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Abstract 

The use and utility of computational models in drug development has significantly grown 

in the last decades, fostered by the availability of high throughput datasets and new data analysis 

strategies. These in silico approaches are demonstrating their ability to generate reliable 

predictions as well as new knowledge on the mode of action of drugs and the mechanisms 

underlying their side effects, altogether helping to reduce the costs of drug development. The aim 

of this review is to provide a panorama of developments in the field in the last two years.

 

Highlights

 A variety of computational methods and tools are used in QSP and QST, with different 

degrees of maturity. 

 PBPK models are well established and applied in a wide variety of scenarios.

 Pharmacogenomics and toxicogenomics data are employed to gain mechanistic 

understanding

 Cellular signaling models are mostly used to predict treatment response in cancer.

 GSMN models allow easy integration of mechanistic knowledge.

 Multiscale and multi-component models constitute the frontier of the field.

Introduction

Quantitative Systems Pharmacology (QSP) is a relatively new discipline that combines 

systems biology approaches with methods of quantitative pharmacology [1]. The combination of 
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computational and experimental methods via QSP approaches provides a systems level 

understanding of the mechanism of action of drugs while leveraging on the accumulated data on 

approved or failed drugs. In a similar way, Quantitative Systems Toxicology (QST), emerged as 

new paradigm for toxicity assessment [2], focuses on understanding the adverse effects of drugs, 

from molecular alterations to phenotypic observations, by integrating computational and 

experimental methods [3]. QST merges methods of classic toxicology with systems biology 

modeling and quantitative measurements of molecular and functional changes occurring upon 

drug treatment at different levels of biological organization (cell, tissue, organ, organism) [2]. 

QST approaches have proven useful to optimize dose and schedule drug regimens, potentially 

minimizing costly phase I/II clinical trials [4,5]. By integrating in vitro cell toxicity data with 

multiscale in silico modeling of drug exposure, QST models could become an efficient tool to 

assess and predict drug toxicity [3]. Moreover, a better understanding of biological responses to 

drugs will reduce uncertainties in species extrapolations, and allow the prediction of treatment 

responses considering the patient genetic variability or pre-existing diseases.

The present review is focused on presenting and discussing the recent advancements in 

computational methods used in QSP and QST, which support three crucial aspects of the drug 

development process: i) the understanding and prediction of drug pharmacokinetics, ii) the 

understanding and prediction of drug toxicity, and iii) the translational perspective of the pre-

clinical assessment.

Physiologically based pharmacokinetic models

Physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) modeling has 

become a widely adopted tool in the industry to obtain a quantitative characterization of 

concentration–time profiles in different organ and tissues across human populations. A recent 

survey showed that around 70% of pharmaceutical companies use pre-clinical PBPK/PD 

modeling in all therapeutic areas [6]. The wide adoption of these modeling approaches has been 

facilitated by the availability of several PBPK commercial platforms [7], and by 

recommendation of regulatory agencies [8]. The main goal of PBPK modeling is to describe 

drug absorption, distribution, metabolism and elimination (ADME) within the body. The 

prediction of drug exposure in plasma but especially in the site of action of the drug is of high 

pharmacological relevance, because drug concentration in certain body compartments may be 
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difficult or impossible to be experimentally measured [7]. State of the art PBPK/PD models are 

composed of hundreds of ordinary differential equations (ODEs) describing physiological 

processes involved in ADME. The parameters in the model are obtained from prior knowledge 

available in the literature or calculated from specific and carefully validated formulas [7]. 

Although the primary focus of a PBPK model is on physiological variables, biochemical 

information is considered for drug transporters and metabolic enzymes, which play a role in drug 

transport and metabolism. 

PBPK models have been used to represent particular disease states or specific patient 

groups, such as pediatric patients or pregnant women [9] as well as to predict drug-drug 

interactions [10–16], food-drug interactions [17–19], drug formulation effects [20,21], cross-

species extrapolation [22–24], and constitute key components of multiscale models [25]*. 

