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Abstract. Given a learning task for a data set, learning it together
with related tasks (data sets) can improve performance. Gaussian process
models have been applied to such multi-task learning scenarios, based on
joint priors for functions underlying the tasks. In previous Gaussian pro-
cess approaches, all tasks have been assumed to be of equal importance,
whereas in transfer learning the goal is asymmetric: to enhance perfor-
mance on a target task given all other tasks. In both settings, transfer
learning and joint modelling, negative transfer is a key problem: perfor-
mance may actually decrease if the tasks are not related closely enough.
In this paper, we propose a Gaussian process model for the asymmet-
ric setting, which learns to “explain away” non-related variation in the
additional tasks, in order to focus on improving performance on the tar-
get task. In experiments, our model improves performance compared
to single-task learning, symmetric multi-task learning using hierarchical
Dirichlet processes, and transfer learning based on predictive structure
learning.

Keywords: Gaussian processes, multi-task learning, asymmetric set-
ting, negative transfer

1 Introduction

Analysis of brain signals is a prime example of data analysis tasks which could
benefit from successful transfer learning. Functional neuroimaging studies typi-
cally suffer from the “small n, large p” problem: the number of subjects n is small
but the dimensionality of the data p for each subject, obtained by methods such
as functional Magnetic Resonance Imaging (fMRI) is huge. In patient studies of
a brain disorder, there are practical limitations on how many patients can be ac-
cessed and measured, and in experimental neuroscience the problem is that the
larger the number of replications and variants needed, the less new neuroscience
can be done. Moreover, when generalizing across subjects, the brain physiology
and function are sufficiently similar that different brains can be matched, but the
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matching is only approximate. We study a classification task in which the goal
is to predict the stimulus given brain measurements of a certain user, utilizing
the measurements of other users on the same and different stimuli.

The task is more general, however. It has been shown that transferring knowl-
edge between several potentially related learning tasks has improved perfor-
mance. This scenario, termed multi-task learning [6] or transfer learning [14],
has gained considerable attention in the machine learning community in recent
years (see [11] for a recent review). Sharing statistical strength between tasks
can potentially compensate for having very few samples in the desired learning
task, and can make the inference more robust to noise.

1.1 Symmetric and Asymmetric Multi-task Learning

Transfer of knowledge between different tasks is useful only when the tasks
are related; if tasks are unrelated, negative transfer can occur, meaning that
the transfer distorts the model learned for a target task rather than providing
additional statistical strength. Therefore, a crucial part of multi-task learning
algorithms lies in the modelling of task relatedness, through the specification
and the learning of the dependency structure between tasks.

In general, existing multi-task learning approaches use a symmetric depen-
dency structure between tasks. This type of set-up, which we term symmetric

multi-task learning, assumes that all tasks are of equal importance. The set of
related tasks is learned jointly, with the aim of improving over learning the tasks
separately (the no transfer case), averaged over all tasks.

However, a common learning scenario is to learn a specific task (primary

task), while incorporating knowledge learned through other similar tasks (sec-
ondary tasks). For instance, in the neuroscience scenario mentioned earlier, we
are interested in learning about a specific patient’s response to a stimulus, but we
can transfer information from other patients’ responses to related stimuli to im-
prove learning. This asymmetric case, or transfer learning, requires the assump-
tion of an asymmetric dependency structure between tasks. Existing approaches
include reweighting-based methods [16, 3, 4] or learning of shared feature spaces.
An alternative has been to, in effect, use a symmetric multi-task learning method
in an asymmetric mode, by using the model learned from auxiliary tasks as a
prior for the target task [9, 12, 17].

