
Shimada et al.  1 

 

Carvedilol Reduces the Severity of Atherosclerosis in Apolipoprotein E-Deficient Mice 

via Reducing Superoxide Production 

 

Kana Shimada; Emi Hirano*; Takeshi Kimura; Masatoshi Fujita*; Chiharu Kishimoto 

 

Departments of Cardiovascular Medicine and Human Health Sciences*, Graduate School of 

Medicine, Kyoto University, JAPAN  

 

Short title: β-blockers in apo E-deficient mice 

 

 

 

 

Address for correspondence: Chiharu Kishimoto, MD, PhD 

  Department of Cardiovascular Medicine  

     Graduate School of Medicine, Kyoto University 

     54 Kawara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan 

     Tel: 81-75-751-3197, Fax: 81-75-751-4281 

     E-mail: kkishi@kuhp.kyoto-u.ac.jp 

 

mailto:kkishi@kuhp.kyoto-u.ac.jp


Shimada et al.  2 

 

ABSTRACT 

It has been shown that oxidative stress may play an important role in the development of 

atherosclerosis and carvedilol has the capacity of reducing oxidative stress. Accordingly, we 

assessed the hypothesis that carvedilol may reduce the severity of atherosclerosis in 

apolipoprotein (apo) E-deficient mice in addition to its hemodynamic effects. Atherosclerosis 

was induced in apo E-deficient mice fed a high fat diet containing 0.3 % cholesterol. Mice 

were orally treated with propranolol (30mg/kg/day), metoprolol (75mg/kg/day), and 

carvedilol (10mg/kg/day) over 8 weeks (each group n=7~9). Fatty streak plaque developed in 

apo E-deficient mice, and was suppressed in mice treated with all the three drugs. The 

accumulation of macrophages and expression of CD4
+ 

and CD8
+ 

cells in the lesions were 

decreased by the treatment of the drugs, of which carvedilol was the most effective. In 

addition, carvedilol reduced superoxide production in aortic walls detected by ethidium 

staining. There were no significant changes in blood pressure among the study groups. The 

heart rates in the treated groups were decreased by 4 % to 12 % compared with the control 

group with carvedilol yielding the highest suppression of heart rate. The β-blocker treatment 

did not significantly modify the serum lipid profiles. Carvedilol may suppress atherosclerosis 

via reducing superoxide production, in addition to the hemodynamic modifications in this 

animal model.  
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INTRODUCTION 

 Inflammation and many kind of stresses, especially oxidative stress and free radicals, 

may be considered to be key factors for the development of atherosclerosis.
1,2

 For example, 

angiotensin II is a major mediator of oxidative stress by activating NADH/NAD(P)H oxidase 

via the type 1 receptor, which results in the production of superoxide anion.
3, 4

 Thus, 

angiotensin II has deleterious effects on the vessel walls. Carvedilol, a multiple-functional 

neurohormonal antagonist, has been shown to provide a greater benefit than traditional β

-blockers in chronic heart failure because of its antioxidant actions that synergize with its 

nonspecific β- and α1-blocking effects
5
. When carvedilol and metoprolol were recently 

compared in clinical trials for heart failure, each showed beneficial β-blocking effects and 

decreased serum thiobarbituric acid reactive substance levels
6
. However, it was demonstrated 

that the superior cardioprotection of carvedilol to metoprolol and propranolol is induced by its 

anti-inflammatory action in ischemia and reperfusion models
7,8

.  Nevertheless, it largely 

remains to be determined how carvedilol protects against experimental atherosclerosis.   

 In the present study using apolipoprotein E-deficient mice, we have provided evidence 

for suppressive effects of atherosclerosis by carvedilol, focusing upon inhibitory effects for 

superoxide. In addition, to determine whether the effects of carvedilol are attributable solely 

to the hemodynamic effect or whether antioxidant property may also be involved, the effects 

of propranolol and metoprolol were also assessed in the same animal model. 

 

MATERIALS AND METHODS 

Experimental Atherosclerosis 

 The apolipoprotein E (apo E)-deficient 129ola×C57BL/6 hybrid mice were generous 
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gifts of Dr. Edward M. Rubin (University of California, Berkeley, CA). These mice were 

mated with C57BL/6 mice to produce F1 hybrids. The F1 apo E
+/-

 mice were then backcrossed 

to C57BL/6 mice for 10 generations. Mice homogeneous for the apo E-null allele on a 

C57BL/6 background were subsequently generated. Male mice were subjected to the 

subsequent experiments. The mice were kept in a temperature-controlled facility on a 

14:10-hour light-dark cycle with free access to food and water. 