PBPK models can be combined with transcriptomics data to investigate mechanisms of 

drug toxicity [26,27]* and carcinogenicity [28]. Furthermore, PBPK models can be expanded by 

adding mechanistic models of gene regulation and signaling pathways. For instance, a PBPK 

model was coupled with the miRNA-BDNF pathway to study perfluorooctanesulfonic acid 

induced neurotoxicity [29]. In another study, Mason et al. combined PK and mechanistic models 

to estimate the dose and time of ingestion in paracetamol poisoning, using traditional and 

experimental serum biomarkers in mice [30]**.

Although PBPK models are widely used for the prediction of ADME, other types of 

modeling approaches are required to gain insight on the mode of action of compounds, especially 

at the cellular level.  

Toxicogenomics data analysis

The use of transcriptomics to characterize the cell response to a particular compound is 

widely applied in both QSP and QST. DNA microarray technologies have allowed monitoring 

the changes of the expression levels of thousands of genes simultaneously after the exposure to a 

given drug, setting the foundations for the field of toxicogenomics. The most popular resources 

for toxicogenomics are summarized in Box 1. One of the challenges in the field is how to 

translate changes in gene expression into actionable information for understanding the biological 

mechanism of toxicity of drugs. To address this challenge, several approaches have been 
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proposed, including the analysis of gene signatures, gene set enrichment analysis, and gene co-

expression networks. 

Gene signatures analysis

Gene signatures analysis aims at obtaining a minimal list of genes that can be used to 

predict the toxic response to a compound. The underlying assumption is that compounds with 

similar mechanisms of action will have similar gene expression profiles, and that these gene 

expression profiles can be used to build gene expression signatures predictive of drug toxicity. A 

variety of methodologies have been proposed to identify these gene signatures. Among them, 

Connectivity Map-like analysis [31] aims at detecting similarities among gene expression 

signatures of different compounds using pattern-matching algorithms. This method has been 

successfully used to group chemicals based on their mode of action [32], to select potential new 

drug candidates for several cancer types [33], to characterize genes involved in the cell response 

to different chemicals by means of different features, such as evolution, topological properties in 

a protein interaction network and disease SNP density [34], and by integrative analysis with 

chemical structures and drug sensitivity data, to improve drug taxonomy and provide a 

comprehensive picture of drug-drug relationships [35]*. 

Another type of methods uses machine–learning techniques to derive the gene signatures. 

For example, Rempel et al. obtained a classifier that allows to separate histone deacetylase 

inhibitors from mercurials using human embryonic stem cells, thus demonstrating that the 

system is suitable for toxicant classification [36] and Giordano et al used different machine-

learning approaches to derive gene signatures from whole blood gene expression data to predict 

cigarette smoke exposure in humans [37]. 

Recently, a crowdsourcing-based project annotated and re-analyzed different types of 

gene expression profiles from Gene Expression Omnibus (GEO), including approximately 1,000 

drug perturbation signatures [38]. The manually curated signatures were used as training set to 

develop classifiers for extracting similar signatures from the entire GEO repository, and were 

made available at the Crowd Extracted Expression of Differential Signatures (CREEDS) web 

portal. Finally, TOXsIgN (for TOXicogenomic sIgNatures) is a resource that supports the online 

submission, storage and retrieval of toxicogenomic signatures of hundreds of compounds in 

humans, rats, mice or drosophila [39]. 
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Gene set enrichment analysis

Other way to analyze toxicogenomics data uses functional gene set enrichments to reduce 

dimensionality of the data and the experimental noise, and to suggest plausible biological 

hypotheses that explain the cellular response to drug treatment. The functional gene sets are 

obtained from resources such as Reactome [40], Wikipathways [41], Gene Ontology [42] or 

MsigDB [43]. Traditionally, the differentially expressed genes are compared to the gene sets to 

identify significant overlaps. This type of approach was used by Parmentier et al to characterize 

the gene signature underlying cholestasis in a modified human hepatocyte 2D-sandwich culture 

treated with five drugs [44]. 