Inspired by the Gaussian process (GP) models used earlier for symmetric
multi-task learning, we propose a novel and simple dependency structure for
asymmetric multi-task learning using GPs. This focuses on learning a target task
and learns to avoid negative transfer; this can be done conveniently in the GP
formulation, by adding task-specific processes which “explain away” irrelevant
properties. At the same time, flexibility of the GP framework is preserved.
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2 Dependency Structure in Multi-task Learning with

Gaussian Processes

Supervised learning tasks such as classification and regression can be viewed as
function approximation problems given the task inputs and targets; accordingly,
multi-task learning can be viewed as learning multiple, related functions. The
Gaussian process (GP) framework provides a principled and flexible approach
for constructing priors over functions. The GP framework has subsequently been
applied successfully to multi-task learning problems [20, 5, 1]. A crucial element
of these models is the way in which the dependency structure between the mul-
tiple functions is encoded through the construction of the covariance function.
However, current GP approaches do not address the problem of asymmetric
multi-task learning, and only consider symmetric dependency structures, which
we review in the following subsection.

2.1 Symmetric Dependency Structure

Suppose that there are N distinct inputs, X = [x1, ...,xN ]⊤, and M tasks, such
that yt,i is the target for input i in task t. We denote the vector of outputs for
task t as yt = [yt

1, ..., y
t
N ]⊤, and the N ×M vector of outputs for all M tasks, as

y = [y⊤

1 , ...,y⊤

M ]⊤. In the GP approach to the problem, it is assumed that there
is a latent function underlying each task, f1, ..., fM . Denoting the latent function
evaluated at input i for task t as ft(xi), a (zero mean) GP prior is defined over
the latent functions, with a covariance function of the form

〈ft(x)ft′(x
′)〉 = kT (t, t′)kx(x,x′) (1)

where kT is a covariance function over tasks, specifying the intertask similarities,
and kx is a covariance function over inputs. For regression tasks, the observation
model is yi,t ∼ N (ft(xi), σ

2
t ), where σ2

t is the noise variance in task t.
In [5], kT is defined as a ‘free-form’ covariance function, where kT (i, j) = KT

i,j

indexes a positive semidefinite intertask similarity matrix KT . Other methods
such as [19] have included a parameterised similarity matrix over task descriptor
features, but this could be restrictive in modelling similarities between tasks.
These types of priors essentially assume that each of the task latent functions
is a linear combination of a further set of latent functions, known as intrinsic
correlation models in the geostatistics field (see e.g. [15]). This idea was further
generalised in [1] to generating the task latent functions by convolving a further
set of latent functions with smoothing kernel functions.

2.2 Predictive Mean for Symmetric Multi-task GP

The predictive mean on a new data point x∗ in task j, for the multi-task GP
formulation of [5], is given by

f j(x∗) = (kT
j ⊗ kx

∗
)⊤Σ−1y where Σ = KT ⊗ kx(X,X) + D ⊗ I (2)
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where kT
j is the jth column of task similarity matrix KT , ⊗ is the Kronecker

product, kx
∗

= [k(x∗,x1), ..., k(x∗,xN )]⊤ is the vector of covariances between the
test input x∗ and the training inputs. The kx(X,X) is the matrix of covariance
function values between all training input points, and D is an M × M diagonal
matrix where the (j, j)th element is σ2

i .
To gain intuition into the form of the predictive mean, let us define the

M × N vector w = Σ−1y, and divide it into M blocks of N elements: w =
[w⊤

1 , ...,w⊤

M ]⊤. We can then rewrite (2) as

f j(x∗) =
M
∑

m=1

KT
m,j(k

x
∗
)⊤wm =

M
∑

m=1

KT
m,jµ

m
∗

(3)

where µm
∗

= (kx
∗
)⊤wm can be interpreted as the posterior mean of the latent

function at x∗ for task m, thus (2) is a weighted sum of posterior means for all
tasks, and the weights {KT

m,i}
M
m=1 are covariances between task j and all tasks.

Since KT is positive semidefinite, the sharing of information between tasks is
naturally symmetric, and all tasks are treated equally. However, we are interested
in an asymmetric setup, where we learn a primary task together with several
secondary tasks. Rather than modelling the relationships between secondary
tasks, we want to focus on the aspects relevant to learning the primary task.

