
A Programming Language for Probabilistic Computation

Sungwoo Park

August 2005
CMU-CS-05-137

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Frank Pfenning, co-chair

Sebastian Thrun, co-chair, Stanford University
Geoffrey Gordon

Robert Harper
Norman Ramsey, Harvard University

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

c© 2005 Sungwoo Park

This research was sponsored by the US Navy under contract no.N6600101C6018, the US Air Force under contract nos.
F1962895C0050 and F306029820137, the US Army under contract no. DABT6300C1016, and through a generous grant from the
National Science Foundation. The views and conclusions contained in this document are those of the author and should notbe
interpreted as representing the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or
any other entity.

Keywords: Probabilistic language, Probability distribution, Sampling function, Robotics, Computa-
tional effect, Monad, Modal logic.

Abstract

As probabilistic computations play an increasing role in solving various problems, researchers have designed
probabilistic languagesto facilitate their modeling. Most of the existing probabilistic languages, however,
focus only on discrete distributions, and there has been little effort to develop probabilistic languages whose
expressive power is beyond discrete distributions. This dissertation presents a probabilistic language, called
PTP(ProbabilisTic Programming), which supports all kinds of probability distributions.

The key idea behind PTP is to usesampling functions, i.e., mappings from the unit interval(0.0, 1.0] to
probability domains, to specify probability distributions. By using sampling functions as its mathematical
basis, PTP provides a unified representation scheme for probability distributions, without drawing a syntactic
or semantic distinction between different kinds of probability distributions.

Independently of PTP, we develop a linguistic framework, called λ©, to account for computational
effects in general.λ© extends a monadic language by applying the possible world interpretation of modal
logic. A characteristic feature ofλ© is the distinction between stateful computational effects, calledworld
effects, and contextual computational effects, calledcontrol effects. PTP arises as an instance ofλ© with a
language construct for probabilistic choices.

We use a sound and complete translator of PTP to embed it in Objective CAML. The use of PTP is
demonstrated with three applications in robotics: robot localization, people tracking, and robotic mapping.
Thus PTP serves as another example of high-level language applied to a problem domain where imperative
languages have been traditionally dominant.

Acknowledgments

I am grateful to my advisor Frank Pfenning for all the supporthe gave me during my graduate years. From
his unusual patience, hearty encouragement, and eternal cheerfulness, I witnessed the excellent leadership
of an academic advisor; from all the technical discussions we had together, I learned everything I know
about programming language theory. I am also grateful to my co-advisor Sebastian Thrun for suggesting to
me the thesis topic and teaching me robotics.

I thank my thesis committee for their time and involvement. Chapter 2 grew out of numerous discussions
with Bob Harper, which were always fun and are still a source of inspirations for me. I am particularly
indebted to Norman Ramsey for showing an interest in my work,carefully reading the draft, and writing
insightful comments even twice. I also thank Sharon Burks for her patience and assistance in completing
the dissertation for the last few months.

I thank my friends at Carnegie Mellon with whom I have shared the experience of graduate school:
Hakan Younes, Tiankai Tu, Jonathan Moody, Jeff Polakow, Joshua Dunfield, and Amit Manjhi. I also thank
my high school friends who I never thought would live in Pittsburgh during my graduate years: Jaedong Kim,
Sunghong Park, and Wootae Kim. I express my sincere gratitude to Eunseok Cha who was unconditionally
supportive of me at all the hard times in Pittsburgh. She was also always with me at all the happy times,
which I deeply appreciate.

