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Cutinase—A New Tool for Biomodification of Synthetic Fibers
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INTRODUCTION

Synthetic fibers represent almost 50% of the worldwide
market of textile fibers. Major characteristics of syn-
thetic fibers are their hydrophobicity and low reactivity
with most common chemical agents.’ The low hydro-
phobicity makes those fibers less suitable to be in con-
tact with the human skin, and the low reactivity makes
the fiber unsuitable to act as carrier to other chemical
finishing agents. Strong alkaline treatments can im-
prove hydrophilicity and chemical reactivity of syn-
thetic fibers but the treatment extension is hard to
control, leading to unacceptable levels of strength loss.*
Various attempts to overcome these difficulties were
done before, using esterase enzymes to modify poly(eth-
yleneterephthalate),”? and nitrilases to modify poly-
acrilonitrile fibers.?

Cutinase was chosen for the modification of synthetic
fibers because it is described as esterase that degrades
cutin, a structural polyester of plants.* Cutinase is a
serine hydrolase with low specificity that is known to
hydrolyze p-nitrophenyl esters and soluble and insoluble
triglycerides.*

Correspondence to: A. Cavaco-Paulo (E-mail: artur@
det.uminho.pt)

Journal of Polymer Science: Part A: Polymer Chemistry, Vol. 43, 2448-2450 (2005)
© 2005 Wiley Periodicals, Inc.

2448

In this article, we describe the use of Fusarium
solani pisi cutinase to modify the surface of textile
synthetic fibers like polyester, polyamide 6.6, and
acrylics. In polyester, the cutinase hydrolysis yields
terephthalic acid and etylenoglicol. In polyamide, the
cutinase hydrolysis yields hexamethylenediamine and
adipic acid. The cutinase hydrolysis of acrylics (consti-
tuted by polyacrylonitrile and ~ 7% of vinyl acetate as
comonomer) yields acetic acid, leaving vinyl alcohol at
the fiber surface.

EXPERIMENTAL

In this work we used a wild-type cutinase from Fusar-
ium solani pisi, that was overproduced by the Saccha-
romyces cerevisiae SU50 strain transformed with the
expression vector pUR7320, as described.” The cuti-
nase was obtained in the extracellular medium in a
crude form with a purification degree between 50 and
70% in relation to total protein in the culture medium
as previously described® and used after cell separation
by centrifugation without any further purification. The
crude preparation had no protease activity measured
as azocasein.

The activity of cutinase was based in the conversion of
p-nitrophenylpalmitate (pNPP) into p-nitrophenol” and
followed spectrophotometrically at 405 nm. The activity



Table 1. Enzymatic Activity on Synthetic
Heterogeneous Substrate

Substrates Activity (U¥)
p- nitrophenyl palmitate (pNPP) 1
Polyamide ~23x1073
Polyester ~25X%X10°°
Acrylic ~4x10*

* 1 Unit is the conversion of 1 micromole of substrate per
minute. See Experimental section for details.

in polyamide substrate was determined by the production
of hexamethylenediamine quantified with the TNBS
method by Morgsl et al.® in which the primary amines
react with the sodium salt of 2,4,6-trinitrobenzenesulfo-
nic acid (TNBS). A protein pre-elimination step was per-
formed with trichloroacetic acetic before the amine quan-
tification. The activity in polyester substrates was deter-
mined by following the production of terephthalic acid in
the bath solutions treatment?; the absorbance was read
at 240 nm. The activity in acrylic substrates was deter-
mined by detection of acetic acid, using kit no. 0148261
from Boheringer. The protein concentration was mea-
sured in the bath solution using the Bradford method, at
595 nm.? The results shown in Table 1 compare the dif-
ferent substrates.

All activity and treatment measurements were done
in phosphate buffer (50 mM) at 37 °C and in a time
range of 4 min for pNPP and several hours for fiber
substrates. Activities were calculated in the linear area
of substrate conversion. Control experiments were done
at time zero with enzyme and buffer solution.

The treatment of polyamide 6.6, polyester, and
acrylics with cutinase enzyme was done in an Ahiba pot
reactor with mild agitation at 30 °C using conditions
described in Figure 1. All fabrics were rinsed thor-
oughly with 2% sodium carbonate solution for protein
removal (with negative staining levels with Coomassie
Brilliant Blue G dye®), then dried and used for reactive
dyeing. The conditions for dyeing were: Polyamide (2%
o.w.f. of reactive red 66; 50 gL."! of NaCl; temp. 60 °C;
during 90 min.; reductive washing with sodium hydro-
sulfite (2 gL.~1)); Polyester (1% o.w.f. of reactive black 5;
50 gL.~* of NaCl and 10 gL~ ! of Na,COs; temp. 60 °C;
during 90 min.; reductive washing with sodium hydro-
sulfite (2 gL.™1)); Acrylic (2% o.w.f. of reactive blue 19;
50 g L™ of NaCl and 10 g L™ ! of Na,COj; temp. 70 °C;
during 90 min.). Mild postwashing with a reductive
agent for polyamide and polyester was performed to
remove dye excess that was not covalently bound.