 After being weaned at 4 weeks of age, mice were fed a normal chow diet (Oriental 

Yeast) until 6 weeks of age, when the animals were switched to a high fat diet containing 20% 

fat and 0.3% cholesterol as previously described.
9, 10

 

 The experimental protocols were approved by the institutional ethics committee for 

animal experiments of Kyoto University.  

Treatment Protocol 

 At 6 weeks of age, mice were orally treated via their drinking water with saline (control 

group, n=9), 30mg/kg/day of propranolol (propranolol group, n=9), 75mg/kg/day of 

metoprolol (metoprolol group, n=8), and 10 mg/kg/day of carvedilol (carvedilol group, n=7) 

for 8 weeks. The dosage of the drug was determined from the previous reports and the 

preliminary study.
11

 The blood pressure and heart rate were periodically determined by the 

tail-cuff method using a photoelectric cuff detection system (Softron BP-98A, Tokyo, Japan) 

as previously described.
11

 At 14 weeks the mice were killed by puncture of the ventricle under 

ether anesthesia. The organs were weighed, and the ratio of heart weight to body weight was 

calculated. 

Tissue Processing 

 Mice were killed by bleeding with puncture of the ventricle. The vasculature was 
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perfused with sterile phosphate buffered saline (PBS) and 6.8% sucrose. The root of the aorta 

was dissected under a microscope and frozen in OCT embedding medium for serial 

cryosectioning covering 1.0 mm of the root. The first section was harvested when the first 

cusp became visible in the lumen of the aorta. Four sections of 6 m thickness were harvested 

per slide, and thus 8 slides per mouse were prepared. All sections were immersed for 15 sec in 

60% isopropanol, stained for 30 min in a saturated oil-red-O solution at room temperature, 

counterstained with hematoxylin, and then mounted under coverslips with glycerol gelatin.
 

The oil red-O-stained sections were analyzed at a magnification of x10, as previously 

described.
 9,10 

The image was captured directly from the RGB camera attached to the light 

microscope and displayed on a microcomputer to quantify the cross-sectional surface area of 

the lesion and the cross-sectional surface area of the vessel. The fractional area of the lesion 

was calculated by dividing the whole vessel area, including the lumen intima, media and 

adventitia as previously described.
 9,10

 

Superoxide Production 

 To evaluate in situ superoxide production from the aorta, unfixed frozen cross sections 

of the specimens were stained with dihydroethidium (DHE; Molecular Probe, OR) according 

to the previously validated method.
12-14 

In the presence of superoxide, DHE is converted to 

the fluorescent molecule ethidium, which can then label nuclei by intercalating with DNA. 

Briefly, the unfixed frozen tissues were cut into 10-m thick sections, and incubated with 

10M DHE at 37C for 30 min in a light-protected humidified chamber. The images were 

obtained with a laser scanning confocal microscope. Superoxide production was demonstrated 

by red fluorescence labeling. 

 For quantification of ethidium fluorescence from aortas, fluorescence (intensity  area) 
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was measured using a high-power image. 

Immunohistochemistry 

 Anti-macrophage (anti-M, M 3/84, 1:400, PharMigen), anti-CD4(GK1.5, 1:50, 

PharMigen), and anti-CD8 (53-6.7, 1:50, PharMigen) antibodies were applied to 

acetone-fixed cryosections of aortic roots. After being washed, the sections were then exposed 

to second antibodies (horseradish peroxidase-conjugated or fluorescein 

isothiocyanate-conjugated antibodies), and the antibody binding was visualized with the so 

called diaminobenzidine method or under a fluorescence microscope. Sections were 

counterstained with methyl green or Mayer’s hemotoxylin if necessary. 

 The positive staining cells were counted in several fields at  400 magnification (within 

a 1-mm
2 

grid), and the percentages of the positive-staining cells / total infiltrating cells were 

calculated, as previously described.
9,15

  

Lipid Measurement 

 Serum was separated by centrifugation and stored at – 80C. Serum total cholesterol 

(TC) and triglyceride (TG) levels were measured. 

