
User-Centered Intelligent Information
Support for Programmers

Daye Nam

CMU-S3D-24-101

May 2024

Software and Societal Systems Department
School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

Thesis Committee:
Bogdan Vasilescu, Co-Chair

Brad Myers, Co-Chair
Vincent Hellendoorn, Co-Chair

Baishakhi Ray, (Columbia University)
Andrew Macvean, (Google, Inc.)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Software Engineering.

Copyright © 2024 Daye Nam

This work was supported by the National Science Foundation, under NSF grant CCF-2007482, and by
Google. Any opinions, findings, conclusions, or recommendations expressed in this material are those of
the author and do not necessarily reflect those of the National Science Foundation or Google.

Keywords: Information Seeking, Program Understanding, API learning, Developer
Tools, Human-Computer Interaction, Software Engineering

To my loving family,
for unwavering support and belief in me.

iv

Abstract
Software engineering is an information-intensive discipline. While building

and maintaining software systems, programmers encounter a broad spectrum
of questions ranging from implementation specifics to architectural concerns.
However, satisfying their information needs is not easy, because the relevant
information is often scattered across varying mediums in different formats.
It becomes even more challenging when a programmer needs to work with
unfamiliar code or libraries, without the necessary knowledge and experience
to search for information effectively.

In this thesis, I aim to address the challenges programmers face in seek-
ing information by designing, building, and evaluating intelligent information
support tools using user-centered approaches. To provide user-centered intel-
ligent support, this thesis investigates both the users (i.e., programmers), and
the intelligent techniques. To motivate the need for user-centered informa-
tion support, I first present an exploratory, mixed-methods empirical study
on documentation page-view logs, revealing discernible documentation page
visit patterns. The study shows that programmers use documentation differ-
ently, and their contextual factors correlate with their documentation usage,
highlighting the need for information support tailored to diverse user contexts
instead of “one size fits all” solutions. I then introduce four prototype in-
telligent information support tools designed to assist developers working with
unfamiliar code, concepts, application domains, and APIs. Evaluations of these
tools demonstrate the effectiveness of intelligent solutions, compared with tra-
ditional baseline approaches. Furthermore, user studies conducted with these
prototypes illustrate the benefits of designing information support tools that
account for users’ current tasks and the broader context in which these tasks
are situated. Motivated by these findings, this thesis finally explores the possi-
bility of personalizing information support for programmers, by leveraging the
programmers’ contextual factors (e.g., familiarity with application domains) to
enhance information support.

By investigating various intelligent techniques for different information-
seeking scenarios, this thesis illustrates how a thorough understanding of the
users not only yields valuable insights for designing more useful and usable
tools but also improves the performance of intelligent techniques used in these
tasks. The methodologies used for building user-centered information support
tools, along with the insights gained from user studies in this thesis, will fur-
ther our understanding of how developers with varying goals and backgrounds
seek and use information. Taken together, the thesis will shed light on the
design of future programming tools, especially those that will be built for a
new programming paradigm that relies heavily on AI-based support.

vi

Acknowledgments
The past six years have been a profound journey, marked by a series of

ups and downs that, while vivid in my memory, also seem to have passed in
the blink of an eye. Although I often still feel like a wide-eyed kid, amazed
by the rapid changes unfolding in the world, I have also grown significantly
since 2018 when I first started my PhD. Reflecting on this period, I believe the
PhD program was designed to challenge me thoroughly, both academically and
personally, yet it provided a nurturing environment surrounded by wonderful
people who earnestly supported my success.

First, I owe immense gratitude to my three co-advisors: Bogdan Vasilescu,
Brad Myers, and Vincent Hellendoorn. I am profoundly grateful for their men-
torship which was not just academic but often personal, helping me navigate
the complex landscape of research and self-discovery. Their diverse expertise
fueled my interdisciplinary journey, shaping my aspirations and molding me
into the researcher I am today. What I received from my advisors extends
beyond the confines of a single paragraph, but I believe the most crucial fac-
tor was their belief in my potential, even when I doubted myself. Although I
will miss the four-person weekly meeting a lot, I also look forward to all the
collaborations we can do in the future.

My appreciation extends to my thesis committee members, Baishakhi Ray
and Andrew Macvean. Their insightful advice, probing questions, and thought-
ful comments have significantly enriched my thesis work. Their mentorship
throughout my thesis work and the collaboration has also shaped my resilience
and perspective, preparing me for challenges both within and outside the aca-
demic world.

I have also been privileged to receive mentorship from many senior re-
searchers at Carnegie Mellon University and within the Software Engineering
Community. I cherish my PhD experience, largely due to engaging discussions
and learning opportunities from senior researchers. Special thanks to Michael
Hilton for shaping my teaching philosophy; Satish Chandra for instilling a sense
of real-world impact; Nenad Medvidovic for encouraging my initial steps into
software engineering research; and Kelly Blincoe, Claire Le Goues, Jim Herb-
sleb, Ciera Jaspan, Eunsuk Kang, Miryung Kim, Christian Kästner, Youn Kyu
Lee, Rohan Padhye, Christopher Timperley, Westley Weimer, Tianyi Zhang,
Yixue Zhao, and many others for their invaluable advice and mentorship.

The unique advantage of having three advisors was having thrice the num-
ber of lab mates. I am grateful to Matthew Davis, Luke Dramko, Hongbo Fang,
Luis Gomes, Hao He, Amber Horvath, Kush Jain, Sophia Kolak, Jeremy La-
comis, Jenny Liang, Michael Xieyang Liu, Courtney Miller, Manisha Mukher-
jee, Huilian Sophie Qiu, Daniel Ramos, Nikitha Rao, Marat Valiev, David Wid-

der, Aidan Yang, and others for their camaraderie, shared ideas, and friendship,
especially during moments of doubt and rejection.

My heartfelt thanks also go to my Pittsburgh friends: Emily Yewon Byun,
Maria Casimiro, Yae Jee Cho, Simon Chu, Samuel Estep, Morgan Evans, Cata-
rina Gamboa, Seonghwan Hong, Jane Hsieh, Kush Jain, Eunji Jo, Seonghan Jo,
Daehyuk Kim, Seyun Kim, Chung Hee Kim, Zeeshan Lakhani, Kyle Liang, Ki-
wan Maeng, Claudia Mamede, Christopher Meiklejohn, So Yeon Tiffany Min,
Jimin Mun, Nadia Nahar, Wode ’Nimo’ Ni, Chan Young Park, Hyegyeong
Park, Seoyeon Park, Melrose Roderick, Paulo Santos, Ryan Shi, Soyong Shin,
Jisoo Sohn, Jimin Sun, Vasudev Vikram, Jenna Wise, Jungdam Won, Jiin
Woo, Chenyang Yang, Minji Yoon, and many more. Thank you for providing
much-needed fun and solace during those metaphorically and literally harsh
Pittsburgh winters. I cherish every brunch, dinner, gym session, yoga class,
party, picnic, and movie night we spent together. I will especially miss all the
ups and downs I have gone through with my old roommate, Minji Yoon, at
Apt 1401, and the numerous spontaneous conversations I had with S3D PhD
students at TCS 317 on a myriad of topics.

I extend my appreciation to all my study participants whose contributions
were crucial to my research, as well as to the National Science Foundation
(CCF-2007482) and Google for their generous financial support. I am also
thankful for the constructive feedback from numerous reviewers of my papers.

Last but certainly not least, my deepest gratitude goes to my family—
Sikwan Nam (남시관), Yunrye Kang (강윤례), and Dabin Jessica Nam (남다
빈)—for their unwavering belief in me, their constant support, and their endless
love. I honor my grandmother, my greatest supporter, with love and gratitude
in her cherished memory. My partner, Hyun Uk Chae, also deserves special
recognition for being my steadfast support, sharing in both the struggles and
the triumphs during our PhDs. Though I was physically away, the love and
support from my family have been the pillars of my resilience and success. This
achievement is as much yours as it is mine.

viii

Contents

1 Introduction 1
1.1 Thesis: User-Centered Intelligent Information Support 2

1.1.1 Programmer Context . 2
1.1.2 Information Preparation . 3
1.1.3 Information Presentation . 3

1.2 Research Methods Overview . 4
1.3 Thesis Outline . 5

2 Background and Related Work 7
2.1 Information Needs of Programmers . 7
2.2 Information Seeking of Programmers . 8
2.3 Intelligent Techniques for Information Support for Programmers 9
2.4 Existing Information Support for Programmers 9

3 Confirming Different Information Needs of Developers 11
3.1 Introduction . 11
3.2 Dataset . 14

3.2.1 Product Selection . 14
3.2.2 Documentation Usage Data Preprocessing 15
3.2.3 Privacy Protections . 16
3.2.4 Limitations & Threats to Validity 17

3.3 Phase I: Discerning Documentation Use Patterns in Log Data 18
3.3.1 Data Preparation . 18
3.3.2 Methodology . 19
3.3.3 Resulting Clusters . 20

3.4 Phase II: Factors Associated with Documentation Use 22
3.4.1 Hypotheses Building . 23
3.4.2 Data Preparation . 24
3.4.3 Sanity Test with Cluster Exploration 25
3.4.4 Regression Analysis . 28
3.4.5 Results . 29

3.5 Discussion . 33
3.5.1 Feasibility of Log Analysis for Documentation Review 33
3.5.2 Recommendations for Documentation Providers 34

ix

3.5.3 Longer-term Vision: Personalization 36
3.6 Summary . 37

4 Automatic Extraction of Boilerplate Client Code 39
4.1 Introduction . 39
4.2 Studying Boilerplate Code . 42

4.2.1 Resources . 42
4.2.2 Definition of Boilerplate Code . 43
4.2.3 Understanding Cause of Boilerplate Code 44
4.2.4 Programmers’ Efforts to Reduce Boilerplate Code 45

4.3 Mining Boilerplate Code . 46
4.3.1 API Usage Pattern Mining . 46
4.3.2 AST Extraction . 48
4.3.3 Graph Partitioning . 49
4.3.4 Viewer . 51

4.4 Evaluation . 51
4.4.1 Experimental Setup . 53
4.4.2 Results and Discussion . 54
4.4.3 Threats to Validity . 57

4.5 Summary . 58

5 Information Support for Programming with Unfamiliar Libraries 59
5.1 Introduction . 59
5.2 A Benchmark of Comparable API Methods 62
5.3 Information Presentation . 63

5.3.1 Study Design . 63
5.3.2 Analysis . 64
5.3.3 Results . 65

5.4 Learning-based Information Extraction . 65
5.4.1 Model Architecture . 66
5.4.2 Model Training . 67
5.4.3 Evaluations with Test Data and Ablations 68
5.4.4 Comparison with Baselines and Prior Work 69
5.4.5 Generalization to Larger Dataset 71
5.4.6 Error Analysis . 72
5.4.7 Threats to Validity . 73

5.5 Discussion . 73
5.6 Summary . 74

6 Testing the Feasibility of Generation-based Information Support 75
6.1 Introduction . 75
6.2 Backgrounds . 78
6.3 Learning to predict API sequences . 79
6.4 Technical Details . 81

x

6.4.1 Notations . 81
6.4.2 The encoding function . 82
6.4.3 Compositional Model . 82
6.4.4 Synthetic Data Generation . 83

6.5 Incorporating ML in Enumerative Synthesis 84
6.6 Evaluation . 85

6.6.1 Dataset . 85
6.6.2 Sequence Prediction Model . 86
6.6.3 Prediction-guided enumerative synthesis 86
6.6.4 Evaluating Generalization . 87
6.6.5 Scaling to a larger set of API functions 88

6.7 Why composition works? . 88
6.8 Limitations . 90
6.9 Summary . 90

7 Generation-based Information Support Considering Developer’s Task
Context 91
7.1 Introduction . 91
7.2 The GILT Prototype Tool . 92

7.2.1 Interacting with GILT . 94
7.2.2 Our Design Process and Decisions 94

7.3 Human Study Design . 95
7.4 RQ 7.1: Effects of GILT . 100

7.4.1 Data Collection . 100
7.4.2 Methodology . 100
7.4.3 Results . 101
7.4.4 Additional Analysis . 101

7.5 RQ 7.2: GILT Usage . 102
7.5.1 Usage of Features . 102
7.5.2 Professionals v.s., Students . 104
7.5.3 Other Factors Associated with Feature Use 105

7.6 RQ 8.3: User Perceptions . 107
7.6.1 Comparison with Web Search . 107
7.6.2 User Feedback . 107

7.7 Threats to Validity . 108
7.8 Discussion and Implications . 109
7.9 Summary . 110

8 Towards Building Personalized Information Support 111
8.1 Introduction . 111
8.2 RQ8.1: Understanding Context for Information Support 112

8.2.1 Study Design . 113
8.2.2 Results: Contextual Factors Used by Programmers 114

xi

8.3 RQ8.2: Experimental approach to measuring the value of providing addi-
tional contextual factors . 116
8.3.1 Study Design . 116
8.3.2 Results: Impact of Including Contextual Factors in Response Qual-

ity Enhancement . 120
8.4 Discussion . 122

8.4.1 Study Design Limitation . 122
8.4.2 Potential for automatic contextualization 123

8.5 Summary . 125

9 Conclusion & Future Work 127
9.1 Summary of Contributions . 127
9.2 Discussion & Future Work . 128
9.3 Concluding Remarks . 130

A More Results for Logs Analysis 133

B Experiment Details for Predictive Synthesis of API-Centric Code 141
B.1 Supported operations of PyTorch . 141
B.2 Stack Overflow Benchmarks . 142

B.2.1 Input/output and Desired Code . 142
B.2.2 Links to Original StackOverflow Posts 146

B.3 Implementation of ML Models . 148
B.4 Algorithms . 149

C Additional Study Results for SOREL 151
C.1 Outcome Variables for Quantitative Analysis. 151
C.2 User Study Results . 153

C.2.1 Quantitative Data Summary . 153
C.2.2 Statistical Test Results . 154

D Experiment Details for GILT Study 157

Bibliography 163

xii

List of Figures

1.1 Conceptual Framework for Context-aware Information Support 2
1.2 My research process . 4

3.1 Overview of our data collection and analysis. 13
3.2 Distribution of the log-transformed number of users per cluster. 20
3.3 The heatmap of centroids of the 320 clusters (left), and a subset of them

highlighted (right). Each row represents the documentation usage of each
cluster (see Table 3.1 for the documentation type codes). The color indicates
the dwell time in minutes, with the intensity encoded in en of time. The
average total counts (# of documentation pages visited in May) and the
average total dwell time (sum of dwell time on 11 documentation types) are
also shown for the selected clusters (right) to help with interpretation, and
the rows are sorted by the average total dwell time. For example, users
of Cluster 18 (2nd row from the selected clusters) spent 3.28 minutes on
average on the product documentation among 2.27 page visits on average,
and spent ≈ e1 = 2.7 minutes on Concept type documentation. 21

3.4 Highlights of the clustering analysis. Each polar plot displays the average
time spent on each type of documentation (see Table 3.1 for the documen-
tation type codes). The small polar plots show the average dwell time in the
previous three months. Note that the ranges of the axes of the plots vary.
Bar charts below the polar plots show the proportions (%) of each group in
the cluster. For example, the charts of Cluster 21 can be interpreted as “In
cluster 21, users without platform and product experience predominantly
used Tutorial documentation (≈ 6 minutes) of P2 (81.1%) and P1 (18.9%),
mostly for clarification purposes, without subsequent API requests.” . . . 26

3.5 Top: Estimated odds ratios from the regression modeling dwell time > 0 for
our four documentation genres. For example, the odds of accessing Dev type
documentation (pink) are 1.01 times higher among users with one extra year
of platform experience. Bottom: Estimated odds ratios from the regression
modeling subsequent requests > 0. Variables without statistically significant
coefficients (adjusted p ≥ 0.01) are omitted. 30

3.6 Coefficients from regression analysis predicting dwell time for four types of
documentation. p-values are adjusted based on the Holm’s correction [99].
Coefficients are removed for non-significant results (p>.001). 31

xiii

3.7 Coefficients from regression analysis predicting dwell time for four types of
documentation. p-values are adjusted based on the Holm’s correction [99].
Coefficients are removed for non-significant results (p>.001). 31

4.1 Overview of our mining process and the steps involved. 47
4.2 A part of the AST for the code in Listing 4.1 and the extracted subtree (col-

ored) for the API usage pattern [DOMSource.<init>, StreamResult.<init>]
using our slicing heuristic. 50

5.1 Fragment from a Stack Overflow answer by mrry / CC BY-SA 3.0 il-
lustrating the tacit crowd knowledge on comparable API methods soft-
max_cross_entropy_with_logits and sparse_softmax_cross_entropy_with_logits.
We highlighted the sentences supporting the comparison. 60

5.2 Overview of our browser plugin: (1) When comparable API methods exists
in our labeled dataset, the extension inserts a “vs” icon. The user can
hover over it to activate the scrollable tooltip (5), which displays (2) the
pair(s) of comparable API methods, each with links to their reference pages;
(3) the relevant sentences for the comparison; (4) a link to the Stack Overflow
answer where the sentences were extracted from. 63

5.3 The architecture of SOREL, which learns to infer the comparison relation
and the supporting evidence. 66

6.1 Overview of ML guided enumerative search algorithms. (a) Weighted enu-
merative synthesis without ML model incorporation [229], (b)weighted enu-
merative synthesis with one-time ML-based prioritization [24, 229], (c) in-
corporation of Full-Seq prediction mode, (d) incorporation of First-Of-Seq
prediction mode. Red-highlight indicates the API functions predicted by
ML models. The underscore is a placeholder for argument values. Numbers
(in (a),(b)) on the left side are the costs assigned to the values and API
functions. 76

6.2 Visualization of embedding space of input-output pairs. 80
6.3 Illustration of Compositional Model on an example. The inputs are in the

Tensor Values box, and the expected prediction is shown in the Sequence box. 82
6.5 Proximity of h2 and h′

2 pairs for some inputs (in white and black respec-
tively), against a backdrop of h2 (crosses) and h′

2 (dots). 89
6.4 Illustration of compositional learning: h2 ≈ h′

2. 89

7.1 Overview of our prototype. (1) A trigger button; (2) code used as context
when prompting LLM; (3) code summary (no-prompt trigger); (4) buttons
for further details; (5) an input box for user prompts; (6) options to embed
information to code (Embed) and a hide/view button; (7) options to clear
the panel (Clear all) and an abort LLM button; (8) a refresh button. 93

7.2 A 3D-rendering example sub-task (open3d-3). With these start and goal
outputs, we asked the participants to “Make the bunny sit upright on the
chair.” See Figure 7.1 for the corresponding starter code and the tool output. 98

xiv

7.4 Participants’ report on the importance of GILT features. 103

7.5 Transition Graphs for User Interaction. Each node displays the number of
times users interacted with respective features, and each edge indicates the
counted number of transitions between the connected features. For space
and readability reasons, Prompt, Prompt-Context, and Prompt-Followup are
merged into prompt, and API, Concept, and Usage are merged into buttons.
Counts lower than 5 are omitted except for the edges connected to the
‘Success’ and ‘Fail’ nodes. 103

7.3 The sequences of feature usage in GILT. Each row corresponds to an indi-
vidual participant, and the color cells are arranged chronologically. 104

8.1 Scatter plots showing the trends between the character length difference
between the original and de-contextualized prompts (x-axis) and the score-
original (y-axis). 122

A.1 Distribution of the log-transformed total dwell time (in minutes) on docu-
mentation. 133

A.2 Large clusters with more than 500 users sorted by the number of users
(shown in parentheses). Each polar plot displays the average time spent
on each type of documentation (T: Tutorial, H: How-to, Q: Quickstart,
L: Landing, M: Marketing, O: Other, P: Pricing, Lg: Legal, Rn: Release
note, Ref: Reference, C:Concept). The small polar plots show the average
dwell time in the previous three months. Note that the ranges of the axes
of the plots vary. Bar charts below the polar plots show the proportions
(%) of each group in the cluster. 134

A.3 Large clusters with more than 500 users sorted by the number of users
(shown in parentheses). Each polar plot displays the average time spent
on each type of documentation (T: Tutorial, H: How-to, Q: Quickstart,
L: Landing, M: Marketing, O: Other, P: Pricing, Lg: Legal, Rn: Release
note, Ref: Reference, C:Concept). The small polar plots show the average
dwell time in the previous three months. Note that the ranges of the axes
of the plots vary. Bar charts below the polar plots show the proportions
(%) of each group in the cluster. 135

A.4 Large clusters with more than 500 users sorted by the number of users
(shown in parentheses). Each polar plot displays the average time spent
on each type of documentation (T: Tutorial, H: How-to, Q: Quickstart,
L: Landing, M: Marketing, O: Other, P: Pricing, Lg: Legal, Rn: Release
note, Ref: Reference, C:Concept). The small polar plots show the average
dwell time in the previous three months. Note that the ranges of the axes
of the plots vary. Bar charts below the polar plots show the proportions
(%) of each group in the cluster. 136

xv

A.5 Large clusters with more than 500 users sorted by the number of users
(shown in parentheses). Each polar plot displays the average time spent
on each type of documentation (T: Tutorial, H: How-to, Q: Quickstart,
L: Landing, M: Marketing, O: Other, P: Pricing, Lg: Legal, Rn: Release
note, Ref: Reference, C:Concept). The small polar plots show the average
dwell time in the previous three months. Note that the ranges of the axes
of the plots vary. Bar charts below the polar plots show the proportions
(%) of each group in the cluster. 137

A.6 Large clusters with more than 500 users sorted by the number of users
(shown in parentheses). Each polar plot displays the average time spent
on each type of documentation (T: Tutorial, H: How-to, Q: Quickstart,
L: Landing, M: Marketing, O: Other, P: Pricing, Lg: Legal, Rn: Release
note, Ref: Reference, C:Concept). The small polar plots show the average
dwell time in the previous three months. Note that the ranges of the axes
of the plots vary. Bar charts below the polar plots show the proportions
(%) of each group in the cluster. 138

A.7 Large clusters with more than 500 users sorted by the number of users
(shown in parentheses). Each polar plot displays the average time spent
on each type of documentation (T: Tutorial, H: How-to, Q: Quickstart,
L: Landing, M: Marketing, O: Other, P: Pricing, Lg: Legal, Rn: Release
note, Ref: Reference, C:Concept). The small polar plots show the average
dwell time in the previous three months. Note that the ranges of the axes
of the plots vary. Bar charts below the polar plots show the proportions
(%) of each group in the cluster. 139

A.8 Large clusters with more than 500 users sorted by the number of users
(shown in parentheses). Each polar plot displays the average time spent
on each type of documentation (T: Tutorial, H: How-to, Q: Quickstart,
L: Landing, M: Marketing, O: Other, P: Pricing, Lg: Legal, Rn: Release
note, Ref: Reference, C:Concept). The small polar plots show the average
dwell time in the previous three months. Note that the ranges of the axes
of the plots vary. Bar charts below the polar plots show the proportions
(%) of each group in the cluster. 140

D.1 Response to TAM items . 158
D.2 Response to NASA TLX items . 158

xvi

List of Tables

3.1 Types of documentation provided for the selected products. 15
3.2 An example of our documentation page-view data used for the clustering

analysis. 18
3.3 An example of our API usage data used for the qualitative investigation of

clustering results and the regression analysis. 24

4.1 Summary statistics on the number of candidate boilerplate instances for the
APIs in our dataset. 52

5.1 Summary statistics for our annotated data. 62
5.2 Overall performance on each subtask, and ablations (on test set) of the

model components and of the training set size (%). 68
5.3 Recall comparison with Google Autocomplete, Google’s Top-5 results, Ten-

sorFlow documentation, heuristics, DiffTech [264], and APIComp [148]),
ChatGPT [2] on test set (%) after excluding deprecated API methods. . . 69

5.4 A sample of new comparable API methods pairs and their supporting evi-
dence extracted from Stack Overflow. 72

6.1 Sample of synthesized programs with Full-Seq model guided enumerative
synthesis and the synthesis time comparison. More examples can be found
in the Appendix B. 78

6.2 Statistics of the dataset used in this study. Numbers in parentheses indicate
the length of the sequences. 85

6.3 Model accuracy for unseen input/output values. 86
6.4 End-to-end program synthesis results; our models in bold. Time, Max, and

Median show the average, max, and median synthesis time of found programs. 86
6.5 Model accuracy for unseen input/output values, trained with a dataset cov-

ering all SO benchmarks. 87

7.1 An example code context and the information that can be provided by our
tool given the code. 96

7.1 An example code context and the information that can be provided by our
tool given the code (cont.). 97

xvii

7.2 Summaries of regressions estimating the effect of using the prototype. Each
column summarizes the model for a different outcome variable. We report
the coefficient estimates with the standard errors in parentheses. 101

7.3 Frequencies of n-grams used differently in prompts by professionals and
students. For clarity, we only include n-grams used uniquely by one of the
two groups, with a frequency difference of more than 2. If multiple n-grams
share the same longer n-gram, we report only the superset. 105

7.4 Summaries of regressions testing for associations between the user factors
and the feature usage counts. Each column summarizes a regression mod-
eling different outcome variables. We report the coefficient estimates with
their standard errors in parentheses. 106

8.1 Descriptions and examples of information needs types. 114
8.2 Descriptions and examples quotes of contextual factors 115
8.3 Summary statistics of LLM coding . 117
8.4 An example the user prompt and the LLM-as-a-judge evaluation result in-

cluding the comparison result and the rationale behind it. A/B in the paren-
thesis indicates which Assistant generated the response for the prompt with
contextual information. 119

8.5 Summary statistics of the comparisons between LLM response generated
with prompts, with and without a specific contextual information category.
avg. columns show the average score, and CI columns indicate the confi-
dence intervals. 120

C.1 Outcome variables for quantitative analysis. 151
C.1 Outcome variables for quantitative analysis (cont.). 152

D.1 Completion time (s) of each subtask. 157
D.2 Completion rates of each subtask. 157
D.3 Understanding scores. 158
D.4 Participants’ feedback codebook. The codes discussed in the paper are un-

derlined. Initially, two authors separately performed open coding on the
same set of 8 responses (25% of the entire data), and convened to discuss
and merge the codes into a shared codebook. The first author coded the
rest of the responses and discussed with the rest of the authors whenever
new codes needed to be added. 159

D.4 Participants’ feedback codebook. The codes discussed in the paper are un-
derlined. Initially, two authors separately performed open coding on the
same set of 8 responses (25% of the entire data), and convened to discuss
and merge the codes into a shared codebook. The first author coded the
rest of the responses and discussed with the rest of the authors whenever
new codes needed to be added (cont.). 160

xviii

D.4 Participants’ feedback codebook. The codes discussed in the paper are un-
derlined. Initially, two authors separately performed open coding on the
same set of 8 responses (25% of the entire data), and convened to discuss
and merge the codes into a shared codebook. The first author coded the
rest of the responses and discussed with the rest of the authors whenever
new codes needed to be added (cont.). 161

xix

xx

Chapter 1

Introduction

Software engineering is an information-intensive discipline. In every step of the software
engineering process, when engineers design a software system, write code, make edits,
and triage bugs, various information needs exist. Programmers face a broad spectrum of
questions ranging from architectural considerations (e.g., Why was this code implemented
this way? [118]) to implementation bugs (e.g., How did this runtime state occur? [124]).

However, much programming information is often not clearly documented. Most of
the information needed to understand and use existing code is written by developers who
build the systems (e.g., reference documentation), or by users of the systems (e.g., Stack
Overflow). As it requires a lot of human efforts to document, it is practically impossible
and inefficient to document every piece of information possible, and often gets outdated
or becomes obsolete as software evolves. The multi-modal nature (natural language text,
source code, diagrams, etc.) of software engineering makes it even harder for programmers
to collect relevant information in one place, as it can be dispersed across various mediums
and formats.

Thus, programmers spend a significant amount of time searching and foraging for the
information they need and organizing and digesting the information they find [117, 118,
125, 145, 151, 161, 196]. Programmers often rely on search engines as a major way of
information seeking (e.g., they issue more than 20 search queries every day [270]). They
also navigate multiple resources from official reference documentation to large source code
bases [117, 161].

It becomes more challenging when a programmer needs to work with unfamiliar code
or libraries that require them to learn new concepts or frameworks. When a programmer is
not familiar with the domain and the environment, they may struggle with finding relevant
information due to a lack of appropriate keywords and the need to evaluate relevance, and
even when they find the right piece of information or documentation, there is no guarantee
that they can understand it easily. Programmers may also lack the necessary knowledge
and experience to effectively navigate and understand the codebase [118].

Thus, to provide effective information support for programmers, it is necessary to un-
derstand programmers, that is, the users. At the same time, intelligent solutions should
be investigated, so that all the needed information for programming, especially when it is
challenging to access, can be prepared for different programmers.

1

1

 Programmer Context

🏢 Organization (e.g., license, privacy policy)

💻 System (e.g., programming language)

🎯 Task (e.g., learning vs. bug fixing)

🧑💻 Personal (e.g., experience, role)

 Information Presentation

⏰ When to present: Pull vs. Push  
📍 Where to present: Browser vs. IDE
✅ What to present: Code summary vs. Example

⠇

 Information Preparation

🔨 API recommendation

📛 Boilerplate code
🆚 API comparison

⠇

Info. Candidate

API

Info. Sources

Information Generation

Figure 1.1: Conceptual Framework for Context-aware Information Support

1.1 Thesis: User-Centered Intelligent Information Sup-
port

My thesis aims to investigate the following claim:
By studying programmers and software artifacts to understand how programmers work

with unfamiliar code, and investigating intelligent solutions to provide effective information
support needed for learning, we can enhance the success of programmers’ information-
seeking for learning.

This thesis explores ways of providing user-centered information support for program-
mers, following the conceptual framework (Figure 1.1) containing three components.

1.1.1 Programmer Context
As there are diverse users with different information needs and preferences, that are often
not explicitly expressed by the users, utilizing user context helps such systems accom-
modate individual differences and enhance the user experience [277]. Therefore, previous
research in web search has made strides in understanding users’ context using both im-
plicit (e.g., dwell time) [277, 278] and explicit (e.g., item rating) [11, 12] feedback mined
from historical interaction data.

Similar to the users of other domains, programmers have distinct information prefer-
ences and needs shaped by their experience level, tasks, and learning styles, which lead to
varying web search strategies or information foraging patterns [79, 116] in software mainte-

2

nance tasks [213, 233]. In addition, with an exploratory, mixed-methods empirical study on
documentation page-view logs from over 100,000 users of four popular web-based services
of Google in Chapter 3, I also showed that programmers have discernible usage patterns
when they use documentation, and programmers’ contextual factors, such as past experi-
ence with a specific product, do correlate with which documentation pages programmers
visit. Thus, similar to the web search systems, I believe that programmers’ information
seeking can be improved by providing them with information support that are designed
considering the programmers’ context. To do so, I studied programmers and software arti-
facts like Stack Overflow posts to understand programmers’ information seeking behaviors
and how they relate to the programmers’ context. Also, I conducted human studies with
actual programmers, to understand the usefulness of information support designed consid-
ering programmers’ context.

1.1.2 Information Preparation
As software engineering information is scattered across varying mediums in different for-
mats, automated information support tools have been developed to supplement existing
learning materials such as documentation. These tools extract useful information [115, 135,
251, 264] from diverse software repositories so that users accessing learning materials like
documentation can easily discover richer information. However, the types of information
existing tools provide were limited, at least until when I started working on this thesis in
2018, because most of them employ rule-based approaches, by employing a predetermined
set of syntactic patterns that are typically derived from manual inspection. This type of
approach has the benefit of simplicity, but generally suffers from low recall when certain
information can be expressed in a wide variety of ways, since it is challenging to capture
reliable patterns amidst the noise and diversity of real-world text.

To overcome the aforementioned limitations of pattern-matching-based extraction ap-
proaches, I used learning-based information extraction methods, which is another
large branch of natural language processing techniques for information extraction. Super-
vised learning-based methods rely on the underlying model to learn to recognize patterns
directly from labeled data, often achieving high precision given sufficient training data.

However, not every piece of information is documented and can be extracted, so some-
times, it should be inferred based on what is already available. With the advancement of
language models that have learned the patterns already and have a sufficiently good un-
derstanding [44, 250, 272], the ability to generate information became possible, and I used
them to generate information to fill in such holes. The generation-based information
preparation also allows the system to provide information that fits users’ needs, instead of
providing existing information that is most similar to the users’ needs.

1.1.3 Information Presentation
Even when all necessary information is available, conveying it effectively to programmers
poses challenges. The volume of information required for learning can overwhelm pro-
grammers if presented all at once, leading to information overload and difficulty in finding

3

🔍

🤔

🛠

🧑💻

Finding Needs Through
Empirical Study

Building Custom
ML Solutions

Design & Building
Programming Tools

Evaluating in
Human-centered Ways

Figure 1.2: My research process

specific information. On the other hand, presenting smaller pieces of information upon
request may result in critical information being missed, as programmers might not notice
the need for specific knowledge when they are new to a domain or library. Addition-
ally, the location of the information presented can cause context switching and hinder
information-seeking efficiency. In this thesis, I explored various ideas for effectively receiv-
ing programmers’ information needs and presenting information to them, to reduce the
cognitive load of programmers and help their learning.

1.2 Research Methods Overview

This dissertation explores programmers’ information seeking as a human activity, and
explores what intelligent solutions can effectively assist them. To do so, my research
follows the cyclical process illustrated in Figure 1.2, covering both inductive and deductive
approaches.

1. Finding needs through empirical studies: Conducting empirical studies to understand
programmers’ needs [18, 100, 172, 174, 179].

2. Building custom ML solutions: Building and training machine learning models based
on both the insights gained from others and my own studies [172, 174, 175, 177].

3. Designing & building programming assistance tools: Using the previous custom deep
learning models or off-the-shelf Large Language Models (LLMs) to build tools for
programmers [172, 174, 177, 179],

4. Evaluating in human-centered Ways: Evaluating the tools using HCI methods [176,
177].

4

1.3 Thesis Outline
In the rest of this thesis dissertation, I first discuss the history of studies of programmers’
information-seeking and information support tools (Chapter 2). Next, I report on my
large-scale mixed-methods study that confirms that programmers do use documentation
differently depending on their user characteristics, which was missing from the literature
(Chapter 3). I then introduce four prototype intelligent information support tools that
extract and present information to provide user-centered information support for
programmers working with unfamiliar code, concepts, application domains, and APIs.
Motivated by these findings, this thesis finally explores the possibility of personalizing
information support for programmers, by leveraging the programmers’ contextual factors
(e.g., familiarity with application domains) to enhance information support.

All of the works included in this proposal were done as part of collaborations with
others, and to acknowledge that, I use we instead of the singular first person in the following
chapters.

5

6

Chapter 2

Background and Related Work

In every phase of modern software engineering, developers need to work with unfamiliar
code, and how well they learn such code influences their productivity significantly. So it
is important to understand how developers learn and comprehend unfamiliar code. More
specifically, researchers have been studying what information they need, and how they find
such information. To support programmers in seeking such information, researchers and
practitioners have designed and built approaches, by exploring various ways of processing
and presenting information.

2.1 Information Needs of Programmers
Prior work has identified a variety of information needs of programmers, by using various
research methods. For example, Ko et al. [118] found 21 types of information developers
look for, through an observation study of 49 professionals. The information needs were
further categorized into 7 categories, including writing code, submitting a change, triaging
bugs, reproducing a failure, understanding execution behavior, reasoning about design, and
maintaining awareness. Sillito et al. [234], similarly, conducted two observational studies
to develop a catalog of 44 questions programmers ask during software evolution tasks.
Some of these information needs can be relatively easily satisfied, but some are not, and
LaToza and Myers [124] conducted a survey of 179 developers to identify hard-to-answer
questions developers ask about code. To understand developers’ information needs in the
wild, researchers have also analyzed developers’ web search behavior. Rao et al. [205] for
example, found six categories of intent for searches through analyzing the logs of millions
of Bing search queries.

Many developers indicate that they satisfy their information needs through software
documentation. However, not everything is available in the documentation. Thus, some
researchers have conducted empirical studies to derive concrete insights into what devel-
opers need from the documentation. For example, developers have expressed the need for
complete and up-to-date documentation [14], because many developers rely on API refer-
ence information and code examples [158, 185] when they approach documentation with a
problem or task in mind [158]. Developers also asked for a concise overview of the docu-

7

mentation, more rationale, and adequate explanation for code examples [158, 210, 212, 255].
Researchers have also proposed tools that can assist in more effective usage of documen-
tation, by providing easier access to the documentation contents within developers’ work-
flow [89, 101, 187].

There is also a rich literature studying Stack Overflow to understand what challenges
developers face in practice in learning and using unfamiliar software systems, e.g., [10, 27,
142, 146, 170, 256]. For example, Beyer et al. [31] categorized Stack Overflow questions
into seven high-level categories, by harmonizing the categories defined in the previous
works [16, 218, 252]: API change, API usage, Conceptual, Discrepancy, Learning, Errors,
and Review. Various approaches were used to identify those categories, including but not
limited to manual categorizations [218, 252], topic modeling [16], or k-nearest-neighbor
(k-NN) clustering [30].

2.2 Information Seeking of Programmers

To satisfy their information needs, developers often spend a lot of time searching for infor-
mation using varying strategies. Researchers have investigated how developers seek such
information by studying them. Specifically, many researchers have used the lens of in-
formation foraging theory (IFT) to understand programmers’ information seeking. IFT
assumes that human information seeking abilities have evolved like how animals forage
for food [198], where a programmer is a predator hunting for information prey (e.g., piece
of information) in the information environment (e.g., search engine), following informa-
tion scents (e.g., keywords) that help identify the information most suited to their needs.
Researchers have applied IFTs in understanding developers information seeking in require-
ments engineering [182], debugging [75, 128], and program maintenance [75, 127, 204].
In addition to professional programmers’ information seeking, the foraging strategies of
end-user programmers [120] have also been investigated.

Although at a high level, some common general strategies for information seeking exist,
developers’ needs and how they seek such information can vary with experience [66, 116,
125, 133, 151, 203], roles, and learning styles [52, 66, 133, 159]. For example, Costa et al.
[52] found that developers with less experience with the software tended to use more types
of documentation than more experienced users, and that tutorials and how-to videos were
used by a greater percentage of newer users, and the newer users tended to use tech notes
and forums less. Similarly, in the literature, programmers are sometimes categorized into
three personas, which summarize their information seeking and problem solving strategies
– systematic, opportunistic, and pragmatic [49] – that reportedly also correlate with docu-
mentation use [159]. For example, opportunistic developers tended to use documentation
in a task-oriented way, focusing less on the general overview of APIs or the suggestions
described in the documentation; in contrast, systematic developers tried to understand
how the API works before diving into the details of a task, by systematically searching and
regularly consulting documentation provided by the API supplier [159].

8

2.3 Intelligent Techniques for Information Support for
Programmers

To supplement existing learning materials and make programmers information seeking
more efficient, many intelligent techniques have developed and used in software engineering
settings. In this section, I categorized them into three difference groups: pattern-matching
based extraction, learninb-based extraction, and generation.
Pattern-matching based Information Extraction. The pattern-matching-based ap-
proaches employ a predetermined set of syntactic patterns that are likely to yield valid
information, typically derived from manual inspection. Such methods have been used in
SE research a lot, including for extracting API-related statements from reference docu-
mentation [148, 211]. This type of approach has the benefit of simplicity, but generally
suffers from low recall when the target information can be expressed in a wide variety of
ways, since it is challenging to capture reliable patterns for all of these.
Learning-based Information Extraction. On the other hand, (semi-)supervised learn-
ing methods rely on the underlying model to learn to recognize patterns directly from
labeled data. Most state-of-the-art information extraction tools use such deep neural net-
works, often achieving high precision given sufficient training data. Compared to pattern-
based methods, neural models tend to need substantially more labeled training data, which
makes it harder to apply them to new environments. To overcome this obstacle, researchers
commonly utilize models that were pre-trained on large, existing datasets [17, 230]. Such
models can be fine-tuned to new domains with relatively few training samples.
Information Generation using Large Language Models. More recently, Large Lan-
guage Models (LLMs), such as GPT [37], Gemini [20], and LLAMA [250], have revolu-
tionized how we solve various tasks in natural language processing. Based on the idea
of attention and the architecture of the Trnasformer, LLMs are pre-trained with vast
datasets of natural language processing and code (many GBs and TBs), allowing better
generalization and domain adaptation than the previous models, and even showing emer-
gent abilities such as reasoning, decision-making, etc. Combined with instruction tuning,
it has achieved a significant performance gain in many tasks, including summarization,
translation, question-answering and many more, by generating responses given natural
language prompts. Thus, the information support for programmers is also moving from
extraction-based approaches to generation-based ones.

2.4 Existing Information Support for Programmers
To overcome some of the challenges programmers face in information seeking, researchers
have built tools that can supplement existing learning resources like documentation. One
popular approach has been to extract knowledge from Stack Overflow and augment more
traditional forms of documentation, e.g., [104, 107, 190, 209, 251]. Researchers have also
been developing tools to more closely integrate such knowledge into the development work-
flow, e.g., [107, 201, 202, 258]. Many types of knowledge have been in focus, including

9

common use and misuse patterns [23, 209, 257, 258, 281], caveats [135, 136, 251], opinions
on different quality attributes (e.g., usability) [42, 140, 141, 208, 254], or more generally any
Stack Overflow posts discussing some given API methods, such as those invoked in the
developer’s local integrated development environment (IDE) context [221].

The potential and applicability of LLM-based AI programming tools have also been ac-
tively studied by many researchers. Numerous empirical studies [73, 96, 131, 223] evaluated
the quality of code or explanations generated by LLMs, to test the feasibility of applying
LLM into development tools [144, 246, 285] and to computer science education [18, 96, 223].
Several studies have also compared LLM-generated code and explanations with those au-
thored by humans without LLM assistance [96, 131, 194], demonstrating that LLMs can
offer reasonably good help for developers or students when carefully designed and used.

Fewer studies have specifically explored the usefulness of LLM-based programming
tools [26, 113, 138, 166, 219, 222, 261, 272, 285, 285] with actual users or their usage data,
and many of these studies have focused on code generation tools like CoPilot [4]. For
instance, Ziegler et al.[285] analyzed telemetry data and survey responses to understand
developers’ perceived productivity with GitHub Copilot, revealing that over one-fifth of
suggestions were accepted by actual developers. Several human studies were also con-
ducted. Vaithilingam et al. [261] compared the user experience of GitHub Copilot to tra-
ditional autocomplete in a user study and found that participants more frequently failed
to complete tasks with Copilot, although there was no significant effect on task completion
time. Barke [26] investigated further with a grounded theory analysis to understand how
programmers interact with code-generating models, using Github Copilot as an example.
They identified two primary modes of interaction, acceleration or exploration, where Copi-
lot is used to speed up code authoring in small logical units or as a planning assistant to
suggest structure or API calls.

Although these studies have increased our understanding of the usefulness and usability
of AI programming assistants in general, and some of the insights apply to information
support, they do not show the opportunities and challenges of AI-powered tools as infor-
mation support tools, with a few exceptions [152, 219]. MacNeil et al. [152] examined
the advantages of integrating code explanations generated by LLMs into an interactive
e-book focused on web software development, with a user study with sophomores. They
found students tend to find LLM-generated explanations to be useful, which is promising,
but the study was focused on providing one-directional support in an introductory e-book
which is different from user-oriented need-based information support. The Programmer’s
assistant [219] is the closest to our work. The authors integrated a conversational program-
ming assistant into an IDE to explore other types of assistance beyond code completion.
They collected quantitative and qualitative feedback from a human study with 42 partici-
pants from diverse backgrounds and found that the perceived utility of the conversational
programming assistance was high.

10

Chapter 3

Confirming Different Information
Needs of Developers1

Due to the lack of studies on different developers’ varying information needs, although
there were some reports that developers’ information seeking may vary depending on their
different contexts, there has been no solid evidence that there is a meaningful relation in
between developers’ contexts and their information needs. Thus, in this section, we first
confirm if the developers’ context makes a meaningful impact on their information needs.

3.1 Introduction
Almost no modern software system is written from scratch, and many third-party libraries
and software services are available to be reused and composed. Thus, the productivity
of programmers in many domains and contexts depends on rapidly searching for relevant
information to make decisions about third-party libraries or services [169, 188], and learning
to use them correctly for their own systems [210, 212]. Practitioners spend a lot of time
searching for and digesting relevant API information, e.g., 20% of their time according to
Brandt et al. [34]. And while many sources are useful, including code examples, question
and answer (Q&A)websites, and expert advice, in obtaining API-relevant information, the
official software documentation remains essential [43, 81, 212].

Efforts to improve software documentation span decades, with many researchers study-
ing documentation design experts and users to catalogue problems [43, 210, 212] and rec-
ommend best practices [210, 212, 263]. Much documentation now follows such guidelines,
and new tools [157, 251] and ideas [215] have been proposed to further support developers’
information needs based on such studies.

Most of these efforts involve qualitative research methods such as interviews [158, 185,
212] or lab studies with human participants [64, 100, 108, 160]. However, while gener-
ally highly informative for understanding usability issues during the early design review
phase [53], such methods capture only what participants say they do, or what they do in

1This chapter is adapted from Nam et al. [179]

11

a controlled setting. Moreover, the number of participants that can be observed this way
is typically small.

Our research goal is similar to most prior software documentation research—improving
the design and usability of documentation. However, our approach is novel and comple-
mentary—mining documentation page-view logs at scale. Web mining has long been used
to analyze people’s experience online in more general contexts, e.g., user engagement in
online news reading [121] or user satisfaction during online shopping [240]. We argue that
similar approaches could apply to documentation since, after all, documentation webpages
are just another type of webpage. In other words, any software documentation published
on the Web, such as Adobe Photoshop and Autodesk AutoCAD, which comprise numer-
ous documentation webpages and users, could potentially be analyzed using an approach
similar to ours.

We believe that our large-scale log analysis will complement existing documentation
review methods, by providing the following additional methodological advantages:

• Allowing more scalable, computational design review: Relying on web ana-
lytics to understand documentation usage is considerably less expensive for software
providers if they have access to telemetry data for the documentation pages (e.g., from
self-hosted web servers)—we expect that one quantitative user experience researcher
on staff could analyze the page-view logs of hundreds of thousands of users of dozens
of APIs or services in a matter of days, if not hours, following our methodology.
In contrast, qualitative studies tend to focus on one API or service at a time, may
require complex participant recruitment, and usually involve orders of magnitude
fewer subjects. They also often involve monetary compensation (e.g., Duala-Ekoko
and Robillard [64] compensated each participant with $20 for a one-hour program-
ming study), in addition to the researcher team’s time for running the studies, and
collecting and analyzing the data.

• Allowing for the discovery of less-studied documentation user groups: As
most of the smaller scale studies require study design prior to the data collection,
researchers specify research questions and target participants in advance. For docu-
mentation, as it is expensive to conduct these qualitative studies, most of the studies
have focused on the professional developers who use the documentation for API learn-
ing [66, 117, 158, 159], the main target usage scenario of software documentation.
Large-scale log analysis, on the other hand, does contain the entire user popula-
tion’s data, allowing the discovery of more diverse user groups, including users who
use documentation to make API adoption decisions (e.g., Product explorers in Sec-
tion 3.3.3), or users who are only concerned with the cost of querying APIs (Financial
users in Section 3.3.3).

• Capturing a perspective less prone to response biases: With qualitative stud-
ies where users need to report (e.g., survey, interview) or show their behaviors (e.g.,
observation study, lab study), the data can only capture what participants recall or
show, which might be different from what actually happens in the wild, i.e., response
bias [156]. As qualitative studies often ask participants to focus on “software doc-
umentation regularly used by participants” [43, 76, 200] to help participants recall

12

Page-view��
Logs

�Documentation�
�Usage��

���Data�Collection����

�Experience�
API�Predisposition�
Possible�Intent�

�Subseq�API�Usage�API�Usage

���Data�Collection����

Clustering Cluster�Investigation

...
�Doc�Usage��

Regression

�Doc��
Usage�

���RQ1:�Discovering�Discernible�Doc.�Usage�Patterns����

��RQ2:Hypotheses�Testing����

�H1-5�

�H1-4:��
�User��
�Char.�

��Sanity�Check��

�Cluster�+User�Char.�
�Investigation�

+
�Doc��
�Usage��

�H5:��
�Subseq��
API�Usage�

Hypotheses�Building

Literature

Phase 1 Phase 2

Page-view�Logs

Figure 3.1: Overview of our data collection and analysis.

specifics of their experience, the bias might be even amplified. Log analysis can
minimize the response bias, as the telemetry data is automatically collected.

However, to be clear, traditional non logs-based approaches can be extremely valuable
and we don’t advocate replacing them. Instead, we argue that a logs-based analysis like
ours could be used as a first pass, to guide the design of more complex (but rich in terms
of insights) approaches such as human studies.

To this end, we report on an exploratory, two-phase, mixed-methods empirical study of
documentation page-view logs from over 100,000 users of four popular services of Google;
see Figure 3.1 for an overview. The documentation page-view logs we had access to
were privacy-preserving in a number of ways (section 3.2.3) and contained only aggregated
monthly totals of which specific documentation pages someone visited and how much time
they spent on each page, over the course of that month (possibly across multiple sessions).
This is likely a common scenario — many companies and open-source projects can be in
a position to instrument their documentation web servers to collect such basic telemetry
data; at the same time, it may be undesirable to collect more fine-grained or personally
identifiable data for privacy reasons. The research challenge, therefore, is determining
whether there is enough signal in this big but shallow data to generate actionable insights
for the documentation designers by mining it.

Overall, our two-phase study argues that the answer is “yes.” In Phase I (section 3.3)
we set out to explore the log data, looking for patterns of page views and trying to explain
them without knowing who the users are or anything else about them. Given the large size
of our sample, we do this using a combination of automatic clustering analysis followed by
qualitative explorations and show that many page-view clusters are discernible in the log
data.

In Phase II (section 3.4) we set out to formalize and generalize our qualitative obser-
vations from earlier. In an effort to understand why such discernible patterns exist in the
page-view data, we formulate testable hypotheses about the “average” characteristics and
subsequent behavior of those users, based on findings from the literature on general infor-

13

mation seeking of developers [34, 79, 118, 128, 150, 205, 234, 245, 282] and from small-scale
documentation usability studies [64, 100, 108, 117, 159, 160]. We then use the fact that
all users who make requests to Google services, or had otherwise registered for accounts
on Google and were browsing the documentation pages while logged in, have persistent
(pseudonymized) IDs across the data. This way, we join the page-view log data with user-
level data about their experience with the respective service and the platform overall, and
with data about subsequent requests (after the documentation page views) to the service
APIs. We first revisit the clustering results and check if the hypotheses built based on
the general information seeking literature make sense in the documentation usage setting.
We then conduct multiple regression analysis to test the hypotheses formulated in the first
phase on this aggregated data, finding multiple sizeable correlations between patterns of
documentation page-views, on the one hand, and user-level characteristics and subsequent
API use, on the other hand. That is, one’s level of experience partially explains their
documentation browsing patterns, and one’s documentation browsing patterns partially
explain their intent to subsequently use the APIs.

While not intended as an exhaustive exploration of all patterns of documentation page
views identifiable for the four Google services in our sample, our study does show that
it is feasible to analyze page-view logs at scale to inform documentation design reviews,
or to corroborate observations from smaller-scale studies [52, 158] or the anecdotal expe-
riences of professional software engineers. Concretely, we argue (section 3.5) that even
when not knowing anything else about the documentation users, the interaction histories
and dwell times that are likely to be contained in the documentation page-view logs can
provide actionable information at scale for providers which can help companies decide
which documentation pages to redesign, and even to potentially automatically personalize
documentation pages in the future, to better align with their users’ needs.

3.2 Dataset
We started by compiling a dataset of documentation page-view logs for four web-based
services of Google.

3.2.1 Product Selection
Google provides hundreds of web-based services to a diverse group of users and businesses,
and most of the services come with one or more types of APIs, including REST APIs and
gRPC APIs, as well as client libraries. However, since our study is primarily exploratory
in nature, we selected only four Google products following a maximum variation sampling
strategy [241], to gain an understanding of documentation use from a variety of angles.
Concretely, we diversified our sample in terms of the application domain (machine learning
/ natural language processing vs. event analytics and management), usage context (op-
erations infrastructure vs. potentially end-user facing), and product size and complexity
(ranging from a few API methods to hundreds of API methods offered by the products).
These differences are also reflected in the documentation pages, which vary in their contents

14

Table 3.1: Types of documentation provided for the selected products.

Genre Type Description

Meta Landing (L) Links to core documentation pages.
Marketing (M) A brief introduction to a product, incl. the benefits, target

users, and highlights current customers.

Guide

Tutorial (T) Walkthroughs for common usage scenarios.
How-to (H) Guidance on completing specific tasks.

Quickstart (Q) A quick intro to using the product.
Concept (C) Explanations for product- or domain-specific concepts.

Dev Reference (Ref) Details about the API elements, including API endpoints and
code-level details.

Release note (Rn) Specific changes included in a new version.

Admin
Pricing (P) Pricing information.
Legal (Lg) Legal agreement details.
Other (O) Other resources not included in other types, e.g., locations of

the servers.

across the four products, e.g., with more or less marketing materials, how-to guides, pricing
information, etc. All four web-based services we selected are popular, having large user
bases. Specifically, P1 and P2 are machine learning / natural language processing-related
products for machine translation and text analysis. And P3 and P4 are operations-related
products for managing event streams and log data.

3.2.2 Documentation Usage Data Preprocessing
For each of the four products, we had access to pseudonymized documentation page-
view logs [143] for users who visited the documentation from May 1, 2020 to May 31, 2020,
UTC, while they were logged into their accounts. The page-view log data are collected
automatically by the documentation servers and include the specific documentation pages
visited by someone, as well as the timestamps and dwell times for each visit. We use dwell
time to estimate user engagement with the content, following prior work [78, 277]. The
data was aggregated at the month level, partially due to the volume of data being analyzed,
and also to enhance the pseudonymization of the data for the privacy protection of the
users (see Section 3.2.3 for details).

To reason about more general patterns of documentation use, we further labeled each
individual documentation page (URL) in our sample according to its contents into one of
11 possible types and four aggregate categories (or documentation genres [66]) summarized
in Table 3.1. For the first-level labeling we relied on an internal mapping table created
by the documentation team, which contains meta information for the different documen-
tation pages, including what we refer to as the type. The second-level labeling reflects our
subjective grouping of documentation types into four high-level categories that provide
related kinds of information and presentation format; we expect that these are likely to
be consulted together given specific tasks and target reader familiarity with the API. To

15

this end, we followed an open card sorting process involving two authors, one of whom
is a domain expert. There were two documentation types (Other and Release note) that
two authors did not agree on. The two authors resolved disagreements by comparing their
definitions of genres and the rationale behind the categorization, until there were no more
disagreements. All official Google documentation pages in our sample were assigned to
exactly one of the documentation types and genres listed in Table 3.1, and the documenta-
tion of all four products we analyzed included all 11 documentation types. The volumes of
each documentation type varied, but in general, each product documentation consisted of
around 5 pages of Meta genre documentation, around 150 pages of Guide genre documen-
tation, around 300 pages of Dev genre documentation, and around 15 pages of Meta genre
documentation. The documentation of all products followed the same documentation style
guide [9]; thus, the contents and styles used for each documentation type are consistent,
even across the products.

Finally, we followed prior work by Fox et al. [78] and excluded page-view sessions
shorter than 30 seconds, since these are more likely to be noise (e.g., a user accidentally
clicked the documentation page and then left the page quickly) than meaningful visits.

3.2.3 Privacy Protections

As we analyzed the user data of Google, we followed Google’s strict privacy and data access
policies [7, 8] which ensure appropriate, legal, and ethical access, storing, and analysis of
user data. This included, but was not limited to, internal privacy reviews with security and
privacy experts, the use of differential privacy processes (more details below),wipeout and
data access processes, and more. In addition, the study designs were reviewed by internal
research ethics experts, methodological experts, and product experts.

We also used numerous privacy protection techniques throughout our work. First, all
user-level data was pseudonymized before any of the authors had access to it. Pseudonymiza-
tion maps users’ accounts to randomly but persistently generated pseudonymized IDs. As
the IDs were randomly generated, they could not be reversed without access to a mapping
table, which the authors did not have.

Additionally, usage data was aggregated (e.g., we looked only at the number of API
requests aggregated at the month granularity, not individual API requests), and had Dif-
ferential Privacy [268] applied. In brief, differential privacy was used to apply sufficient
noise to the aggregations such that individual records could not be identified, but the
overall shape of the dataset remained meaningful / sufficiently accurate. Using established
best practices, and based on guidance with internal privacy experts, we used Epsilon <
1.1, (where lower numbers yield higher degrees of privacy protection). This allowed us to
analyze trends in user behavior while preserving the privacy of those in the dataset. Later
in this chapter (e.g., in Figure 3.4) we include polar plots of our clusters, but choose only
to visualize clusters with over 500 users, as an additional privacy consideration.