A very popular method for analyzing gene expression data is gene set enrichment 

analysis (GSEA) [45]. In GSEA, genes are ranked based on a certain metric, for example, the 

expression level, with the goal to determine whether members of a given gene set tend to be 

located at the top (or the bottom) of the ranked gene list, in which case the gene set is assumed to 

be correlated with the associated phenotype or condition measured in the experiment. In this 

way, modest but coordinated changes in predefined sets of genes can be detected. In the context 

of toxicogenomics, GSEA has been able to pinpoint enriched pathways that could inform of the 

mode of action of a drug in a dose- and time-dependent manner. By combining this method with 

benchmark dose modeling [46], it is possible to estimate doses at which different cellular 

pathways are altered in toxicogenomic experiments  [47]. GSEA combined with structural data 

was used to detect compounds with similar structure that induce different transcriptional 

responses, and vice versa, drugs that elicit similar transcriptional responses but differ in their 

chemical structure [48]. In another example, GSEA analysis combined with machine learning 

was used to build a predictive toxicogenomics space (PTGS) tool, composed of over 1,300 genes 

distributed over 14 overlapping cytotoxicity-related gene space components. The tool is able to 

predict dose-dependent liver toxicity in hepatocytes, and drug-induced liver injury (DILI) in 

humans [49]**. 

Another method, Dose-Time Network Identification (DTNI) [50]*, infers gene co-

expression networks from toxicogenomics data considering both dose and timing of drug 

exposure. The method is based on a system of Ordinary Differential Equations (ODEs), whose 

parameters are estimated using regression techniques from the data and represent the interaction 
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strengths between genes. DTNI allows finding compounds that affect specific cellular pathways, 

and infering new gene interactions. DTNI was applied to reconstruct gene regulatory networks of 

four stress-related pathways (TP53, ER, NRF2, and NF-kB) in order to infer causal evidence for 

mechanisms explaining DILI and carcinogenicity [51]. In another recent example, Gene 

Ontology enrichment analysis of the gene signatures of 33 compounds in TG-GATEs was 

integrated with biomedical literature mining to describe human diseases associated to the same 

compounds and to identify links that support the suitability of in vitro and in vivo systems to 

model the physiological effects of drugs on humans [52]. 

Gene co-expression networks 

Gene set enrichment analysis is biased toward known biology captured in existing 

collections of gene sets and pathways. This is why co-expression network analysis, which does 

not rely on previous biological knowledge of the system, has emerged as an alternative data-

driven, unsupervised approach, which uses the property of gene co-expression upon drug 

perturbation to organize genes into networks.

The gene co-expression modules can be generated using different methodologies. For 

example, gene co-expression modules obtained with the Iterative Signature Algorithm [53] were 

used to predict acute kidney [54] and liver injuries [55]. While most studies relies on mRNA 

gene expression in response to drugs, Pang et al focused on regulation of gene expression by 

non-coding RNA to develop gene co-expression networks between lncRNAs and mRNAs, to 

pinpoint lncRNAs that could act as biomarkers of bisphenol A-induced neurotoxicity [56]. 

Another approach to obtain clusters from co-expression networks is weighted gene co-expression 

network analysis (WGCNA) [57]. Using this methodology, the TXG-MAP (‘toxicogenomic 

module associations with pathogenesis’) approach was proposed to characterize mechanisms of 

DILI [58]**. WGCNA approaches have also been used for drug repositioning in cancer using 

gene expression datasets from nine major human cancer types [59].

A recent survey carried out in the pharmaceutical industry has shown that toxicogenomic 

analyses are performed early in drug discovery with the aim to gather mechanistic insight on 

drug mode of action, but they are not yet widely used to predict the toxic effects of drugs [60]. 