2.3 Asymmetric Dependency Structure

f
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Fig. 1. Graphical model of the focused GP multi-task model, showing the relationship
between the function values of the primary and secondary tasks. Parameters of the
covariance functions omitted for clarity.

In the previous symmetric learning problem, the tasks were modelled as
conditionally independent on a set of M (i.i.d.) underlying functions, which
capture the shared structure between all tasks. In this section, we derive an
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asymmetric version of a GP framework for multi-task learning, by constraining
the secondary tasks to be conditionally independent given the primary task, such
that the shared structure between all secondary tasks is due to the primary task.

Similarly to the previous notation, let us denote the inputs to each task
as X. Suppose that there is one primary task, with targets yp = [yp

1 , ..., yp
N ]⊤,

with underlying latent function values fp = [fp(x1), ..., f
p(xN )]⊤. Suppose there

are M − 1 secondary tasks, where the targets for the ith secondary task are
denoted by ysi = [ysi

1 , ..., ysi

N ]⊤. The corresponding latent function values are
fsi = [fsi(x1), ..., f

si(xN )]⊤.
We are interested in learning the underlying function fp for the primary

task. Here, potentially related secondary tasks can help to learn fp; conversely
if we know fp, this could help to learn the functions underlying the secondary
tasks {fsi}. We can formalise this intuition by examining the GP predictive
likelihood on the secondary task function values, after training on the primary
task. However, first we need to define a joint prior over the primary and secondary
task function values. We start by making the assumption that {fsi} can be
decomposed into a ‘shared’ component (which is shared with the primary task)
and a ‘specific’ component. That is, for the nth input,

fsi(xn) = fsi,shared(xn) + fsi,specific(xn) . (4)

Further we assume that fsi,shared = ρsi
fp, that is, the shared component is

correlated with the primary task function. This may seem like a restrictive as-
sumption but assuming linear relationships between task functions has been
proved to be successful in e.g. [15, 5]. Now we can place a shared prior over each
fsi,shared and fp. The corresponding graphical model is presented in Figure 1.

Sharing between Primary and Secondary Task Functions. We place a
zero mean Gaussian process prior on fp, with covariance function kp, such that
the prior on the shared function is also a GP, with covariance function

〈

f t(x)f t′(x′)
〉

= kt(t, t′)kp(x,x′) where kt(t, t′) = ρtρt′ (5)

where ρt is the correlation of task t with the primary task, and ρp = 1, and f t

can denote either the primary task or any of the secondary tasks. Denoting the

task functions for the M −1 secondary tasks as fs =
[

(fs1)⊤, ..., (fsM−1)⊤
]⊤

, the
joint distribution over the shared function values is given by

p(fp, fs,shared) = GP

(

0,

[

Kpp K⊤

sp

Ksp Kss

])

(6)

where Kpp is the matrix of covariance function values from (5) between the
primary task points, Ksp evaluated between secondary and primary, and Kss

between secondary task inputs. Given the primary task function values, we can
then derive the predictive distribution on the shared components of the sec-
ondary tasks using the standard GP equations:

p(fs,shared | fp) = GP
(

KspK
−1
pp fp, Λ

)

(7)
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where Λ is a diagonal matrix whose elements are given by the diagonal of
Kss − KspK

−1
pp K⊤

sp. This approximation allows us to make a reduced rank ap-
proximation, and offers a computationally efficient solution to jointly learning
the covariance matrix across a large number of input points.