16

3.2.4 Limitations & Threats to Validity
First, a month might not be enough to capture the full process of learning and adopting
a complex API, on the one hand, and might not capture the differences in documentation
usage patterns that appear in significantly shorter periods, such as patterns in an hour
or in a day, on the other hand. It is also possible that some users happen to register
in the middle of our one-month window, or one may learn an API intermittently over a
few months. However, such an operationalization was necessary to balance data collection
complexity, privacy, and analysis scale. Given that the size of Google’s general user base
is very large, and the services we analyzed were already all mature, we believe that our
dataset should still capture snapshots of developers at every stage of the learning process,
as well as cyclical patterns of use, without the number of newly registered or intermittent
users significantly affecting our results.

The use of a particular month (May 2020) can also be too short to generalize, as the
documentation access might change throughout the year, and it could have been influenced
by any major event related to the four target products. We did our best to choose a month
without major events related to the four products we studied, and there was no event for
P1 and P2, but there were two minor feature additions for P3 and two minor beta releases
for P4. However, as we chose to analyze popular products with large active user groups,
it is practically not possible to choose a month without any updates. We believe that
selecting four very different products reduces the risk of biasing the results in a meaningful
way, especially given that there was no major event that affected all of the four products
during that period.

The documentation and API usage data we used for our analysis can only provide a
partial representation of the entire user group’s usage. Since the documentation usage
data only includes page-view logs of logged-in users, the analysis does not capture the
behavior of users who were not logged in, who may behave differently. In addition, the
aggregated API usage data can only partially represent the outcome of API learning. For
example, while making an API request requires a user to sign into the platform, browsing
documentation does not, so not all documentation usage is linked to the corresponding
API use. Multiple developers can make API requests using shared corporate accounts,
which can obfuscate the connection between their documentation and API use.

Although the dwell time was logged when the pages were actually accessed, our mea-
surements of time spent on each documentation page are only (over)approximations. For
example, some users may keep a page open without actively consuming it the whole time,
while they grab a coffee or read code from their IDE. As part of our analysis, we ap-
plied several heuristics and filters to our data to identify and remove outliers and noise, as
described in section 3.3.1.

The analyses at the documentation type and genre levels introduce threats to internal
validity: the analyses might not capture the possible influence of content and length of
individual documentation pages, and other external confounding factors. However, the
abstraction of data was inevitable due to the number of documentation pages available.
We provide potential ways of introducing additional internal validity control for page-view
log analysis in Section 3.5.

17

While our dataset includes many relevant variables, it certainly does not include all.
For example, a user’s position or role, their expertise in programming or in the product
domain, the specific tasks during which they visited documentation pages, and the actual
contents of the documentation pages, are all likely to also correlate with differences in
documentation usage but are absent from our data. Moreover, we only analyze data for
four products of Google, therefore it remains unclear how our findings would generalize.

Finally, the page-view analysis can only be conducted after the documentation has been
available for some time, allowing for the accumulation of extensive logs. Therefore, our
analysis may not be applicable for documentation writers who need to assess their content
pre-release or for documentation related to products with a limited user base.

Thus, we do not expect page-view log analyses like ours to obviate human studies or
other more precise research methods. However, we do expect they could be fruitful as a
first step or in conjunction with more precise but more costly research methods.

3.3 Phase I: Discerning Documentation Use Patterns
in Log Data

As an initial exploratory investigation to help contextualize our data, we conducted cluster
analysis. This phase was necessary because although we know that developers will use
documentation differently, we still know little about how much and in what ways it will
differ “in the wild” and in our context. To efficiently explore the large dataset, we first used
an automatic clustering analysis to discover discernible documentation usage patterns, and
used sampling and qualitative analysis to further investigate the patterns.

3.3.1 Data Preparation

Table 3.2: An example of our documentation page-view data used for the clustering anal-
ysis.

User Product Dwell Time (minutes)
howto marketing reference . . . concept

0 P3 1 0 0 . . . 0
1 P3 35 0 0 . . . 0
1 P4 1.4 0 0 . . . 0
...

In preparation for clustering, we first aggregated each user’s total dwell times (i.e.,
times spent on the different pages) in May 2020 across the 11 documentation page types
in Table 3.1. We recorded separate entries for each of our four separate products, if the
same user happened to access documentation pages for more than one of the products

18

that month. We then represented each user’s documentation visit profile as a vector of 11
elements, capturing the total times spent across each page type that month.

Note that as a precaution before clustering, we filtered out outliers with total dwell
times (sum over the 11 page types) outside of the [µ− 3σ, µ+ 3σ] interval (i.e., more than
three standard deviations from the mean), as is customary. In our sample, this corresponds
to users who stayed shorter than 1.39 minutes or longer than 961.91 minutes in total across
all documentation pages of each of our four products during the month (in May 2020). In
addition, as the distributions of dwell times we observed tend to be right-skewed, we log-
transformed all positive values. This is a common transformation [217] when the data vary
a lot on the relative scale, as in our case — spending 10% more time on a page is arguably
much more noticeable for a 2-minute dwell time than a 10-hour dwell time.

3.3.2 Methodology
Out of many clustering approaches available, we adopted a protocol proposed by Zhao
et al. [283], which is particularly well suited for large datasets. A common challenge with
standard clustering methods is determining the appropriate number of natural clusters.
Typically, one either chooses the number of clusters a priori, or applies techniques to
automatically determine the “optimal” number of clusters. The former scenario is not
applicable in our case (we do not have any empirical basis to expect a particular number of
clusters),while traditional techniques to select the number of clusters automatically tend to
be slow for large datasets like ours. The key innovation in the protocol by Zhao et al. [283]
is combining two standard clustering techniques: first using a fast clustering method (k-
means) to reduce the dimensionality of the clustering problem, and then applying a second
clustering method (MeanShift) that automatically determines the number of clusters. This
is computationally effective, as the second method only runs on the centroids generated
by the first (k-means). To select the number of clusters as input for the first (fast)method,
one typically chooses a significantly larger number than the plausible number of natural
clusters, expecting that the second method will merge closely located centroids eventually
to match the natural clusters. In determining the quality of the clustering results from
the different parameters used, we used the following clustering performance score, as per
Zhao et al..

cp = 0.3 ∗ E + 0.23 ∗D + 0.23 ∗ k −m

k
+ 0.23 ∗ N − n

N
(3.1)

In this score, the first and the second factors are used to reward the clustering per-
formance using two well-known metrics: Shannon’s entropy (E) and Dunn’s index (D).
The probability used for calculating Shannon’ s entropy score is the normalized number
of users in each cluster. Thus, entropy assigns a high value to clustering results that have
a uniform distribution of users across clusters. Dunn’s index measures the compactness
and separation of the clusters, by calculating the ratio of the smallest distance between
observations not in the same cluster to the largest intra-cluster distance. The third and
fourth factors are to penalize clustering results that are too naive or complex. The third

19

penalizes the results that are too complex, that do not improve over the naive k-means re-
sults, where m (the number of clusters after MeanShift clustering) is close to k (the number
of target k-means cluster that is significantly larger than the number of natural clusters).
The fourth factor penalizes results that one big cluster contains most of the users in the
dataset, where N is the number of total product users and n is the number of users in the
biggest cluster.

Figure 3.2: Distribution of the log-transformed number of users per cluster.

After trying several values for k and eps in the equation 3.1, we obtained the highest
cp score, 0.50, which is comparable to other works [247, 283], with E = 0.71, D = 0.15, m
= 316, N = 94096, n = 9789. This result was obtained for k = 400, eps = 1.25, resulting in
320 clusters. Most clusters consist of around 300 users and there are 18 clusters consisting
of more than 1,000 users. The distribution of the number of users per cluster can be found
in Figure 3.2.

3.3.3 Resulting Clusters
Figure 3.3 provides a summary of the resulting clusters, illustrating a wide array of doc-
umentation usage patterns within the 320 clusters. These patterns are evident through
the variations in page views across the 11 documentation types. To comprehensively in-
vestigate these distinct patterns, after excluding small clusters with fewer than 100 users,
we conducted open coding. I assigned codes to the clusters, refined them iteratively, and
subjected the emerged categories to a thorough review by the three other researchers.
As examples, we present four codes that were frequently assigned to clusters, along with
representative examples of these clusters for reference.
Product explorers (Clusters 11, 16, 21). The time this group spent on documentation
is not seemingly enough to digest the information in the documentation, and would not
help one to actually use a product. Furthermore, considering that the clustering was done
with a month-full of user logs, visiting only one type of documentation for few times is not
likely a usage pattern of an actual product user. Cluster 16, for instance, only visits one

20

L Q H T C Ref Rn Lg P O M
e5

e4

e3

e2

e1

e0

Selected Clusters
L Q H T C Ref Rn Lg P O M

All Clusters

2.56

2.96

4.28

8.11

1.47

1.84

2.27

1.75

1.99

2.66

1.56

7.95

4.96

12.34

10.01

6.67

8.69

7.19

2.43

131.13

11.54

153.64

4.79

7.23

3.28

7.25

51.40

80.23

97.38

204.75

60.31

67.94

24.80

37.29

314.49

323.40

Total

Counts

Total

Dur. (m)

0

6

7

10

11
16

18

21

22

26
27

43

57
142

180
250

290
308

2.56

2.96

4.28

8.11

1.47
1.84

2.27

1.75

1.99

2.66
1.56

7.95

4.96
12.34

10.01
6.67

8.69
7.19

2.43

131.13

11.54

153.64

4.79
7.23

3.28

7.25

51.40

80.23
97.38

204.75

60.31
67.94

24.80
37.29

314.49
323.40

Figure 3.3: The heatmap of centroids of the 320 clusters (left), and a subset of them high-
lighted (right). Each row represents the documentation usage of each cluster (see Table 3.1
for the documentation type codes). The color indicates the dwell time in minutes, with
the intensity encoded in en of time. The average total counts (# of documentation pages
visited in May) and the average total dwell time (sum of dwell time on 11 documentation
types) are also shown for the selected clusters (right) to help with interpretation, and the
rows are sorted by the average total dwell time. For example, users of Cluster 18 (2nd row
from the selected clusters) spent 3.28 minutes on average on the product documentation
among 2.27 page visits on average, and spent ≈ e1 = 2.7 minutes on Concept type docu-
mentation.

21

specific type of documentation, landing, a few times, and spent only a short time on the
documentation (less than 10 minutes) on average.
Documentation Explorers (Clusters 7, 18, 180). Users in Cluster 180 were similar to
product explorers in the sense that they only stayed for a relatively short time (less than
30 minutes over the month), but different in that they visited more documentation pages
of multiple types. We infer that these users might be new to the documentation and might
be exploring it to see the available information. For example, we speculate that they might
have visited Landing documentation by searching for the product name in search engines,
checked the prices from the Pricing page to see if they can adopt the product, and looked
around Reference documentation to see the features available.
Task-oriented users (Clusters 6, 26, 27). Users of Cluster 6 showed more distinct
behaviors. Although they only visited one specific type of documentation for few times
like product explorers, they stayed on the documentation pages much longer (on average,
131.13 minutes over the month). Based on the amount of time spent on documentation
pages, we can infer that these users spent enough time to find what they were looking for
from the information, and to fully digest it. From the number of visits, the users did not
seem to explore the documentation, but stayed on few specific (or single) pages that they
were interested in; this indicates that they were only interested in some of the product
features, rather than an overall understanding of the product.
Versatile users (Clusters 43, 290, 308). These users visited multiple types of docu-
mentation pages and stayed long enough time on each of the type. For example, users in
Cluster 290 seemed to be interested in the specific tasks described in How-to guide pages
since they spent enough time on them, and perhaps visited Reference documentation from
time to time when they needed more low-level information on the API calls and parameters.

We also discovered many other interesting documentation usage patterns, such as Fi-
nancial users (Cluster 22), who stayed in Pricing documentation which only contains
pricing information for an hour, and Server engineering users (Cluster 27),who almost
exclusively visited Other documentation which provided resource-relevant information like
locations of the servers.

3.4 Phase II: Factors Associated with Documentation
Use

With the exploration of clustering analysis results, we were able to discover various usage
patterns, including those that were not actively discussed in the existing literature [66,
117, 158, 159], like product explorers or documentation explorers. However, we could only
speculate about the intention and background of the users behind those diverse documen-
tation usage patterns. Thus, we now bring together our informal observations from Part
I with the literature on general information seeking and small-scale documentation stud-
ies, to derive and test hypotheses explaining the different usage patterns based on user
characteristics.

22

3.4.1 Hypotheses Building

Given the absence of established theoretical frameworks elucidating documentation usage
behaviors, we have chosen factors that might be associated with the developers’ documen-
tation usage, informed by the prior work on developers’ general information seeking in web
search or software maintenance settings, and observations from the small-scale documen-
tation studies [49, 52, 79, 133, 159].

Experience. Many studies have shown that the information seeking strategies of devel-
opers vary by their experience levels [66, 116, 125, 133, 151, 203]. For example, Costa et al.
[52] found that documentation users with less experience with the software tended to use
more types of documentation than more experienced users, and that tutorials and how-to
videos were used by a greater percentage of newer users, and the newer users tended to
use tech notes and forums less. Thus, we hypothesize,
H1. High experience levels are positively associated with accessing documentation covering
implementation details (Dev genre), whereas lower experience levels are positively associated
with accessing documentation covering an overview of the products (Meta genre).

Product Type. Differences in typical usage contexts of the products, such as project
complexity and task categories, also influence developers general information seeking [66,
79, 163]. Within our dataset, P1 and P2 are application APIs whereas P3 and P4 are
operations-related products for managing event streams and log data, and we expected
to see different characteristics will come with different documentation usages, and we an-
ticipate that these distinct characteristics will be associated with different documentation
usage patterns. For instance, users of infrastructural APIs are more likely to be engaged
in the maintenance of large-scale software projects, which implies a greater interest in
system-level products and in system-level quality attributes. Conversely, application APIs
are commonly adopted by smaller projects where the applications themselves serve as core
components. Consequently, we expect that users of documentation for different products
will tailor their utilization accordingly. Thus, we hypothesize:
H2. Documentation usage of application APIs (P1, P2) differs from that of large-scale
infrastructural APIs (P3, P4).

Documentation Type Predisposition. Previous research has found that developers
adopt different work styles, motivations, and characteristics, and they solve programming
tasks differently [49], and human studies with documentation usage also reported similar
findings [159]. The work styles of developers are less liable to change over time as opposed
to levels of expertise, educational background etc. Thus, we hypothesize that we can see
the similar patterns in the page-view logs, that developers will stick to documentation that
suits their general information foraging strategy formed by their needs and preferences,
without changing their documentation usage behavior much over time.
H3. Users tend to use the same documentation type over time.

23

Possible Intent. Prior work [34, 205] found that developers’ web search behaviors vary
with their information seeking intent: they visit different types of web pages, use differ-
ent queries, and overall interact with webpages differently. In particular, developers were
more likely to visit official software documentation during reminding sessions and third-
party tutorials during learning sessions. Developers also tend to spend tens of minutes
with learning intent, but only tens of seconds to remind. Times spent in between the
two extremes were mostly with clarification intent. We posit that a similar behavioral
pattern can be identified within documentation-based information seeking, wherein users
invest substantial time per visit when their objective is to grasp complex concepts or pro-
tocols. Conversely, they allocate less time when verifying straightforward facts or utilizing
documentation as an external memory aid [117]. Thus, we hypothesize:
H4. Users who exhibit extended average page dwell times are more inclined to access docu-
mentation that offers tutorials (Guide genre), whereas users with shorter average page dwell
times are more likely to access documentation providing straightforward factual information
(Admin genre).

Subsequent API Use. From multiple empirical studies, developers have reported that
the quality of documentation is a highly influential factor in API selection process [262], and
failure in effective information seeking within documentation leads them to give up on using
the APIs [206]. Developers specifically reported that they examine the documentation up-
front to determine “if there are good examples or tutorials that clearly explain how to use
the library” [262] before they decide to adopt a library, showing the need of onboarding
materials. Thus, we expect that:
H5. Accessing documentation pages providing technical information for newcomers (guide
genre) is positively associated with subsequent API calls by the same users.

3.4.2 Data Preparation

Table 3.3: An example of our API usage data used for the qualitative investigation of
clustering results and the regression analysis.

User Product Account Age (years) Past Succ. Req. Future Succ. Req.
0 P3 5.96 0 0
1 P3 2.33 1222 859
1 P4 2.33 0 0
...

We collected pseudonymized user-level data and API usage data to extract such
factors of Google’s documentation users, and test whether the hypotheses in the previous
section are supported by the developers’ documentation usage data at scale.
Experience. To investigate the effect of experience levels in documentation usage, we
measure the documentation users’ experience level using two variables: overall platform
experience and specific product experience. We define the experience with the platform as

24

the user account age, i.e., years passed since signing the platform terms and conditions2.
We define the experience with a specific product as the total number of successful API
requests made to that API over the previous three months (February, March, and April
2020).
Product Type. To analyze the differences in documentation usage patterns, we recorded
what each documentation usage data point was for.
Documentation Type Predisposition. As a proxy for one’s possible predisposition
for certain documentation types, we recorded the user’s documentation page views in the
previous three months (February, March, and April 2020).
Possible Intent. As a proxy for possible user intent when accessing the documentation,
we recorded the average per-page dwell time, by dividing the total dwell time in May by
the total number of documentation pages a user had visited.3 We further grouped the data
into three bins—less than 1 minute, between 1 minute and less than 10 minutes, and more
than 10 minutes—to loosely correspond to the categories of intent (reminding, clarifying,
and learning) identified by Brandt et al. [34]. The “more than 10 minutes” group most
directly maps to a learning intent, while the other two groups possibly overlap with both
reminding and clarifying.
Subsequent API Use. We mined the Google-collected API usage data (telemetry data)
from June, July, and August 2020 corresponding to the subset of people in the aforemen-
tioned May-2020 documentation page-view log dataset, who also made subsequent API
requests using the web-based services. This was possible because the pseudonymization
strategy has random but persistent IDs that are consistent across documentation and API
usage data. Specifically, we extracted the number of successful API requests made by each
user (i.e., with 2XX return codes).

3.4.3 Sanity Test with Cluster Exploration
Before we formally test our hypotheses, we checked whether the hypotheses derived based
on the general information-seeking literature apply at all to developers’ documentation us-
age patterns observed in our data, by checking different clusters’ user distributions. To help
with our exploration, we first visualized each cluster’s average dwell time, and discretized
the numerical variables into four groups for each user factor, based on percentiles: 0|NA
(factor=0), Low (0-33%), Medium (34-66%), High (67-100%). Figure 3.4 shows the visualiza-
tions of the entire dataset, and three example clusters. We have included visualizations of
other large clusters with over 500 users in our appendix4 Using the visualizations, we se-
lected clusters with different distributions for each factor we hypothesized would influence
documentation usage. We then compared their documentation usage patterns to check if
the factors we identified were related to variations in these patterns.

2For users who have never signed the terms and conditions for API usage, we assigned a value of 0.
3A more direct comparison to Brandt et al. [34] would require per-session dwell times, which we did

not have access to, hence this approximation.
4To protect privacy (see section 3.2.3), we have not included visualizations of the remaining clusters.

However, we note that these large clusters account for 77% of the total users in our dataset.

25

Figure 3.4: Highlights of the clustering analysis. Each polar plot displays the average time
spent on each type of documentation (see Table 3.1 for the documentation type codes).
The small polar plots show the average dwell time in the previous three months. Note
that the ranges of the axes of the plots vary. Bar charts below the polar plots show
the proportions (%) of each group in the cluster. For example, the charts of Cluster
21 can be interpreted as “In cluster 21, users without platform and product experience
predominantly used Tutorial documentation (≈ 6 minutes) of P2 (81.1%) and P1 (18.9%),
mostly for clarification purposes, without subsequent API requests.”

26

H1 (Experience): Comparing clusters with a lot of experienced users (e.g., Cluster 6,
Cluster 26, Cluster 27) and clusters mostly with new users (e.g., Cluster 16, Cluster 21,
Cluster 22), the dwell time of the latter was relatively shorter compared to the former.
We also found that most of the clusters with more experienced users spend time on the
documentation that describes lower-level details, such as Reference or How-to guide docu-
mentation, without needing to visit introductory documentation like landing or marketing
pages. On the other hand, clusters with new users showed diverse documentation usage
patterns, which might be because they browse the documentation while considering adopt-
ing the APIs while still being relatively unfamiliar with the products, instead of trying to
learn to use the products.

H2 (Product type): We observed that documentation usage for P1 and P2, on the
one hand, and P3 and P4, on the other hand, is internally similar in different clusters —
many users of the pairs ended up clustered together (e.g., Cluster 21 and Cluster 11 for
P1 and P2, and Cluster 6 and Cluster 10 for P3 and P4). Clusters with a lot of P3 and P4
users visited How-to guide documentation, which might be due to their typical high project
complexity requiring system-level configurations of multiple products in Google platform.
In addition, we observed that clusters with the majority of users using application APIs
show longer pricing documentation usage, whereas clusters of infrastructural API users
show almost zero usage of pricing documentation. This could be explained by the usage
context of the products: Infrastructural API users maintaining large software systems
are also often employees of large corporations, with accounting and legal teams taking
care of administrative tasks, removing the need to visit Pricing or Legal documentation,
whereas application APIs are often used by smaller companies or individual projects whose
developers are more likely to be responsible for administrative tasks.

H3 (Documentation type predisposition): We observed a consistent trend where
clusters of users who spent an extended amount of time on specific types of documen-
tation in May also exhibited a prolonged engagement with the same documentation in
previous months. For instance, consider Cluster 6 (task-oriented users), whose members
demonstrated a substantial dwell time on How-to documentation in May; they also ranked
second in terms of How-to documentation usage in previous months, among the clusters
we analyzed. Similarly, Cluster 22 (financial users), which had the longest dwell time
of Pricing documentation in May, consistently showed the longest dwell time for Pricing
documentation in preceding months. Furthermore, even among clusters with lighter doc-
umentation usage, we noticed a parallel pattern: the dwell times from previous months
mirrored the patterns observed in May.

H4 (Possible intent): Comparing clusters with a lot of users with “reminding” or
“clarifying” intention (e.g., Cluster 0, Cluster 16, Cluster 18) with clusters with mostly
“learning” intention (e.g., Cluster 6, Cluster 26, Cluster 27), we observe that the former
users spent much less time on the documentation pages on average, and also focused on
documentation types like marketing and landing pages, which often provide an overview
and administrative facts of the APIs, consistent with the “reminding” and “clarifying”
intent reported by Brandt et al. [34]. In contrast, clusters with a lot of “learning” users
visited documentation that provides more detailed guidance on how to use the products,
like How-to documentation.

27

H5 (Subsequent API use): Comparing the clusters of users who made no or low
subsequent API calls (e.g., Cluster 0, Cluster 16, Cluster 22) with the clusters of users
who made subsequent API calls (e.g., Cluster 6, Cluster 26, Cluster 27), the latter had
spent longer overall browsing documentation pages, and had spent most of their time on
How-to guide and Reference pages as opposed to marketing pages, which could indicate
that many had already decided to adopt the API. We also observed that the degree of such
association may vary with the product. For example, compared to the users in Cluster
7 (documentation explorers) who visited Landing and Marketing documentation and had
similar average dwell times, far more users in Cluster 16 (product explorers) actually made
calls to the API in the subsequent months. This might be explained by their usage context:
the product proportions were relatively equal in Cluster 16, but most of the Cluster 7 users
visited only P1 documentation. Thus, we expect that users will need different types of
information depending on their usage context, and thus the usefulness of documentation
types may also vary.

3.4.4 Regression Analysis
Next we formally test the hypotheses above on our entire sample. First, we use multiple
regression to test how much the various user-level characteristics we hypothesized about in
H1-H4 can explain people’s logged documentation visits to pages in each of our four genres
(recall Table 3.1). Second, we test H5, i.e., to what extent developers’ logged documentation
visits in each of our four genres can explain their subsequent API use, again using multiple
regression.

We start by estimating four logistic regression models, one for each documentation
genre. In each model, the dependent variable is a boolean variable “dwell time > 0”
indicating whether or not a user in our sample accessed documentation pages of that par-
ticular genre. In addition, each model includes explanatory variables corresponding to H1

(overall platform experience, specific product experience), H2 (product), H3 (documentation use
in the previous three months), and H4 (average page dwell time); see section 3.2.2 for def-
initions. All models include all variables. E.g., the model specification for the guide
documentation genre is:

log
[

P (guide_dwell_time > 0)

1− P (guide_dwell_time > 0)

]
= α+

β1(overall_platform_experience)+
β2(average_page_dwell_time)+
β3(product)+
β4(specific_API_experience > 0)+

β5(dev_page_views_in_the_previous_three_months > 0)+

β6(guide_page_views_in_the_previous_three_months > 0)+

β7(admin_page_views_in_the_previous_three_months > 0)+

β8(meta_page_views_in_the_previous_three_months > 0)

By jointly estimating the different β coefficients, this model allows us to estimate the
strength of the association between each explanatory variable and the likelihood that users

28

access documentation pages from each genre, independently of the other variables included
in the model. Then, the p-value of, say, the estimated β1 coefficient allows us to test H1,
i.e., whether there is a correlation between platform experience and likelihood of accessing
documentation genres being modeled. Similarly, we could test for correlations between
platform experience and likelihood of accessing documentation pages from the other three
genres with the other three models.5

To test H5 we use a similar strategy, estimating one logistic regression model with a
boolean dependent variable “subsequent requests> 0”. We restrict this analysis to the subset
of users who have not made any API requests in the past months (more likely to be entirely
new users), since we expect the results to be more actionable for this subset in terms of grow-
ing the API user base. We include all the same independent variables as before (the ones
not directly tied to the hypotheses act as controls), except specific_product_experience
which is by definition null for these users. We also include an interaction with product to
test the effect of differences in products.

Overall, we took several steps to increase the robustness of our estimated regression re-
sults. First, we removed outliers (i.e., observations more than 3 standard deviations beyond
the mean) for highly skewed count variables and applied log-transformations to improve
heteroskedasticity. Second, we checked for multicollinearity using the Variation Influence
Factor (VIF) and only kept variables having VIF lower than 2.5, following Johnston et al.
[111]. Third, since we estimate multiple models, each with multiple variables, thus in-
creasing the risk of Type I errors, we conservatively adjusted all p-values using Holm’s
correction procedure [99]. Furthermore, we only considered model coefficients worthy of
discussion if the adjusted p-values were statistically significant at 0.01 level instead of the
more common 0.05.

3.4.5 Results
Figure 3.5-top summarizes the documentation-access logistic regression results across the
four models we estimated (one per genre) to test H1. We present our results in terms of
odds ratios (OR) instead of regression coefficients to ease interpretation. All four mod-
els are plausible, with Nagelkerke [171] pseudo R2 values (deviance explained) of 74% for
dev, 16% for admin, 44% for guide, and 55% for the meta documentation genre. , Fig-
ure 3.5-bottom summarizes the subsequent-usage logistic regression model testing H5. The
relatively high explanatory power of the models indicates that at least some of the patterns
of documentation usage align with user characteristics and API usage behaviors. Figures
3.6 and 3.7 show the consistent results for complementary count-based, linear regression
models that further investigate the time spent on the different pages. Here, we focus our
discussion around the logistic regression results.

5Note that our research hypotheses in section 3.4.1 are not all equally broad, i.e., they don’t all cover all
documentation genres or even the same documentation genres. Our choice to model each documentation
genre separately is flexible enough to allow us to draw conclusions about all hypotheses, including the
broader ones, by qualitatively comparing results from the relevant models. For example, we can reason
about a particular estimated coefficient β being statistically significant in multiple models corresponding
to multiple documentation genres.

29

H1:�
Experience

account_age

0.0038 �������������������� ��
<0.001 �������������������� �������������������� ��������������������
<0.001 ������������������������������������ ��������������������
<0.001 ����������������������������������� ��������������������

succ_prev_request�
TRUE

<0.001 �������������������� �������� ��������������������
<0.001 �������������������� ��
<0.001 �������������������� ���
<0.001 ��� ��������������������

H2:�Product�
(baseline:�P1)

P2

<0.001 �������������������� ���� ��������������������
<0.001 ��� ��������������������
<0.001 �������������������� �������������������� �������������������� ���������������������
<0.001 ��� ��������������������

P3

<0.001 ��������������� �������������������� ��������������������
<0.001 ������������������� �������������������� ��������������������
<0.001 �������������������� �������������������� �������������������� ��������������������������
<0.001 ��� ��������������������

P4

<0.001 �������������� ��������������������
<0.001 ��������������������� �������������������� ��������������������
<0.001 �������������������� �������������������� �������������������� �����������������������������������
<0.001 �� ��������������������

H3:�
Predisposition

prev_used_dev�
TRUE

<0.001 �������������������� �������������������� ����������
0.427 �������������������� �������������������� ��������������������
<0.001 �������������������� ���
0.690 �������������������� ��������������������

prev_used_admin�
TRUE

0.044 �������������������� ��������������������
<0.001 �������������������� �������������������� �������������������� �����������������
<0.001 ��� ��������������������
<0.001 ��� ��������������������

prev_used_guide�
TRUE

<0.001 �������������������� ����������� ��������������������
<0.001 �� ��������������������
<0.001 �������������������� �������������������� ���������������������������
<0.001 ��� ��������������������

prev_used_meta�
TRUE

<0.001 �������������������� ����� ��������������������
0.023 �������������������� �������������������� ��������������������
0.956 �������������������� �������������������� ��������������������
<0.001 �������������������� �������������������� ������������������

H4:�Intent�
(baseline:��
Avg.�dwell�
time�<�1min)

1�min�≤��
Avg.�dwell�time��
<�10�mins

<0.001 �������������������� �������������������� �������������������� ������������
<0.001 ������������������� �������������������� ��������������������
<0.001 ������������������ �������������������� ��������������������
<0.001 ���������������������� ��������������������

Avg.�dwell�time�
>�10�mins�

<0.001 ������������� �������������������� ��������������������
<0.001 �� ��������������������
<0.001 �������������������� �������������������� ��������������������
0.690 �������������������� �������������������� ��������������������

1.01

1.13

0.98

0.98

1.37

1.16

0��������������������1�������������������2�������������������3����������������10��������������100�

0.67

1.10

0.63

0.44

0.14

0.19

4.18

6.15

8.96

0.59

0.35

0.32
2.43

1.46

3.31

0.84

0.78

2.47

0.79

0.76

2.21

57.66

0.57

0.12

0.36

0.03

0.12

0.24

Odds�Ratio

Models �(1)�:�dev �(2)�:�admin�����������������(3)�:�guide������������������(4)�:�meta�����������������

PVariableHypothesis

1.34

0.66

1.18

1.28

RQ2�logistic-FSE24

H5:�Doc�
Usage

use_dev 0.051 ��������������������
use_admin� 0.046 �������������������� ���
use_guide� <0.001 �������������������� ������������������
use_meta� 0.486 ��������������������

H5:�
Doc:Product�
(b:�P1)

use_dev:P2 1.467 �������������������� �������������������� ��������������������
use_admin:P2 2.213 �������������������� ��������������������
use_guide:P2 1.467 ��������������������
use_meta:P2 1.467 �������������������� ��������������������
use_dev:P3 0.740 �������������������� �������������������� ��������������������
use_admin:P3 2.213 �������������������� ��������������������
use_guide:P3 <0.001 ������������������ ��������������������
use_meta:P3 0.250 �������������������� �������������������� ��������������������
use_dev:P4 2.213 �������������������� ��������������������
use_admin:P4 0.521 �������������������� ��������������������
use_guide:P4 <0.001 ������������������ ��������������������
use_meta:P4 1.467 �������������������� �������������������� ��������������������

Account account_age� <0.001 ���������������������������� ��������������������

Product�
(baseline:�P1)

P2 1.132 �������������������� ��������������������
P3 <0.001 �������������������� �������������������� �������������������� �������������������
P4 <0.001 �������������������� �������������������� �����������

Intent�
(b:�<�1min)

1�m�≤�avg�<�10�m� 1.467 �������������������� ��������������������
>�10�mins <0.001 �� ��������������������

1.92

3.92

402.31

0��������������������1�������������������2�������������������3����������������10��������������1000�

0.39

0.68

Odds�RatioPVariable

0.88

RQ3�logistic-FSE24

29.39

0.39

Figure 3.5: Top: Estimated odds ratios from the regression modeling dwell time > 0 for
our four documentation genres. For example, the odds of accessing Dev type documenta-
tion (pink) are 1.01 times higher among users with one extra year of platform experience.
Bottom: Estimated odds ratios from the regression modeling subsequent requests > 0. Vari-
ables without statistically significant coefficients (adjusted p ≥ 0.01) are omitted.

30

H1:�
Experience

account_age

<0.001 ���������������������
0.166 �������������������� ��������������������
<0.001 ������������������������������������ ��������������������
<0.001 ������������������������������������� ��������������������

log(prev_succ_requests+1)

0.277 �������������������� ��������������������
<0.001 �������������������� ����������������� ��������������������
<0.001 �������������������� ������������������ ��������������������
0.432 �������������������� ��������������������

H2:�Product�
(baseline:�P1)

P2

0.277 �������������������� ��������������������
0.166 �������������������� ��������������������
0.356 �������������������� �������������������� ��������������������
<0.001 ��

P3

<0.001 �������� ��������������������
<0.001 ���
<0.001 �������������������� ���
<0.001 ��

P4

<0.001 ������� ��������������������
<0.001 ���
<0.001 �������������������� ���
<0.001 ���

H3:�
Predisposition

log(prev_sametype_duration+1)

<0.001 �������������������� ����
0.002 �������������������� ������������������ ��������������������
<0.001 �������������������� �������������������� ��������������������
<0.001 ������������������� ��������������������

H4:�Intent�
(baseline:��
Avg.�dwell�
time�<�1min)

1�min�≤��
Avg.�dwell�time��
<�10�mins

0.277 �������������������� �������������������� ��������������������
0.607 �������������������� ��������������������
0.150 �������������������� ��������������������
0.432 ��������������������

Avg.�dwell�time�
>�10�mins�

0.003 ����� ��������������������
0.166 �������������������� ��������������������
<0.001 ��
<0.001 �������������������� ��

-0.02

-0.03

-0.02

0.02
0.02

0.14

0.25

0.17

0.12

0.25

0.19

0.05

0.08

0.10
0.10

CoefficientPVariableHypothesis

0.16

0.05

RQ2�linear-FSE24

-0.5����������������0�����������������0.5�����������������1

0.04

0.13

0.23

0.04

Models �(1)�:�dev �(2)�:�admin�����������������(3)�:�guide������������������(4)�:�meta�����������������

Figure 3.6: Coefficients from regression analysis predicting dwell time for four types of
documentation. p-values are adjusted based on the Holm’s correction [99]. Coefficients
are removed for non-significant results (p>.001).

H5:�Doc�
Usage

log(dev_duration+1) 7.464 ��������������������
log(admin_duration+1) 7.464 �������������������� ��������������������
log(guide_duration+1) 7.464 ��������������������
log(meta_duration+1) 7.464 ��������������������

H5:�
Doc:Product�
(b:�P1)

log(dev_duration+1):P2 7.285 �������������������� �������������������� ��������������������
log(admin_duration+1):P2 7.464 �������������������� ��������������������
log(guide_duration+1):P2 7.464 ��������������������
log(meta_duration+1):P2 7.464 �������������������� ��������������������
log(dev_duration+1):P3 7.464 �������������������� �������������������� ��������������������
log(admin_duration+1):P3 <0.001 �����������������������
log(guide_duration+1):P3 7.464 ��������������������
log(meta_duration+1):P3 7.464 �������������������� �������������������� ��������������������
log(dev_duration+1):P4 3.525 �������������������� ��������������������
log(admin_duration+1):P4 7.464 �������������������� ��������������������
log(guide_duration+1):P4 2.302 ��������������������
log(meta_duration+1):P4 7.285 �������������������� �������������������� ��������������������

Account account_age� <0.001 �������������������������� ��������������������

Product�
(baseline:�P1)

P2 6.480 �������������������� ��������������������
P3 2.748 �������������������� �������������������� ��������������������
P4 7.464 �������������������� ��������������������

Intent�
(b:�<�1min)

1�m�≤�avg�<�10�m� 5.420 �������������������� ��������������������
>�10�mins 7.464 �������������������� ��������������������

0.81

CoefficientPVariable

-0.13

RQ3�linear-FSE24

-0.5����������������0�����������������0.5�����������������1

Figure 3.7: Coefficients from regression analysis predicting dwell time for four types of
documentation. p-values are adjusted based on the Holm’s correction [99]. Coefficients
are removed for non-significant results (p>.001).

31

H1 (Experience): supported. Results from the dev and meta-genre models are consistent
with the hypothesis. For example, the odds of accessing reference documentation and other
dev pages are 1.34 times higher among people with prior experience with the products
(product experience), i.e., those who made successful API requests in the past, compared
to those without, and the odds of accessing such pages are 1.01 times as high among users
with one extra year of platform experience. Similarly, the odds of accessing marketing and
other meta documentation are lower (OR = 0.67) among people with prior experience with
the products (product experience), and the odds of accessing such pages are 0.98 times as
high among users with one extra year of platform experience.

Interestingly, the results from the admin-genre model align more with the documen-
tation genres covering implementation details than meta: the odds of accessing pricing,
legal, and other admin documentation are also higher (1.37 times) among people with
prior experience with the products compared to those without. This could indicate that
the information in admin documentation is not only needed once, when people make API
adoption decisions, but rather is consistently needed throughout their use of the API.
H2 (Product type): supported. All four models support the hypothesis: taking P1
as the reference, the magnitude of differences between P1 and P2 is consistently smaller
than either P1 and P3 or P1 and P4; i.e., the documentation page visits of large-scale
infrastructural products tends to differ starkly from that of application products. Taking
the dev-genre model as an example, the odds of accessing the documentation pages are
only 1.1 times higher among visitors to P2 documentation compared to P1, but 0.66 and
0.63 times as high among visitors to P3 and P4 compared to P1.
H3 (Documentation type predisposition): supported. All models show strong effects
of documentation type consistency: there are correlations between the past and the future
access to some types of documentation. For instance, in the admin-genre model the odds
of accessing admin-genre documentation pages are 3.31 times higher among people who
had also accessed such pages in the past three months compared to people who had not.
As many different pages of documentation are included in each type of documentation,
and the analysis is done at a month-level as described in section 3.2.4, this result does
not provide conclusive evidence of the users’ preference for the contents or structure of
documentation pages. However, it still suggests that the documentation users have types
of documentation they are more familiar with, and can access them repeatedly.
H4 (Possible intent): only partially supported. The results for this hypothesis are
mixed. On the one hand, the dev-genre model reveals a clear difference between people
with long and short average per-page dwell times, as hypothesized: the odds of accessing
reference documentation and other dev pages are 0.57 times lower among people with
average dwell times greater than 10 minutes compared to those with average dwell times less
than a minute. The model also reveals that the odds of accessing dev-genre documentation
are greatest (57 times higher) among people with average dwell times between one and 10
minutes. Similarly, the models for admin- and meta-genre pages, which include marketing
and pricing, are generally supporting the hypothesis.

In contrast, the model for guide-genre documentation points to the opposite finding
than hypothesized when comparing to people with average dwell times less than a minute

32

(the group with the shortest dwell times, set as the baseline in our models): the odds of
accessing tutorials, how-to documentation, and the like are lower, not higher, among both
people with average dwell times between one and 10 minutes as well as people with average
dwell times greater than 10 minutes, compared to those with average dwell times less than
a minute.

One potential explanation is that many users might use the guide documentation as
a cheat-sheet, from where they copy and paste various API boilerplate [174] or usage
examples. Although guide documentation was originally intended to introduce and explain
products to relatively inexperienced users, it appears to be widely used by users with diverse
intentions.

3.5 Discussion
We investigated the feasibility of using documentation page-view logs to inform the design
of documentation. Through a series of hypotheses derived from the literature, contextual-
ized by an exploratory analysis of our page-view log data (§3.3), and subsequently validated
through a large-scale regression analysis (§3.4), we discovered that there are multiple dis-
cernible patterns of documentation use, even when the documentation pertains to the same
platform, or even the same products.

3.5.1 Feasibility of Log Analysis for Documentation Review
Large-scale log analysis helps discover unexpected use. As large-scale log analysis
allows analyzing all documentation usage, with less researcher efforts and costs, we could
explore diverse documentation usage patterns. For example, in addition to users mainly
using documentation for API learning, which was often studied in the existing literature
that used smaller-scale qualitative approaches [66, 117, 158, 159], the clustering analysis
discovered additional large clusters of users who only check pricing documentation (Clus-
ter 22: financial users), or that many users make many API requests without even visiting
reference documentation (Cluster 27: task-oriented users). The cluster exploration and the
hypotheses testing also revealed that expected documentation usage can differ from actual
use. For example, although how-to documentation is often regarded as introductory for
new users [66], we observed that users with more product experience made more visits
to the guide documentation (Cluster 6: task-oriented users) than those with less product
experience, which was also confirmed by the regression analyses (H1). While the cause or
intent behind these unexpected uses cannot be found solely with log analysis, our observa-
tions might be useful in designing more focused human studies. Moreover, we believe that
a similar analysis can be used to answer broader research questions like “How does docu-
mentation usage change over time as users develop their expertise with the products?”, or
“What are the strategies developers use for information seeking in documentation?”
Page-view log analysis is informative but could be further refined. The analysis
could be extended to also account for the structure and content of the documentation pages,
in addition to the factors we considered. For example, although the top web search results

33

given the query Google [product] were marketing documentation for all four products,
the second result varied between a guide documentation page for P4, and landing pages
for P1, P2, and P3. Thus, in interpreting the differences in documentation usage between
products, whether intended or not, differences between the documentation structure and
external resources should also be taken into account. Analyzing referrer pages, i.e., the
pages accessed by a user prior to loading a particular web page, might be useful in un-
derstanding how such differences affect the documentation use [195]. We propose this
direction for future research.
In practice, the analysis plan can be adapted based on the analysis goals. In
this work, we employed a mixed-method approach to gain a comprehensive understanding
of Google documentation usage. This involved both exploring the data and validating our
hypotheses. Each of these analyses complements the other, offering distinct advantages
and considerations. For example, clustering analysis proves valuable in uncovering com-
mon and unexpected usage patterns, requiring less quantitative data analysis expertise
to get started. However, it is important to note that interpreting clustering results can
be subjective, and conducting a detailed investigation of every cluster may not always be
practical. Subsequently, performing regression analysis adds a layer of confidence to our
findings, providing a comprehensive overview of the dataset. In practice, it may not always
be necessary or feasible to conduct both types of analysis due to differences in skill require-
ments. In such cases, the choice between the two can be made based on the specific goals
of the log analysis. For instance, a user experience (UX) researcher seeking a lightweight
usability review might opt for a quick cluster analysis and interpretation as demonstrated
in Section 3.4.3. If stronger evidence is needed to support hypotheses, especially for design
refactoring, engaging a quantitative UX researcher or data scientist to perform regression
analysis following a clustering study would be a more suitable approach.

3.5.2 Recommendations for Documentation Providers

Through the log analysis, we found that documentation usage can vary based on the users’
experience in product and platform (H1), the type of product described (H2), and many
other factors (H3, H4). This suggests that established knowledge on documentation usage
may not always be generalizable to all target users. Here, we highlight some of the specific
implications for how to design improved documentation catering to users with different
characteristics.
Explicitly mention the target audience of documentation.
Previous studies [158] found that developers often experience difficulty in determining
which documentation type to select when searching for a particular piece of information.
We posit that this is because documentation for different products adheres to varying
documentation standards and categorizes information differently, and it takes time for de-
velopers to learn these distinctions. Since we confirmed that developers’ documentation
visits are correlated with their characteristics, we posit that explicitly indicating the in-
tended audience of the documentation will assist them in selecting the appropriate types

34

and pages of documentation to access (i.e., provide strong “scent” in the information for-
aging theory [199]).
Duplicate important information for information discovery. As our models show
(H3), users are more likely to visit types of documentation that they have accessed in the
past. Although it is often considered to be better to modularize the documentation, this
can be problematic if important information is only presented on a specific page, as the user
might not always discover that [100, 177]. This observation is consistent with the finding
of Meng et al. [158] that developers often skip sections in the software documentation
based on their problem solving strategies. Thus, to reduce the risk of developers missing
important information, we recommend providing such information in multiple types of
documentation, or at least providing prominent functional links to the page providing such
information.
Provide product-specific starting points. We discovered that there are variations in
visit patterns among products with distinct characteristics. This is expected because dif-
ferent types of information are provided and needed depending on the purpose or domain
of the product (H2). For instance, for infrastructural products such as P3 and P4, many
users (Cluster 2: task-oriented users) accessed how-to guides providing instructions for the
configuration settings, but for application products like P1 and P2, many users visited
tutorial documentation pages providing walkthroughs for a simple use case (Cluster 21:
product explorers) that aid new users in quickly familiarizing themselves with the products.
However, for users who are new to the products with little understanding of them, it will be
challenging to know what documentation type or page will be the best starting point [118],
especially because there are a plethora of documentation pages per product. Thus, to help
the new users quickly grasp the gist of the products, we recommend providing product-
specific recommendations about which documentation pages to use to start learning, as
similarly recommended in Jeong et al. [108]. Most commonly accessed documentation
pages or pages that correlate with subsequent API requests, which can be acquired from
the page-view logs, will be good candidates for the recommendation, as they were already
proven to be useful for other users. We note that we do not recommend changing the
documentation templates or navigation structures, because inconsistent inter-product in-
formation organization can hinder information foraging of users, especially those who use
multiple products from Google. A designated space for the product-specific documentation
recommendation in a landing page or a navigation tab will allow users to know where to
look if they become lost.
Nudge new product users to visit guide-genre documentation. When developers
select third-party libraries, the quality of documentation is perceived as a good sign of the
library’s quality [262], and when a user is not able to find appropriate learning resources, it
becomes a major obstacle in getting to know the libraries resulting in user frustration [206].
Our results suggest that guide-genre documentation is particularly effective in influencing
the decision to adopt a product (H5), although one might think that landing documentation
is beneficial for them since it provides an overview of the products. We believe that guide-
genre documentation is helpful in making the adoption decision, as it describes what the
products offer and help developers gauge what they need to do for onboarding, which

35

corresponds to what new users look for from documentation [206]. Thus, although other
documentation pages will be useful in the end, nudging developers to visit guide-genre
documentation as early as possible may help them perceive the quality of documentation
positively, and adopt the API.

3.5.3 Longer-term Vision: Personalization
While we distilled actionable recommendations for how to adjust the design of software
documentation taking into account many dimensions of user characteristics that might af-
fect their usage, doing this manually may be unrealistic when many products are involved.
Instead, we argue that the time is ripe for approaches to automatically personalize the doc-
umentation. Personalization is not a new topic and has already proven to be effective for
other services like media streaming and search engines [249]. Prior research on general web
search has also made significant progress in designing effective personalized recommender
systems to increase the long-term engagement of users [277], using both implicit (e.g.,
dwell time [277, 278]) and explicit (e.g., item rating [11, 12]) feedback mined from histori-
cal interaction data as an indicator of users’ interests and needs. As the dwell time mined
from documentation page-view logs can capture some user characteristics, in addition to
the interaction histories that page-view logs contain by design, we expect that personal-
izing approaches can also be used in the documentation domain. Here, we present three
directions to improve developers’ information foraging on documentation using page-view
logs.
Documentation recommendation. First, we argue that it is time to go from static ap-
proaches of documentation recommendation (for example, consider the omnipresent navi-
gation links like “Recommended content” or “What’ s next” or “Next topic,” that typically
point to the same target page regardless of which user is browsing) to dynamic ones that
take user characteristics into account to provide more relevant suggestions. An ideal sce-
nario is perhaps one where the recommender system has access to the developer’ s code
repository or profile, that reveal the developers’ needs and background that are known to
correlate with their documentation usage (e.g., their product and platform experience), as
we discovered from the analysis. Short of that, we show that some signals about user-level
characteristics are present in much more modest and more widely-available log data on
previous documentation page visits. A recommender system could learn to profile users
based on previous page visits (similar to our clustering) and, given that knowledge, suggest
the next documentation pages to visit from among those that users in the same cluster
have visited or interacted with before.
Within-documentation search. Personalization can also be applied to within-documentation
search engines. Many previous studies of within-documentation search engines showed the
need for efficient navigation [108]. Typically, software documentation contains informa-
tion for both novices and experts, sometimes implicitly within a single page, other times
explicitly across dedicated separate pages. For example, a difference between a ‘basic’
and an ‘advanced’ tutorial could be that the advanced tutorial describes APIs with more
flexible capabilities, which require additional parameters. One way to personalize is query

36

modification [228], by expanding the user query using additional terms inferred from user
profiles. As above, the user profiles can be approximated from documentation page view
logs; for example, when a user’ s documentation page view pattern is similar to Cluster
6 (task-oriented users), with high levels of guide documentation visits that correlate with
product experience level, the system can infer that the user is experienced. Then, given a
search query “how to set up P1,” the system could augment the query along the lines “how
to set up P1 advanced user,” which should bias the search results towards the dedicated
advanced pages.
Documentation filtering. Another idea is that a “smart” documentation system could
automatically filter what information is being shown depending on the user. For example,
when a user has already accessed platform-common information (e.g., authentication) from
other products, the system can hide/fold such parts for new APIs the user is reading about,
to make information foraging more efficient. Similarly, one could imagine hiding/folding
other parts of a documentation page, such as the code examples, for users that prefer to
develop a more conceptual understanding first [158]. These examples both require data
on historical accesses of other documentation pages by the same users (or by users in the
same cluster), which is often included in the page-view logs.

3.6 Summary
Through the log analysis, we discovered discernible patterns of documentation usage, show-
ing that documentation users can have diverse information needs. By testing our hypothe-
ses derived from the clustering analysis, we confirmed that users’ information needs can
vary based on the type of product described (H2), the user backgrounds (H1), and many
other factors (H3, H4). This suggests that considering different users’ characteristics may
lead to more effective information support for developers.

37

38

Chapter 4

Automatic Extraction of Boilerplate
Client Code6

When programmers are new to a particular API, they often lack the experience to differen-
tiate between essential, unique code and the repetitive, standard code snippets that make
up boilerplate, because they yet possess the nuanced understanding required to differenti-
ate the repetitive, standard snippets of boilerplate code from the critical, unique aspects of
their implementation. Without the ability to easily identify and segregate boilerplate, new
programmers can become bogged down in trying to decipher and adjust non-essential parts
of the codebase, diverting attention from focusing on innovative and critical development
tasks. In this chapter, we explore the feasibility of automatically identifying boilerplate
code form client code, so that (1)API providers identify this API usability issue easily, and
(2) the new programmers to quickly grasp the core functionalities of an API after learning
about the boilerplate code patterns of APIs they learn.

4.1 Introduction
Almost all modern software programs adopt and use a large number of APIs. Therefore, di-
mensions of API usability, including learnability, effectiveness of use, and error-proneness,
are increasingly becoming significant concerns for API designers [32, 165, 207]. To investi-
gate API usability issues and to improve APIs, researchers have used several methods such
as lab studies [239] and API design reviews [70, 153]. The understanding gained from such
studies, along with the insights from experienced API designers, have led to the develop-
ment of guidelines for API designs and heuristics for evaluating APIs [32, 165, 167, 207].
However, despite these efforts, many APIs are still difficult to use [168]. In particular,
API designers have reported that anticipating how developers will use their API in the
wild is difficult and leads to usability challenges when developers use the API in unex-
pected ways [167]. API designers have also reported significant trouble discovering what
are the usability barriers at scale [167]. Although online sources such as Stack Overflow
and GitHub may contain ample amounts of real client code or insights into how program-

6This chapter is adapted from Nam et al. [174]

39

1 import org . w3c .dom. ∗ ;
2 import java . io . ∗ ;
3 import javax . xml . transform . ∗ ;
4 import javax . xml . transform .dom. ∗ ;
5 import javax . xml . transform . stream . ∗ ;
6
7 // DOM code to write an XML document to a spec i f i ed output stream .
8 private static final void writeDoc (Document doc , OutputStream out) throws IOException {
9 try {

10 Transformer t = TransformerFactory . newInstance () . newTransformer () ;
11 t . setOutputProperty (OutputKeys .DOCTYPE_SYSTEM, doc . getDoctype () . getSystemId ()) ;
12 t . transform (new DOMSource(doc) , new StreamResult (out)) ;
13 }
14 catch (TransformerException e) {
15 throw new AssertionError (e) ; // Can ’ t happen !
16 }
17 }

Listing 4.1: Writing an XML document to a specified output stream in Java may involve
significant boilerplate code for initialization and error handling [32].

mers perceive APIs, designers report that there are not so many automated approaches
to mine usability data from these repositories at scale, nor to gauge the severity of the
usability issues [167].

In contrast, mining software repositories techniques have long been used to identify
API usage patterns [214]. For example, existing API usage pattern mining tools such
as ExampleCheck [84, 281] and PAM [77] automatically identify API methods that are
frequently called together in client code. Primarily, these tools have been designed to help
users learn a new API, by identifying idiomatic usage examples, as well as to help API
designers gain insights into how their APIs are being used. We argue that API usage
pattern mining tools may also help reveal certain API usability issues.

Specifically, we focus on one particular grievance that developers express repeatedly [54,
191, 225, 265] in online discussions about APIs (and programming languages more gener-
ally): boilerplate code. Wikipedia [51] refers to boilerplate as “sections of code that have to
be included in many places with little or no alteration”, and code “the programmer must
write a lot of to do minimal jobs.” One Stack Overflow user [191] calls boilerplate “any
seemingly repetitive code that shows up again and again in order to get some result that
seems like it ought to be much simpler”; most users agree that boilerplate is tiresome to
write and error-prone [54, 225, 265]. Listing 4.1 shows a typical example: Whenever one
wants to write an XML document to a specified output stream in Java, which is a common
usage scenario, this requires significant boilerplate code. One could imagine that this use
case could be accomplished natively by calling a single API method such as writeXML.

From an API designer’s perspective, the existence of boilerplate code may serve as an
indicator of poor API usability. This is because the need for boilerplate code often indicates
that the API does not directly provide the methods that programmers need, so the extra
code is needed to do even common tasks. Another cause may be that the API designers
assume users will need the flexibility to put things together in multiple ways, but most
users do not, so everyone uses the same collection of methods in the same way [253]. Users

40

may also use boilerplate code even though there are already implemented API methods
that can succinctly perform the task, which indicates discoverability problems [253].

However, despite general consensus on the undesirability of having to write boiler-
plate code, as well as API design guidelines explicitly mentioning boilerplate as an anti-
pattern [32, 165, 207], the concept remains largely undefined and understudied. We start
by reviewing boilerplate code examples and definitions from multiple sources (section 4.2).
Through qualitative analysis, we confirm that boilerplate involves sections of code that
have to be written repetitively to accomplish common and otherwise simple tasks that
users largely do not want to think about. Moreover, we find that the main reasons for boil-
erplate code are underlying language and API limitations. We also find that developers
and API contributors make efforts to reduce the amount of boilerplate code by introducing
new helper functions and abstractions.

Next, we present MARBLE (Mining API Repositories for Boilerplate Lessening Effort),
an automated technique for identifying instances of boilerplate API client code. Since a key
property of boilerplate is that it is repetitive, we designed MARBLE on top of an existing
API usage pattern mining approach, specifically PAM [77], which is automated and can
be run at scale. However, not all idiomatic API usage patterns that an approach like PAM
extracts, of which there are typically many, should be considered boilerplate. Therefore,
we developed novel filters using AST comparison and graph partitioning (section 4.3) to
identify, among the frequent API usage patterns, those which are most likely to involve
boilerplate. By reducing the number of false positives, API designers could then focus
manual review on the most likely candidates. The source code of MARBLE is available
online [173].

We evaluated MARBLE on 13 Java APIs, for which we mined around 10,000 client code
files from GitHub open-source projects, with 768 client code files per library on average
after random sampling. Our results (Section 4.4) show that not only does MARBLE return
a sufficiently short list of boilerplate candidates for manual review to be feasible, but also
that more than half of these candidates are considered boilerplate by two experienced Java
programmers, where one of them is an API designer at a large software company. To
further the discussion about what boilerplate is and how it impacts APIs, we discuss some
of the boilerplate candidates and suggest potential API design improvements. The full list
of boilerplate candidates mined is available online [173].

Note that we are not claiming that all boilerplate code is bad, or that boilerplate code
should always be eliminated. In fact, some of the patterns we identified as boilerplate
are important to leave as-is to achieve other code quality requirements, such as increased
readability or separation of concerns. However, as has been proposed elsewhere [168], we
argue that these kinds of API design decisions are best made with full knowledge of the
tradeoffs. We argue that MARBLE provides data which may be used in practice by API
designers as a basis for such discussions. We also recognize that our method, like any other
data-mining approach, is only applicable after an API has sufficient client code using it,
and is therefore complementary to lab studies and API design reviews.

In summary, we contribute: i) the boilerplate API code mining problem; ii) properties
which can be used to identify boilerplate code; iii) an automatic boilerplate code mining
algorithm; iv) an empirical evaluation on 13 Java libraries.

41

4.2 Studying Boilerplate Code
As far as we have been able to find, studies of boilerplate code, or studies that even mention
boilerplate code, are scarce (exceptions include [32, 112, 122, 207]). Mostly we have found
it to be “I-know-it-when-I-see-it,”with the existing explanations being vague and abstract,
rather than deterministic.