Lastly the dissertation would not have been written withoutthe wholehearted support of my family for
the past six years. Ultimately the dissertation is for all ofmy family and it is our achievement.

v

vi ACKNOWLEDGMENTS

Contents

1 Introduction 1
1.1 Motivation 1
1.2 Previous work 3
1.3 Sampling functions as the mathematical basis 4
1.4 Linguistic framework for PTP 8
1.5 Applications to robotics 8
1.6 Outline 9

2 Linguistic Framework 11
2.1 Computational effects inλ© . 11
2.2 Logical preliminaries 15

2.2.1 Curry-Howard isomorphism and judgmental formulation 15
2.2.2 Semantics of modal logic 22

2.3 Languageλ© . 23
2.3.1 Logic forλ© . 24
2.3.2 Language constructs ofλ© . 27
2.3.3 Substitutions 30
2.3.4 World terms and instructions 32
2.3.5 Operational semantics 34

2.4 Examples of world effects 36
2.4.1 Probabilistic computations 36
2.4.2 Sequential input/output 36
2.4.3 Mutable references 37
2.4.4 Supporting multiple notions of world effect 39

2.5 Fixed point constructs 39
2.5.1 Unfolding semantics 39
2.5.2 Backpatching semantics 43

2.6 Continuations 47
2.6.1 Continuations for terms 47
2.6.2 Continuations for expressions 48

2.7 Summary 49

3 The Probabilistic Language PTP 51
3.1 Definition of PTP 51

3.1.1 Syntax and type system 51
3.1.2 Operational semantics 53
3.1.3 Fixed point construct for expressions 54

vii

viii CONTENTS

3.1.4 Distinguishing terms and expressions 55
3.2 Examples 55
3.3 Proving the correctness of encodings 60
3.4 Approximate Computation in PTP 63

3.4.1 Expectation query 64
3.4.2 Bayes operation 65
3.4.3 expectation andbayes as expression constructs . 66
3.4.4 Cost of generating random numbers 66

3.5 Summary 67

4 Implementation 69
4.1 Representation of sampling functions 69
4.2 Translation of PTP in a call-by-value language 70
4.3 Extended syntax 75
4.4 Approximate computation 76
4.5 Simultaneous computation of multiple samples 78
4.6 Summary 80

5 Applications 83
5.1 Sensor readings: action and measurement 83
5.2 Robot localization 84
5.3 People tracking 87
5.4 Robotic mapping 89
5.5 Summary 91

6 Conclusion 99

List of Figures

2.1 Translation of inference rules for hypothetical judgments into typing rules. 19
2.2 Abstract syntax forλ©. 28
2.3 Typing rules ofλ©. 28
2.4 A schematic view of〈E/x〉F . 31
2.5 Operational semantics ofλ© which uses expression substitutions for expression computa-

tions. .. 34
2.6 Operational semantics ofλ© in the direct style. 35
2.7 Typing rules and reduction rules for mutable references. 38
2.8 Syntax for continuations for terms. 47
2.9 Reduction rules for continuations for terms. 48
2.10 Syntax for continuations for expressions. 48
2.11 Reduction rules for continuations for expressions. . .. 49

3.1 Abstract syntax for PTP. 52
3.2 Typing rules of PTP. 52
3.3 Operational semantics of PTP. 53

4.1 A fragment of PTP as the source language. 70
4.2 A call-by-value language as the target language. 71
4.3 Typing rules of the target language. 71
4.4 Operational semantics of the target language. 72
4.5 Translation of the source language. 72
4.6 wset to prob truncate . 77
4.7 Horizontal and vertical computations. 78
4.8 Execution times (in seconds) for generating a total of 3,100,000 samples. 80

5.1 Range readings produced by a laser range finder. 84
5.2 Samples from the action model. 85
5.3 Points in the map that correspond to measurements whens is set to the true pose of the robot. 86
5.4 Points in the map that correspond to measurements whens is set to a hypothetical pose of

the robot. .. . 86
5.5 Approximatingms from measurementm and poses. 87
5.6 A grid map and its likelihood map. 88
5.7 Probability distribution of robot pose after processing the first batch of range readings in

Figure 5.1. .. . 89
5.8 Progress of a real-time robot localization run. 93
5.9 Equations used in people tracking. 94

ix

x LIST OF FIGURES

5.10 Implementation of people tracking in PTP. 94
5.11 Progress of a real-time people tracking run. 95
5.12 Range readings and the area around the robot during a people tracking run. 96
5.13 Implementation of robotic mapping in PTP. 96
5.14 Raw odometry readings in the robotic mapping experiment. 97
5.15 Result of the robotic mapping experiment. 97

Chapter 1

Introduction

This dissertation describes the design, implementation, and applications of a probabilistic language called
PTP (ProbabilisTic Programming). PTP usessampling functions, i.e., mappings from the unit interval
(0.0, 1.0] to probability domains, to specify probability distributions. By using sampling functions in spec-
ifying probability distributions, PTP supports all kinds of probability distributions in a uniform manner.
The use of PTP is demonstrated with three applications in robotics: robot localization, people tracking, and
robotic mapping.