An interpretation of equation (7) is the posterior distribution of fp (the
primary task function) after observing the primary task function values fp, eval-
uated at all the secondary task inputs. This differs slightly from the standard
GP predictive equations in that the posterior mean for each secondary task s is
weighted by ρs, which models the correlation with the primary task. To illustrate
this, for secondary task l, the posterior mean f̄1,shared given fp:

f̄1,shared = ρlk
p(Xl,Xp)k

p(Xp,Xp)
−1fp = ρlµ

p
l

where we have used the notation: Xi is the set of input points for task i, and µp
l is

the posterior mean given covariance function kp and observations fp, evaluated
at Xl. Learning ρs during training can help to avoid negative transfer from
secondary to primary task.

Explaining Away Secondary Task-Specific Variation. We define the co-
variance function over fs,specific to be block diagonal in [Kspec

1 , ...,Kspec
M−1] with

respect to the tasks. These covariance functions have parameters specific to each
task: fs,specific ∼ GP(0,Kspec). This creates flexible models for the secondary
tasks, which can ‘explain away’ variation that is specific to a secondary task,
and unshared with the primary task. Since the primary task function values are
unknown, rather than estimating them directly we integrate over them:

p(fs) = GP
(

0,KspK
−1
pp K⊤

sp + Λ + Kspec
)

. (8)

Putting everything together, the resulting prior on all the task functions is

p(fp, fs) = GP

(

0,

[

Kpp K⊤

sp

Ksp KspK
−1
pp K⊤

sp + Λ + Kspec

])

(9)

2.4 Hyperparameter Learning

We can learn the hyperparameters of our model in (9) by optimising the marginal
log likelihood with respect to the hyperparameters of the covariance functions,
the task similarity vector [ρs1

, ..., ρsM−1
], and the parameters of the observation

model, given the inputs x and targets y. For regression, the observation model is
yi,t ∼ N (ft(xi), σ

2
t ), where σ2

t is the noise variance in task t, and for classification
we use a probit noise model p(yi,t | fi,t = Φ(yi,t(fi,t + b)), where Φ is the
cumulative distribution function for a standard Gaussian N (0, 1), and b is a bias
parameter. For the binary classification experiments in Section 5.2, we make an
approximation to the model likelihood using Expectation Propagation [10].
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3 Related Work and Discussion

In our focused multi-task GP, the pseudo-input locations are fixed as the inputs
to the primary task, such that they can explain the shared variation between
the primary and secondary tasks, and also between the secondary tasks. The
sparse GP method in [13] bears similarities to our model. This parameterises the
covariance function of a GP by learning a set of pseudo-input locations. In that
model, the pseudo-inputs summarise the variation of the data through assuming
that the function values are conditionally independent given the pseudo-inputs.

Recently there has been interest in asymmetrical GP multi-task learning
[7], where generalisation errors for the multi-task GP of [5] were derived for an
asymmetrical multi-task case, with one primary and one secondary task. How-
ever, this work did not derive a new model for asymmetric multi-task learning,
and focused on analysing the symmetric model.

The asymmetric dependency structure that we have presented uses a simple
idea to bias the model to learning the underlying function for the primary task,
by decomposing the underlying task functions for the secondary tasks as ‘shared’
and ‘specific’ components. The shared components are from a joint GP prior with
the primary task function. These are conditioned on the primary task function
values (7) such that this biases the shared variation between tasks to be due to
the primary task function, and a task specific weight, which is learned during
training. We additionally assume that the each of the secondary task functions
can also be explained by a process specific to it, by defining a block diagonal
covariance structure over the secondary tasks. This allows the model to ‘explain
away’ secondary task specific variation and focus the model on learning the
primary task.

In this first paper we make the simplifying assumption that the task of in-
terest is entirely composed of the shared function, and that there are no other
strong shared functions between other tasks. This model already proves useful
in a challenging fMRI task, demonstrating that the idea of asymmetric mod-
elling with explaining-away yields useful results, and it can be extended to more
general asymmetric modelling in later stages.