At the same time, although boilerplate code is regarded as something that programmers
want to avoid [54, 225, 265], and API design guidelines suggest that API designers should
reduce the need for boilerplate code [32, 165, 207], we still have not seen any studies of
whether some boilerplate code is induced by APIs, and if so, whether it is possible to
reduce it at the API level.

Thus, to help understand the characteristics of boilerplate code, and the impact of
API design on the need for boilerplate in client code, we first investigated three research
questions:

• RQ 4.1: What is a good definition and what are common properties of boilerplate
code?

• RQ 4.2: What are reasons for needing boilerplate code?
• RQ 4.3: How do API users and API authors deal with boilerplate code?

4.2.1 Resources
We reviewed the literature, surveyed our social media contacts, and reviewed Stack Over-
flow questions and GitHub commits. Mainly, we looked for boilerplate code examples,
but when available, we also collected the rationale behind the boilerplate designation, rea-
sons for the boilerplate, and how programmers dealt with boilerplate. We looked for Java
boilerplate code examples involving at least one API call. We chose Java because the API
usage pattern mining technique we build on (section 4.3) was tested for Java. In some
communities (e.g., web developers), boilerplate code is used as a synonym for template
code [91], but we exclude this context as we are looking for boilerplate related to API
usability.

Literature

We searched for definitions or explanations of boilerplate code in Google Scholar [32, 112,
207], blog posts, online discussion boards (e.g., reddit) and Wikipedia. When available, we
also collected boilerplate code examples.

Survey

We asked our Twitter contacts to share boilerplate code examples and the reasons behind
the boilerplate designation. Overall, 8 participants submitted 1 to 3 boilerplate examples
each and all provided the reason why they thought each example qualifies as boilerplate.

42

Stack Overflow

I identified five popular Java API tags (android, swing, jdbc, spring-mvc, jsp) in Stack
Overflow and manually collected questions asking about how to reduce boilerplate code,
using Stack Overflow search queries (e.g., “[Swing] boilerplate”). We checked the first page
(15 questions) of the results for each Java API tag, and collected boilerplate code examples
and the reasons why the questioner thought it was boilerplate.

GitHub Commits

We identified and cloned the top 10,000 most starred Java repositories from GitHub,
using the March 2018 version of GHTorrent (details in section 4.4). Then, we identified
all commits including the keyword “boilerplate” in the commit message. Finally, two
researchers manually coded all the matching commits.

4.2.2 Definition of Boilerplate Code
We investigated the available definitions of boilerplate code from the literature, and it-
eratively discussed the boilerplate examples among the research team (which includes an
experienced API designer in a large software company, who is often involved in large soft-
ware projects using APIs), distilling common properties. We did not use GitHub commit
data in this analysis because (1) it does not explicitly express the characteristics of boil-
erplate, and (2) it does not indicate the exact location of boilerplate code in many of the
code changes.

Undesirable

Commonly, boilerplate code is identified using subjective properties, sometimes explicitly:
“It’s a subjective definition” [191]. Mostly, such properties have negative connotations.
One source calls it “uninteresting, unchanging, repetitive, and/or tedious” [238]. Another
common but subjective property is that boilerplate code is needed even for simple func-
tionality. The highest voted answer from Stack Overflow defines it as “it ought to be much
simpler” [191]. We summarize all of these properties as being “undesirable.”

High frequency

Most of the definitions and explanations require that boilerplate code occurs frequently in
client code, such as “shows up again and again” [191], or “code that has to be included
in many places” [51]. Frequency is a particularly intuitive property given the negative
connotation of boilerplate code: indeed, if it were rare, its impact would likely be reduced.
The high frequency property also implies that boilerplate API code examples should be
found among idiomatic API code examples, as the latter are by definition frequent, hence
our choice to base our approach on an existing API usage pattern mining tool [77].

43

Localized

The statements constituting boilerplate code are usually closely located near each other,
rather than spread over multiple methods or files. All examples from Stack Overflow and
the survey, and three examples from Google Scholar [32, 112, 207] were parts of a single
method. The Wikipedia example of getters and setters within a class [51] is the only one
not limited to a single method.

Little structural variation

The boilerplate code instances appear in similar form without significant variation. Many
sources describe that it “gets copied and pasted” [207], and is used “with little or no
alteration” [51]. We also found that many explanations of boilerplate code describe the
examples as “I find myself writing the same ugly boilerplate code” [248], or “a lot of code
that must be duplicated” [19].

This corresponds to the definition of code clones, especially “templating clones” [112].
However, while code clones need not occur with high frequency to be considered clones,
boilerplate should occur frequently (Property 2).

4.2.3 Understanding Cause of Boilerplate Code
Method

Two researchers performed closed coding for all of the boilerplate related commits we col-
lected from GitHub. As one property of boilerplate code (RQ4.1 Property 4) corresponds
to a subcategory of code clones, we borrowed Roy and Cordy’s “reasons for cloning” [220] as
our starting set of codes: development strategy (reuse approach, programming approach),
maintenance benefits (avoiding, ensuring, reflecting), overcoming underlying limitations
(language limitations, programmers’ limitations), and cloning by accident (protocols to
interact with APIs and libraries, programmers’ working style). As there were commits
referring to different types of boilerplate (e.g., boilerplate license), we also coded the com-
mits with types of boilerplate: boilerplate, client (i.e., reduce the boilerplate code using the
API), comment (i.e., boilerplate in the comments such as license, javadoc), and Non-Java.
Each commit was assigned one type and one reason based on its commit message and
code diffs. Two researchers started coding collaboratively and, after 10 agreements, each
separately coded half of the data. In total, we randomly sampled and coded 120 commits,
and the two coders reached 87.5% agreement (Jaccard Index) both for boilerplate types
and for reasons, on 20% of the data.

Results

Among 120 commits, 40 of them were commits to reduce the use of boilerplate code. We
found that the predominant reason for needing boilerplate was overcoming underlying lan-
guage limitations (mentioned in 19 commits). Examples of this include needing to initialize

44

many getters/setters and verbose error handling in Java. 11 were induced in order to in-
teract with APIs, for example, tagged as “Protocols to interact with APIs”. Some of the
boilerplate code was due to questionable API designs (e.g., requiring the client to cast the
output by providing an abstract object), but some seemed inevitable due to the design
patterns or apparent trade-offs in the design of the APIs. For example, an API adopting a
builder pattern usually involves a lot of boilerplate to set properties of an object. Another
10 were due to programmers using the API inefficiently, such as using an API call which
is not ideal that requires more code.

Since most boilerplate code instances are by-products of language and API limitations,
analyzing boilerplate code can help review their API designs and find usability issues.
Despite some of the limitations being unavoidable, such as error handling in Java, there
are many other situations where API designers can reduce the need for boilerplate, such
as by adopting annotation libraries or introducing helper functions. Boilerplate code due
to programmers using the API inefficiently may be a signal that there are discoverability
issues, so the documentation and tutorials might need to be improved to overcome the
conceptional gap between the API designers and API users.

Note that while we were able to code every boilerplate instance with codes from “reasons
for code cloning” [220], which indicates that boilerplate can be considered a type of code
clone, the two are not identical, as clearly not all code clones can be considered boilerplate
under our definition (high frequency, localized, API related). Therefore, while our approach
to automatically mine boilerplate candidates (Section 4.3) starts from an existing API usage
pattern miner, future work could also consider boilerplate mining approaches that start
from code clone detectors, but exploring this goes beyond the scope of the current work.

4.2.4 Programmers’ Efforts to Reduce Boilerplate Code
Method

To answer RQ4.3, two researchers performed descriptive coding on the changes that were
made to reduce the amount of boilerplate code – either boilerplate within the source code
itself, or boilerplate that is needed by the client to use the library. We used the same 40
boilerplate instances found in commits from RQ4.2 (i.e., attempts to reduce the boilerplate
code by editing the project code), and 6 commits that changed the API itself (i.e., attempts
to reduce the boilerplate code using the API). We coded based on the code diffs and commit
messages, and extracted the means used to reduce boilerplate code.

Results

The majority of boilerplate code reductions within a project were made by introducing
new helper functions or classes, either by writing new ones, or by including a function or
class from an external API. For the simple Java-specific boilerplate such as getters/setters,
some used annotations (e.g., Project Lombok [149]) or injection to reduce the amount of
boilerplate. When changing the API to reduce the client-side boilerplate, programmers
added more processing into the library, thereby reducing the need for pre/post processing

45

for the input/output of API calls. Some made the interfaces more specific to reduce the
need for parsing or casting in the client code. Also, like within-project boilerplate reduction,
some commits added a set of helper functions or new classes to allow users to have a more
specific but simpler interface, which can usually be done without making breaking changes
to the API.

4.3 Mining Boilerplate Code
Using the results from the previous section (Section 4.2.2), we seek to find code instances
that contain calls to a target API and satisfy the properties of boilerplate code we iden-
tified: (1) are undesirable, (2) occur frequently in client code, (3) occur within a relatively
condensed area, and (4) are used in similar forms without significant variations.

To this end, we designed MARBLE, which combines an API usage pattern mining
technique with a graph partitioning algorithm to identify candidate boilerplate code from
software repositories. MARBLE consists of several steps, depicted in Figure 4.1 and de-
scribed below. In summary, we first identify a large set of API usage patterns which
represents our initial set of boilerplate candidates. We then filter out any patterns that
are spread over multiple methods, or which have many variants, to finally provide a short
list of boilerplate candidates that satisfy all of the properties above, except for Property 1
(undesirable). These candidates could then sorted and contextualized with the real-world
client code, and delivered to the API designers so they can review the candidates for Prop-
erty 1. We intentionally designed the process in this order because testing Property 4 (little
structural variation) is computationally expensive. By filtering out the candidates that do
not satisfy the other properties, we are able to reduce the number of AST comparisons
(section 4.3.3).

4.3.1 API Usage Pattern Mining
We start from an existing API usage pattern mining technique, to collect boilerplate candi-
dates containing one or multiple target API calls and satisfying the high frequency property.
Specifically, we chose PAM (Probabilistic API Miner) [77], a state-of-the-art parameter-
free probabilistic approach as of 2020, which is fully automated and available open-source.
In their evaluation, Fowkes et al. [77] found that PAM returns less redundant and less
numerous results compared to other API usage pattern mining algorithms we compared.

The PAM Core

PAM uses a probability model over API call sequences to identify “interesting” sequences of
API calls / API usage patterns. Given a target API, the model can be trained unsupervised
on a corpus containing code from open-source GitHub repositories. Concretely, PAM first
parses each source file and extracts the sequence of target API calls within each method
(only Java code is currently supported), using a depth-first traversal of the abstract syntax
tree (AST). At the same time, frequency information for each API call over methods is

46

boilerplate
candidates

⋮

Boilerplate

Boilerplate
.JAVA

target API
&

client code
files

API Call
Extraction

.ARFF.JAVA

Pattern Mining
(Expectation Maxim.)

1. pattern
2. pattern
⋮ ⋮

API Usage Miner (PAM)

ranked API
usage patterns

&
files containing
each pattern

⋮

.JAVA
1. Pattern &

2. Pattern &
.JAVA

AST Building

.JAVA

Subtree
Extraction

Similarity
Computation

0.63

TES

For each client code file

For each pair of client code files

For each API usage pattern

Graph
Partitioning

Figure 4.1: Overview of our mining process and the steps involved.

recorded. For example, given javax.xml.transform as a target API and Listing 4.1 as one
client method using it, PAM’s API call extractor returns

• javax.xml.transform.TransformerFactory.newInstance

• javax.xml.transform.TransformerFactory
.newTransformer

• javax.xml.transform.Transformer
.setOutputProperty

• javax.xml.transform.dom.DOMSource.<init>

• javax.xml.transform.stream.StreamResult.<init>

• javax.xml.transform.Transformer.transform

Then, PAM uses expectation-maximization (EM) [164] to iteratively infer “interesting”
API usage patterns (i.e., sequences of API calls) and learn the probability model. That
is, an API call sequence [A, B] is “interesting” if the two API calls A and B occur together
more often than expected by chance, given the individual frequencies of A and B. The EM
algorithm iteratively interleaves API call sequences, and searches for the set of patterns
that maximizes the probability that the model assigns to all client methods in the input
dataset. For more details we refer to the original paper by Fowkes et al. [77].

PAM returns a ranked list of API usage patterns P = [P1, P2, . . . , Pn], where Pi =
[c1, c2, . . . , cm], is an API call sequence. For example, when we run PAM on javax.xml.tran-
sform, it returns:

• P1 = [javax.xml.transform.dom.DOMSource.<init>,
javax.xml.transform.stream.StreamResult.<init>]

• P2 = [javax.xml.transform.TransformerFactory.
newTransformer,
javax.xml.transform.Transformer.transform]

• P3 = [javax.xml.transform.dom.DOMSource.<init>]

• P4 = . . .

47

Modifications to the PAM Core

As our main goal is to help API designers identify the patterns that are likely to reflect
API usability issues, the list of candidates to be considered must be relatively short, since
such reasoning requires designers’ manual effort. We modified the base PAM algorithm
to reduce the number of false positive boilerplate patterns returned. This step involved
setting two thresholds empirically, which we did after reviewing a sample of PAM results:
First, if there is a pair of patterns such that one fully contains the other (e.g., P1 and
P3 above), we remove the sub-pattern (P3) unless the number of occurrences is more than
50% different from its super-pattern’s, to avoid reporting multiple small variations of one
boilerplate candidate. For example, if there is a sequence [a, b, c] which occurred 100
times among the client code files and another sequence [a, b] occurred 120 times, we keep
[a, b, c] and ignore [a, b] because a, b, and c are mostly used all together. However
if [a, b] occurred 500 times, we do not ignore it because it is likely that there are other
uses not involving c. Second, to avoid reporting rare and project-specific boilerplate code
candidates, we also ignore patterns that occurred in less than 5% of client code methods
for a given API.

Limitations

The returned API usage patterns are sequences of API calls, without any structural infor-
mation. This ensures that the returned patterns are robust to variations in local context,
e.g., conditionals, loops, exception handling, etc., which is desirable when the goal is mining
generic API usage examples. However, this is at odds with our third boilerplate require-
ment that the call sequence should appear in similar form without significant variation.

Another limitation of PAM for boilerplate mining is that the order of API calls matters.
When a boilerplate instance involves multiple API calls that can be used in any order,
such as getHeight() and getWidth(), PAM would consider [getHeight(), getWidth()]
and [getWidth(), getHeight()] to be different sequences, and the “interestingness” of
this API usage would be lower than it should be.

Finally, PAM was originally designed to capture the usage patterns of a single library,
whereas API usage patterns or boilerplate can have multiple libraries involved.

We address these limitations in the following steps, by also considering the context
around the “interesting” API call sequences.

4.3.2 AST Extraction
To decide whether an “interesting” API usage pattern involves boilerplate, we should also
consider the (structural) context around the API calls. For example, if other methods (e.g.,
built-in language APIs) are always used around or between the target API calls, or if the
sequence of target API calls is always used inside a certain loop construct, we should also
consider this context as part of the candidate boilerplate instance. Therefore, to determine
this context, given a list of API usage patterns and a list of client code files containing
instances of those patterns [(P1, F1), (P2, F2), . . . , (Pn, Fn)], respectively, for each Pi we

48

extract and post-process the ASTs of the files in Fi. Moreover, since we are only interested
in code that occurs in local areas (Property 3 above), i.e., the areas around the target API
calls, we restrict this analysis to individual methods and split the file-level ASTs (which
correspond to entire classes) into method-level subtrees.

Still, the method-level AST subtrees may contain nodes unrelated to target API calls
and the candidate boilerplate pattern. To narrow down the relevant parts of the method-
level AST subtrees S, we use a simple slicing heuristic: we extract the smallest sub-subtrees
of each subtree S, which completely encompass the target API call pattern. For example,
given an AST of the client code in Listing 4.1 (Figure 4.2) and an API usage pattern P =
[javax.xml.transform.dom.DOMSource.<init>, javax.xml.transform.stream.StreamResu-
lt.<init>], we extract the first common ancestor of the DOMSource and StreamResult nodes,
i.e., the subtree rooted at Method Invocation.

For patterns with a single API call, the smallest subtree is the same as the API call, which
means we do not acquire further contextual information. Therefore, we modify the smallest
subtree heuristic for these patterns, and find the smallest if/loop/try subtree containing the
API call. However, this heuristic may not always extract a smaller subtree than the entire method
(e.g., if no if/loop/try is used in the method). Based on the third property that statements
constituting boilerplate code are closely located near each other, we applied another heuristic:
when the subtree has over 20 method invocations, trim the sub-subtrees that are far from the
sub-subtrees containing the API calls. We chose the threshold 20 informed by the examples
collected from the qualitative study in section 4.2.

If an API call of a pattern occurred multiple times in a client file, there might be multiple
potential subtrees. In this case, we use the smallest one, following Property 3: the further the
calls are apart, the less probable it is that they form a single pattern. In the case that the full
smallest pattern occurs multiple times in a client code file, we keep multiple subtrees.

4.3.3 Graph Partitioning
As the third step in our approach, we check Property 4: whether the API call sequence is used
consistently in similar contexts (i.e., structures) throughout the client code.

To capture this property, we devise an approach to 1) compute the similarity between all pairs
of subtrees containing the API call sequence contexts; and 2) cluster together similar subtrees.
Intuitively, if there are many clusters with low similarity, this indicates that there are many
different ways a sequence of API calls is being used at the code level, suggesting that the pattern
is less likely to be a part of boilerplate, as per Property 4. In contrast, if there is a cluster having
a number of subtrees, and the similarity between them is high, the cluster (i.e., specific use case)
can be a boilerplate candidate.

Pairwise Similarity
Given a list of subtrees for each client file in Fi containing a same API pattern P , we compare
every pair of subtree lists from ⟨fi, fj⟩ in Fi, and calculate the similarity between them. We use
AP-TED (All Path Tree Edit Distance) [192] as our distance/inverse similarity measure, since it
is memory efficient and fast. Other tree differencing algorithms such as GumTree [69] could be
applied as well.

To calculate the AP-TED, we visit each subtree in pre-order, collecting the types of each node
(e.g., MethodDeclaration or IfStatement). To avoid noise from lexical details, such as variable

49

�	������� ��� ����������� ���

��������� ��������������������

����������������

���������������

����������������

���������������

���	�����
������ ������������

!

�����������������

! ���� ������! !

��������������������

Figure 4.2: A part of the AST for the code in Listing 4.1 and the extracted subtree (colored)
for the API usage pattern [DOMSource.<init>, StreamResult.<init>] using our slicing
heuristic.

names, we only collect nodes for: loops (e.g., ForStatement), error handling (e.g., TryStatement),
conditions (e.g., IfStatement), casts, and method invocation types. For the MethodInvocation
nodes, we also collect the names (e.g., newInstance) to compare different API calls used in the
boilerplate candidate. To overcome PAM’s limitation that it only considers the usage patterns
of one target API, we also collect the names of method invocations that are not from the target
API. By doing this, even though PAM is not able to capture external API calls as part of a
sequence, our approach can still use them to calculate the similarity, and the external calls will
be seen in the boilerplate candidate if they frequently occur together with the target library’s
API calls. It also helps mitigate PAM’s other limitation—not capturing a set of API calls into a
usage pattern unless they occur in the same order.

To calculate the similarity using the tree edit distance, we invented TES, the Tree Edit
Similarity. When s is a list of subtrees in f , each of which encompass the target API, given two
lists of subtrees ⟨s1, s2⟩ for ⟨f1, f2⟩, we define TES as:

TES(s1, s2) = max

(
1

eAP_TED(s1i,s2j)·0.1

)
(4.1)

In the case that the client code file uses the pattern multiple times so there are multiple subtrees
for si, we calculate the distance between every pair of subtrees, and use the maximum value for
the next step.

Clustering
With these pairwise similarity values, we build a weighted graph for each pattern, in which nodes
ni are client code files, and edges ni → nj are weighted by TES(ni, nj). We then cluster the
nodes in this graph, to capture the different contexts (structures) in which an API call sequence
is being used. As the similarity values between client code files are computed based on the
ASTs, boilerplate candidates that are structurally similar would likely be clustered together. On
the other hand, even if the same API calls are used in two client files, if their structures are
significantly different, or external API calls around the pattern are significantly different (which
the edge weight captures), they would likely be clustered separately. Therefore, after graph
partitioning, the clusters would indicate structurally-different usage patterns given a sequence of
target API calls.

For clustering we use the Louvain community detection algorithm [33], a heuristic method
based on modularity optimization: Given a weighted graph of n nodes, Louvain first assigns a

50

different cluster to each node. Then, for each node ni, Louvain calculates the gain in modularity
by removing ni from its cluster and placing it into its neighboring nj’s cluster. If the gain is
positive, and maximum among the gains from other neighbor nodes, the algorithm removes ni’s
cluster, and merges ni into nj . The process repeats and is applied until there is no further
improvement in modularity. Secondly, Louvain adjusts the weights of the edges. The weights of
the edges between the new clusters are the sum of the weights of the edges between nodes in the
corresponding two clusters. The algorithm keeps iterating the first phase, merging clusters, and
second phase, adjusting weights, until a fixed point.

We applied this technique for three main reasons: (i) unlike most other graph clustering
algorithms for which the number of clusters should be given as input, Louvain determines it as
part of the algorithm; (ii) its computation time is short; (iii) it was originally designed for large
networks (e.g., 118 million nodes [33]), hence we expect it to scale up well.

Additional Filtering
The clustering algorithm does not guarantee that within a cluster the client code instances of
the API usage pattern are all highly similar among each other, i.e., that they all represent the
same boilerplate candidate instance. To further prune spurious clusters which may increase
noise in the results, we require that the average pairwise within cluster similarity is greater
than a threshold. Empirically, we observed that patterns involving many API calls would have
more variance in the subtrees and thus the similarity would be lower than short usage patterns,
even though qualitatively they would appear similar; therefore, when the pattern is longer, the
similarity threshold should be lower. We set this threshold for average TES (Equation 4.1) to be
1/e2(x+1)·0.1, where x is the number of API calls in the sequence. For example, when a usage
pattern contains only one API call, the threshold is 1/e(2·1+2)·0.1 = 0.67, i.e., we discard clusters
with average within-cluster similarity below 0.67.

4.3.4 Viewer
Since boilerplate code has the subjective properties discussed in section 4.2 that cannot be auto-
matically tested, manual review of the candidates is necessary. To help API designers efficiently
review them, we implemented a viewer for the boilerplate candidates. Based on the intuition that
more verbose boilerplate candidates should be reviewed first by API designers, MARBLE’s viewer
ranks all the boilerplate candidates by their length, and for each one, displays usage examples
from three representative client code files from different GitHub projects.

4.4 Evaluation
In this section, we evaluate the accuracy and potential usefulness of our mining algorithm, by
answering:

• RQ4.4 (Validation): How well does MARBLE identify known boilerplate examples?

• RQ4.5 (Precision): How many of the boilerplate candidates found by MARBLE would
human experts agree with?

• RQ4.6 (Practicality): Does MARBLE return a reasonably short list of boilerplate candi-
dates for manual review?

51

Table
4.1:

Sum
m
ary

statistics
on

the
num

ber
ofcandidate

boilerplate
instances

for
the

A
PIs

in
our

dataset.

A
PI

A
PI

Patterns
Boilerplate
C
andidates

Found
K
now

n
Boilerplate

Precision
C
lient
Files

C
lient

w
/
BP

Avg.
Len.

android.app.ProgressDialog
134

12
True

0.92
641

296
5.96

android.database.sqlite
508

7
True

0.57
796

96
7.49

android.support.v4.app.ActivityCompat
26

5
True

0.60
486

93
8.01

android.view.View
940

11
True

0.36
1,051

100
9.16

com.squareup.picasso
79

0
False

-
565

-
-

java.beans.PropertyChangeSupport
32

8
True

0.38
604

48
6.04

java.beans.PropertyChangeEvent
32

5
True 7

0.00
749

-
-

java.io.BufferedReader
39

3
True

0.67
998

343
3.52

java.sql.DriverManager
30

0
False

-
744

-
-

javax.swing.JFrame
185

0
False

-
791

-
-

javax.swing.SwingUtilities
71

2
False

0.50
800

14
6.64

javax.xml.parsers
196

3
True

1.00
893

39
11.23

javax.xml.transform
325

3
True

0.67
871

45
9.2

Total
2,597

59
0.69

0.56
9,989

1,074
6.06

1
D
uring

the
evaluation,we

cam
e
to

the
conclusion

thatthe
know

n
boilerplate

instance
for

java.beans.PropertyChangeEvent
from

Stack
O
verflow

is
not

a
strong

boilerplate
code.

T
herefore,even

though
M
A
R
BLE

m
ined

the
sim

ilar
pattern

from
the

client
code

(Found
K
now

n
Boilerplate:

True),none
ofthe

candidates
from

this
library

is
labeled

as
boilerplate

code
(Precision:

0.00).

52

• RQ4.7 (Usefulness): Does MARBLE identify informative boilerplate candidates that could
help review an API?

RQ4.4 is to test whether MARBLE finds the 13 boilerplate examples corresponding to 13
Java APIs we collected from the literature, survey, and Stack Overflow in Section 4.2.

RQ4.5 evaluates MARBLE’s false positive rate. Quality assurance tools, such as defect pre-
diction [119] or static analysis [110], should generate few false warnings to be usable in practice.

RQ4.6 evaluates MARBLE’s practicality. Reviewing boilerplate candidates and investigating
potential usability issues require manual effort from the API designers, as labelling something as
boilerplate is ultimately a judgement call. On the same set of 13 APIs for which we collected
13 known boilerplate examples, we evaluate whether MARBLE returns a sufficiently short list of
candidates in the right order, so that it may be usable in practice. Specifically, we test to what
extent our filtering steps involving AST comparison and graph partitioning (discussed above)will
help to substantially reduce and rank the list of candidates for manual review compared to the
baseline PAM [77].

RQ4.7 is to qualitatively evaluate MARBLE’s usefulness. Two researchers manually reviewed
all the mined boilerplate candidates for the same 13 APIs, and analyzed to what extent the
candidates signal places where the APIs might be improved.

4.4.1 Experimental Setup
Dataset
To collect API client code, we identified and cloned the top 10,000 most starred Java repositories
from GitHub, using the March 2018 version of GHTorrent [87], excluding forks and repositories
marked as deleted. We then mined the Java source files importing the APIs, by matching import
statements (e.g.,import javax.xml.transform). For APIs with more than 800 client code files,
to reduce the runtime of our experiments, we sampled files randomly, ensuring 95% confidence
level and 3% margin of error. Table 4.1 gives an overview of our dataset.

Each row in the table is a separate API on which we ran MARBLE, one API per each
of the 13 known boilerplate examples. The “API Patterns” column shows the number of API
usage patterns returned by just running PAM, and the “Boilerplate Candidates” column shows
the number of boilerplate candidates that MARBLE identifies. The “Found Known Boilerplate”
column shows whether MARBLE found the known examples. The “Precision” column shows the
percentage of boilerplate candidates that the two researchers labeled as actual boilerplate among
the number of the candidates that our approach retrieved for each API. The “Client Files” column
shows the number of client code files that were used for boilerplate mining. The “Files w/ BP”
column shows the number of client code files that involve at least one boilerplate instance. The
“Avg. Len.” column shows the average length of the boilerplate candidates. The precision on the
“Total” row is the micro-average precision; that is, the average precision after aggregating the
data of all libraries.

Implementation Details
For the API usage pattern mining part (Section 4.3.1),we adjusted the output generation part of
PAM’s public implementation [155], without modifying the core algorithm. We ran PAM using
default parameter settings: 10,000 iterations with a priority queue size limit of 100,000 candidates.

53

For the AST comparison (Section 4.3.2), we wrote a Java program to parse and traverse ASTs,
and extract subtrees with our heuristics. To compare the subtrees, we used the apted library [57],
but customized the cost model to weigh insertion, deletion, and rename operation equally. For the
graph partitioning (Section 4.3.3), we wrote a Python program to build a graph, preform graph
partitioning using the NetworkX package [244], and filter spurious clusters using our heuristics.
The final boilerplate candidate viewer generator for the API designers is implement in Python,
and generates a html page for each API.

4.4.2 Results and Discussion
RQ 4.4 (Validation): How well does MARBLE identify known boilerplate ex-
amples?
We ran MARBLE on all 13 APIs represented in the discovered boilerplate examples (Table 4.1),
and manually compared the returned candidates to the known examples. Among the 13 known
boilerplate examples, MARBLE could identify 9 (69%).

Three out of four false negatives were not caught by MARBLE because they incorporate a
variety of real-code (i.e., non-boilerplate code) inside them, like invokeLater in javax.SwingUt-
ilities. Although the boilerplate wrapping the real-code was repetitive and the same for every
usage, the non-boilerplate part varied widely among the client code files, which lowered the
similarity between the client code AST subtress containing this pattern. This could be improved
in the future by applying program analysis to more accurately slice the API-call-related and
unrelated parts of the code.

Another false negative was a builder pattern, which MARBLE did not identify because client
code files used different combinations of setter calls. A Stack Overflow user [260] complained
about this because the same builder was needed multiple times within the project, which does
not necessarily mean that other programmers use it in the same way in other projects. Since
MARBLE’s goal is more general, to inform API designers about potential boilerplate in a wide
range of client code, this example was not exactly in scope. However, MARBLE could be extended
to also identify these within-project boilerplate examples if API designers feel the need, by adding
the within-project pattern frequency to the algorithm.

We conclude that MARBLE is valid.

RQ 4.5 (Precision): How many of the boilerplate candidates found by MARBLE
would human experts agree with?
MARBLE returned 59 boilerplate candidates overall for the 13 APIs in our sample (table 4.1). To
compute MARBLE’s precision, two researchers labelled each candidate as potentially boilerplate
or not. We first separately labelled all of the candidates (77% inter-rater agreement), then dis-
cussed disagreements until reaching consensus, finally updating the labels. The main criteria for
the boilerplate designation were whether it potentially reduces the API usability, and whether it
could be further abstracted.

As a limitation, note that we labelled some candidates as false positives even though they
resemble boilerplate (verbose and seemingly abstractable), because we could not confirm that
these could significantly lower the API usability without looking at the number of occurrences
within a single file or a single project, which goes beyond the scope of this work. As discussed
above, we designed MARBLE to identify boilerplate candidates across a large number of client

54

1 i f (ActivityCompat . shouldShowRequestPermissionRationale (this ,
2 Manifest . permission .READ_EXTERNAL_STORAGE)) {
3 } else {
4 ActivityCompat . requestPermissions (this ,
5 new String [] { Manifest . permission .READ_EXTERNAL_STORAGE} ,
6 MY_PERMISSIONS_REQUEST_READ_EXTERNAL_STORAGE) ;
7 }

Listing 4.2: Boilerplate code instance of Android ActivityCompat client codes.

code files / projects to help API designers focus on boilerplate that might affect more users.
However, while we were reviewing the candidates, we found that within-project boilerplate might
also impact API usability. For example, as a programmer, it could be annoying if three lines of
an API sequence need to be duplicated across many methods within a project, even though those
three lines might be rarely used in other projects.

Overall, MARBLE’s precision is 56%: the two annotators agreed that 33 out of 59 candidates
could be considered boilerplate. We conclude that MARBLE has acceptable precision.

RQ 4.6 (Practicality): Does MARBLE return a reasonably short list of boiler-
plate candidates for manual review?

Comparing the MARBLE results to PAM’s, the API sequence miner our approach is built on
(section 4.3.1), we observe that MARBLE significantly reduces the number of resulting instances
by applying further filtering on the PAM output using AST comparison and graph partitioning.
The reduction is from a mean of 200 usage patterns per API with PAM down to a mean of 4.5
boilerplate candidates with MARBLE (median down from 79 to 3); the largest reduction is for
android.view.View), from 940 down to 11 (Table 4.1).

We also measured the time it takes to label the boilerplate candidates, to roughly estimate
the time needed for a designer’s manual review. One researcher, who is an expert API designer,
took less than 3 minutes per boilerplate candidate, and when I did it, it took around 5 minutes
per candidate. Since we did not have enough experience with some of the APIs, it took more
time to read the documentations and use cases. However, for API designers, we believe that it
would take less time to review the boilerplate candidates, and find potential usability issues.

We conclude that MARBLE returns a sufficiently short list of candidates for manual review
to be feasible.

RQ 4.7 (Usefulness): Does MARBLE identify informative boilerplate candidates
that could help a designer review an API?

We manually reviewed all 59 boilerplate candidates identified (full list available online [173]),
looking for causes and potential improvements.

Given the space constraints, we discuss only three boilerplate candidates returned by MAR-
BLE.

Android ActivityCompat. Listing 4.2 shows potential boilerplate involving Android’s Ac-
tivityCompat, with two API calls: ActivityCompat.shouldShowRequestPermissionRationale
and ActivityCompat.requestPermissions.

55

1 @Override
2 public void onUpgrade (SQLiteDatabase db , int oldVersion , int currentVersion) {
3 Log .w(TAG, ”Upgrading_test_database_from_version_” +
4 oldVersion + ”_to_” + currentVersion +
5 ” ,␣which_will_destroy_all_old_data”) ;
6 db . execSQL (”DROP_TABLE_IF_EXISTS_data”) ;
7 onCreate (db) ;
8 }

Listing 4.3: Boilerplate code instance of Android Database SQLite client codes.

This boilerplate is to ask for a certain permission from a user, but also provides an explanation
if the user has already denied the permission request from this app. shouldShowRequestPermissi-
onRationale returns true if the user has previously denied the request, but did not select the
“Don’t ask again” option in the permission request dialog; or false if the app has never asked a
permission, a device policy prohibits it, or the user has selected the option.

MARBLE identified that out of 486 files importing ActivityCompat, this pattern is used in
the same format in 36.

One potential redesign for better usability in this case is to abstract this into the API by
adding a simpler method which handles permission checking and request rationale internally: if
the permission is not granted, it checks if the permission request has been already denied or not,
requests the permission with or without explanation, and sends the results to the client.

However, we hypothesize that there could be a design rationale behind the current design,
e.g., possibly to improve the privacy of the users of Android applications. Although our proposed
abstraction could help new Android developers get started with the API, lead to less code, and be
less error prone in these common cases, this could also give an impression that providing rationale
on permission requests to the Android application users is not critical.

We argue that this trade off is only valid when users understand the API designer’s rationale,
or at least that the rationale actually plays out as expected. If most users just copy and paste this
boilerplate code without much thought, this design decision could reduce API usability without
any benefits. Therefore, alerting API designers to situations where their design decisions result
in boilerplate may help them review to what extent their design rationale is valid.

Android Database SQLite is an open-source relational database library in Android. Listing 4.3
shows a boilerplate code instance to upgrade a database by dropping tables and creating a new
one, which requires using SQLiteDatabase.execSQL and SQLiteOpenHelper.onCreate.

Although OnUpgrade was intended to provide flexibility for users, MARBLE found that 40
client code files out of 68 overrode it in the same way, similar to Listing 4.3, by dropping tables
using execSQL and creating new ones with onCreate. To mitigate this boilerplate, as discussed in
section 4.2, API designers could make the common usage, such as logging the update, dropping the
table, and recreating the database with a new version, as the default functionality of onUpgrade.
This would allow users to write less code in general, and also give them some flexibility if needed.

Another way to reduce this type of boilerplate is to use annotation libraries (e.g., the Spring
framework [36], or Object Relational Mapping libraries), which offer an object-oriented interface
to the relational database. Annotations and ORM tools reduce the need for simple CRUD (Create,
Read, Update, and Delete) boilerplate, and many libraries have adopted them (e.g., Neo4j-OGM).
In fact, while reviewing the client code using this boilerplate, we observed that 10 of the client
code files have adopted GreenDAO [40], which is an ORM tool for Android. The fact that many

56

1 i f (videoControlsView != null) {
2 this . seekBar = (SeekBar) this . videoControlsView . findViewById (R. id . vcv_seekbar) ;
3 this . imgfu l l screen = (ImageButton) this . videoControlsView . findViewById (R. id . vcv_img_fullscreen) ;
4 this . imgplay = (ImageButton) this . videoControlsView . findViewById (R. id . vcv_img_play) ;
5 this . textTotal = (TextView) this . videoControlsView . findViewById (R. id . vcv_txt_total) ;
6 this . textElapsed = (TextView) this . videoControlsView . findViewById (R. id . vcv_txt_elapsed) ;
7 }

Listing 4.4: Boilerplate code instance of Android View client codes.

clients adopt a certain helper function or a tool can be a signal for API designers to update their
API similarly, or recommend these tools to their clients for better usability. This boilerplate
also shows that seeing the common patterns of use, and whether they could be abstracted by an
annotation framework, might be useful for the helper library designers as well, in understanding
the needs of users, and developing a new library.

Android View. Notably, as the APIs we used for evaluation are popular and actively main-
tained, in some cases we could actually find the improvements that had already been made by the
API designers. The boilerplate candidate was still detectable in our dataset because the clients
had yet to upgrade to the newer version of the API.

Listing 4.4 shows a classic boilerplate code for Android View. These 5 lines of code are to find
the views from the XML layout resource file with the given IDs. The pattern consists of multiple
uses of one API call: android.view.View.findViewById. We could observe that 217 files out
of 518 files use this method at least three times in a row. It is already verbose since developers
need to call this method multiple times, but even worse because null checking and typecasting
are also needed.

A straightforward way to reduce this verboseness is to make the return type of findViewById
to a generic T, to eliminate the need for manual typecasting. In fact, Android changed the
method’s definition from View findViewById(int id) to T findViewById (int id) starting
with Android 8.0 [86]. This shows that 1)API designers care about the boilerplate code instances
which reduce the API usability, and 2) informing API designers about the boilerplate candidates
can actually lead to usability improvements.

Like the previous boilerplate candidate, another way to reduce this type of boilerplate is to use
annotation libraries. There are several libraries providing annotation supports for this boilerplate
(e.g.,@BindView of ButterKnife [266]), by helping users easily map the view ID declared in an
XML layout file with the Java variable.

4.4.3 Threats to Validity
Our approach may be biased by the small number of APIs we tested it on. However, the boilerplate
examples cover various domains and design patterns, and we believe that the properties we
identified will generalize.

Note also that we only used 13 externally-known boilerplate examples to extract boilerplate
properties and as a validation set to empirically choose the different thresholds involved. Still,
MARBLE was able to discover many previously unreported boilerplate examples, which reduces
the threat of overfitting.

We only evaluated our algorithm with popular Java APIs which have hundreds to tens of
thousands of client files, but it is possible that the usefulness or performance of our algorithm

57

varies for other libraries, which are relatively new or less popular. Also, as we analyzed the
boilerplate instances with a single API designer and a Ph.D. student, others may disagree that
our tool identifies boilerplate that is worth looking at.

4.5 Summary
In this chapter, we devised MARBLE, a new boilerplate mining algorithm based on four properties
of boilerplate code that we identified from many sources (undesirable, high frequency, locality,
and limited structural variation). Through an evaluation with 13 Java APIs, we demonstrated
that it is feasible to automatically extract boilerplate code, which has been considered to be hard
to extract, with an approach designed with a thorough understanding of the characteristics of
the information.

58

Chapter 5

Information Support for
Programming with Unfamiliar
Libraries8

In this chapter, we conducted a study to assess the benefits of context-aware support through a
human study. As a first user context dimension to explore, we chose the task type, and designed
an information support tool for developers writing code using unfamiliar libraries. Among many
challenges in obtaining the necessary information for learning unfamiliar library, one key challenge
is: finding the appropriate API types and methods needed for a particular task (i.e., discover-
ability [63, 212, 239]). We observed that the traditional pull-based information support, where
users request information when they are aware of the API methods they need, is not effective
in addressing the discoverability issue. To address this, we proposed a push-based information
support approach that proactively presents information to developers within their workflow. Our
aim was to provide users with comparable API methods in their search engines, enabling them to
discover diverse ways to utilize an API and access relevant execution facts. We hypothesized that
such information will help developers not only discover more of an API, but also understand the
API better, such that they can make more informed decisions about which methods are applicable
to their task or which are preferable given alternatives.

However, comparable API methods are not often available in the reference documentation, so
extracting information on comparable API methods is challenging and not readily available on
demand. To tackle this challenge, we employed a learning-based information extraction approach
as our proposed solution for overcoming incomplete information. To evaluate its effectiveness, we
compared the performance of the learning-based information extraction approach with pattern-
matching-based and heuristic-based approaches.

5.1 Introduction
New libraries and frameworks constantly emerge, each with their own Application Programming
Interfaces (APIs), so developers must frequently learn new APIs to stay competitive. Indeed,

8This chapter is adapted from Nam et al. [177]

59

23

The argument to must be a
vector of class IDs (i.e. indices of columns in the matrix). This means
that it only works for single-class classification problems.

targets tf.nn.in_top_k(predictions, targets, k)
predictions

If your problem is a single-class problem, then I assume that your tensor is a
one-hot encoding of the true labels for your examples (for example because you
also pass them to an op like . In that
case, you have two options:

y_

tf.nn.softmax_cross_entropy_with_logits()

If the labels were originally stored as integer labels, pass them directly to
 without converting them to one-hot. (Also, consider using

 as your loss function,
because it may be more efficient.)

tf.nn.in_top_k()
tf.nn.sparse_softmax_cross_entropy_with_logits()

If the labels were originally stored in the one-hot format, you can convert them
to integers using :tf.argmax()

labels = tf.argmax(y_,)
topFiver = tf.nn.in_top_k(y, labels,)

1
5

Figure 5.1: Fragment from a Stack Overflow answer by mrry / CC BY-
SA 3.0 illustrating the tacit crowd knowledge on comparable API methods soft-
max_cross_entropy_with_logits and sparse_softmax_cross_entropy_with_logits. We
highlighted the sentences supporting the comparison.

researchers have concluded that “being able to learn new technical skills is likely more important
[to a software engineer] than any individual technical skills” [137].

Learning a new API requires many types of knowledge [245] and there are many documented
challenges to obtaining these [212]. Among them, two key challenges are: finding the appropriate
API types and methods needed for a particular task (i.e., discoverability [63, 212, 239]), and
identifying all the relevant information about their execution behavior, usage patterns, side effects,
alternatives, and many others [146, 174, 180, 209, 281].

Lacking such knowledge can affect developers in at least two important ways. First, by its
very nature [227], software engineering work involves careful consideration of design alternatives
and often tradeoffs between competing objectives. This happens at all levels, including when
choosing, within a given library or framework, the most appropriate API types and methods to
use while balancing complexity, runtime performance, memory consumption, but also readability,
understandability, amount of boilerplate involved, etc., as there are typically multiple ways to
implement the same functionality [158]. Thus, one can expect that the harder it is for developers
to access the relevant information to make informed decisions, the less appropriate their choices
would be. Second, although modern APIs are often large and sophisticated, many of their types
and methods are rarely used in practice, in part due to insufficient discoverability [100]. In
addition to affecting the aforementioned decisions, this can also slow down software developers,
and, in the long term, lead to missed opportunities for developers to take advantage of the most
effective technological solutions.

In acquiring API knowledge, developers tend to consult a variety of sources, as no single one
is typically complete. These include the official reference documentation [132], but also crowd-
based knowledge sharing websites like Stack Overflow (SO), which have long been recognized as

60

usefully complementary [104, 107, 142, 170, 190, 251]. In particular, Stack Overflow discussions
are a good source of knowledge on API method comparisons, which developers ask about quite
frequently [146]. Such comparisons can expose developers to more diverse ways to use an API,
thereby improving discoverability, and can also surface more relevant execution facts about the
API, thus improving learning and programming using the API. Yet, this information on com-
parable API methods is generally not easy to extract and not available on demand, despite its
value.

Sometimes, Stack Overflow discussions start with the author asking explicitly for a com-
parison between API methods, e.g., “What is the main difference between StringBuffer and
StringBuilder?” Prior research using natural language processing (NLP) techniques can identify
such posts with high accuracy when the language is well structured and amenable to detection
using syntactic patterns [146, 148, 264]. However, comparisons between API methods on Stack
Overflow are also often tacit—they arise organically as part of answers, without the original
poster asking for them explicitly, and the relevant sentences for the comparison are not clearly
identifiable or even grouped together, but rather can be scattered throughout a post. Consider
the example in Figure 5.1, where the author of the answer offers relevant information about
the relationship between two methods from the popular machine learning TensorFlow API, soft-
max_cross_entropy_with_logits and sparse_softmax_cross_entropy_with_logits, unprompted
by the question. It is sometimes difficult even for humans to recognize that the answer compares
the two methods, and then to extract the most relevant sentences informing the comparison (in-
deed, we ourselves had difficulty with this; see Section 5.2). Therefore, it is clearly challenging
to design a pattern-matching-based classifier to do the same, since in addition to recognizing
which answers include such API method comparisons, one would also need to extract and encode
generalizable syntactic patterns for training.

Instead, we show that (semi-)supervised, deep-learning based methods developed in the NLP
knowledge extraction community [181] can learn to recognize API method comparisons directly
from labeled data, bypassing the need to manually identify elaborate syntactic patterns. Moreover,
we show that such models can be trained efficiently, with reasonable effort for data labeling, thus
taking the next step towards the goal of automatically extracting knowledge from unstructured
Stack Overflow posts.

Our work consists of three main parts. First, we develop an annotation protocol and use
it to compile a dataset of 266 pairs of comparable API methods identified in a statistically
representative sample of Stack Overflow answer posts discussing the TensorFlow API. As part of
our annotation effort, we also label the sentences within a post that are most relevant in support
of the comparison.

Second, we design and run a human subjects study with 16 participants complet-
ing a series of tasks in two experimental conditions, viz., with and without access to a
custom-built browser plugin that augments the TensorFlow API reference documentation with
the information on comparable API methods from our labeled dataset. We analyze both quan-
titative and qualitative data from the human study, showing, among other things, the extent to
which having access to such information can help with understanding the API design space given
task requirements, and what requirements participants have for such a tool.

Third, informed by our annotation effort and human subjects study, we develop and evaluate
SOREL (Stack Overflow RELation extractor), a deep-learning-based knowledge extraction
engine. SOREL identifies pairs of comparable API methods and explanations of their relation-
ship from unseen Stack Overflow answers by learning and extrapolating from our hand-annotated

61

Table 5.1: Summary statistics for our annotated data.

Variable Count
Annotated SO TensorFlow answers 587
SO TensorFlow answers with comparable API methods 198
Identified comparable TensorFlow API pairs 266
Unique TensorFlow methods mentioned in the annotated answers 642
Unique TensorFlow methods with comparable API methods 279
Sentences in the answers 4,298
Supporting sentences for the comparable API methods 737

dataset. Our evaluation results show that SOREL outperforms baselines and pattern-matching-
based approaches, and even the recent off-the-shelf large language model, and can discover rel-
evant novel facts compared to the training data, the official documentation, and simple Google
search. As such, the SOREL approach, which could be applied analogously to other APIs beside
TensorFlow as long as they are covered by sufficiently many Stack Overflow discussions, can be
useful to API designers and tool builders looking to improve API documentation and learning.

5.2 A Benchmark of Comparable API Methods
Before we tested the benefits of providing comparable API methods and automate the extraction,
we first created a benchmark of pairs of comparable API methods from Stack Overflow, as such
dataset was necessary for both the user study and model training. In particular, we focused on
the popular TensorFlow machine learning package (45,996 questions; 33,460 answers with at 1+
votes). Table 5.1 lists basic statistics for our sample, after filtering out 13 of the 600 answers
(∼ 2%) that were longer than 512 words, i.e., more than our deep-learning model can handle
efficiently.9

Annotation Protocol. Next, we developed a labeling protocol to extract, for every Stack
Overflow answer in our sample, a) the pairs of comparable API methods mentioned in the an-
swer; b) for every pair, a list of the most relevant sentences from the answer, describing how the
methods are related. Creating such annotations is both time-consuming and difficult: relations
manifest in a diversity of ways and are often not explicit or well structured, but inconsistencies
in labeling risk wreaking havoc on any downstream learner when using so little data. To ensure
that our annotations were consistent, replicable, and generalizable, we created a detailed annota-
tion protocol, refined through several pilot phases. The final protocol contains annotation steps,
the definition of the relation, examples, and notes about edge cases. To increase validity, two
researchers annotated each set of documents separately, measured their inter-annotator agree-
ment (IAA), discussed disagreements, and updated the instructions. The IAA score for the first
round of separate annotations (23 documents) was 0.30, and it rose to 0.82 in the second round
(38 documents), after resolving disagreements and refining the protocol. As values over 0.8 are
generally regarded as good agreement, both by the free-response kappa proponents [41] and the
interpretation guideline for Cohen’ s kappa [123], we considered the instructions adequate at that
point. After this, I annotated the remaining documents alone following the final instructions.

9Only 3 of the 13 (0.5% of the entire 600 sample) contained comparable API methods.

62

Figure 5.2: Overview of our browser plugin: (1) When comparable API methods exists in
our labeled dataset, the extension inserts a “vs” icon. The user can hover over it to activate
the scrollable tooltip (5), which displays (2) the pair(s) of comparable API methods, each
with links to their reference pages; (3) the relevant sentences for the comparison; (4) a link
to the Stack Overflow answer where the sentences were extracted from.

Resulting Dataset. Table 5.1 summarizes basic statistics for the resulting dataset: the 198
answers with comparable API methods contained around three TensorFlow methods each; around
one tenth of all TensorFlow symbols were mentioned as part of any comparison; around one-third
of posts contained (typically several) related pairs, which are best described with about three
sentences on average.

5.3 Information Presentation
To test our hypothesis, we conducted an IRB-approved human subjects study to investigate how
providing developers with (1) a list of comparable API methods and (2) for each pair, a textual
description of the comparison can assist developers in using new APIs more effectively. We first
built a Chrome browser extension (Figure 5.2) that displays the information on comparable API
methods we collected during our previous annotation effort. We deliberately chose a tooltip
design to reduce information overload (tooltips only show contents when users trigger them),
and to make the crowd-based information easily distinguishable from the official documentation.
The tooltip is available on any webpage, including the official API documentation, Google search
result pages, and Stack Overflow. We then ran a study that involves participants completing a
set of tasks in two conditions, with and without access to the tooltip extension, and collected
both quantitative and qualitative data on task performance and tool use.

5.3.1 Study Design
Participants. After advertising our study broadly inside the university community (Slack chan-
nels, posted flyers in Computer Science buildings, and personal contacts), we recruited 12 par-
ticipants (6 men, 6 women) having a general understanding of machine learning (ML), who could
understand the task requirements (9 PhD and 3 MS students, all in ML-relevant fields). We re-
cruited additional 4 participants (all men, 1 research scientist, 1 ML lead, 2 MS students) from
outside our university after advertising our study on Twitter. To minimize the possibility of the

63

participants knowing solutions to our tasks without needing to search, we specifically looked for
participants who had not used TensorFlow for more than 6 months.
Tasks. We designed a diverse set of eight ML-related programming tasks that mimic real-
world TensorFlow use, ranging from tensor manipulation to image processing. For each task,
participants were given the requirements as a short natural language description, an example
input–output pair, and some starter code, and were asked to complete the implementation using
appropriate TensorFlow API methods. We intentionally designed the tasks to have more than
one acceptable solution (involving different TensorFlow API methods), so we could better test
the participants’ understanding of all possible options.
Experimental Design. We chose a within-subjects design, where each participant was assigned
four of the possible eight tasks (to keep the participation effort manageable), two with our browser
plugin enabled (treatment) and two with it disabled (control). We used the Youden square [98]
(incomplete Latin square) procedure to counterbalance the tasks and order in which they are
presented to participants, to prevent carryover effects. Control (plugin disabled) and treatment
(plugin enabled) were randomly assigned. Overall, each of the possible eight tasks was used four
times in the treatment condition and four times in the control condition.
Procedure. We conducted the study via a video conferencing tool, with each session taking
about 60 minutes. At the beginning of the study, we asked participants to install the browser
plugin, share their screen, and think aloud while completing the tasks. Before their first task in
the treatment condition, we introduced the plugin briefly and showed the participants a short
demo of how it worked. We also informed participants that there could be multiple solutions to
a task, and asked them to make deliberate choices. Participants were free to use or read any web
pages. To complete each task, we asked participants for their chosen API method names (but not
to run any code). We then asked a few interview questions to understand their prior knowledge
with the task and whether they understood the different options to make an informed decision,
i.e., to list the API methods they considered and briefly describe the differences between them.
At the end of the study we conducted a general interview eliciting participants’ impressions of
using the plugin and the usefulness of having the information on comparable API methods in
completing the tasks.

5.3.2 Analysis
Data Collection. For qualitative data, we transcribed the interview parts of the video record-
ings. For quantitative data, we computed six outcome variables: (1) task completion time (in
seconds); (2) number of search queries; (3) number of web pages visited; (4) correctness of
the participant’s solution; (5) the participant’s awareness of comparable API methods in that
context; and (6) their understanding of the differences between the comparable API methods.
To account for a possible confounding factor we also rated each participant’s prior knowledge
of the task based on the interview responses, on a scale ranging from 0 (has no experience) to 3
(recalls the method name without search).
Analysis. To compare the six outcomes between tasks completed in the treatment and con-
trol conditions we estimated six mixed-effects multivariate regression models (one per outcome
variables), with prior knowledge and the condition (treatment vs control) as fixed effects,
and random intercepts for task and participant to account for variation in task difficulty and
participant ability.

64

5.3.3 Results
None of our models for time, queries, or pages showed a statistically significant effect for
condition at α = 0.05. Thus, we could not find sufficient quantitative evidence to conclude
that having access to information on comparable API methods has a significant impact on task
completion times or web search queries. However, it is possible that our tasks were insufficiently
complex10 to uncover such differences between conditions with statistical confidence. We also
could not find statistical evidence that presenting comparable API methods assists developers in
selecting what we consider as the ideal API methods for a given task.

However, we did find clear evidence of increased awareness (coefficient = 3.03, z(59)= 3.18,
p = 0.0015) and increased understanding (coefficient = 2.64, z(64) = 2.77, p = 0.0057) of the
API methods in the treatment (tooltip) condition, supporting our hypothesis that presenting
comparable information helps developers understand the design space of API: the
odds of being aware of comparable API methods are about 20 times higher (exp(3.03)) among
participants with access to the tooltip information compared to those without; similarly, the
odds of understanding the differences between the comparable API methods are about 14 times
higher. Many participants typically discovered the API methods they ended up submitting as
their answers from among the comparable API methods suggested by the tooltip in the treatment
condition. Specifically, we found that in more than half of the tasks (17 participant-task pairs out
of 32), participants newly discovered the API methods they submitted as their answers, among
the comparable API methods suggested by the tool.

From the qualitative analysis, one common theme was also that the tooltip information on
comparable API methods was often novel and welcome. Almost all interviews appreciated
having the list of comparable API methods, both for discoverability reasons (e.g., “[otherwise]
it would have been pretty hard for me to have actually found the correct documentation.”–P16)
as well as usability reasons (e.g., “The tool allowed me to explore more methods more easily in
the same page without retyping the search keyword.”–P1). A few participants mentioned that
such a tool could help close the “lexical gap” between search queries and web documents, e.g.,
“Sometimes, I’m not-so-clear about what I’ m looking for” (P12).

5.4 Learning-based Information Extraction
In the previous section, we provided evidence for the benefit of knowledge extraction, and in
particular presenting comparable API methods, to support developers’ understanding of the API
design space. We also derived requirements for an ML model to help automate this knowledge
extraction process. In this section we present SOREL (Stack Overflow RELation extractor),
an ML model that collects comparable API methods and relevant supporting natural language
sentences from Stack Overflow answers.

To discover new facts, represented as triplets (entity 1, relation, entity 2) in unstructured
text, one typically follows a two-pronged knowledge extraction approach. First, Named Entity
Recognition (NER) is used to locate and classify entities. Relation Extraction (RE) then identifies
relations of various kinds (including “no relation”) between entity pairs.

In general, both problems are hard and the focus of active research in NLP, e.g., [105, 242].
In our work, since we are extracting only API method entities, we found that the NER step

10E.g., on average users made 1.3 (treatment) to 1.4 (control) web searches per task.

65

can be done accurately using pattern matching based on the full list of TensorFlow API sym-
bols,11 therefore we focused on the RE problem instead. In the RE step, we aim to identify the
comparative relation “is comparable to” in an input Stack Overflow answer with more than one
TensorFlow API call. To make the identified relations more useful, we also identify one or more
sentences from the same answer, that offer the evidence supporting each identified relation. This
provides a type of (extractive) summary for each relation. Therefore, our task is divided into two
sub-problems:

• Comparative-relation extraction (RE) between entities.

• Supporting-evidence prediction (SEP).

5.4.1 Model Architecture

BERT

BERT�
Embedding

Evidence�
Prediction

Relation�
Prediction

Sentence�Encoder

True

sent_0

I�would�suggest�to�use�tf.sigmoid()�in��…

tf.nn.softmax()�computes�probability�…

sent_1

⋮
<code></code>sent_2

tf.nn.softmax,�tf.sigmoid
Relation�
Candidate

Relation�Encoder

Sentence��
Embedding

Relation�Embedding

sent_0 Truetf.nn.softmax,�tf.sigmoid
sent_1
sent_2
⋮

True
False
⋮

Figure 5.3: The architecture of SOREL, which learns to infer the comparison relation and
the supporting evidence.

