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Abstract 

A simulated student is a machine learning agent that learns a set of cognitive skills by observing solutions 
demonstrated by human experts. The learned cognitive skills are converted into a cognitive model for a Cognitive 
Tutor that is a computerized tutor that teaches human students the cognitive skills. In this paper, we analyze the 
characteristics of the effective demonstrations that lead to quicker and more accurate learning. Results from 
empirical studies show that expressive demonstrations (as opposed to abbreviated demonstrations that involve 
implicit mental operations) are better for both speed and accuracy of learning. We also found that providing 
multiple demonstrations of the same cognitive skill with differing surface features accelerates learning. These 
findings imply that the ordering of training sequence as well as the level of detail in demonstration determines the 
efficiency with which a simulated student generates a cognitive model. 
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1 Introduction 
This study investigates characteristics of effective demonstrations for machine-learning agents. In 
particular, we consider Simulated Students, which learn a cognitive model by demonstration 
[Cypher, 1993].  

A cognitive model is the essential component for a Cognitive Tutor [Anderson et al., 1990; 
Anderson et al., 1995] since it is used to model trace (i.e., to evaluate) a human student’s 
problem-solving steps. Traditionally, building a cognitive model has required significant skills in 
cognitive task analysis and AI programming, so that novice authors have great difficulty to create 
them without help.  

Developed as a plug-in intelligent component for the Cognitive Tutor Authoring Tools 
[Koedinger et al., 2003], our Simulated Student learns cognitive skills from the model solutions. 
That is, with the assistance of a Simulated Student, an author can simply demonstrate solutions 
without prior knowledge of programming. The Simulated Student then generates a set of 
production rules that becomes a cognitive model that replicates the demonstration. Because this 
model is closely related to the model developed by the human student that will use the Cognitive 
Tutor, we call this learning agent a Simulated Student.  

Several researchers have used machine learning for instructional design, for example, [Mertz, 
1997; Tecuci & Keeling, 1999]. Others have applied machine learning specifically for cognitive 
modeling for Cognitive Tutors [Blessing, 1997; Jarvis et al., 2004]. Our approach generates a 
cognitive model that is more accurate and more general than the previous studies, however, 
because it captures meaningful features of the demonstration (details in 3.3).  

An interesting question is then what makes demonstration more effective and efficient. 
Specifically, we have explored how the following parameters alter the effectiveness of learning: 
the amount of information demonstrated, the type of problems, and the order of problems 
demonstrated. We call those problems used for demonstration the training problems.  

One way to evaluate effectiveness is to measure the amount of work necessary to obtain a 
quality cognitive model. We have operationalized the amount of work as the number of steps 
demonstrated, and the quality of the cognitive model as the accuracy of model tracing. We have 
used equation solving as an example domain for the study.  

Our major findings: (1) providing an expressive demonstration (as opposed to an abbreviated 
demonstration, which skips steps) is more likely to avoid learning incorrect production rules 
when the demonstration bears a coincidental ambiguity in the problem representation (e.g., the 
number ‘3’ in 3x=9 resulting in x=3, which could be a coefficient or a quotient); (2) providing an 
expressive demonstration, however, does not prevent incorrect learning when the demonstration 
has ambiguity in structural features (e.g., ‘–3’ in 2x+4x–3 could be a last term or a constant term); 
(3) the order of training problems has a significant impact on the efficiency of learning – better 
learning involves ordering the training problems in such a way that, for each production rule, the 
instances of rule applications appear differently at a surface features (e.g., applying the same 
production rule to an equation with and without a fraction term).  

These results imply that to best facilitate authoring with the Simulated Student, the author 
should provide a demonstration with detailed steps. It also implies that there is an “optimal” 
sequence of training problems that generates a better cognitive model with fewer demonstrations. 

The structure of the paper is as follows. In section 2, we describe the basic architecture of the 
Cognitive Tutor and its authoring tools, the Cognitive Tutor Authoring Tools. We then introduce 
the Simulated Student in section 3. Details of two evaluation studies as well as the lessons learned 
are described in sections 4 and 5, followed by concluding remarks in section 6.  

