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ABBREVIATIONS: 

AS-RNA: antisense RNA 

BAT: brown adipose tissue 

BET: bromodomain and extraterminal 

BMI: body mass index 

CAD:coronary artery disease 

CVD: cardiovascular diseases 

DHA: docosahexaenoic acid 

DMR: differentially-methylated region 

DNMTs: DNA methyltransferases 

DOAD:developmental origins of adult disease 

DWF: Dutch Winter Famine 

EGCG: (-)-epigallocatechin gallate 

eRNAs: enhancer RNAs 

ERV: endogenous retrovirus 

GEN: genistein 

HAT: histone acetyl transferase  

HDAC: histone deacetylase 

IAP: intracisternal A particle 

IUGR: intrauterine growth retardation 

I3C: indol-3-carbinol 

LINE: long interspersed nuclear element 

lncRNA: long non-coding RNA 

LSS: Leningrad siege study 

LTR: long terminal repeat 

miRNAs: microRNAs 

ME: metastable epiallele 

NCD: non-communicable disease 

NuRD: nucleosome remodeling and deacetylating complex 

PASR/PALR: promoter-associated short RNAs/promoter-associated long RNAs 

PcG: polycomb group protein  

PRE: polycomb responsive element 

PRC1/2: polycomb repressive complex  

PTM: post-translationalmodification 

SFN: sulforaphane 

SGA: small for gestational age 

T2D: type 2 diabetes 

WAT: white adipose tissue 
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LIST OF GENES 

α-MSH: α-melanocyte-stimulating hormone  

ABCA1: ATP-binding cassette subfamily A member 1 

BRD2: bromodomain-containing 2 protein 

CEBP-α/β/γ: CCAAT/enhancer binding protein-α/β/γ 

CDKN2A
p16

: cyclin-dependent kinase inhibitor 2A; CDKN2A 

DNMTs: DNA methyltransferases 

GLUT2: glucose transporter type 2 

GNAS-AS: GNAS-antisense lncRNA gene 

GR1-C: nuclear receptor subfamily 3, group C, member 1 (glucocorticoid receptor) 

IGF2: insulin-like growth factor II 

IGF2R:insulin-like growth factor II receptor 

INS-IGF2: INS-IGF2 readthrough lncRNA 

IL-10: interleukin-10 

JHDM1: lysine (K)-specific demethylase 2A 

LEP: leptin 

LDLRAP1: low-density lipoprotein receptor adapter protein 1 

LSD1: lysine (K)-specific demethylase 1A (KDM1A) 

HNF4A: hepatocyte nuclear factor 4α 

MEG3: maternally expressed 3 lncRNA 

MLL1: mixed-lineage leukemia 1 

MTA1: metastasis-associated protein 1 

OGA: O-GlcNAcase 

OGT: O-linked GlcNAc transferase 

PDX1: pancreatic and duodenal homeobox 1 

PI3K-p85: phosphatidylinositol 3 kinase-p85  

PGC1α: peroxisome proliferator-activated receptor gamma, coactivator 1 alpha 

PLRL: prolactin receptor 

PLZF: promyelocytic leukemia zinc finger protein 

PPAR-γ: peroxisome proliferator-activated receptor-γ 

p15
INK4b

: cyclin-dependent kinase inhibitor 2B, CDKN2B 

p16
INK4a

: cyclin-dependent kinase inhibitor 2A; CDKN2A 

p21
WAF1/Cip1

: cyclin dependent kinase inhibitor 1A; p21/WAF1 

RUNX2: runt-related transcription factor 2  

SIRT1: sirtuin 1 

TET2/3: (ten-eleven translocation 2/3) methylcytosine dioxygenase 

UCP1: uncoupling protein 1 

WIF1: Wnt inhibitory factor 1 

ZEB1: zinc finger E-box binding homeobox 1 
 

http://www.ncbi.nlm.nih.gov/gene/225876
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ABSTRACT 

Solid epidemiological evidence indicates that part of the risk of obesity in adulthood 

could be programmed during prenatal development by the quality of maternal nutrition. 

Nevertheless, the molecular mechanisms involved are mostly unknown, which hinders 

our capacity to develop effective intervention policies. Here, we discuss the hypothesis 

that mechanisms underlying prenatal programming of adult risk are epigenetic and 

sensitive to environmental cues such as nutrition. While the information encoded in 

DNA is essentially stable, regulatory epigenetic mechanisms include reversible, 

covalent modifications of DNA and chromatin, such as methylation, acetylation etc. It is 

known that dietary availability of methyl donors has an impact on the patterns of gene 

expression by affecting DNA methylation at regulatory regions, a likely basis for 

reprogramming developmental plasticity. The Agouti and Axin-fused genes, as well as 

the embryonic growth factor IGF2/H19 locus are examples of diet-induced modulation 

of phenotypic traits by affecting methylation of gene-regulatory regions. Furthermore, 

recent work has evidenced an unsuspected role for chromatin as metabolic sensor. 

Chromatin is susceptible to a number of post-translational modifications that modulate 

gene expression, among them the GlcNAcylation of histone proteins and other 

epigenetic regulators. Intracellular levels of the precursor molecule UDP-GlcNAc, and 

hence the degree of global chromatin GlcNAcylation, depend on the energetic state of 

the cell, making GlcNAcylation a functional link between nutrition and regulation of 

gene expression. Dietary interference with these regulatory mechanisms could 

effectively counteract the early-life programming of adult risk. 

 

 

 

KEYWORDS: 
nutrient sensors, gestational programming, nutrition, epigenetic memory, O-

GlcNAcylation, regulatory exhaustion. 
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1. INTRODUCTION  

 

Obesity and related conditions are currently explained by a linear view of 

disease progression, in which expansion of white adipose tissue (WAT) generates a 

proinflammatory microenvironment that spreads through organs and tissues, hindering 

their function and causing the devastating comorbidities associated with obesity. This 

model can be refined by adding genetic predispositions and factors linked to lifestyle, 

such as diet or exercise, that influence the onset and progression of obesity and obesity-

related conditions (see [1, 2] for recent reviews). In this way, obesity, although 

modulated by genetic predispositions, could be considered as an “acquired” 

environmental disease to be treated by targeting causative elements such as defective or 

excessive nutrition or sedentary lifestyle.  

In recent years, however, the concept of obesity as an “epigenetic disease” has 

begun to be discussed. According to this perspective, environmental impacts on 

maternal nutrition during early embryo life leave a “nutritional imprint” with long-term 

effects on the promotion of obesity and related conditions in adulthood [3]. The present 

review addresses the hypothesis that adult obesity and related conditions may be 

programmed, at least in part, very early in life, focusing special attention on the recent 

explosive increase in the availability of data on epigenetic regulation and modification 

(DNA methylation, histone modifications, and non-coding RNAs). Here, we review 

recent literature on the epigenetic mechanisms putatively involved in programming the 

long-term effects of early-life nutrition, and how these could be modulated by 

environmental/nutritional cues.  

Nutrition can affect the expression of a number of genes by its impact, in the 

form of methyl donors such as folate, on the degree of methylation of their regulatory 

regions, althoug folate supplementation could also have some undesired consequences 

on the stability of the epigenome. In the present review, we especially highlight recent 

reports that underscore a role for chromatin as a metabolic/nutrient sensor through the 

post-translational modification of histone proteins, which links regulation of gene 

expression to availability of nutrients and metabolites from the intermediary metabolism 

(see [4] for a recent review). 
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2. LONG-TERM EFFECTS OF EARLY-LIFE NUTRITION ON OBESITY AND 

OBESITY-RELATED RISK FACTORS 

2.1 Long-term effects of fetal/neonatal malnutrition on adult risk factors  

Sound epidemiological evidence has shown that malnutrition in early life not 

only affects fetal/neonatal growth but also has long-term consequences for adult health. 