The contribution of this dissertation is three-fold:

• Sampling functions for specifying probability distributions. As most of the existing probabilistic lan-
guages focus only on discrete distributions, probabilistic computations involving non-discrete distri-
butions have usually been implemented in conventional languages. Sampling functions open a new
way to specify all kinds of probability distributions, and thus serve as a mathematical basis for prob-
abilistic languages whose expressive power is beyond discrete distributions.

• Linguistic framework for computational effects. We develop a new linguistic framework, calledλ©,
to account for computational effects in general.λ© extends the monadic language of Pfenning and
Davies [60] by applying the possible world interpretation of modal logic. It distinguishes between
stateful computational effects (calledworld effects) and contextual computational effects (calledcon-
trol effects), and provides a different view on how to combine computational effects at the language
design level. PTP arises as an instance ofλ© with a language construct for probabilistic choices.

• Applications of PTP in robotics. In order to execute PTP programs, we use a sound and complete
translator of PTP to embed it in Objective CAML. The use of PTPis then demonstrated with three
applications in robotics: robot localization, people tracking, and robotic mapping. Thus PTP serves
as another example of high-level language applied to a problem domain where imperative languages
have been traditionally dominant.

1.1 Motivation

A probabilistic computation is a computation which makes probabilistic choices or whose result is repre-
sented with probability distributions. As an alternative paradigm to deterministic computation, it has been
used successfully in diverse fields of computer science suchas speech recognition [63, 29], natural language
processing [11], and robotics [72]. Its success lies in the fact that probabilistic approaches often overcome
the practical limitation of deterministic approaches. A trivial example is the problem of testing whether
a multivariate polynomial given by a program without branchstatements is identically zero or not. It is

1

2

difficult to find a practical deterministic solution, but there is a simple probabilistic solution: evaluate the
polynomial on a randomly chosen input and check if the resultis zero.

As probabilistic computations play an increasing role in solving various problems, researchers have
also designedprobabilistic languagesto facilitate their implementation [33, 24, 74, 59, 64, 43, 53]. A
probabilistic language treats probability distributionsas built-in datatypes and thus abstracts from represen-
tation schemes,i.e., data structures for representing probability distributions. For example, a conventional
language may be extended with an abstract datatype for probability distributions, which is specified by a
certain choice of representation scheme and a set of operations on probability distributions. As a result,
it allows programmers to concentrate on how to formulate probabilistic computations at the level of prob-
ability distributions rather than representation schemes. When translated in a probabilistic language (by
programmers), such a formulation usually produces conciseand elegant code.

A typical probabilistic language supports at least discrete distributions, for which there exists a represen-
tation scheme sufficient for all practical purposes: a set ofpairs consisting of a value from the probability
domain and its probability. We can use such a probabilistic language for those problems involving only
discrete distributions. If non-discrete distributions are involved, however, we usually use a conventional
language for the sake of efficiency, assuming a specific kind of probability distributions (e.g., Gaussian
distributions) or choosing a specific representation scheme (e.g., a set of samples from the probability dis-
tribution). For this reason, there has been little effort todevelop probabilistic languages whose expressive
power is beyond discrete distributions.

The unavailability of such probabilistic languages means that when implementing a probabilistic com-
putation involving non-discrete distributions, we have toresort to a conventional language. Thus we wish to
develop a probabilistic language supporting all kinds of probability distributions —discrete distributions,
continuous distributions, and even those belonging to neither group.Furthermore we wish to draw no dis-
tinction between different kinds of probability distributions, both syntactically and semantically, so that we
can achieve a uniform framework for probabilistic computation. Such a probabilistic language can have a
significant practical impact, since once formulated at the level of probability distributions, any probabilistic
computation can be directly translated into code.