Figure 5.3 shows the architecture of our model, which is inspired by Yao et al.’s DocRED [276].
The model consists of four main components:12

BERT. We use a language representation model called BERT (Bidirectional Encoder Repre-
sentations from Transformers) [61] to represent Stack Overflow answers. Due to its bidirectional
nature, it provides deeper contextual information, which can help with document-level relation
extraction. We used the pre-trained BERT model and a tokenizer from the original BERT paper

11In 50 randomly selected answers tagged with TensorFlow, the pattern matching approach missed just
12 out of 133 mentions of TensorFlow methods, achieving 91% recall and 100% precision.

12For ablations of the model design, see Table 5.2.

66

provided via huggingface.1314 Due to the small amount of training data, we kept the BERT
model weights frozen during the training, fine-tuning just the classification layers – a common
approach when using small fine-tuning datasets [102, 103].

Relation Encoder generates representations for a pair of entities. Embeddings of the same en-
tity which occur multiple times are averaged across the document, to allow sharing their learned
representation across occurrences. The relation encoder combines two entities’ averaged BERT
embeddings using a bilinear function, which captures the mutual agreement between their re-
spective representations. Similar to Yao et al., we concatenated each entity representation with a
relative distance embedding before passing it to the bilinear function [276]. The relative distance
embedding represents the relative distances of the first mentions of each unique pair of entities
in the document, informing the model of how closely together the two are mentioned. See [276]
for details.

Sentence Encoder generates contextualized representations for each sentence in the input doc-
ument. We use a two-layer bidirectional LSTM (BiLSTM) model to represent each token in the
input document. BiLSTMs combine two LSTMs, one traversing the sequence forward and one
backwards, to allow integrating information from the context on both sides of each token. This
helps the model capture broader context around each sentence specifically for the sentence predic-
tion task. An alternative would be to fine-tune the underlying BERT model, but we found this to
be ineffective due to the small size of our training data (Table 5.2). A single-layer, low-dimensional
BiLSTM contains comparatively far fewer parameters to calibrate. To obtain a sentence embed-
ding, we use the BiLSTM’s output representation of the first token of sentence, which is the same
([cls]) token that BERT models use to extract sentence embeddings.

5.4.2 Model Training

As RE and SEP are highly connected tasks, we train SOREL RE and SEP objectives simultane-
ously, by combining the two losses: loss = α∗ re_loss+ sep_loss. We adjusted the hyperparam-
eter α experimentally so the two losses converge at a similar rate, as minimizing the sep_loss
involves more trainable parameters and thus typically takes more iterations.

We randomly split our annotated dataset from Section 5.2 into a training and test set in a
4:1 ratio. We tuned the model hyper-parameters through 5-fold cross validation on the training
portion (470 samples). In selecting hyper-parameters, when there are two settings with very
similar overall performance, we selected the one that yielded a lower RE loss, under the premise
that better comparable API methods extraction benefits a broader group of developers than
having a good summary of the differences (as evidenced in Section 5.3.3).

To maximize the utility of our limited training data, we trained with a relatively low learning
rate (1e-5) and frequently checked the held-out results to ensure that we captured the best per-
forming model. We also added input dropout, which randomly omits 40% of tokens from the input
at training time [237]. This has the effect of preventing the model from overfitting on known
inputs by artificially creating many versions of the same inputs, a form of data augmentation.

67

Table 5.2: Overall performance on each subtask, and ablations (on test set) of the model
components and of the training set size (%).

RE SEP
A P R F1 A P R F1

Train 93.7 85.6 76.6 83.7 80.0 73.2 65.5 71.5
Val 89.3 64.3 89.6 67.9 76.2 65.9 61.6 64.7
Test 84.5 71.3 55.0 67.3 77.6 75.5 47.8 67.6

SOREL 84.5 71.3 55.0 67.3 77.6 75.5 47.8 67.6
- BERT 80.1 56.5 59.3 57.0 61.8 39.7 29.8 37.2

- BiLSTM 83.5 67.2 55.7 64.6 70.4 58.4 36.7 52.2
+ Finetune 80.9 58.6 58.6 58.6 69.8 57.3 34.0 50.4

All data (470) 84.5 71.3 55.0 67.3 77.6 75.5 47.8 67.6
2/3rd (315) 85.8 77.6 54.3 71.4 75.8 64.9 58.4 63.5
1/3rd (155) 84.5 73.0 52.1 67.6 73.9 81.1 27.6 58.5
1/10th (45) 78.8 53.3 64.3 55.2 65.9 45.9 17.9 35.0

5.4.3 Evaluations with Test Data and Ablations

We now evaluate how well SOREL can extract knowledge on comparable API methods from Stack
Overflow answers, focusing first on the test subset of our manually annotated data. Table 5.2
summarizes the train / (average) validation / test performance scores and ablations of the model
components and the training set size. The final model achieves around 67% F1 score and around
80% accuracy on both tasks (RE and SEP) on the test set, which is a reasonable return given the
small amount of training data.

Training custom word embedding instead of using BERT drops performance significantly on
both RE and SEP. This confirms the benefit of adopting a large pre-trained language model
when only a little training data is available. Not using a BiLSTM for SEP also reduced the
performance significantly, which shows that SEP relies on this component to capture the global
context beyond the initial representations offered by BERT. An alternative option, fine-tuning
BERT along with our other parameters, decreased performance, as we might expect given the
small size of the dataset.

Models show fairly steady gains in performance as we train on a progressively larger subset of
the training data, starting from just 45 samples. While RE performance fairly quickly saturates,
SEP performance progressively improves with more data. Still, we are content that a corpus of
our size is right around the smallest size (and thus requires the least annotator overhead) where
our model performance is adequately capable of generalizing, achieving balanced F1 results for
RE and SEP, and accuracy around 80% on each.

13https://huggingface.co/bert-base-uncased
14We also considered BertOverflow [242], which was pre-trained with a Stack Overflow corpus, but found

the original BERT to work better.

68

Table 5.3: Recall comparison with Google Autocomplete, Google’s Top-5 results, Tensor-
Flow documentation, heuristics, DiffTech [264], and APIComp [148]), ChatGPT [2] on
test set (%) after excluding deprecated API methods.

SOREL Auto Top-5 Doc Heur. DiffTech APIComp ChatGPT
RE 55.3 28.0 18.2 29.2 30.3 33.3 16.7 51.51
SEP 55.2 - - - 48.1 5.7 26.4 -

5.4.4 Comparison with Baselines and Prior Work
For the relation extraction (RE) sub-task, we compare SOREL with: (1) general-purpose web
search; (2) the TensorFlow reference documentation; (3) a simple heuristic approach; (4) an adap-
tation of the most closely related prior work approach, DiffTech [264], which can identify pairs
of similar technologies (e.g., golang and javascript for programming language) from Stack Over-
flow, a task which is conceptually similar to ours, albeit at a higher level of abstraction; and
(5) ChatGPT [2]. See Table 5.3 for a summary of the results.

[RE] SOREL vs Google Search

Developers commonly find information on comparable API methods using a generic search engine.
Given a pair of fully-qualified comparable API methods (A, B) in our test set, we enter the Google
search query “A” and record whether B is mentioned anywhere within the top-5 Google search
result landing pages; we then repeat the search in reverse, starting from “B”. The recall measure
we report for Google Search for the pair (A, B) is the average of the two. In addition, we
separately inspect the Google search autocomplete suggestions for the query prefixes “A” and “A
vs” (similarly “B” and “B vs”) and check for the presence of B (A) among the suggestions. SOREL
identified roughly twice as many relations as Google search in both cases.

[RE] SOREL vs Reference Documentation

Similarly, given a pair (A, B)we inspect the API reference documentation page for A and record
whether it contains a link to B and vice versa, excluding all pairs involving a deprecated API call,
which have no documentation page. Again, SOREL identified roughly twice as many relations as
were mentioned in the official documentation.

[RE] SOREL vs Heuristic

Next, we compare SOREL to a simple, intuitive heuristic: if a Stack Overflow answer mentions
exactly two API methods, consider those two to be comparable and record the pair. Across the
66 ground truth comparable pairs in test set, there are 52 answers with exactly two API methods
mentioned, so one could hope to extract 52 comparable pairs. However, many of these pairs were
not actually comparable (only 20 pairs were), so this simple heuristic is quite noisy, corresponding
to 30.30% recall and 38.46% precision. Recall the example in Figure 5.1 – comparable pairs are
often found within answers mentioning more than two API methods; the two API methods
mentioned in answers with exactly two methods are often not comparable.

69

[RE] SOREL vs Word2Vec

We compare SOREL to DiffTech [264], the prior work closest to ours. DiffTech collects pairs of
similar technologies (e.g., libraries, frameworks, programming languages) based on the intuition
that frequently co-occurring Stack Overflow tags corresponding to different technologies may
share a similar meaning. Specifically, DiffTech embeds tags with a Word2Vec [162] model trained
on a corpus of tag sentences, and identifies pairs of tags as related when their embeddings have
a cosine similarity greater than 0.4. While the DiffTech approach is designed to solve a different
problem, the intuition carries over to our context: API methods may frequently co-occur with
others they are comparable with, even though they rarely have dedicated tags. Therefore, we
trained a Word2Vec model using API methods from our entire corpus of 33,460 TensorFlow
answers and tested how many of the labeled comparable pairs in our test set have embeddings
more than 0.4 cosine-similar. Only 16 (24%) of the comparable API method pairs in our labeled
test set were among each other’s top-5 nearest neighbors, and 22 (33%) were among the top-20,
highlighting that our adaptation of the approach struggles to match comparable API calls based
on co-occurrence statistics alone.

[RE] SOREL vs ChatGPT

We also compare with ChatGPT [2], a large language model that is trained to generate a text
response given a prompt. Given a pair of fully-qualified comparable API methods (A, B) in our
test set, we generated a ChatGPT response using a prompt template, “In Tensorflow, what are
the comparable methods for A” and recorded whether B is mentioned in the response; we then
repeat it in reverse, using “B” in the prompt template. The recall measure we report for ChatGPT
for the pair (A, B) is the average of the two. Despite the significant model size difference, SOREL
achieved slightly better recall compared to ChatGPT, showing the benefits and potentials of
designing and training intelligent solutions with a good understanding of the problem.

Next, we turn to the Supporting-evidence prediction (SEP) sub-task and compare SOREL to:
(5) a heuristic approach; and (6) two approaches based on linguistic patterns, inspired by related
prior work [148, 264].

[SEP] SOREL vs Heuristic

Intuitively, one might expect that given a pair of comparable API methods (A, B), all the sentences
mentioning either A or B can be considered as supporting evidence. We test this heuristic for the
true positive pairs from the RE step, for a fair comparison. In this limited setting, assuming the
RE step is perfectly accurate, the heuristic approach performs quite well (Table 5.3), but SOREL
nevertheless manages to improve over it.

[SEP] SOREL vs Pattern Matching

Pattern-matching-based approaches have been used before to extract information from online
documentation, with the two closest predecessors arguably being the DiffTech [264] approach
discussed above for RE and APIComp [148]. A fundamental difference between SOREL and
such approaches is where human effort is spent during the “training” process. SOREL requires
human annotation effort to label API pairs and supporting sentences as valid / relevant or not.
Pattern-matching-based approaches require human effort to identify the linguistic patterns needed

70

to extract relevant sentences from text. Fundamentally, SOREL’s type of effort can be expected
to scale more easily to new APIs and sources of documentation, because it requires less expertise
in NLP. Hence, we argue that designing a pattern-matching-based approach for our task from
scratch may not be preferable. Still, one can ask a pragmatic question – what if the predefined
linguistic patterns from DiffTech [264] and APIComp [148] generalize well enough to extracting
supporting evidence for comparable API methods from Stack Overflow without any additional
effort? We investigate this next.

For DiffTech [264], the authors identified and validated a series of linguistic patterns based
on sequences of part-of-speech tags (e.g., “RBR (comparative adverb) JJ (adjective) IN (preposi-
tion)” as in “more efficient than”) for extracting supporting sentences for the identified pairs of
comparable technologies. Testing these same patterns on the answers in our sample containing
22 pairs identified by the previous RE step, we find that out of 70 sentences in 16 answers that
were labeled as supporting evidence, only 4 sentences matched DiffTech’s exact patterns (5%).

APIComp [148] is designed for a different usage scenario – to explain, given a pair of API
methods, not necessarily “comparable” per our definition, the relationship between them using
text extracted from reference documentation. APIComp first extracts sentences describing an
API element from official reference documentation using linguistic patterns, and then aligns and
compares the extracted sentences given an API knowledge graph. To test whether the same
linguistic patterns carry over to our task, we applied the APIComp patterns to extract API
statements from Stack Overflow answers in our test set, finding that only 33 out of 125 known
supporting evidence sentences were matched (26.4%), identifying only 11 comparable API pairs
out of 66 available (17%).

We conclude that pattern-matching-based approaches, that were commonly used for similar
tasks in the past, are not directly applicable to our task, and that anyway it may not be preferable
to design a custom pattern-matching-based approach for relevant sentence extraction for our
comparable API methods task. Recall is typically low because relations can be expressed in a
variety of ways, hard to capture with reliable patterns, and pattern building typically requires
significant amounts of manual effort.

5.4.5 Generalization to Larger Dataset
We next turn to our most ambitious target: assessing how well our model can generalize and
rank insights from all 33,460 up-voted answers tagged with TensorFlow. After filtering out posts
containing fewer than 2 Tensorflow symbols, 2,014 documents remained. Using our model, we
identify 433 pairs of comparable API methods with 744 supporting evidence sentences. We report
two such new (not included in our training data) relations in Table 5.4, as an example.

We manually reviewed the top 50 answers as sorted by the descending probability of both the
relation and the supporting evidence sentences (according to the model’s predictions, multiplied
together). As many unique pairs of API methods were discovered in multiple Stack Overflow
answers, we focused on relations detected twice or more, which we expect are more likely to be
both accurate as well as relevant to developers. To compute the accuracy for RE on these, we
follow the same guidelines as in Section 5.2, marking relations correct when the relation between
the two entities was factual and explicitly represented in the answer. Similarly, for SEP, we
labeled samples correct when the predicted sentences explain the relation sufficiently without
missing sentences. Note that SEP is dependent on the results of the RE, the model cannot

71

Table 5.4: A sample of new comparable API methods pairs and their supporting evidence
extracted from Stack Overflow.

API Pair tf.convert_to_tensor, tf.constant
Evidence [SO Answer: 50981199] Each time a tensorflow operation expects

a Tensor input but receives something else, it tries to convert it
with tf.convert_to_tensor, and if successful, proceeds normally
with that output. In case of a constant like 2, but also np.arrays,
lists, tuples, or virtually any container or (well-formed) hierarchy
of containers, tf.convert_to_tensor will create a Const operation,
just like the one you would create by hand by calling tf.constant.
tf.constant is nonetheless useful because it allows you, among other
things, to name your constant in the graph and to control its data
type (with name and dtype arguments respectively).

API Pair tf.nn.embedding_lookup, tf.gather
Evidence [SO Answer: 46440226] If params is a single tensor, the

tf.nn.embedding_lookup(params,ids) operation treats ids as the
indices of rows in params. If params is a list of tensors or a parti-
tioned variable, then ids still correspond to rows in those tensors,
but the partition_strategy (either "div" or "mod") determines
how the ids map to a particular row. Alternatively, you can use the
axis argument to tf.gather() to select columns from U:

predict a correct supporting evidence sentence for a “faulty” relation or “no relation”. Therefore,
we only considered correct RE predictions when computing scores for SEP.

On these 50 relations extracted from top-scoring answers, the RE precision is 50% and SEP
average accuracy is 77%.15 Importantly, 90% of these correct relations were novel—not present
in the training data. These results highlight that despite training on a small amount of data, a
model like ours can show its strength when deployed on a very large corpus, where facts abound
and high recall may be less important.

5.4.6 Error Analysis
Next we describe the patterns we observed in the mistakes the model makes. One common
type of mistake was false positives due to lack of explicit topic change. Unlike API reference
documentation pages, Stack Overflow posts often cover multiple topics in a short document.
Therefore, the model sometimes failed to recognize the abrupt topic change and predicted a
relation assuming that two entities were discussed in the same context. This error might be
mitigated by preserving the original delineation of paragraphs and code blocks in the input data,
though low textual consistency is a fundamental issue with Stack Overflow posts [146, 258].

Another common type of false positive is answers describing sequential use of API methods,
such as ones explaining a code snippet line by line. As many of the labeled comparable API

15As there is no label for this data, we cannot compute other metrics for RE. For SEP, we averaged the
accuracies of each answer.

72

methods were described in sequence, the model often made wrong predictions in this case. This
confusion is rather reasonable; when annotating the data, we occasionally found it challenging to
determine whether methods in a pair were explicitly compared or simply mentioned in sequence.

Finally, code in text was a general issue for both RE and SEP. Although we filtered out
code snippets, many answers contain code intermixed with their text. Our model may fail to
capture such code’s context and meaning, which results in some false-positive API method pairs
predicted as having a relation whenever they are simply used together.

5.4.7 Threats to Validity
A threat to the external validity of our results is that we only used TensorFlow answers to build
and evaluate our model. Therefore, our model might not generalize to other ML libraries such
as PyTorch, or other domains such as Cloud or Graphics. While we do not expect other libraries
and domains (with sufficient programmer interest) to have particularly less informative Stack
Overflow answers, it remains a subject of future work to adapt our protocol to such use-cases.

We did not compare our model with state-of-the-art document-level relation extraction models
built for general corpora such as Wikipedia [93, 243]. While we adopt a similar methodology,
our corpus is both much smaller, less structured, and more domain-specific than the general
Wikipedia corpus. We believe omitting such a comparison is reasonable as our goal was to
explore and demonstrate the feasibility of exploiting Stack Overflow’s relational insights using
machine learning. As such, we do not claim that our model presents the best performance for
this problem.

5.5 Discussion
We showed that providing extracted comparable API methods can help developers understand
the design space of APIs. We further built SOREL, which using relatively little labeled data
can jointly extract relations and supporting evidence from new Stack Overflow answers. Next we
present implications of our work for practitioners and researchers in this area.

ML-based Knowledge Extraction To our knowledge, this is the first application of
learning-based relation extraction, as well as supporting evidence prediction, on Stack Over-
flow data. The state-of-the-art knowledge extraction techniques we use make our pipeline a good
fit for extracting structured knowledge from an environment as unstructured and diverse as Stack
Overflow. A next step may be to annotate a corpus spanning multiple libraries, such as Pandas
and PyTorch, following our protocol. Besides enabling SOREL for new libraries, this might also
benefit performance overall: developers likely use similar patterns when comparing and contrast-
ing terms from APIs, which could be useful to a model even when targeting just one API. Our
results in Table 5.2 suggest prediction accuracy can yet improve with more data.

Reference Documentation In the control condition (tooltips disabled) in our study, dis-
coverability issues emerged due to a lack of “functional links” in the API documentation, that
could only occasionally be retrieved via Google search, or had similar enough method names to
be located nearby in the method navigation bar. However, when the reference documentation
includes an explicit note about functionally-related methods, participants were able to discover

73

them quite easily (see Section 5.3.3). Our detected comparable API methods could thus be espe-
cially useful for API documentation writers, to improve API discoverability. While automatically
identified relations require the API to be popular enough on Stack Overflow and may include false
positives or outdated pairs [74, 281], those well-versed in the API can identify correct relations
in a list of extracted relations with little effort. This can quickly yield dozens of new functional
links to boost API discoverability.

API Knowledge Support Tools We believe it is worth developing other types of API
knowledge acquisition tools like our prototype. One finding from our study that we believe might
generalize is related to differences in problem solving and information foraging strategies between
groups of users (we saw this especially around participant reactions to the summary sentences),
which have also been noted previously [49, 100, 159]. This suggests that when designing knowledge
support tools for developers, allowing users to configure the types and depth of information
presented to them (e.g., whether to provide the summary) could be useful.

Another factor to consider is where the tool will be deployed. From the study, we found
that the usefulness of our tool was highly dependent on Google search results, as most users
activated the tooltip while on the Google search page. Some participants also suggested utilizing
search queries so that they do not see methods that are less relevant to their tasks from the
list (see Section 5.3.3 for details). We believe that similar constraints (or benefits) will exist for
other platforms (e.g., IDE), and thus, how users will consume the presented knowledge should be
considered when designing the tool.

5.6 Summary
From the user study, we provide evidence that showing comparable API methods and summaries
about their difference can improve developers’ understanding of the API design space, and help
them select API methods by taking into account the differences between alternative solutions.
This supports my claim that information presentation considering the user context, push-based
support instead of pull-based, can enhance developers’ information collection for learning.

We further showed that a learning-based model can reasonably accurately extract such knowl-
edge from unstructured Stack Overflow answers: our model identifies comparable API methods
with a precision of 71% and summaries for these with 75% precision. Compared with existing
pattern-matching-based approaches, SOREL outperformed, showing the benefit of using learning-
based approaches.

74

Chapter 6

Testing the Feasibility of
Generation-based Information
Support16

After testing the effectiveness of learning-based approaches, we tested the feasibility of generating
information so that we can provide information support that is more suited to the user’s needs.
We focused on the same task context as the previous work, where a user needs to write code using
unfamiliar libraries. We aimed to provide a sequence of API methods that will fulfill developers’
needs, to help them quickly write code given input and output pairs. In this work, we used a
pair of input and output values as a way to specify the user’s needs and provided a sequence of
API methods that can fulfill the needs. By building a language model that predicts a sequence
of API methods, we focused on investigating whether a generation-based approach can be useful
in providing information support for programmers learning new APIs.

6.1 Introduction
One of the cherished dreams of the programming languages research community is to enable
the automated synthesis of programs based on a specification. Synthesis approaches have been
designed around several different forms of specification, e.g. a formal specification, or natural
language description, or input-output examples (aka demonstration), or a combination thereof.
Just as well, several different approaches to synthesis have been researched; see Related Work.

Our focus is on coding assistance for users of numeric libraries such as PyTorch, Tensorflow,
Numpy, Pandas, and the like, each of which provide powerful data manipulation routines behind
an API, and the API functions are generally side-effect free. We assume a specification in the
form of a single input-output example, and we are looking for a straight-line program consisting
of calls to API functions. We choose enumerative synthesis (explained in the next subsection)
as the underlying synthesis approach. Our research goal—shared with recent works such as
DeepCoder [24], TF-Coder [229], Autopandas [28], and others—is to speed up plain enumerative
synthesis using machine learning (ML).

16This chapter is adapted from Nam et al. [175]

75

(a) (b)
(d)(c)

transpose(stack((in,in),0),0,1)
transpose(stack((in,in),1),0,1)

Values

in, 0, 1, -1, 3, 2

1st Function
FOS(in1, out)

stack((_,_),_)

transpose(stack((in,in),2),_,_)

×
transpose(stack((in,in),2),0,1)

1st Interm Vals

stack((in,in),0)
stack((in,in),1)
stack((in,in),2)

×

transpose(in,0,1)
⋮

stack((in,in),2)
⋮

transpose(transpose  
(in,0,1),0,1)

⋮ ×

API Functions
(Prioritized with

Classification Model)

24*0.5
36*0.5

24
24

transpose
stack
eq
max
⋮

50|transpose(stack((in,in),2),0,1)

in, 0, 1, -1, 3, 24

24
⋮
30
⋮
44

⋮

Values

in, 0, 1, -1, 3, 2

API Sequence
Full(in1, out)

transpose(stack((_,_),_),_,_)

transpose(stack((in,in),0),0,1)
transpose(stack((in,in),1),0,1)

×

transpose(stack((in,in),2),0,1)

Values

API Functions
eq
max  
transpose
stack
⋮

24
24
24
36

eq(in,0)
eq(in,1)

⋮
transpose(in,0,1)

⋮
stack((in,in),1)
stack((in,in),2)

⋮
eq(in,eq(in,0)

⋮
transpose(eq(in,0),0,1)

⋮

in, 0, 1, -1, 3, 2

×

80|transpose(stack((in,in),2),0,1)

32
32
⋮
36
⋮
48
48
⋮
60
⋮
64
⋮

4

Values
B
A
S
E

E
X
P
L
O
R
E
D

B
A
S
E

E
X
P
L
O
R
E
D

2nd Function
FOS(1st_Interm_val, out)

Figure 6.1: Overview of ML guided enumerative search algorithms. (a) Weighted enumer-
ative synthesis without ML model incorporation [229], (b)weighted enumerative synthesis
with one-time ML-based prioritization [24, 229], (c) incorporation of Full-Seq prediction
mode, (d) incorporation of First-Of-Seq prediction mode. Red-highlight indicates the API
functions predicted by ML models. The underscore is a placeholder for argument values.
Numbers (in (a),(b)) on the left side are the costs assigned to the values and API functions.

Here is an input matrix as well as the desired output matrix, and the synthesis problem is to
come up with a sequence of function calls that would convert the input to output. We will use
the PyTorch API for this purpose.

in = [[5., 2.], [1., 3.], [0., -1.]]
out = [[[5., 5.], [1., 1.], [0., 0.]],

[[2., 2.], [3., 3.], [-1., -1.]]]
The desired code fragment for this example is:

transpose(stack((in, in), 2), 0, 1)
The goal of program synthesis is to arrive at this expression, given only the input and output.

Keep in mind that it is unlikely that random guessing of an expression will work: there are tens
if not hundreds of available functions, and each function might take more than one argument.
Thus, a systematic search is necessary.

Basic enumerative synthesis Refer to Figure 6.1, part (a),where we illustrate an enumera-
tive synthesis in the style of Transit [259] and TF-Coder [229]. The idea is to organize the search
in the order of increasingly complex expression trees, where the complexity is approximated by
a cost. We assign a cost to each available value, and to each operation, which here are API
functions. (The cost of a function is assigned heuristically, e.g. based on a global frequency of
usage.) At each step, we work with a budget, which grows in successive steps. Expressions that
can be formed from existing values within the budget are added to a pool of values. For instance,

76

the expression stack((in,in),2) would cost the two times the cost of in plus the costs of the
value 2 and the function stack. In the figure, this cost comes to 48, based on the cost of stack
being 36. The value computed by this expression is added to the pool of values, along with the
expression that computes them and its cost. The process continues, with increasing budget at
each step, until the desired output value is found. The expressions added to the pool of values
are shown in the figure.

Trying likely functions first The enumerative search presented above is slow, and gets
exponentially slower if a larger expression is needed to get the job done. A reason for this slowness
is that the turn of the actually needed API function might come in quite late, as enumerative
synthesis makes its way through the smaller cost budget and cheaper functions. Balog et al [24],
in their seminal work DeepCoder, described a machine learning based strategy to accelerate
enumerative program synthesis. DeepCoder’s insight is to re-assign costs to functions—based
on a machine learning model over the given input and output—such that the function(s) more
likely to be needed in a given situation are prioritized. See part (b) of Figure 6.1. Here, given the
specific input and output, DeepCoder’s machine learning model, adapted to our setting, correctly
deems transpose, and stack as likely to be needed. Operationally, an enumerative synthesis
process (e.g. as implemented in TF-Coder [229]) can lower costs of these operations by some
factor, so they are likely to be tried in preference to other API functions. The hope is that if
the ML prediction is accurate, and the discounted costs work out, the process of enumerative
synthesis can be sped up considerably.

Predicting function sequences Our thesis is that ML can be used in the setting of enu-
merative synthesis of API-centric code in a more powerful way: not for prioritization, but instead
to directly predict the sequence of API functions that required to go from input(s) to the de-
sired output. We describe two ways in which such a predictive model can be used to accelerate
enumerative synthesis.

The first way in which we use this prediction model is to just let it predict the entire sequence
of API functions in one shot, given the input and the output. In our running example, the model
will predict stack, transpose as the sequence. See Figure 6.1, part (c). Given this sequence, the
enumerative synthesizer will only look for values to fill into the function call arguments (shown
by ”_”). If the model predicts correctly, the search space that an enumerative synthesizer faces
is vastly reduced, leading to possibly significant speedups.

A second way in which we use this predictive model is to use it as a “first-of-sequence” (FOS)
predictor. See Figure 6.1, part (d). Given the input and the desired output, the FOS predictor
only predicts the first function in the sequence needed. Say it predicts that function is stack.
The synthesizer tries out a set of concrete arguments for stack from the values pool. The result
of evaluating stack on each of these sets of arguments is added to the values pool; these are
intermediate values in the desired computation. Next, for each intermediate value thus obtained,
the synthesizer invokes the model again, this time giving it the intermediate value (in place of
the input) and the desired output value. Say the model now predicts that the first function in the
remaining sequence needed is transpose. The synthesizer then looks for appropriate arguments
for transpose. At this point, one of the argument choices would provide the desired output.
Compared to the full prediction, the point of this FOS mode is that it gets to predict on the basis
on known intermediate values, a bit akin to teacher forcing [267] in sequence prediction, and can

77

Table 6.1: Sample of synthesized programs with Full-Seq model guided enumerative syn-
thesis and the synthesis time comparison. More examples can be found in the Appendix B.

Synthesized Program Full-Seq (s) no ML (s)
eq(in1,unsqueeze(in1,1)) 0.18 0.8

tensordot(in1,transpose(in2,0,1),1) 0.32 2.06

be successful more often than the full prediction mode; but it can be less efficient than one-shot
prediction of the entire sequence.

On the running example, here are the comparative times to a successful solution: plain
enumerative synthesis, 54.79 seconds; DeepCoder-style ML-based prioritization, 34.71 seconds;
our API sequence prediction, FOS mode, 0.49 seconds; and API sequence prediction, Full mode,
1.45 seconds. In this example, the full sequence prediction mode took a tad longer than the FOS
mode: this is because the correct full sequence was in top-3 but not top-1, whereas in the FOS
model, the correct choice was at top-1. In general, we have found the full sequence mode to be
faster than the FOS mode. Other examples of Full-Seq guided synthesis are available in Table 6.1.

Contributions We make two contributions in this work. First, we present a way to incorpo-
rate powerful predictive models in the context of enumerative program synthesis. On a suite of
benchmarks (adapted from Stack Overflow) for PyTorch, using our ML models reduces the (mean,
max) synthesis time from (10.01, 96.53) to (1.04, 9.58). By contrast, an adaptation of the idea of
DeepCoder [24] reduces the (mean,max) synthesis time only to (7.44, 77.00). (See Section 6.6.3,
Table 6.4.)

Second, our main technical advancement is in being able to carry out prediction of a sequence
of API functions, given the input and the final desired output. Specifically, our model predicts one
API function at a time and executes each predicted API function to convert the (intermediate)
input state into another intermediate state until it becomes the target output state. Here, the
intermediate states are not given to the model, but the model learns to represent what would be
concrete intermediate values in the latent space during the training time. The ability to execute
the API functions in the latent space indicates that the model learns the API function semantics
(i.e., the relation between the input and output states) rather than the sequence distribution of
the training dataset, and allows the model to generalize to unseen sequences or lengths. See
Section 6.7.

6.2 Backgrounds
Program Synthesis has a rich literature, including example driven LISP code generation [94,
226], deductive synthesis from decades ago [154], sketch completion using satisfiability [236], bit-
vector manipulations [109], string processing [90, 189], data processing [235, 274], syntax trans-
formations [216], database queries [273], data wrangling [71, 72, 129], and the highly successful
programming-by-examples system FlashFill [90]. FlashFill uses enumerative synthesis, where a
space of programs is explored in some order, until one that fulfills a requirement—typically one
or more examples—is found. Transit [259] is another well-known work in enumerative synthe-
sis, where the exploration is arranged in terms of finding sub-expressions in order of their costs.
Increasingly more costly expressions are attempted, using expressions previously computed.

78

ML for Program Synthesis. With advances in ML, researchers tried to adopt ML on top
of the enumerative search for more efficient program synthesis [24, 28, 183, 186, 229]. Our work
is closely related to DeepCoder [24], TF-Coder [229] and BUSTLE [186]. Using a prediction-
guided enumerative synthesizer, they show the benefits of predicting API functions that are
needed somewhere given a synthesis instance. However, they all use an explicit featurization
over these input-output values, which is not easy to generalize to other programming languages.
Also, they only predict the presence or absence of API functions, the prediction was only used to
prioritize operations in the enumerative search, rather than directly predicting the API function(s)
in sequence. With the ML model guiding the search, BUSTLE takes an approach similar to ours,
which gives feedback to search iteratively, whereas the models of DeepCoder or TF-Coder only
give feedback in the beginning of the search. However, BUSTLE and DeepCoder only support
simple DSL tasks, which may not be generalized for real-world API-based synthesis.

Neural Program Synthesis. Approaches like [15, 25, 38, 60, 189, 189, 279] directly use neu-
ral networks for end-to-end synthesis [25, 38, 60, 189] to generate string transformation programs
from examples. These works generally use the encoder-decoder model. In particular, the encoder
embeds the input/output strings, and the decoder generates the program sequences conditioned
on the input embedding. However, these approaches are mostly built and evaluated with simple
DSL tasks, mostly with simple string transformation. In this work, we worked on the real-world
tensor manipulation library PyTorch. Although our evaluation does not cover the full range of
PyTorch, we found several challenges in expanding this work into more complex programs, such
as the scalability issue in training data generation and diversity of the API parameters especially
in the tensor domain.

Execution-guided Program Synthesis. Recent works have tried to exploit program ex-
ecution to learn better representations for the neural program synthesis [38, 45, 46, 68, 184, 231].
Some of the approaches [38, 231] use program interpreters to provide the actual intermediate ex-
ecution results, and a more recent approach [46] learns the latent representation to approximate
the execution of partial programs using a separate “Latent Executor”. We also learn the represen-
tation of the execution of partial programs and demonstrate that (see Section 6.4). However, we
capture the intermediate execution results as part of the main recurrent model, without needing
to use the separate module to approximate or execute the program.

6.3 Learning to predict API sequences
Our technique works based on supervised learning over a large number of input and output
examples, trained over individual API functions, or on sequences of API functions. Since the
availability of real training data is a pervasive problem in ML, we use synthetic data generation
similar to prior program synthesis work [232]. We pipe randomly generated diverse inputs through
sequences of API functions and collect resulting outputs (see Section 6.4.4). This helps capture
the behavior of a single or a sequence of API functions in terms of how it transforms its input to
the output.

Once trained, the model is able to predict a sequence of API functions. It can predict for
input-output pairs that were never seen in the training data; thus it generalizes in the data
space as long as the query input-output pairs are in distribution. More interestingly, it can
predict sequences of API functions that were not seen in the training set either. This latter
point is crucial, because the way we train the model, it learns to compose new, previously unseen
sequences from the behaviors learned from training sequences.

79

Figure 6.2: Visualization of embedding space of input-output pairs.

Before we present operational details (Section 6.4 onwards), we would like to present some
intuitions behind our proposed ideas. We start with a basic classification model designed to pre-
dict one API function, given an input and desired output; and then build over it a compositional
model that is designed to predict a sequence of API functions. The importance of examining
the classification model on its own was crucial in our own journey, because it helped overcome
several challenges in synthetic data generation for training. (In actual synthesis application, we
use the model that predicts function sequences, described after this.)

Predicting a function from input-output data The first intuition we use is that for
many common API functions, their behavior—the relationship of output to inputs—has simple
patterns. Moreover, the behavior of a function is discriminable from behaviors of other functions
based on simple clues. Many functions simply move around elements of a data structure (e.g.
transpose or reverse) in easy-to-recognize patterns. In other cases, the operation is a simple
element-wise computation.17 This suggests that a feed-forward neural network can be trained to
predict likely functions—as in a multi-classification problem—from a representation of the input
and output data. Such a network would have to be trained on large amounts of input-output
examples and their known (ground truth) functions.

Figure 6.2 shows the tSNE plot for 5000 input-output pairs. The classification model was
trained over synthetic data generated to classify among one of 33 API calls from PyTorch. The
figure shows that the input-output pairs – or rather, their embeddings – map to visually distinct
clusters, corresponding to the function calls that would be needed to go from the input to the
output. The reason this clusters cleanly is that the network learns to pick up the essential patterns
that appear in the input and corresponding outputs.

17There do exist operations with more complex behaviors, but here we limit ourselves to simple ones
(see Appendix A.

80

Predicting sequences of functions The case of predicting an API sequence, such as stack
followed by transpose, is harder. The intermediate values that flow between API calls are not
known ahead of time, so it is not possible to reconstitute this sequence simply by invoking the
classification model (for one API method name) over successive pairs of inputs and outputs.
Moreover, learning to recognize the intended sequence from among all possible sequences, based
on an input and the final output, can be difficult, for reasons for computational cost, for a
classification model that predicts over a fixed collection of sequences of API function names.

This is where a second intuition comes into play. Given an input and a final output, we can
imagine a model that predicts the first function in the intended sequence of the API functions
that would process the input and eventually produce the (final) output. Crucially, we train this
model as a recurrent unit, such that it not only predicts the first API function needed, but
additionally produces a representation (in the embedding space) of the output of that first API
function. (The correspondence of the internal representations to intermediate values is further
explored in Section 6.7.) This representation, along with the final output, can then be passed to
a recurrent invocation of the model, to make it predict the next API function in the sequence. In
this way, we can train a compositional model for API sequences.

In our running example, the model first predicts stack based on in and out. Importantly, it
also computes an internal representation of the intermediate value stack((in,in),2). It then
predicts transpose based on this internal representation and out. This is the principle by which
the model is able to compose even longer previously unseen sequences.

Here we emphasize that the model is not predicting the next API token (e.g. transpose)
based on the tokens that came before (e.g. stack), as is done in code completion models [97]. At
each step, the prediction is based only on (an internal representation of) the program state, as
opposed to on program text. This is a new capability, which could optionally be combined with
additional signals such as previous tokens, if desired.

6.4 Technical Details
In this section, we explain our models, the training and the inference. We will use Figure 6.3 to
show details using an example.

6.4.1 Notations
We will work with the following entities:

• T for domain values, tensors or vectors (or lists thereof)

• E for embeddings, which are vector representations internal to a neural network

• D for distributions, which are probability distributions over names of API functions. For
d ∈ D, d(f) is the probability of function f .

We will use some auxiliary operators:

• embedding, denoted by J.K : encoding(T)→ E

• concatenation, denoted by .#. : T× T→ T

81

Figure 6.3: Illustration of Compositional Model on an example. The inputs are in the
Tensor Values box, and the expected prediction is shown in the Sequence box.

6.4.2 The encoding function
Before passing the input and output tensors to the models, we encode them into a fixed-length
vector (Figure 6.3-Encoding). We extract three different pieces of information from the tensors: (i)
tensor values, (ii) tensor shapes, and (iii) tensor types, and combine them as a sequence separated
by a special separator < s >, i.e., X = type <s> shape <s> value , such that, the models can learn
from all the three modalities together.

To manage the wide range of tensor values in the model, we normalize the values as follows:
we encoded the values greater than 100 into 100, values greater than 1000 into 101, and similarly
for the negative values. The intuition is based on how developers recognize patterns: when a
value becomes large enough, the importance of the least significant digit decreases in pattern
recognition.

Finally, all domain inputs and output encoding are concatenated together. We support up
to 3 inputs and one output. Dummy inputs are added when there are less than 3 inputs to keep
the model input size the same for all examples.

6.4.3 Compositional Model
We train a model to predict the sequence of API functions sf = [f1, ..., fn], given a task specifi-
cation ϕ = {inp, out}, where inp is a list of input tensors that have gone through the sequence of
API operations sf , and out is the final output tensor.

In this description, we assume all functions take two inputs: first, the result of the previous
computation, and second, a “local” input, e.g. inpi here that comes from inp. Define argsi =
(fi−1(argsi−1), inpi), for i > 1, and args1 = (_, inp1). We train a model G, such that for i = 1..n:

fi = G(Jargsi, outK) (6.1)

The embedding J.K of the encoded inputs is obtained using feed-forward networks (FFN),
whereas G is rendered by employing recurrent neural networks (RNNs)18. The operation of one
cell of an RNN has the type: RNN : E1 × E2 → (E3,D) where,

• E1 is the hidden state coming from the previous cell, or a zero value;

• E2 is the embedding of the local input and the final output; we permit each function to have
an optional additional input;

• E3 is the output hidden state being passed to the next cell;
18Technically, bi-directional RNNs [224].

82

• D is the prediction of API function from this cell; technically it is a distribution from which
we take the argmax.

Then,
hi, di = RNNi(hi−1, Jinpi#outK) (6.2)

where hi−1 and hi are incoming and outgoing hidden states, respectively, and di the predicted
distribution. We expect fi = argmax(di).

Figure 6.3 Compositional Model shows three units of the model for an example. In each
unit, the encoding passed to the feed-forward network is similar to the one used before to createJinpi#outK. When fi needs to use fi−1(argsi−1), we mask the position as empty (”<p>” in the
figure) so that the model exploits hi−1. Embedded encodings are passed to RNN units, and each
unit further projects the input embedding into the RNN embedding space to generate hi, using
information flowed from adjacent units, hi−1. Finally, the output of each unit is passed to a
softmax layer (not shown here) to produce a probability distribution over API functions.

6.4.4 Synthetic Data Generation
To train a neural model so that it can understand the behavior of API functions, a large number
of corresponding input-output pairs is necessary. Unlike other problems exploiting ML models,
collecting real-world data from code repositories (e.g., GitHub) is not applicable here because we
need runtime values, not static information such as static code. Therefore, we randomly generate
input/output values, and use the synthetic dataset for model training.

For each API function, we randomly generate input tensors, run the API functions with them,
and capture the corresponding outputs. In other words, we create a set of input/output values in a
black-box manner: we do not assume API functions’ implementation details or internal behaviors.
As it does not require understanding internal program structures, it is easy to generate a large
number of input-output pairs without much manual effort and can be easily parallelized.

However, as even a simple API operation in modern libraries (e.g., PyTorch) imposes many
constraints, inputting random values will generate many runtime errors due to the constraints
violations. To reduce such errors, we exploit API specification, and generate a set of inputs with
the valid combinations (see Listing 6.1 for an example of generating data points for torch.sum).
By excluding invalid combinations of arguments to each API function, we can speed up the data
generation and generate a large synthetic dataset that can capture API function input/output
benign behavior.

Listing 6.1: Example data generation code for torch.sum
def generate_sum_IO () :

in_tensor , t en so r_s i z e = random_tensor ()
dim = random_dimension (0 , t en so r_s i z e)
i f dim == len (t en so r_s i z e) :

out_tensor = torch .sum(in_tensor)
else :

out_tensor = torch .sum(in_tensor , dim)
return (in_tensor , out_tensor)

83

6.5 Incorporating ML in Enumerative Synthesis
Here we formally describe how the ML models were incorporated into the enumerative synthesis.
Please refer to Figure 6.1 and Section 6.1 for a walk-through of these on an example. A detailed
description of our implementation and the pseudo code for each synthesis approach can be found
in Appendix B.

Basic enumerative synthesis. As a baseline, we implement an enumerative synthesizer
without any ML models. Basic enumerative search starts with a set of base values and enumerates
over combinations of operations and the values.

The list of base values includes inp, other basic constants such as 0, 1, -1, or heuristically-
chosen values such as the dimensions of the given variables (e.g., 3). Then, starting with the
base values, the search enumerates ways of applying operations to previously-explored values and
expands the set of known values. There are various ways of iterating the operations and the values
(e.g. based on syntactic size as in Transit [259]), but we use weighted enumerative search, which
is the approach of TF-Coder [229]. It does so in the order of increasing cost. Operations and
values are assigned costs based on their complexity: less common and more complex operations
are assigned higher costs, and the common and simple operations are assigned lower costs. Costs
are additive, so common operations and simpler expressions are explored earlier. The costs are
manually set by the synthesizer developers, but only needed to be set once, and it will be used
for all tasks.

Prioritizing likely functions with an ML model. As the needed operations for a specific
problem are not known to the synthesizer ahead of time, the costs seeded in it will not always
be ideally suited for all problems. TF-Coder [229] and DeepCoder [24] address this problem
using an ML model to re-weigh all operations before the enumerative search starts. Given a
task specification (i.e., input/output examples), it invokes a multi-label classification model to
predict the probability of each needed operation and re-weighs them accordingly with the goal of
encountering the needed operations earlier in the search. We trained a multi-label classification
model following DeepCoder [24].

Compositional Model - Full-Sequence. In this mode, the compositional model predicts
a sequence of API functions sf = [f1, f2, ..., fn] given the final output out, and the inputs to
each API function [inp1, inp2, .., inpn]

19. The synthesizer invokes the compositional model with
the specification, predicts a sequence of operations, and searches only the parameter values (e.g.,
dimension) that were not provided in the specification.

The Full-Seq mode completely bypasses enumerative search over operations. Instead, the
compositional model predicts the API functions needed in a synthesis instance as well as the
order of those APIs in the synthesized code. Thus, the synthesizer does not need to search the
operation space, but only needs to search the combinations of base values.

Compositional Model - First-Of-Sequence. In the First-Of-Seq mode, given an input
and a final output, the compositional model predicts the most probable API function needs to
come in the sequence. As enumerative search keeps track of the intermediate output value, we
can iteratively invoke a compositional model, and compute the intermediate values using the
predicted API functions, which can be used to predict the next API function.

19As the program synthesis task specification only provides an order agnostic list of inputs, the synthe-
sizer needs to search through different combinations of them to generate a list of input tensors to each
API call to invoke the compositional model. In this section, we assume that the list of input tensors to
each API call is provided.

84

6.6 Evaluation
In this section, we first describe the training and evaluation dataset (Section 6.6.1), and eval-
uate the trained API function sequence prediction model (Section 6.6.2). Then, we investigate
the prediction-guided synthesis (Section 6.6.3). Finally, we show the generalizability and the
compositional property of our model (Section 6.6.4).

6.6.1 Dataset
Program synthesis benchmarks. We evaluated the effectiveness of our approaches with a
subset of TF-Coder’s SO benchmarks [229]. These benchmarks contain 50 tensor manipulation
examples collected from SO, each containing input and output tensor values and the desired
solutions in Tensorflow. To evaluate our approach that supports PyTorch, we first translated
them into PyTorch and excluded tasks that we could not translate by hand. Among the 33
API functions needed for the remaining 36 benchmarks, we selected 16 functions covering 18
benchmarks (Table 6.2-Stack Overflow) from the core utility that modifies values (e.g., add) or
shapes (e.g., transpose) of tensors, create them, or manipulate them in similar ways. These
operations were chosen because the model can clearly observe the behavior of each API function
solely from input and output pairs (i.e., no side effects). The full benchmarks we support are
available in Appendix B.

Table 6.2: Statistics of the dataset used in this study. Numbers in parentheses indicate
the length of the sequences.

Synthetic Dataset Stack Overflow
Train Valid. Test Test

of unique seqs (len) 16 (1) + 186 (2) 8 (1) + 7 (2)
of in/out values 5.5M 10K 10K 18

Synthetic data generation. To train our sequence prediction model that work for the SO
benchmarks, we synthesized a dataset as per Section 6.4.4. We synthesized 202 unique API
functions sequences by using the exhaustive combination of 16 API functions, with 1 or 2-length
sequences. From the 272 (16 + 16*16) possible sequences, 70 sequences were removed due to the
constraints.

For each API function sequence in the training dataset, say f1, f2, f3, we ran f1 with randomly
generated input and other parameter values (e.g., dimension, mode, etc.). Then, f2 takes f1’s
output as input and takes other random input tensors, if necessary. We treat f3 similarly by
propagating f2’s output.

To generate diverse and unbiased input-output pairs, we cover different properties of the
functions, such that the model can explore the broad data space of input-output pairs.

It took 1-person week to encode the API specifications to write valid data generation code
by reading the PyTorch documentation. To avoid expansion to large input values and to let the
model learn the patterns sufficiently, we used a fixed range of values (from 0 to 20) and the size
of tensors (up to 3 dimensions, and up to 5 elements in each dimension), to prevent the tensors
from being dispersed too much.

We created the dataset with 100,000 input-output pairs for each unique API sequence (Ta-
ble 6.2-Synthetic). We split the dataset into training, validation, and test sets. The training,

85

validation, and test sets included all 202 API sequences, but the input/output values were not
overlapped across the datasets.

6.6.2 Sequence Prediction Model
We trained both Full-Seq and First-Of-Seq variants using the training set of the synthetic data,
and evaluated it with (1) the test set of the synthetic data, and (2) SO benchmarks.

Table 6.3: Model accuracy for unseen input/output values.

Synthetic-Test Stack Overflow
Model Top-1 Top-1 Top-3

Full-Seq 79.36% 35.29% 76.47%
First-Of-Seq 66.88% 52.38% 76.19%

Observation. Table 6.3 shows the result. The model’s top-1 testing accuracies of the 10K
synthetic test set are ∼79%. Among 18 SO benchmarks, the Full-Seq model found 13 sequences
are in the top-3 (72.22%), and among them 6 are in the top-1 (33.33%). In comparison to the
Full-Seq model, the First-Of-Seq model’s top-1 accuracy is better. This is not surprising as
First-Of-Seq model has more information (actual values of the intermediate inputs) than the Full-
Seq variant. However, surprisingly, the top-3 accuracies of both are almost similar. These results
indicate that the compositional model perhaps learned a representation of the intermediate states
of the API operation sequence: even without passing the true intermediate values, the Full-Seq
model behaves at per with the Full-Seq model at top-3.

6.6.3 Prediction-guided enumerative synthesis
Using the trained Full-Seq and First-Of-Seq variants, we first evaluate our approach, against
vanilla enumerative synthesis (similar to [229]). We further compared with a multi-label predic-
tion model, a setting inspired by DeepCoder. [24]. Table 6.4 shows the results.

Existing synthesizers vs. compositional model. Among the 18 tasks, both vanilla
enumerative search and a synthesizer prioritized with a multi-label classification model could
synthesize all tasks. The new variants incorporating our models synthesized 17 (First-Of-Seq)
and 14 (Full-Seq) correctly, out of 18 and 17 respectively. However, although they synthesized
fewer solutions, they required less time to synthesize the solutions: 5.87 seconds (First-Of-Seq)

Table 6.4: End-to-end program synthesis results; our models in bold. Time, Max, and
Median show the average, max, and median synthesis time of found programs.

Time
Found Not Found Mean Max Median

Enumerative 18 0 10.01 96.53 0.46
Multi-label 18 0 7.44 77.00 0.32
First-Of-Seq 17 1 5.87 59.93 0.39
Full-Seq 14 4 1.04 9.58 0.25

86

Table 6.5: Model accuracy for unseen input/output values, trained with a dataset covering
all SO benchmarks.

Synthetic-Test Stack Overflow
Model Top-1 Top-1 Top-3

Full-Seq 88.15% 68.57% 91.42%
First-Of-Seq 65.44% 51.61% 79.03%

and 1.04 seconds (Full-Seq) on average, whereas the existing synthesizers took 10.01 and 7.44
respectively.

We see this speed up because predicting the sequence reduces the search space. As the
compositional models return a sequence of API functions, the enumerative search can focus on
the argument values instead of iterating over the API function sequences. Note that the multi-
label classification model also suggests potential API functions, but instead of function sequences,
it provides us with a set of functions. Thus, in the worst case, the associated enumerative search
has to explore all the possible combinations increasing the synthesis time.

The difference in synthesis time between the compositional models and the baselines is not
big in simple tasks (e.g., any(in,-1)), which is why the difference in median in Table 6.4 is
not significant enough. However, when it comes to more complex tasks like in Figure 6.1, the
difference becomes significant: 54.79 seconds with plain enumerative synthesis vs. 0.49 with
First-Of-Seq mode.

One caveat of compositional models is that the model prediction is not the bottom-up method
but a one-shot approach. Therefore, when the model fails to predict the sequence correctly, it
cannot synthesize the program. However, as the whole search can be done quickly, the time over-
head is not high even when one tries with the compositional model and employs other approaches
once it fails.

First-Of-Seq vs. Full-Seq. Between the two variants, First-Of-Seq was able to synthesize
more programs. For example, First-Of-Seq successfully synthesized the desired program where(lt
(in,1),in,1) by predicting lt and where correctly in top-3. However, Full-Seq failed, and
predicted [[eq,where],[eq,mul],[gt,where]] as top-3, which are close enough, but not entirely
correct. This is expected. First-Of-Seq only has to get the first element of the sequence right; the
next element is in fact the first element of the result of the subsequent prediction, which in turn,
is based on the actual intermediate value computed by the first function predicted. Whereas, the
Full-Seq gets only one chance to get the entire sequence right without knowing the intermediate
values. When a sequence is correctly predicted, Full-Seq model could synthesize the solutions
faster; it only needs to be invoked once, without the intermediate values computation.

6.6.4 Evaluating Generalization
To see whether the model truly learned the functionality of the API functions and learned their
compositions, we tested whether the model can generate new API sequences that were not present
in the training data. From the original synthetic dataset 6.2, we removed the data of 7 API
function sequences with length-2 that were included in Stack Overflow benchmarks, and trained
the First-Of-Seq and Full-Seq models. Our hypothesis was that if the models are able to learn the
compositional property, instead of learning the distributions of sequences, they should be able to
generate unseen sequences by composing API functions into a sequence.

87

Observation. Not surprisingly, the accuracy drops from the Section 6.6.2 result. Nevertheless,
out of 8 benchmarks with 2 sequences, we can still predict 4 sequences at top-5 (50% accuracy)
with Full-Seq, and 6 sequences (75% accuracy) with First-Of-Seq. In this setting, we sometimes
narrowly miss some function sequences. For example, we miss a benchmark [lt, where], however it
predicts [eq, where], and [gt, where] instead. Note that gt and eq have very similar functionalities
to the intended API function lt. Both the models can correctly predict sequences like [unsqueeze,
eq], [matmul, add], etc. As expected, the First-Of-Seq model works much better than Full-Seq
model.

To further check the model’s ability to generalize to unseen 3-length sequence, we randomly
picked 71 unique 3-length sequences made out of 16 API functions and collected 100 instances of
them with different input/output values. This gives a total of 7100 test samples. We used the
model trained with only sequences with length 2. Overall, at top-5, model’s accuracy is ∼34%
when queried with unknown sequences and unknown values. However, the model can predict 69
out of 71 sequences correctly at least with one input-output. The only two sequences the model
missed are [add, mul, any] and [add, unsqueeze, ne]. In contrast, [where, expand, matmul] was
predicted correctly around 97% time. These results indicate the model’s ability to generalize.

6.6.5 Scaling to a larger set of API functions
First-Of-Seq vs. Full-Seq. We created a dataset covering all 36 SO benchmarks (1- to 3-
length) in section 6.6.1 with 33 API functions (up from 16 before). Synthesizing training data
covering all exhaustive combinations of the 33 API functions, up to 3-length sequences, gives
us a huge number of combinations (33x33x33=35,937). Generating the corresponding training
data (>35B samples) and training the model accordingly is challenging. Therefore, as a start, we
selected 65 unique sequences that can be a solution to one of the 36 benchmarks.

Observation. Table 6.5 shows the result. Compared to the model trained with the exhaustive
combinations of 16 API functions (Section 6.3), the Full-Seq model trained with this dataset
actually performed even better for (91.42% top-3 accuracy in SO benchmark data). We conjecture
that this is because the model could focus its learning on the semantics of API function sequences
that are more likely to be in the test set, rather than learning the semantics of all combinations.
Unlike the accuracy difference in Full-Seq models, First-Of-Seq variant achieved slightly lower
top-1 accuracy with this dataset. This is because the number of API functions it needs to learn
has increased from 16 to 33. For First-Of-Seq, as it predicts each API function independent from
others, it could not benefit from having a training set with the targeted sequences.

Generalizability. We also tested the generalizability of our model when it is trained with a
dataset covering all 33 API functions needed to synthesize the solutions for 36 SO benchmarks.
Due to the aforementioned challenge, we could not synthesize a dataset like in Section 6.6.4;
instead, we synthesized a dataset with 598 random combinations of 1 or 2-length sequences of 33
API functions, that has not appeared in SO benchmark.

Observation. 7 out of 18 (39%) two-length unseen sequences were predicted correctly with Full-
Seq, and the first API of a sequence was correctly predicted by First-Of-Seq with 69% accuracy.
They both achieved lower accuracy than the ones trained with the exhaustive combinations, as
this model had fewer sequences to learn from, which is critical in generating unseen sequences.

6.7 Why composition works?

88

Figure 6.5: Proximity of h2 and h′
2 pairs for some inputs (in white and black respectively),

against a backdrop of h2 (crosses) and h′
2 (dots).

28

(a) (b)

RNN1

prob(f2)

FFN1

0 h’2

(f1(inp1),inp2)��out

h2
RNN2RNN1

prob(f1) prob(f2)

FFN2FFN1

h10

�inp1�out �inp2�out

Figure 6.4: Illustration of compositional
learning: h2 ≈ h′

2.

We show that a unit of our compositional model
has an interesting property: it learns to convert
its incoming hidden vector to its outgoing hidden
vector in a way consistent with the semantics of
the API function it predicts, albeit in embedding
space. This property is crucial for predicting a
sequence compositionally.

In Fig 6.4(a), we show two units of the com-
positional model, where the first one predicts
function f1, on the basis of inp1, out and the
previous hidden vector, if any. That unit also
produces a hidden vector h1. The second unit produces a hidden vector h2. It may also consume
further local input (such as inp2). Fig 6.4(b) shows an alternate situation in which we give the
result of f1(inp1) directly as input to the first unit, which then produces h′2.

