read
set, while this figure was 20% for the human read set. This
result shows that up to a quarter of possible hairpin-derived
21-nt reads have ambiguous mapping using these two
widely used aligners, suggesting they may also be difficult
to map accurately with other aligners. Indeed aligners with

TABLE 2. Distribution of read lengths and estimates of nontemplated extension (NTE),
mismatch (SNM), and indel events in real small Illumina smRNA-seq data

Variation
GSE62200

(rice)
GSE26357

(rice)
GSE49816
(human)

GSE60036
(human)

Reads <21 nt (%) 21.5 ± 17.1 10.3 ± 8.8 22.6 ± 17.1 29.2 ± 8.38
21–24 nt (%) 18.7 ± 15.0 26.3 ± 3.9 30.7 ± 14.3 59.8 ± 10.0
Reads >24 nt (%) 59.8 ± 31.5 63.4 ± 5.1 46.7 ± 16.2 11.0 ± 2.7
miR mapped reads
<21 nt (%)

6.7 ± 3.6 1.7 ± 0.5 22.1 ± 7.2 2.41 ± 0.67

miR mapped reads
21–24 nt (%)

42.8 ± 40.9 76.4 ± 6.4 71.1 ± 5.8 76.4 ± 1.5

miR mapped reads
>24 nt (%)

50.5 ± 39.8 21.9 ± 6.7 6.8 ± 1.5 21.1 ± 1.5

5′ NTE (%) 0.099 ± 0.048 0.101 ± 0.025 0.160 ± 0.051 0.158 ± 0.108
3′ NTE (%) 0.097 ± 0.051 0.065 ± 0.022 0.332 ± 0.090 0.150 ± 0.134
SNM (%) 0.267 ± 0.104 0.432 ± 0.122 0.031 ± 0.007 0.117 ± 0.114
Insertion (%) 0.008 ± 0.009 0.002 ± 0.002 0.0001 ± 0.0001 0.0007 ± 0.0020
Deletion (%) 0.006 ± 0.004 0.004 ± 0.004 0.0001 ± 0.0001 0.0003 ± 0.0005
Indel (%) 0.014 ± 0.012 0.006 ± 0.006 0.0002 ± 0.0003 0.0010 ± 0.0023

Data are average values of BWA and Bowtie2 alignments using default settings. NTE,
SNM, and indel proportions are expressed as a percentage of total mapped sequence (bp).
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substantially higher recall than BWA and Bowtie2 showed the
poorest precision.

Mapper accuracy with realistic simulated
hairpin-derived reads

Next, we investigated the performance of mappers with real-
istic read length distribution and sequence variation profiles.
We used results from Table 2 to generate synthesized read
sets from hairpin loci that have length distribution and vari-
ant composition that is within the empirical range. Sequence
characteristics used are shown in Figure 2A. These read sets

were then aligned to the reference genome using the panel
of 16 aligners with mapQ filtering (Supplemental Table
S2). After mapping and mapQ filtering, the accuracy results
were similar to those for 21-nt reads (Fig. 2B,D). The ranking
of mapping procedures based on F0.25 scores is shown in
Figure 2C,E, was consistent with 21-nt read analysis shown
in Figure 1B,D (Spearman ρ = 0.87, P = 0). Exceptions in-
cluded STAR aligner that performed better in the realistic
read set as compared to the 21-nt read set while default
Bowtie2 scored poorer in realistic read set. These results iden-
tify mappers that accurately align realistic microRNA se-
quence reads to the genome.

TABLE 3. Alignment software evaluated in the present study

Aligner version Parameter Parameter Reference

BBMap v34.x df Default B Bushnell (unpubl.)a

k8 k = 8 This study, rice and human
Bowtie1 v0.12.8 df -k1 Langmead et al. 2009

m2 -k1 -m2
m1 -k1 -m1
best -k1 -m1 –best
best strata –best –strata -k 1 -m 1
try hard –tryhard –best -k 1 -m 1

Bowtie2 v2.1.0 df Default Langmead and Salzberg 2012
bib –local -q -D 20 -R 3 -N 0 -L 8 -i S,1,0.50
vs –end-to-end –very-sensitive
vsl –very-sensitive-local

BWA v0.7.10-r806 df Default Li and Durbin 2009
bib -n 1 -o 0 -e 0 -k 1
ng -o 0

GEM v1.819 df Default Marco-Sola et al. 2012
mod m = 0.2 D = 1 e = 0.2 –min-matched-bases = 0.5

GNUMAP v3.0.2 df Default Clement et al. 2010
j2.mer6 j = 2 m = 6 This study, rice
j3.mer10 j = 3 m = 10 This study, human

HISAT v0.1.5 df Default Kim et al. 2015
vs –end-to-end –very-sensitive
vsl –very-sensitive-local

MicroRazerS 0.1 se.pa sE = TRUE pa = TRUE Emde et al. 2010
sl18.se.pa sL = 18 sE = TRUE pa = TRUE

Mosaik v2.1.73 df hs = 15 Lee et al. 2014
hs11 hs = 11 This study, rice
hs13 hs = 13 This study, human

OLego v1.1.2 df Default Wu et al. 2013a
Segemehl v0.2.0–418 df -r 1 Hoffmann et al. 2009