Statistical Analysis 

 Values were expressed as means  standard deviation (SD). Statistical analysis of the 

data was performed by one-way ANOVA, followed by the Fisher protected least- significant 

difference test. A value of P<0.05 was considered statistically significant. 

 

RESULTS 

Organ Weights (Table 1) 

 Heart weight to body weight ratios were not significantly different among the study 
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groups. 

Atherosclerotic Lesions (Table 2, Figure 1) 

 Apo E-deficient mice were kept on a cholesterol-rich diet for 8 weeks to induce fatty 

streak formation. The surface areas covered by fatty streak lesions were quantified in oil 

red-O-stained samples, and specimens from the control group were compared with those of 

β-blocker groups. Controls developed extensive lesions in the root of the aorta. In mice 

treated with β-blockers, the fraction area of lesions was reduced compared with the controls. 

Carvedilol suppressed the development of atherosclerosis the most of all the drugs. 

Superoxide Production (Table 2, Figure 1) 

 Ethidium fluorescence in the carvedilol group was significantly weaker than that in the 

control group as, specifically, the brightness of DHE-stained lesions from carvedilol treated 

mice was less than that from control mice. Metoprolol and propranolol treatment failed to 

suppress the superoxide production significantly compared with the control. By consideration 

with the previous report and the current study
13

, it may be that the origin of superoxide might 

be mainly from macrophages by their adjacent position, and partly from endothelial cells. 

Macrophage and T Cell Expression (Table 2, Figure 2) 

 The accumulation of macrophages and expression of CD4
+
 and CD8

+
 T cells in the 

lesions were decreased by the treatment of the drugs compared with the control. 

Hemodynamics (Table 1) 

 The heart rates in the treated groups were significantly decreased by 4% to 12% 

compared with the control group with carvedilol producing the greatest suppression of heart 

rate. There were no significant changes in blood pressure among the study groups. The results 

suggested that the three drugs have almost the same β-blocking property. 
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Lipid Profiles (Table 3) 

 The drugs did not significantly modify the serum lipid profiles.  

 

DISCUSSION 

 The present findings clearly demonstrated that the three β-blockers showed almost the 

same extent of negative chronotropic effects upon apoE-deficient mice, that metoprolol and 

propranolol slightly reduced the severity of the disease, and that carvedilol markedly reduced 

the severity of atherosclerosis. The present results also showed that the superior 

cardioprotection of carvedilol over metoprolol and propranolol might be due to the 

suppression of tissue superoxide production.  

 There is increasing evidence to support the critical role of both free radicals and 

oxidative stress in the development of atherosclerosis
16-19.

 We have already demonstrated that 

MCI-186, a free radical scavenger and olmesartan, an angiotensin type 1 receptor antagonist, 

suppresses the severity of experimental atherosclerosis.
10

 Indeed, angiotensin stimulation has 

been reported to produce free radicals from various cells.
20

 Free radicals from vessel walls are 

thought to play critical roles in atherogenesis. It is considered that free radicals induce the 

expression of adhesion molecules and chemokines, accelerate atherosclerotic plaque 

formation, increase matrix metalloprotease production, and finally cause vulnerable plaques.
21 

Superoxide anion is one of free radical members. 

 Carvedilol blocks three (β１, β2, α1) adrenergic receptors and therefore possesses a 

more comprehensive sympatholytic action than other β-blockers.
22,23 

 It is unlikely that the 

atheroprotective effects of carvedilol demonstrated in this study is achieved by β-receptor  

blocking action per se, because of the presence of such a protection by the metoprolol and 
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propranolol treatments. Although the present study did not precisely elucidate the role of  

α1-receptor blocking action per se, it is also unlikely thatα1 blockade is predominantly 

involved in the atheroprotection of carvedilol, because the vasodilatory effect of carvedilol is 

no longer prominent during chronic treatment.
11,24

 Recently, another new aspect of carvedilol 

regarding the inhibitory action against spontaneous Ca
2+ 

release of cardiac ryanodine receptor 

in heart failure has been reported.
25

 

 It is well known that heart rate reduction may play a protective role against the 

development of atherosclerosis.
26,27

 Concerning the relative doses of the three β-blockers 

used in the present study, we compare the drug effects at similar blood pressure levels. The 

three β -blockers presented almost the same negative chronotropic action. The 

anti-atherosclerotic effects of β-blockers in animal models were already reported in part, 

which were due to hemodynamic modification
28,29

 as well as anti-oxidative effects.
30,31

 In the 

present study, we clearly demonstrated that carvedilol suppressed not only the tissue 

superoxide production but macrophage accumulation with T cell expression in aortic walls. 