The interesting property is that h2 and h′2 are close together in the representational space.
Figure 6.5 shows a part of a tSNE plot of h2 (crosses) and h′2 (dots), as described above, for inputs
drawn from our benchmarks. As we expect, black and white markers in the figure show that h2
and h2′ for the same inputs are arranged close to each other in the embedding space. In producing
h2 (or h′2), the RNN unit did not care whether it was given h1, the representation produced by the
previous RNN unit, or directly given f1(inp1). In this manner, successive hidden states contain
information analogous to the results of concrete computations: f1(inp1), f2(f1(inp1)), and so on.
(In the actual model, these functions need not be unary, as implied here.)

89

Composition property formally. Refer to the notation introduced in Sec 6.4.3. If instead
of hi−1, RNNi is given (the embedding of) the concrete intermediate value computed by the
computation so far, its observed behavior is the same in both cases. Formally,

hi, di = RNNi(Jfi−1(argsi−1)#outK, Jinpi#outK)
≈ RNNi(hi−1, Jinpi#outK) (6.3)

Thus, the hidden vectors capture an abstraction of intermediate values that would have arisen
in concrete computation f1(i1), f2(f1(i1)), and so on. The composition takes place as each unit
of RNN makes a local decision based on incoming hidden vector, which is set up to capture the
result of the corresponding concrete computation so far.

6.8 Limitations
Our results are promising, yet preliminary in many ways, and we have not established generality
in several dimensions. First, we support a small set of API functions and have carried out a
limited evaluation. As the number increases, the training data size also increases, and training
the model well becomes harder due to computational needs. The robustness of training is a
challenge in general.

Second, the model’s ability to generalize to unseen sequences is crucially dependent on training
over a broad diversity of API sequences. This is challenging as we go to a larger number of
API functions, because we cannot cover all permutations exhaustively. However, as seen in
Section 6.6.5, the model can still learn the semantics reasonably well if the training data covers
the sequences in the test set. Thus, the future works may benefit from creating a training dataset
containing a distribution of sequences representing the real-world API usage patterns, through
API usage mining [174, 281].

Third, we have explored the model’s training and inference on relatively short tensors, with
small data ranges, and have generally worked only with integer data. In a real application, tensors
can be out-of-distribution with respect to the model.

Fourth, we have worked only with PyTorch. We believe the work can be replicated easily
to NumPy and Tensorflow API functions, because of their similar nature (acting over arrays of
numbers.). Farther out, we may need to invent additional techniques. For example, Pandas is
designed to deal with records (or “dataframes”) containing labeled axes (rows and columns); so
it supports not only numeric manipulation, but also label-based slicing. Here we may be able
to borrow some insights from the Autopandas work [28]. Finding ways to deal with the above
threats is in our future work.

6.9 Summary
By building a language model and training it with a large dataset generated by fuzzing, we could
confirm that it is feasible to use the generation-based approach to provide information support
that is suited to the user context.

90

Chapter 7

Generation-based Information
Support Considering Developer’s
Task Context20

In previous studies, it has been established that developers’ characteristics are related to their
usage of documentation, which serves as a proxy for their information needs. We also confirmed
that it is viable to use a generation-based approach for information support. The main focus
of this chapter was to assess the feasibility of utilizing this approach while taking the developer
context into account.

7.1 Introduction
Building and maintaining software systems requires a deep understanding of a codebase. Conse-
quently, developers spend a significant amount of time searching and foraging for the information
they need and organizing and digesting the information they find [117, 118, 125, 151, 161, 196].
Understanding code, however, is a challenging task; developers need to assimilate a large amount
of information about the semantics of the code, the intricacies of the APIs used, and the relevant
domain-specific concepts. Such information is often scattered across multiple sources, making it
challenging for developers, especially novices or those working with unfamiliar APIs, to locate
what they need. Furthermore, much of the relevant information is inadequately documented or
spread across different formats and mediums, where it often becomes outdated.

With the growing popularity of large language model (LLM) based code generation tools [2,
4, 6], the need for information support for code understanding is arguably growing even higher.
These tools can generate code automatically, even for developers with limited coding skills or
domain knowledge. This convenience comes at a cost, however – developers may receive code
they don’t understand [106, 285]. Indeed, early research on LLM code generation tools has
found that developers have a harder time debugging code generated by the LLM and easily get
frustrated [138, 261].

Fortunately, LLMs also provide an opportunity in this space, namely by offering on-demand
generation-based information support for developers faced with unfamiliar code. Compared to

20This chapter is adapted from Nam et al. [176]

91

general web search queries [270], LLM prompts can allow developers to provide more context,
which can enable them to receive information that more precisely aligns with their specific needs,
potentially reducing the time spent on sifting through the information obtained from the web to
suit their particular requirements. Developers have indeed taken to web-hosted conversational
LLM tools, such as ChatGPT, for programming support en masse, but this setup requires them
to both context switch and copy the relevant context from their IDEs into the chat system for
support.

To explore the potential for generation-based information support directly in the developer’s
programming environment, we developed a prototype in-IDE LLM information support tool,
GILT (Generation-based Information-support with LLM Technology). GILT is capable of gener-
ating on-demand information while considering the user’s local code context, which we incorporate
into the prompts provided to the LLM behind the scenes. This way, we also introduce a novel
interaction method with the LLM, prompt-less interaction. This option aims to alleviate the
cognitive load associated with writing prompts, particularly for developers who possess limited
domain or programming knowledge.

As there is still little knowledge about how to best use an LLM for information support
(as opposed to just code generation), we evaluate the effectiveness of our prototype tool in an
exploratory user study with 32 participants tasked with comprehending and extending unfamiliar
code that involves new domain concepts and Python APIs for data visualization and 3D rendering
– a challenging task. Our study quantitatively compares task completion rates and measures of
code understanding between two conditions – using the LLM-backed assistant in-IDE versus
directly searching the web in a browser – and qualitatively investigates how participants used the
tools and their overall satisfaction with this new interaction mode. Concretely, we answer three
research questions:

• RQ7.1: To what extent does GILT affect developers’ understanding, task completion time,
and task completion rates when faced with unfamiliar code?

• RQ7.2: How do developers interact with GILT, and to what extent does that differ between
the participants?

• RQ7.3: How do developers perceive the usefulness of GILT?

Our results confirm that there are statistically significant gains in task completion rate when
using GILT, compared to a web search, showing the utility of generation-based information
support. However, we did not find the utility gains in terms of time and understanding level,
leaving room for further improvement. We also discovered that the degree of the benefit varies
between students and professionals, and investigated potential reasons behind this.

7.2 The GILT Prototype Tool
We iteratively designed GILT to explore different modes of interaction with an LLM for informa-
tion support. GILT is a plugin for the VS Code IDE (Figure 7.1) that considers user context (the
code selected by the user) when querying an LLM for several information support applications.

92

Figure 7.1: Overview of our prototype. (1)A trigger button; (2) code used as context when
prompting LLM; (3) code summary (no-prompt trigger); (4) buttons for further details; (5)
an input box for user prompts; (6) options to embed information to code (Embed) and a
hide/view button; (7) options to clear the panel (Clear all) and an abort LLM button; (8)
a refresh button.

93

7.2.1 Interacting with GILT
There are two ways to interact with the plugin. First, users can select parts of their code (Fig-
ure 7.1- 2) and trigger the tool by clicking on “AI Explanation” on the bottom bar (Figure 7.1- 1),
or using “alt/option + a” as a shortcut, to receive a summary description of the highlighted code
(Overview). They can then explore further by clicking on buttons (Figure 7.1- 4) for API (API),
domain-specific concepts (Concept), and usage examples (Usage),which provide more detailed ex-
planations with preset prompts. The API button offers detailed explanations about the API calls
used in the code, the Concept button provides domain-specific concepts that might be needed
to understand the highlighted code fully, and the Usage button offers a code example involving
API calls used in the highlighted code.

Users can also ask a specific question directly to the LLM via the input box (Figure 7.1- 5). If
no code is selected, the entire source code is used as context (Prompt); alternatively, the relevant
code highlighted by the user is used (Prompt-context). The model will then answer the question
with that code as context. GILT also allows users to probe the LLM by supporting conversational
interaction (Prompt-followup). When previous LLM-generated responses exist, if a user does not
highlight any lines from the code, the LLM generates a response with the previous conversion as
context. Users can also reset the context by triggering the tool with code highlighted, or with
the Clear all button.

7.2.2 Our Design Process and Decisions
Focus on understanding. We intentionally did not integrate a code generation feature in the
prototype as we wanted to focus on how developers understand code.
In-IDE extension. Besides anticipating a better user experience, we designed the prototype
as an in-IDE extension to more easily provide the code context to the LLM – participants could
select code to use as part of the context for a query.
Pre-generated prompts. We designed buttons that query the LLM with pre-generated prompts
(prompt-less interaction) to ask about an API, conceptual explanations, or usage examples, as
shown in Figure 7.1- 4 . We chose these based on API learning theory [62, 126, 158, 245], expecting
this may particularly assist novice programmers or those unfamiliar with the APIs/domains or
the LLM, as writing efficient search queries or prompts can be difficult for novices [59, 64, 116].
At the same time, we also expected that this could reduce the cognitive burden of users in general
in formulating prompts.

For Overview and the buttons API, Concept, Usage, we developed prompt templates after a
few iterations. To more efficiently provide the context to LLM, we used the library names and
the list of API methods included in the selected code, such as “Please provide a [library name]
code example, mainly showing the usage of the following API calls: [list of API methods]” for
Usage.
Unrestricted textual queries. Users can also directly prompt the LLM (Figure 7.1- 5), in
which case GILT will automatically add any selected code as context for the query. Internally,
the tool adds the selected code as part of the user prompt using pre-defined templates, and
requests the LLM to respond based on the code context.
Need-based explanation generation. The tool is pull-based, i.e., it generates an explanation
only when a user requests it. Similar to many previous developer information support tools,
we wanted to reduce information overload and distraction. We expect that if and when enough

94

context can be extracted from the IDE, hybrid (pull + push) tools will be possible, but this would
require more research.
Iterative design updates. We ran design pilot studies and updated our prototype accordingly.
For example, we made the code summary as the default action for the tool trigger with code
selection, after seeing pilot participants struggling to find parts of code to work on due to their
unfamiliarity with libraries and domains. We updated the prompt-based interaction with the
LLM to support a conversational interface, based on the pilot participants’ feedback that they
wanted to probe the model based on their previous queries to clarify their intent or ask for further
details. Finally, we opted to use GPT-3.5-turbo instead of GPT-4 as planned, after discovering
that the response time was too slow in the pilot studies.

7.3 Human Study Design

Participants. We advertised our IRB-approved study widely within the university community
(through Slack channels, posted flyers, and personal contacts) and to the public (through Twitter,
email, and other channels). We asked each participant about their programming experience and
screened out those who reported their experience level as “not at all”. We did not ask about their
professional programming experience, as the target users of our information support tools are not
limited to professional developers. To minimize the possibility of participants knowing solutions,
we specifically sought out participants who had not used the libraries included in our study.
We accepted participants into the study on a rolling basis to capture a range of programming
experience and existing domain knowledge. We compensated each participant with a $25 Amazon
Gift card. We recruited 33 participants and conducted 33 studies in total. However, we had to
exclude data from one participant from the analysis because they did not follow the instructions
for using the extension. Therefore, we report on 9 women and 23 men participants. Among
them, 16 participants identified themselves primarily as students, 1 as software engineer, 2 as
data scientists, and 13 as researchers. In the analysis, we divided the participants into two groups
(students v.s., professionals) based on this. 24 participants had experience with ChatGPT, 15
with Copilot, 5 with Bard, while 7 participants reported no prior use of any LLM-based developer
tools. In terms of familiarity with such tools, 14 participants stated that they have either used
AI developer tools for their work or always use them for work.
Tasks. The tasks were designed to simulate a scenario in which developers with specific require-
ments search the web or use existing LLMs to generate code and find similar code that does not
precisely match their needs. For each task, we provided participants with a high-level goal of the
code, start and goal outputs, and a starter code file loaded into the IDE. In this way, participants
had to understand the starter code we provided and make changes to it so that the modified code
met the goal requirements. Each task consisted of 4 sub-tasks, to help reduce participant’s over-
head in planning, as well as to measure the task completion ratio in the analysis. There were
some subtle dependencies between the sub-tasks, so we advised participants to follow the order
we gave, but they were free to skip. Completing each sub-task required a small change, ranging
from a single parameter value update to an addition of a line of code. The difficulty levels of
the sub-tasks varied, but we intentionally designed the first sub-task to be easy so that partic-
ipants could have at least one success easily. Sub-tasks also came with start and goal outputs
and descriptions (see Figure 7.2). We did not include tasks that required strong programming

95

Table 7.1: An example code context and the information that can be provided by our tool
given the code.

Code Context
Selected
code

bunny = o3d.data.BunnyMesh()
bunny_mesh = o3d.io.read_triangle_mesh(bunny.path)
bunny_mesh.compute_vertex_normals()
bunny_mesh.transform([[1, 0, 0, 0], [0, −1, 0, 0], [0, 0, −1, 0], [0, 0, 0, −1]])
bunny_mesh.translate([2.5, 2.1, 1.2])

One-click Prompting
Overview This code loads a mesh of a bunny, computes its vertex normals, applies

a transformation matrix to invert and translate it.
API - The first line of code loads the bunny mesh from the open3d data mod-

ule.
- The second line reads the triangle mesh of the bunny from the file path.
- The third line computes the vertex normals of the bunny mesh, which
are used to determine the orientation of each vertex with respect to the
surface of the mesh.
- The fourth line applies a transformation matrix to the bunny mesh
using the transform function. The matrix used in this case is a 4x4 ma-
trix that performs a reflection along the x-axis, followed by a reflection
along the y-axis, and finally a reflection along the z-axis. This effectively
inverts the bunny mesh.
- The fifth line applies a translation to the bunny mesh using the
translate function. The translation vector used in this case is [2.5,
2.1, 1.2], which moves the bunny mesh 2.5 units along the x-axis, 2.1
units along the y-axis, and 1.2 units along the z-axis.

Concept Here are 3 domain concepts that might be useful to know.
- Mesh: A mesh is a collection of vertices, edges, and faces that define
the shape of a 3D object. In open3d, a mesh is represented by a Trian-
gleMesh object.
- Vertex Normals: Vertex normals are vectors that are perpendicular to
the surface of a mesh at each vertex. They are used to determine how
light interacts with the surface of the mesh.
- Transformation Matrix: A transformation matrix is a mathematical
matrix that is used to transform a 3D object. In open3d, a transforma-
tion matrix is represented by a 4x4 matrix, where the first three columns
represent the rotation and scaling of the object, and the last column
represents the translation.

96

Table 7.1: An example code context and the information that can be provided by our tool
given the code (cont.).

Usage Here is an open3d code example.
import open3d as o3d

Load a mesh of a bunny
bunny = o3d.data.BunnyMesh()
bunny_mesh = o3d.io.read_triangle_mesh(bunny.path)

Compute vertex normals
bunny_mesh.compute_vertex_normals()

Apply transformation matrix to invert and translate the bunny mesh
transformation_matrix = [[1, 0, 0, 0], [0, −1, 0, 0], [0, 0, −1, 0], [0, 0, 0, −1]]
bunny_mesh.transform(transformation_matrix)
bunny_mesh.translate([2.5, 2.1, 1.2])

Visualize the transformed bunny mesh
o3d.visualization.draw_geometries([bunny_mesh])

This code loads a mesh of a bunny, computes its vertex normals, applies
a transformation matrix to invert and translate it, and finally visualizes
the transformed bunny mesh.

Query Prompting
Query How can I move bunny to sit upright?
Response In this code, the bunny mesh is transformed using a 4x4 transformation

matrix. To move the bunny to sit upright, you can apply a rotation
transformation to the mesh. For example, you can rotate the mesh 90
degrees around the x-axis by using the following transformation matrix:
[[1, 0, 0, 0],
[0, 0, 1, 0],
[0, −1, 0, 0],
[0, 0, 0, 1]]

You can apply this transformation to the bunny mesh using the
transform method:
bunny_mesh.transform([[1, 0, 0, 0], [0, 0, 1, 0], [0, −1, 0, 0], [0, 0, 0, 1]])

This will rotate the bunny mesh 90 degrees around the x-axis, making it
sit upright.

knowledge, because our goal was to assess how well participants could understand the code. For
the same reason, we provided participants with a starter code that was runnable and bug-free.

97

Current Goal

Subtask 4
Segment the objects correctly so that you can see the green and pink objects on the left.

Current Goal

Figure 7.2: A 3D-rendering example sub-task (open3d-3). With these start and goal out-
puts, we asked the participants to “Make the bunny sit upright on the chair.” See Figure 7.1
for the corresponding starter code and the tool output.

Our tasks cover both a common and less common domain that a Python developer might
encounter in the wild. We chose two domains: data visualization and 3D rendering. These two
tasks also allowed participants to easily check their progress, as they produced visual outputs
that were comparable with the given goal. For the data visualization task, we used the Bokeh [1]
library and asked participants to edit code that visualizes income and expenses data in polar
plots. Understanding this code required knowledge of concepts related to visualizing data formats,
marks, and data mapping. In the 3D rendering task, we used the Open3d [5] library. This task
required knowledge of geometry and computer graphics. Participants were asked to edit code
that involved point cloud rendering, transformation, and plane segmentation.

When selecting libraries, we intentionally did not choose the most common ones in their
respective domains, to reduce the risk of participants knowing them well. Choosing less common
libraries also helped reduce the risk of an outsized advantage of our LLM-powered information
generation tool. Responses for popular libraries can be significantly better than those for less
commonly used ones, as the quality of LLM-generated answers depends on whether the LLM has
seen enough relevant data during training.

The Bokeh starter code consisted of 101 LOC with 11 (6 unique) Bokeh API calls, and the
starter code for the Open3D task consisted of 43 LOC with 18 (18 unique) Open3D API calls.
The tasks were designed based on tutorial examples in each API’s documentation. In the starter
codes, we did not include any comments in the code to isolate the effects of the information
provided by our prototype or collected from search engines. All necessary API calls were in the
starter code so participants did not need to find or add new ones.

In the task descriptions, we tried to avoid using domain-specific or library-specific keywords
that could potentially provide participants with direct answers from either search engines or
GILT. For instance, we opted to use “make the bunny...”, instead of “transform the bunny...”
which may have steered participants towards the function transform without much thought.

The full task descriptions, starter code, solution for the demo, and the actual tasks are
available in replication package [178].

98

Experimental Design. We chose a within-subjects design, with participants using both GILT
(treatment) and a search engine (control) for code understanding, but they did so on different
tasks. This allowed us to ask participants to rate both conditions and provide comparative
feedback about both treatments.

The control-condition participants were not allowed to use our prototype, but they were free to
use any search engine to find the information they needed. The treatment-condition participants
were encouraged to primarily use our prototype for information support. However, if they could
not find a specific piece of information using our prototype, we allowed them to use search engines
to find it. This was to prevent participants from being entirely blocked by the LLM. We expected
that this was a realistic use case of any LLM-based tool, but it rarely happened during the study.
Only 2 participants ended up using search engines during the treatment condition, but they could
not complete the tasks even with the search engines.

We counterbalanced the tasks and the order they were presented to participants to prevent
carryover effects, resulting in four groups (2 conditions x 2 orders). We used random block as-
signments when assigning participants to each group. Participants were assigned to each group
to balance the self-reported programming and domain experience (data visualization and 3D
rendering). For every new participant, we randomly assigned them to a group that no previous
participant with the same experience level had been assigned. If all groups had previous partici-
pants with the same experience level, we randomly assigned the participant to one of them.
Study Protocol. We conducted the study via a video conferencing tool and in person, with each
session taking about 90 minutes; in-person participants also used the video conferencing tool, for
consistency. At the beginning of the study, we asked participants to complete a pre-study survey,
collecting their demographic information, background knowledge, and experience with LLMs.
We also estimated their general information processing and learning styles using a cognitive style
survey [92] categorizing participants into two groups per dimension: comprehensive / selective
information processing and process-oriented learning / tinkering. The participants were then
asked to join our web-based VS Code IDE hosted on GitHub CodeSpaces [3], which provided a
realistic IDE inside a web browser with edit, run, test, and debug capabilities, without requiring
participants to install any software locally [58]. We then showed them a demo task description
and explained what they would be working on during the real tasks. Before their first task in
the treatment condition, we provided a tutorial for our plugin using the demo task, introducing
each feature and giving three example prompts for the LLM. For the control condition, we did
not provide any demo, as we expected every participant to be able to use search engines fluently.
For each task, we gave participants 20 minutes to complete as many sub-tasks as they could.
During the task, we did not use the think-aloud protocol because we wanted to collect timing
data. Instead, we collected qualitative data in the post-survey with open-ended questions. We
also collected extensive event and interaction logs during the task. After each task, we asked
participants to complete a post-task survey to measure their understanding of the provided code
and the API calls therein. At the very end, we asked them to complete a post-study survey
where we asked them to evaluate the perceived usefulness and perceived ease of use of each
code understanding approach and each feature in GILT. We based our questionnaire on the
Technology Acceptance Model (TAM) [130], NASA Task Load Index (TLX) [95], and pre- and
post-study questionnaires that were previously used in similar studies [219, 245].

We conducted 33 studies in total, with 33 participants. The initial 18 studies were conducted
on a one-on-one basis, while some studies in the latter half (involving 15 participants)were carried
out in group sessions, with two to five participants simultaneously and one researcher serving as

99

the moderator. We took great care to ensure that participants did not interrupt each other
or share their progress. As mentioned before, we excluded one participant’s data and used 32
participants’ for the analysis. We discovered this issue after the study, as this participant was
part of the largest group session (with five participants).

7.4 RQ 7.1: Effects of GILT
In this section, we report on the effectiveness of using GILT in understanding unfamiliar code.

7.4.1 Data Collection
Code understanding. To evaluate the effectiveness of each condition, we used three measure-
ments: (1) Task completion time: to complete each sub-task; (2) Task progress: we rated the
correctness of the participants’ solution to each sub-task and measured how many sub-tasks they
correctly implemented; and (3) Understanding level: we cross-checked participants’ general un-
derstanding of the starter code by giving them sets of quiz questions about the APIs included in
the starter code. Each set contained three questions, requiring an in-depth understanding of the
functionalities of each API call and the application domains. To measure the effect of using GILT
and search engines, we excluded the sub-tasks data if participants guessed the solution without
using the tool (i.e., zero interaction with the tool) or search engines before completing it (i.e., no
search queries).
Prior knowledge. To control for prior knowledge, we used self-reported measures of participants’
programming and domain experience. We expected more programming experience, especially in
the specific domain, to lead to a faster understanding of code.
Experience in AI developer tools. Crafting effective prompts for LLM-based tools requires
trial and error, even for NLP experts [59, 280]. Therefore, we asked participants about their
experience with LLM-based developer tools. We expected participants’ familiarity with other
AI tools to affect their usage of the LLM-based information support tool, especially the use of
free-form queries, and lead to more effective use of the extension than participants without such
experience.

7.4.2 Methodology
To answer RQ7.1, we compared the effectiveness of using a GILT with traditional search engines
for completing programming tasks by estimating regression models for three outcome variables.
For task progress and code understanding, we used quasi-Poisson models because we are modeling
count variables, and for the task completion time, we used a linear regression model.

To account for potential confounding factors, we included task experience, programming ex-
perience, and LLM knowledge as control variables in our models. Finally, we used a dummy
variable (uses_GILT) to indicate the condition (using GILT vs. using search engines). We consid-
ered mixed-effects regression but used fixed effects only, since each participant and task appear
only once in the two conditions (with and without GILT). For example, for the task completion
time response, we estimate the model:
completion_time ∼ domain_experience + programming_experience

+ AI_tool_familiarity + uses_GILT

100

Table 7.2: Summaries of regressions estimating the effect of using the prototype. Each
column summarizes the model for a different outcome variable. We report the coefficient
estimates with the standard errors in parentheses.

Progress T ime(s) Underst. Progress
(1) (2) (3) Pros Students

Constant 0.41 312.65 −1.81∗∗ −0.38 1.82∗∗
(0.49) (185.33) (0.89) (0.68) (0.83)

Domain 0.13∗ 23.14 0.41∗∗∗ 0.16 0.04
experience (0.07) (25.40) (0.12) (0.09) (0.11)

Programming −0.10 −23.67 0.20 0.01 −0.37∗
experience (0.12) (43.53) (0.22) (0.17) (0.21)

AI tool −0.01 7.70 −0.09 0.07 −0.10
familiarity (0.07) (27.04) (0.14) (0.11) (0.10)

Uses GILT 0.47∗∗∗ −9.10 0.29 0.57∗∗ 0.29
(0.16) (57.26) (0.28) (0.22) (0.25)

R2 0.173 0.022 0.202 0.341 0.137
Adj. R2 0.117 −0.046 0.148 0.243 0.010

Note: *p <0.1; **p <0.05; ***p <0.01.

The estimated coefficient for the uses_GILT variable indicates the effect of using GILT while
holding fixed the effects of programming experience, domain experience, and LLM knowledge.

7.4.3 Results
Table 7.2 columns (1)-(3) display the regression results for three response variables. The task
progress model (Table 7.2-(1)) shows a significant difference between the two conditions, with
participants in the GILT condition completing statistically significantly more sub-tasks (0.47
more, p < 0.01) than those who used search engines, controlling for experience levels and AI tool
familiarity. This indicates that GILT may assist users in making more progress in their tasks
compared to search engines.

On the other hand, models (2) and (3) fail to show any significant difference in completion
time and code understanding quiz scores between conditions. This suggests that users in the
GILT condition do not complete their tasks at a sufficiently different speed or have a sufficiently
different level of understanding than those in the control group, given the statistical power of our
experiment.

In summary, the results suggest that GILT may help users make more progress in their tasks
without changing, for better or worse, their speed and code understanding abilities.

7.4.4 Additional Analysis
After observing the significant effect of GILT on task progress, we dove deeper to examine whether
all participants benefited equally from the tool. To do this, we divided the participants into two

101

distinct groups based on their self-reported occupations (professionals and students) and estimated
the effects of GILT usage in each group.21 We opted for these groups as we did not have any
prior theoretical framework to guide our grouping choices, and it provided a simple yet effective
approach to group participants with multiple dimensions, including programming experience,
skills, and attitude toward programming.

Although both groups were more successful when using the tool, there were notable differences
in their performance gains. To better understand these variations, we estimated coefficients for
each group (Table 7.2-Pros and -Students) and observed that the impact of GILT was significant
only in the Pros group model. Specifically, professionals completed 0.57 more sub-tasks with
GILT support compared to when they used search engines, whereas students did not experience
significant gains. These findings suggest that the degree of benefit provided by GILT may vary
depending on participants’ backgrounds or skills.

7.5 RQ 7.2: GILT Usage
In this section, we focus on how participants interacted with GILT, their perception of the
importance of different features, and how different factors correlate with the feature usage.

7.5.1 Usage of Features
To analyze in more detail how participants actually used the tool, we instrumented GILT and
recorded participants’ event and interaction logs. The logs allowed us to count the number of
times participants triggered each feature, and in what order. To supplement the usage data,
participants were asked to rate the importance of each feature in a post-task survey. We used
these ratings to triangulate our findings from the usage data.

Figure 7.3 summarizes the sequences of GILT features used by participants in the treatment
condition. On average, to complete their tasks in this condition, participants interacted with the
LLM via GILT 15.34 times. The number of interactions per participant ranged from a minimum
of 5 to a maximum of 23. The Overview feature was the most frequently used method to interact
with the LLM, with an average of 4.76 activations per participant. Many participants also used
Overview as their first feature, possibly because it requires minimal effort, with just a single
click, in contrast to other features that necessitated the formulation of queries by participants,
and perhaps also because some of the buttons (e.g., Concept) required first using the Overview
feature. Participants also frequently used Prompt-context (4.12 times) and Prompt-followup
(2.88 times). General prompting without code context was used less frequently (1.27 times).
While participants generally used buttons less frequently, some used them more frequently than
queries (e.g., P29), indicating personal preferences in prompt-based and prompt-less interactions.
Specifically, the API button was used 1.24 times, the Concept button 0.45 times, and the Usage
button 0.24 times on average.

The reported importance of the features by participants (see Figure 7.4) generally corresponds
to the observed usage data. Most of the participants (97%) responded that the ability to directly
ask questions to the LLM was extremely/very important, whereas their reported usefulness of the
buttons varied. The reported importance of the overview feature (53% extremely/very important)

21We considered but decided against modeling interaction effects as they would have required more
statistical power.

102

Prompt Prompt
context

Overview API
Btn

Concept
Btn

Usage
Btn

0

10

20

30

2 2
6 8 5 63

8 5 11 8
18 13

10 9
8 12

15 16
9 11 8 6

Extremely Very Moderately Slightly Not at all

Figure 7.4: Participants’ report on the importance of GILT features.

(a) All (b) Professionals (c) Students

Figure 7.5: Transition Graphs for User Interaction. Each node displays the number of times
users interacted with respective features, and each edge indicates the counted number of
transitions between the connected features. For space and readability reasons, Prompt,
Prompt-Context, and Prompt-Followup are merged into prompt, and API, Concept, and
Usage are merged into buttons. Counts lower than 5 are omitted except for the edges
connected to the ‘Success’ and ‘Fail’ nodes.

was relatively low compared to the actual use, suggesting that participants may not have used
the summary description provided by the overview but instead used it as context for further
prompting or to activate buttons.

To further investigate participants’ interaction with the tool, we created transition graphs
(Figure 7.5) using sequences of feature-use events for each sub-task, using both the sub-tasks suc-
cessfully completed by participants and those that resulted in failure (due to incorrect answers or
timeouts). Out of the potential total of 128 sub-tasks (32 participants × 4 sub-tasks), 98 sub-tasks
were started before the time ran out. In understanding the transition graph, we focused on the
last feature in each participant’s sequence, with an assumption that when a participant completes
a task, it is likely that the information from the last interaction satisfied their information needs.
Among the sub-tasks they successfully completed, a substantial majority (75%) originated from
prompt-based interactions. At the same time, 83% of the failed tasks were also preceded by
prompt-based interactions, so prompt-based interactions were not particularly likely to result in
successful information seeking.

103

7.5.2 Professionals v.s., Students

B
o
k
e
h

S
t
u
d
e
n
t
s

1
7
11
16
18
27
28

P
r
o
s

3
5
8
13
17
19
20
30
32

O
p
e
n
3
d

S
t
u
d
e
n
t
s

6
9
14
22
23
25
26
29
31

P
r
o
s

2
4
10
12
15
21
24

Prompt P-Context P-Followup
Overview B-API B-Concept B-Usage

1

Figure 7.3: The sequences of feature usage in
GILT. Each row corresponds to an individual par-
ticipant, and the color cells are arranged chrono-
logically.

To better understand the experiences
of professionals and students (see Sec-
tion 7.4.4), we compared the transition
graphs for both groups (Figure 7.5 (b)
and (c)). Notable distinctions emerged in
terms of the features more likely influenc-
ing the success and failure of sub-tasks.
Specifically, for professionals, a majority
(86%) of successful sub-tasks originated
from prompt, whereas for students, this
percentage (62%) was statistically signifi-
cantly lower (χ2(1, 66), p < .05). The suc-
cess rate of prompt-based interaction was
also higher among professionals (71%: 32
out of 45) compared to students (58%: 18
out of 31). Conversely, the success rate of
the overview and buttons for profession-
als (56%: 5 out of 9) was lower than that
of students (85%: 11 out of 13). These
results may indicate that students, pos-
sibly with less experience in information
seeking for programming, encounter chal-
lenges in formulating effective prompts
compared to the professionals, and rely
more on prompt-less interaction. How-
ever, we can also infer that prompt-less
interaction is still not sufficient to com-
pete with the benefits of prompt-based in-
teraction with the current design, as they
only accounted for less than 40% of the
completed tasks.

To further investigate the differences
in the two groups’ prompt engineering, we
analyzed the text of the prompts they wrote, by comparing the frequencies of bi-, tri-, and
quadrigrams in the prompts. Table 7.3 presents the list of n-grams that showed divergent usage
between the two groups. One notable observation is that the n-grams used by the professional
group include more effective keywords, or they revise the prompts to incorporate such keywords.
For instance, in the bokeh-3 sub-task, none of the participants in the student group used the
critical keyword “annular wedge,”which is essential for generating the information needed to solve
the task, although it was used multiple times in the provided starting code. Instead, students
tended to use more general keywords or keywords that had a different concept in the library (e.g.,
“legend”) and faced difficulties in effectively revising the prompts. In addition, more participants
in the professional group demonstrated proficiency in refining their prompts by providing further
specifications. For example, one participant revised the prompt from “How to change the position
of the bunny to 180 degrees” to “How to transform the bunny_mesh to 180 degrees.” We infer

104

Table 7.3: Frequencies of n-grams used differently in prompts by professionals and students.
For clarity, we only include n-grams used uniquely by one of the two groups, with a
frequency difference of more than 2. If multiple n-grams share the same longer n-gram, we
report only the superset.

Sub-task n-gram Pro. Stu.
bokeh-2 (‘align’, ‘text’) 3 0

(‘flip’, ‘label’) 0 3
bokeh-3 (‘annular’, ‘wedge’) 6 0

(‘grid’, ‘annular’, ‘wedge’) 3 0
(‘first’, ‘pie’) 3 0
(‘pie’, ‘chart’) 3 0
(‘add’, ‘legend’) 0 4
(‘tell’, ‘line’, ‘need’,
‘change’) 0 3

o3d-3 (‘sit’, ‘upright’, ‘chair’) 4 0
(‘make’, ‘bunny’, ‘sit’,
‘upright’, ‘chair’) 3 0

that the difference in the benefit received from GILT by the two groups can be at least partially
attributed to their proficiency in prompt engineering.

7.5.3 Other Factors Associated with Feature Use
During the pilot studies, we observed that participants approached the tasks differently depending
on their familiarity with other LLM-based tools, and styles of information processing and learning
as observed in many previous studies on software documentation and debugging [29, 158, 159].
Thus, we tested whether the GILT feature use correlates with factors other than their experience.
Hypotheses. Out of two information processing styles [39, 56, 88], people who exhibit a “selective
information processor” tendency focus on the first promising option, pursuing it deeply before
seeking additional information. On the other hand, people who are “comprehensive information
processors” tend to gather information broadly to form a complete understanding of the problem
before attempting to solve it. Based on these processing styles, we hypothesized that selective
processors would utilize GILT’s Prompt-followup, as they would prefer to use a depth-first
strategy.

In terms of learning styles [39, 193], “process-oriented learners” prefer tutorials and how-to
videos, while “tinkerers” like to experiment with features to develop their own understanding of
the software’s inner workings. Consequently, we hypothesized that tinkerers would use GILT less
often, as they would prefer to tinker with the source code rather than collect information from
the tool.

We also expected that participants who were already familiar with LLM-based tools would
use prompt-based interaction in general (Prompt), especially the chat feature, more frequently, as
they would already be accustomed to using chat interfaces to interact with LLMs. Conversely,

105

Table 7.4: Summaries of regressions testing for associations between the user factors and
the feature usage counts. Each column summarizes a regression modeling different outcome
variables. We report the coefficient estimates with their standard errors in parentheses.

Prompt Followup All
(1) (2) (3)

Constant 1.39*** −0.82 2.43***
(0.31) (0.69) (0.27)

AI tool 0.19** 0.38** 0.11
familiarity (0.07) (0.15) (0.06)

Infomation −0.04 0.44 −0.04
Comprh. (1.15) (0.30) (0.13)

Learning 0.19 0.60** −0.12
Process (1.14) (0.29) (1.13)

R2 0.262 0.283 0.165
Adj. R2 0.184 0.206 0.075

Note: *p <0.1; **p <0.05; ***p <0.01.

we posited that participants with less experience with such tools would use the buttons more, as
prompt engineering might be less familiar to them and place greater cognitive demands on them.

Methodology. To test for associations between GILT features used and the factors above
we again used multiple regression analysis. We estimated three models, each focused on one
particular feature. For each model, the dependent variable was the feature usage count, while
participants’ information processing style, learning style, and familiarity with AI developer tools
were modeled as independent variables to explain the variation in usage counts.

Results. Table 7.4 presents the results of the regression analysis conducted for three response
variables. The first model (Prompt (1)), which uses the total count of prompt-based interactions
(prompt + prompt-context + prompt-followup), reveals that developers who are more familiar
with other AI developer tools are more likely to prompt the LLMs using natural language queries.
This result confirms our hypothesis that the AI tool familiarity level influences developers’ use of
queries. The familiarity level also has a statistically significant impact on prompt-followup, as
shown in the Followup model (2). However, we did not find any significant impact of participants’
information processing style on their use of GILT. This means that selective processors and com-
prehensive processors probed the LLMs similarly, as far as we can tell. The model, however, shows
a statistically significant correlation between participants’ learning styles and prompt-followup
feature usage. Specifically, process-oriented learners tend to probe LLMs more frequently than
tinkerers. This result might indicate that process-oriented learners are more likely to learn thor-
oughly before proceeding to the next step, while tinkerers tend to tinker with the code after
getting the minimum amount of direction from GILT. Finally, the All model (3), which uses the
total count of all GILT interactions, indicates that there is no statistically significant difference
between the information styles, learning styles, and familiarity levels in terms of overall feature
usage counts.

106

7.6 RQ 8.3: User Perceptions
In this section, we investigate how participants perceived their experience of using GILT. Specifi-
cally, we examine their perceived usefulness, usability, and cognitive load in comparison to search-
based information seeking. Additionally, we explore the pros and cons participants reported, and
suggestions for improving the tool.

7.6.1 Comparison with Web Search
We employed two wildly-used standard measures, TLX and TAM, in our post-task survey and
compared them using two-tailed paired t-tests. TAM (Technology Acceptance Model) [130] is a
widely used survey that assesses users’ acceptance and adoption of new technologies, and TLX
(Task Load Index) [95] is a subjective measure of mental workload that considers several dimen-
sions, including mental, physical, and temporal demand, effort, frustration, and performance.
The summaries of TAM and TLX comparisons can be found in Appendix D.

The average scores for the [perceived usefulness, perceived ease of use] in TAM scales were
[27.3, 29.75] for the control condition, and [33.49, 34.2] for the treatment condition. The paired
t-tests on the TAM scores indicated that there were significant differences in perceived usefulness
and perceived usability scores between the two conditions (p < 0.001). Specifically, participants
rated GILT higher on both dimensions than they did search engines.

For TLX items [mental demand, physical demand, temporal demand, performance, effort,
frustration], the average scores were [3.8, -2.1, 4.0, 1.6, 3.4, -0.1] for the control condition and
[3.3, -2.5, 2.6, 3.3, 3.3, 1.0] for the treatment condition. Paired t-tests on the TLX scores re-
vealed statistically significant differences between the tool and search engines in temporal demand
(p < 0.05) and performance (p < 0.05) but not in other items. These results indicate that the
participants felt less rushed when using GILT than when using search engines, and they felt more
successful in accomplishing the task with the tool than with search engines, but there were no
significant differences in other dimensions.

7.6.2 User Feedback
In the post-task survey, we asked open-ended questions regarding (i) their general experience with
using GILT, (ii) the tool’s fit with the participants’ workflow, (iii) comparison with other tools,
and (iv) opportunities for improvement. Two researchers conducted a thematic analysis [50] to
analyze the answers. Initially, two researchers separately performed open coding on the same
set of 8 responses (25% of the entire data), and convened to discuss and merge the codes into a
shared codebook. I coded the rest of the responses and discussed with the rest of the researchers
whenever new codes needed to be added. The codebook is available in Appendix D, and we
discuss some of them here.

The participants in this study reported several positive aspects of the tool, with the most
notable being context incorporation. Participants valued the ability to prompt the LLM with their
code as context, which allowed them to tailor the LLM’s suggestions to their specific programming
context, e.g., “the extension generated code that could easily be used in the context of the task I
was performing, without much modification.” (P5) Participants also found it extremely useful to
prompt the LLM with just code context, as it allowed them to bypass the need to write proficient
queries, a well-known challenge in search-based information seeking [116, 270]. P15 mentioned

107

“It’s nice not to need to know anything about the context before being effective in your search
strategy.”

Many participants reported that using the tool helped them speed up their information seek-
ing, by reducing the need to forage for information, e.g., “Stack Overflow or a Google search would
require more time and effort in order to find the exact issue and hence would be time-consuming.”
(P27)

Some participants, however, reported having a hard time finding a good prompt that could
give them the desired response. Combined with the need for good prompts and the limitations
of LLM, this led some participants to report that the responses provided by the tool were occa-
sionally inaccurate, reducing their productivity. P28 summarized this issue well: “[prototype] was
not able to give me the code that I was looking for, so it took up all my time (which I got very
annoyed about). I think I just didn’t word the question well.”

Participants had mixed opinions on the different features of the tool, especially the buttons.
Some preferred to use “different buttons for different types of information so I didn’t have to
read a lot of text to find what I was looking for” (P7), while others thought that was overkill and
mentioned “a simpler view would be nice.” (P8)

Compared to ChatGPT, 17 participants (out of 19 who answered) mentioned advantages of
GILT, with the Prompt- context feature being one of the main ones. Participants expressed
positive feelings about CoPilot but acknowledged that the tool had a different role than CoPilot
and that they would be complementary to each other, e.g.: “Copilot is a tool that I can complete
mechanical works quickly, but [GILT] offers insight into more challenging tasks.” (P29)

Many participants reported that the tool would be even more useful when combined with
search engines, API documentation, or CoPilot,22 as they provide different types of information
than the tool. Having the ability to choose sources based on their needs would enhance their pro-
ductivity by giving them control over the trade-offs, such as speed, correctness, and adaptability
of the information.

7.7 Threats to Validity
One potential concern with our study design is the task and library selection. We only used tasks
that show visible outputs, which might have led participants to detect potential errors more easily,
compared to other tasks, such as optimization or parallel programming. However, we believe
that the tasks we chose are representative of common programming errors that would need to
be identified in real-world programming situations. Indeed, when we asked the participants in
the post-task survey, both data visualization and 3D rendering tasks were reported to very or
extremely closely resemble real-world tasks by 82% and 73% of the participants.

Similarly, the selection of libraries might have biased the study results. However, in selecting
libraries for our study, we avoided using popular libraries that could unintentionally give an
advantage to LLMs. We believe that the libraries we chose are of medium size and quality, and
therefore represent a fair test of the LLM tools. However, it is possible that different libraries or
larger codebases could produce different results.

Despite our efforts to create a controlled experience, several factors differentiate our in-IDE
extension from search engines, aside from the inclusion of LLMs. For example, although previous

22Notably, GitHub independently announced these enhancements to Copilot already, after we conducted
our study: https://www.theverge.com/2023/7/20/23801498/github-copilot-x-chat-code-chatbot-
public-beta

108

research investigating the incorporation of search into IDE did not find a statistically significant
difference between the control and treatment groups [35, 134], the in-IDE design itself may have
been more helpful than access to LLMs, as it potentially reduced context-switching. Thus, further
studies are needed to gain a better understanding of the extent to which each benefit of our
prototype can be attributed to these differences.

Additionally, the laboratory setting may not fully capture the complexity of real-world pro-
gramming tasks, which could impact the generalizability of our findings. Also, the time pressure
participants could have felt, and the novelty effect in a lab setting could have changed how users
interact with LLMs. Our sample size, 32, was relatively small and skewed towards those in
academia. This may also limit the generalizability of our findings to more professional program-
mers. Thus, future research with larger, more diverse samples is necessary to confirm and expand
upon our results.

Our analysis also has the standard threats to statistical conclusion validity affecting regression
models. Overall, we took several steps to increase the robustness of our estimated regression
results. First, we removed outliers from the top 1% most extreme values. Second, we checked for
multicollinearity using the Variation Influence Factor (VIF) and confirmed that all variables we
used had VIF lower than 2.5 following Johnston et al. [111].

Another potential threat to the validity of our findings is the rapid pace of technological
development in the field of LLM tools. Despite our efforts to use the most up-to-date LLM
available at the time of the submission, it is possible that new breakthroughs could render our
findings obsolete before long.

7.8 Discussion and Implications
Comprehension outsourcing. Our analysis revealed an intriguing finding regarding partici-
pants’ behavior during the study, where some of them deferred their need for code comprehension
to the LLM, which was well described by one participant as comprehension outsourcing. These
participants prompted the model at a higher level directly and did not read and fully comprehend
the code before making changes. As one participant commented, “I was surprised by how little I
had to know about (or even read) the starter code before I can jump in and make changes.” This
behavior might be attributed to developers’ inclination to focus on task completion rather than
comprehending the software, as reported in the literature [151]. Or, participants may have also
weighed the costs and risks of comprehending code themselves, and chosen to defer their compre-
hension efforts to the language model. While this behavior was observed in the controlled setting
of a lab study and may not fully reflect how developers approach code comprehension in their
daily work, it does raise concerns about the potential impact of such a trend (or over-reliance on
LLMs [261]) on code quality. This highlights the importance of preventing developers who tend
to defer their comprehension efforts to the LLM from being steered in directions that neither they
nor the LLM are adequately equipped to handle. Studies showing developers’ heavy reliance on
Stack Overflow, despite its known limitations in accuracy and currency [269, 281], further empha-
size the need for caution before widely adopting LLM-based tools in code development. Research
on developers’ motivations and reasons for code comprehension when LLMs are available will be
valuable in informing future tool designs.
Utilize more context. One of the main advantages of GILT reported by the participants is
its ability to prompt the LLM with the code being edited as context. We believe that additional

109

types of context can be leveraged to improve the tool’s utility, including project context (e.g.,
project scale and domain), system context (e.g., programming languages and target deployment
environments), and personal context (e.g., programming expertise in libraries, and domains). By
combining these contexts with proper back-end engineering, we believe that GILT, or other LLM-
powered developer tools, will be able to provide relevant information to developers with even less
prompt engineering efforts of the users.
Need further studies in real-world settings. One possible explanation for some of the models
with null results from RQ7.1 and RQ7.2 is the artificial setting of the lab study, where participants
were encouraged to focus on small, specific task requirements instead of exploring the broader
information dimension. For example, participants prioritized completing more tasks rather than
fully understanding the code, as reported by participant P18 in their survey response: “ [GILT]
..., which could definitely help one to tackle the task better if there weren’t under the timed-settings.”
Thus, although our first study shed some light on the potential challenges and promises, to fully
understand the implications of deploying this tool into general developer pipelines, it is necessary
to observe how programmers use it in real-world settings with larger-scale software systems, less
specific goals, and over a longer time frame. Given that GitHub recently launched CopilotX [83],
a tool that offers a comparable set of features to our prototype to enhance developer experience,
such research is urgently needed. We believe that our findings are a timely contribution and a
good first step for researchers and tool builders in designing and developing developer assistants
that effectively use LLMs.

7.9 Summary
The user study results have demonstrated that GILT significantly enhances developers’ ability to
complete tasks compared to traditional information-seeking methods. Participants also expressed
positive experiences while using GILT, especially on the ability to incorporate their task context.

110

Chapter 8

Towards Building Personalized
Information Support

In evaluating user-centered information support tools, we have demonstrated that user-centered
design can meaningfully improve programmers’ information seeking. Specifically, the qualitative
analysis of user responses in Chapter 7 has shown that incorporating the code context improves
their information-seeking. In this final chapter, we test the potential value of incorporating an
even broader user context, and eventually personalized generation-based information support by
automatically augmenting the user context.

8.1 Introduction
Developing a software system requires developers to consider numerous dimensions, ranging from
its architecture to implementation bugs. Each dimension demands information of varying scopes
and abstractions, making software engineering highly information-intensive. Thus, developers
spend 35% of their time on the foraging itself [117], and 50% when other aspects of foraging are
taken into account [197]. This intensive search for information is driven by the need to evaluate
multiple viable solutions, taking into account their constraints and the trade-offs involved. In-
adequate or missing information can lead to suboptimal design decisions, adversely affecting the
quality of the software product. Therefore, timely access to all necessary information is crucial for
enhancing developers’ productivity and, consequently, the quality of the final software products.

However, information seeking is still not easy in software engineering [14, 205, 270]. Much
information about software and systems is not properly documented [255] or it is spread across
varying mediums in different formats, often getting outdated as software evolves [55]. Developers
have used search engines as a major way of information seeking (e.g., they issue more than 20
search queries every day [270]), which many developers find challenging because they may not
know, or may forget to include, the right keywords [65, 116, 147]. Even when they retrieve a
promising page, they still need to evaluate the relevance of the information [80, 116], which is
itself challenging, especially to those who are new to the API, or programming in general [116].

The emergence of generative models and large language models (LLMs) has introduced new
avenues for satisfying programmers’ information needs, offering some advantages over traditional
methods [138, 176, 219]. However, the effectiveness of these models is still contingent upon
the ability to write effect prompts, a task that often requires trial and error, even for NLP

111

experts [59, 280]. While LLMs can process complex queries, allowing users to provide rich clues
for search, as users often receive a response from LLMs instead of having the opportunity to browse
through multiple potential solutions as in conventional information retrieval approaches, it poses
a challenge for discovering suitable solutions when queries fail to direct the LLM effectively.

In this chapter, we posit that considering developer context can alleviate the challenges asso-
ciated with software information seeking, as it can explain some of the programmers’ information
needs, even when not explicitly expressed in their queries. Context is defined as “everything that
affects a computation except the explicit input and output” [139], or, more specifically for the in-
formation retrieval system, as “everything that a perfect information retrieval system would need
to know about the user, their situation, the domain, and anything else in order to return exactly
the results relevant to the user’ s stated query” [67]. Leveraging context has proven beneficial in
other domains, such as search engines and assistance systems, which have successfully utilized
spatiotemporal context and interaction history to provide personalized results [48, 67, 82]. Al-
though mostly imagined to operate without considering the software development context, thus
serving as a “one size fits all” solution, there is already a vision in our community that contextual
search would be useful in supporting developers’ information seeking [13, 215].

We argue that the time is ripe to begin developing personalized information support. The
personalization of information support for programming might have not seemed to be feasible,
as most of the general information seeking was done at search engines, which can only retrieve
information from existing documents, providing a limited level of personalization. However, since
LLMs generate information, they can further personalize the information support, by suggesting
or skipping information at a granularity finer than a document level, which retrieval mechanisms
like search engines are limited to, and LLMs can even format the information as the programmer
would want it. Furthermore, LLMs can accept a much richer request than a single search query
that programmers often use for information retrieval with search engines, enabling the user to
provide even broader contextual information.

As an initial step towards providing personalized information support, this chapter focuses on
identifying the categories of context that may enhance information support and testing the fea-
sibility of measuring the impact of including such contextual factors on developers’ productivity,
especially when working with unfamiliar code. Through the examination of ChatGPT prompts in
software engineering artifacts and an experimental ablation study, this research aims to address
the following questions:

• RQ8.1: What are the contextual factors programmers use in information seeking?

• RQ8.2: Does providing contextual factors enhance the quality of generated information?

8.2 RQ8.1: Understanding Context for Information
Support

We conducted an empirical study to understand what type of contextual factors can be useful
in satisfying the information needs of programmers in the context of LLM-based information
support.

112

8.2.1 Study Design

We analyzed the DevGPT dataset [271]. DevGPT comprises mentions of ChatGPT conversations
in software development artifacts, including GitHub commits, issues, pull requests, discussions,
files, and Hacker News. The dataset 23 contains 4,733 shared ChatGPT links, a total of 29,778
prompt/answer-pairs, sourced from 3,559 GitHub or Hacker News references.

First, as we have little prior understanding of how programmers express their information
needs to LLM-powered generation-based information support tools, we performed open coding.
For the initial analysis, we randomly selected 10 conversations per source type (e.g., GitHub
issues), resulting in 60 conversations. We excluded the ChatGPT conversations that contained
dead links (i.e., 404), or the ones containing prompts written in languages other than English.
We also excluded the conversations that are not relevant to Software Engineering tasks, such as
“what’s the real Netflix idea origin story?” The open coding was conducted at a phrase level,
where a phrase can be a sentence (e.g., “What is immutability?”, or a part of a sentence (...“expert
python programmers”...).

The open coding process yielded 39 distinct codes, encompassing various information needs,
relevant contextual information provided, and some guidelines for directing LLMs. A significant
observation from the initial coding phase was the substantial overlap among many codes with pre-
existing categories and dimensions identified in the studies of programmers’ information-seeking
behavior [79].

Overlap with existing knowledge on information needs. The initial coding revealed that
the types of contextual information programmers supply are very similar to what they have
provided as part of their Stack Overflow questions [146]. Specifically, we observed that the
information needs we coded overlap with the seven-question types from Beyer et al. [31]: API
usage, Conceptual, Discrepancy, Errors, Review, API change, and Learning. Beyer et al. [31]
studied and merged the taxonomies of prior studies [16, 252] on information needs and created
a new taxonomy of information needs shown in Stack Overflow questions. As the taxonomy is
broad enough to cover the general information seeking in software engineering, although the focus
was API-related questions, we found that it can explain more general information needs expressed
in the DevGPT dataset.

Overlap with existing knowledge on contextual factors. The initial coding also revealed
some overlap with the varied contextual factors influencing developers’ information seeking be-
havior in conventional setting, studied by Freund [79]: Personal factors, Project factors, Work
task factors, and Information task factors. The list was created before the advent of LLM-
powered information seeking, from a semi-structured interview study conducted between 2004
and 2005, where programmers relied heavily on conventional information seeking, using search
engines, documentation, and communication with colleagues. Although numerous studies have
explored programmers’ information foraging strategies and how these strategies vary with differ-
ent programmer backgrounds [126, 151]), the differences were mostly discussed as implications
from studies on documentation or program comprehension, providing more in-depth, but not
extensive lists of contextual factors influencing programmers’ information-seeking behaviors.

2320231012 snapshot

113

8.2.2 Results: Contextual Factors Used by Programmers
We conducted a second round of coding, using the two taxonomies discussed above (information
needs, and contextual factors). The closed-coding round resulted in 6 codes for information
needs (Table 8.1), and 5 codes for contextual factors (Table 8.2). The codes from the existing
two taxonomies could cover multiple codes, reducing the number of codes, from 39 to 11. For
example, both phrases coded as “context: repo” and “context: environment” in the previous open
coding fell under the “Project Factors” in this round of coding.

Table 8.1: Descriptions and examples of information needs types.

Code Description & Representative Quote

Impleme-
ntation

Needs information to implement specific functionality
“How can I use cef to make Chrome devtools open on selected screen?”

Conceptual Needs information about conceptual knowledge, such as design patterns or
architectural styles
“What is immutablity?”

Discrepancy Needs information to understand and resolve unexpected behavior
“Why is my redirect not working?”

Error Needs information to resolve exceptions and errors
“that produces this error, how do we fix it?”

Review Needs information to find for better solutions, best practice approaches, or
verification of the program.
“Is there anything you suggest as an alternative?”

Learning Needs resources to learn a tool, language, or concept.
“Could you generate a description of how it works that a 10-year old might
understand.”

The information needs articulated in the prompts were closely aligned with the taxonomy of
Beyer et al. [31]. Our analysis of the sampled ChatGPT prompts revealed the presence of six out
of the seven categories in the original taxonomy.

Many prompts contained phrases such as how to implement something or ways of using
something, initially suggesting an alignment with the “API usage” category. However, to more
accurately encapsulate the broader scope of information needs beyond just API knowledge ex-
pressed in these how-to inquiries, we revised this category to “Implementation”. This adjustment
better reflects the varied implementation-related questions found in the prompts. We observed
an absence of prompts explicitly seeking information on “API changes”, indicating a potential
area of lesser concern or different information-seeking behavior among ChatGPT users.

Out of the four categories identified by Freund [79], “Personal factors”, “Project factors”,
“Work task factors”, and “Information task factors”, “Information task factors” were excluded in
our final codebook as they cover the same dimension as the information needs, which was covered
in our previous codebook. “Work task factors” was further divided into “Task Requirement”,
“Status Description”, and “Software Artifact” as the task factors were specified in detail in the
majority of the prompts. In the end, contextual information in the prompts resulted in five codes:

114

Table 8.2: Descriptions and examples quotes of contextual factors

Code Description & Example

Task
Requirement

Descriptions of the functional and non-functional requirements of the task
“I want to develop an extension that needs to keep track of all tabs, even
when the browser restarts.”

Status
Description

Descriptions on the current status of the task, including the functionality
that has been implemented or the actual undesirable results obtained
“It seems the script is not finding C column in Dashboard sheet”

Software
Artifact

Products or by-products of software systems, including source code, error
messages, or runtime outputs
“TypeError: Cannot read properties of undefined (reading ’importKey’)”

Project
Factors

Factors relevant to the software engineering projects, including a range
of characteristics of the technical infrastructure or project scope, plan, or
application domain
“Packages: mplayer, vlc, all the packages from base-devel ...”