M1 -r 1 -M1
SMALT v0.7.6 H Ponstingl (unpubl.)a

k12.s2 -k = 12 -s = 2 This study, rice
k18.s3 -k = 18 -s = 3 This study, human

SOAP2 v2.20 df Default Li et al. 2009
g4 -g = 4

Stampy v1.0.25 df Default Lunter and Goodson 2011
sens –sensitive

STAR 2.4.0g1 df Default Dobin et al. 2013
ni –alignIntronMax 1

Subread 1.4.6 df Default Liao et al. 2013
mir n = 35 m = 4 M = 3 I = 0 P = 3 B = 10

aBBmap and SMALT are available at the following URLs, respectively: http://sourceforge.net/projects/bbmap and http://www.sanger.ac.uk/
science/tools/smalt-0.
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Aligner accuracy subject to varying read length

Read lengths vary considerably in smRNA-seq data but it is
unknown which aligners are most accurate over a broad
range of read lengths. In order to assess this, we generated
synthetic sequence reads (16–25 nt) derived from known
hairpin loci from human and rice that perfectly match the
reference genome. In order to focus on unique alignments,
our read set excluded sequences that appeared more than
once. Alignment rates were lower for shorter 18-nt reads as
compared to 21- and 24-nt reads (Fig. 3A,E). Results from
other read lengths are presented in Supplemental Figure S1.
At 21-nt length, default Bowtie1 and Segemehl produced

high false mapping rates of∼15% in rice and∼8% in human;
these reads were assigned to incorrect hairpin loci as well
as non-hairpin regions (Fig. 3B,F). BBMap, Mosaik, and
Stampy mapped a relatively small proportion of 21-nt reads
with these settings (<85%) but improved with 24-nt reads
(Fig. 3C,G). Default Subread did not map 18-nt reads
with the parameters tested. Interestingly, at 18-nt HISAT,
Segemehl and Stampy (sens) correctly mapped in excess of
70% of reads in rice but in human, none were mapped.
This is likely due to internal parameters of these aligners
that are dependent on genome size for judging the accuracy
of each read mapping position. This trend for better recall
in rice mapping as compared to human is also apparent

FIGURE 1. Alignment of simulated Illumina-like hairpin-derived 21-nt sequences to the genome. For panels A and C, green bars denote correctly
mapped reads, yellow bars denote incorrect mapping to non-hairpin genomic locations, red bars denote incorrect mapping to other hairpin loci, and
gray bars denote reads unmapped or below map quality threshold. (A,B) Oryza sativa test. (C,D) Homo sapiens test. (B,D) Precision, recall, and F0.25
statistic for each test assessment. Values in parentheses represent optimized mapQ values for filtering uniquely mapped reads.

Ziemann et al.

1124 RNA, Vol. 22, No. 8

 Cold Spring Harbor Laboratory Press on August 7, 2024 - Published by rnajournal.cshlp.orgDownloaded from 

http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.055509.115/-/DC1
http://rnajournal.cshlp.org/
http://www.cshlpress.com


at read lengths of 16 and 17 nt (Supplemental Fig. S1).
Bowtie2, SOAP2, GEM, STAR, and Bowtie1 (best strata set-
ting) scored high F-measures (>0.95) in both human and
rice tests (Fig. 3D,H). These findings demonstrate differences
in mapper accuracy using perfectly matched reads. These dif-
ferences are more pronounced at shorter read lengths and
in larger reference genomes.

Aligner accuracy with nontemplated
terminal extension

We sought to identify alignment software that could correctly
map reads with nontemplated extensions (NTE). We added
up to 4 nt to the 3′ or 5′ end of the 21-nt simulated read
set, mapped them to the genome and analyzed the mapping

FIGURE 2. Alignment of reads with realistic length distribution and error profile. (A) Characteristic length distribution and error profile of sequence
sets used. For panels B and D, the color scheme is identical to Figure 1. (B,C) Oryza sativa test. (D,E) Homo sapiens test. (C,E) Precision, recall, and
F0.25 statistic for each test assessment.
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positions for all aligners to generate F0.25 scores (Fig. 4).
Remaining data used to generate F0.25 scores are shown
in Supplemental Figure S2. The addition of 1 nt to the 3′

end reduced the sensitivity of GEM, Bowtie2 (vs, bib, and
df parameters), SOAP2, and HISAT aligners by at least
40%. Bowtie2 (vsl), Subread (mir), SMALT, STAR, and
MicroRazerS recorded the highest F0.25 accuracy scores for
3′ NTE reads (Fig. 4A,B,E,F). NTE to the 5′ end yielded re-
sults that were largely consistent with 3′ NTE, except for
MicroRazerS which was able to correctly map most 3′ NTE
reads but not with 5′ NTE (Fig. 4C,D,G,H). These results
demonstrate that commonly used mappers show differing
ability to correctly align reads containing NTEs.