In brief, if there is reason to suspect detrimental shared variation between
other tasks, one can add additional GP functions which is shared between other
tasks but not with the primary task. The overall model can then learn which
shared function is a better explanation. As the number of tasks increases, the
number of possible sharing configurations increases (shared functions between
2,3,...,M tasks) and the complexity of the model quickly increases. This will be
studied in further work.

4 Examining the Generalisation Error for Asymmetric

and Symmetric Models

To examine the effect of the processes that are specific to a secondary task, we
look at the generalisation error on the primary task for the asymmetric two tasks
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Fig. 2. The posterior variances for the test locations x∗ ∈ [0, 1] given training points
from the primary task (XP = [1/3 2/3], plotted as ⋄) and secondary task (XS =
[1/5 1/2 4/5], plotted as ◦) for the symmetric case (top) and the asymmetric case
(bottom). Each plot uses corresponding values of ρ2 (see legend).

case in a similar manner to [7]. We investigate the influence of ρ, the degree of
“relatedness” between the two tasks. Suppose that we have training inputs XP

for the primary task, and XS for the secondary task. The covariance matrices
Csym and Casym, for the symmetric and asymmetric cases respectively, of the
noisy training data are given by:
Symmetric case

Csym(ρ) = Ksym(ρ) + σ2
nI where Ksym(ρ) =

(

Kp
PP ρKp

PS

ρKp
SP Kp

SS

)

(10)

Asymmetric case

Casym(ρ) = Kasym(ρ) + σ2
nI

where Kasym(ρ) =

(

Kp
PP ρKp

PS

ρKp
SP ρ2Kp

SS + (1 − ρ2)Ks
SS

)

(11)

where we have used the notation Kp
AB to denote the matrix of covariance values,

due to kp, evaluated between XA and XB . For the asymmetric case, the covari-
ance matrix for the secondary task comes from the ‘shared’ covariance function
kp with the primary task, and a ‘specific’ covariance function ks. The relation-
ship between the primary and secondary tasks due to the ρ’s comes directly from
(1) and (5) for the symmetric and asymmetric cases respectively.

4.1 Generalisation Error for a Test Point x∗

If the GP prior is correctly specified, then the posterior variance for a new test
point x∗ for the primary task (due to the noise free fp) is also the generalisation
error for x∗. The posterior variance at x∗ for the primary task is:

Symmetric case: σ2
sym(x∗, ρ) = k∗∗ − k⊤

∗
Csym(ρ)−1k∗ (12)

Asymmetric case: σ2
asym(x∗, ρ) = k∗∗ − k⊤

∗
Casym(ρ)−1k∗ (13)
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where k∗∗ is the prior variance at x∗, kp(x∗,x∗), and k⊤

∗
= (kp(x∗,Xp) ρkp(x∗,Xs))

We note that the target values y do not affect the posterior variance at the test
locations, and have omitted the dependence on XP , XS and σ2

n in the notation
for σ2

sym(x∗, ρ), σ2
asym(x∗, ρ) for clarity.

To illustrate the difference between the symmetric and asymmetric cases, we
plot the posterior variances as a function of x∗ in Figure 2, given two observations
for the primary task, and three observations of the secondary task (see figure for
more details). Following the setup in [7], we use a squared exponential covariance
function with lengthscale 0.11 for kp, noise variance σ2

n = 0.05, and, for the
asymmetric setup, a squared exponential covariance function with lengthscale 1
for ks.

Each plot contains 6 curves corresponding to ρ2 = [0, 1/8, 1/4, 1/2, 3/4, 1],
and the dashed line shows the prior noise variance. The training points from
the primary task (⋄) create a depression that reaches the prior noise variance
for all the curves. However, the depression created by the training points for
the secondary task (◦) depends on ρ. For the single task learning case (ρ =
0), there is no knowledge transferred from the secondary task. As ρ increases,
the generalisation error at the secondary task test points decreases. For the
intermediate ρ2 values (i.e. not 0 or 1 (full correlation)), our asymmetric model
gives a smaller posterior variance than the symmetric model at secondary task
locations, and therefore suggests better generalisation error.