Personal
Factors

Programmers’ personal backgrounds including expertise in programming,
familiarity with application domains, and roles
- familiarity: “Yes, I am familiar with statically typed languages, and the
hazards of javascript loosely typed variables”
- role: “We are expert python programmers and data analysts/data scien-
tists/researchers”

115

Task Requirement describes the goal and the constraints of the software engineering tasks
programmers are working on. This code includes the desired functionality, type of functional
improvement (e.g., “I never want any downtime which would cause the images to not display.”)
or non-functional improvement to make (e.g., “Provide several suggestions for potential indexes
that might speed up the query...”), and some constraints like “All divs appended to ’theGridItself’
must be organized such that each row consists of ’squareSideSize’ number of divs, no more and
no less.”
Status Description describes the less-desired current status, such as implemented functionality
that requires further work or that does not meet certain functional or non-functional requirements,
such as “Now, it ignores your default browser and opens links in Edge by default.”
Software Artifact includes source code, error messages, runtime outputs, and test cases that are
generated during the software development life cycle. This is provided to incorporate a detailed
context of the software systems and the status.
Project Factor includes meta-information of the software engineering projects programmers
work on, including the technical infrastructure of the system they are working on, the program-
ming languages, platforms, tools, packages, operating systems, and devices.
Personal Factor is related to the individuals, describing their professional expertise (e.g., “I am
a beginner”), familiarity with application domains (e.g., “I don’t have much experience working
with google drive.”), libraries, frameworks, or programming languages, and programmers’ roles
(e.g., software architect). This is often provided to set the depth of the information generated by
LLMs.

8.3 RQ8.2: Experimental approach to measuring the
value of providing additional contextual factors

From our qualitative analysis, we identified various contextual factors that programmers consider
when seeking information using large language models (LLMs). This observation aligns with em-
pirical evidence from our previous study detailed in Chapter 7, which indicated a preference among
programmers to integrate their context into such systems. Despite these findings, the direct im-
pact of these contextual factors on the effectiveness of information generation remains uncertain,
primarily due to challenges in quantitatively assessing the benefits of context integration. To
address this gap, we have designed a novel experimental ablation study. This experimental study
aims to quantitatively measure and compare the influence of different contextual factors, thereby
elucidating their specific contributions to enhancing the quality of information support provided
by LLMs.

8.3.1 Study Design
LLM-as-a-judge
The most straightforward way of measuring the usefulness of adding contextual factors is to com-
pare the quality of information generated with and without specific contextual factors. Ideally,
evaluating the quality of responses would involve consultations with human experts or conducting
A/B tests with actual programmers. However, such evaluations can be very expensive, partic-
ularly because evaluating the quality of information for real-world software engineering tasks
demands extensive technical expertise.

116

Table 8.3: Summary statistics of LLM coding

Prompt Task Re-
quirement

Status
Description

Software
Artifact

Project
Factor

Personal
Factor Total

458 364 66 255 179 47 911

To mitigate this challenge, we propose an experimental evaluation approach, using to the
“LLM-as-a-judge” framework [284]. This method offers a cost-effective and scalable alternative
for evaluating various LLMs. In this setup, a robust base LLM, serving as the “judge,” is presented
with corresponding outputs from two different LLMs, and a specific problem description to be
used to ground its evaluation. The judge LLM is then tasked with selecting the preferred answer
based on certain criteria, and with providing rationale behind the comparison.

For our study, we compare responses from the same LLM, GPT-4, generated with and without
a particular contextual factor. We utilize a prompt template designed by Zheng et al. [284], which
instructs the LLM to evaluate responses based on criteria such as helpfulness, relevance, accuracy,
depth, creativity, and detail. In this experiment, we choose GPT-4 as the judge, following findings
by Zheng et al. [284] that it exhibits the highest agreement level with human evaluations at 85%,
surpassing even the between-human agreement rate of 81%.

Data Collection

To compare the responses generated with and without specific contextual factors, it is essential
to include user prompts that incorporate additional contextual factors identified previously. As
manually coding the dataset is impractical, especially given the technical complexity, and thus
the long conversations, included in DevGPT dataset, we decided to employ an LLM for automatic
coding. We utilized a GPT model, following Chew et al. [47], which involves instructing an LLM
to perform deductive coding using a predefined codebook. We adopted their prompt template,
utilized the codebook from the previous section, and employed the GPT-4-turbo-preview model
for this task.

To accurately assess the impact of contextual factors, we only included conversations that
consisted of a single user prompt and a single response, with the prompt length limited to 4,096
characters. The LLM coder was allowed to apply the same code (e.g., “project factor”) multiple
times within a single prompt, but each segment of text was assigned only one code.

The results of LLM coding are detailed in Table 8.3. In our analysis, the LLM coder processed
458 ChatGPT prompts from the DevGPT dataset, assigning a total of 911 codes. A substantial
majority of the prompts (79.47%) included task requirements, and over half (55.68%) contained
software artifacts such as code snippets or error messages. The most common of the other
contextual factors were project factors (e.g., programming languages in use),while personal factors
(e.g., programmers’ experience level) were the least common.

Although LLM coding facilitated large-scale analysis, the accuracy of the coding was insuf-
ficient for direct use in further steps. For instance, the model struggled with personal factors,
often confusing context related to the prompt writer (e.g., “We are expert python programmers
and data analysts/data scientists/researchers”) with hypothetical scenarios (e.g., “Imagine being
a developer advocate with 5 years of experience”).

117

We also discovered that some contexts, particularly task requirements or status descriptions,
were critical to the prompts, which posed challenges for our ablation experiment. In many cases,
prompts were entirely coded as task requirements or status descriptions, such as “Create a python
script to send a DNS packet using scapy with a secret payload.” As excluding these contextual
factors would leave insufficient information in the prompts to generate meaningful responses for
the experiment, we refined our focus to software artifacts, project factors, and personal factors,
which were less intertwined with the essential content. We also encountered prompts where
software artifacts were pivotal, such as those containing solely an error message, but decided to
keep software artifacts as one of the context categories for ablation study, because there were
still many prompts adding software artifacts to enhance LLM responses even when they were not
pivotal.

To address issues arising from coding accuracy and to filter cases where the context was critical
in the prompts, we conducted a manual review of the LLM coding before proceeding with the
ablation experiment. Starting with personal factors, due to their fewer instances, we identified 12
suitable for the ablation experiment. We then randomly sampled instances of software artifacts
and project factors and continued filtering until we had 12 suitable instances from each of the
three other categories to balance the category distribution in the experiment.

Experiment Protocol

For an ablation study, for each prompt, we requested LLM to generate responses for the original
prompt (e.g., “... Assume I am a beginner and have no git and node installed. ...”) in the dataset,
and the prompt after excluding the contextual factors (e.g., “... Assume I have no git and node
installed.”). We then provided the two responses to the LLM evaluator to attain verdicts. The
prompt template for the LLM evaluator consisted of a problem description, explaining the user’s
request, and two responses to compare. For both LLM generator and LLM evaluator, we used
the same model, GPT-4. This consistency helps minimize any potential self-enhancement bias,
where evaluators might prefer responses from the same model used for generating answers.

To quantify the impact of context on response quality, we introduced two metrics: score-
original and score-removed. The score-original was calculated by providing the evaluator with the
original, context-rich prompt as the problem description alongside the two different responses to
compare. Conversely, the score-removed was derived by providing the modified, context-reduced
(i.e., de-contextualized) prompt, with the two responses. These metrics are intended to reveal the
importance of contextual information at different perspectives, with score-original highlighting
the importance of not missing certain context, and score-removed assessing the effectiveness of
augmenting additional context in prompt.

To compensate for randomness and evaluator bias, each evaluation was repeated four times.
We also counterbalanced the presentation order of the responses to remove positional bias, where
the evaluator might favor the first-presented answer. We computed the scores by counting how
many times the response generated with the original, context-rich prompt wins, making the
possible range of both scores -4 to 4. A positive score means that the response generated with
the prompt with contextual information was judged to be better, a negative score means the
opposite, and 0 means the two responses are similar (i.e., tie).

The example original prompt, de-contextualized prompt, LLM generator’s responses gener-
ated with the two different prompts, the LLM evaluator’s comparisons with the rationales, and
how we calculated the scores can be found in Table 8.4.

118

Table 8.4: An example the user prompt and the LLM-as-a-judge evaluation result including
the comparison result and the rationale behind it. A/B in the parenthesis indicates which
Assistant generated the response for the prompt with contextual information.

User Prompt
Mention
Link

https://github.com/Vandivier/ai-snacks/blob/
c732a2bd53da134adfc5eb1fcd0e972e9d35ec53/time-to-learn-coding-
twitter-thread/README.md

Org. Chat-
GPT Conv.

https://chat.openai.com/share/df755e01-51c1-4f76-8adb-8b3e03656995

Prompt
(context
removed
for prompt-
removed)

ROLE: We are expert python programmers and data analysts/
data scientists/researchers
CONTEXT: the attached raw-thread-text.txt file contains a raw and
unstructured text dump based on a Twitter thread. In this thread, in-
dividuals discuss how long it took them to learn to code. ...

LLM Responses
Response:
original

To achieve the task of analyzing the time it took for individuals to learn
coding as a skill and then land a professional programming job from a
raw ...

Response:
removed

Given the task at hand, we’ll need to execute a few steps to efficiently
create a structured dataset from the raw, unstructured text dump...

LLM-as-a-judge Evaluation & Rationale - Score-original: 4
Problem
Desc.

ROLE: We are expert python programmers and data analysts/data sci-
entists/researchers CONTEXT: the attached raw-thread-text.txt file...

org-1 (A) ... Assistant A’s inclusion of a anticipatory guidance on potential chal-
lenges related to data extraction and the need for advanced NLP tech-
niques, ...
Final Verdict: [[A]] (+1)

org-2 (A) ... Final Verdict: **[[A]]** (+1)
org-3 (B) ... Final Verdict: [[B]] (+1)
org-4 (B) ... Final Verdict: **[[B]]** (+1)

LLM-as-a-judge Evaluation & Rationale - score-removed: 2
Problem
Desc.

CONTEXT: the attached raw-thread-text.txt file contains a raw and
unstructured text dump based on a Twitter thread. ...

rm-1 (A) ... Assistant A has a slight edge due to its detailed technical guidance
and realistic acknowledgment of the complexity involved in dealing with
unstructured text data. Therefore, [[A]] (+1)

rm-2 (A) ... [[A]] (+1)
rm-3 (B) ... [[C]] (0)
rm-4 (B) ... **Verdict** [[C]] for a tie. (0)

119

Table 8.5: Summary statistics of the comparisons between LLM response generated with
prompts, with and without a specific contextual information category. avg. columns show
the average score, and CI columns indicate the confidence intervals.

Context n Score-Original Score-Removed Score Difference
avg. CI avg. CI avg. CI

Artifact 12 3.17 [2.27, 4.06] 0.92 [-0.37, 2.20] 2.25 [0.87, 3.63]
Personal 12 0.92 [-0.40, 2.23] 0.08 [-1.28, 1.45] 0.83 [-1.15, 2.82]
Project 12 2.08 [0.56, 3.60] 0.00 [-1.65, 1.65] 2.08 [0.74, 3.42]
All 36 2.06 [1.33, 2.78] 0.33 [-0.43, 1.09] 1.71 [0.87, 2.58]

8.3.2 Results: Impact of Including Contextual Factors in Re-
sponse Quality Enhancement

Table 8.5 summarizes the evaluation results. The average score-original, the score measured with
the original, context-rich prompt as the problem description for the LLM evaluator, of 2.06 out
of 4 indicates that including appropriate context information, or not missing necessary context
in the prompts, can help generate better-quality LLM responses. The average score-removed, the
score measured with de-contextualized prompt as the problem description, of 0.33 indicates that
additional contextual information leads to answers that are perceived as slightly better, although
the effect is not significant. The difference between the score-original and the score-removed
(score-original - score-removed) was 1.71 on average, indicating that the benefit of including
additional contextual information may be less significant, compared to not missing important,
critical context.

Software artifact

Both scores suggest that including software artifacts in the prompt is beneficial: the score-original
of 3.17 and the score-removed of 0.92 are the highest among the three context categories. The
LLM evaluator preferred responses that included software artifacts, noting they “provide a more
accurate, relevant, and detailed response to the user’s requirements,” and adhere better to “the
output format.” However, there are indications that including additional software artifacts can
sometimes confuse the LLM evaluator, as evidenced by the disparity between the score-original
and score-removed. For example, when LLM evaluator is asked to compare two responses with
the de-contextualized prompt as the criteria, the LLM evaluator found the response generated
with the original prompt to provide unnecessary information, mentioning “Despite [response
generated with the original prompt] providing valuable additional advice, [response generated with
de-contextualized prompt]’s response is more aligned with the user’s immediate needs.” This
suggests that while adding software artifacts may enhance responses in general, it is most effective
when the artifacts are directly related to the developer’ s current task. It also indicates that
indiscriminately including every code snippet and error message might not necessarily enhance
the quality of an LLM’ s response.

120

Project factor

Responses that are generated with prompts including project-specific factors achieved an average
score-original of 2.08. This suggests that integrating these factors allows the LLM to generate
more relevant responses tailored to the specific system a programmer is working on, thereby
providing solutions that are better contextualized to the task at hand. For example, the LLM
evaluator noted, “[A response generated with contextual information] provided a comprehensive
answer, addressing various architectures and project requirements.”

However, when evaluated in a more general setting, with the de-contextualized prompt as the
problem description, the inclusion of additional project factors did not improve the score-removed,
which remained at 0.00. In some instances, adding project context refined the responses, which
proved beneficial. For instance, one response was described as “[providing] a slightly more technical
and in-depth analysis.” Conversely, for certain project factors (e.g., “I’ m writing an iPhone Swift
meditation app”), this additional information led to responses being overly specific, such as in
cases where “the response was too detailed for a user who did not specify their development
platform and asked a broad question.”

Personal factor

The average score-original of 2.06 out of 4 suggests that including relevant personal characteristics
in the prompts (e.g., user’s experience level) can enhance the LLM’s responses by allowing it to
adjust the complexity and provide more detailed explanations. For instance, the LLM evaluator
noted that “[response generated with the original prompt including the personal context] adds a
layer of depth to the advice that could be especially beneficial for data scientists and researchers.”
However, the differences between score-original and score-removed were the highest among the
three context categories, as indicated by wide confidence intervals, 3.97, in score differences. This
variability may be because personal factors influence the tone and depth of answers generally, so
the evaluation heavily changes based on the problem description. This may indicate that although
including the personal context might support LLMs generating better responses in general, but
not consistently.

Length analysis

Previous research has found that LLM evaluators tend to prefer longer responses due to a length
bias [284]. Given that LLMs often produce longer responses when prompted with longer inputs,
this could have influenced our results, as the original prompts were designed to be longer than the
de-contextualized prompts. To investigate the presence of a length bias in our evaluation, we con-
ducted a lightweight sanity check on whether a comparative quality benefit—specifically, higher
scores—was attributable to the length (number of characters) difference between the original and
de-contextualized prompts.

The results, shown in Figure 8.1, suggest that the influence of length bias might not be
significant. Despite the challenges of conducting statistical tests due to the small sample size,
there is no clear trend indicating that scores increase with the length difference; in fact, the
opposite trend was observed for software artifacts and project factors. This finding suggests that
augmenting user prompts with overly lengthy context may not always contribute to the response
quality enhancement, as it could potentially confuse the LLM or lead to overly specific responses,
diminishing the quality of the output.

121

-5

-3

-1

1

3

5

0 250 500 750 1000 1250

(a) Software Artifact

-5

-3

-1

1

3

5

0 50 100 150 200 250

(b) Project Factor

-5

-3

-1

1

3

5

0 100 200 300 400

(c) Personal Factor

Figure 8.1: Scatter plots showing the trends between the character length difference be-
tween the original and de-contextualized prompts (x-axis) and the score-original (y-axis).

8.4 Discussion
By analyzing the information needs and contextual factors shown in LLM prompts, we have
identified 6 types of programmer information needs and 5 types of contextual factors programmers
provide as part of their prompts. In addition, through an experimental ablation study gauging
the usefulness of the contextual factors, we saw promising findings indicating that adding these
contextual factors can enhance the quality of LLM-generated information.

8.4.1 Study Design Limitation
However, although the ablation study to measure the importance of contextual factors is novel,
and utilizing LLM-as-a-judge idea allowed us to automate the experiment, it also still holds many
limitations.

Multiple layers of LLM usage

The study design involves multiple layers of LLM usage: we first generate responses using LLMs,
with and without contextual factors in the prompt, and then evaluate these responses also using
an LLM. While this methodology enables the automatic quality evaluation of different contexts—
potentially facilitating larger-scale studies in the future—it also introduces significant noise into
our experiment. Specifically, we observed inconsistencies in the criteria used by the LLMs during
response generation and evaluation. Even though we employed the same model, GPT-4-turbo-
preview, for all tasks, the necessity to initiate each chat anew made it challenging to maintain
a consistent rationale and evaluation criteria between the generating and evaluating LLMs. For
instance, the LLM generator provided a response to the prompt including a personal factor “I am
a beginner” by omitting complex troubleshooting details present in the de-contextualized version,
possibly because beginners might not be able to understand or need the troubleshooting details.
However, when the LLM judge compared the two responses for score-original, it favored the de-
contextualized response for including detailed troubleshooting information, noting: “This small
detail could significantly aid users facing execution issues, making it a valuable inclusion.” In-
consistencies, and unclear rationale behind LLM responses of each layer, necessitated the manual
investigation to interpret the results, which we discuss more next.

122

Need for human verification
In our study, we encountered significant limitations stemming from the need for extensive manual
verification, contradicting our initial goal of using LLM evaluations to facilitate a large-scale
study. This need arose due to inaccuracies in the coding step (see Section 8.3.1-Data collection),
inconsistencies between the LLM generators and evaluators, and challenges in interpreting LLM
evaluations. Specifically, manual qualitative coding limited our dataset to only 60 ChatGPT
conversations for code identification. Furthermore, the need for preliminary manual verification
of LLM-generated codes restricted our analysis to a sampled set of prompts for the ablation
study. Expanding human resources could potentially aid in scaling the experiment; however, the
expensive nature of human evaluation, particularly for technically complex content, inherently
limits the practical expansion of the study. Therefore, we believe that developing mechanisms to
reduce the reliance on human verification or to streamline the human evaluation process will be
crucial for effectively scaling this experiment in future research.

DevGPT dataset
The inherent limitations of conducting experiments with a pre-generated dataset, such as De-
vGPT, are also significant. For example, DevGPT, collected from public, open-source interac-
tions with ChatGPT in October 2023, does not include data from proprietary software systems.
Thus, the contextual factors identified in the DevGPT data may not be the extensive set of
all possible factors users might use, as we might have missed them in coding. Moreover, the
dataset’s temporal scope means that many conversations may have been exploratory in nature,
as the snapshot we used in the study was collected in October 2023, not too long after Chat-
GPT’s public release in November 2022. Despite our efforts to manually filter out irrelevant
interactions, such as philosophical inquiries or tests of malicious intent, the broader evaluation
of contextual factors’ value might still inadvertently include such data. Thus, we do not claim
that we identified the extensive set of contextual factors or our finding can be generalized, and
believe that similar studies with different populations, ideally with larger-scale, are needed to
better reflect the evolving real-world use of LLMs by programmers.

8.4.2 Potential for automatic contextualization
Despite the limitations, the experimental study provides some promising preliminary evidence on
the benefit of not missing important contextual factors, or even including additional ones. Thus,
we argue that it might be worth investigating ways of automatically augmenting the user prompts
by adding contextual factors, to enhance the programmers’ information seeking in general. This
may alleviate the programmers’ challenges in forming effective prompts for LLM due to their lack
of expertise in application domains or programming. In this section, we provide some ideas on
how we can automate this context augmentation of the user prompts. Specifically, we examine
each contextual factors we discovered focusing on where they can be found (source) and whether
they change over time (variability).
Sources. Not all contextual factors are observable. For example, the programming language
might be easily identifiable from the file names, but it will be harder to identify the quality
requirements of the software system. General contextual search mainly uses observable variables
(e.g., search history) as it is difficult to make direct use of unobservable variables (e.g., demo-
graphic data). However, as most of the software engineering artifacts are archived, we envision

123

that some of the commonly unobservable factors that will be useful in developer information
support can be identified from other sources. For example, the history of software systems, issue
logs, continuous integration logs, or code reviews in version control systems (e.g., GitHub)will be
useful in inferring both the history of the developer and what they work on. From the developer’s
IDE, the current project, code-base, and interaction traces can be collected to understand the
developer’s current context. For contextual variables that are not easily inferred from any of the
sources, it might also be possible to ask users directly.
Variability. All software evolves, as do its developers, so most contextual factors change over
time. Thus, the context might also be re-inferred or updated as the software and developer
change. Knowing how often they get updated is necessary to properly update the context, as
they can vary by context factors. For example, the job title of a developer rarely changes, but
their familiarity with a certain API method will be updated fairly frequently.

Software Artifact ← IDE logs, search queries, prompts
Software artifacts, including code snippets, test cases, or error messages can be extracted from
the local file systems, online source repositories, continuous integration tools, and input/output
of terminals. In addition to the above, the developers’ IDE interaction history will also be useful
in understanding the developer’s interest (e.g., focal points in code) and clarify the relevancy of
software artifacts to the current task of the developer. However, software artifacts can frequently
change, as developers work on multiple tasks [85]. Sometimes, developers might work on multi-
ple tasks concurrently [114], so inferring the relevant software artifacts to include will be more
challenging than identifying appropriate context of other types.

Project Factor ← design documents, backlogs
Project context, such as the length of the project or technical infrastructure, does not change
often or changes slowly, especially when the project is well-planned. Technical infrastructure,
like programming languages, libraries, their versions in use, operating systems, and devices, will
be easier to extract. Many of the technical infrastructure can be inferred from the configuration
and build files, such as pom.xml for Maven or package.json or tsconfig.json for Typescript.
Technical infrastructure does not often change after the software design phase, unless there are
large refactorings or significant changes in requirements. Project scale, size, and domain can
be easily inferred if there are written requirements or design documents, and the status can
be inferred from the backlogs or task management tools (e.g., Kanban boards). However, when
the project plan is not well documented (e.g., when it is initiated in a casual setting and grows
organically), it is harder to infer the project scale or size, and explicit user inputs will be necessary.

Personal Factor ← user input, IDE logs, personal repo.
The simplest way of extracting personal factors, including the developer’s expertise in program-
ming, application domains, libraries, tools, and roles, is to explicitly ask the developer to provide
the information. As backgrounds or preferences will only rarely change and can be easily answered
by users, it might be worth asking them when they start using the information support, as many
recommendation systems (e.g., Apple Music) do when users sign up. The full personal context
may not be obvious if not provided by the developers, but parts are still inferable from external
sources. Personal repositories in a version control system or professional networking platforms

124

will be useful in inferring the expertise levels, skills, and backgrounds. They contain the history
of the developer’s programming works from which their use of programming languages, libraries,
design patterns, and API methods can be easily inferred. In capturing developer backgrounds as
well as their skills and expertise, LinkedIn or resumes will be great sources.

8.5 Summary
In this chapter, we identified the information needs of programmers and the contextual factors
programmers use in the LLM-powered information support setting by analyzing the ChatGPT
prompts used in the software engineering context. We further conducted an experimental ablation
study to measure the importance of including such contextual factors in prompts, in enhancing
the LLM response quality. The study provided promising preliminary evidence that adding
contextual factors can be useful in providing better information support based on criteria such
as helpfulness, relevance, accuracy, depth, creativity, and detail. We believe that this chapter
motivates the appropriate augmentation of diverse contextual factors in providing LLM-powered
information support for programmers, and provides a good starting point for the future generation
of information support that is more contextualized and, thus, more effective.

125

126

Chapter 9

Conclusion & Future Work

9.1 Summary of Contributions
This thesis makes a number of major contributions to enhancing information support for pro-
grammers’ learning, including:

• A thorough review of the background and related work on programmers’ information seek-
ing in general, and the various information support approaches (Chapter 2).

• Evidence that programmers’ different use of documentation correlates with their user char-
acteristics (e.g., experience level with the API), and with their future API adoption (Chap-
ter 3).

• A novel approach for documentation design review using page-view log analysis (Chapter 3).

• MARBLE, an automatic approach to identify boilerplate code from API client code (Chap-
ter 4).

• A dataset of boilerplate code for 13 popular Java libraries (Chapter 4).

• Evidence that push-based comparable API methods information support can enhance pro-
grammers’ understanding of API design space (Chapter 5).

• A prototype information support tool that presents comparable API methods within Chrome
browser (Chapter 5).

• SOREL, a learning-based model extracting comparable API methods and the support
evidence from Stack Overflow posts (Chapter 5).

• A dataset of comparable API methods including 587 Stack Overflow answers, with 198 pairs
of comparable API methods and 737 sentences summarizing the relations (Chapter 5).

• Showing the feasibility of providing programming by example support for real-world library
users to mitigate the issue of the lexical gap (Chapter 6).

• A language model, which can predict a sequence of API methods given input and output
value pairs (Chapter 6).

127

• Evidence that in-IDE, context-aware, prompt-less support using an LLM can help pro-
grammers working with new APIs complete more tasks (Chapter 7).

• A prototype in-IDE information support tool called GILT, that generates on-demand in-
formation using an LLM while considering the user’ s local code context (Chapter 7).

• A novel experimental approach to measure the value of adding different contextual factors
into LLM prompts in the response quality (Chapter 8).

• A preliminary evidence that including contextual factors are useful in enhancing the LLM
response quality (Chapter 8).

9.2 Discussion & Future Work
Efficient and effective information seeking for programming is still a largely unresolved problem,
requiring lots of research. How different programmers seek information is still an open problem,
especially with the introduction of LLM-based information seeking, which totally changes the
strategies and behaviors of programmers. There are many practical future work items, including
extending the prototype tools to support other languages or libraries, but in this section, I focus
on future directions that require collaborative efforts.

More Personalized and Broader Information Support
In this thesis, I have concentrated on providing information support for professional program-
mers dealing with code that involves unfamiliar APIs and concepts. This work represents an
initial exploration into the design of intelligent information support tools. Moving forward, it is
imperative to consider more diverse scenarios (e.g., software design, refactoring) and users (e.g.,
end-user programmers and software architects). To support more diverse programmers in infor-
mation seeking, it will be necessary to first understand the specific challenges they face with the
intelligent information support tools. In-depth analysis with end-user programmers or program-
mers with specific roles can be conducted, like those reported in Chapter 7. To support broader
tasks, information categories that have not covered in this thesis should also be prepared, beyond
learning resources like documentation or usage examples. The various information needed for
tasks like system design, debugging, refactoring, and testing, often involving multiple source files,
may be prepared with program analysis techniques, in addition to the learning-based approaches
trained with code data.

To provide support for broader tasks and users, further research is required to determine
the extent and nature of the additional context needed, as its impact on response quality was
highlighted in Chapters 7 and 8. Particularly, there is a need to develop a better understanding
of the appropriate scope of context, to build sophisticated methods that can accurately predicting
user intent, task scope, and relevant context for effective augmentation. For this, we advocate
for a larger-scale version of our experimental ablation study, as detailed in Chapter 8, using
more recent data that mirrors real-world usage patterns rather than exploratory usage of LLMs.
Such a study would be invaluable in identifying common strategies among programmers and
understanding the relationship between the necessary context and their information needs.

128

Smooth Transitions of Programming Tools with New Intelligent
Solutions
Research on integrating LLMs within the framework of existing programming tools, originally
developed under more traditional paradigms, presents numerous opportunities to facilitate smoo-
ther transitions for programmers. Adopting interfaces with which programmers are already fa-
miliar is a good strategy, as it will leverage existing user comfort while introducing advanced
capabilities. For instance, the introduction of prompt-less interactions in Chapter 7 in GILT
proved effective, as programmers were already familiar with retrieving some information with
a shortcut or a button, by using static analysis tools within IDE. Continuing this exploration
by further integrating context-sensitive and user-friendly interfaces can significantly reduce the
cognitive load on programmers as they adopt new programming tools.

Moreover, incorporating ideas used in more conventional programming tools into LLM-
powered tools can enhance the experience for programmers familiar with chat-based interfaces.
For example, although the SOREL system, described in Chapter 5, targets programmers who
primarily seek information through search engines, the concept of push-based information deliv-
ery can be adapted for chat-based interfaces. This adaptation could involve suggesting follow-up
queries or offering additional information proactively, even if the user has not explicitly requested
it. Ideas like programming-by-example support in Chapter 6, and Chapter 4’ s discussion on
the utility of presenting boilerplate code, are also transferable across various interface designs.
Reusing such strategies will provide opportunities to improve the usability and effectiveness of
existing chat-based LLM tools.

User interfaces for intelligent information support systems also require research. Through
our analysis, we observed that how and when information is presented can influence the benefit
(e.g., Chapter 5), and can even benefit programmers differently (e.g., Chapter 3 and 7). Although
some researchers have explored different design options in designing LLM-powered programming
tools [21, 275], I believe more exploration is needed to support diverse populations. Specifi-
cally, the chat interface, which is commonly used for LLM-powered tools, is known to introduce
challenges when the users are not already familiar with the application domains. Given that pro-
gramming tools often have access to many contextual factors, more natural interfaces can be built
by using such additional factors to infer users’ information needs and intents. We believe that
further research is needed, exploring various interaction options to support a diverse programmer
population.

Understanding evolving information-seeking strategies among pro-
grammers using generation-based information support
Recent developments in LLM-powered programming tools have introduced a new paradigm for
programmer information seeking, allowing for the generation rather than retrieval of information.
Despite this, as discussed in Chapters 7 and 8, programmers still employ and need traditional
information-seeking strategies similar to those used in conventional settings, including skills like
query revision to elicit useful responses from LLMs.

We hypothesize that the continued reliance on traditional strategies may be attributed to the
novelty of LLM-powered tools, with programmers still in the early stages of adapting to these new
technologies. As prompt engineering techniques improve and guidelines for effective interaction
with LLMs become more widespread, we anticipate that programmers might adopt entirely new

129

strategies. Moreover, we predict that these strategies could vary significantly across different
generations of programmers, ranging from senior software engineers accustomed to retrieval-based
searches to junior engineers who are more familiar with generation-based approaches. Thus, we
believe that understanding how these strategies evolve will be crucial for developing LLM tools
that provide effective support for programmers. This will not only enhance the productivity of
current programmers but also shape the training and integration of future professionals in the
field.

Next-generation SE with Programmer-AI partnership
In addition to the aforementioned future research directions, it is also important for us to un-
derstand what can be automated by intelligent solutions, and what should still be done by pro-
grammers, because, eventually, the software systems will be maintained and used by people, and
it is important for programmers to have an understanding of and control over the systems they
build. At the same time, it will be important to design and build the next-generation software
engineering processes, by answering questions like “What processes should we use to ensure the
safety, robustness, and privacy of software systems built with AI tools?” Programmer-AI align-
ment should also be studied further, by answering “How can we design better evaluation and
monitoring approaches to align AIs with SE experts?” and “How can we prevent misspecification
and misgeneralization?” Finally, to guide the advancement of intelligent solutions to be aligned
with what programmers need, further research is needed on how we evaluate the models. Specif-
ically, building benchmarks that are more grounded towards real-world software engineering will
be beneficial in extending the programming benchmarks, like HumanEval [44] or MBPP [22], that
are widely used to evaluate foundation models and provide evaluations that are better aligned
with real-world tasks.

Inter-community Collaborations for Future Programming Paradigms
Beyond the goals above, it is necessary for NLP, HCI, and SE research to forge future program-
ming tools that are not only accurate but also highly usable. Given that the forthcoming years
will witness a surge in tool development, potentially reshaping the programming landscape, it is
imperative that NLP researchers incorporate actual user needs into their model designs, and that
tool creators actively address assumptions and challenges posed by machine learning models.

9.3 Concluding Remarks
Software engineering is an information-intensive discipline. While building and maintaining soft-
ware systems, programmers face a broad spectrum of questions ranging from implementation
specifics to architectural concerns. However, satisfying their information needs is not easy, be-
cause the relevant information is often scattered across varying mediums in different formats.
It becomes even more challenging when a programmer needs to work with unfamiliar code or
libraries, without the necessary knowledge and experience to search for information effectively.

To mitigate some of the challenges in information seeking for programming, my research has
investigated designs, algorithms, and evaluation approaches for intelligent information support
for programmers. By combining multiple research methods at the intersection of Software En-
gineering, Human-Computer Interaction, and Natural Language Processing, I gained a richer

130

understanding of the information seeking of programmers as users and also found many insights
on how we can build better intelligent techniques to provide information support. For example,
Chapter 5 not only demonstrated that the push-based interaction support can help programmers
understand the API design space, but also built a learning-based model that can automati-
cally extract comparable API methods information from Stack Overflow. Or, in Chapter 7, by
building GILT and evaluating it with programmers, we could understand how programmers use
LLM-powered information support tools for code understanding, and showed that utilizing con-
text can be useful in information support, which led to the follow-up study of contextual factor
investigation. The series of projects in this dissertation, involving iterations of user studies and
tool building, demonstrates the importance of having user-centered tool support that helps in-
formation seeking for programming. It has been shown that user-centered intelligent support not
only yields valuable insights for designing more useful and usable tools but also improves the
performance of intelligent techniques used in these tasks.

As technology evolves at an unprecedented pace, there is a substantial effort being made
to create intelligent programming tools. However, there is still a disconnect in understanding
how programmers will use these tools and the implications of using them in real-world software
engineering. Like what I have demonstrated with this dissertation, the synergy that could be
achieved by studying both users and tools together holds immense potential. Thus, it is my
hope that more intelligent technique development efforts will adopt a user-centered approach.
By placing the users, here programmers, at the heart of tool creation, we can ensure that the
technological advancements we make are not only innovative but also practical and impactful for
the programmers who will use them, and eventually, the users of the software systems built by
the programmers.

131

132

Appendix A

More Results for Logs Analysis

Figure A.1: Distribution of the log-transformed total dwell time (in minutes) on documen-
tation.

133

5

4

10

7

5

9

7

5

9

81.1

85.9

72.3

Cluster�2�(11,596)

33.5651

49.54038

L

T
H

Q

M

O
P

Lg

Rn

Ref

C

0
3
6
9
12

15
18
20

Product 31.315.51637.6

Platform�Exp

API�Exp

Subsq�Req 1

1

3

1

1

2

2

1

2

96.1

97

93.7

Cluster�0�(8,138)

Intent 65.634.4

T
H

Q

M

O
P

Lg

Rn

Ref

C

0
0.3
0.6
0.9

1.2
1.5

1.8
2

L

Product 7418.770.9

Platform�Exp

API�Exp

Subsq�Req 0.2

0.5

0.1

0.2

0.3

0.4

0.2

0.4

99.3

99.6

98.8

Cluster�1�(12,496)

Intent 587.57

T
H

Q

M

O
P

Lg

Rn

Ref

C

0
3
6
9
12

15
18
20

L

56.141.112

16

11

16

15

11

21

13

10

20

55.8

67.4

43.3

Cluster�6�(6,107)

94.45.6

T
H

Q

M

O
P

Lg

Rn

Ref

C

0
30
60
90
12
0 1
50
18
0 2
00

L

200 200

20 2000

Figure A.2: Large clusters with more than 500 users sorted by the number of users (shown
in parentheses). Each polar plot displays the average time spent on each type of documen-
tation (T: Tutorial, H: How-to, Q: Quickstart, L: Landing, M: Marketing, O: Other, P:
Pricing, Lg: Legal, Rn: Release note, Ref: Reference, C:Concept). The small polar plots
show the average dwell time in the previous three months. Note that the ranges of the
axes of the plots vary. Bar charts below the polar plots show the proportions (%) of each
group in the cluster.

134

T
H

Q

M

O
P

Lg

Rn

Ref

C

L0
3
6
9
12

15
18
20

Platform�Exp

API�Exp

Subsq�Req 0

11

0

0

0

0

0

0

0

99.5

99.7

99.1

Cluster�11�(3,264)

Intent 5.590.74

Product 19.72358

T
H

Q

M

O
P

Lg

Rn

Ref

C

0
3
6
9
12

15
18
20

19.428.71635.6

7

6

8

7

6

10

7

5

9

79.7

83.5

72.5

Cluster�26�(2,342)

88.112

T
H

Q

M

O
P

Lg

Rn

Ref

C

0
30
60
90
12
0 1
50
18
0 2
00

LL

Product 13.5202442.6

Platform�Exp

API�Exp

Subsq�Req 3

2

5

3

3

4

3

3

4

91.8

93

87.5

Cluster��4�(4,315)

Intent 21.6762.4

192111.548.4

1.2

4.2

1.8

3.8

3.2

0.2

4

93.8

99.8

88

Cluster�16�(4,160)

1574.410

T
H

Q

M

O
P

Lg

Rn

Ref

C

L0
3
6
9
12

15
18
20

200 200

200 2000

Figure A.3: Large clusters with more than 500 users sorted by the number of users (shown
in parentheses). Each polar plot displays the average time spent on each type of documen-
tation (T: Tutorial, H: How-to, Q: Quickstart, L: Landing, M: Marketing, O: Other, P:
Pricing, Lg: Legal, Rn: Release note, Ref: Reference, C:Concept). The small polar plots
show the average dwell time in the previous three months. Note that the ranges of the
axes of the plots vary. Bar charts below the polar plots show the proportions (%) of each
group in the cluster.

135

Product 69.4625

Platform�Exp

API�Exp

Subsq�Req 1

1

2

1

1

2

1

1

2

96.2

97.2

93.8

Cluster��25�(1,878)

Intent 26.9702.7

T
H

Q

M

O
P

Lg

Rn

Ref

C

L
0
3
6
9
12

15
18
20

16839.336.6

2

1

2

1

1

2

3

1

3

94.9

97.2

92.5

Cluster�23�(1,701)

8218

T
H

Q

M

O
P

Lg

Rn

Ref

C

L
0
30
60
90
12
0 1
50
18
0 2
00

Platform�Exp

API�Exp

Subsq�Req 4

4

6

2

1

4

2

2

4

90.7

92.6

85

Cluster�20�(1,697)

Intent 4.987.77

Product 1024.3461.4

L

T
H

Q

M

O
P

Lg

Rn

Ref

C

0
3
6
9
12

15
18
20

1081368.9

1

1

3

1

1

2

2

1

2

96.5

97.4

93.8

Cluster�5�(1,522)

5.182.912

T
H

Q

M

O
P

Lg

Rn

Ref

C

0
3
6
9
12

15
18
20

L

200 2000

200 200

Figure A.4: Large clusters with more than 500 users sorted by the number of users (shown
in parentheses). Each polar plot displays the average time spent on each type of documen-
tation (T: Tutorial, H: How-to, Q: Quickstart, L: Landing, M: Marketing, O: Other, P:
Pricing, Lg: Legal, Rn: Release note, Ref: Reference, C:Concept). The small polar plots
show the average dwell time in the previous three months. Note that the ranges of the
axes of the plots vary. Bar charts below the polar plots show the proportions (%) of each
group in the cluster.

136

Platform�Exp

API�Exp

Subsq�Req 1

1

2

0

0

1

1

1

1

97.9

98.2

96.3

Cluster�22�(1,170)

Intent 77.522.5

Product 25.614.559.9

L

T
H

Q

M

O
P

Lg

Rn

Ref

C

0
30
60
90
12
0 1
50
18
0 2
00

26.916.83224.8

1

0

2

1

1

2

2

2

2

95.6

97.3

94

Cluster�18�(1,116)

85.814.2

T
H

Q

M

O
P

Lg

Rn

Ref

C

0
0.3
0.6
0.9

1.2
1.5

1.8
2

L

Product 40.2161033.8

Platform�Exp

API�Exp

Subsq�Req 1

1

3

2

2

3

3

1

3

94.9

95.8

90

Cluster��3�(1,342)

Intent 0.9909.2

T
H

Q

M

O
P

Lg

Rn

Ref

C

L0
3
6
9
12

15
18
20

81.118.9

0

0

0

0

0

0

0

99.7

99.8

99.3

Cluster�21�(1,178)

1578.67

T
H

Q

M

O
P

Lg

Rn

Ref

C

0
3
6
9
12

15
18
20

L

200 200

2000 20

Figure A.5: Large clusters with more than 500 users sorted by the number of users (shown
in parentheses). Each polar plot displays the average time spent on each type of documen-
tation (T: Tutorial, H: How-to, Q: Quickstart, L: Landing, M: Marketing, O: Other, P:
Pricing, Lg: Legal, Rn: Release note, Ref: Reference, C:Concept). The small polar plots
show the average dwell time in the previous three months. Note that the ranges of the
axes of the plots vary. Bar charts below the polar plots show the proportions (%) of each
group in the cluster.

137

M

Product 36.947313.5

Platform�Exp

API�Exp

Subsq�Req 9

7

12

10

8

14

10

7

14

71.9

78.2

60.6

Cluster��9�(1,099)

Intent 36.3640.1

T
H

Q

O
P

Lg

Rn

Ref

C

0
30
60
90
12
0 1
50
18
0 2
00

L

1062127.4

28

21

26

8

4

19

6

6

17

57.3

69.1

38.6

Cluster�27�(1,012)

982

T
H

Q

M

O
P

Lg

Rn

Ref

C

L
0
30
60
90
12
0 1
50
18
0 2
00

M

L

Platform�Exp

API�Exp

Subsq�Req 5

3

13

6

5

10

8

6

11

80.9

86.7

65.3

Cluster�12�(932)

Intent 93.96.1

Product 17.245.58.329.1

T
H

Q

O
P

Lg

Rn

Ref

C

0
30
60
90
12
0 1
50
18
0 2
00

0.98.9981.1

1

0

0

0

0

0

0

99.2

99.4

98.3

Cluster�7�(903)

17.182.30.7

T
H

Q

M

O
P

Lg

Rn

Ref

C

L0
3
6
9
12

15
18
20

2000 2000

2000 200

Figure A.6: Large clusters with more than 500 users sorted by the number of users (shown
in parentheses). Each polar plot displays the average time spent on each type of documen-
tation (T: Tutorial, H: How-to, Q: Quickstart, L: Landing, M: Marketing, O: Other, P:
Pricing, Lg: Legal, Rn: Release note, Ref: Reference, C:Concept). The small polar plots
show the average dwell time in the previous three months. Note that the ranges of the
axes of the plots vary. Bar charts below the polar plots show the proportions (%) of each
group in the cluster.

138

Q

46471.15.7

16

11

16

15

13

19

10

9

18

59.2

67.1

46.8

Cluster�10�(703)

8514.8

T
H

Q

M

O
P

Lg

Rn

Ref

C

L
0
30
60
90
12
0 1
50
18
0 2
00

Product 23.9263119.1

Platform�Exp

API�Exp

Subsq�Req 4

2

7

5

5

6

4

3

4

87.3

90.5

82.6

Cluster��33�(782)

Intent 44.2551

T
H

O
P

Lg

Rn

Ref

C

0
3
6
9
12

15
18
20

L

25.832.142

3

2

7

4

3

7

6

3

7

86.9

92.8

78.7

Cluster�13�(695)

20.179.40.4

T
H

Q

M

O
P

Lg

Rn

Ref

C

L0
3
6
9
12

15
18
20

Platform�Exp

API�Exp

Subsq�Req 0

0

0

0

99.9

99.9

99.4

Cluster�24�(701)

Intent 1881.90

Product 3.319.377.5

T
H

Q

M

O
P

Lg

Rn

Ref

C

0
3
6
9
12

15
18
20

200 2000

200 200

M

L

Figure A.7: Large clusters with more than 500 users sorted by the number of users (shown
in parentheses). Each polar plot displays the average time spent on each type of documen-
tation (T: Tutorial, H: How-to, Q: Quickstart, L: Landing, M: Marketing, O: Other, P:
Pricing, Lg: Legal, Rn: Release note, Ref: Reference, C:Concept). The small polar plots
show the average dwell time in the previous three months. Note that the ranges of the
axes of the plots vary. Bar charts below the polar plots show the proportions (%) of each
group in the cluster.

139

Product 33.3391017.6

Platform�Exp

API�Exp

Subsq�Req 5

6

10

7

6

8

5

3

7

83.1

85.8

75.4

Cluster��8�(556)

Intent 1954.3

T
H

Q

O
P

Lg

Rn

Ref

C

0
3
6
9
12

15
18
20

Rn

Product 14.11373.1

Platform�Exp

API�Exp

Subsq�Req

0

0

0

0

0

0

99.5

99.8

99.2

Cluster��15�(640)

Intent 11845.6

M

T
H

Q

O
P

Lg

Rn

Ref

C

0
3
6
9
12

15
18
20

10431.945.3

19

12

15

5

3

11

4

4

12

72.8

80.8

62

Cluster�28�(589)

8118.7

T
H

Q

M

O
P

Lg

C

L0
3
6
9
12

15
18
20

200 200

200

M

L

L

Figure A.8: Large clusters with more than 500 users sorted by the number of users (shown
in parentheses). Each polar plot displays the average time spent on each type of documen-
tation (T: Tutorial, H: How-to, Q: Quickstart, L: Landing, M: Marketing, O: Other, P:
Pricing, Lg: Legal, Rn: Release note, Ref: Reference, C:Concept). The small polar plots
show the average dwell time in the previous three months. Note that the ranges of the
axes of the plots vary. Bar charts below the polar plots show the proportions (%) of each
group in the cluster.

140

Appendix B

Experiment Details for Predictive
Synthesis of API-Centric Code

B.1 Supported operations of PyTorch
Below is the list of 33 PyTorch operations. 16 operations used in the original dataset (described
in Section 6.6.1) are highlighted.

• add

• any

• arange

• argmax

• bincount

• cdist

• div

• eq

• expand

• eye

• gather

• gt

• lt

• masked_select

• matmul

• max

141

• minimum

• mul

• ne

• one_hot

• repeat_interleave

• reshape

• roll

• searchsorted

• square

• squeeze

• stack

• sum

• tensordot

• tile

• transpose

• unsqueeze

• where

B.2 Stack Overflow Benchmarks
As mentioned in Section 6.6.1, we adapted the Stack Overflow benchmarks created for TF-
Coder [229]. The examples were collected from Stack Overflow posts and the benchmarks were
inspired by those posts. However, the input/output values were replaced by the TF-Coder authors
for licensing reasons. The input/output values created by TF-Coder authors, and we updated
some values to fit into our scope.

B.2.1 Input/output and Desired Code

142

In
pu

ts
O

ut
pu

t
C

od
e

&
 F

un
ct

io
n

S
eq

ue
nc

e
E

xp
ec

te
d

S
eq

ue
nc

e

S
O

01
in

1
=

[[5
, 2

],
[1

, 3
],

[0
, -

1]
]

[[[
5,

 5
],

[1
, 1

],
[0

, 0
]],

[[2
, 2

],
[3

, 3
],

[-1
, -

1]
]]

to
rc

h.
tra

ns
po

se
(in

1,
 e

xp
an

d(
(2

, 3
, 2

))
, 0

, 2
)

ex
pa

nd
, t

ra
ns

po
se

S
O

02
in

1
=

[5
, 1

, 0
, 3

, 0
, 0

, 2
, 0

, 2
]

in
2

=
1

[1
, 1

, 0
, 1

, 0
, 0

, 1
, 0

, 1
]

to
rc

h.
w

he
re

(to
rc

h.
lt(

in
1,

 1
),

in
1,

 1
)

lt,
 w

he
re

S
O

05
in

1
=

[[4
, 3

, 1
],

[6
, 5

, 2
]]

in
2

=
[[[

5,
 5

]],
 [[

1,
 5

]],
 [[

6,
 0

]]]
[[[

29
, 3

5]
],

[[4
7,

 5
5]

]]
to

rc
h.

te
ns

or
do

t(i
n1

, i
n2

, 1
)

te
ns

or
do

t

S
O

06
in

1
=

[3
, 5

, 0
, 2

, 3
, 3

, 0
]

[[1
, 0

, 0
, 0

, 1
, 1

, 0
],

[0
, 1

, 0
, 0

, 0
, 0

, 0
],

[0
, 0

, 1
, 0

, 0
, 0

, 1
],

[0
, 0

, 0
, 1

, 0
, 0

, 0
],

[1
, 0

, 0
, 0

, 1
, 1

, 0
],

[1
, 0

, 0
, 0

, 1
, 1

, 0
],

[0
, 0

, 1
, 0

, 0
, 0

, 1
]]

to
rc

h.
eq

(in
1,

 to
rc

h.
un

sq
ue

ez
e(

in
1,

 1
))

un
sq

ue
ez

e,
 e

q

S
O

07

in
1

=
[[[

8,
 4

, 6
],

[2
, 1

2,
 3

]],
[[1

1,
 1

2,
 5

],
[9

, 1
2,

 1
2]

],
[[9

, 2
, 1

3]
, [

7,
 0

, 7
]],

[[2
, 1

0,
 5

],
[7

, 1
, 2

]]]
,

[[[
8,

 4
, 6

],
[1

1,
 1

2,
 5

],
[9

, 2
, 1

3]
, [

2,
 1

0,
 5

]],
[[2

, 1
2,

 3
],

[9
, 1

2,
 1

2]
, [

7,
 0

, 7
],

[7
, 1

, 2
]]]

to
rc

h.
tra

ns
po

se
(in

1,
 0

, 1
)

tra
ns

po
se

S
O

08
in

1
=

[1
, 0

, 0
, 2

, 1
, 3

, 5
, 0

, 1
, 2

, 1
0]

,
in

2
=

[1
2,

 3
, 4

5,
 6

, 7
, 8

, 9
, 8

7,
 6

5,
 4

, 3
2]

,
in

3
=

1
[6

, 8
, 9

, 4
, 3

2]
to

rc
h.

m
as

ke
d_

se
le

ct
(in

2,
 to

rc
h.

gt
(in

1,
 1

))
gt

, m
as

ke
d_

se
le

ct

S
O

11
in

1
=

[4
, 0

, 1
, 1

, 0
, 4

, 0
, 0

, 3
, 4

, 1
]

[4
, 3

, 0
, 1

, 3
]

to
rc

h.
bi

nc
ou

nt
(in

1)
bi

nc
ou

nt

S
O

13
in

1
=

[[3
, 5

],
[1

0,
 2

]],
in

2
=

[[[
1,

 0
],

[5
, 4

]],
 [[

3,
 1

0]
, [

2,
 0

]]]
[[[

28
, 2

0]
, [

19
, 3

0]
],

[[2
0,

 8
],

[3
4,

 1
00

]]]
to

rc
h.

tra
ns

po
se

(to
rc

h.
m

at
m

ul
(in

1,
 in

2)
, 0

, 1
)

m
at

m
ul

, t
ra

ns
po

se

S
O

14

in
1

=
[[[

0,
 0

, 1
],

 [

0,
 0

, 0
],

 [

1,
 0

, 1
],

 [

0,
 1

, 0
],

 [

0,
 0

, 0
],

 [

1,
 1

, 1
],

 [

1,
 1

, 0
]]]

[[1
, 0

, 1
, 1

, 0
, 1

, 1
]]

to
rc

h.
an

y(
in

1,
 -1

)
an

y

S
O

15
in

1
=

[3
, 1

, 2
, 0

, 1
, 0

, 1
0,

 1
, 0

]
3,

 0
, 2

, 0
, 0

, 0
, 1

0,
 0

, 0
]

to
rc

h.
m

ul
(in

1,
 to

rc
h.

ne
(in

1,
 1

))
ne

, m
ul

S
O

16
in

1
=

[[2
, 5

],
[3

, 0
],

[8
, 7

]],
in

2
=

[4
, 1

0,
 6

]
[[8

, 2
0]

, [
30

, 0
],

[4
8,

 4
2]

]
to

rc
h.

m
ul

(in
1,

 to
rc

h.
un

sq
ue

ez
e(

in
2,

 1
))

un
sq

ue
ez

, m
ul

S
O

17
in

1
=

[1
7,

 3
2,

 9
9]

[[1
7,

 1
7]

, [
32

, 3
2]

, [
99

, 9
9]

]
to

rc
h.

st
ac

k(
(in

1,
 in

1)
, 1

)
st

ac
k

S
O

18

in
1

=
[[[

1,
 1

, 1
],

[1
, 0

, 1
]],

 [[

1,
 2

, 3
],

[4
, 5

, 6
]]]

,
in

2
=

[[1
, 1

, 1
, 1

],
[1

, 2
, 3

, 4
],

[5
, 6

, 7
, 8

]],
in

3
=

[1
00

, 2
00

, 3
00

, 4
00

],

[[[
10

7,
 2

09
, 3

11
, 4

13
],

[1
06

, 2
07

, 3
08

, 4
09

]],
[[1

18
, 2

23
, 3

28
, 4

33
],

[1
39

, 2
50

, 3
61

, 4
72

]]]
to

rc
h.

ad
d(

in
3,

 to
rc

h.
m

at
m

ul
(in

1,
 in

2)
)

m
at

m
ul

, a
dd

S
O

20

in
1

=
[[7

, 2
, 1

],

 [4
, 5

, 1
],

 [4

, 4
, 2

],

 [3
, 4

, 3
],

 [0

, 0
, 1

]]

[[1
, 0

, 0
],

[0
, 1

, 0
],

[1
, 0

, 0
],

[0
, 1

, 0
],

[0
, 0

, 1
]]

to
rc

h.
nn

.fu
nc

tio
na

l.o
ne

_h
ot

(to
rc

h.
ar

gm
ax

(in
1,

 1
),

3)
ar

gm
ax

, o
ne

_h
ot

S
O

21
in

1
=

[[2
],

[0
],

[1
],

[0
]],

in
2

=
[[2

, 5
, 3

],
[1

, 3
, 6

],
[1

, 6
, 3

],
[7

, 0
, 3

]]
[[3

],
[1

],
[6

],
[7

]]
to

rc
h.

ga
th

er
(in

2,
 1

, i
n1

)
ga

th
er

S
O

22
in

1
=

[3
, 1

, 1
0]

,
in

2
=

[[6
, 4

],
[5

, 1
],

[3
, 4

]]
[5

3,
 5

3]
to

rc
h.

te
ns

or
do

t(i
n1

, i
n2

, 1
)

te
ns

or
do

t

S
O

23
in

1
=

[[0
, 5

, 2
],

[3
, 1

, 4
],

[5
, 1

, 5
]],

[[1
, 0

, 1
, 0

, 0
, 1

, 0
, 0

, 0
],

[0
, 1

, 0
, 1

, 1
, 0

, 0
, 0

, 0
],

[0
, 1

, 0
, 0

, 0
, 1

, 0
, 0

, 0
]]

to
rc

h.
su

m
(to

rc
h.

nn
.fu

nc
tio

na
l.o

ne
_h

ot
(in

1,
 9

),
1)

on
e_

ho
t,

su
m

143

S
O

24
in

1
=

[3
, 1

, 4
, 5

, 2
, 8

, 6
, 7

],
in

2
=

[1
, 0

, 2
, 0

, 1
, 1

, 0
, 2

],
in

3
=

0
[3

, 1
, 2

, 5
, 2

, 8
, 6

, 3
.5

]
to

rc
h.

w
he

re
(to

rc
h.

ne
(in

2,
 in

3)
, t

or
ch

.d
iv

(in
1,

 in
2)

, i
n1

)
di

v,
 w

he
re

S
O

25
in

1
=

3
in

2
=

4

[[1
, 0

, 0
],

[0
, 1

, 0
],

[0
, 0

, 1
],

[1
, 0

, 0
],

[0
, 1

, 0
],

[0
, 0

, 1
],

[1
, 0

, 0
],

[0
, 1

, 0
],

[0
, 0

, 1
],

[1
, 0

, 0
],

[0
, 1

, 0
],

[0
, 0

, 1
]]

to
rc

h.
til

e(
to

rc
h.

ey
e(

in
1)

, (
in

2,
 1

))
ey

e,
 ti

le

S
O

26
in

1
=

[[[
[3

, 4
],

[1
, 2

]],
 [[

5,
 2

],
[1

0,
 3

]],
 [[

10
, 2

0]
, [

4,
 7

]]]
]

[1
0,

 2
0,

 4
1]

to
rc

h.
su

m
(to

rc
h.

fla
tte

n(
in

1,
 1

),
1)

su
m

, s
um

S
O

27
in

1
=

[0
, 3

, 5
, 6

],
in

2
=

8
[1

, 0
, 0

, 1
, 0

, 1
, 1

, 0
]

to
rc

h.
su

m
(to

rc
h.

nn
.fu

nc
tio

na
l.o

ne
_h

ot
(in

1,
 in

2)
, 0

)
on

e_
ho

t,
su

m

S
O

29
in

1
=

[1
, 3

, 5
, 7

, 9
, 1

1,
 1

3,
 1

5,
 1

7,
 1

9,
 2

1]
,

in
2

=
[1

2,
 0

, 1
0,

 2
3,

 1
6]

,
[6

, 0
, 5

, 1
1,

 8
]

to
rc

h.
se

ar
ch

so
rte

d(
in

1,
 in

2)
se

ar
ch

so
rte

d

S
O

30
in

1
=

[[1
.,

2.
],

[3
.,

4.
],

[5
.,

6.
]],

in
2

=
[[9

.,
4.

],
[8

.,
5.

],
[7

.,
6.