One reason that explains the paucity in the adoption of this approach in toxicity assessment  is 

the difficulty in the interpretation of the results [61]. First, it is challenging to distinguish 
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changes in gene expression due to the physiological response to the drug from the ones related to 

toxicity mechanisms. Second, not all the drug toxicity effects will be related to changes in gene 

expression profiles. Third, since multiple cellular signaling pathways may converge to alter the 

expression of the same gene products, the identification of the upstream pathway responsible for 

the gene expression changes upon drug perturbation is not a trivial task. Finally, most drugs act 

through multiple mechanisms of action that depend on dose, timing and duration of exposure, 

and the particular condition and phenotype of the cell in which they act [61]. 

Modeling cellular signaling networks

Systems biology modeling can help to understand the mode of action of drugs and predict 

the behavior of a biological system in response to drug perturbations [62]. The molecular 

pathways used by cells to interpret signals from the environment are not linear, but 

interconnected by cross-talk mechanisms, giving rise to complex signaling networks. The action 

of drugs on these intricate cellular networks can result on either therapeutic or toxic effects [62]. 

Although a variety of systems biology approaches can been used in QSP and QST, the choice of 

the modeling approach to represent the cellular processes underlying drug action depends on the 

number of components to model, the type of data available, and the biological questions under 

investigation. Some of the most commonly used modeling strategies include physicochemical 

models based on sets of coupled ordinary differential equations (ODEs), logic modeling and 

graph-based approaches. 

ODE-based models are mechanistic, dynamical models that describe the behavior of the 

system over time using mass-action kinetics for the rates of production and consumption of the 

molecular species. A mature field in terms of dynamic, mechanistic models is cardiac 

electrophysiology, where ODE models are available since 1960 [63]. The O'Hara-Rudy dynamic 

(ORd) cardiac ventricular model, consisting of 4 compartments, 15 ion channels, 6 ionic fluxes, 

5 buffers, and CaMK [64] is one of the most widely used cardiac model, and has been recently 

adopted by regulatory bodies to base decisions on cardiovascular safety [65]. The ORd model 

has been extended in several ways to broaden its applicability, for instance to model gender 

differences in risk of arrhythmia [66], or by considering dynamic drug–hERG interactions and 

multichannel pharmacology [67]. Recently, Passini et al. showed that models of human 

ventricles based on the ORd model could better predict clinical risk of Torsade de Pointes 
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arrhythmias than experiments on animal models or on human induced pluripotent stem cell-

derived cardiomyocytes [68]**. Similarly, an in silico tool has been developed to predict drug 

induced alteration in the action potential and the QT interval by means of a multiscale model that 

incorporates molecular simulations of the blocking of several channels and simulations of the 

electrophysiology of a virtual tissue using ORd models, and that takes into account the effective 

free therapeutic plasma concentration of the drug [69]**.

Although quantitative, mechanistic models such as ODE-based are preferred, we often 

lack the detailed knowledge on biochemical processes required to apply them [70]. Therefore, 

logic models are used to describe processes comprising medium or large scale networks where 

detailed biological knowledge is incomplete [71]. This type of models has been applied to 

cancer, due to the relevance of signaling and regulatory networks in cancer development and 

therapy and the availability of relevant omics data. Different formalisms can be used to model 

signaling and regulatory networks (for a review see [72]). For instance, Boolean dynamic models 

were able to predict resistance to PI3K inhibitors in breast cancer and to suggest novel 

combinatorial therapies more effective than PI3K inhibition alone [73]. Stochastic Boolean 

network models were used to pinpoint candidate genes that, if suppressed, might have an impact 

in cell viability in breast cancer [74]. Synchronous and asynchronous Boolean networks can be 

used to predict therapeutic targets, for example, in bladder tumorigenesis [75]. Boolean models 

derived from signaling pathways and gene expression data were combined with drug target 

information and protein interaction data to prioritize candidates for drug repurposing in Triple 

Negative Breast Cancer, a subtype of breast cancer without specific therapeutic targets [76].