2 Cognitive Tutors and CTAT 
2.1 Cognitive Tutors and Example-Tracing Tutors 
Cognitive Tutors are an effective [Anderson et al., 1995] and widely-used [Koedinger et al., 
1997] type of computerized tutor. A Cognitive Tutor’s teaching strategy is as follows: ask 
(human) students to solve problems; verify the correctness of each step they make; and provide 
feedback on each step. Feedback tells the student whether a step is correct or not. When the step 
is incorrect, the tutor may also provide more informative feedback – for example, the tutor 
explains why the step is wrong or what should have been done instead. If the student can not 



make a correct step, then he or she may ask for a hint. The tutor then provides a hint message 
associated with the next correct step. 

This teaching strategy is supported thoroughly by a cognitive model, which is a set of 
production rules. Each production rule represents either a correct or incorrect step that could be 
performed by a student.1 When a student performs a step, the tutor tries to find a production rule 
that matches the step in order to judge its correctness.2 This procedure is called model tracing. 
The tutor requires the students to perform each step correctly before allowing the student to 
proceed to the next step. This way, the tutor ensures that it (the tutor) follows the student’s path 
toward a solution.  

One can build a simplified version of a Cognitive Tutor by relaxing a requirement on model 
tracing. Instead of having a fully functional model tracing capability with a fully general 
cognitive model, the automated tutor would recognize student steps only in the specific problems 
demonstrated by an author. The Cognitive Tutor Authoring Tools (CTAT) is a suite of software 
that allows authors to build this kind of tutor, called an Example-Tracing Tutor [Koedinger et al., 
2003].  

2.2 Cognitive Tutor Authoring Tools (CTAT) 
CTAT comprises three major components: an external graphical user interface (GUI) builder, 

an integrated development environment to build and test a Cognitive Tutor, and an external editor 
to manually build a cognitive model.  

With CTAT, the author first builds a GUI for the desired tutor that exposes the individual steps 
in the solution. The author then uses the tutor’s GUI and demonstrates correct and incorrect 
actions for many problems. A CTAT tool called the Behavior Recorder embedded into CTAT 
stores and displays the author’s demonstrations. It also allows the author to mark each of the steps 
as correct or incorrect and add hint messages so that when human students use the Example-
Tracing Tutor, the tutor can provide appropriate feedback on the students’ steps.  

To make the Example-Tracing Tutor a fully-equipped Cognitive Tutor that can model trace 
human student’s steps on more general classes of problems, the author must build a cognitive 
model by hand. CTAT has tools to help the author with this task, but it is still quite challenging 
for those authors who are not trained, hence the motivation for building the Simulated Students. 
Our Simulated Students addresses this difficulty by extending CTAT to enable the Cognitive 
Tutor to model-trace generalizations of the author’s demonstrated solutions. 

The next section shows how the simulated students can automatically build a cognitive model 
from demonstrations.  

3 The Simulated Student 
We will use the Equation Tutor shown in Figure 1 as an illustration. An equation is represented 
by two cells in separate single-column tables. Given an equation in the top row of the tables, 
human students are expected to fill in a single cell at a time. For example, at the moment shown 
in Figure 1, entering 3x+4–4 in the second cell in the left column is the desired next step, 
followed by entering –5–x–4 in the second cell in the right column. 

                                                 
1 In general, a cognitive model could involve production rules that do not correspond to any visible steps. Those are 

the production rules that are used only for the internal chain of reasoning to gain efficiency in the system development, 
which is not relevant in the current study. Hence we do not deal with such kind of internal production rules in this 
study.  

2 The Cognitive Tutor assumes that the cognitive model is omniscient hence if there is no matching production rule, 
the step performed is incorrect. 