Aligner accuracy with reads containing mismatches

MicroRNAs are subject to A-to-I editing, genomic variation,
and sequencing errors that manifest as single nucleotide mis-
matches (SNMs). We investigated the ability of aligners to
correctly map reads containing SNMs. In order to do this,
we added up to two SNMs to the 21-nt reads then analyzed
mapping positions (Fig. 5). GEM, HISAT, Bowtie2, SOAP,
and Subread mapping rates were reduced by over 50% with
the incorporation of one SNM (Fig. 5A,D). BWA, Bowtie2,
OLego, and Bowtie1 (best strata) were the most accurate
mappers with reads containing two SNMs (Fig. 5B,E) and
gave high F0.25 scores in human and rice (Fig. 5C,F). This

analysis demonstrates that commonly used mappers have
differing ability to map SNM containing reads, and that map-
ping of these reads is less accurate in larger genomes.

Aligner accuracy with reads containing indels

To determine aligner robustness to indels, we introduced up
to two single nucleotide insertions or deletions to the 21-nt
read set, as well as single indels up to 2 nt in length, followed
bymapping position analysis (Fig. 6). Single nucleotide inser-
tions and deletions had a drastic effect on alignment rates and
accuracywith recall reduced by>50% (Fig. 6A,C,E,G). In rice,
BWA and OLego were the most accurate in mapping inser-
tion-containing reads (Fig. 6A,B), while Mosaik (hs11) and
SMALT (k12,s2) were most accurate in mapping deletion-
containing reads (Fig. 6C,D). Erroneous mapping of indel
containing reads was more prevalent in the larger human
genome (Fig. 6E,G) with most mappers yielding poor F0.25
scores (<0.5) for insertions and deletion tests (Fig. 6F,H).
Remaining data used to generate F0.25 scores are shown in
Supplemental Figure S3. These data indicate microRNA sized
reads containing indels are subject to of spurious alignment.

Non-hairpin genes are not a major source of error
for microRNA quantification

False mapping of “uniquely”mapped reads to the genome re-
mains a problem for short read sequencing (Menzel et al.

FIGURE 3. Alignment of perfectly matching hairpin-derived sequence reads of varying length. For panels A–C, E–F, the color scheme is identical to
Figure 1. (A–D)Oryza sativa reads. (E–H)Homo sapiens reads. (A,E) 18-nt reads. (B,F) 21-nt reads. (C,G) 24-nt reads. (D,H) Average precision, recall,
and F0.25 measure for read sets 16–25 nt.
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2013). To evaluate whether this is likely to impact smRNA-
seq studies, we quantified the proportion of short reads
from protein-coding genes that were erroneously mapped
to hairpin regions using a range of different read lengths.
Protein-coding cDNA sequences that overlap hairpin regions
were excluded. After mapping, we determined that at a read
length of 21 nt, fewer than 0.1% of mRNA derived tags
mapped to hairpin regions (Fig. 7A,C). We noted that
STAR with default settings showed up to 0.16% of rice 24-
nt reads were falsely mapped to hairpin loci (Supplemental
Fig. S4). We determined the F0.25 statistic for these mRNA
derived tags 18–25 nt (Fig. 7B,D) and foundmapper rankings
correlated significantly (Spearman ρ = 0.84, P = 0) with tests
using hairpin-derived tags of the same length (Fig. 3D,H).
This result suggests that many of the aligners evaluated
show falsely mapped mRNA tags do not represent a major
source of error with respect to microRNA quantification.

Summary of simulated miRNA read-mapping results

The F0.25 scores determined above were used to rank align-
ers from 1 (most accurate) to 39 (least accurate) for each rel-
evant test (Figs. 1–5). An overall score was determined by
calculating the sum of ranks for all tests excluding indel tests
(Fig. 8). Bowtie2 (vsl), Bowtie1 (best strata), and BWA (ng)

scored favorably, while default Subread, Stampy, BBMap,
Bowtie1, and Segemehl scored poorly.

Mapper selection impacts differentially expressed
miRNA detection

In order to determine whether mapper selection is likely to
influence downstream results in smRNA profiling experi-
ments, we simulated a microRNA-seq profiling experiment
(results include fold changes and sequence files) using
Polyester (Frazee et al. 2015). Hairpin-derived reads were
mapped with highly ranked Bowtie1 (best strata), Bowtie2
(vsl), BWA, middle-ranked MicroRazerS (sl18.se.pa), and
lowly ranked default Bowtie1.
Multidimensional scaling analysis showed Polyester simu-

lated profiles were distinct to any aligner-processed data.
Bowtie1 generated profiles were distinct as compared to other
aligners such as BWA, Bowtie1 (best strata), Bowtie2 (vsl),
and MicroRazerS that were clustered (Fig. 9A,C). This is
shown quantitatively using Pearson correlation analysis (Fig
9B,E). Interestingly, while default Bowtie1 yielded the highest
Pearson correlation with the ground truth profile, this map-
per also gave the highest number of false positive and false
negative differentially expressed genes (DEGs, FDR≤0.05)
as determined with edgeR (Fig. 9C,F). The resulting F1 and

FIGURE 4. Alignment of 21-nt hairpin-derived reads with nontemplated extension. For panels A,C,E,G the color scheme is identical to Figure 1. (A–
D) Oryza sativa reads. (E–H)Homo sapiens reads. (A,E) 21-nt reads with 2nt NTE to the 3′ end. (B,F) Precision, recall, and F0.25 accuracy metric for
21-nt reads with 1–4 nt added to the 3′ end. (C,G) 21-nt reads with 2-nt NTE to the 5′ end. (D,H) Precision, recall, and F0.25 metric for 21-nt reads
with 1–4 nt added to the 5′ end.
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F0.25 measures were lower for default Bowtie1 as compared
to Bowtie1 (best strata), Bowtie2 (vsl), BWA, and Micro-
RazerS. These results demonstrate that mapper selection im-
pacts miRNA expression profiles.