Morris et al. used a constrained fuzzy logic model of the signaling network activities in 

hepatocellular carcinoma to predict drug combinations of kinase inhibitors for the treatment of 

this cancer type [77]. The novelty of their approach resides in simulating the microenvironment 

of the tumor that modulates drug response by taking into account growth factors and 

inflammatory cytokines. This model predicted successfully drug combinations inhibiting 

tumor‐promoting signaling activities under diverse stimulation conditions.

Finally, graph-based methods are qualitative modeling approaches based on the structure 

of the network, which do not require information on kinetic parameters, and are therefore 

applicable to large-scale networks [78], in contrast to ODE-based approaches. Typically, they 

enable the identification of feedback loops and signal transfer routes in signalling networks. An 
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example of such approach was recently implemented using the Integer Linear Programming 

(ILP) algorithm to identify the mode of action of drugs [79]*. More specifically, for a given 

drug, the ILP identifies paths starting from the targets of the drug, through the signaling cascade 

to the transcription factors and finally arriving to the gene expression level. ILP was used to 

identify a cellular signaling network underlying drug induced lung injury using gene expression 

data for over 200 drugs from the Connectivity Map in combination with a knowledge-based 

functional network including protein interaction data and transcription factors information. The 

method allowed not only establishing the mode of action for the drugs and proposing molecular 

mechanisms underlying lung injury, but also predicting candidate drugs to treat lung injury [79]. 

A similar approach was used to build predictive models for drug‐induced cardiomyopathy [80]. 

Genome scale metabolic modeling

A key aspect of drug response is how drugs are metabolized in the body. Thus, multi-

scale QSP and QST models often include a component to model drug metabolism. In this regard, 

the development of Genome Scale Metabolic Networks (GSMNs) has allowed the mechanistic 

modeling of human metabolism at the level of cells, tissues and organs [81]. GSMNs are 

composed of hundreds of ODEs that are solved by constraint-based modeling (e.g. Flux Balance 

Analysis). To construct a GSMN, different types of data are integrated, including information of 

all known biochemical and transport reactions extracted from the literature, which are 

complemented with genomics, proteomics, and metabolomics data. Several human GSMN are 

currently available, including a global [82], and tissue-specific GSMNs, such as kidney [83], as 

well as cell-specific models for hepatocytes [81,84], adipocytes [85], enterocytes [86], and 

myocytes [87]. GSMNs have also been constructed for several organisms using a variety of tools 

[88]. A comprehensive GSMN for rat has been recently published [89]**. This rat GSMN has 

been used in combination with gene expression data to predict metabolites sensitive to particular 

toxicity response for rat and human hepatocytes exposed to more than 70 environmental 

toxicants and pharmaceuticals. To achieve this goal, they developed an algorithm called TIMBR 

that is able to estimate how the production of a metabolite is affected by changes in gene 

expression [89].  

GSMNs have also been used to predict chemical-induced hepatotoxicity, by integrating 

toxicity assays and transcriptomic data. This multilevel integration also allowed to characterize 
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the main metabolic pathways altered upon chemical perturbations which in turn, provide insight 

into the mechanisms of toxicity [90]. A similar approach was used to model drug-drug 

interactions between phenytoin and oral estradiol [91]. GSMN models can be combined with 

information on drug targets and drug side-effects to build models that allow to predict if a drug 

will induce a side-effect by examining the drug’s impact on genome-wide metabolic fluxes [92]. 