]],

[[m
at

h.
sq

rt(
68

),
m

at
h.

sq
rt(

58
),

m
at

h.
sq

rt(
52

)],
[m

at
h.

sq
rt(

36
),

m
at

h.
sq

rt(
26

),
m

at
h.

sq
rt(

20
)],

[m
at

h.
sq

rt(
20

),
m

at
h.

sq
rt(

10
),

m
at

h.
sq

rt(
4)

]]
to

rc
h.

cd
is

t(i
n1

, i
n2

)
cd

is
t

S
O

32
[[1

, 6
, 2

, 1
],

[3
, 1

, 4
, 2

],
[2

, 1
, 2

, 5
]]

[1
.3

, 1
.5

, 2
.0

]
to

rc
h.

te
ns

or
do

t(i
n1

, t
or

ch
.a

ra
ng

e(
4)

, 1
)

ar
an

ge
, t

en
so

rd
ot

S
O

34

in
1

=
[[[

1,
 2

],
[3

, 4
]],

 [[

5,
 6

],
[7

, 8
]],

 [[

10
, 2

0]
, [

30
, 4

0]
]],

in
2

=
[3

, 5
, 1

0]
,

[[1
28

, 2
36

],
[3

44
, 4

52
]]

to
rc

h.
te

ns
or

do
t(i

n2
, i

n1
, 1

)
te

ns
or

do
t

S
O

36
in

1
=

[1
, 0

, 1
, 1

, 0
, 1

, 0
, 1

],
[1

.,
0.

, 0
.3

33
33

3,
 0

.2
5,

 0
.,

0.
16

66
67

, 0
.,

0.
12

5]
to

rc
h.

di
v(

in
1,

 to
rc

h.
ad

d(
in

1,
 to

rc
h.

ar
an

ge
(8

))
)

ar
an

ge
, a

dd
, d

iv

S
O

37
in

1
=

[[[
[1

0,
 2

0,
 3

0]
, [

40
, 5

0,
 6

0]
],

 [

[1
2,

 3
4,

 5
6]

, [
78

, 9
8,

 7
6]

]]]
,

in
2

=
[5

, 1
0,

 2
0]

,
[[[

85
0,

 1
90

0]
, [

15
20

, 2
89

0]
]]

to
rc

h.
te

ns
or

do
t(i

n1
, i

n2
, 1

)
te

ns
or

do
t

S
O

39
in

1
=

[[1
5,

 1
0,

 9
, 2

0]
, [

11
, 0

, 1
, 9

],
[1

0,
 1

, 1
1,

 2
5]

]
[[2

25
, 1

00
, 8

1,
 4

00
],

[1
21

, 0
, 1

, 8
1]

,
[1

00
, 1

, 1
21

, 6
25

]]
to

rc
h.

sq
ua

re
(to

rc
h.

m
ul

(in
1,

 in
1)

)
m

ul
, s

qu
ar

e

S
O

41
in

1
=

[5
, 2

, 8
, 2

, 4
, 1

, 1
, 0

, 2
, 1

],
in

2
=

3
[5

, 2
, 8

, 4
, 1

, 1
, 0

, 2
, 1

]
to

rc
h.

m
as

ke
d_

se
le

ct
(in

1,
 to

rc
h.

ne
(to

rc
h.

ar
an

ge
(1

0)
, i

n2
))

ar
an

ge
, n

e,
 m

as
ke

d_
se

le
ct

S
O

42
in

1
=

[4
, 6

, 2
, 6

, 7
, 3

, 3
]

in
2

=
7

[0
, 0

, 0
, 0

, 1
, 0

, 0
]

to
rc

h.
eq

(in
1,

 7
)

eq

S
O

44

in
1

=
[[3

, 5
, 2

],

 [6
, 2

, 3
],

 [8

, 7
, 1

],

 [0
, 3

, 5
],

 [4

, 7
, 3

],

 [2
, 1

, 6
],

 [1

0,
 2

0,
 3

0]
,

 [4

, 5
, 6

]]

[[9
, 7

, 5
],

[8
, 1

9,
 6

],
[6

, 8
, 9

],
[1

4,
 2

5,
 3

6]
]

to
rc

h.
su

m
(to

rc
h.

re
sh

ap
e(

in
1,

 (-
1,

 2
, 8

))
, 1

)
re

sh
ap

e,
 s

um

S
O

45
in

1
=

 [[
[1

2,
 3

4]
, [

56
, 7

8]
, [

23
, 5

4]
, [

76
, 7

8]
, [

42
, 2

4]
]],

in
2

=
[1

, 0
, 1

, 0
, 1

],
[[[

34
, 1

2]
, [

56
, 7

8]
, [

54
, 2

3]
, [

76
, 7

8]
, [

24
, 4

2]
]]

to
rc

h.
w

he
re

(to
rc

h.
un

sq
ue

ez
e(

in
2,

 1
),

to
rc

h.
ro

ll(
in

1,
 1

, -
1)

, i
n1

)
ro

ll,
 u

ns
qu

ee
ze

, w
he

re

S
O

46
in

1
=

[3
, 4

, 1
],

[0
, 0

, 0
, 1

, 1
, 1

, 1
, 2

]
to

rc
h.

re
pe

at
_i

nt
er

le
av

e(
to

rc
h.

ar
an

ge
(3

),
in

1,
 0

)
ar

an
ge

, r
ep

ea
t_

in
te

rle
av

e

S
O

48
in

1
=

[3
2,

 5
3,

 4
5,

 3
8,

 2
9,

 8
9,

 6
4,

 2
3]

,
in

2
=

[3
8,

 5
3,

 8
9,

 3
8,

 3
2,

 6
4]

,
[3

, 1
, 5

, 3
, 0

, 6
]

to
rc

h.
ar

gm
ax

(to
rc

h.
eq

(in
1,

 to
rc

h.
un

sq
ue

ez
e(

in
2,

 1
))

.fl
oa

t()
, 1

)
un

sq
ue

ez
, e

q,
 a

rg
m

ax

144

S
O

49

in
1

=
[[[

[1
, 2

, 3
],

[4
, 5

, 6
]]]

,

 [[
[8

, 1
0,

 0
],

[6
, 4

, 2
]]]

,

 [[
[9

, 8
, 7

],
[1

, 2
, 3

]]]
,],

in
2

=
[2

0,
 5

, 1
0]

,

[[[
[2

0,
 4

0,
 6

0]
, [

80
, 1

00
, 1

20
]]]

,
[[[

40
, 5

0,
 0

],
[3

0,
 2

0,
 1

0]
]],

[[[
90

, 8
0,

 7
0]

, [
10

, 2
0,

 3
0]

]]]
to

rc
h.

tra
ns

po
se

(to
rc

h.
m

ul
(to

rc
h.

tra
ns

po
se

(in
1,

 0
, 3

),
in

2)
, 0

, 3
)

tra
ns

po
se

, m
ul

, t
ra

ns
po

se

S
O

50
in

1
=

[3
]

[[0
, 0

, 0
, 1

, 0
, 0

],
[0

, 0
, 0

, 1
, 0

, 0
],

[0
, 0

, 0
, 1

, 0
, 0

],
[0

, 0
, 0

, 1
, 0

, 0
],

[0
, 0

, 0
, 1

, 0
, 0

]]

to
rc

h.
nn

.fu
nc

tio
na

l.o
ne

_h
ot

(in
1.

ex
pa

nd
(in

1,
))

 in
2)

ex
pa

nd
, o

ne
_h

ot

145

B.2.2 Links to Original StackOverflow Posts
• https://stackoverflow.com/questions/40441503/tensorflow-tensor-reshape

• https://stackoverflow.com/questions/46408839/tensorflow-trim-values-in-tensor

• https://stackoverflow.com/questions/43067338/tensor-multiplication-in-tensorflow

• https://stackoverflow.com/questions/47816231/create-binary-tensor-from-vector-
in-tensorflow

• https://stackoverflow.com/questions/38212205/swap-tensor-axes-in-tensorflow

• https://stackoverflow.com/questions/33769041/tensorflow-indexing-with-boolean-
tensor

• https://stackoverflow.com/questions/45194672/how-to-count-elements-in-tensorflow-
tensor

• https://stackoverflow.com/questions/50777704/n-d-tensor-matrix-multiplication-
with-tensorflow

• https://stackoverflow.com/questions/35657003/aggregate-each-element-of-tensor-
in-tensorflow

• https://stackoverflow.com/questions/39045797/conditional-assignment-of-tensor-
values-in-tensorflow

• https://stackoverflow.com/questions/46240646/tensor-multiply-along-axis-in-
tensorflow

• https://stackoverflow.com/questions/51761353/about-tensor-of-tensorflow

• https://stackoverflow.com/questions/38222126/tensorflow-efficient-way-for-tensor-
multiplication

• https://stackoverflow.com/questions/44834739/argmax-on-a-tensor-and-ceiling-
in-tensorflow

• https://stackoverflow.com/questions/51690095/how-to-gather-element-with-index-
in-tensorflow

• https://stackoverflow.com/questions/43284897/how-can-i-multiply-a-vector-and-
a-matrix-in-tensorflow-without-reshaping

• https://stackoverflow.com/questions/53414433/tensorflow-tensor-binarization

• https://stackoverflow.com/questions/53643339/tensorflow-overriding-tf-divide-
to-return-the-numerator-when-dividing-by-0

• https://stackoverflow.com/questions/53602691/duplicate-a-tensor-n-times

• https://stackoverflow.com/questions/54294780/how-to-perform-reduce-op-on-multiple-
dimensions-at-once

146

• https://stackoverflow.com/questions/54225704/how-do-i-get-a-tensor-representing-
the-on-positions-in-the-original-tensor

• https://stackoverflow.com/questions/54155085/bucketing-continous-value-tensors-
in-tensorflow

• https://stackoverflow.com/questions/54147780/tensorflow-how-to-calculate-the-
euclidean-distance-between-two-tensor

• https://stackoverflow.com/questions/48659449/how-to-compute-the-weighted-sum-
of-a-tensor-in-tensorflow

• https://stackoverflow.com/questions/49532371/compute-a-linear-combination-of-
tensors-in-tensorflow

• https://stackoverflow.com/questions/43306788/divide-elements-of-1-d-tensor-
by-the-corrispondent-index

• https://stackoverflow.com/questions/49206051/multiply-4-d-tensor-with-1-d-tensor

• https://stackoverflow.com/questions/37912161/how-can-i-compute-element-wise-
conditionals-on-batches-in-tensorflow

• https://stackoverflow.com/questions/54499051/elegant-way-to-access-python-list-
and-tensor-in-tensorflow

• https://stackoverflow.com/questions/54493814/binary-vector-of-max

• https://stackoverflow.com/questions/54402389/sum-the-columns-for-each-two-consecutive-
rows-of-a-tensor-of-3-dimensions

• https://stackoverflow.com/questions/54337925/reverse-order-of-some-elements-
in-tensorflow

• https://stackoverflow.com/questions/58652161/how-to-convert-2-3-4-to-0-0-1-
1-1-2-2-2-2-to-utilize-tf-math-segment-sum

• https://stackoverflow.com/questions/58481332/getting-the-indices-of-several-
elements-in-a-tensorflow-at-once

• https://stackoverflow.com/questions/58466562/given-a-batch-of-n-images-how-
to-scalar-multiply-each-image-by-a-different-scal

• https://stackoverflow.com/questions/58537495/tensorflow-initialize-a-sparse-
tensor-with-only-one-line-column-not-zero

147

B.3 Implementation of ML Models
We implement the model in Python using the PyTorch. We describe some implementation details
here, but the code will be shared after anonymous period is over.

Encoding. Encoding of a tensor requires three encodings, separated by a separator: value,
size, and type. The max sizes of the encodings are 150, 5, 3, respectively. Our approach supports
up to 3 input tensors and one output tensor, and each tensor is separated by a separator, which
makes the the size of input encoding to be 640 (4 ∗ (150 + 1 + 5 + 1 + 2 + 1)).

Compositional Model. For the embedding, we use the feed forward network, that is iden-
tical to the classification model, which is trained jointly with a bi-RNN model. The embedded
input-output pair is passed to bi-RNN, having 1 hidden layer. To evaluate the model, we use
a beam size of 3. We use the compositional model in two modes: “full sequence” mode, which
returns the predicted API function sequence, and a “first-of-sequence” mode that returns only
the first API function from the predicted sequence.

Multi-label Classification Model. For the weighted enumerative search with prioritization
(Figure 6.1 (b)),we trained a simple multi-label classification model following DeepCoder, instead
of TF-Coder which uses manually defined features (e.g., whether a value is a primitive)which we
found less generalizable. We used the same model architecture with the classification model, but
changed the last activation function into sigmoid for the multi-label classification. We trained
this model with input-output of sequences of API functions.

Evaluation Metrics. We evaluate our models on the accuracy of their predictions. For the
model accuracy with synthetic data, we check whether the model correctly predict the ground-
truth APIs, and for the Stack Overflow benchmarks evaluation, we measure the rank of the correct
prediction and extract top-1, top-3 and top-10 accuracy metrics.

148

B.4 Algorithms

Algorithm 1 Weighted Enumerative Synthesis
Input: A task specification input/output, (I,O)
Output: A program P such that P (I) = O

1: B ← {I, 0,−1, 1, ...} ▷ Base values
2: E ← B ▷ Pool of values
3: Ops← AssignOpCost(I,O)
4: for all v ∈ C do
5: v.cost← AssignValCost(v)
6: for C = 1 −→ max_cost do ▷ Cost Budget
7: for all op ∈ Ops do
8: c← op.cost
9: n← op.arity
10: ▷ Partition cost budgets into n arguments
11: for all [c1, ..., cn] ∈ partition(C − c, n) do
12: for i = 1, ..., n do
13: ▷ Collect values satisfying i-th arg cost budget
14: Ai ← {e ∈ E|e.cost = ci}
15: for all args ∈ ΠiAi do
16: V ← Execute(op, args) ▷ Run op w/ args
17: if V = O then return V.expr
18: if V /∈ E then
19: V.cost← C
20: E ← E ∪ {V }
21: return ”Fail: reached maximum cost”

Algorithm 2 AssignOpCost
Input: A task specification input/output, (I,O)
Output: List of operations with costs Ops

1: for all op ∈ Ops do
2: op← preset_cost

3: if doModelPrioritization then
4: candidate_ops← MultiClassificationModel(I,O)
5: for all op ∈ candidate_ops do
6: op.cost← op.cost ∗ reweight_multiplier

7: return Ops

149

Algorithm 3 Compositional Model - Full-Sequence
Input: A task specification input/output, (I,O)
Output: A program P such that P (I) = O

1: B ← {I, 0,−1, 1, ...}
2: op_seq ← CompositionalModel(I,O)
3: n←

∑
opi.arity

4: args_list← ΠnB
5: for all args ∈ args_list do
6: V ← Execute(op_seq, args)
7: if V = O then return V.expr
8: return ”Fail” or start ”Enumerative Search”

Algorithm 4 Compositional Model - First-Of-Sequence
Input: A task specification input/output, (I,O)
Output: A program P such that P (I) = O

1: B ← {I, 0,−1, 1, ...}
2: for i = 0 −→ k do ▷ Sequence of k operations
3: opi ← CompositionalModel(Vi−1, Ii, O)
4: n← opi.arity
5: args_list← ΠnB
6: for all args ∈ args_list do
7: Vi ← Execute(opi, args)
8: if Vi = O then return V.expr
9: return ”Fail” or start ”Enumerative Search”

150

Appendix C

Additional Study Results for SOREL

C.1 Outcome Variables for Quantitative Analysis.

Table C.1: Outcome variables for quantitative analysis.

Variable Details
Task completion
time (time)

We measured the time from when a participant first enters a search
query to when they finish submitting the solution.

Number of search
queries (queries).

We counted the number of search queries participants wrote until
they submitted the final answer, as an approximation of how easy
it was to retrieve necessary information.

Number of pages
visited (pages).

We measured the number of web pages visited by a participant, to
approximate the efforts needed in discovery.

Prior knowledge of
the task (prior).

After each task, we asked participants whether they had imple-
mented similar code in the past, and if so, whether that helped the
search or not. We asked the level of prior knowledge in four levels:
no experience (0), vaguely remembering that they have worked on
similar tasks, but not enough to be helpful (1), experience with sim-
ilar tasks helped them complete the task (2), and prior knowledge
helped them recollect the exact function name (3).

The correctness of
the solutions given
the task definition
(correctness).

We tested whether a participant submits an API method that
matches with our ideal solution, which we determined based on
our expert knowledge of the tasks. The tasks were purposefully
designed to have multiple potential solutions, with varying impli-
cation and trade-offs, to test whether participants are aware of the
alternative solutions. Thus, “incorrect” solutions may not necessar-
ily be “bad” solutions, and they can still meet the task requirements
with different quality implications, such as performance, readabil-
ity, or scalability.

151

Table C.1: Outcome variables for quantitative analysis (cont.).

Variable Details
Awareness of
the comparable
API methods
(awareness).

In each post-task interview, we tested whether a participant was
aware of comparable API methods given the task context. When
participants answered that they did not know other relevant API
methods or admitted that they guessed the difference, we considered
them to not be aware of the comparable methods. If they could
elaborate on the differences, we considered that they were aware of
the comparable API methods.

Understanding
of difference
(understanding).

In the post-task interviews, we also asked the participants to ex-
plain the differences between the comparable API methods. This
is independent of the awareness, as one might already know about
comparable API methods but not consider using them during the
task. We measured the level of understanding with two levels: did
not know the difference or guessed the difference (0), and describe
at least one difference between the methods(1).

152

C
.2

U
se

r
St

ud
y

R
es

ul
ts

C
.2

.1
Q

ua
nt

it
at

iv
e

D
at

a
Su

m
m

ar
y

Ta
sk

ID
O
ur

Id
ea
lS

ol
ut
io
n

C
om

pa
ra
bl
e
M
et
ho

ds
ti

me
pa

ge
s

qu
er

ie
s

co
rr

ec
tn

es
s

To
ol

N
o

To
ol

N
o

To
ol

N
o

To
ol

N
o

1
sq

ue
ez

e
re

sh
ap

e
15

3.
50

69
.7
5

2.
00

1.
00

1.
25

1.
00

0.
75

1.
00

2
ei

ns
um

[m
at

mu
l,

ma
tm

ul
]

17
1.
75

22
3.
00

3.
00

2.
75

1.
75

2.
25

0.
00

0.
00

3
co

nc
at

st
ac

k
13

9.
25

12
3.
75

1.
25

2.
25

1.
25

1.
00

1.
00

1.
00

4
bo

ol
ea

n_
ma

sk
[w

he
re

,
ga

th
er

]
28

2.
00

12
0.
75

2.
50

2.
00

1.
25

2.
00

1.
00

0.
75

5
fl

oo
rd

iv
[d

iv
id

e,
fl

oo
r]

22
4.
50

10
6.
00

2.
00

2.
50

1.
50

1.
25

1.
00

1.
00

6
re

si
ze

_w
it

h_
pa

d
re

si
ze

22
2.
75

15
8.
25

2.
50

1.
75

1.
00

1.
25

1.
00

0.
75

7
co

nv
1d

co
nv

2d
/c

on
vo

lu
ti

on
23

9.
25

29
8.
75

3.
50

2.
50

1.
50

1.
50

0.
50

0.
25

8
sp

ar
se

_s
of

tm
ax

_c
ro

ss
-

_e
nt

ro
py

_w
it

h_
lo

gi
ts

so
ft

ma
x_

cr
os

s-
_e

nt
ro

py
_w

it
h_

lo
gi

ts
21

7.
00

25
5.
50

2.
00

2.
25

1.
00

1.
00

0.
75

0.
50

Av
g

20
6.
25

16
9.
47

2.
34

2.
13

1.
31

1.
41

0.
75

0.
66

SD
95

.5
3

10
5.
40

1.
47

1.
31

0.
69

0.
87

0.
44

0.
48

Ta
sk

ID
O
ur

Id
ea
lS

ol
ut
io
n

C
om

pa
ra
bl
e
M
et
ho

ds
aw

ar
en

es
s

un
de

rs
ta

nd
in

g
To

ol
N
o

To
ol

N
o

1
sq

ue
ez

e
re

sh
ap

e
0.
75

0.
25

2.
00

2.
00

2
ei

ns
um

[m
at

mu
l,

ma
tm

ul
]

1.
00

0.
00

1.
75

0.
00

3
co

nc
at

st
ac

k
1.
00

0.
75

2.
00

1.
00

4
bo

ol
ea

n_
ma

sk
[w

he
re

,
ga

th
er

]
0.
75

0.
00

0.
75

0.
50

5
fl

oo
rd

iv
[d

iv
id

e,
fl

oo
r]

1.
00

0.
50

1.
75

1.
50

6
re

si
ze

_w
it

h_
pa

d
re

si
ze

1.
00

0.
75

2.
00

1.
75

7
co

nv
1d

co
nv

2d
/c

on
vo

lu
ti

on
0.
75

0.
00

1.
75

0.
50

8
sp

ar
se

_s
of

tm
ax

_c
ro

ss
-

_e
nt

ro
py

_w
it

h_
lo

gi
ts

so
ft

ma
x_

cr
os

s-
_e

nt
ro

py
_w

it
h_

lo
gi

ts
0.
75

0.
75

1.
50

1.
50

Av
g

0.
88

0.
38

1.
69

1.
09

SD
0.
34

0.
49

0.
64

0.
96

153

C.2.2 Statistical Test Results
Time

with_tool without_tool

10
0

20
0

30
0

40
0

Coeffs (Errors)
(Intercept) 198.69 (30.01)***
prior -19.08 (14.35)
tool 37.97 (20.93)
AIC = 775.1; BIC = 788.1; LogLik = -381.5

R2m = 0.06. R2c = 0.30

Pages

with_tool without_tool

1
2

3
4

5
6

Coeffs (Errors)
(Intercept) 2.36 (0.40)***
prior -0.15 (0.20)
tool 0.23 (0.32)
AIC = 231.8; BIC = 244.8; LogLik = -109.9

R2m = 0.02. R2c = 0.14

Queries

with_tool without_tool

1
2

3
4

5

Coeffs (Errors)
(Intercept) 1.41 (0.23)***
prior -0.01 (0.12)
tool -0.09 (0.18)
AIC = 160.1; BIC = 173.0; LogLik = -74.0

R2m = 0.00. R2c = 0.14

Correctness

with_tool without_tool

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Coeffs (Errors)
(Intercept) -0.22 (1.50)
prior 0.96 (0.66)
tool 0.88 (0.87)
AIC = 66.2; BIC = 77.0; LogLik = -28.1

R2m = 0.07. R2c = 0.74

154

Awareness

with_tool without_tool

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Coeffs (Errors)
(Intercept) -1.12 (0.92)
prior 0.30 (0.44)
tool 3.03 (0.95)**
AIC = 73.7; BIC = 84.5; LogLik = -31.9

R2m = 0.35. R2c = 0.53

Understanding

with_tool without_tool

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Coeffs (Errors)
(Intercept) -1.08 (1.10)
prior 1.11 (0.58).
tool 2.63 (0.95)**
AIC = 64.8; BIC = 75.6; LogLik = -27.4

R2m = 0.31. R2c = 0.63

155

156

Appendix D

Experiment Details for GILT Study

Table D.1: Completion time (s) of each subtask.

All Professionals Students
GILT Search GILT Search GILT Search

Bokeh-1 193.75 202.8 244.86 239.25 122.20 178.50
Bokeh-2 352.47 321.63 263.00 429.50 486.67 213.75
Bokeh-3 610.86 764.20 634.75 723.83 579.00 791.11
Bokeh-4 295.63 156.11 351.75 127.80 239.50 191.50

Open3d-1 483.47 503.80 458.38 663.00 505.78 265.00
Open3d-2 371.53 603.80 307.29 474.38 427.75 751.71
Open3d-3 408.83 326.67 454.67 267.67 363.00 444.67
Open3d-4 329.00 260.00 351.33 520.00 262.00 -

Table D.2: Completion rates of each subtask.

All Professionals Students
GILT Search GILT Search GILT Search

Bokeh-1 1.00 1.00 1.00 1.00 1.00 1.00
Bokeh-2 0.88 0.81 0.89 0.71 0.86 0.89
Bokeh-3 0.38 0.38 0.44 0.43 0.29 0.33
Bokeh-4 0.25 0.56 0.22 0.57 0.29 0.56

Open3d-1 0.81 0.69 1.00 0.67 0.67 0.71
Open3d-2 0.81 0.50 1.00 0.44 0.67 0.57
Open3d-3 0.50 0.13 0.57 0.11 0.44 0.14
Open3d-4 0.06 0.06 0.00 0.11 0.11 -

157

Table D.3: Understanding scores.

All Professionals Students
GILT Search GILT Search GILT Search

Bokeh 1.19 1.31 1.33 1.43 1.00 1.22

Open3d 0.75 0.125 1.43 0.11 0.22 1.14

Perceived
Usefulness

Perceived
Ease of Use

2

3

4

5

6

7
Sc

or
e

LLM extension
Search engine

Figure D.1: Response to TAM items

Mental
demand

Physical
demand

Temporal
demand

Performance Effort Frustration
10

8
6
4
2
0
2
4
6
8

10

Sc
or

e

LLM extension
Search engine

Figure D.2: Response to NASA TLX items

158

Table D.4: Participants’ feedback codebook. The codes discussed in the paper are un-
derlined. Initially, two authors separately performed open coding on the same set of 8
responses (25% of the entire data), and convened to discuss and merge the codes into a
shared codebook. The first author coded the rest of the responses and discussed with the
rest of the authors whenever new codes needed to be added.

Code & Description Representative Quote

[Reduced initial apprehension
effort]
The tool helps identify what to look
for.

I was able to identify which sections of the
code I need to modify much faster with the
extension, even though I have no prior
knowledge of 3D rendering. (P25)

[Context-adjusted response]
The tool provides code or explanation
that is tailored to the user code.

Biggest difference using AI-based VS code
extension is that the given solutions are specific
to the code you are actually writing, whereas
searching the web are usually more general
solutions. (P32)

[Amazement]
General positive reaction for a new
tool.

I was surprised how good the explanations
were, how tailored it was to the code, how
easily it could make the changes that were
required, (P12)

[Interactivity]
Interactivity of the tool helps probing
LLM.

The AI-based extension can be more
interactive than search engines by maintaining
conversation history. (P5)

[Less context switching]
The tool does not break the workflow
and saves clicks as it is integrated in
IDE.

… I can accomplish everything within the IDE
without having to context switch to other
resources (P3)

[Sufficient library details]
The tool provides sufficient library
information.

AI-based code extension was useful in a sense
that it could also provide some details on
concept, which could definitely help one to
better tackle the task. (P28)

[Context incorporation]
The tool provides the ability to easily
incorporate the context

(LLM-based AI programming tool is) better
(than search engines). Since I don’t need to
come up with the good searching words (P20)

[Varying granularity]
The tool provides the ability to
prompt about code at different
granularity

Being able to change your level of insight was
helpful (highlighting certain portions of code vs
overall knowledge about the entire program
(P15)

Pros

[Less information foraging]
The tool reduces the need for
information foraging.

The main advantage for me is in circumventing
the reading of the documentation. Official
documentation is often lacking examples or
short and concise explanations. For this
reason, I often resort to stack overflow, in
search of usage examples. (P24)

159

Table D.4: Participants’ feedback codebook. The codes discussed in the paper are un-
derlined. Initially, two authors separately performed open coding on the same set of 8
responses (25% of the entire data), and convened to discuss and merge the codes into a
shared codebook. The first author coded the rest of the responses and discussed with the
rest of the authors whenever new codes needed to be added (cont.).

Code & Description Representative Quote

[Required knowledge level for
tool utility]
The tool is more useful when a user
has / does not have existing
knowledge.

It would be more useful when I learn a new
library/PL. (P13)
AI based are more helpful when you already
know what the outcome should be (P11)

[User interface]
The user interface of the tool is
usable / can be improved.

I liked the different buttons for different types
of information so I didn’t have to read a lot of
text to find what I was looking for (P7)
A simpler view would be nice, I felt like there
were too many features which could get some
time to get used to. (P8)

Mixed

[Pull-based interaction]
Pull-based interaction is
useful / not useful.

GitHub Copilot’s autocomplete is faster as it
automatically suggests what I’m supposed to
type next. But I can’t actually ask co-pilot
follow up questions, which I can do in the
ai-based vs code extension, and that makes it
really helpful. (P1)

[No correctness guarantee]
The lack of trust and correctness
guarantee of the outputs.

... but there’s always an underlying doubt in
our mind regarding whether the information
provided is 100% factual or useful. (P24)

[Prompt dependency]
The quality of the LLM-generated
information depends on well-crafted
prompts.

AI-based VS code extension was not able to
give me the code that I was looking for, so it
took up all my time (which I got very annoyed
about). I think I just didn’t word the question
well. (P28)

Cons

[Information diversity]
The tool provides less diverse
information compared to search
engine results.

Stack overflow provides user historical
comments and may be important for different
approaches to the same problem. (P30)

160

Table D.4: Participants’ feedback codebook. The codes discussed in the paper are un-
derlined. Initially, two authors separately performed open coding on the same set of 8
responses (25% of the entire data), and convened to discuss and merge the codes into a
shared codebook. The first author coded the rest of the responses and discussed with the
rest of the authors whenever new codes needed to be added (cont.).

Code & Description Representative Quote

[Other resources]
Add (links to) other relevant resources
like documentation and Stack
Overflow posts.

I hope it can be combined with a
documentation of the library, which makes it
more accurate when providing descriptions of a
method. (P21)

[LLM debugging capability]
Ability to debug or auto-repair LLM
outputs.

The ability to interactively debug incorrect
AI-proposed solutions would be helpful. (P5)

[LLM performance]
Use more powerful and faster
underlying LLM.

They were both quite verbose even when a
single line would’ve sufficed. (P24)

Sugge-
stions

[Explainability]
Add ability to provide the rationale
behind the outputs.

I think it may be better if we could understand
the why aspect of the code. (P10)

161

162

Bibliography

[1] Bokeh. about:blank. Retrieved: 2013-05-05. 7.3
[2] Chatgpt|openai. https://chat.openai.com/. Retrieved: 2013-05-05. (document), 5.3,

5.4.4, 5.4.4, 7.1
[3] Github codespaces. https://github.com/features/codespaces. Retrieved: 2013-05-05.

7.3
[4] Github copilot. https://github.com/features/copilot. Retrieved: 2013-05-05. 2.4, 7.1
[5] Open3d – a modern library for 3d data processing. http://www.open3d.org/. Retrieved:

2013-05-05. 7.3
[6] Tabnine: Ai assistant for software developers. https://www.tabnine.com/. Retrieved:

2013-05-05. 7.1
[7] Google privacy principles, 2023. URL https://policies.google.com/privacy. 3.2.3
[8] Google safety principles, 2023. URL https://safety.google/principles/. 3.2.3
[9] Google documentation style guide, 2023. URL https://developers.google.com/style.

3.2.2
[10] Rabe Abdalkareem, Emad Shihab, and Juergen Rilling. What do developers use the crowd

for? a study using stack overflow. IEEE Software, 34(2):53–60, 2017. 2.1
[11] Mohamed Hussein Abdi, George Onyango Okeyo, and Ronald Waweru Mwangi. Matrix

factorization techniques for context-aware collaborative filtering recommender systems: A
survey. Comput. Inf. Sci., 11(2):1–10, 2018. doi: 10.5539/cis.v11n2p1. URL https:
//doi.org/10.5539/cis.v11n2p1. 1.1.1, 3.5.3

[12] Deepak Agarwal, Bee-Chung Chen, Pradheep Elango, and Raghu Ramakrishnan. Con-
tent recommendation on web portals. Commun. ACM, 56(6):92–101, 2013. doi: 10.1145/
2461256.2461277. URL https://doi.org/10.1145/2461256.2461277. 1.1.1, 3.5.3

[13] Emad Aghajani. Context-Aware Software Documentation. 2018 IEEE International Con-
ference on Software Maintenance and Evolution (ICSME), pages 727 – 731, 09 2018. doi:
10.1109/icsme.2018.00090. 8.1

[14] Emad Aghajani, Csaba Nagy, Olga Lucero Vega-Márquez, Mario Linares-Vásquez, Laura
Moreno, Gabriele Bavota, and Michele Lanza. Software documentation issues unveiled.
In Joanne M. Atlee, Tevfik Bultan, and Jon Whittle, editors, Proceedings of the 41st
International Conference on Software Engineering, ICSE 2019, Montreal, QC, Canada,
May 25-31, 2019, pages 1199–1210. IEEE / ACM, 2019. doi: 10.1109/ICSE.2019.00122.
URL https://doi.org/10.1109/ICSE.2019.00122. 2.1, 8.1

163

[15] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. Unified pre-
training for program understanding and generation. pages 2655–2668, 2021. doi: 10.18653/
v1/2021.naacl-main.211. URL https://doi.org/10.18653/v1/2021.naacl-main.211. 6.2

[16] Miltiadis Allamanis and Charles Sutton. Why, when, and what: analyzing stack overflow
questions by topic, type, and code. In Proceedings of the 10th Working Conference on Min-
ing Software Repositories, MSR ’13, pages 53–56. IEEE Press, 2013. ISBN 9781467329361.
2.1, 8.2.1

[17] Christoph Alt, Marc Hübner, and Leonhard Hennig. Fine-tuning pre-trained trans-
former language models to distantly supervised relation extraction. arXiv preprint
arXiv:1906.08646, 2019. 2.3

[18] Matin Amoozadeh, David Daniels, Daye Nam, Stella Chen, Michael Hilton, Sruti Srinivasa
Ragavan, and Mohammad Amin Alipour. Trust in generative ai among students: An
exploratory study. In The Technical Symposium on Computer Science Education, 2024. 1,
2.4

[19] AmuletxHeart. How to avoid writing boilerplate code in java swing mvc? https:
//stackoverflow.com/questions/26154225/how-to-avoid-writing-boilerplate-
code-in-java-swing-mvc, 2018. 4.2.2

[20] Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M. Dai, Anja Hauth, Katie Millican, David Silver, Slav
Petrov, Melvin Johnson, Ioannis Antonoglou, Julian Schrittwieser, Amelia Glaese, Jilin
Chen, Emily Pitler, Timothy P. Lillicrap, Angeliki Lazaridou, Orhan Firat, James Molloy,
Michael Isard, Paul Ronald Barham, Tom Hennigan, Benjamin Lee, Fabio Viola, Malcolm
Reynolds, Yuanzhong Xu, Ryan Doherty, Eli Collins, Clemens Meyer, Eliza Rutherford,
Erica Moreira, Kareem Ayoub, Megha Goel, George Tucker, Enrique Piqueras, Maxim
Krikun, Iain Barr, Nikolay Savinov, Ivo Danihelka, Becca Roelofs, Anaïs White, Anders
Andreassen, Tamara von Glehn, Lakshman Yagati, Mehran Kazemi, Lucas Gonzalez, Misha
Khalman, Jakub Sygnowski, and et al. Gemini: A family of highly capable multimodal
models. CoRR, abs/2312.11805, 2023. doi: 10.48550/ARXIV.2312.11805. URL https:
//doi.org/10.48550/arXiv.2312.11805. 2.3

[21] Emily Judith Arteaga Garcia, João Felipe Nicolaci Pimentel, Zixuan Feng, Marco Gerosa,
Igor Steinmacher, and Anita Sarma. How to support ml end-user programmers through a
conversational agent. In Proceedings of the 46th IEEE/ACM International Conference on
Software Engineering, ICSE ’24, New York, NY, USA, 2024. Association for Computing
Machinery. ISBN 9798400702174. doi: 10.1145/3597503.3608130. URL https://doi.org/
10.1145/3597503.3608130. 9.2

[22] Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten Bosma, Henryk Michalewski,
David Dohan, Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton.
Program synthesis with large language models. CoRR, abs/2108.07732, 2021. URL https:
//arxiv.org/abs/2108.07732. 9.2

[23] Shams Azad, Peter C Rigby, and Latifa Guerrouj. Generating api call rules from ver-
sion history and stack overflow posts. ACM Transactions on Software Engineering and
Methodology (TOSEM), 25(4):1–22, 2017. 2.4

[24] Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel
Tarlow. Deepcoder: Learning to write programs. 2017. URL https://openreview.net/

164

forum?id=ByldLrqlx. (document), 6.1, 6.1, 6.1, 6.1, 6.2, 6.5, 6.6.3
[25] Matej Balog, Rishabh Singh, Petros Maniatis, and Charles Sutton. Neural program syn-

thesis with a differentiable fixer. CoRR, abs/2006.10924, 2020. URL https://arxiv.org/
abs/2006.10924. 6.2

[26] Shraddha Barke, Michael B. James, and Nadia Polikarpova. Grounded copilot: How pro-
grammers interact with code-generating models. Proc. ACM Program. Lang., 7(OOPSLA1),
apr 2023. doi: 10.1145/3586030. URL https://doi.org/10.1145/3586030. 2.4

[27] Anton Barua, Stephen W Thomas, and Ahmed E Hassan. What are developers talking
about? an analysis of topics and trends in stack overflow. Empirical Software Engineering,
19(3):619–654, 2014. 2.1

[28] Rohan Bavishi, Caroline Lemieux, Roy Fox, Koushik Sen, and Ion Stoica. Autopandas:
neural-backed generators for program synthesis. Proc. ACM Program. Lang., 3(OOPSLA):
168:1–168:27, 2019. doi: 10.1145/3360594. URL https://doi.org/10.1145/3360594. 6.1,
6.2, 6.8

[29] Laura Beckwith, Cory Kissinger, Margaret Burnett, Susan Wiedenbeck, Joseph Lawrance,
Alan Blackwell, and Curtis Cook. Tinkering and gender in end-user programmers’ debug-
ging. In Proceedings of the SIGCHI conference on Human Factors in computing systems,
pages 231–240, 2006. 7.5.3

[30] Stefanie Beyer and Martin Pinzger. A manual categorization of android app development
issues on stack overflow. In 2014 IEEE International Conference on Software Maintenance
and Evolution, pages 531–535, 2014. doi: 10.1109/ICSME.2014.88. 2.1

[31] Stefanie Beyer, Christian Macho, Martin Pinzger, and Massimiliano Di Penta. Auto-
matically classifying posts into question categories on stack overflow. In Proceedings of
the 26th Conference on Program Comprehension, ICPC ’18, pages 211–221, New York,
NY, USA, 2018. Association for Computing Machinery. ISBN 9781450357142. doi:
10.1145/3196321.3196333. URL https://doi.org/10.1145/3196321.3196333. 2.1, 8.2.1,
8.2.2

[32] Joshua Bloch. How to design a good API and why it matters. In Companion to Conference
on Object-oriented Programming Systems, Languages, and Applications, pages 506–507.
ACM, 2006. 4.1, 18, 4.1, 4.2, 4.2.1, 4.2.2

[33] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast
unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and
Experiment, 2008(10):P10008, 2008. 4.3.3

[34] Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and Scott R. Klemmer. Two
studies of opportunistic programming: interleaving web foraging, learning, and writing
code. In Dan R. Olsen Jr., Richard B. Arthur, Ken Hinckley, Meredith Ringel Mor-
ris, Scott E. Hudson, and Saul Greenberg, editors, Proceedings of the 27th International
Conference on Human Factors in Computing Systems, CHI 2009, Boston, MA, USA,
April 4-9, 2009, pages 1589–1598. ACM, 2009. doi: 10.1145/1518701.1518944. URL
https://doi.org/10.1145/1518701.1518944. 3.1, 3.1, 3, 3.4.2, 3, 3.4.3

[35] Joel Brandt, Mira Dontcheva, Marcos Weskamp, and Scott R. Klemmer. Example-centric
programming: integrating web search into the development environment. In Proceedings of
the 28th International Conference on Human Factors in Computing Systems, (CHI 2010),

165

Atlanta, Georgia, USA, April 10-15, 2010, pages 513–522, New York, NY, 2010. ACM. doi:
10.1145/1753326.1753402. URL https://doi.org/10.1145/1753326.1753402. 7.7

[36] Broadcom. Spring framework. https://spring.io. 4.4.2
[37] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla

Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel M Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language Models are
Few-Shot Learners. arXiv, 2020. doi: 10.48550/arxiv.2005.14165. 2.3

[38] Rudy Bunel, Matthew J. Hausknecht, Jacob Devlin, Rishabh Singh, and Pushmeet Kohli.
Leveraging grammar and reinforcement learning for neural program synthesis. 2018. URL
https://openreview.net/forum?id=H1Xw62kRZ. 6.2

[39] Margaret M. Burnett, Simone Stumpf, Jamie Macbeth, Stephann Makri, Laura Beckwith,
Irwin Kwan, Anicia Peters, and Will Jernigan. Gendermag: A method for evaluating
software’s gender inclusiveness. Interact. Comput., 28(6):760–787, 2016. doi: 10.1093/
IWC/IWV046. URL https://doi.org/10.1093/iwc/iwv046. 7.5.3

[40] Open Source by greenrobot Logo Open Source by greenrobot Logo. Greendao. http:
//greenrobot.org/greendao/documentation/introduction, greenrobot . 4.4.2

[41] Marc Carpentier, Christophe Combescure, Laura Merlini, and Thomas V Perneger. Kappa
statistic to measure agreement beyond chance in free-response assessments. BMC medical
research methodology, 17(1):1–8, 2017. 5.2

[42] Preetha Chatterjee, Kostadin Damevski, and Lori Pollock. Automatic extraction of opinion-
based q&a from online developer chats. In International Conference on Software Engineer-
ing (ICSE), pages 1260–1272. IEEE, 2021. 2.4

[43] Jie-Cherng Chen and Sun-Jen Huang. An empirical analysis of the impact of software
development problem factors on software maintainability. J. Syst. Softw., 82(6):981–992,
2009. doi: 10.1016/J.JSS.2008.12.036. URL https://doi.org/10.1016/j.jss.2008.12.036.
3.1

[44] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto,
Jared Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex
Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela
Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave
Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss,
William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin,
Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan
Leike, Joshua Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight,
Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei,
Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language models
trained on code. CoRR, abs/2107.03374, 2021. URL https://arxiv.org/abs/2107.03374.
1.1.2, 9.2

166

[45] Xinyun Chen, Chang Liu, and Dawn Song. Execution-guided neural program synthesis.
2019. URL https://openreview.net/forum?id=H1gfOiAqYm. 6.2

[46] Xinyun Chen, Dawn Song, and Yuandong Tian. Latent execution for neural program
synthesis beyond domain-specific languages. pages 22196–22208, 2021. URL https:
//proceedings.neurips.cc/paper/2021/hash/ba3c95c2962d3aab2f6e667932daa3c5-
Abstract.html. 6.2

[47] Robert F. Chew, John Bollenbacher, Michael Wenger, Jessica Speer, and Annice Kim.
Llm-assisted content analysis: Using large language models to support deductive coding.
CoRR, abs/2306.14924, 2023. doi: 10.48550/ARXIV.2306.14924. URL https://doi.org/
10.48550/arXiv.2306.14924. 8.3.1

[48] Parmit K. Chilana, Amy J. Ko, and Jacob O. Wobbrock. Lemonaid: selection-based
crowdsourced contextual help for web applications. pages 1549–1558, 2012. doi: 10.1145/
2207676.2208620. URL https://doi.org/10.1145/2207676.2208620. 8.1

[49] Steven Clarke. What is an end user software engineer? In Margaret M. Burnett, Gregor En-
gels, Brad A. Myers, and Gregg Rothermel, editors, End-User Software Engineering, 18.02.
- 23.02.2007, volume 07081 of Dagstuhl Seminar Proceedings. Internationales Begegnungs-
und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, 2007. URL
http://drops.dagstuhl.de/opus/volltexte/2007/1080. 2.2, 3.4.1, 2, 5.5

[50] Victoria Clarke and Virginia Braun. Teaching thematic analysis: Overcoming challenges
and developing strategies for effective learning. The psychologist, 26(2):120–123, 2013. 7.6.2

[51] Wikipedia contributors. Boilerplate code definition of wikipedia. https://
en.wikipedia.org/wiki/Boilerplate_code. 4.1, 4.2.2, 4.2.2, 4.2.2

[52] Carlos J Costa, Manuela Aparicio, and Robert Pierce. Evaluating information sources for
computer programming learning and problem solving. In Proceedings of the 9th WSEAS
International Conference on APPLIED COMPUTER SCIENCE, pages 218–223, 2009. 2.2,
3.1, 3.4.1

[53] Bill Curtis and Jakob Nielsen. Applying discount usability engineering. IEEE Softw., 12
(1):98–100, 1995. doi: 10.1109/52.363161. URL https://doi.org/10.1109/52.363161. 3.1

[54] d370urn3ur. Reduce boilerplate for subclasses issue #172 parse-community/Parse-SDK-
Android. https://github.com/parse-community/Parse-SDK-Android/issues/172. 4.1,
4.2

[55] Barthélémy Dagenais and Martin P Robillard. Creating and evolving developer documen-
tation: understanding the decisions of open source contributors. dl.acm.org, page 127,
2010. doi: 10.1145/1882291.1882312. 8.1

[56] William K Darley and Robert E Smith. Gender differences in information processing
strategies: An empirical test of the selectivity model in advertising response. Journal of
advertising, 24(1):41–56, 1995. 7.5.3

[57] DatabaseGroup. Ap-ted implementation. https://github.com/DatabaseGroup/apted.
4.4.1

[58] Matthew C Davis, Emad Aghayi, Thomas D LaToza, Xiaoyin Wang, Brad A Myers, and
Joshua Sunshine. What’s (not) working in programmer user studies? ACM Transactions
on Software Engineering and Methodology, 2022. 7.3

167

[59] Paul Denny, Viraj Kumar, and Nasser Giacaman. Conversing with copilot: Explor-
ing prompt engineering for solving CS1 problems using natural language. In Proceed-
ings of the 54th ACM Technical Symposium on Computer Science Education, Volume 1,
(SIGCSE 2023), Toronto, ON, Canada, March 15-18, 2023, pages 1136–1142, New York,
NY, USA, 2023. ACM. doi: 10.1145/3545945.3569823. URL https://doi.org/10.1145/
3545945.3569823. 7.2.2, 7.4.1, 8.1

[60] Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mo-
hamed, and Pushmeet Kohli. Robustfill: Neural program learning under noisy I/O. 70:
990–998, 2017. URL http://proceedings.mlr.press/v70/devlin17a.html. 6.2

[61] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018. 5.4.1

[62] Ekwa Duala-Ekoko and Martin P Robillard. The information gathering strategies of api
learners. Technical report, Technical report, TR-2010.6, School of Computer Science,
McGill University, 2010. 7.2.2

[63] Ekwa Duala-Ekoko and Martin P Robillard. Using structure-based recommendations to
facilitate discoverability in apis. In European Conference on Object-oriented Programming,
pages 79–104. Springer, 2011. 5, 5.1

[64] Ekwa Duala-Ekoko and Martin P Robillard. Asking and answering questions about un-
familiar apis: An exploratory study. In 2012 34th International Conference on Software
Engineering (ICSE), pages 266–276. IEEE, 2012. 3.1, 3.1, 7.2.2

[65] Ashish Dwivedi, Steve Clarke, Brad A. Myers, Sae Young Jeong, Yingyu Xie, Jack Beaton,
Jeff Stylos, Ralf Ehret, Jan Karstens, Arkin Efeoglu, and Daniela K. Busse. End-User
Computing, Development, and Software Engineering. pages 81–102, 2012. doi: 10.4018/
978-1-4666-0140-6.ch004. 8.1

[66] Ralph H. Earle, Mark A. Rosso, and Kathryn E. Alexander. User preferences of software
documentation genres. In Kathie Gossett, Angie Mallory, and Dawn M. Armfield, editors,
Proceedings of the 33rd Annual International Conference on the Design of Communication,
SIGDOC 2015, Limerick, Ireland, July 16-17, 2015, pages 46:1–46:10. ACM, 2015. doi:
10.1145/2775441.2775457. URL https://doi.org/10.1145/2775441.2775457. 2.2, 3.1,
3.2.2, 3.4, 3.4.1, 1, 3.5.1

[67] Michael Ekstrand, Wei Li, Tovi Grossman, Justin Matejka, and George Fitzmaurice.
Searching for software learning resources using application context. Proceedings of the
24th annual ACM symposium on User interface software and technology - UIST ’11, page
195, 2011. doi: 10.1145/2047196.2047220. 8.1

[68] Kevin Ellis, Maxwell Nye, Yewen Pu, Felix Sosa, Joshua B. Tenenbaum, and Armando
Solar-Lezama. Write, execute, assess: Program synthesis with a repl. 2019. 6.2

[69] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin Mon-
perrus. Fine-grained and accurate source code differencing. In International Conference
on Automated Software Engineering, pages 313–324. ACM, 2014. 4.3.3

[70] Umer Farooq and Dieter Zirkler. API peer reviews: A method for evaluating usability of
application programming interfaces. In Conference on Computer Supported Cooperative
Work, pages 207–210. ACM, 2010. 4.1

168

[71] Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, and Swarat Chaudhuri.
Component-based synthesis of table consolidation and transformation tasks from examples.
pages 422–436, 2017. doi: 10.1145/3062341.3062351. URL https://doi.org/10.1145/
3062341.3062351. 6.2

[72] Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. Program synthesis using conflict-
driven learning. ACM SIGPLAN Notices, 53(4):420–435, 2018. 6.2

[73] James Finnie-Ansley, Paul Denny, Brett A. Becker, Andrew Luxton-Reilly, and James
Prather. The robots are coming: Exploring the implications of openai codex on introductory
programming. In Australasian Computing Education Conference (ACE 2022) Virtual Event,
Australia, February 14 - 18, 2022, pages 10–19. ACM, 2022. doi: 10.1145/3511861.3511863.
URL https://doi.org/10.1145/3511861.3511863. 2.4

[74] Felix Fischer, Konstantin Böttinger, Huang Xiao, Christian Stransky, Yasemin Acar,
Michael Backes, and Sascha Fahl. Stack overflow considered harmful? the impact of
copy&paste on android application security. In 2017 IEEE Symposium on Security and
Privacy (SP), pages 121–136. IEEE, 2017. 5.5

[75] Scott D. Fleming, Chris Scaffidi, David Piorkowski, Margaret Burnett, Rachel Bel-
lamy, Joseph Lawrance, and Irwin Kwan. An Information Foraging Theory Perspective
on Tools for Debugging, Refactoring, and Reuse Tasks. ACM Transactions on Soft-
ware Engineering and Methodology (TOSEM), 22(2):14, 2013. ISSN 1049-331X. doi:
10.1145/2430545.2430551. 2.2

[76] Andrew Forward and Timothy Lethbridge. The relevance of software documentation, tools
and technologies: a survey. In Proceedings of the 2002 ACM Symposium on Document
Engineering, McLean, Virginia, USA, November 8-9, 2002, pages 26–33. ACM, 2002. doi:
10.1145/585058.585065. URL https://doi.org/10.1145/585058.585065. 3.1

[77] Jaroslav Fowkes and Charles Sutton. Parameter-free probabilistic API mining across
GitHub. In International Symposium on Foundations of Software Engineering, pages 254–
265. ACM, 2016. 4.1, 4.2.2, 4.3.1, 4.3.1, 4.4

[78] Steve Fox, Kuldeep Karnawat, Mark Mydland, Susan T. Dumais, and Thomas White.
Evaluating implicit measures to improve web search. ACM Trans. Inf. Syst., 23(2):147–168,
2005. doi: 10.1145/1059981.1059982. URL https://doi.org/10.1145/1059981.1059982.
3.2.2

[79] Luanne Freund. Contextualizing the information-seeking behavior of software engineers:
Contextualizing the Information-Seeking Behavior of Software Engineers. Journal of the
Association for Information Science and Technology, 66(8):1594–1605, 2014. ISSN 2330-
1635. doi: 10.1002/asi.23278. 1.1.1, 3.1, 3.4.1, 1, 8.2.1, 8.2.2

[80] Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi
Zhong, Wen-tau Yih, Luke Zettlemoyer, and Mike Lewis. InCoder: A Generative Model
for Code Infilling and Synthesis. arXiv, 2022. 8.1

[81] Golara Garousi, Vahid Garousi-Yusifoglu, Günther Ruhe, Junji Zhi, Mahmood Moussavi,
and Brian Smith. Usage and usefulness of technical software documentation: An industrial
case study. Inf. Softw. Technol., 57:664–682, 2015. doi: 10.1016/J.INFSOF.2014.08.003.
URL https://doi.org/10.1016/j.infsof.2014.08.003. 3.1

169

[82] M. Rami Ghorab, Dong Zhou, Alexander O’Connor, and Vincent Wade. Personalised Infor-
mation Retrieval: survey and classification. User Modeling and User-Adapted Interaction,
23(4):381–443, 2013. ISSN 0924-1868. doi: 10.1007/s11257-012-9124-1. 8.1

[83] GitHub. Github copilot x: The ai-powered developer experience. https://github.com/
features/preview/copilot-x, 2023. Retrieved: 2013-05-05. 7.8

[84] Elena L Glassman, Tianyi Zhang, Björn Hartmann, and Miryung Kim. Visualizing API
usage examples at scale. In Human Factors in Computing Systems, pages 580:1–580:12.
ACM, 2018. 4.1

[85] Victor M González and Gloria Mark. ”Constant, constant, multi-tasking craziness”: man-
aging multiple working spheres. Proceedings of the 2004 conference on Human factors in
computing systems - CHI ’04, pages 113–120, 2004. doi: 10.1145/985692.985707. 8.4.2

[86] Google. Android API 26 release note. https://developer.android.com/about/versions/
oreo/android-8.0-changes#fvbi-signature. 4.4.2

[87] Georgios Gousios and Diomidis Spinellis. GHTorrent: GitHub’s data from a firehose. In
Internatioanl Conference on Mining Software Repositories, pages 12–21. IEEE, 2012. 4.4.1

[88] Valentina Grigoreanu, Margaret M. Burnett, and George G. Robertson. A strategy-centric
approach to the design of end-user debugging tools. In Proceedings of the 28th International
Conference on Human Factors in Computing Systems, (CHI 2010), Atlanta, Georgia, USA,
April 10-15, 2010, pages 713–722. ACM, 2010. doi: 10.1145/1753326.1753431. URL https:
//doi.org/10.1145/1753326.1753431. 7.5.3

[89] Tovi Grossman, Justin Matejka, and George W. Fitzmaurice. Chronicle: capture, explo-
ration, and playback of document workflow histories. In Ken Perlin, Mary Czerwinski, and
Rob Miller, editors, Proceedings of the 23rd Annual ACM Symposium on User Interface
Software and Technology, New York, NY, USA, October 3-6, 2010, pages 143–152. ACM,
2010. doi: 10.1145/1866029.1866054. URL https://doi.org/10.1145/1866029.1866054.
2.1

[90] Sumit Gulwani. Automating string processing in spreadsheets using input-output examples.
pages 317–330, 2011. doi: 10.1145/1926385.1926423. URL https://doi.org/10.1145/
1926385.1926423. 6.2

[91] h5bp. html5-boilerplate. https://github.com/h5bp/html5-boilerplate. 4.2.1
[92] Md Montaser Hamid, Amreeta Chatterjee, Mariam Guizani, Andrew Anderson, Fatima

Moussaoui, Sarah Yang, I Escobar, Anita Sarma, and Margaret Burnett. How to measure
diversity actionably in technology. Equity, Diversity, and Inclusion in Software Engineer-
ing: Best Practices and Insights, 2023. 7.3

[93] Xiaoyu Han and Lei Wang. A novel document-level relation extraction method based on
bert and entity information. IEEE Access, 8:96912–96919, 2020. 5.4.7

[94] Steven Hardy. Automatic induction of lisp functions. In Proceedings of the 1st Summer
Conference on Artificial Intelligence and Simulation of Behaviour, AISB’74, pages 50–62,
NLD, 1974. IOS Press. 6.2

[95] Sandra G Hart and Lowell E Staveland. Development of nasa-tlx (task load index): Results
of empirical and theoretical research. In Advances in psychology, volume 52, pages 139–183.
Elsevier, 1988. 7.3, 7.6.1

170

[96] Arto Hellas, Juho Leinonen, Sami Sarsa, Charles Koutcheme, Lilja Kujanpää, and Juha
Sorva. Exploring the responses of large language models to beginner programmers’ help
requests. In Proceedings of the 2023 ACM Conference on International Computing Educa-
tion Research V.1 (ICER 2023). ACM, August 2023. doi: 10.1145/3568813.3600139. URL
http://dx.doi.org/10.1145/3568813.3600139. 2.4

[97] Abram Hindle, Earl T. Barr, Mark Gabel, Zhendong Su, and Premkumar T. Devanbu. On
the naturalness of software. Commun. ACM, 59(5):122–131, 2016. doi: 10.1145/2902362.
URL https://doi.org/10.1145/2902362. 6.3

[98] Klaus Hinkelmann and Oscar Kempthorne. Design and analysis of experiments, volume 1:
Introduction to experimental design, volume 1. John Wiley & Sons, 2007. 5.3.1

[99] Sture Holm. A simple sequentially rejective multiple test procedure. Scandinavian Journal
of Statistics, 6(2):65–70, 1979. ISSN 03036898, 14679469. URL http://www.jstor.org/
stable/4615733. (document), 3.4.4, 3.6, 3.7