Mapper selection impacts gene detection
in real smRNA-seq data

Next, we sought to determine the effect of mapper selection
by analyzing a publicly available smRNA-seq data set (Guo
et al. 2015) with the same panel of five aligners used in
Figure 9. Default Bowtie1 yielded the highest proportion of
mapped reads and the largest proportion mapped to non-
genic regions (Table 4), with MicroRazerS showing the
next highest nongenic mapping rate. Default Bowtie1 gave
the highest number of genes detected above the threshold
(1242 genes above 10 tags per sample on average) as com-

pared to Bowtie2 (vsl) that detected 426 genes. The higher
number of detected genes by default Bowtie1 was not con-
tributed by higher detection of microRNA genes, rather pro-
tein-coding genes and other non-microRNA classes were
over-represented (Fig. 10A). Venn diagram showed that these
protein-coding genes were largely unique to default Bowtie1,
whereas most microRNA genes were common to all mappers
(Fig. 10B). Multidimensional scaling analysis showed signa-
tures in default Bowtie1 and MicroRazerS mapped data
were distinct from BWA, Bowtie2 (vsl), and Bowtie1 (best
strata) (Fig. 10C). Pearson correlation analysis quantified
that MicroRazerS and default Bowtie1 results were dissimilar
to Bowtie1 (best strata) and Bowtie2 (vsl) (Fig. 10D). Mis-
matches in mapQ20 alignments were highest for Micro-
RazerS and lowest for Bowtie2 (vsl). Mismatch rate was
lowest for Bowtie2 (vsl) over the entire read length (Fig.
10E) and for all mismatch types (Fig. 10F). These results

FIGURE 5. Alignment of 21-nt hairpin-derived reads containing single nucleotide mismatches (SNM). For panels A,B,D,E the color scheme is iden-
tical to Figure 1. (A–C) Oryza sativa reads. (D–F) Homo sapiens reads. (A,D) 21-nt reads containing one SNM. (B,E) 21-nt reads containing two
SNMs. (C,F) Precision, recall, and F0.25 scores for 21-nt reads containing one to two SNMs.
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are consistent with simulated data and show that mapper se-
lection impacts the number and type of transcripts detected
in smRNA-seq data. Moreover accurate mappers yield highly
correlated results in contrast to poorly ranked mappers that
show a lesser degree of correlation.

Mapper selection impacts differential gene expression
results of smRNA-seq data

Given that gene detection was significantly altered by mapper
selection using real data, we investigated whether this im-
pacts differential expression results. The gene count matrices
generated by the five mappers underwent edgeR differential
analysis to compare Actinomycin D (4 h) and untreated
samples in biological triplicate. Default Bowtie1 identified
the largest number of significant DEGs, followed by Micro-
RazerS (Fig. 11A). Venn diagram showed that most pro-
tein-coding DEGs identified by default Bowtie1 and
MicroRazerS were unique to each aligner, while only four
microRNA genes were common to all mappers (Fig. 11B).
Given the overlap between DEG lists was below expecta-

tions, we investigated whether microRNA genes validated
by qRT-PCR were found to be statistically significant in se-
quence data aligned with different mappers. The differential
expression trend of miR-125b-1 and miR-33b identified by

all five aligners here was consistent with that reported previ-
ously (Guo et al. 2015). However, statistical significance of
miR-125b-1 was variable, with FDR≤ 0.05 for all aligners ex-
cept default Bowtie1 (Fig. 11C). Statistical significance of
miR-33b also varied, with FDR≤ 0.05 for all aligners except
default Bowtie1 and MicroRazerS (Fig. 11D). Bowtie2 (vsl)
provided the most statistically significant differences for
both miR-125b-1 and miR-33b, with nominal P-values an
order of magnitude smaller than the other aligners evaluated.
To investigate this in more detail, nominal and FDR adjusted
edgeR P-values obtained from count matrices derived from
each mapper were plotted, showing that FDR P-value correc-
tion of default Bowtie1 P-values was only slightly more strict
than that of other aligners (Fig. 11E). As fold changes did not
vary dramatically between mappers, we investigated whether
there were differences in dispersions. Cumulative distribu-
tion analysis shows overall tagwise dispersions (gene-wise
measures of variance) were smallest for Bowtie2 (vsl) and
largest for default Bowtie1 and MicroRazerS (Fig. 11F). In
line with this, the common dispersion (experiment-wise
measure of variance) was smallest for Bowtie2 (vsl) and larg-
est for default Bowtie1 and MicroRazerS (Fig. 11F inset).
These data show that poor mapper selection results in higher
dispersions which represent a source of error that impacts
on significance values. Lowly ranked mappers uniquely

FIGURE 6. Alignment of 21-nt hairpin-derived reads with indels. For panels A,C,E,G the color scheme is identical to Figure 1. (A–D) Oryza sativa
reads. (E–H)Homo sapiens reads. (A,E) 21-nt reads with 1-nt insertion. (B,F) Precision, recall, and F0.25 scores for 21-nt reads with insertions. (C,G)
21-nt reads with 1-nt deletion. (D,H) Precision, recall, and F0.25 scores for 21-nt reads with deletions.
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identified a higher number of protein-coding DEGs that may
be false positives.