Multiscale modeling

Computational models that integrate different spatial, temporal and functional scales, to 

enable the description and simulation of the emergent properties of a system are now commonly 

applied in several areas, including ecology and human disease [93]. The development of the field 

has been boosted by the advent of omics technologies, capable of producing systems-level 

measurements for multiple types of biomolecules. Drug development has been proposed as “the 

ultimate multiscale optimization problem” since drug response is examined across temporal and 

spatial scales along all the phases spanned by the process of drug discovery: cell cultures, tissues, 

organs, organisms, and, finally, human populations [94]. Not surprisingly, many strategies of 

multiscale modeling in QSP and QST incorporate PBPK models because, on one hand, PBPK 

models are able to simulate effective doses across several levels of organization (cell, tissue, 

organ) and, on the other, they are mature and routinely used in drug development. A multiscale 

model for liver xenobiotic metabolism and toxicity that incorporates whole body, tissue (hepatic 

sinusoid), and sub-cellular levels (pathways for Phase I and Phase II metabolism) PBPK was 

developed by Sluka, et al. [95]. As a case study, they showed the results of evaluating the model 

for pharmacological doses of acetaminophen. 

Maldonado et al. [25]** proposed a methodology to expand PBPK models to incorporate 

whole-cell metabolism and gene expression regulation of key drug metabolizing enzymes. This 

approach introduces dependencies between the different model components combined in the 

multiscale model. The model uses PBPK, Hepatonet1 GSMN and the gene regulatory network of 

CYP3A4 developed with the MUFINS framework to describe the pharmacokinetics of 

paracetamol and its toxic metabolite NAPBQI in the context of patient chronic stress and patient-

specific liver metabolism [25]. This model allows for instance to identify metabolic reactions in 

the liver that can alter the production of GSH, and therefore affect the detoxification of drug 

metabolites and xenobiotics. Although the model was developed for illustrative purposes and not 
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to model the particular compound, the approach can be used to identify the enzymes catalyzing 

these reactions as potential pharmacogenes of interest for the toxicity of drugs. 

The integration of GSMN models with PBPK models can expand the later to account for 

whole cell metabolism, linking them to genomic information about metabolic enzymes, and 

enabling mechanistic assessment of drug-induced metabolic perturbations [25].  For instance, a 

GSMN model of a human liver was combined with a whole-body PBPK model for isoniazid to 

explain the mechanisms underlying DILI of this compound [96]. This combined model 

quantitatively shows how the isoniazid-induced metabolic perturbations are distributed and 

attenuated in the liver. Furthermore, the predictions of the model for several metabolites related 

to liver physiology, such as cholesterol, amino acids, and fatty acids were found to be in 

agreement with results in patients and animal models. 

Likewise, multiscale models have been developed to characterize the effects of drugs in 

cardiac electrophysiology [69,97]. Sahli Costabal et al. [97] modeled the propagation of the 

action potential duration at the cellular level, the excitation pattern across the left and right 

ventricles, and the QT interval at the organ level. To test the model, they used drugs that differed 

in the risk of producing Torsades de Pointes to show how the electrophysiological abnormalities 

propagate, from specific channel blockage, via altered single cell action potentials and prolonged 

QT intervals, to the emergence of ventricular tachycardia.

Translation from pre-clinical models to the clinical scenario

A deeper understanding of the differences in the physiological responses upon drug 

perturbation across organisms, but also across different type of experimental models (e.g. cell 

culture, organoids), should help to reduce uncertainties in model extrapolation [98]. Towards this 

goal, results from comparative genomics analysis between mouse and human show a global 

conservation of gene expression profiles, although the degree of conservation varies depending 

on the tissues and the genes that are compared [99]. In particular, a recent large scale study 

performed a characterization of the response to more than 100 different chemicals in rat liver in 

vivo and rat and human primary hepatocytes in vitro, using a modified GSEA [100]*. This 

analysis showed that the early toxicological response in vivo is recapitulated in human and rat 

primary hepatocyte cultures at the molecular level, indicating that these models are concordant in 

identifying key pathways in response to chemical stress. Strikingly, these results contradict those 
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of Sutherland et al., who performed a study using data from Drug Matrix and TG-GATEs and 

different models (rat and mouse liver and human and rat primary hepatocytes), and found high 

concordance for the same model and source of the data, but low concordance in the response in 

rodent liver versus cultured hepatocytes [101]. Importantly, these results show marked 

transcriptional changes induced by cell culture, comparable in magnitude to highly toxic drug 

treatments to rat liver. The main reason behind this seemingly contradictory results may lie in the 

way they evaluated the cellular response: while El-Hachem et al. [102] evaluated only a small 

number of pathways to predict toxicity, Sutherland et al. assessed the effects of the perturbations 

at genome scale. 