Sensitivity of Reactive Dyeing to Identify the
Superficial Amino and Hydroxyl Fiber Groups

Reactive dye molecules are composed of a chromophoric
structure linked with a reactive group.'® The reactive
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vinylsulphonic groups (in CI Reactive Blue 18 and CI
Reactive Black 5) react specifically with hydroxyl
groups under alkaline conditions, and the bromoacryl-
amide (in CI Reactive Red 66) groups react specifically
with amino groups under slightly acidic conditions.®
We have adapted the use of cotton reactive dyes and
wool reactive dyes to track, respectively, hydroxyl and
amino groups at the surface of synthetic fibers. Those
dyes have not been designed to have affinity for syn-
thetic fibers; therefore, only the dyes that react with
hydroxyl and amino groups will stay on the fiber. This
is a direct method to quantify hydroxyl and amino
groups at the fiber surface, and it is very sensitive due
to large extension coefficients of the chromophoric
structures. Just a few amino or hydroxyl superficial
groups at the fibers will produce visible differences
measured by reflectance spectrometry as K/S units.

RESULTS AND DISCUSSION

The relative activities of cutinase over a soluble sub-
strate (pNPP) and the fiber substrates are shown in
Table 1. One activity unit over soluble substrate pNPP
yields lower activities over fiber substrates in the range
of 1072 at 1075, The detection of soluble reaction prod-
ucts for the fibers by cutinase action can only be mea-
sured after several hours, while for pNPP it can be seen
in the range of a few minutes. All those synthetic fiber
substrates have closed packed structure,! and it can be
expected that a big enzyme molecule (> 24 kDa) will
modify only the surface of synthetic fibers in a slow
kinetic process. As described in the Introduction, cuti-
nase was chosen for fiber modification due to its hydro-
phobic nature and because it was designed by nature to
act on cutin plant polyesters. Most of its outer amino
acid residues closed to the active site are hydrophobic,
possibly enhancing better enzyme—fiber interactions.'*

K/S vs. Time of treatment/Units (U/L)
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Figure 1. K/S (% of increase towards control sam-
ples) of polyamide (2.42U_ ¢inase/g 0of PA), polyester
(0.013U,¢inase/g of PES), and acrylic (treated for 90 h)
samples. See Experimental section for dyeing details.



2450 J. POLYM. SCI. PART A: POLYM. CHEM.: VOL. 43 (2005)

The action of esterases on PET was described be-
fore,? and the action of a cutinase over PET is expected
since this enzyme was designed by nature to act on
polyesters. We report here for the first time the action
of cutinase on vinyl acetate (comonomer in acrylic com-
mercial fiber), and this fact is not unexpected since
cutinase is described as an nonspecific esterase acting
on several soluble and insoluble esters*. Surprisingly
we found that cutinase could hydrolyze amide bonds of
polyamide fibers. Apparently, there are a lot of ami-
dases that share the same catalytic triad with esterase
enzymes.* Also, the hydrophobic nature of this fiber®
might enhance the polyamide chain docking in the ex-
posed cutinase active site'! and therefore the hydroly-
sis of polyamide. However, the mechanism of this reac-
tion is not completely clear to us and further studies
are needed.

We further tracked the changes at the fiber surface
by reactive dyeing after enzymatic action (Fig. 1). The
enzyme action leaves hydroxyl groups (in the case of
polyester and in the comonomer of acrylic) and amino
groups (in the case of polyamide). In Figure 1 we see
the increase of amino and hydroxyl groups at the fiber
surface, formed due to cutinase action. The reaction is
somewhat slow (reaction times higher than 24 h) for a
possible industrial application of this technology. The
modification of acrylic fibers with cutinase yields the
lowest increase of color, because very few units of vinyl
acetate are present (approximately 1 in 20 units) to be
modified by cutinase.

Cutinase has a higher activity on polyamide than on
polyester (Table 1) but the reverse can be seen on the
formation of end groups at the fiber surface (Fig. 1).
The activity on polyamide and on polyester was mea-
sured as soluble amino and carboxylic groups of mono-
mers and oligomers produced by enzymatic action. The
relation between produced end groups on the fiber and
soluble reaction products in solution depends on the
mode of action of the enzyme and also on the solubility
of the monomers/oligomers produced. Solubility data
indicate the adipic acid is more soluble by a factor of 5
than terephthalic acid, as well as that oligomers of

polyester are less soluble than the short oligomers of
polyamide 6.6. Therefore, more free ends are at the
fiber surface of polyesters, yielding high color intensi-
ties (Fig. 1). Since we have used the same enzyme, the
solubility difference between oligomers of polyester and
polyamide seems to better explain the relation between
end groups on the fiber and soluble reaction products.

The results of this study show the ability of cutinase
to modify synthetic fibers containing ester or amide
groups. This enzyme has an “hydrophobic head” nearby
the active site; therefore, it constitutes an ideal tool for
the modification of hydrophobic fiber surfaces.'!
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