Below we present an example that illustrates the disadvantage of conventional languages in implement-
ing probabilistic computations and also motivates the development of PTP.

Notation

If a variablex ranges over the domain of a probability distributionP , thenP (x) means, depending on the
context, either the probability distribution itself (as in“probability distributionP (x)”) or the probability of
a particular valuex (as in “probabilityP (x)”). We write P (x) for probability distributionP when we want
to emphasize the use of variablex. If we do not need a specific name for a probability distribution, we use
Prob (as in “probability distributionProb(x)”).

Similarly P (x|y) means either the conditional probabilityP itself or the probability ofx conditioned on
y. We writePy or P (·|y) for the probability distribution conditioned ony.

U(0.0, 1.0] denotes a uniform distribution over the unit interval(0.0, 1.0].

A motivating example for PTP

A Bayes filter[28] is a popular solution to a wide range of state estimationproblems. It estimates the state
s of a system from a sequence ofactionsandmeasurements, where an actiona induces a change to the
state and a measurementm gives information on the state. At its core, a Bayes filter computes a probability

3

distributionBel(s) of the state according to the following update equations:

Bel(s) ←
∫

A(s|a, s′)Bel(s′)ds′(1.1)

Bel(s) ← ηP(m|s)Bel(s)(1.2)

A(s|a, s′) is the probability that the system transitions to states after taking actiona in another states′,
P(m|s) the probability of measurementm in states, andη a normalizing constant ensuring

∫

Bel(s)ds =
1.0. The update equations are formulated at the level of probability distributions in the sense that they do
not assume a particular representation scheme.

Unfortunately the update equations are difficult to implement for arbitrary probability distributions.
When it comes to implementation, therefore, we usually simplify the update equations by making additional
assumptions on the system or choosing a specific representation scheme. For example, with the assumption
thatBel is a Gaussian distribution, we obtain a variant of the Bayes filter called aKalman filter[79]. If Bel
is approximated with a set of samples, we obtain another variant called aparticle filter [15].

Even these variants of the Bayes filter are, however, not trivial to implement in conventional languages.
For example, a Kalman filter requires various matrix operations including matrix inversion. A particle
filter manipulates weights associated with individual samples, which often results in complicated code.
Since conventional languages can only simulate probability distributions, it is also difficult to figure out the
intended meaning of the code, namely the update equations for the Bayes filter.

An alternative approach is to use an existing probabilisticlanguage after discretizing all probability
distributions. This idea is appealing in theory, but impractical for two reasons. First, given a probability
distribution, it may not be easy to choose an appropriate subset of its support upon which discretization is
performed. For example, in order to discretize a Gaussian distribution (whose support is(−∞,∞)), we need
to choose a threshold for probabilities so that discretization is confined to an interval of finite length; for an
arbitrary probability distribution, such a threshold can be computed only by examining its entire probability
domain. Even when the subset of its support is fixed in advance, the process of discretization may incur
a considerable amount of programming. For example, Foxet al. [20] develop two non-trivial techniques
(specific to their applications) for the sole purpose of efficiently manipulating discretized probability distri-
butions. Second some probability distributions cannot be discretized in any meaningful way. An example
is probability distributions over probability distributions or functions, which do occur in real applications
(Chapter 5 presents such an example).

If there were a probabilistic language supporting all kindsof probability distributions, we could imple-
ment the update equations with much less effort. PTP is a probabilistic language designed with these goals
in mind.

1.2 Previous work

There are a number of probabilistic languages that focus on discrete distributions. Such a language usually
provides a probabilistic construct that is equivalent to a binary choice construct. Saheb-Djahromi [69]
presents a probabilistic language with a binary choice construct (p1→ e1, p2→ e2) wherep1 + p2 = 1.0.1

Koller, McAllester, and Pfeffer [33] present a first order functional language with a coin toss constructflip(p)
wherep is a probability in(0.0, 1.0). Pfeffer [59] generalizes the coin toss construct to a multiple choice
constructdist [p1 : e1, · · · , pn : en] where

∑

i pi = 1.0. Gupta, Jagadeesan, and Panangaden [24] present
a stochastic concurrent constraint language with a probabilistic choice constructchoose x from Dom in e
whereDom is a finite set of real numbers. Ramsey and Pfeffer [64] present a stochastic lambda calculus with

1In this section,p (with or without indices) stands for probabilities,e program fragments, andv values.