On the other hand, Shankaran et al. [103]* addressed the quantitative translation of 

predicted pre-clinical gastrointestinal (GI) toxicity of oncologic agents to the clinical scenario. 

The model was developed distinguishing the “system‐specific” parameters governing GI 

physiology from the “drug‐specific” parameters leading to drug toxicity. The system parameters, 

obtained from the literature, enabled to capture differences in GI physiology between rodents and 

humans. Their mathematical model incorporates known biology to predict GI toxicity and 

optimize dosing schedules for irinotecan to minimize clinical toxicity, based on rat GI toxicity 

data. The model is based on ODEs of intestinal cell dynamics that account for species-specific 

differences in GI turnover. The model was fit with pre-clinical data in irinotecan effects in rat 

and predicted human GI toxicity kinetics. It also succeeded to predict GI toxicity for novel 

dosing schedules, not yet tested in patients.

If we consider the metabolic point of view, there seems to be more translational 

concordance: the comparison between the reconciled rat and human metabolic networks showed 

that they differed only in eight enzymes, out of more than 2,000 proteins [89].

Incorporation of human variation data into QST and QSP models

Considering that inter-individual variation in drug response is essential to achieve safer drug 

treatment, and a necessary step towards personalized medicine, QSP and QST models should 

incorporate information on human genomic variation. In order to account for the genetic 

variation in human patients, a model has to include mechanistic details at the molecular level. 

Mechanistic models such as PBPK, GSMN, and especially systems biology models are well 

suited for assimilating this type of information. For example, Mih et al. integrated protein 
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structural information into GSMN models to explore the effects of sequence variation on drug 

responses in human erythrocyte metabolism [104]**. The assessment of the impact of genetic 

polymorphisms in genes involved in drug metabolism contained in PBPK models can help, for 

example, to identify individuals with variants leading to drug concentration outside the 

therapeutic window [25], or with an increased susceptibility to a certain type of toxicological 

event, for example with higher susceptibility to depolarization abnormalities. Nevertheless, in 

this type of approach, the  consideration of the genetic variation would be restricted to genes 

included in the models, which constitute still a very small number (current PBPK models include 

approximately 20 genes involved in drug metabolism [25]). By coupling GSMN, signaling 

network modeling and other types of systems biology models with PBPK models, the scope of 

genomic variability in the genes modeled can be expanded by using data from large scale 

genomic initiatives such as EXAC [105], 1000 Genomes [106] and Genome UK [107], making it 

possible to predict the effect of genomic variation on drug response in specific populations.

Conclusion and future perspectives

Although both, QSP and QST have experienced tremendous advances in the last few 

years, there is still a need to develop fit-for-purpose, mechanistic, quantitative, multiscale models 

to improve toxicity assessment. In this regard, recent initiatives such as TransQST will pave the 

way for the development of multi-scale, quantitative QST models for cardiac, liver, kidney and 

gastrointestinal drug toxicity (http://transqst.org/). To foster the development of more accurate 

mechanistic models, the data gaps concerning the information on regulatory networks that take 

place in specific cell types and particular conditions should be addressed. The availability of 

detailed catalogues of proteins such as the human plasma proteome [108] is a step in this 

direction. On the other hand, the efforts that are being made for collecting and sharing great 

amount of high quality, toxicology-related data from the archives of the pharmaceutical 

companies through the eTOX (http://www.etoxproject.eu/) and eTRANSAFE 

(http://etransafe.eu/) projects, will also support the development more reliable predictive models 

[109]**.