[100] Amber Horvath, Sachin Grover, Sihan Dong, Emily Zhou, Finn Voichick, Mary Beth Kery,
Shwetha Shinju, Daye Nam, Mariann Nagy, and Brad A. Myers. The long tail: Understand-
ing the discoverability of API functionality. In Justin Smith, Christopher Bogart, Judith
Good, and Scott D. Fleming, editors, 2019 IEEE Symposium on Visual Languages and
Human-Centric Computing, VL/HCC 2019, Memphis, Tennessee, USA, October 14-18,
2019, pages 157–161. IEEE Computer Society, 2019. doi: 10.1109/VLHCC.2019.8818681.
URL https://doi.org/10.1109/VLHCC.2019.8818681. 1, 3.1, 3.1, 3.5.2, 5.1, 5.5

[101] Amber Horvath, Michael Xieyang Liu, River Hendriksen, Connor Shannon, Emma Pater-
son, Kazi Jawad, Andrew Macvean, and Brad A Myers. Understanding How Programmers
Can Use Annotations on Documentation. arXiv, 2021. doi: 10.1145/3491102.3502095. 2.1

[102] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Larous-
silhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer
learning for nlp. In International Conference on Machine Learning, pages 2790–2799.
PMLR, 2019. 5.4.1

[103] Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text clas-
sification. arXiv preprint arXiv:1801.06146, 2018. 5.4.1

[104] Qiao Huang, Xin Xia, Zhenchang Xing, David Lo, and Xinyu Wang. Api method recom-
mendation without worrying about the task-api knowledge gap. In International Conference
on Automated Software Engineering (ASE), pages 293–304. IEEE, 2018. 2.4, 5.1

[105] Yintong Huo, Yuxin Su, Hongming Zhang, and Michael R. Lyu. ARCLIN: automated
API mention resolution for unformatted texts. In International Conference on Software
Engineering (ICSE), pages 138–149. IEEE, 2022. 5.4

[106] Saki Imai. Is github copilot a substitute for human pair-programming? an empirical study.
In Proceedings of the ACM/IEEE 44th International Conference on Software Engineering:
Companion Proceedings, pages 319–321, 2022. 7.1

[107] Pankaj Jalote, Lionel Briand, André van der Hoek, Siddharth Subramanian, Laura In-
ozemtseva, and Reid Holmes. Live API documentation. Proceedings of the 36th In-
ternational Conference on Software Engineering, pages 643–652, 2014. doi: 10.1145/
2568225.2568313. 2.4, 5.1

171

[108] Sae Young Jeong, Yingyu Xie, Jack Beaton, Brad A. Myers, Jeffrey Stylos, Ralf Ehret,
Jan Karstens, Arkin Efeoglu, and Daniela K. Busse. Improving documentation for esoa
apis through user studies. In Volkmar Pipek, Mary Beth Rosson, Boris E. R. de Ruyter,
and Volker Wulf, editors, End-User Development, 2nd International Symposium, IS-EUD
2009, Siegen, Germany, March 2-4, 2009. Proceedings, volume 5435 of Lecture Notes in
Computer Science, pages 86–105. Springer, 2009. doi: 10.1007/978-3-642-00427-8_6.
URL https://doi.org/10.1007/978-3-642-00427-8_6. 3.1, 3.1, 3.5.2, 3.5.3

[109] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. Oracle-guided
component-based program synthesis. pages 215–224, 2010. doi: 10.1145/1806799.1806833.
URL https://doi.org/10.1145/1806799.1806833. 6.2

[110] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge. Why
Don’t Software Developers Use Static Analysis Tools to Find Bugs? 2013 35th In-
ternational Conference on Software Engineering (ICSE), pages 672–681, 2013. doi:
10.1109/icse.2013.6606613. 4.4

[111] Ron Johnston, Kelvyn Jones, and David Manley. Confounding and collinearity in regression
analysis: a cautionary tale and an alternative procedure, illustrated by studies of british
voting behaviour. Quality & Quantity, 52:1–20, 07 2018. doi: 10.1007/s11135-017-0584-6.
3.4.4, 7.7

[112] Cory J. Kapser and Michael W. Godfrey. “cloning considered harmful” considered harmful:
patterns of cloning in software. Empirical Software Engineering, 13(6):645, 2008. 4.2, 4.2.1,
4.2.2, 4.2.2

[113] Majeed Kazemitabaar, Justin Chow, Carl Ka To Ma, Barbara J Ericson, David Weintrop,
and Tovi Grossman. Studying the effect of AI Code Generators on Supporting Novice
Learners in Introductory Programming. arXiv, 2023. doi: 10.1145/3544548.3580919. 2.4

[114] Mik Kersten and Gail C. Murphy. Using task context to improve programmer productivity.
Proceedings of the 14th ACM SIGSOFT international symposium on Foundations of soft-
ware engineering - SIGSOFT ’06/FSE-14, pages 1–11, 2006. doi: 10.1145/1181775.1181777.
8.4.2

[115] Jinhan Kim, Sanghoon Lee, Seung-Won Hwang, and Sunghun Kim. Enriching Documents
with Examples: A Corpus Mining Approach. ACM Transactions on Information Systems
(TOIS), 31(1):1, 2013. ISSN 1046-8188. doi: 10.1145/2414782.2414783. 1.1.2

[116] Amy J. Ko and Yann Riche. The role of conceptual knowledge in API usability. In
Gennaro Costagliola, Amy J. Ko, Allen Cypher, Jeffrey Nichols, Christopher Scaffidi,
Caitlin Kelleher, and Brad A. Myers, editors, 2011 IEEE Symposium on Visual Lan-
guages and Human-Centric Computing, VL/HCC 2011, Pittsburgh, PA, USA, Septem-
ber 18-22, 2011, pages 173–176. IEEE, 2011. doi: 10.1109/VLHCC.2011.6070395. URL
https://doi.org/10.1109/VLHCC.2011.6070395. 1.1.1, 2.2, 3.4.1, 7.2.2, 7.6.2, 8.1

[117] Amy J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung. An exploratory study
of how developers seek, relate, and collect relevant information during software maintenance
tasks. IEEE Trans. Software Eng., 32(12):971–987, 2006. doi: 10.1109/TSE.2006.116. URL
https://doi.org/10.1109/TSE.2006.116. 1, 3.1, 3.1, 3.4, 3, 3.5.1, 7.1, 8.1

[118] Amy J. Ko, Robert DeLine, and Gina Venolia. Information needs in collocated software
development teams. In 29th International Conference on Software Engineering (ICSE

172

2007), Minneapolis, MN, USA, May 20-26, 2007, pages 344–353. IEEE Computer Society,
2007. doi: 10.1109/ICSE.2007.45. URL https://doi.org/10.1109/ICSE.2007.45. 1, 2.1,
3.1, 3.5.2, 7.1

[119] A Gunes Koru and Hongfang Liu. Building effective defect-prediction models in practice.
Software, 22(6):23–29, 2005. 4.4

[120] Sandeep Kaur Kuttal, Se Yeon Kim, Carlos Martos, and Alexandra Bejarano. How end-user
programmers forage in online repositories? An information foraging perspective. Journal of
Computer Languages, 62:101010, 2021. ISSN 2590-1184. doi: 10.1016/j.cola.2020.101010.
2.2

[121] Dmitry Lagun and Mounia Lalmas. Understanding user attention and engagement in online
news reading. In Paul N. Bennett, Vanja Josifovski, Jennifer Neville, and Filip Radlinski,
editors, Proceedings of the Ninth ACM International Conference on Web Search and Data
Mining, San Francisco, CA, USA, February 22-25, 2016, pages 113–122. ACM, 2016. doi:
10.1145/2835776.2835833. URL https://doi.org/10.1145/2835776.2835833. 3.1

[122] Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate: a practical design pattern
for generic programming. ACM, 2003. 4.2

[123] J Richard Landis and Gary G Koch. The measurement of observer agreement for categorical
data. biometrics, pages 159–174, 1977. 5.2

[124] Thomas D. LaToza and Brad A. Myers. Hard-to-answer questions about code. Evaluation
and Usability of Programming Languages and Tools on - PLATEAU ’10, page 8, 2010. doi:
10.1145/1937117.1937125. 1, 2.1

[125] Thomas D. LaToza, Gina Venolia, and Robert DeLine. Maintaining mental models: a study
of developer work habits. In Leon J. Osterweil, H. Dieter Rombach, and Mary Lou Soffa,
editors, 28th International Conference on Software Engineering (ICSE 2006), Shanghai,
China, May 20-28, 2006, pages 492–501. ACM, 2006. doi: 10.1145/1134285.1134355. URL
https://doi.org/10.1145/1134285.1134355. 1, 2.2, 3.4.1, 7.1

[126] Thomas D LaToza, David Garlan, James D Herbsleb, and Brad A Myers. Program com-
prehension as fact finding. In Proceedings of the the 6th joint meeting of the European
software engineering conference and the ACM SIGSOFT symposium on The foundations
of software engineering, pages 361–370, 2007. 7.2.2, 8.2.1

[127] Joseph Lawrance, Rachel Bellamy, Margaret Burnett, and Kyle Rector. Using information
scent to model the dynamic foraging behavior of programmers in maintenance tasks. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI
’08, pages 1323–1332, New York, NY, USA, 2008. Association for Computing Machinery.
ISBN 9781605580111. doi: 10.1145/1357054.1357261. URL https://doi.org/10.1145/
1357054.1357261. 2.2

[128] Joseph Lawrance, Christopher Bogart, Margaret M. Burnett, Rachel K. E. Bellamy,
Kyle Rector, and Scott D. Fleming. How programmers debug, revisited: An informa-
tion foraging theory perspective. IEEE Trans. Software Eng., 39(2):197–215, 2013. doi:
10.1109/TSE.2010.111. URL https://doi.org/10.1109/TSE.2010.111. 2.2, 3.1

[129] Vu Le and Sumit Gulwani. Flashextract: A framework for data extraction by examples.
In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 542–553, 2014. 6.2

173

[130] Younghwa Lee, Kenneth A Kozar, and Kai RT Larsen. The technology acceptance model:
Past, present, and future. Communications of the Association for information systems, 12
(1):50, 2003. 7.3, 7.6.1

[131] Juho Leinonen, Paul Denny, Stephen MacNeil, Sami Sarsa, Seth Bernstein, Joanne Kim,
Andrew Tran, and Arto Hellas. Comparing Code Explanations Created by Students and
Large Language Models. arXiv, 2023. 2.4

[132] Timothy C Lethbridge, Janice Singer, and Andrew Forward. How software engineers use
documentation: The state of the practice. IEEE software, 20(6):35–39, 2003. 5.1

[133] Hongwei Li, Zhenchang Xing, Xin Peng, and Wenyun Zhao. What Help Do Developers
Seek, When and How? 2013 20th Working Conference on Reverse Engineering (WCRE),
pages 142–151, 2013. doi: 10.1109/wcre.2013.6671289. 2.2, 3.4.1

[134] Hongwei Li, Xuejiao Zhao, Zhenchang Xing, Lingfeng Bao, Xin Peng, Dongjing Gao, and
Wenyun Zhao. amassist: In-ide ambient search of online programming resources. In 2015
IEEE 22nd International Conference on Software Analysis, Evolution, and Reengineering
(SANER), pages 390–398. IEEE, 2015. 7.7

[135] Hongwei Li, Sirui Li, Jiamou Sun, Zhenchang Xing, Xin Peng, Mingwei Liu, and Xuejiao
Zhao. Improving api caveats accessibility by mining api caveats knowledge graph. In
International Conference on Software Maintenance and Evolution (ICSME), pages 183–
193. IEEE, 2018. 1.1.2, 2.4

[136] Jing Li, Aixin Sun, and Zhenchang Xing. To Do or Not To Do: Distill crowdsourced
negative caveats to augment api documentation. Journal of the Association for Information
Science and Technology, 69(12):1460–1475, 2018. ISSN 2330-1635. doi: 10.1002/asi.24067.
2.4

[137] Paul Luo Li, Amy J Ko, and Jiamin Zhu. What makes a great software engineer? In
International Conference on Software Engineering (ICSE), volume 1, pages 700–710. IEEE,
2015. 5.1

[138] Jenny T Liang, Chenyang Yang, and Brad A Myers. Understanding the usability of ai
programming assistants. arXiv preprint arXiv:2303.17125, 2023. 2.4, 7.1, 8.1

[139] H Lieberman and T Selker. Out of context: Computer systems that adapt to, and learn
from, context. IBM Systems Journal, 39(3.4):617–632, 2000. ISSN 0018-8670. doi: 10.1147/
sj.393.0617. 8.1

[140] Bin Lin, Fiorella Zampetti, Gabriele Bavota, Massimiliano Di Penta, and Michele Lanza.
Pattern-based mining of opinions in q&a websites. In International Conference on Software
Engineering (ICSE), pages 548–559. IEEE, 2019. 2.4

[141] Bin Lin, Nathan Cassee, Alexander Serebrenik, Gabriele Bavota, Nicole Novielli, and
Michele Lanza. Opinion mining for software development: A systematic literature re-
view. ACM Transactions on Software Engineering and Methodology (TOSEM), 31(3):1–41,
2022. 2.4

[142] Mario Linares-Vásquez, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and Denys
Poshyvanyk. How do api changes trigger stack overflow discussions? a study on the android
sdk. In International Conference on Program Comprehension (ICPC), pages 83–94, 2014.
2.1, 5.1

174

[143] Bing Liu. Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data. Second
Edition. Data-Centric Systems and Applications. Springer, 2011. ISBN 978-3-642-19459-
7. doi: 10.1007/978-3-642-19460-3. URL https://doi.org/10.1007/978-3-642-19460-3.
3.2.2

[144] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated
by chatgpt really correct? rigorous evaluation of large language models for code generation,
2023. Retrieved from https://arxiv.org/abs/2305.01210. 2.4

[145] Michael Xieyang Liu, Jane Hsieh, Nathan Hahn, Angelina Zhou, Emily Deng, Shaun Bur-
ley, Cynthia Taylor, Aniket Kittur, and Brad A. Myers. Unakite: Scaffolding developers’
decision-making using the web. In Proceedings of the 32nd Annual ACM Symposium on User
Interface Software and Technology, UIST ’19, pages 67–80, New York, NY, USA, 2019. As-
sociation for Computing Machinery. ISBN 9781450368162. doi: 10.1145/3332165.3347908.
URL https://doi.org/10.1145/3332165.3347908. 1

[146] Mingwei Liu, Xin Peng, Andrian Marcus, Shuangshuang Xing, Christoph Treude, and
Chengyuan Zhao. Api-related developer information needs in stack overflow. IEEE Trans-
actions on Software Engineering, 2021. 2.1, 5.1, 5.1, 5.4.6, 8.2.1

[147] Mingwei Liu, Xin Peng, Andrian Marcus, Christoph Treude, Jiazhan Xie, Huanjun Xu,
and Yanjun Yang. How to Formulate Specific How-To Questions in Software Development?
2022. 8.1

[148] Yang Liu, Mingwei Liu, Xin Peng, Christoph Treude, Zhenchang Xing, and Xiaoxin Zhang.
Generating concept based api element comparison using a knowledge graph. In Interna-
tional Conference on Automated Software Engineering (ASE), pages 834–845. IEEE, 2020.
(document), 2.3, 5.1, 5.3, 5.4.4, 5.4.4

[149] Project Lombok. Project lombok. https://projectlombok.org. 4.2.4
[150] W. Maalej and M. P. Robillard. Patterns of Knowledge in API Reference Documentation.

IEEE Transactions on Software Engineering, 39(9):1264–1282, 2013. ISSN 0098-5589. doi:
10.1109/tse.2013.12. 3.1

[151] Walid Maalej, Rebecca Tiarks, Tobias Roehm, and Rainer Koschke. On the comprehension
of program comprehension. ACM Trans. Softw. Eng. Methodol., 23(4):31:1–31:37, 2014. doi:
10.1145/2622669. URL https://doi.org/10.1145/2622669. 1, 2.2, 3.4.1, 7.1, 7.8, 8.2.1

[152] Stephen MacNeil, Andrew Tran, Arto Hellas, Joanne Kim, Sami Sarsa, Paul Denny, Seth
Bernstein, and Juho Leinonen. Experiences from Using Code Explanations Generated by
Large Language Models in a Web Software Development E-Book. arXiv, 2022. 2.4

[153] Andrew Macvean, Martin Maly, and John Daughtry. API design reviews at scale. In
Extended Abstracts on Human Factors in Computing Systems, pages 849–858. ACM, 2016.
4.1

[154] Zohar Manna and Richard Waldinger. A deductive approach to program synthesis. pages
542–551, 1979. 6.2

[155] mast group. Probabilistic API mining implementation. https://github.com/mast-group/
API-mining. 4.4.1

[156] Rob McCarney, James Warner, Steve Iliffe, Robbert Haselen, Mark Griffin, and Peter
Fisher. The hawthorne effect: A randomised, controlled trial. BMC medical research
methodology, 7:30, 02 2007. doi: 10.1186/1471-2288-7-30. 3.1

175

[157] Sahar Mehrpour, Thomas D. LaToza, and Rahul K. Kindi. Active Documentation: Helping
Developers Follow Design Decisions. 2019 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), 00:87–96, 2019. doi: 10.1109/vlhcc.2019.8818816.
3.1

[158] Michael Meng, Stephanie Steinhardt, and Andreas Schubert. Application programming
interface documentation: What do software developers want? Journal of Technical Writing
and Communication, 48(3):295–330, 2018. doi: 10.1177/0047281617721853. URL https:
//doi.org/10.1177/0047281617721853. 2.1, 3.1, 3.1, 3.4, 3.5.1, 3.5.2, 3.5.3, 5.1, 7.2.2,
7.5.3

[159] Michael Meng, Stephanie Steinhardt, and Andreas Schubert. How developers use API
documentation: an observation study. dl.acm.org, 2018. doi: 10.1145/3274995.3274999.
2.2, 3.1, 3.1, 3.4, 3.4.1, 2, 3.5.1, 5.5, 7.5.3

[160] Michael Meng, Stephanie M. Steinhardt, and Andreas Schubert. Optimizing API docu-
mentation: Some guidelines and effects. In Josephine N. Walwema, Daniel L. Hocutt, and
Stacey Pigg, editors, SIGDOC ’20: The 38th ACM International Conference on Design of
Communication, Denton, TX, USA, October 5-9, 2020, pages 24:1–24:11. ACM, 2020. doi:
10.1145/3380851.3416759. URL https://doi.org/10.1145/3380851.3416759. 3.1, 3.1

[161] Andre N. Meyer, Laura E. Barton, Gail C. Murphy, Thomas Zimmermann, and Thomas
Fritz. The Work Life of Developers: Activities, Switches and Perceived Productivity. IEEE
Transactions on Software Engineering, 43(12):1178–1193, 2017. ISSN 0098-5589. doi:
10.1109/tse.2017.2656886. 1, 7.1

[162] Tomás Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean.
Distributed representations of words and phrases and their compositionality. In
Christopher J. C. Burges, Léon Bottou, Zoubin Ghahramani, and Kilian Q. Wein-
berger, editors, Advances in Neural Information Processing Systems 26: 27th
Annual Conference on Neural Information Processing Systems 2013. Proceedings
of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States,
pages 3111–3119, 2013. URL https://proceedings.neurips.cc/paper/2013/hash/
9aa42b31882ec039965f3c4923ce901b-Abstract.html. 5.4.4

[163] Michela Montesi and Trilce Navarrete. Classifying web genres in context: A case study
documenting the web genres used by a software engineer. Inf. Process. Manag., 44
(4):1410–1430, 2008. doi: 10.1016/J.IPM.2008.02.001. URL https://doi.org/10.1016/
j.ipm.2008.02.001. 1

[164] Todd K Moon. The expectation-maximization algorithm. Signal Processing Magazine, 13
(6):47–60, 1996. 4.3.1

[165] Eduardo Mosqueira-Rey, David Alonso-Ríos, Vicente Moret-Bonillo, Isaac Fernández-
Varela, and Diego Álvarez-Estévez. A systematic approach to API usability: Taxonomy-
derived criteria and a case study. Information and Software Technology, 97:46–63, 2018.
4.1, 4.1, 4.2

[166] Hussein Mozannar, Gagan Bansal, Adam Fourney, and Eric Horvitz. Reading Between the
Lines: Modeling User Behavior and Costs in AI-Assisted Programming. arXiv, 2022. doi:
10.48550/arxiv.2210.14306. 2.4

176

[167] Lauren Murphy, Mary Beth Kery, Oluwatosin Alliyu, Andrew Macvean, and Brad A Myers.
Api designers in the field: Design practices and challenges for creating usable apis. In 2018
ieee symposium on visual languages and human-centric computing (vl/hcc), pages 249–258.
IEEE, 2018. 4.1

[168] Brad A Myers and Jeffrey Stylos. Improving API usability. Communications of the ACM,
59(6):62–69, 2016. 4.1, 4.1

[169] Varvana Myllärniemi, Sari Kujala, Mikko Raatikainen, and Piia Sevón. Development as a
journey: factors supporting the adoption and use of software frameworks. J. Softw. Eng.
Res. Dev., 6:6, 2018. doi: 10.1186/S40411-018-0050-8. URL https://doi.org/10.1186/
s40411-018-0050-8. 3.1

[170] Sarah Nadi, Stefan Krüger, Mira Mezini, and Eric Bodden. Jumping through hoops:
Why do java developers struggle with cryptography apis? In International Conference on
Software Engineering (ICSE), pages 935–946, 2016. 2.1, 5.1

[171] N. J. D. NAGELKERKE. A note on a general definition of the coefficient of determination.
Biometrika, 78(3):691–692, 09 1991. ISSN 0006-3444. doi: 10.1093/biomet/78.3.691. URL
https://doi.org/10.1093/biomet/78.3.691. 3.4.5

[172] Daye Nam. API design implications of boilerplate client code. In 34th IEEE/ACM In-
ternational Conference on Automated Software Engineering, ASE 2019, San Diego, CA,
USA, November 11-15, 2019, pages 1253–1255. IEEE, 2019. doi: 10.1109/ASE.2019.00153.
URL https://doi.org/10.1109/ASE.2019.00153. 1, 2, 3

[173] Daye Nam, Amber Horvath, Andrew Macvean, Brad Myers, and Bogdan Vasilescu. Marble
source code and the result. https://doi.org/10.5281/zenodo.3408715, 2019. 4.1, 4.4.2

[174] Daye Nam, Amber Horvath, Andrew Macvean, Brad A. Myers, and Bogdan Vasilescu.
MARBLE: mining for boilerplate code to identify API usability problems. In 34th
IEEE/ACM International Conference on Automated Software Engineering, ASE 2019,
San Diego, CA, USA, November 11-15, 2019, pages 615–627. IEEE, 2019. doi: 10.1109/
ASE.2019.00063. URL https://doi.org/10.1109/ASE.2019.00063. 1, 2, 3, 3.4.5, 6, 5.1,
6.8

[175] Daye Nam, Baishakhi Ray, Seohyun Kim, Xianshan Qu, and Satish Chandra. Pre-
dictive synthesis of api-centric code. In Swarat Chaudhuri and Charles Sutton, edi-
tors, MAPS@PLDI 2022: 6th ACM SIGPLAN International Symposium on Machine
Programming, San Diego, CA, USA, 13 June 2022, pages 40–49. ACM, 2022. doi:
10.1145/3520312.3534866. URL https://doi.org/10.1145/3520312.3534866. 2, 16

[176] Daye Nam, Andrew Macvean, Vincent J. Hellendoorn, Bogdan Vasilescu, and Brad A. My-
ers. In-ide generation-based information support with a large language model. CoRR, abs/
2307.08177, 2023. doi: 10.48550/ARXIV.2307.08177. URL https://doi.org/10.48550/
arXiv.2307.08177. 4, 20, 8.1

[177] Daye Nam, Brad A. Myers, Bogdan Vasilescu, and Vincent J. Hellendoorn. Improving API
knowledge discovery with ML: A case study of comparable API methods. In 45th IEEE/
ACM International Conference on Software Engineering, ICSE 2023, Melbourne, Australia,
May 14-20, 2023, pages 1890–1906. IEEE, 2023. doi: 10.1109/ICSE48619.2023.00161. URL
https://doi.org/10.1109/ICSE48619.2023.00161. 2, 3, 4, 3.5.2, 8

177

[178] Daye Nam, Andrew Macvean, Vincent Hellendoorn, Bogdan Vasilescu, and Brad Myers.
Artifacts for Using an LLM to Help With Code Understanding, January 2024. URL https:
//doi.org/10.5281/zenodo.10461385. 7.3

[179] Daye Nam, Andrew Macvean, Brad Myers, and Bogdan Vasilescu. Understanding docu-
mentation use through log analysis: A case study of four cloud services. In Proceedings of
the 2024 CHI Conference on Human Factors in Computing Systems, 2024. 1, 3, 1

[180] Anh Tuan Nguyen, Hoan Anh Nguyen, Tung Thanh Nguyen, and Tien N. Nguyen. Sta-
tistical learning approach for mining API usage mappings for code migration. In Ivica
Crnkovic, Marsha Chechik, and Paul Grünbacher, editors, International Conference on
Automated Software Engineering (ASE), pages 457–468. ACM, 2014. 5.1

[181] Christina Niklaus, Matthias Cetto, André Freitas, and Siegfried Handschuh. A survey on
open information extraction. In International Conference on Computational Linguistics
(COLING), pages 3866–3878, 2018. 5.1

[182] Nan Niu, Anas Mahmoud, Zhangji Chen, and Gary Bradshaw. Departures from optimality:
understanding human analyst’s information foraging in assisted requirements tracing. In
David Notkin, Betty H. C. Cheng, and Klaus Pohl, editors, 35th International Conference
on Software Engineering, ICSE ’13, San Francisco, CA, USA, May 18-26, 2013, pages
572–581. IEEE Computer Society, 2013. doi: 10.1109/ICSE.2013.6606603. URL https:
//doi.org/10.1109/ICSE.2013.6606603. 2.2

[183] Maxwell I. Nye, Luke B. Hewitt, Joshua B. Tenenbaum, and Armando Solar-
Lezama. Learning to infer program sketches. 97:4861–4870, 2019. URL http://
proceedings.mlr.press/v97/nye19a.html. 6.2

[184] Maxwell I. Nye, Yewen Pu, Matthew Bowers, Jacob Andreas, Joshua B. Tenenbaum, and
Armando Solar-Lezama. Representing partial programs with blended abstract semantics.
2021. URL https://openreview.net/forum?id=mCtadqIxOJ. 6.2

[185] Janet Nykaza, Rhonda Messinger, Fran Boehme, Cherie L. Norman, Matthew Mace, and
Manuel Gordon. What programmers really want: results of a needs assessment for SDK
documentation. Proceedings of the 20th annual international conference on Computer
documentation - SIGDOC ’02, pages 133–141, 2002. doi: 10.1145/584955.584976. 2.1, 3.1

[186] Augustus Odena, Kensen Shi, David Bieber, Rishabh Singh, Charles Sutton, and Hanjun
Dai. BUSTLE: bottom-up program synthesis through learning-guided exploration. 2021.
URL https://openreview.net/forum?id=yHeg4PbFHh. 6.2

[187] Stephen Oney and Joel Brandt. Codelets: linking interactive documentation and example
code in the editor. In Joseph A. Konstan, Ed H. Chi, and Kristina Höök, editors, CHI
Conference on Human Factors in Computing Systems, CHI ’12, Austin, TX, USA - May
05 - 10, 2012, pages 2697–2706. ACM, 2012. doi: 10.1145/2207676.2208664. URL https:
//doi.org/10.1145/2207676.2208664. 2.1

[188] Amantia Pano, Daniel Graziotin, and Pekka Abrahamsson. Factors and actors leading to
the adoption of a javascript framework. Empir. Softw. Eng., 23(6):3503–3534, 2018. doi:
10.1007/S10664-018-9613-X. URL https://doi.org/10.1007/s10664-018-9613-x. 3.1

[189] Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong Zhou,
and Pushmeet Kohli. Neuro-symbolic program synthesis. 2017. URL https://
openreview.net/forum?id=rJ0JwFcex. 6.2

178

[190] Chris Parnin, Christoph Treude, Lars Grammel, and Margaret-Anne Storey. Crowd docu-
mentation: Exploring the coverage and the dynamics of api discussions on stack overflow.
Technical Report GIT-CS-12-05, Georgia Institute of Technology, 2012. 2.4, 5.1

[191] Nate Parsons. Boilerplate code definition of stackoverflow. https://stackoverflow.com/
questions/3992199/what-is-boilerplate-code. 4.1, 4.2.2, 4.2.2

[192] Mateusz Pawlik and Nikolaus Augsten. Tree edit distance: Robust and memory-efficient.
Information Systems, 56:157 – 173, 2016. 4.3.3

[193] David N Perkins, Chris Hancock, Renee Hobbs, Fay Martin, and Rebecca Simmons. Con-
ditions of learning in novice programmers. Journal of Educational Computing Research, 2
(1):37–55, 1986. 7.5.3

[194] Neil Perry, Megha Srivastava, Deepak Kumar, and Dan Boneh. Do users write more insecure
code with AI assistants? CoRR, abs/2211.03622, 2022. doi: 10.48550/arXiv.2211.03622.
URL https://doi.org/10.48550/arXiv.2211.03622. 2.4

[195] Dimitrios Pierrakos, Georgios Paliouras, Christos Papatheodorou, and Constantine D.
Spyropoulos. Web usage mining as a tool for personalization: A survey. User Model.
User Adapt. Interact., 13(4):311–372, 2003. doi: 10.1023/A:1026238916441. URL https:
//doi.org/10.1023/A:1026238916441. 3.5.1

[196] David Piorkowski, Austin Z. Henley, Tahmid Nabi, Scott D. Fleming, Christopher Scaf-
fidi, and Margaret Burnett. Foraging and navigations, fundamentally: developers’ pre-
dictions of value and cost. In Proceedings of the 2016 24th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, FSE 2016, pages 97–108, New
York, NY, USA, 2016. Association for Computing Machinery. ISBN 9781450342186. doi:
10.1145/2950290.2950302. URL https://doi.org/10.1145/2950290.2950302. 1, 7.1

[197] David J Piorkowski, Scott D Fleming, Irwin Kwan, Margaret M Burnett, Christopher
Scaffidi, Rachel K E Bellamy, and Joshua Jordahl. The whats and hows of programmers’
foraging diets. Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 3063–3072, 2013. doi: 10.1145/2470654.2466418. 8.1

[198] Peter Pirolli and Stuart Card. Information foraging. Psychological review, 106(4):643, 1999.
2.2

[199] Peter L. T. Pirolli. Information Foraging Theory: Adaptive Interaction with
Information. Oxford University Press, 05 2007. ISBN 9780195173321. doi:
10.1093/acprof:oso/9780195173321.001.0001. URL https://doi.org/10.1093/acprof:
oso/9780195173321.001.0001. 3.5.2

[200] Reinhold Plösch, Andreas Dautovic, and Matthias Saft. The value of software documen-
tation quality. In 2014 14th International Conference on Quality Software, Allen, TX,
USA, October 2-3, 2014, pages 333–342. IEEE, 2014. doi: 10.1109/QSIC.2014.22. URL
https://doi.org/10.1109/QSIC.2014.22. 3.1

[201] Luca Ponzanelli, Alberto Bacchelli, and Michele Lanza. Seahawk: Stack overflow in the
ide. In International Conference on Software Engineering (ICSE), pages 1295–1298. IEEE,
2013. 2.4

[202] Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and Michele
Lanza. Mining stack overflow to turn the ide into a self-confident programming prompter.
In International Conference on Mining Software Repositories (MSR), pages 102–111, 2014.

179

2.4
[203] Christi-Anne Postava-Davignon, Candice Kamachi, Cory Clarke, Gregory Kushmerek,

Mary Beth Rettger, Pete Monchamp, and Rich Ellis. Incorporating usability testing into
the documentation process. Technical Communication, 51:36–44, 02 2004. 2.2, 3.4.1

[204] Sruti Srinivasa Ragavan, Mihai Codoban, David Piorkowski, Danny Dig, and Margaret
Burnett. Version control systems: An information foraging perspective. IEEE Trans.
Software Eng., 47(8):1644–1655, 2021. doi: 10.1109/TSE.2019.2931296. URL https://
doi.org/10.1109/TSE.2019.2931296. 2.2

[205] Nikitha Rao, Chetan Bansal, Thomas Zimmermann, Ahmed Hassan Awadallah, and
Nachiappan Nagappan. Analyzing web search behavior for software engineering tasks.
In Xintao Wu, Chris Jermaine, Li Xiong, Xiaohua Hu, Olivera Kotevska, Siyuan
Lu, Weija Xu, Srinivas Aluru, Chengxiang Zhai, Eyhab Al-Masri, Zhiyuan Chen,
and Jeff Saltz, editors, 2020 IEEE International Conference on Big Data (IEEE
BigData 2020), Atlanta, GA, USA, December 10-13, 2020, pages 768–777. IEEE,
2020. doi: 10.1109/BIGDATA50022.2020.9378083. URL https://doi.org/10.1109/
BigData50022.2020.9378083. 2.1, 3.1, 3, 8.1

[206] Irum Rauf, Pekka Perälä, Jouni Huotari, and Ivan Porres. Perceived Obstacles by Novice
Developers Adopting User Interface APIs and Tools. 2016 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), pages 223–227, 2016. doi: 10.1109/
vlhcc.2016.7739689. 4, 3.5.2

[207] Martin Reddy. API Design for C++. Elsevier, 2011. 4.1, 4.1, 4.2, 4.2.1, 4.2.2, 4.2.2
[208] Xiaoxue Ren, Zhenchang Xing, Xin Xia, Guoqiang Li, and Jianling Sun. Discovering,

explaining and summarizing controversial discussions in community q&a sites. In Interna-
tional Conference on Automated Software Engineering (ASE), pages 151–162. IEEE, 2019.
2.4

[209] Xiaoxue Ren, Jiamou Sun, Zhenchang Xing, Xin Xia, and Jianling Sun. Demystify official
api usage directives with crowdsourced api misuse scenarios, erroneous code examples, and
patches. In International Conference on Software Engineering (ICSE), pages 925–936, 2020.
2.4, 5.1

[210] Martin P. Robillard. What makes apis hard to learn? answers from developers. IEEE
Softw., 26(6):27–34, 2009. doi: 10.1109/MS.2009.193. URL https://doi.org/10.1109/
MS.2009.193. 2.1, 3.1

[211] Martin P. Robillard and Yam B. Chhetri. Recommending reference API documentation.
Empir. Softw. Eng., 20(6):1558–1586, 2015. doi: 10.1007/s10664-014-9323-y. URL https:
//doi.org/10.1007/s10664-014-9323-y. 2.3

[212] Martin P. Robillard and Robert DeLine. A field study of API learning obstacles. Em-
pir. Softw. Eng., 16(6):703–732, 2011. doi: 10.1007/S10664-010-9150-8. URL https:
//doi.org/10.1007/s10664-010-9150-8. 2.1, 3.1, 5, 5.1

[213] Martin P Robillard, Wesley Coelho, and Gail C Murphy. How effective developers inves-
tigate source code: An exploratory study. IEEE Transactions on software engineering, 30
(12):889–903, 2004. 1.1.1

[214] Martin P Robillard, Eric Bodden, David Kawrykow, Mira Mezini, and Tristan Ratchford.
Automated API property inference techniques. Transactions on Software Engineering, 39

180

(5):613–637, 2013. 4.1
[215] Martin P. Robillard, Andrian Marcus, Christoph Treude, Gabriele Bavota, Oscar Chaparro,

Neil A. Ernst, Marco Aurélio Gerosa, Michael W. Godfrey, Michele Lanza, Mario Linares
Vásquez, Gail C. Murphy, Laura Moreno, David C. Shepherd, and Edmund Wong. On-
demand developer documentation. In 2017 IEEE International Conference on Software
Maintenance and Evolution, ICSME 2017, Shanghai, China, September 17-22, 2017, pages
479–483. IEEE Computer Society, 2017. doi: 10.1109/ICSME.2017.17. URL https://
doi.org/10.1109/ICSME.2017.17. 3.1, 8.1

[216] Reudismam Rolim, Gustavo Soares, Loris D’Antoni, Oleksandr Polozov, Sumit Gulwani,
Rohit Gheyi, Ryo Suzuki, and Björn Hartmann. Learning syntactic program trans-
formations from examples. pages 404–415, 2017. doi: 10.1109/ICSE.2017.44. URL
https://doi.org/10.1109/ICSE.2017.44. 6.2

[217] Charles Romesburg. Cluster analysis for researchers. Lulu. com, 2004. 3.3.1
[218] Christoffer Rosen and Emad Shihab. What are mobile developers asking about? a large

scale study using stack overflow. Empirical Softw. Engg., 21(3):1192–1223, jun 2016. ISSN
1382-3256. doi: 10.1007/s10664-015-9379-3. URL https://doi.org/10.1007/s10664-
015-9379-3. 2.1

[219] Steven I. Ross, Fernando Martinez, Stephanie Houde, Michael J. Muller, and Justin D.
Weisz. The programmer’s assistant: Conversational interaction with a large language
model for software development. In Proceedings of the 28th International Conference on
Intelligent User Interfaces, IUI 2023, Sydney, NSW, Australia, March 27-31, 2023, pages
491–514. ACM, 2023. doi: 10.1145/3581641.3584037. URL https://doi.org/10.1145/
3581641.3584037. 2.4, 7.3, 8.1

[220] Chanchal Kumar Roy and James R Cordy. A survey on software clone detection research.
Queen’s School of Computing TR, 541(115):64–68, 2007. 4.2.3, 4.2.3

[221] Riccardo Rubei, Claudio Di Sipio, Phuong T Nguyen, Juri Di Rocco, and Davide Di Ruscio.
Postfinder: Mining stack overflow posts to support software developers. Information and
Software Technology, 127:106367, 2020. 2.4

[222] Advait Sarkar, Andrew D Gordon, Carina Negreanu, Christian Poelitz, Sruti Srinivasa
Ragavan, and Ben Zorn. What is it like to program with artificial intelligence? arXiv,
2022. doi: 10.48550/arxiv.2208.06213. 2.4

[223] Sami Sarsa, Paul Denny, Arto Hellas, and Juho Leinonen. Automatic generation of pro-
gramming exercises and code explanations using large language models. In ACM Con-
ference on International Computing Education Research (ICER 2022), Lugano and Vir-
tual Event, Switzerland, August 7 - 11, 2022, Volume 1, pages 27–43. ACM, 2022. doi:
10.1145/3501385.3543957. URL https://doi.org/10.1145/3501385.3543957. 2.4

[224] M. Schuster and K.K. Paliwal. Bidirectional recurrent neural networks. IEEE Transactions
on Signal Processing, 45(11):2673–2681, 1997. doi: 10.1109/78.650093. 18

[225] SeanCurtis-TRI. Collect GeometrySystem → drake_visualizer boilerplate by
SeanCurtis-TRI pull request #8526 RobotLocomotion/drake. https://github.com/
RobotLocomotion/drake/pull/8526. 4.1, 4.2

[226] David E. Shaw, William R. Swartout, and C. Cordell Green. Inferring lisp programs from
examples. In Proceedings of the 4th International Joint Conference on Artificial Intelligence

181

- Volume 1, IJCAI’75, pages 260–267, San Francisco, CA, USA, 1975. Morgan Kaufmann
Publishers Inc. 6.2

[227] Mary Shaw. Prospects for an engineering discipline of software. IEEE Software, 7(6):15–24,
1990. 5.1

[228] Xuehua Shen, Bin Tan, and ChengXiang Zhai. Implicit user modeling for personalized
search. Proceedings of the 14th ACM international conference on Information and knowledge
management - CIKM ’05, pages 824–831, 2005. doi: 10.1145/1099554.1099747. 3.5.3

[229] Kensen Shi, David Bieber, and Rishabh Singh. Tf-coder: Program synthesis for tensor
manipulations. CoRR, abs/2003.09040, 2020. URL https://arxiv.org/abs/2003.09040.
(document), 6.1, 6.1, 6.1, 6.1, 6.2, 6.5, 6.6.1, 6.6.3, B.2

[230] Peng Shi and Jimmy Lin. Simple bert models for relation extraction and semantic role
labeling. arXiv preprint arXiv:1904.05255, 2019. 2.3

[231] Richard Shin, Illia Polosukhin, and Dawn Song. Improving neural program synthesis with
inferred execution traces. pages 8931–8940, 2018. URL https://proceedings.neurips.cc/
paper/2018/hash/7776e88b0c189539098176589250bcba-Abstract.html. 6.2

[232] Richard Shin, Neel Kant, Kavi Gupta, Chris Bender, Brandon Trabucco, Rishabh Singh,
and Dawn Song. Synthetic datasets for neural program synthesis. 2019. URL https:
//openreview.net/forum?id=ryeOSnAqYm. 6.3

[233] Jonathan Sillito, Kris De Voider, Brian Fisher, and Gail Murphy. Managing software change
tasks: An exploratory study. In 2005 International Symposium on Empirical Software
Engineering, 2005., pages 10–pp. IEEE, 2005. 1.1.1

[234] Jonathan Sillito, Gail C. Murphy, and Kris De Volder. Asking and answering questions
during a programming change task. IEEE Transactions on Software Engineering, 34(4):
434–451, 2008. doi: 10.1109/TSE.2008.26. 2.1, 3.1

[235] Calvin Smith and Aws Albarghouthi. Mapreduce program synthesis. pages 326–340, 2016.
doi: 10.1145/2908080.2908102. URL https://doi.org/10.1145/2908080.2908102. 6.2

[236] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodík, Sanjit A. Seshia, and Vijay A.
Saraswat. Combinatorial sketching for finite programs. pages 404–415, 2006. doi: 10.1145/
1168857.1168907. URL https://doi.org/10.1145/1168857.1168907. 6.2

[237] Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
J. Mach. Learn. Res., 15(1):1929–1958, 2014. doi: 10.5555/2627435.2670313. URL
https://dl.acm.org/doi/10.5555/2627435.2670313. 5.4.2

[238] Cuyler Stuwe. Boilerplate code definition of quora. https://www.quora.com/What-is-
boilerplate-code. 4.2.2

[239] Jeffrey Stylos and Brad A Myers. The implications of method placement on API learnabil-
ity. In International Symposium on Foundations of software engineering, pages 105–112.
ACM, 2008. 4.1, 5, 5.1

[240] Ning Su, Jiyin He, Yiqun Liu, Min Zhang, and Shaoping Ma. User intent, behaviour,
and perceived satisfaction in product search. In Yi Chang, Chengxiang Zhai, Yan Liu,
and Yoelle Maarek, editors, Proceedings of the Eleventh ACM International Conference on
Web Search and Data Mining, WSDM 2018, Marina Del Rey, CA, USA, February 5-9,

182

2018, pages 547–555. ACM, 2018. doi: 10.1145/3159652.3159714. URL https://doi.org/
10.1145/3159652.3159714. 3.1

[241] Harsh Suri. Purposeful sampling in qualitative research synthesis. Qualitative research
journal, 11(2):63–75, 2011. ISSN 1443-9883. 3.2.1

[242] Jeniya Tabassum, Mounica Maddela, Wei Xu, and Alan Ritter. Code and named entity
recognition in Stack Overflow. In Annual Meeting of the Association for Computational
Linguistics (ACL), pages 4913–4926. Association for Computational Linguistics, 2020. 5.4,
14

[243] Hengzhu Tang, Yanan Cao, Zhenyu Zhang, Jiangxia Cao, Fang Fang, Shi Wang, and
Pengfei Yin. Hin: Hierarchical inference network for document-level relation extraction.
In Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages 197–209.
Springer, 2020. 5.4.7

[244] taynaud. Community detection package. https://python-louvain.readthedocs.io. 4.4.1
[245] Kyle Thayer, Sarah E Chasins, and Amy J Ko. A Theory of Robust API Knowledge. ACM

Transactions on Computing Education, 21(1):1–32, 2021. doi: 10.1145/3444945. 3.1, 5.1,
7.2.2, 7.3

[246] Haoye Tian, Weiqi Lu, Tsz On Li, Xunzhu Tang, Shing-Chi Cheung, Jacques Klein, and
Tegawendé F. Bissyandé. Is chatgpt the ultimate programming assistant – how far is it?,
2023. Retrieved from https://arxiv.org/abs/2304.11938. 2.4

[247] Yuan Tian, Ke Zhou, and Dan Pelleg. Characterization and prediction of mobile tasks.
ACM Trans. Inf. Syst., 41(1):13:1–13:39, 2023. doi: 10.1145/3522711. URL https://
doi.org/10.1145/3522711. 3.3.2

[248] Tim. How to avoid writing duplicate boilerplate code for requesting permis-
sions? https://stackoverflow.com/questions/39080095/how-to-avoid-writing-
duplicate-boilerplate-code-for-requesting-permissions. 4.2.2

[249] Nava Tintarev and Judith Masthoff. Evaluating the effectiveness of explanations for rec-
ommender systems - methodological issues and empirical studies on the impact of person-
alization. User Model. User Adapt. Interact., 22(4-5):399–439, 2012. doi: 10.1007/s11257-
011-9117-5. URL https://doi.org/10.1007/s11257-011-9117-5. 3.5.3

[250] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine
Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel,
Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude
Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Na-
man Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas,
Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning
Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, An-
drew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan
Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross
Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Sto-
jnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat
models, 2023. 1.1.2, 2.3

183

[251] Christoph Treude and Martin P Robillard. Augmenting API documentation with insights
from stack overflow. ICSE, 2016. doi: 10.1145/2890000/2884800/p392-treude.pdf. 1.1.2,
2.4, 3.1, 5.1

[252] Christoph Treude, Ohad Barzilay, and Margaret-Anne Storey. How do programmers ask
and answer questions on the web? (nier track). In Proceedings of the 33rd International Con-
ference on Software Engineering, ICSE ’11, pages 804–807, New York, NY, USA, 2011. As-
sociation for Computing Machinery. ISBN 9781450304450. doi: 10.1145/1985793.1985907.
URL https://doi.org/10.1145/1985793.1985907. 2.1, 8.2.1

[253] Jaroslav Tulach. Practical API Design: Confessions of a Java Framework Architect. Apress,
September 2008. 4.1

[254] Gias Uddin and Foutse Khomh. Opiner: an opinion search and summarization engine for
apis. In Grigore Rosu, Massimiliano Di Penta, and Tien N. Nguyen, editors, International
Conference on Automated Software Engineering (ASE), pages 978–983. IEEE, 2017. 2.4

[255] Gias Uddin and Martin P. Robillard. How API documentation fails. IEEE Softw., 32(4):
68–75, 2015. doi: 10.1109/MS.2014.80. URL https://doi.org/10.1109/MS.2014.80. 2.1,
8.1

[256] Gias Uddin, Olga Baysal, Latifa Guerrouj, and Foutse Khomh. Understanding how and
why developers seek and analyze api-related opinions. IEEE Transactions on Software
Engineering, 47(4):694–735, 2019. 2.1

[257] Gias Uddin, Foutse Khomh, and Chanchal K Roy. Mining api usage scenarios from stack
overflow. Information and Software Technology, 122:106277, 2020. 2.4

[258] Gias Uddin, Foutse Khomh, and Chanchal K Roy. Automatic api usage scenario doc-
umentation from technical q&a sites. ACM Transactions on Software Engineering and
Methodology (TOSEM), 30(3):1–45, 2021. 2.4, 5.4.6

[259] Abhishek Udupa, Arun Raghavan, Jyotirmoy V. Deshmukh, Sela Mador-Haim, Milo
M. K. Martin, and Rajeev Alur. TRANSIT: specifying protocols with concolic snippets.
pages 287–296, 2013. doi: 10.1145/2491956.2462174. URL https://doi.org/10.1145/
2491956.2462174. 6.1, 6.2, 6.5

[260] user2999943. How to avoid boilerplate code when loading images with pi-
casso library. https://stackoverflow.com/questions/32167948/how-to-avoid-
boilerplate-code-when-loading-images-with-picasso-library. 4.4.2

[261] Priyan Vaithilingam, Tianyi Zhang, and Elena L Glassman. Expectation vs. Experience:
Evaluating the Usability of Code Generation Tools Powered by Large Language Models.
CHI Conference on Human Factors in Computing Systems Extended Abstracts, pages 1–7,
2022. doi: 10.1145/3491101.3519665. 2.4, 7.1, 7.8

[262] Enrique Larios Vargas, Maurício Finavaro Aniche, Christoph Treude, Magiel Bruntink, and
Georgios Gousios. Selecting third-party libraries: the practitioners’ perspective. In Prem
Devanbu, Myra B. Cohen, and Thomas Zimmermann, editors, ESEC/FSE ’20: 28th ACM
Joint European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, Virtual Event, USA, November 8-13, 2020, pages 245–256. ACM,
2020. doi: 10.1145/3368089.3409711. URL https://doi.org/10.1145/3368089.3409711.
4, 3.5.2

184

[263] Marcello Visconti and Curtis R. Cook. Assessing the state of software documentation
practices. In Frank Bomarius and Hajimu Iida, editors, Product Focused Software Process
Improvement, 5th International Conference, PROFES 2004, Kausai Science City, Japan,
April 5-8, 2004, Proceedings, volume 3009 of Lecture Notes in Computer Science, pages
485–496. Springer, 2004. doi: 10.1007/978-3-540-24659-6_35. URL https://doi.org/
10.1007/978-3-540-24659-6_35. 3.1

[264] Han Wang, Chunyang Chen, Zhenchang Xing, and John Grundy. DiffTech: a tool
for differencing similar technologies from question-and-answer discussions. Proceedings
of the 28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pages 1576–1580, 2020. doi:
10.1145/3368089.3417931. (document), 1.1.2, 5.1, 5.3, 5.4.4, 5.4.4, 5.4.4, 5.4.4

[265] Roger C S Wernersson. Can java help me avoid boilerplate code in equals()?
https://stackoverflow.com/questions/25183872/can-java-help-me-avoid-
boilerplate-code-in-equals. 4.1, 4.2

[266] Jake Wharton. Butterknife. https://jakewharton.github.io/butterknife/. 4.4.2
[267] Ronald J. Williams and David Zipser. A learning algorithm for continually running

fully recurrent neural networks. Neural Comput., 1(2):270–280, 1989. doi: 10.1162/
neco.1989.1.2.270. URL https://doi.org/10.1162/neco.1989.1.2.270. 6.1

[268] Alexandra Wood, Micah Altman, Aaron Bembenek, Mark Bun, Marco Gaboardi, James
Honaker, Kobbi Nissim, David R O’Brien, Thomas Steinke, and Salil Vadhan. Differential
privacy: A primer for a non-technical audience. Vanderbilt journal of entertainment and
technology law, 21(1):209–, 2018. ISSN 1942-678X. 3.2.3

[269] Yuhao Wu, Shaowei Wang, Cor-Paul Bezemer, and Katsuro Inoue. How do developers
utilize source code from stack overflow? Empirical Software Engineering, 24:637–673,
2019. 7.8

[270] Xin Xia, Lingfeng Bao, David Lo, Pavneet Singh Kochhar, Ahmed E Hassan, and Zhen-
chang Xing. What do developers search for on the web? Empirical Software Engineering,
22:3149–3185, 2017. 1, 7.1, 7.6.2, 8.1

[271] Tao Xiao, Christoph Treude, Hideaki Hata, and Kenichi Matsumoto. Devgpt: Study-
ing developer-chatgpt conversations. CoRR, abs/2309.03914, 2023. doi: 10.48550/
ARXIV.2309.03914. URL https://doi.org/10.48550/arXiv.2309.03914. 8.2.1

[272] Frank F Xu, Uri Alon, Graham Neubig, and Vincent J Hellendoorn. A Systematic Eval-
uation of Large Language Models of Code. arXiv, 2022. doi: 10.48550/arxiv.2202.13169.
1.1.2, 2.4

[273] Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and Thomas Dillig. Sqlizer: query syn-
thesis from natural language. Proc. ACM Program. Lang., 1(OOPSLA):63:1–63:26, 2017.
doi: 10.1145/3133887. URL https://doi.org/10.1145/3133887. 6.2

[274] Navid Yaghmazadeh, XinyuWang, and Isil Dillig. Automated migration of hierarchical data
to relational tables using programming-by-example. Proc. VLDB Endow., 11(5):580–593,
2018. doi: 10.1145/3187009.3177735. URL http://www.vldb.org/pvldb/vol11/p580-
yaghmazadeh.pdf. 6.2

[275] Litao Yan, Alyssa Hwang, Zhiyuan Wu, and Andrew Head. Ivie: Lightweight anchored
explanations of just-generated code. arXiv preprint arXiv:2403.02491, 2024. 9.2

185

[276] Yuan Yao, Deming Ye, Peng Li, Xu Han, Yankai Lin, Zhenghao Liu, Zhiyuan Liu, Lixin
Huang, Jie Zhou, and Maosong Sun. DocRED: A large-scale document-level relation
extraction dataset. In Proceedings of the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 764–777. Association for Computational Linguistics, 2019.
5.4.1

[277] Xing Yi, Liangjie Hong, Erheng Zhong, Nanthan Nan Liu, and Suju Rajan. Beyond clicks:
Dwell time for personalization. In Proceedings of the 8th ACM Conference on Recommender
Systems, RecSys ’14, pages 113–120, New York, NY, USA, 2014. Association for Computing
Machinery. ISBN 9781450326681. doi: 10.1145/2645710.2645724. URL https://doi.org/
10.1145/2645710.2645724. 1.1.1, 3.2.2, 3.5.3

[278] Peifeng Yin, Ping Luo, Wang-Chien Lee, and Min Wang. Silence is also evidence: interpret-
ing dwell time for recommendation from psychological perspective. In Inderjit S. Dhillon,
Yehuda Koren, Rayid Ghani, Ted E. Senator, Paul Bradley, Rajesh Parekh, Jingrui He,
Robert L. Grossman, and Ramasamy Uthurusamy, editors, The 19th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, KDD 2013, Chicago,
IL, USA, August 11-14, 2013, pages 989–997. ACM, 2013. doi: 10.1145/2487575.2487663.
URL https://doi.org/10.1145/2487575.2487663. 1.1.1, 3.5.3

[279] Pengcheng Yin and Graham Neubig. A syntactic neural model for general-purpose code
generation. pages 440–450, 2017. doi: 10.18653/v1/P17-1041. URL https://doi.org/
10.18653/v1/P17-1041. 6.2

[280] J. D. Zamfirescu-Pereira, Richmond Y. Wong, Bjoern Hartmann, and Qian Yang. Why
johnny can’t prompt: How non-ai experts try (and fail) to design LLM prompts. In Al-
brecht Schmidt, Kaisa Väänänen, Tesh Goyal, Per Ola Kristensson, Anicia Peters, Stefanie
Mueller, Julie R. Williamson, and Max L. Wilson, editors, Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems, CHI 2023, Hamburg, Germany,
April 23-28, 2023, pages 437:1–437:21. ACM, 2023. doi: 10.1145/3544548.3581388. URL
https://doi.org/10.1145/3544548.3581388. 7.4.1, 8.1

[281] Tianyi Zhang, Ganesha Upadhyaya, Anastasia Reinhardt, Hridesh Rajan, and Miryung
Kim. Are code examples on an online q&a forum reliable?: A study of api misuse on stack
overflow. In International Conference on Software Engineering (ICSE), pages 886–896.
IEEE, 2018. 2.4, 4.1, 5.1, 5.5, 6.8, 7.8

[282] Tianyi Zhang, Björn Hartmann, Miryung Kim, and Elena L. Glassman. Enabling data-
driven API design with community usage data: A need-finding study. In Regina Bern-
haupt, Florian ’Floyd’ Mueller, David Verweij, Josh Andres, Joanna McGrenere, Andy
Cockburn, Ignacio Avellino, Alix Goguey, Pernille Bjøn, Shengdong Zhao, Briane Paul
Samson, and Rafal Kocielnik, editors, CHI ’20: CHI Conference on Human Factors in
Computing Systems, Honolulu, HI, USA, April 25-30, 2020, pages 1–13. ACM, 2020. doi:
10.1145/3313831.3376382. URL https://doi.org/10.1145/3313831.3376382. 3.1

[283] Sha Zhao, Julian Ramos, Jianrong Tao, Ziwen Jiang, Shijian Li, Zhaohui Wu, Gang Pan,
and Anind K. Dey. Discovering different kinds of smartphone users through their appli-
cation usage behaviors. In Paul Lukowicz, Antonio Krüger, Andreas Bulling, Youn-Kyung
Lim, and Shwetak N. Patel, editors, Proceedings of the 2016 ACM International Joint
Conference on Pervasive and Ubiquitous Computing, UbiComp 2016, Heidelberg, Ger-
many, September 12-16, 2016, pages 498–509. ACM, 2016. doi: 10.1145/2971648.2971696.

186

URL https://doi.org/10.1145/2971648.2971696. 3.3.2, 3.3.2
[284] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao

Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez,
and Ion Stoica. Judging llm-as-a-judge with mt-bench and chatbot arena. In Alice Oh, Tris-
tan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine, editors,
Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December
10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html.
8.3.1, 8.3.2

[285] Albert Ziegler, Eirini Kalliamvakou, Shawn Simister, Ganesh Sittampalam, Alice Li, An-
drew Rice, Devon Rifkin, and Edward Aftandilian. Productivity Assessment of Neural
Code Completion. arXiv, 2022. doi: 10.48550/arxiv.2205.06537. 2.4, 7.1

187