Almost a century ago, Kermack, McKendrick and McKinlay hypothesized that the first 

15 years of life influence the lifelong health of the individual [5], while Forsdahl 

demonstrated a significant association between infant mortality in the early years and 

adult mortality(ages 40-69 years) by coronary artery disease (CAD), and concluded that 

“great poverty in childhood and adolescence, followed by prosperity, is a risk factor for 

arteriosclerotic heart disease” [6]. Similarly, Barker and Osmond evidenced a 

consistent, positive correlation between infant mortality in 1921-1925 and ischemic 

heart disease mortality rates in 1968-1978 in England and Wales [7], results confirmed 

by their further work showing a strong positive correlation between low weight at birth 

and at one year of age and rates of CAD death in adulthood [8]. Several additional 

hypotheses have been proposed. The idea that growth impairment at conception or 

during fetal development could be linked to a number of chronic adult diseases, such as 

CAD [7], glucose intolerance [9], type 2 diabetes (T2D) [10], or obesity and 

hypertension [11] is known as the “developmental origins of adult disease” (DOAD) 

hypothesis [3]. This challenges the consideration of the womb as a highly protective 

milieu that buffers the embryo from environmental stressors, and acknowledges that the 

embryo is sensitive to outside stimuli and that the prenatal period is critical for 

modulating long-term disease predisposition by reprogramming the developmental 

plasticity of the embryo, likely by selectively impairing cell differentiation and organ 

growth [12, 13]. The thrifty phenotype hypothesis states that fetal undernutrition will 

cause the embryo to prepare for a life of scarcity, but subsequent accelerated 

overgrowth (catch-up) in conditions of affluence in the early post-natal period could 

overcome these protective barriers, facilitating fat deposition, obesity, and obesity-

related conditions [10, 14]. Fetal/neonatal overnutrition could have similar long-term 

effects on health ([15] and references therein), as reported for infants who are large for 

their gestational age when born to mothers with diabetes [16], indicating that postnatal 

fast weight gain could be the critical factor explaining their increased risk for 

cardiovascular diseases (CVD) [17].This idea has been supported by the results of two 
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prospective trials in which randomly assigned cohorts of small-born infants were fed 

either a nutrient-enriched formula or a control formula, which showed that the nutrient-

enriched diet increased fat mass later in childhood [18]. 

2.2 Historical cohorts to study the association of early nutrition and later disease. 

Well-documented historical episodes of hunger have been used to study the 

association between prenatal nutritional stress and the risk for adult chronic 

diseases[19], with the first demonstration coming from the cohort of people affected by 

the Dutch Winter Famine of 1944-1945 (DWF) [20]. Beginning in October 1944, 

civilian transport in the western part of Holland was totally blocked by the German 

Army, causing a dramatic shortage in food supply and a subsequent reduction in the 

daily rations, which reached their lowest value (400-800 Kcal/per person/day) between 

December 1944 and April 1945. Upon the end of the war, the blockade was raised and 

daily rations soon reached normal pre-war values [21]. The DWF cohort includes the 

original inhabitants of the blocked areas well as their descendants born around the time 

of hunger, who have been stratified by famine exposure at the first, second, or third 

trimester of fetal development [21]. In the current DWF population older than 50 years, 

a number of studies have linked prenatal famine exposure with numerous 

characteristics: decreased fetal growth and reduced tolerance to glucose in adulthood 

(especially when exposure occurred at late gestation [22]); higher BMI and waist 

circumference, in women but not in men [23]; a more atherogenic lipid profile [24], and 

obesity, but only when exposure was during the first trimester of pregnancy [20, 21], an 

effect that affected up to the third generation [25]. Furthermore, prenatal famine 

exposure has been related with increased risk of T2D [26], overall adult mortality in 

women [27], and CAD [28, 29], although other authors have failed to find this 

association between prenatal famine exposure and adult CAD [30, 31] (see Table 1 for a 

summary of the long-term effects of fetal nutritional stress on obesity-related risk 

factors). 

 The Leningrad Siege Study (LSS) also investigated the relationship between 

maternal malnutrition and risk factors in adult offspring. The siege of Leningrad (now 

St. Petersburg) by the German Army for almost three years (September 1941-January 

1944) resulted in more than one million deaths, mainly of starvation due to daily rations 

of only 300 calories during the worst of the siege [32]. The LSS results contradicted but 

complemented those of the DWF study, showing no associations between 
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intrauterine/infancy starvation and glucose intolerance, dyslipidemia or CVD risk later 

in adulthood [32, 33], even 70 years after the end of the siege [34], probably because the 

LSS population had no catch-up period of accelerated growth in early childhood, but 

rather lived in harsh conditions until the end of the siege [35]. This suggests that a 

period of postnatal nourishment must be relevant in determining the impact of maternal 

malnutrition on future health [36]. 

Striking evidences indicate that disease predisposition could be transferred to 

successive generations. The cohort of people born in Överkalix parish in northern 

Sweden at the turn of the 20th century showed a direct association between food 

availability up to the puberty of grandparents and parents and mortality due to CVD and 

T2D in the grandsons [37]; cardiovascular mortality was linked to the father’s 

nutritional status and diabetes to the paternal grandfathers’ [38]. Furthermore, sharp 

changes in food supply up to the puberty of paternal grandmothers increased CVD 

mortality of their sons’ daughters [39]. The DWF cohort also has been studied in the 

context of the transgenerational effects of prenatal exposure to famine, assessing the 

health of the children (F2) of parents born during the famine (F1) to undernourished 

women (F0). In one such study, an increase in body mass index (BMI) was found in F2 

of F1 fathers, but not F1 mothers, when compared with offspring of control (not famine-

exposed) fathers [25]. The authors did not find significant differences in the prevalence 

of CAD, T2D, high cholesterol, or hypertension in the F2 of exposed parents compared 

to the F2 of unexposed parents [25]. Similarly, Painter et al. detected an increase in 

neonatal adiposity and poor adult health in the F2 of F1 women exposed “in utero” to 

F0 famine, but did not find transgenerational impacts of famine exposure on the F2 rates 

of CAD or T2D in offspring of the exposed F1 [40]. Nevertheless, this F2 cohort is still 

young (mean age 37 years) and rates of chronic diseases could increase in the future in 

this group [25]. 

 

3. EPIGENETICS: THE NEXT FRONTIER IN THE REGULATION OF GENE 

EXPRESSION   

3.1 Challenging dogmas on genome structure and function 

 Recent years have seen a paradigm change in ideas about the flow of genetic 

information. The original linear model,“DNA makes RNA makes protein”, for many 

years considered the central dogma of molecular biology [41, 42], has been replaced by 
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a multilayered process characterized by the pervasive expression of many different 

regulatory RNAs from multiple genomic loci in addition to the protein-coding mRNAs 

(Figure 1). International sequencing efforts have shown that the human genome is 

composed of just 20,000 to 25,000 protein-coding genes [43-45], with a best-guess 

estimate of 22,333 [46], a figure that would account for a mere 2% of the total genome 

length [47] and far fewer than the 100,000-120,000 protein-coding genes previously 

estimated [48-50]. Nevertheless, the number of transcriptional units could exceed 

60,000 [51] by including a plethora of previously unclassified non-protein-coding 

RNAs, such as microRNAs (miRNAs), antisense-RNAs (AS-RNAs), promoter-

associated RNAs (PALRs, PASRs), other long non-coding RNAs (lncRNAs), etc. [52-

54]. Recent data suggest that approximately 80% of the genome could be considered 

biochemically active [55], most of it in the form of DNase I-accessible loci or candidate 

regulatory sequences [56-58]. Taken together, all these data draw a new image of the 

eukaryotic nucleus in which the genome would be pervasively transcribed, even in 

intronic and intergenic sites [59], with protein-coding genes encoding additional 

transcriptional units for a complex population of short and long non-coding RNAs with 

putative regulatory functions [60]. 

3.2 microRNAs and long non-coding RNAs:new actors on the gene-regulation 

stage 

MicroRNAs (miRNAs) are small RNAs (over 22 nucleotides long) with 

important roles in post-transcriptional gene regulation. MiRNAs are transcribed as pri-

miRNA precursors; after two processing steps, they generate the mature miRNAs, 

which are subsequently exported to the cytoplasm where they associate to their target 

mRNAs and induce their degradation or interfere with their translation (see [61] for a 

review). As of March 2016, the entire human miRNAome was described as formed by 

1881 precursors and 2588 mature miRNAs (www.mirbase.org, mirbase release 21 [62]). 

MiRNAs are highly promiscuous, so that a single miRNA can interact with a number of 

different mRNAs which in turn can be regulated by several different miRNAs [63]. 

Aberrant miRNA expression profiles have been linked to a number of human diseases, 

such as leukemias [64], solid tumors [65], atherosclerosis and CVD [66, 67], chronic 

pain [68], and renal fibrosis [69], among others. Alterations in the expression of 

miRNAs have been detected not only in the primary tissue but also in blood [70], urine 

http://www.mirbase.org/
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[71], and exosomes [72], and miRNAs (or miRNA-targeting sequences) are currently 

being tested for therapy development [73]. 