 
Figure 1: The Equation Tutor 

In the rest of this section, we first describe how the author demonstrates problem-solving steps 
for the Simulated Student. We then explain the basic structure of the production rules learned by 
the Simulated Student. Finally, we discuss the learning algorithm implemented in the Simulated 
Student.  

3.1 Authoring cognitive model by demonstration 
The Simulated Student builds a cognitive model incrementally and interactively. For each step in 
demonstration, the author must provide the following additional information:  

1. All GUI elements (called the focus of attention) whose contents are to be used in 
performing the step must be indicated. This is done by double-clicking on each GUI 
element. 

2.  A name for the step (called a skill name) must be given. This name must be unique for 
each skill, and the same name must be given each time that skill is demonstrated. 

When an author demonstrats a step, the Simulated Student first tries to model trace the step 
with the existing cognitive model (which is initially empty). Feedback on the attempt is then 
provided; that is, the author is informed which production rule was matched (if any) when model 
tracing the step just demonstrated. The author would then acknowledge the feedback by entering 
a correct skill name (in the case that a wrong production rule or no production rule matched), or 
by validating a correct skill name (in the case that the model trace was correct).  

The Simulated Student learns or re-learns a single production rule for a step demonstrated only 
when model tracing fails. The cognitive model thus grows upon failure.3  

3.2 Structure of a production rule 
A production rule represents an action to be performed in terms of what kind of operations should 
be done upon which GUI element and when. The last two issues are relating to the conditions in 
the left-hand side (LHS) of the production rule, whereas the first issue is for the operator 
sequence (or the actions, if you will), in the right-hand side (RHS).  

More precisely, the which-part represents particular GUI elements that are internally 
represented as working memory elements (WMEs). Every GUI element has a corresponding 
internal WME representation. The WMEs are semantically organized in a frame-like structure, 
represented as a semantic network. So, for example, in the tutor GUI shown in Figure 1, a 
problem has two tables, a table has a column, and a column has a list of cells. The which-path 
identifies a particular WME as a node in the semantic network – hence we call it the WME-path. 

The when-part is represented as a list of the WME status hence called the LHS feature 
constraints. It captures the features shown in the GUI that must be held for the production rule to 
be fired. Some example features in the Equation Tutor are “an expression is a polynomial,” “an 
expression has a variable term in it,” etc.  

The what-part consists of a sequence of RHS operators that must be applied to the specified 
WMEs to make an action for a step. An operator may have multiple input values but always 
returns a single output value. An output from an operator can be passed as an input for another 
operator. Therefore, an action for a single step can be decomposed as a sequence of simple 
operators. For example, a production rule to add -4 from the left-hand side of an equation (as the 

                                                 
3 This functionality can be turned off. A study comparing the timing of learning is shown in section 4.3.  



first step in adding -4 from both sides) could apply to the situation shown in Figure 1. The 
operator sequence for this action could be:  

 
?last-term ← (get-last-term “3x+4”) 
?rev-term ← (reverse-sign ?last-term) 
?new-exp ← (add “3x+4” ?rev-term) 

3.3 The learning algorithm 
The three components of the production rule – WME-path, LHS feature constraints, and the 

RHS operator sequence – are learned with the different learning techniques.  
The WME-path consists only of focus of attention, which is explicitly specified by the author 

when a step is demonstrated. The learning for each WME-path is a straightforward 
generalization. In the most specific case, a WME-path represents an absolute object in the 
absolute position, e.g., the 3rd cell in the 2nd column of the 1st table. In the most general case, 
the WME-path represents any object in any places, e.g., any cell in any column in any table. A 
WME-path of intermediate generality has those only some of its elements specified, e.g., any cell 
in the 2nd column in the 1st table. The generality of a WME-path is predefined. On the first 
demonstration for a particular skill, the WME-path is simply a set of paths for each element of 
focus of attention. When more demonstrations are made for the same skill, then the WME-path is 
generalized along predefined generalities.  