Aligner accuracy with multiply mapped reads

In some cases, rather than discarding reads with multiple
mapping locations, researchers may want to know all map-
ping locations of these tags. We generated a read set consist-
ing of hairpin-derived sequences 18–24 nt in length expected
to map to multiple hairpin loci. These tags were mapped to
the genome using BLAT (Kent 2002) with sensitive parame-

ters to establish ground truth. Parameters of the 16 aligners in
our panel were adjusted to report multiple alignments
(Supplemental Table S3). NomapQ filtering was undertaken.
The precision and recall values were determined for each read
with 100 or fewer BLAT hits. The average values of precision
and recall were used to calculate the F1-measure (Fig. 12).
Bowtie1 (best strata) performed well overall (F1 = 0.908

for rice and 0.808 for human), although with other para-
meter settings, Bowtie1 scored poorly for precision. Micro-
RazerS scored highly in the human read set when
compared to rice, while Segemehl scored higher for the rice

FIGURE 7. Alignment of short simulated Illumina-like mRNA-derived sequences to the genome. For panels A and C, 21-nt read results are shown.
Green bars denote correctly mapped reads, yellow bars denote incorrect mapping to protein-coding locations, purple bars represent incorrect map-
ping to non-mRNA and non-hairpin loci, and gray bars denote reads unmapped or below map quality threshold. Red bars denote incorrect mapping
to hairpin loci; these are plotted on enlarged axes for visibility. Precision, recall, and F0.25 statistic are summarized for read lengths 16–25 nt for O.
sativa (B) and H. sapiens (D).
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read set than human. Bowtie2 scored only moderately well
(F1 ∼0.7 to ∼0.8) compared to other aligners, which was
largely due to lower precision. These results identify mappers
suitable for multimapping read analysis.

DISCUSSION

Read mapping is an early step in smRNA-seq data analysis,
therefore the choice of mapper may influence downstream
results including differential expression or novel smRNA
identification. The use of simulated read sets allows empirical
evaluation of mapper sensitivity and specificity given that the
origin of the reads is known a priori. This strategy is the stan-
dard for determining of read mapper accuracy (Holtgrewe
et al. 2011). Prior work in the evaluation of smRNA detection
and quantification was performed using real sequence data,
where it is impossible to determine absolute accuracy due to
lack of ground truth (Li et al. 2012). A recent study using sim-
ulated reads examined a small numberofmicroRNApipelines
and did not test general-purpose aligners (Williamson et al.
2013). Our work is the first evaluation of smRNA aligner ac-
curacy using simulated reads incorporating sequence varia-
tions that are relevant to microRNA biology in plants and
animals. Our evaluation shows a considerable difference be-

tween alignment softwares in terms of accuracy in the case
where short hairpin-derived reads are mapped to a genome.
The optimal selection of a mapper for smRNA-seq analysis

will depend on the distribution of lengths, inclusion/exclu-
sion of multimapping reads, polymorphism types and error
profiles in smRNA-seq data. In our analysis of public
smRNA-seq data, we find that size distribution can vary con-
siderably between experiments. This variability may be tech-
nical and due to the manual excision of a narrow DNA band
from polyacrylamide gels, a step commonly used to exclude
adapter-only fragments. Differences observed in the propor-
tion of sequence variants are also likely to have some techni-
cal basis, with varying sequencing chemistry versions, base
calling software versions, cluster densities, library prepara-
tion kit versions among other factors playing some role in ad-
dition to biological variability. Overall, 3′ NTE are the most
common sequence variation type in human smRNA-seq
data followed by SNM. In rice, SNM are the most common
at up to 0.7% of bases.
Regarding uniquely mapped read analysis, Subread,

BBMap, and Stampy with default settings yield mapping rates
<50% for 21-nt reads and as such, show poor sensitivity
compared to other aligners and are therefore not recom-
mended for smRNA-seq mapping. Bowtie1 with default

FIGURE 8. Summary of unique mapping accuracy. Each aligner is assigned a rank based upon its F0.25 score for each test (1; most accurate, 35; least
accurate). These include ART-simulated 21-nt reads (ART), simulated realistic reads (SIM), perfectly matching reads (PERF). Read sets containing 3′
NTE, 5′ NTE, single-nucleotide mismatches (SNM), insertions (INS), and deletions (DEL). Overall rank is based on the sum of ranks for each test
excluding insertions and deletions. For GNUmap and Mosaik, the optimized hash sizes for rice and human alignments are summarized on one line.
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settings demonstrated poor accuracy in most tests and pro-
vided the third lowest accuracy overall. A recent report
has highlighted considerable strand-bias in Bowtie1 when
using the default settings and cautioned that this is likely
to have negatively impacted previously published analyses
(Axtell 2014). In contrast, Bowtie1 using the “best strata”
setting was highly accurate in our tests (including multi-
mapped reads), and is used inmicroRNAprediction pipelines
such as miRDeep2 and microRNA target prediction (Star-