The family of lncRNAs constitutes an extremely heterogeneous population of 

functionally unrelated RNAs longer than 200 nucleotides, which have important roles in 

development, differentiation, and disease [74-76]. Currently estimated at more than 

56.000 [77], the number of lncRNAs more than doubles the number of protein-coding 

genes in the human genome, thus giving a hint of their functional complexity. Most of 

the lncRNAs are natural antisense transcripts, transcribed from the complementary 

chain of target genes, which likely cis-regulate its genomic locus by recruiting the 

histone-modifying machinery to the regulatory regions of the target genes [78]. Another 

common family of lncRNAs is the enhancer RNAs (eRNAs) or lncRNAs transcribed 

from functional enhancer sequences and associated to specific histone marks (high 

H3K4me1, H3K4me2, and H3K27ac and low H3K4me3 and H3K27me3) which could 

have a role in the activation of genes [79, 80], probably by facilitating the long-distance 

interaction of enhancers and their cognate promoters by forming or stabilizing DNA 

loops [81]. 

3.3 Methylation of DNA and histones, and the regulation of gene expression  

Genes are precisely regulated by controlling access of the transcriptional 

machinery to their regulatory regions (promoters or enhancers). This process is 

mediated by the covalent modification of regulatory DNA sequences, mainly by 

methylating cytosines from CpG dinucleotides at position 5 through the activity of the 

family of DNA methyltransferases (DNMTs), which transfer a methyl group from S-

adenosyl-methionine (SAM) to the cytosine [82]. CpG pairs concentrate in proximal 

(CpG islands) or distal (CpG shores) parts of the gene promoter, and in the methylated 

form are usually associated to gene silencing, although they are also involved in 

parental imprinting (see [83] for a review). Patterns of CpG methylation are strictly 

regulated and stable, and their alterations have been associated to diverse diseases, 

including cancer. 

The function of histones in chromatin is also subjected to epigenetic regulation. 

Histones have protruding N-terminal and C-terminal tails that expose many positively 

charged aminoacids (K/R), which modulate the interaction with other histones and with 

the negatively charged DNA [84]. Histone modifications (known as tags or marks) 

contribute to the regulation of gene expression by changing the net charge of histone 
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proteins in order to regulate the strength of their interaction with DNA (and hence its 

accessibility) and by providing docking sites for the interaction of components of the 

transcriptional machinery [85] (see the description of the histone-tag nomenclature at 

the legend of Table 2). Aminoacids in the protruding histone tails are susceptible to 

many different covalent modifications “in vivo”, such as methylation, acetylation, 

ribosylation, phosphorylation, ubiquitination, sumolation, biotynilation, and more than 

50 different tags [86, 87]. Furthermore, the existence of numerous histone genes, which 

generate up to 57 histone variants of differing lengths and sequences in humans, greatly 

increases the number of aminoacids susceptible to modification ([88]). 

The stability of epigenetic marks is critical to control the long-term effects of 

events that alter the epigenetic landscape. While the genetic information encoded in 

DNA can be regarded as essentially stable, epigenetic marks are reversible and respond 

to endogenous, as well as environmental (nutritional, social, hormonal, cultural) stimuli. 

These dynamic modifications are “interpreted” by a number of families of epigenetic 

regulators [89] that have been classified as “tag-writers” (histone methyltransferases and 

acetyltransferases) [90], “erasers” (histone demethylases and deacetylases), or 

“readers”, proteins that include domains of the plant, chromo, Tudor, or MBT families, 

among others, and recognize different tagged histones (see [91] for a recent review). 

Elucidating the mechanisms that promote, maintain, read, and erase epigenetic marks is 

currently an area of intense research aiming to develop small molecules able to 

modulate expression of disease-associated genes at the epigenomic level [92]. 

 

4.REGULATION OF GENE EXPRESSION BY FOLATE AVAILABILITY: THE 

agouti, axin-fused AND IGF2/H19 LOCI  

 As reported above, the DWF cohort evidenced a number of risks in adulthood 

that could be traced to specific periods of embryonic development during which the 

mother experienced nutritional stress. A likely explanation for this finding was that the 

stress burden could affect (reprogram) the expression of genetic loci critical for embryo 

development. In this sense, recent work has evidenced that the folate-dependent 

methylation of DNA regulatory sites constitutes a direct link between nutrition and 

regulation of gene expression. In this section we review data on the effects of folate 

availability on the regulation of gene expression in two animal models, the agouti and 
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axin-fused loci, and in the human IGF2/H19 locus, a complex genetic structure involved 

in the control of early embryo development. 

4.1 Genomic structure of the agouti(A
vy

),axin-fused (Axin
Fu

) and IGF2/H19loci 

Agouti mice show a characteristic yellow coat because the protein encoded by 

the agoutigene (ASP, for agouti signaling peptide) blocks eumelanin synthesis in hair 

follicles [93]. Interestingly, the “viable yellow” (A
vy

) allele, a mutation in the agouti 

gene due to the insertion of a partial long terminal repeat (LTR) of an intracisternal A 

particle (IAP) retrotransposon, prompts the ubiquitous expression of the agouti gene 

because this LTR functions as a non-tissue-specific cryptic promoter [94, 95]. The A
vy

 

allele is epigenetically unstable and can lose methylation at the LTR so that 

heterozygous (A
vy

/a) mice, which also carry the recessive null (a) allele for a black coat, 

display continuously variegated agouti fur depending on the methylation status of the 

cryptic promoter, ranging from yellow in mice with a demethylated promoter to 

obscure-agouti/pseudoagouti fur in mice with an overmethylated promoter [96]. These 

methylation patterns are randomly fixed early in embryonic life and are maintained 

throughout life [97].  

Similarly to the agouti gene, the axin
Fu 

locus derives from the insertion of an 

intracisternal A particle (IAP) retrotransposon, in this case in the intron 6 of the axin 

gene. This insertion generates a number of aberrant axin transcripts, some of them using 

the 3’ LTR of the IAP as a cryptic promoter [98]. The wild-type AXIN protein controls 

the formation of embryonic axis by repressing Wnt signaling [99].  Work by Rakyan 

and cols. showed that hypomethylation of the cryptic promoter (IAP) of the Axin
Fu

 

allele caused the upregulation of AXIN expression, with the subsequent downregulation 

of Wnt activity that resulted in kinking of the distal tail [100]. On the other hand, the 

parentally imprinted IGF2/H19 human locus encodes the insulin-like growth factor II 

(IGF2) gene, which promotes embryo and placental growth [101] and is expressed 

almost exclusively from the paternal chromosome [102], as well as the maternally 

expressed lncRNA-H19, which limits the growth of the placenta through the regulated 

processing of miR-675 that is embedded in the first exon of the H19 gene [103]. The 

IGF2/H19 locus includes an intergenic, CpG-rich, differential methylation region 

(DMR) as well as a distal enhancer region, immediately downstream of the H19 gene, 

which together drive the tissue-specific, allele-restricted, and developmentally confined 

expression of the IGF2 and H19 genes [104] (Figure 2). The intergenic DMR 
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regulatesIGF2/H19 gene expression; its demethylated form (maternal allele) recruits the 

regulatory factor CTCF, which functionally blocks the downstream enhancer, repressing 

the growth-promoting effect of the IGF2 gene and activating the growth-limiting H19 

gene. In contrast, methylation of the intergenic DMR (paternal allele) allows the 

enhancer to activate the IGF2 promoter while repressing the H19 gene. In this way, the 

degree of intergenic DMR methylation acts as a balance, promoting (through IGF2 

expression) or limiting (through H19 expression) early embryonic growth [105]. 

4.2 Folate availability regulates expression of the viable yellow agouti (A
vy

) and 

axin-fused (Axin
Fu

) loci. 

Chromatin-methylating enzymes, i.e., DNA and histone methyltransferases, use 

S-adenosylmethionine (SAM) as universal methyl donor and folate to regenerate SAM 

through the one carbon metabolism pathway [106], suggesting that folate is an 

important component of the gene regulatory machinery. Folate deficiencies have been 

acknowledged as the basis of many nutrition-related diseases [107, 108], which supports 

this hypothesis and highlights folate as a critical link between nutrition and gene 

expression. This relationship has been evidenced by work with agouti and axin-fused 

model mice. Thus, in agouti mice, supplementation of (a/a) dams with a methyl-rich 

diet shifted the coat color of the A
vy

/a offspring from yellow to the brown pseudoagouti 

[109], a result also seen after supplementation of (a/a) dams with genistein, a major soy 

isoflavone [110]. In both cases, the phenotypic shift coincided with an increased 

methylation of the IAP insertion region at the agouti locus in the pups [111].  