LHS features are learned by FOIL [Quinlan, 1990]. For each production rule, FOIL learns an 
applicability of the production rule in terms of the features that can be read off the GUI elements. 
When a step is demonstrated for a particular production rule, then the specified focus of attention 
is stored as a positive example of the applicability for that particular production rule. As for the 
relations appearing in the body of the learned concept, when a step is demonstrated, all of the 
feature predicates given a priori as background knowledge are tested against the focus of 
attention. The results become the positive and negative examples for those relations. Furthermore, 
an instance of demonstration on a particular production rule becomes a negative example for all 
other production rules demonstrated so far.  

The learning for the RHS operator sequence is the most simple and straightforward. Given a set 
of instances of demonstration on a particular rule application, the Simulated Student tries to find 
the shortest sequence of operators that agrees with all instances in the sense that it always 
produces the action from the focus of attention for each of the demonstration instances. This is 
done by the iterative-deepening depth-first search.  

The next two sections show empirical studies to evaluate the effectiveness of demonstrations to 
address the central research question of what defines a better demonstration.  

4 Curriculum Evaluation Study 
4.1 Purpose of the study 
The primary purpose of the first study is to examine how differences in the sequence of training 
problems used in the demonstration affect learning. For human students, teaching “easy” 
problems prior to “hard” problems might make more sense, presumably because it imposes less 
cognitive load. What about a machine learner, which does not suffer from such a limitation of 
cognitive resources? 

Note that in many cases, the author will be sequencing examples with a human student in mind. 
For purely engineering purposes, therefore, it is useful to understand the degree to which the 
sequence of examples needed by the simulated student coincides with our intuitions about human 
learning [VanLehn, 1987]. Also, if example ordering causes a significant difference in learning 
performance, we must identify the sequence of training problems that works best for the 
simulated student.  

As mentioned above, the Simulated Student re-learns a production rule when a production rule 
turns out to be incorrect. More precisely, the Simulated Student first attempts to model trace a 
step demonstrated, and only when the model tracing fails is a corresponding production rule re-
learned. In this study, we also explore the effect of forcing the Simulated Student to relearn rules 
on every instance of a rule application in a demonstration.  



4.2 Method 
There were eight training problems used for the study as shown in Table 1. There were ten 
production rules involved in the demonstration (shown in the top row in the table). The numbers 
in the table show the locations in the solution step where a corresponding rule application 
occurred. Double digits (e.g., 3 7) indicate that the corresponding rule was applied twice on the 
specified steps. The numbers in the margin show the total number of rule application made for 
each problem and rule. A total of 54 instances of rule application was demonstrated.  

Problem do-arith-lhs do-arith-rhs done add-lhs add-rhs div-lhs div-rhs multi-lhs multi-rhs copy-rhs

(x + 5)/6 = 7 3 7 4 8 9 5 6 1 2 9

x/4 + 5 = 8 3 7 4 8 9 1 2 5 6 9

4x + 5 = 13 3 7 4 8 9 1 2 5 6 9

3x + 4x = 21 1 5 6 7 3 4 2 7

-x = 5 3 4 5 1 2 5

x/7 = 6 3 4 5 1 2 5

8x = 16 3 4 5 1 2 5

x + 4 = 9 3 4 5 1 2 5

12 11 8 4 4 4 4 3 3 1 54  
Table 1: The training problems used in the studies 

For validation of the learned production rules, seven test problems were used that were solved 
in 67 steps with the same ten production rules used in the demonstration. Each time a training 
problem had been completely demonstrated, a validation test was run over the seven test 
problems, and solution steps were model-traced. The accuracy of a production rule was measured 
as the ratio m/N where N is the total number of times the rule should be applied in the seven test 
problems, and m is the number of steps that were correctly model-traced. 
 There were ten feature predicates and 24 operators given as background knowledge.  