4.2 Intuition about the Generalisation Errors

Given the illustrative example in the previous section, we sketch the relationship
between the generalisation errors for the primary and secondary tasks:

σ2
asym(x∗, ρ) ≤ σ2

sym(x∗, ρ) (14)

We show this by considering the covariance matrix at the secondary task points,
conditioned on the primary task points. This represents the residual uncertainty
about the secondary task points, given that we know the primary task points.
Denoting this quantity as A(ρ):

A(ρ)sym = Kp
SS + σ2

nI − ρ2Kp
SP (Kp

PP + σ2
nI)−1Kp

PS (15)

A(ρ)asym = ρ2Kp
SS + (1 − ρ2)Ks

SS + σ2
nI − ρ2Kp

SP (Kp
PP + σ2

nI)−1Kp
PS (16)

If A(ρ)asym � A(ρ)sym then:

A(ρ)−1
asym � A(ρ)−1

sym

v(ρ)⊤A(ρ)−1
asymv(ρ) ≥ v(ρ)⊤A(ρ)−1

symv(ρ)

k∗∗ − kp(x∗,XP )(Kp
PP + σ2

nI)−1kp(x∗,XP ) − v(ρ)⊤A(ρ)−1
asymv(ρ)

≤ k∗∗ − kp(x∗,XP )(Kp
PP + σ2

nI)−1kp(x∗,XP ) − v(ρ)⊤A(ρ)−1
symv(ρ)

σ2
asym(x∗, ρ) ≤ σ2

sym(x∗, ρ) (17)
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where we have used the Banachiewicz inversion formula to evaluate the ma-
trix inversions in (12) and (13), and we have defined v(ρ) = ρ(kp(XS ,x∗) −
Kp

SP (Kp
PP + σ2

nI)−1kp(XP ,x∗))
The asymmetric model has more flexibility than the symmetric model in the

modelling of the secondary task, since it uses both fp and fs, rather than just fp.
We expect that A(ρ) for the asymmetric version would be smaller than for the
symmetric since the additional flexibility should allow more accurate modelling
of the covariances between the secondary task points, and hence the asymmetric
generalisation error should be smaller than the symmetric.

5 Experiments

In this section, we demonstrate the performance of the focused multi-task GP
model on a synthetic regression problem, and compare it with alternative models
on an asymmetric multi-task classification problem on fMRI data. In all experi-
ments, we use squared exponential covariance functions with automatic relevance
determination (ARD) prior: k(x,x′) = σ2

s exp(− 1
2

∑

d(xd−x′

d)
2/l2d), where σ2

s is
the overall scale and ld is the lengthscale for the dth input dimension, initialized
to 1. This prior is used for both primary and secondary task functions.

5.1 Synthetic Data

Synthetic data are generated as follows (see Fig. 3. All the functions are func-
tions of the same input x, 100 samples evenly spaced on the interval [-5, 5].
The primary task function is generated from fp ∼ GP(0,Kp), where the kernel
function is squared exponential with length scale 1. The secondary task func-
tions are generated according to fm

s ∼ GP(αmfp, βmKm
s ). Each specific kernel

function is squared exponential with lengthscale 1, and αm is drawn at random
from N (0, 1), βm at random from [0, 1]. We assume a Gaussian observation noise
model, since this is a regression problem.

We remove 50 samples from the primary task (see Fig. 4b), and use them as
test data. We train the model with different numbers of secondary tasks, ranging
from 0 (single task learning) to 24. We repeat the procedure 10 times, randomly
drawing the secondary task functions for each run. Figure 4 (b) shows the mean
of the posterior distribution (black) over the primary task function for one of the
runs, for different numbers of secondary tasks. We also plot the true underlying
primary function (blue line), showing that the model can predict the missing
part of the primary task function by transferring information from secondary
tasks. Figure 4 (a) shows that the mean squared error on the test set decreases
as the number of secondary tasks increases.