Change in coat color is not the only phenotypic trait associated to the agouti 

locus. Heterozygous mice harboring the lethal yellow (A
y
) or viable yellow (A

vy
) 

mutations showed a number of pleiotropic effects, including obesity, increased tumor 

susceptibility, and embryonic lethality [112]. The obesogenic role of the A
vy

 allele was 

due to the agouti gene product, the agouti-signaling peptide (ASP), since a transgene 

overexpressing ASP
wt

 induced obesity in the recipient mice [113] and incubation of 

mature 3T3-L1 adipocytes with recombinant ASP increased expression of adipogenic 

transcription factors [114]. Interestingly, this obesogenic effect proved to be sensitive to 

dietary supplementation with methyl donors or with genistein, which reversed the effect 

of the A
vy

 allele by overmethylating its cryptic promoter [110, 115]; this constitutes 

experimental evidence of a dietary modification in pregnant mothers that directly affects 

the obese phenotype of the offspring. 
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On the other hand, in the case of the Agouti locus, supplementing Axin
Fu 

dams 

with methyl donors before and during pregnancy significantly increased the methylation 

of the Axin
Fu

 locus and reduced the incidence of tail kinking in their offspring [116]. 

Nevertheless, the mechanisms involved in this nutrient-induced methylation of 

regulatory regions are complex and must include numerous (epi)genetic factors to 

accurately control the expression of Agouti or Axin-fused genes [117]; Dolinoy et al. 

showed that yellow agouti mice had less repressive histone tag H4K20me3 in the LTR 

of the IAP, compared to their pseudoagouti littermates [118]. 

4.3 The Dutch Winter Famine caused life-long alterations in the methylation 

pattern of the IGF2/H19 locus in the offspring of affected pregnant mothers 

In an experimental study, Heijmans et al. studied the methylation pattern of the 

IGF2-DMR in the DWF cohort of individuals conceived during the Dutch famine. Six 

decades after being exposed to the famine, the IGF2-DMR was hypomethylated (see 

Figure 2), compared with their non-exposed siblings, when the exposure was 

periconceptional but not when individuals were exposed late in gestation, suggesting 

that early-life nutritional stress had an impact on the methylation pattern of the 

IGF2/H19 locus, and that this altered pattern could be maintained for decades until 

adulthood [119]. Furthermore, the degree of methylation of the IGF2-H19 locus was 

directly associated with fetal and infant growth, with children born small-for-gestational 

age (SGA) showing a decreased level of IGF2-DMR methylation in white blood cells 

obtained from umbilical cord, compared with control children [120]. On the other hand, 

Steegers-Theunissen et al. showed that periconceptional supplementation of pregnant 

mothers with 400 μg of folic acid significantly increased methylation at the IGF2-DMR 

locus of the child, compared with the offspring of non-supplemented mothers; however, 

the authors also found an inverse association between IGF2-DMR methylation and 

birth-weight that is difficult to explain by the current models of regulation of the IGF2-

H19 locus but that could indicate involvement of other genomic loci [121]. 

Other loci related to growth and metabolism also have been studied. Those 

encoding interleukin-10 (IL-10), leptin (LEP), ATP-binding cassette subfamily A 

member 1 (ABCA1) or the lncRNAs maternally-expressed 3 (MEG3) and GNAS-

antisense (GNAS-AS) were found to be overmethylated in the famine-exposed 

individuals vs. non-exposed siblings, while the INS-IGF2 lncRNA, also at the IGF2 

locus, was found to be undermethylated. This result further supports the hypothesis that 
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early-life nutritional stress could cause widespread alterations in DNA methylation 

[122]. A genome-wide analysis of DMRs in the DWF cohort detected a number of 

differentially methylated CpG elements–such as enhancers, open chromatin regions, and 

developmental enhancers– associated to the prenatal famine, usually at regulatory 

regions, suggesting that they could influence the expression of many different genes and 

especially of genes linked to metabolism and growth [123]. On the other hand, the 

promoters of the glucocorticoid receptor GR1-C, peroxisome proliferator-activated 

receptor gamma (PPAR-γ) lipoprotein lipase, or phosphatidylinositol 3 kinase p85 

(PI3K-p85) did not differ in their degree of methylation in the blood of individuals 

exposed “in utero” to famine, compared to non-exposed controls [124], suggesting that 

the nutrition-dependent changes in methylation could be gene- or tissue-restricted. 

 

5. EPIGENETIC REPROGRAMMING OF DEVELOPMENTAL PLASTICITY: 

ADIPOSE TISSUE AND PANCREAS  

The interventional or longitudinal studies described above have clearly 

established that nutrition can modulate the global levels of methylation at gene-

regulatory regions. Nevertheless, this top-down approach (from nutrition to gene 

expression) has produced very scanty data on the specific genes or gene networks 

de/methylated, so that it is difficult to delineate the mechanisms linking overall 

nutrition-dependent epigenetic alterations with increased adult risk of non-

communicable diseases (NCDs). An alternative to the top-down approach appeals to the 

phenotypic plasticity of tissues and organs at critical periods of early embryo 

development (mainly to control stem cell proliferation and/or cell differentiation) to 

determine whether the expression of the genes controlling these processes could be 

modulated by external stimuli. In this chapter, we discuss recent work on genes 

important to the development of organs and systems that maintain metabolic 

homeostasis, such as the pancreas and the adipose tissue, and whose expression has 

been shown to be modulated by nutritional cues.  

5.1 Maternal malnutrition affects the epigenetic regulation of pancreas 

development. 

 Pancreatic and duodenal homeobox 1 (PDX1) is a transcription factor that is 

essential for the survival and function of the mature pancreatic β-cells, to the extent that 

disruption of the Pdx1 gene (Pdx1
-/- 

mice) results in the arrest of pancreatic 
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development at an early embryonic stage [125]. Adult expression of PDX1 has been 

shown to be modulated by early-life nutrition. Thus, in a mice model of intrauterine 

growth retardation (IUGR), which predisposes to T2D development in adulthood, Park 

et al. showed that the Pdx1 gene underwent epigenetic modifications that downregulated 

Pdx1 expression in β-cells from over 50% (vs. control) in IUGR fetuses to null values in 

adults [126]. Furthermore, the authors were able to map this regulatory behavior to a 

region of the Pdx1 proximal promoter that included a CpG dinucleotide in a binding site 

for the USF-1 transcription factor, which was progressively methylated in IUGR rats 

but not in control animals. Methylation of the Pdx1 proximal promoter was 

accompanied by histone deacetylation, since inhibition of HDAC partially restored 

Pdx1 expression [126]. Similar results have been recently described by Abuzgaia et al., 

who used a rat model of gestational maternal protein restriction, which increases 

susceptibility to T2D. In a low-protein group, they detected downregulation of Pdx1 

mRNA and protein expression, as well as of its downstream target genes insulin and 

glucose transporter Glut2, compared with controls [127]. Furthermore, a genome-wide 

analysis of CpG-methylated sites made in pancreatic islands from IUGR rats showed 

that changes in cytosine methylation in over 1400 loci preceded the development of 

T2D, giving a hint about the number of loci potentially involved in the pathogenesis of 

this disease [128], while a high-throughput analysis of gene expression led to the 

detection of 253 differentially expressed genes in the livers of exposed vs. non-exposed 

offspring, among them many encoding enzymes related to fat metabolism and 

potentially involved in the development of metabolic diseases [129]. 

Diet-induced changes in the levels of histone tags also have been described in a 

number of developmentally important genetic loci. Maternal low protein diets have been 

associated to downregulation of mRNA and protein expression of the tumor suppressors 

CDKN2A
P16

 and p21
WAF1/Cip1 

in the mammary glands of offspring, concomitant with a 

reduction in acetylated H3 and in H3K4me2 in their promoter regions [130, 131]. In a 

rat model of gestational maternal protein restriction, Sandovici et al. showed the 

downregulation of Hnf4a, a transcription factor gene critical to pancreatic function, in 

the islets of the exposed pups, compared with control pups, as well as an increase in the 

repressive tag H3K9me2 and a decrease in the active mark H3K4me1 in the Hnf4a 

intronic enhancer, with a subsequent reduction in its interaction with the Hnf4a 

promoter [132]. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

17 

 

5.2 Maternal malnutrition affects the regulation of adipogenic genes. 

The adipose tissue of an adult organism is mainly composed of white adipose 

tissue (WAT) plus some remnants of the thermogenic brown adipose tissue (BAT). 