4.3 Results and Discussion 
Impact of the training sequence on the learning outcome 
When the training problems are ordered according to the number of the production rules applied 
to solve a problem, the order in which training problems are demonstrated affects learning – 
ordering training problems from “difficult” problems (more production rules involved to solve a 
problem) to “easy” problems (fewer production rules) leads to better learning in terms of both 
speed and accuracy. Figure 2 shows two learning curves comparing the Hard-to-Easy (H2E) and 
Easy-to-Hard (E2H) conditions. The X-axis shows a number of times a particular rule application 
is demonstrated. The Y-axis is an accuracy of model tracing, aggregated and averaged for each of 
the learning occurrences across all production rules.  
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Figure 2: Comparing order of training problems 

As shown in the figure, the Easy-to-Hard condition required considerably more training 
instances than learning hard problems first. Notice that learning occurred only when a production 
rule turned out to be wrong. Hence in the Easy-to-Hard conditions, the production rules learned 



were more likely to be wrong. At the end of the training sessions, however, there were no 
differences in the quality of the production rules in both conditions. 4  
Can we optimize the training problems?  
To investigate more closely how the order of the training problems affects learning, we randomly 
ordered eight training problems and evaluated the learning outcomes in the same way described 
above. It turned out that for a particular production rule to be learned with a small number of 
demonstration instances, the training problems need to be ordered so that the demonstration 
instance for a particular production rule happened consecutively across the training problems 
where the rule applications differed at the WME-path level. In the equation-solving domain, the 
difference in the rule application at the WME-path level corresponds to the difference in the place 
in the table where the rule is applied – e.g., the 1st line vs. the 3rd line.  

The above observation implies that one can design an effective demonstration in terms of the 
sequence of the training problems that leads to a better learning outcome. To our surprise, we 
could successfully identify a sequence of only four training problems (shown in Table 2) that 
leads to a set of production rules with the equivalent quality in the accuracy of model tracing 
(Figure 3).  

 
Type do-arith-lhs do-arith-rhs done add-lhs add-rhs div-lhs div-rhs multi-lhs multi-rhs copy-rhs

x/4 + 5 = 8 3 5 3 5 5 2 2 4 4

(x + 5)/6 = 7 3 5 3 5 5 4 4 2 2

3x + 4x = 21 2 4 4 4 3 3 2

-x = 5 3 3 3 2 2  
Table 2: A “better” sequence of training problems 
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Figure 3: Learning curve with the “better” four training problems 
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4 There was a technical glitch in the current implementation that affected the accuracy of model tracing for the 
current study. The drop at the end of the Hard-to-Easy condition was partly due to this problem.  



Figure 4: Learning curve when forced to relearn on each instance of the demonstration steps 

Impact of the timing of re-learning  
As shown in Figure 4, even when the Simulated Student was forced to re-learn rules on every step 
in the demonstration, there was not a significant difference in the performance of learning in 
terms of speed and accuracy – the learning converged within 5 demonstration instances. There 
was a notable drop at the beginning of the Easy-to-Hard condition, but it was due to a 
coincidental similarity in the rule applications demonstrated. As shown in the Table 1, the first 4 
instances for the three rules – do-arith-lhs, do-arith-rhs, and done – were demonstrated in 
the exact same ways in terms of the surface similarity (they were applied in the exact same place 
in the solution steps).  

In summary, the order of training problems has a significant effect that leads to better learning 
in terms of speed and accuracy. The timing of learning may not have any effect at all, so learning 
only on failure is sufficient for practical purposes.  

5 Level of Detail in Demonstration  
5.1 Purpose of the study 
The purpose of the second study is to see if the difference in the level of detail in demonstration 
could affect learning. The level of detail is defined as the number of actions explicitly 
demonstrated.  

5.2 Method 
There were two different types of demonstrations used in the study:  
1) The abbreviated demonstration showed only a result of an algebraic manipulation. In other 

words, simplification was done implicitly. For example, when dividing both sides of an 
equation with a number, the abbreviated demonstration showed only the result of division, say, 
4x=8 gets x=2.  

2) The expressive demonstration showed intermediate steps or algebraic manipulations. For 
example, dividing the both sides of 4x=8 with 4 got 4x/4=8/4, which then simplified to x=2 in 
the next step.  