Base) (Friedländer et al. 2008; Hackenberg et al. 2011).
Despite being considered a specialist smRNA aligner, Micro-
RazerS scored only moderately in most tests compared to ge-
neral-purpose short read aligners but was highly ranked
for accuracy with human multimapping reads. SOAP2 and
GEM were accurate with perfectly matching reads but gave
poor alignment rates and accuracy with 3′ and 5′ NTE. These
observations suggest these aligners may not correctly identify
NTE in real smRNA-seq data. SOAP2 was accurate with

perfectlymatching reads includingmulti-
mapped reads, but performed poorly
with SNM-containing reads and so may
prevent identification of A-to-I editing.
GNUMAP scored moderately in most
tests, including good results for multi-
mapping reads, but required hash size
optimization for each reference genome.
STAR is one of the fastest aligners for

RNA-seq data (Dobin et al. 2013), and
among the top-ranked aligners for accu-
rately mapping NTE reads but showed
poorer handling of SNM. Using STAR
with the no-intron (ni) option produced

FIGURE 9. Assessment of aligner accuracy using simulated small RNA-seq experiments. MicroRNA expression fold changes and Illumina-like read
sets were generated by Polyester (three control and three treatment samples) and were aligned to the reference genome, followed by read counting and
differential analysis. (A–C) Oryza sativa test. (D–F)Homo sapiens test. (A,D) MDS plots for simulated small RNA-seq data sets, only control data sets
are shown. (B,E) Pairwise correlation scatterplots for one sample (c1). (C,F) Occurrence of true positives (TP), false positives (FP), false negatives
(FN), alongside F1 and F0.25 statistics for lists of differentially expressed genes after differential analysis with edgeR (FDR≤ 0.05).

TABLE 4. Alignment metrics for a real human smRNA-seq data set

Mapper

Uniquely
mapped

(%)
Mismatch
rate (%)

Assigned
(%)

Unassigned
ambiguity

(%)

Unassigned
no features

(%)
Detected
genes

bt1 82.8 ± 8.3 0.21 35.7 ± 7.2 24.6 ± 5.5 22.5 ± 5.0 1242
bt1bs 45.8 ± 7.9 0.12 22.1 ± 4.9 18.9 ± 4.5 4.8 ± 1.4 557
bt2vsl 42.1 ± 8.9 <0.001 21.7 ± 5.1 18.8 ± 4.5 1.6 ± 0.5 426
bwa 44.8 ± 8.1 0.13 21.9 ± 4.9 18.8 ± 4.5 4.0 ± 1.3 515
mr 48.3 ± 7.8 0.54 21.6 ± 4.6 20.2 ± 4.7 6.5 ± 2.1 578

Small RNA data from 12 samples (GEO accession GSE60036) were mapped using default
Bowtie1 (bt1), Bowtie1 best strata (bt1bs), Bowtie2 very sensitive local (bt2vsl), default
BWA (bwa), and MicroRazerS (mr). Detection threshold is 10 reads per sample on average.
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marginally better results across most tests compared to the
default settings. Subread (mir settings) does not map reads
<19 nt with the parameters used, but at longer read lengths,
performs well in mapping NTE containing reads. BWA is
commonly used in smRNA-seq analysis and showed good ac-
curacy with SNM containing reads but only moderate sensi-
tivity with perfectly matching reads <18 nt; running BWA
disallowing gap openings yielded marginally better results
in most tests compared to the default settings. Results from

OLego were similar to BWA in most tests. SMALT aligner
(k12.s2 setting) was very accurate with NTE-containing reads
but did not score highly with perfectly matching reads. Bow-
tie2 (vs) was accurate with perfect reads but intolerant of
NTE and SNM. Bowtie2 (vsl) performed well throughout
most tests, especially 3′ NTE reads.
Overall Bowtie2 with the “very sensitive local” option was

ranked the most accurate mapper in our tests, and is our
recommendation for analysis of uniquely placed reads.

FIGURE 10. Effect of different mapping algorithms on detection of microRNA genes and genes of other classes. Human smRNA data (from
GEO accession GSE60036; Guo et al. 2015) were mapped with Default Bowtie1 (bt1), Bowtie1 best strata (bt1bs), Bowtie2 very sensitive local
(bt2vsl), MicroRazerS (mr), and BWA. (A) Number of genes of varying Ensembl biotypes detected above the expression threshold (10 reads per
sample on average). (B) Overlap between lists of detected genes based on different alignment algorithms. Only miRNA and protein-coding genes
are shown. (C) Multidimensional scaling plot for three selected data sets: SRR1535280, SRR1535283, and SRR1535293. (D) One data set
(SRR1535280) was selected to show the Pearson correlation in tag counts for different aligners. Pearson correlation coefficient shown in upper
diagonal and scatterplot of tag counts in lower diagonal. (E) Profile of sequence mismatches across read length for all data sets. (F) Base mis-
match profile for all data sets.
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Bowtie1 with “best strata” setting could be appropriate when
SNMs are more frequent than NTEs. Whereas Bowtie1 does
not give an estimation of mapping quality (i.e., either 0 or
255), Bowtie2 does provide this feature and is useful for mod-
erating the effects of ambiguously mapped reads. When spe-
cifically looking for accuracy in aligning multimapped reads,
Bowtie1 “best strata” was ranked highly in both rice and hu-
man tests and is our recommendation. In large genomes such
as human and rice, indel-containing smRNA-seq reads are
not accurately mapped with any software, and as such it
may be prudent to disallow internal gaps in read alignments.