WAT has a double physiological role as regulator of the body’s energy balance and as 

an endocrine organ that controls a number of physiological and pathophysiological 

mechanisms through the release of hormones and adipokines. This highly dynamic 

tissue adapts to external stimuli by increasing the number or size of adipocytes (see 

[133] for a recent review). Preadipocyte differentiation is controlled by the early 

transcription factors C/EBP-β and C/EBP-γ, which regulate PPAR and C/EBP-α, 

adipogenic master genes that promote adipocyte terminal differentiation through their 

ability to activate the expression of adipocyte-specific genes (see [134] for a recent 

review). Among the genes activated by PPAR-γ are many involved in lipid metabolism 

and insulin/IGF signaling [135], as well as the uncoupling protein-1 (UCP1), a 

functional marker for BAT whose mRNA peaks soon after birth in large mammals and 

then is rapidly lost, together with its transcription activating factors PPARα and 

coactivator PGC-1α, as part of a developmental switch from BAT to WAT [136].  

Prenatal undernutrition has been shown to have an impact on the fetal fat mass 

as well as in the expression of UCP1 mRNA. In this regard, ovine maternal nutrient 

restriction during the early gestation resulted in offspring with more adipose tissue and 

higher levels of UCP2 and PPARα mRNAs than unrestricted controls, while no changes 

were detected in the levels of UCP1, PPAR-γ, or the long and short forms of the 

prolactin receptor (PRLR) [137]. Furthermore, in mice, protein restriction of pregnant 

mothers resulted in lower levels of leptin mRNA and protein in the offspring [138]. In 

contrast, pups born to mothers submitted to a high-fat diet showed worse glucose 

tolerance and higher leptin levels and lower adiponectin levels in the adipose tissue than 

their control littermates, which was associated with higher H3K9Ac and lower 

H3K9me2 levels at the adiponectin promoter and lower levels of H4K20me at the leptin 

promoter [139]. 
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6.CHROMATIN AS A NUTRIENT SENSOR: NUTRITION-INDUCED POST-

TRANSLATIONAL MODIFICATIONS OF HISTONE PROTEINS AND THEIR 

EFFECTS ON CHROMATIN FUNCTION. 

Nutrition has long been considered a major environmental factor responsible for 

changes in the transcriptome, mainly by the binding of small ligands to nuclear 

receptors, transcription factors, or cofactors [140]. Nevertheless, recent years have seen 

a number of reports in which small metabolites or nutrients controlled patterns of gene 

expression not by binding to single, specific targets but by modulating the global level 

of post-translational modifications (PTMs) of DNA, histones, and other epigenetic 

regulators (see [141] for a recent review). These “epigenetic metabolites” constitute a 

functional link between nutrition and regulation of gene expression, with poor nutrition 

and metabolite shortage affecting the appropriate deployment of epigenetic tags. This 

highlights chromatin architecture as a marker of the energetic and metabolic state of the 

cell. According to this model, chromatin would act as a metabolic sensor to adjust 

global patterns of gene expression to the dynamic changes in the concentration of 

specific metabolites, while ensuring its epigenetic inheritance [142]. This novel 

perception of metabolite-dependent chromatin function will surely provide researchers 

with conceptual tools to unravel the epigenetic components underlying reprogramming 

of gene expression by early-life nutritional stress, as well as to study the mechanisms 

that translate these regulatory alterations in risk increases to adult disease. In this 

section, we review the regulatory function of the best characterized of these epigenetic 

metabolites: O-linked-N-acetylglucosamine (O-GlcNAc), NAD+, and acetyl-CoA, as 

well as their functional relationship with chromatin and Sirtuin1, two of the better 

characterized metabolic sensors. 

6.1 Intracellular O-GlcNAcylation depends on the extracellular levels of glucose 

through the nutrient sensor UDP-GlcNAc 

Among the different intermediate metabolites with a confirmed role in the 

establishment or maintenance of histone PTMs, O-linked-N-acetylglucosamine 

constitutes a class of its own. Addition of an O-linked-N-acetylglucosamine group (O-

GlcNAc) to Ser/Thr residues of nuclear proteins [143] targets hundreds of proteins, 

among them epigenetic regulators and chromatin-associated proteins such as histones, 

members of the polycomb repressive complex, and a number of HDACs directly 

involved in the regulation of gene expression (see [144] for a recent review). 
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GlcNAc is reversibly added to its target proteins as a single residue by the O-

linked GlcNAc transferase (OGT), which uses the UDP-GlcNAc sugar as substrate, and 

is removed by the O-GlcNAcase (OGA) enzyme. Both reactions constitute the “O-

GlcNAc cycle”. O-GlcNAc and O-GlcNAcylated products can be found not only in the 

nucleus or cytoplasm, but also in the endoplasmic reticulum-Golgi axis where they are 

used in the biosynthesis of glycoproteins, glycosaminoglycans, or glycolipids [145]. 

The precursor form UDP-GlcNAc, which is synthesized by the hexosamine biosynthetic 

pathway, can be considered a sensor of the metabolic state of the cell [146], since its 

synthesis requires four metabolites, glucose (carbohydrates), glutamine (aminoacids), 

acetyl CoA (lipids), UTP (nucleotides), and ATP as energy donor; their availability 

directly determines UDP-GlcNAclevels and subsequently those of intracellular O-

GlcNAcylation [146]. Thus, the levels of UDP-GlcNAc reflect the nutrient status of the 

cell, with extracellular levels of glucose modulating the extent of intracellular O-

GlcNAcylation [147]. Moreover, the O-GlcNAc cycle is functionally integrated with 

other nutrient sensing pathways such as mTOR, AMPK (which is activated by a low 

ATP/AMP ratio), MAPK, and insulin-AKT and the direct interaction of OGT with 

tyrosine kinase receptors, PIP3 sites, or p38 MAPK has been described, suggesting that 

these signaling pathways could also be modulated by O-GlcNAcylation (see Figure 3 

and [148]). 

6.2 The activity of a number of epigenetic regulators of gene expression is 

controlled by O-GlcNAcylation  

In a gene expression analysis in C. elegans, Love et al. found over 800 

promoters modified by O-GlcNAcylation in which disruption of the O-GlcNAc cycle 

led to alterations in the pattern of gene expression, many of them linked to 

lipid/carbohydrate metabolism or microRNA expression; this constituted a nutrient-

responsive program of gene expression [149]. In a mice model, male levels of OGT and 

of O-GlcNAc were seen to be reduced by early prenatal  maternal stress, which affected 

hypothalamic gene expression as well as the landscape of brain microRNA expression 

[150]. 

On the other hand, Medford et al. demonstrated that the chronic ingestion of a 

sugar and saturated fat-rich diet (Western diet) increased protein O-GlcNAcylation in 

the hearts of rats, without modifying the levels of the OGT/OGA enzymes, which 

suggested that accumulation of O-GlcNAcylated products was due to the increased 
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availability of nutrients [151]. This result has the utmost importance because it links the 

degree of protein O-GlcNAcylation to the historical record of nutrient ingestion. Among 

the proteins that were post-translationally modified by O-GlcNAcylation, the group of 

gene expression regulators is well represented. Several excellent reviews on the O-

GlcNAcylation of transcription factors have been recently published (see [152] and 

references therein); here we will focus on the epigenetic mechanisms affected by O-

GlcNAcylation.  

On the functional side, O-GlcNAcylation has been shown to regulate chromatin 

dynamics through two different mechanisms: i- by tagging members of the polycomb 

group of proteins (PcG) [153] and other epigenetic regulators, such as the Ten-Eleven 

Translocation (TET) family of DNA hydroxylases/demethylases [154], and ii- by 

directly targeting the four core histones in chromatin [155, 156], although it seems that 

there is also some extent of crosstalk between the two mechanisms. The polycomb 

group proteins are transcriptional regulators that mediate the repression of numerous 

genes along the development to adulthood. Polycomb group proteins form two 

polycomb-repressive complexes (PRC1 and PRC2), which recognize and bind 

polycomb-responsive elements (PREs) at the regulatory regions of their target genes. 