Immunohistochemical study showed that macrophage accumulation and the intensity of DHE 

staining in the aortic wall were very close. It has already been established that the degree of 

unstablity of plaques correlates with the amount of macrophages and T cell expression.
21

 Thus, 

the decrease of the intensity of macrophage and T cell expression in aortic walls may reflect 

the decrease of unstability of plaques by carvedilol treatment. 

 In conclusion, carvedilol treatment protects against experimental atherosclerosis in apo 

E-deficient mice by the suppression of superoxide production in the atherosclerotic lesions. 

The superior anti-atherosclerotic effects of carvedilol to metoprolol and propranolol may be 

attributed to the suppression of tissue superoxide production in addition to the hemodynamic 
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modifications. 
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FIGURE LEGENDS 

Figure 1. Effects of β-blockers on atherosclerotic lesions and superoxide production 

The lesions in the drug-treated mice (B,C,D) were smaller and covered less inner 

circumference of the aortic root than those of the control mouse (arrows) (A). The 

intensity of ethidium fluorescence (white arrows) was less than that in control group 

( A ), suggesting less amount of superoxide production and the decrease of oxidative 

stress by the treatment. Carvedilol (D) was most effective. Insets boxes show 

magnified sample for DHE staining. 

            A= Control 

            B= Propranolol 

            C= Metoprolol 

            D= Carvedilol 

Oil-red-O stain( 40) 

                 DHE stain( 100) 

Figure 2. Effects ofβ-blockers on macrophage expression  

The expression of macrophages(M) (white arrow-heads) in the drug-treated groups 

(B,C,D) was less than that in control group(A).  

            A= Control 

            B= Propranolol 

            C= Metoprolol 

            D= Carvedilol 

 







Table 1. Hemodynamics 

 

(MeanSD) 

*P<0.05 vs Control. 

HR, heart rate; SBP, systolic blood pressure; DBP, diastolic wood pressure HW, heat weight; BW, body weight. 

There were no statistical differences among the 3 β-blockers for each parameter. 

 

 n HR 
beats/min 

SBP 
mmHg 

DBP 
mmHg 

HW/BW 
mg/g 

       Control 9 64445 1068 677 6.500.35 

Propranolol 9  58130* 10612 7111 5.880.45 

       Metoprolol 8 61656 10813 658 5.950.82 

       Carvedilol 7  56741* 11811 7011 6.840.60 



Table 2. Lesion Area 

 

(Mean±SD) 
*P<0.05,**P<0.01 vs Control.           
  Mφ,Macrophage. 
+Data were obtained by the number of positively stained cells by all the counterstained cells inside the  
  internal elastic lamina. Three to 5 random microscopic fields were analyzed at ×400. 
§For quantification of ethidium fluorescence, fluorescence(intensity × area) was measured using a high-power  
  image. Three to 5 microscope fields were analyzed. 
There were no statistical differences among the 3 β-blockers for each parameter. 

  
n 

 
Lesion area, μm2 (%) 

Positive cells (%)+  
Ethidium fluolescence (units)§ Mφ CD4 CD8 

Control 9 110.1±59.5×103 (14.1±7.6) 25.3±5.3 27.0±9.6 12.6±4.2 1.00±0.09 

Propranolol 9 65.2±30.7×103  (8.4±3.9)* 15.5±4.8* 20.4±8.3 8.5±4.4 0.90±0.08 

Metoprolol 8 55.8±17.5×103  (7.2±2.2)** 16.2±3.5* 18.4±5.5 7.7±3.9 0.79±0.12 

Carvedilol 7 44.9±15.6×103  (5.7±2.0)** 4.2±4.0** 8.8±3.9** 5.7±4.2**   0.64±0.09* 



Table 3. Lipid Profiles 

 

(Mean±SD) 
TC, total cholesterol;TG, triglyceride. 

  
n 

TC 
mg/dl 

TG 
mg/dl 

Control 9 1382±232 40±18 

Propranolol 9 1504±265 33±14 

Metoprolol 8 1260±177 55±50 

Carvedilol 7 1405±349 
 

62±35 