Our comparison of selected mappers with real human
smRNA-seq data demonstrates that the choice of mapper is
likely to have an impact on the detection of RNA editing,
with sequence mismatch rates being strongly affected by
the choice of mapper, consistent with previous RNA editing
studies (de Hoon et al. 2010). Importantly, differential
smRNA expression results from simulated and real data
were strongly affected by the choice of alignment software,
with default Bowtie1 performing worst in the simulated dif-
ferential miRNA-seq test, and in real smRNA-seq identifying
a relatively large number of protein-coding DEGs not

FIGURE 11. Effect of mapping algorithms on differential expression of microRNA genes and genes of other classes. Comparison of the results of
differential smRNA analysis with different aligners. Human smRNA data (from GEO accession GSE60036; Guo et al. 2015) were mapped with
Default Bowtie1 (bt1), Bowtie1 best strata (bt1bs), Bowtie2 very sensitive local (bt2vsl), MicroRazerS (mr), and BWA. (A) Number of significant
DEGs (FDR < 0.05) from each Ensembl gene biotype class determined by edgeR with data produced by these four mapping procedures. (B)
Overlap between lists of differentially expressed genes based on different alignment algorithms. Only miRNA and protein-coding genes are shown.
The five mappers were used to determine expression of miR-125b-1 (C) and miR-33b (D) before and after Actinomycin D treatment. Error bars
denote standard deviation. (E) P-value curve of edgeR results for each of the five mappers evaluated. (F) Tagwise dispersion distribution determined
by edgeR analysis for each of the five mappers evaluated. The common dispersion values are shown (inset).
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identified by other mappers. Bowtie2 “very sensitive local”
detects fewer genes and DEGs as a likely consequence of its
higher mapping stringency. Importantly, we also show that
Bowtie2 with very sensitive local settings provides better ac-
curacy with simulated differential miRNA-seq data and in
real data analysis generates smaller P-values for true positives
compared to other aligners and this is not solely due to mul-
tiple testing correction but smaller measures of variation
(dispersion).

MATERIALS AND METHODS

Quantification of sequence modifications
in smRNA-seq data

Thedistribution of smRNA-lengths aswell as the abundance ofmod-
ifications (NTEs, SNMs, and indels) were determined from real
smRNA-seq data. Rice and human smRNA-seq datawere download-
ed from GEO (www.ncbi.nlm.nih.gov/geo/), with the following ac-
cession numbers: GSE26357, GSE62200, GSE49816, and GSE60036
(Barrera-Figueroa et al. 2012; Mestdagh et al. 2014; Xu et al. 2014;
Guo et al. 2015). SRA toolkit (v2.1.7) was used to convert to fastq
format and after removing bases with base call quality less than 20
and adapter clipping (FastxToolkit v0.0.14), the reads were mapped
to the respective genomes with BWA (v0.7.10) and Bowtie2 (v2.1.0)
with default settings. Oryza sativa and Homo sapiens reference
genomes were downloaded from Ensembl (Oryza_sativa.IRGSP-
1.0.26.dna.genome.fa.gz and Homo_sapiens.GRCh38.dna.primary_
assembly.fa.gz). Reads with mapQ<20 were omitted from down-
stream analysis. A custom UNIX shell script was used to determine
read length distribution and abundance of NTEs, internal SNM

and indels in sequence tags located within
known microRNA hairpin regions obtained
from miRbase (Kozomara and
Griffiths-Jones 2014). All custom scripts
have been deposited to SourceForge (https
://sourceforge.net/projects/microrna-
alignment-evaluation/).

Simulation and mapping of Illumina-
like 21-nt miRNA sequences

Simulated 21-nt microRNA reads with realis-
tic error profiles were generated with ART
(Huang et al. 2012) using miRbase hairpin se-
quences as templates. The read sets comprised
80,400 rice reads and 128,980 human reads
that equates to 100-fold coverage over hairpin
containing genomic loci. These read sets
and those described in the following sections
are available in our SourceForge repository.
Sixteen short read mappers were selected,
and used to identify unique genome align-
ments. The software versions, command lines
used and references for all aligners including
those optimized are shown (Table 2). Hash-
or seed-based mappers BBMap, GNUMAP,
MicroRazerS, Mosaik, and SMALT were ini-

tially optimized for k-mer size based upon a modified F-measure
(see below) for 21-nt rice reads with a minimum mapping quality
of 20 (Supplemental Table S1). For most other aligners, we tested
othermapping parameters including those suggested by the software
authors or those described in previous reports.