PRC2s are H3K27 trimethyltransferases while PRC1 binds to H3K27me3 and 

monoubiquitinates H2AK119, with the overall effect of repressing the expression of the 

target genes [157]. 

In two thought-provoking studies, the polyhomeotic protein (Ph),one of the 

components of PRC1, was shown to be O-GlcNAcylated [158], while the O-linked 

GlcNAc transferase (OGT) enzyme was identified as the PcG member previously 

known as super sex combs (sxc) [158, 159]; O-GlcNAcylation-defective null-mutants 

(sxc/Ogt
-/-

) were unable to maintain polycomb-mediated transcriptional repression 

[158]. This last result strongly supports a role for the nutrient sensor O-GlcNAc in the 

repression of polycomb target genes and provides mechanistic insight on the functional 

relationship among nutrients and the transcriptional machinery. On the other hand, O-

GlcNAc sites have been detected in all the core histones, cross-talking with other 

histone PTMs. Thus H3S10GlcNAc impaired the phosphorylation of the same residue 

[155], H2BS112GlcNAc facilitated H2BK120 monoubiquitination [160], and 

H3T32GlcNAc reduced phosphorylation at H3S10, H3S28, and H3T32 [161]. 
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The O-GlcNAcylation of target histones was facilitated by the binding of OGT 

to the TET2 and TET3 (Ten-Eleven Translocation 2/3) proteins at active transcription 

start sites enriched in the activation mark H3K4me3, while loss of OGT or TET2/3 

reduced the target gene expression [154, 162]. In this way, O-GlcNAcylation would 

have a dual role in the control of gene expression, reinforcing the repressive role of 

polycomb on its targets and facilitating transcription by binding to TET2/3 proteins. 

How these two opposite roles are regulated is currently unknown.  

6.3 Alterations in the balance of O-GlcNAcylation contribute to human disease 

 Recent years have seen evidences that an altered flow of O-GlcNAc could 

contribute to obesity, CVD, and T2D [163], to the extent that determination of O-

GlcNAc in blood has been proposed as a biomarker for early metabolic dysfunction in 

youngsters [164]. As stated above, levels of O-GlcNAc depend on the balance between 

the opposite activities of OGT (GlcNAcylation) and OGA (O-GlcNAc removal), and 

changes in their activity have been associated to human pathology, although the 

molecular mechanisms involved have not yet been clarified. The chemical inhibition of 

OGA resulted in increased levels of GlcNAc and impeded insulin-dependent 

phosphorylation of Akt and GSK3β, leading to insulin resistance in 3T3-L1 adipocytes 

[165]. In contrast, heterozygous OGA-deficient mice had reduced insulin sensitivity, 

hyperleptinemia, and showed a de-regulated expression of genes associated with 

growth, innate immunity, and the metabolism of glucose, lipids, sterols, and calcium 

[166]. On the other hand, increasing GlcNAc levels by the transgenic overexpression of 

OGT induced insulin resistance and hyperleptinemia when OGT was expressed in 

muscle and adipose tissue [167], and was associated with obesity and fatty liver when it 

was expressed in liver, likely by interfering with the metabolism of Apo B and Apo A-I 

[168]. 

6.4 Other metabolic sensors: SIRT1, Acetyl-CoA, and FAD 

In addition to O-GlcNAc, other metabolic sensors link DNA and chromatin 

PTMs (and hence regulated gene expression) to the levels of different metabolites in a 

way that could be epigenetically inherited, potentially contributing to the long-term 

effects of nutrition on adult disease risk. One of the best characterized is Sirtuin1 

(SIRT1), a nuclear NAD
+
-dependent protein deacetylase which links cellular metabolic 

status (such as NAD
+
 levels, modulated by dietary niacin) to the dynamics of chromatin 

architecture and regulated gene expression through the deacetylation of histones and 
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other nuclear regulatory proteins [169]. In this sense, SIRT1 has been considered as a 

master regulator of the transcriptional networks that control lipid metabolism, 

gluconeogenesis, insulin secretion, and inflammation [170]. A recent analysis of the 

liver acetylome from Sirt1-deficient (Sirt1
-/-

) mice allowed the detection and 

identification of a group of nuclear proteins directly deacetylated by SIRT1 “in vitro”, 

among them a subunit of the SWI/SNF chromatin remodeling complex and five proteins 

involved in RNA processing [171]. Other chromatin-associated proteins have been 

characterized as substrates for the SIRT1 deacetylase activity, including the 

transcriptional repressor promyelocytic leukemia zinc finger protein (PLZF) [172], the 

histone methyltransferase mixed-lineage leukemia 1 (MLL1) associated to H3K4 

trimethylation at certain promoters [173], and SATB1 homeobox 1, the regulator of 

high-order chromatin structure [174]. Also related to NAD
+
sensing, the globular macro 

domain constitutes a highly conserved protein fold present in histone variants 

(macroH2A), modifiers (macro-PARPs), and chromatin remodelers (Alc1) (see [175] 

for a recent review), which functions as an ADP-ribose binding module [176], likely 

mediating transcriptional regulation in response to nutrient availability. 

On the other hand, acetyl-CoA is the acetyl donor for histone lysine acetylation 

by histone acetyl transferases (HATs). Independently of its role in the synthesis of O-

GlcNAc, acetyl-CoA has been considered a metabolic sensor by itself. Wellen et al. 

showed that suppression of the ATP-citrate lyase activity (the enzyme that converts 

glucose-derived citrate to acetyl-CoA) resulted in a global decline in histone acetylation, 

and more specifically in the hypoacetylation of the promoter region of the glucose 

transporter GLUT4 gene in adipocytes, thus linking glucose availability to the 

activation of a glucolytic program of gene expression [177]. Finally, other metabolites 

whose levels change in response to the nutrient status and are involved in the epigenetic 

regulation of gene expression have been described ([178], and references therein). 

These include FAD, a riboflavin (vitamin B12) derivative that works as a cofactor of 

LSD1, a H3K4 histone demethylase [179]. 

6.5 Effect of plant bioactive compounds on epigenetic regulators  

In recent years, a number of dietary bioactive compounds of plant origin have 

been characterized as epigenetic modulators of gene expression because of their ability 

to reshape histone post-translational modification marks or DNA methylation patterns, 

although their exact role in maintaining the altered patterns required to establish lifelong 
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effects remains poorly understood. In this section, we review recent reports on the direct 

effect of small secondary plant metabolites, mainly polyphenols and isothiocyanates, on 

the activity of enzymes directly involved in the structural/regulatory modifications of 

chromatin. We will not discuss the effects of caloric intake or of changes in 

micro/macronutrient consumption because there are excellent recent reviews on this 

topic [180]. 

Polyphenols such as curcumin, resveratrol, genistein, or ECGG constitute a 

complex class of plant secondary metabolites with an accepted role as epigenetic 

modulators. Curcumin (diferuloymethane) is a bioactive compound with anti-oxidative, 

anti-inflammatory, and anti-lipidemic properties and contributes to epigenetic regulation 

by downregulating expression of DNA methyltransferases (DNMT1, 3A and 3B) [181] 

and inhibiting HAT activity [182]. Furthermore, curcumin treatment was seen to alter 

expression of a large set of miRNAs, and consequently of their target genes [183], to 

upregulate the tumor suppressor lncRNA MEG3 [184], as well as to suppress 

expression from the H19 locus, but not from IGF2, in cancer cell lines [185]. 

Resveratrol is another phytochemical with an established role as epigenetic regulator. 