The same procedure for the validation test and the same dependent variable to measure the 
accuracy of model tracing were used as in the first study. Also, the same set of feature predicates 
and operators were used.  

5.3 Results and Discussions 
It turned out that ambiguity in demonstration could lead to learning incorrect production rules. 
We have also found that changing the level of detail in demonstrations could resolve certain types 
of ambiguity problems. In this section, we first introduce the ambiguity problem, then discuss the 
effect of changing the level of detail in demonstration.  
Ambiguity in demonstration 
There are two kinds of ambiguity in a demonstration that could hinder learning. 
Operator Ambiguity: When 3x=9 leading to x=3 was demonstrated as the first instance of a rule 
to divide both side with the same number, the Simulated Student generated the production rule 
that leads Ax=B to x=A instead of x=B/A. 

This type of ambiguity happens when there are multiple ways to sequence operators to replicate 
the demonstration (e.g., get a coefficient of the left-hand side vs. divide right-hand side with the 
coefficient).  
Structure Ambiguity: When the equation 2x–4x+3=4 leading to 2x–4x=4–3 was demonstrated for 
a production rule to transfer a constant term to the other side, the Simulated Student generated a 
RHS operator sequence that moves the last term on the left-hand side of the equation. This rule is 
overly specific and might result in semi-optimal solution, say, leading 2x+3–4x=4 to 2x+3=4+4x. 
 This type of ambiguity happens when there are multiple ways to identify the object to be 
manipulated (e.g., the last term vs. the first constant term).  
Impact of the level of detail in a demonstration 
With the abbreviated demonstration, incorrect (overly specific) production rules were 
occasionally generated when the training problems had both operator and/or structure 



ambiguities, but these incorrect rules were eventually fixed when more demonstration instances 
were provided that served as the counter examples to disambiguate previous instances. For 
example, 4x=8 leading to x=2 served to disambiguate the 3x=9 example noted above.  

The expressive demonstration, on the other hand, was less affected by operator ambiguity. For 
example, given that 3x=9 leads to 3x/3 = 9/3, the Simulated Student successfully generated a 
production rule that divides the left-hand side of the equation with the coefficient of the variable 
term in the original equation.  

The difference in the degree of detail in demonstration also affects the complexity of the 
search. With abbreviated demonstrations, the search complexity increased drastically because the 
Simulated Student had to search all implicit operators that were abridged in the demonstration. As 
a result, when the number of RHS operators increases, the search becomes impractical as shown 
in Table 3. The table shows a time in second to complete a search, and the number of nodes 
expanded in the search space. A dash mark ‘–’ shows that there was no rule generated at the 
specific operator length.  

In summary, the detailed demonstrations are more practical for two reasons: (1) it decreases the 
chance of learning incorrect rules from operator ambiguity; and (2) the resulting production rules 
tend to have fewer RHS operators and search is less expensive. 

Table 3: Comparison of the search complexity with different degree of detail in demonstration 
Detailed 

demonstration 
Abbreviated 

demonstration 
Number of  
operators in 
RHS Time [sec] Space Time [sec] Space 

1 0.00 1 0.00 1
2 0.12 19 0.04 6
3 10.21 1452 40.31 3563
4 – – 2396.52 212780

6 Conclusion 
The Simulated Students are a useful tool for authors of Cognitive Tutors, especially for the novice 
authors who are not familiar with cognitive modeling or AI programming.  

The empirical studies showed that there is a significant effect in ordering training problems 
where an effective ordering involves instances of rule application that differ at the level of focus 
of attention, namely, the topological configuration to apply a production rule. It would be 
interesting to see if this observation also holds in learning for human students.  

The problem of ambiguity is interesting, because similar performance can be observed in 
human learning. This suggests a task for future work: since both types of ambiguity are caused by 
having multiple interpretation of the demonstration, the Simulated Student could detect an 
ambiguity and ask the author for more information, in order to disambiguate the problem 
automatically.  
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