It is important to bear in mind that the initial pathophysiological state of the biological 

system is defined by the interplay among genetic, epigenetic and environmental factors, which 

then dynamically evolve when perturbed by a drug. It has been shown that ADME genes can be 
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subjected to epigenetic modifications in a variety of diseases such as several cancer types, 

Parkinson disease and conditions such as smoking (for a review, see [110]). On the other hand, 

exposure to chemicals and drugs can alter the epigenetic status of an individual. Moreover, 

“epidrugs”, or drugs that target the epigenetic machinery of the cell are already starting to be 

used for cancer treatment. The emerging fields of pharmacoepigenetics and toxicoepigenetics 

will help to understand the complex interplay between drugs and environmental factors, which 

will in turn, provide a deeper understanding of drug response.

Another important factor to be considered in QSP and QST models is the human 

microbiota. The role played by the human microbiota in the response to drug treatment has been 

increasingly recognized. Human microbiota is known to transform drugs into metabolites with 

pharmacological properties that could be toxic, teratogenic, and even lethal [111]. On the other 

hand, some drugs rely on the microbiota to be converted from inactive precursors to 

pharmaceutically active compounds [112]. Recently, genome-scale metabolic reconstructions of 

the human gut microbiota were generated [113]. These reconstructions can be used to produce 

hybrid PBPK – GSMN models to understand drug-microbiota-diet interactions [114]. This type 

of analysis will pave the way for the simulation of personalized microbiomes in QSP and QST 

models, and thus enabling a more comprehensive and precise simulation of drug effects.

Finally, it has to be pointed out that QSP and QST models are being accepted as key 

components of the drug development process. As a proof of this, pharmaceutical companies have 

incorporate them into their R&D pipeline and are funding related projects in the framework of 

the European Innovative Medicines Initiative, such as eTOX (http://www.etoxproject.eu/), 

eTRANSAFE (http://etransafe.eu/) and, particularly, TransQST (http://transqst.org/). At the 

same type, international bodies, such as the Organisation for Economic Co-operation and 

Development (OECD), published guidelines for the validation of computational models to be 

used in production environments [115], in this way demonstrating their importance and maturity.
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Box 1: Glossary of terms or abbreviations.

ADME: drug absorption, distribution, metabolism and elimination
DILI: Drug-Induced Liver Injury
DTNI: Dose-Time Network Identification
ILP: Integer Linear Programming
GEO: Gene Expression Omnibus
GSEA: Gene Set Enrichment Analysis
GSMN: Genome Scale Metabolic Networks
ODE: Ordinary Differential Equations
ORd: O'Hara-Rudy dynamic cardiac ventricular model
PBPK/PD: Physiologically based pharmacokinetic/pharmacodynamics
QSP: Quantitative Systems Pharmacology
QST: Quantitative Systems Toxicology
WGCNA: Weighted Gene Co-expression Network Analysis

Box 2: Toxicogenomics data resources 

One of the most commonly used resources in QSP and QST analysis is open access TG-

GATEs database [116]. This resource contains toxicogenomics data for 170 compounds, in 

human and rat primary hepatocytes, linked to phenotype data and pathology findings. The US 

Broad Institute Connectivity Map [117,118] contains thousands of gene expression profiles of 

most FDA approved drugs tested in multiple cell types. It has been used for identifying modes of 

action and defining biologically similar compounds. The US National Cancer Institute (NCI) 60 

tumor cell line screen includes results on GI50 (50% growth inhibition), total growth inhibition 

(TGI), and LC50 (50% lethal concentration) for many compounds tested in the major 

Connectivity Map cell lines [119]. The Library of Integrated Network-based Cellular Signatures 

(LINCS) catalogs how cells respond to different types of perturbations using a variety of assays 

[120]. The Chemical Effects in Biological Systems (CEBS) database is a toxicology resource 

containing animal data from the National Toxicology Program (NTP) testing program and other 

depositors. CEBS currently covers over 8,000 studies including carcinogenicity, short-term 

toxicity and genetic toxicity studies [121].
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