Resveratrol activates SIRT1 by increasing its binding to laminA [186] and inhibits 

mono-ubiquitination of histone H2B at K120 [187], which has an impact on the 

landscape of histone marks. Furthermore, resveratrol has been shown to regulate 

expression of the chromatin modifier metastasis-associated protein 1 (MTA1), a 

component of the silencing nucleosome remodeling and deacetylating complex (NuRD) 

[188]. On the other hand, the soybean isoflavone genistein has been observed to 

promote hypermethylation of CpG islands in specific mouse genes [189], as well as to 

modulate H3K19 methylation or deacetylation of specific promoters through a 

reduction of SIRT1 activity [190], while garcinol has been characterized as a potent 

inhibitor of histone acetyltransferases [191], cambinol as an inhibitor of SIRT1 and 

SIRT2 [192], and chaetocin as an inhibitor of histone H3 lysine 9 (H3K9), a 

methyltransferase suppressor of the variegation 3-9 homolog 1 (Suv39 h1) [193] 

The list of phytochemicals with epigenetic regulatory potential is not restricted 

to polyphenols, but should also include sulforaphane (SFN), a dietary isothiocyanate, 

and allyl sulphides [194, 195], which function as HDAC inhibitors “in vitro”, and green 

tea catechins, especially epigallocatechin gallate (EGCG), which have been shown to 

downmodulate DNA methylation by attenuating the effect of DNA methyltransferase 1 
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(DNMT1) through a yet unknown mechanism, although various authors have shown the 

reexpression of tumor suppressors p16
INK4a

 and p15
INK4b

 and WIF1 upon treatment of 

tumor cell lines with EGCG ([196] and references therein). 

 

7. XENOMIRS AND METASTABLE EPIALLELES: DOUBLE-EDGED 

SWORDS FOR NUTRIGENOMIC INTERVENTION. 

The safety of nutrigenomic intervention is widely accepted, mainly because the 

accidental ingestion of physiologically toxic amounts of polyphenols and other plant 

metabolites seems to be highly unlikely. Nevertheless, physiologically safe levels of 

ingested nutrients and metabolites could have undesired effects on epigenetic regulators 

[197, 198]. Of special concern are genes that harbor metastable epialleles (MEs), i.e. 

alleles which generate phenotypical variation through differential methylation, in their 

regulatory regions [199]. Metastable epialleles have been shown to promote the 

spreading of methylation to neighboring genes, thus contributing to their untimely 

epigenetic silencing [200]. What makes regulatory MEs interesting for nutraceutical 

research is the potential modulation of expression of their associated genes by 

environmental factors, with the degree of DNA methylation at their promoters reflecting 

the maternal intake of folic acid,as in the agouti and axin-fused genes [111, 116]. This 

environmental sensitivity makes ME-harboring genes likely targets for nutraceutical 

intervention, as well as interesting candidates to explain the long-term susceptibility to 

chronic diseases by linking prenatal exposures (e.g. to maternal folate) to the 

developmental plasticity of the epigenome [201]. In this context, Waterland et al. 

described a number of human MEs and studied their dynamics in a model of seasonal 

food shortage in Gambian subsistence farmers. They compared levels of methylation in 

MEs from individuals conceived in scarce vs. affluent conditions, and found them to be 

significantly increased in individuals conceived in the challenging season [202], 

probably due to seasonal variations in the intake of methyl donors by the pregnant 

mothers, although no data were provided on the expression variations of the ME-

associated genes [203, 204]. To make things more interesting, a recent report showed 

that genomic regions flanking human MEs were enriched in repetitive sequences of the 

long interspersed nuclear element (LINE) or endogenous retrovirus (ERV) families 

[205], a relevant result because murine MEs have also been localized next to 

retroviruses and other transposable elements that generate epigenetic variability or 
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instability [206, 207] or affect the transcriptional pattern of the locus [208]. Other 

authors have detected hypermethylated, leaky elements of the Alu [200] or B1 [209, 

210] families that spread methylation to flanking regions and consequently contributed 

to the silencing of contiguous genes. Clearly, more research is needed on the function 

and dynamics of MEs, on their associated genes, and on their role as spreaders of 

methylation and gene-silencers; nonetheless, MEs could provide the degree of 

phenotypic variability needed to explain some of the long-term effects of early-life 

nutrition. 

Another risky association between nutrition and the epigenetic machinery deals 

with the recently described xenomiRs or xenomiRNAs, i.e., exogenous plant or animal-

derived miRNAs [211]. In a highly controversial report, Zhang et al. described that the 

plant-specific microRNA miR-168a could be acquired by animals through food 

ingestion, survive the acidic conditions of stomach, target the low-density lipoprotein 

receptor adapter protein 1 (LDLRAP1) mRNA, and reduce the liver expression of 

LDLRAP1 protein [212]. Similarly, Baier et al. reported that miR-29b and miR-200c 

could be acquired by humans through milk consumption, and that miR-29b could target 

the runt-related transcription factor-2 (RUNX2) mRNA and miR-200c the ZEB1 mRNA 

in “in vitro” luciferase assays [213]. Furthermore, these authors showed that depletion 

of these miRNAs from milk was not compensated by intracellular synthesis, suggesting 

that humans relied on continuous exogenous supply of miR-29b and miR-200c [213]. 

Although these results have been openly questioned [214-217], with some laboratories 

being unable to replicate them [218] and others considering them as laboratory artifacts 

[219], the idea that xenomiRs could regulate the expression of target genes in humans or 

animals is fascinating (see [220] for a recent review), and could open a conceptual gate 

for the direct use of miRNA-characterized diets in nutritional interventions aimed to 

stop disease progression [221, 222]. It is likely that the coming years will see enormous 

progress in this highly controversial research area. 

 

8. CONCLUSIONSAND FUTURE TRENDS 

The epidemic of obesity that currently affects the western world has generated 

great interest in identifying the molecular mechanisms involved in the onset and 

progression of obesity and its related conditions. Of special interest are the effects of 

prenatal nutrition on the long-term risk of chronic diseases, as well as the genetic and 
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epigenetic mechanisms that regulate the expression of genes critical for the appropriate 

development of adipogenic tissues. The present review focused on recently published 

work on the interface between nutrition and epigenetic mechanisms, i.e., how nutrients 

have an impact on the covalent marks of DNA and histones that have a direct role in the 

regulation of gene expression. Although this field of research is quite young, enough 

data are available to draw a number of conclusions that could serve as a theoretical basis 

for the development of further investigations: i.- early-life malnutrition results in 

increased risk of obesity and related conditions in adulthood, according to sound 

epidemiological evidence from studies in historical cohorts; ii.- nutrition has a direct 

impact on the expression of a number of responsive genes, and the availability of 

specific nutrients, such as methyl donors or folate, can modulate expression of certain 

genes (e.g., the Agouti gene) by changing the degree of methylation of their regulatory 

regions; iii-chromatin could be considered a metabolic/nutrient sensor that responds to 

nutritional cues by changing the patterns of gene expression. The post-translational 

addition of O-GclNAc, whose intracellular levels reflect the metabolic status of the cell, 

modulates gene expression by tagging histone proteins and members of the polycomb 

group of proteins (PcG), among others. Thus poor nutrition, leading to a metabolite 

shortage, could affect the appropriate deployment of epigenetic tags and, subsequently, 

the growth and development of critical organs and tissues.   

A general overview of this topic would highlight evidence that early 

environmental exposures (such as nutrition) can affect (i.e. reprogram) the 

developmental plasticity of key tissues and organs by affecting epigenetic mechanisms 

that control gene expression. Nevertheless, this explanation remains a theoretical 

structure because we still lack a mechanistic view of the processes involved. The many 

unknowns include the genes affected, the number and nature of their nutrient-sensitive 

regulatory regions, the epigenetic regulators involved, the gene-modulating role of 

specific nutrients and metabolites, aa well as the developmental alterations generated in 

the critical tissues and organs. On the other hand, the promising insights into the 

regulating roles of xenomiRNAs or of the metastable epialleles in nutrition-dependent 

changes make them worthy of study because of their ground-breaking potential as 

regulatory mechanisms, as well as their yet unforeseen physiological impacts. 

These will definitely be future fields of active research because they correspond 

to the primary questions raised by the data here reviewed. Nevertheless, we would pose 
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other, perhaps more philosophical, questions. It would be very important to describe the 

molecular mechanisms by which the cellular memory of the initial nutritional insult is 

established in early life and propagated to adulthood, i.e., to understand why the 

predisposition “awakens” 40-50 years later. We could hypothesize a requirement for a 

second signal, or the interaction of nutritionally primed epigenetic mediators with the 

aging machinery of the cell. In addition, it is tempting to speculate that nutrition-derived 

reductions in prenatal nutritional/metabolic sensors (such as the methyl donors or UDP-

GlcNAc,among others) could somehow affect the activity of critical, as yet unknown, 

regulatory regions or epigenetic regulators, leading to a gradual loss of epigenetic tags 

and/or other signals important for the maintenance of gene expression homeostasis. The 

affected cells would thus enter a state of gradual “regulatory exhaustion” that would 

hinder their physiological stability. 