5.2 fMRI Data

We evaluate the performance of our model on fMRI data, taken from [8]. Six
healthy young adults participated in two identical sessions, in which they re-
ceived a continuous 8-min sequence comprising of auditory, visual and tactile



Focused Multi-task Learning Using Gaussian Processes 11

−5 0 5
−5

0

5

−5 0 5
−5

0

5
−0.4764,  0.98914

−5 0 5
−5

0

5
0.75974,  0.066946

−5 0 5
−5

0

5
0.92607,  0.9394

−5 0 5
−5

0

5
−0.23984,  0.018178

−5 0 5
−5

0

5
−0.55464,  0.68384

−5 0 5
−5

0

5
0.63784,  0.78374

−5 0 5
−5

0

5
0.075189,  0.53414

−5 0 5
−5

0

5
−0.073,  0.88536

−5 0 5
−5

0

5
−2.5685,  0.899

−5 0 5
−5

0

5
0.46913,  0.62594

−5 0 5
−5

0

5
0.055499,  0.13787

−5 0 5
−5

0

5
0.11385,  0.2178

−5 0 5
−5

0

5
−0.70013,  0.18214

−5 0 5
−5

0

5
−0.10234,  0.04182

−5 0 5
−5

0

5
−1.635,  0.10694

Fig. 3. Synthetic data experiment: experiment setup. We show the functions underly-
ing the generated data: the primary task function (top left, red) and 15 examples of
secondary task functions (black). The weights of the shared and specific functions for
the secondary tasks are given above each plot.

stimuli in blocks of 6 × 33s. The stimuli of different senses never overlapped.
Whole-head volumes were acquired with a Signa VH/i 3.0 T MRI scanner (Gen-
eral Electric, Milwaukee, WI) using a gradient EPI sequence (TR = 3 s, TE = 32
ms, FOV = 20 cm, flip = 90o, 64×64×44 voxels with resolution 3×3×3mm3).
In each session, 165 volumes were recorded with the 4 first time points excluded
from further analysis. Preprocessing of the fMRI data included realignment,
normalization with skull stripping, and smoothing. For additional details on
the measurements and applied preprocessing, see [18]. After preprocessing, the
dimensionality was reduced to 40 by spatial independent component analysis
(ICA) that identified spatial brain activation patterns related to various aspects
of the stimuli. For each adult, the resulting data is 161 sets of ICA features
(40 dimensional), which can be classified according to one of 6 stimuli (‘touch’,
‘auditory’ (tones, history, instruction), ‘visual’ (faces, hands, buildings)).

We consider the task of predicting whether a subject is reacting to a partic-
ular stimulus, ‘touch’, given the fMRI data. We aim to improve the learning of
this primary task by learning it in conjunction with other, related tasks from the



12 Gayle Leen, Jaakko Peltonen, Samuel Kaski

0 5 10 15 20
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Number of secondary tasks

m
e
a
n
 s

q
u
a
re

d
 e

rr
o
r 

o
n
 p

ri
m

a
ry

 t
a
s
k

(a)

(b)

Fig. 4. Synthetic data experiment: results of learning with the proposed asymmetric
multi-task Gaussian process model. (a) Mean squared error on the primary task test
set, over 10 runs, for different numbers of secondary tasks, error bars represent ±1
s.d. (b) Posterior distribution over the primary task function for different numbers of
secondary tasks (given above each plot).
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other subjects. This can be formulated as 6 one-against-all classification tasks
in an asymmetric multi-task setup (see Table 1). For each subject the fMRI
measurements were done in two separate sessions; in the experiments we use the
first session as training data and the second session as test data.