Evaluating mapping accuracy

Bedtools intersect was used to determine whether reads aligned to
miRbase hairpin regions (Quinlan and Hall 2010). Reads were clas-
sified as “correctly mapped” if they were mapped to a location of the
original hairpin; “incorrect miR” if they were mapped to a different
hairpin location; “incorrect other” if they mapped to a non-hairpin
location; “unmapped” if below the mapQ threshold or not mapped
at all. Precision is defined as the proportion of mapped reads that are
placed correctly. Recall is defined as the proportion of reads that
align with mapQ value over the specified threshold. For each map-
per, an optimummapQ value was determined based upon the mod-
ified F-measure. MapQ thresholds tested were: 0, 1, 2, 3, 4, 5, 10, 15,
20, 25, and 30 (Supplemental Table S2). The F-measure is a sum-
mary statistic of precision and recall. For analysis of uniquely
mapped reads, we utilize the F0.25 measure (β = 0.25) that weights
precision approximately four times more than recall.

Evaluating mapping accuracy with synthetic
read sets of variable length or containing
sequence variations

Synthetic sequence reads were generated from hairpin regions at
each nucleotide (nt) position with lengths 16–25 nt using a cus-
tom script. Any reads with identical duplicate sequences were re-
moved. The rice read sets contained 28,056–30,846 sequence tags
and the human read sets contained 28,226–42,071 sequence tags.

FIGURE 12. Alignment of 18–24 nt hairpin-derived multimapping reads. Precision and recall
were calculated for each read based upon ground truth estimated from BLAT mapping positions.
The mean values for precision and recall are reported for each test. (A) Oryza sativa reads. (B)
Homo sapiens reads.
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Synthetic 21-nt reads were mutated using the msbar utility from the
EMBOSS package (Rice et al. 2000). Up to two single nucleotide
mismatches (SNM), single nucleotide insertions, and single nucleo-
tide deletions were incorporated. Single indels up to 2 nt in length
were also incorporated using msbar. To simulate nontemplated ex-
tension (NTE), up to four randomnonreference bases were added to
the 3′ or 5′ ends using a custom script.

Evaluating mapping accuracy with short
protein-coding tags

We again utilized ARTwith the default settings to generate short tags
derived from protein-coding cDNA sequences at lengths from 16 to
25 nt. Any protein-coding gene that overlaps a miRbase21 hairpin
region was excluded from the template sequence set. The read sets
comprised (1,933,571–3,034,322) rice reads and (1,102,243–
1,734,494) human reads that equates to twofold coverage over pro-
tein-coding loci.

Effect of aligner accuracy on differential
expression analysis

We utilized Polyester software (Frazee et al. 2015) to simulate fold
changes and fastq read sets for miRbase hairpin loci with two sample
groups each with three replicates. Fold change values used were 0.5,
1, and 2, with proportions 0.05, 0.9, and 0.05, respectively. Fastq files
were generated with an average of 100 reads per transcript, a length
of 21 nt and built-in “illumina 4” error profile. Reads were mapped
to the respective genome using Bowtie1 (default), Bowtie1 (best
strata), Bowtie2 (vsl), BWA (df), and MicroRazers (sl18.se.pa).
Summarization of read alignments was performed by feature
Counts (Liao et al. 2014) with miRbase v21 hairpin annotation
and Ensembl protein-coding gene annotation (Homo_sapiens.
GRCh38.78.gtf). For Bowtie2 (vsl) and BWA (df), the optimized
mapQ threshold identified previously was used. Genes with fewer
than 10 reads per sample on average were excluded from down-
stream analysis. Multidimensional scaling analysis was performed
using the cmdscale function in R. Correlation analysis was per-
formed by the Pearson method to compare the same data sets pro-
cessed by different aligners. Differential analysis of sample group
replicates was performed by edgeR (Robinson et al. 2010). P-val-
ues≤ 0.05 after Benjamini–Hochberg false-discovery rate (FDR) ad-
justment were considered significant.

Effect of aligner accuracy on expression quantification
and differential expression calling

Small RNA-seq data from a recently submitted data set (Guo et al.
2015) (GEO accession GSE60036) underwent conversion to fastq
format, quality trimming and adapter clipping as above, with a min-
imum read length of 16 nt. Reads were mapped to the human ge-
nome using Bowtie1 (default), Bowtie1 (best strata), Bowtie2
(vsl), BWA (df), and MicroRazers (sl18.se.pa). Mismatch profiles
were generated by RSeqQC (Wang et al. 2012).

Evaluating accuracy of multiply mapped reads

Synthetic sequence reads were generated at each nucleotide (nt) po-
sition of hairpin loci at lengths 18–24 nt as above, however reads

with identical duplicate sequences were retained and reads with
unique sequences were removed. This generated a single read set
for rice (20,147 tags) and human (20,774) with a range of lengths
(18–24 nt). Modifications to the alignment command lines are given
in Supplemental Table S3. In order to establish “ground truth”map-
ping of this read set, we used BLAT (Kent 2002) with the following
parameters “-minScore=10 -tileSize=8 -fine -stepSize=4” and ex-
tracted exact BLAT hits. Tags with >100 BLAT hits were excluded.
There were 18,371 and 19,600 tags from rice and human, respective-
ly, with 100 or fewer BLAT hits. For evaluating high-throughput
aligners, a custom script was used to determine true positives, false
positives, and false negatives for each sequence read with reference
to the BLAT result. Precision and recall was then calculated for
each read and the average values were reported for each alignment
software. The F1 measure was used to rank overall precision and re-
call for multimapping tests.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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