It is clear that a deep knowledge of the genetic and epigenetic mechanisms 

involved in nutrition-dependent reprogramming would likely provide us with tools for 

primary prevention as well as to reverse the process and, hopefully, its effects on long-

term disease susceptibility. Of course, much more research is needed to fulfill this 

objective, and it is likely that the coming years will see a dramatic advance in research 

on the nutrition-dependent alterations in gene expression and the associated increases in 

disease risk. 
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TABLE LEGENDS 

Table 1: Consequences of maternal malnutrition during the Dutch famine (1944-

1945) on the development of chronic diseases at adulthood of their descendants  

AGE : Age at which the analysis was performed in descendants of mothers exposed to 

famine.  

(*) When the age of the subjects is not stated, the year at which the study was published 

is indicated   

MATERNAL EXPOSURE TO HUNGER: gestation period in which mothers were 

exposed to famine 

(**) Late gestation: babies born between 7 January1945 and 28 April 1945 

       Mid gestation: babies born between 29 April 1945 and 18 August 1945 

       Early gestation: babies born between 19 August 1945 and 8 December 1945 

For the control groups not exposed to famine see each reference. 

 

Table 2:Summary of selected histone post-translational modifications (acetylation 

or methylation) and their association to functional states of chromatin 

Only individual labels are shown, not their combinations.  

Bivalent domain: histone tag that represses developmentally expressed genes while 

maintaining them poised for activation upon differentiation. 

 TSS: Transcription Start Site 

The code for histone labels is as follows: (H2B, 3, 4)-Histone 2B, 3 or 4, (K)-lysine, 

(ac)-acetylation, (me)-methylation. The number after the lysine code indicates the 

position modified, and me1, 2, 3 indicates mono- di- or tri methylations. This is a 

selection of significant histone labels and by no means an exhaustive inventory of all 

known histone post-translational modifications (PTMs).  
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FIGURE LEGENDS 

Figure 1: New families of RNAs which control the flow of genetic information, and 

their functional interactions  

Boxes show components of the original “Central Dogma of Molecular Biology”, which 

described the flow of genetic information from DNA to protein and considered mRNA 

essentially as an information-encoding, unstable intermediate [41, 42, 223]. This 

perspective has been updated by adding relevant families of non-coding RNAs, 

discovered recently, which are also transcribed from genomic DNA and have a 

functional role in the control of gene expression. These include the following: piRNAs, 

Piwi-interacting RNAs; sncRNAs, small non-coding RNAs; lncRNAs, long non-coding 

RNAs; and miRNAs, micro RNAs. Solid arrows indicate transcription, the dotted arrow 

stands for translation, and the dashed arrows represent a regulatory relationship between 

two species of nucleic acids.  

These relationships are described as follows:  

A- microRNAs that regulate stability or translability of mRNAs [61];  

B- lncRNAs that regulate mRNA processing, stability and degradation [224];  

C- lncRNAs that can function as “miRNA sponges” to reduce their effective 

concentration [225];  

D- miRNAs that target and downregulate lncRNAs [226];  

E- antisense, AS-lncRNAs that regulate expression of neighboring genes, lncRNAs (as 

XIST) involved in imprinting and silencing of gene expression, or enhancer RNAs 

(eRNAs) that activate gene expression [79, 227, 228], among others;  

F- generation of new regulatory regions by retrotransposition near other functional 

genes [229];  

G- small RNAs involved in retroelement silencing in the germline [230]. 

This figure reviews only some of the most relevant non-coding RNA families, and is 

neither a systematic catalog of these elements nor of their functions. We have focused 

on the functional interactions between coding and non-coding RNAs and with DNA, not 

considering their mutual impacts on proteins. 

 

Figure 2: Transcriptional regulation of the imprinted IgF2/H19 locus  

Shown are the IgF2 and H19 genes as well as the most relevant controlling elements 

which regulate their parentally specific expression: the differentially methylated region 
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(DMR) and the distal 3’ transcriptional enhancer. In this parentally imprinted locus the 

maternal chromosome keeps the DMR unmethylated so that it can bind the insulator 

zinc-finger protein CTCF, which blocks the communication between the IgF2 promoter 

and the distal enhancer [231], resulting in the transcriptional activation of the H19 gene. 

On the other hand, CTCF fails to bind to the heavily methylated DMR from the paternal 

chromosome, which facilitates the interaction between the distal enhancer and the IgF2 

promoter to induce its expression. 

 

Figure 3: Chromatin as a nutrient sensor: GlcNAcylation of chromatin and 

epigenetic regulators links the nutritional status of the cell with mechanisms 

regulating gene expression 

Nutrient availability regulates levels of UDP-GlcNAc through the hexosamine 

biosynthetic pathway; this mechanism is controlled by a number of nutrient-sensing 

pathways (mTOR, AMPK, etc). GlcNAcylation of chromatin and other epigenetic 

regulators such as histones, polycomb group proteins (PcG), HDACs, TET (Ten-Eleven 

Translocation) proteins, and associated transcription factors (see text for details) have a 

global impact on the regulation of gene expression. 
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CONSEQUENCES ON PRENATALLY EXPOSED 

DESCENDANTS  

AGE* MATERNAL EXPOSITION TO 

HUNGER** 

REFERENCE 

Significantly higher obesity rates     19 First half of gestation [20] 

Significantly lower obesity rates    19 Last trimester of gestation [20] 

Higher BMI and waist circumference in women but not in men    50 Early gestation  [23] 

No effect of prenatal famine on systolic or diastolic blood 

pressure  

   50 Early or late gestation [250] 

Reduced concentrations of plasma factor VII    50 Early gestation  [251] 

Significantly higher LDL-HDL cholesterol ratios     50 Early gestation  [252] 

Higher prevalence of coronary heart disease    50 Early gestation  [253] 

Decreased glucose tolerance 1998 Late gestation  [22] 

Perceived poor health    50 Early gestation  [254] 

Earlier onset of coronary artery disease    50 Early gestation  [28] 

Higher rates of microalbuminuria 48-53 Mid gestation [255] 

Similarly decreased glucose tolerance at 50y and 58 y 50/58 All periods of  gestation [256] 

No effect of exposure on adult mortality up to 57 years    57 All periods of gestation [257] 

Higher systolic and diastolic blood pressure after stress tests    58 Early gestation [258] 

Reduced insulin secretion  (lower disposition index)    58 Mid gestation [259] 

Not associated to a greater prevalence of metabolic syndrome    58 All periods of gestation [260] 

Elevated total cholesterol, triglycerides and LDL-chol. In 

women only 

   58 All periods of gestation [261] 

No increase in CAD risk or Framingham risk    58 All periods of gestation  [30] 

Reduced carotid and femoral arteries intima media thickness    58 All periods of gestation [262] 

Increased weight and adiposity in women but not in men    59 All periods of gestation [263] 

Less DNA methylation at the IGF2 gene compared with 

unexposed siblings 

   60 Early gestation [119] 
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HISTONE LABEL  CHROMATIN FUNCTIONAL STATE          REFERENCES 

H2BK120ac Active o poised TSS. Absent from core promoters. [232] 

H3K4ac Marks promoters of actively transcribed genes [233] 

H3K9ac Enriched at the promoters of actively transcribed genes  [234] 

H3K14ac Associated to active promoters [235] 

H3K27ac Associated to active enhancers and  promoters [235, 236] 

H3K36ac Associated to active promoters [237] 

H3K4me1 Associate to enhancers of differentiation genes [238] 

H3K4me2 Associate to active chromatin [239] 

H3K4me3 Associated to actively transcribed genes [240] 

H3K9me1 Associate to enhancers of differentiation genes [238] 

H3K9me2 Repressive mark [241] 

H3K9me3 Repressive signal in gene-poor regions [242] 

H3K27me1 Associate to enhancers of differentiation genes [238] 

H3K27me2 Repressive signal mediated by polycomb repressive complex 2 [243] 

H3K27me3 Temporary repressive signal in gene-rich regions  

Mediated by polycomb repressive complex 2 

[242] 

H4K8ac Associate to active chromatin  [244] 

H4K12ac Associate to active chromatin  [245] 

H4K16ac Associate to active chromatin   [244] 

H4K20me1 Repressive mark of facultative heterochromatin [246] 

H4K20me2 DNA damage response [247] 

H4K20me3 Constitutive heterochromatin [248, 249] 

Table 2 

Table(s)
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