Table 1. Asymmetrical multi-task set up for fMRI data study

Subject Classification Task

1 (primary) ‘touch’ against all
2 (secondary) ‘touch’ against all
3 (secondary) ‘touch’ against all
4 (secondary) ‘touch’ against all
5 (secondary) ‘auditory’ (instruction) against all
6 (secondary) ‘visual’ (buildings) against all

We compare the focused multi-task learning approach (‘focused MT-GP’)
with four reference models. The first baseline model is single task learning using
GP classification (‘single task GP’), trained only on the samples of the primary
task. The second (‘pooled GP’) learns a GP classification model from the train-
ing examples from all tasks (i.e. treating all data as a single task) For ‘pooled
GP’ we use a sparse approximation when the number of training examples > 300,
using 30 pseudo-inputs. We also compare to two state-of-the-art methods, one
developed for transfer learning and the other multi-task learning: the predictive
structure learning method of [2] (‘AZ’), and the symmetric multi-task learn-
ing with Dirichlet process priors method (‘DP-MT’) from [17]. For the ‘AZ’
method, the we fix the dimension of the shared predictive structure heuristically
to h = 26, after performing PCA across all the training samples (primary and
secondary) and find the dimension of the subspace that explains 80% of the
variance.

We evaluate the methods using a fixed number of training examples in the
primary task (64 and 161), while varying the number of training examples in
each secondary task (ranging from 4 to 160)), over 5 repetitions. Due to the class
imbalance in the data, when randomly picking a subset of secondary training
task examples, we ensure that there is at least one positive and one negative
example. For the GP-based methods, we also fix the bias parameter b = Φ−1(r),
where r is the ratio of positive samples to negative samples in the training data.

Figure 5 displays the classification error on the test set for the primary task,
over different numbers of training examples for the secondary tasks, for 64 train-
ing examples in the primary task (a) and 161 (i.e., all available training examples
for the primary task) in (b).

Pooling of samples seems to always be a bad choice on this data and, some-
what surprisingly, DP-MT does not work well either. Both work only roughly
equally to single-task learning for small numbers of secondary task data and
the performance worsens as amount of secondary data increases. Hence it seems
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(a) Number of primary task training examples = 64

(b) Number of primary task training examples = 161

Fig. 5. Classification error on test set for primary task, against number of training
examples in each secondary task for different primary task training set size (a: small,
b: larger)
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that the secondary data here differs from primary data to the extent of causing
negative transfer. AZ seems to work better but at most on the same level as
single task learning. More work would be needed for model selection, however,
which might improve performance.

Focused MT-GP seems able to leverage on the secondary tasks, clearly out-
perfoming others including single task learning when the amount of data in the
primary task is small. Multitask learning is most relevant when the primary task
has little data; Focused MT-GP performs well in this scenario. When primary
data has more data single task learning improves rapidly, although in Figure 5
Focused MT-GP still outperforms it. Focused MT-GP seems to need more than
a few samples in the secondary tasks in order to perform well; the explanation
is probably that for this data it is hard to distinguish between useful and nega-
tive transfer, and more data is needed to make the choice. Bad performance of
pooling and symmetric multi task approaches supports this interpretation.

6 Conclusion

We derived a multi-task Gaussian process learning method, the ‘focused multi-
task GP’, designed for asymmetrical multi-task learning scenarios, to facilitate
improved learning on a primary task through the transfer of relevant informa-
tion from a set of potentially related secondary tasks. The novel dependency
structure was formulated based on the GP predictive distribution over the sec-
ondary tasks given the primary task, and constraining the secondary tasks to be
conditionally independent. After observing the primary task, the primary task
function can be used to predict a part of each secondary task, depending on the
degree of task relatedness, which is learned during the optimisation. The model
also permits each secondary task to have its own task-specific variation which is
unshared with the primary task, and this flexibility should cause the model to
focus on modelling the primary task function well. We demonstrated the model
on synthetic data and an asymmetrical multi-task learning problem with fMRI
data, and showed improved performance over baseline approaches, and a state
of the art transfer learning and multi-task learning method.
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