4

a binary choice constructchoose p e1 e2. All these constructs, although in different forms, are equivalent to
a binary choice construct and have the same expressive power.

An easy way to process a binary choice construct (or an equivalent) during a computation is to generate
a sample from the probability distribution it denotes, as inthe above probabilistic languages. Another way
is to return an accurate representation of the probability distribution itself, by enumerating all elements in
its support along with their probabilities. Pless and Luger[61] present an extended lambda calculus which
uses a probabilistic construct of the form

∑

i ei : pi where
∑

i pi = 1.0. A program denoting a probability
distribution computes to a normal form

∑

i vi : pi, which is an accurate representation of the probability
distribution. Jones [30] presents a metalanguage with a binary choice constructe1 orp e2. Its operational
semantics uses a judgmente ⇒ ∑

pivi. Mogensen [43] presents a language for specifying die-rolls. Its
denotational semantics (called probability semantics) isformulated in a similar style, directly in terms of
probability measures.

Jones and Mogensen also provide an equivalent of a recursionconstruct which enables programmers to
specify discrete distributions with infinite support (e.g., geometric distribution). Such a probability distribu-
tion is, however, difficult to represent accurately becauseof an infinite number of elements in its support. For
this reason, Jones assumes

∑

pi ≤ 1.0 in the judgmente ⇒∑

pivi and Mogensen uses partial probability
distributions in which the sum of probabilities may be less than1.0. The intuition is that a finite recursion
depth is used so that some elements in the support are omittedin the enumeration.

There are a few probabilistic languages supporting continuous distributions. Kozen [34] investigates the
semantics of probabilisticwhile programs. A random assignmentx := random assigns a random number
to variablex. Since it does not assume a specific probability distribution for the random number generator,
the language serves only as a framework for probabilistic languages. Thrun [73, 74] extends C++ with
probabilistic data types which are created from a templateprob<type>. Although the language, calledCES,
supports common continuous distributions, its semantics is not formally defined. Our work is originally
motivated by the desire to develop a probabilistic languagethat is as expressive as CES and also has a
formal semantics.

1.3 Sampling functions as the mathematical basis

The expressive power of a probabilistic language is determined to a large extent by its mathematical basis.
That is, the set of probability distributions expressible in a probabilistic language is determined principally
by mathematical objects used in specifying probability distributions. Since we intend to support all kinds
of probability distributions without drawing a syntactic or semantic distinction, we cannot choose what is
applicable only to a specific kind of probability distributions. Examples are probability mass functions
which are specific to discrete distributions, probability density functions which are specific to continuous
distributions, and cumulative distribution functions which assume an ordering on each probability domain.

Probability measures [65] are a possibility because they are synonymous with probability distributions.
A probability measureµ over a domainD is a mapping satisfying the following conditions:

• µ(∅) = 0.

• µ(D) = 1.

• For a countable disjoint union∪iDi of subsetsDi of D,

µ(∪iDi) =
∑

iµ(Di)

where∪iDi is required to be a subset ofD.

5

Conceptually it maps the set of subsets ofD (or, the set of events onD) to probabilities in[0.0, 1.0]. Prob-
ability measures are, however, not a practical choice as themathematical basis because they are difficult to
represent if the domain in infinite. As an example, consider acontinuous probability distributionP of the
position of a robot in a two-dimensional environment. (Since P is continuous, the domain is infinite even
if the environment is physically finite.) The probability measureµ corresponding toP should be able to
calculate a probability for any given part of the environment (as opposed to a particular spot in the environ-
ment) — whether it is a contiguous region or a collection of disjoint regions, or whether it rectangular or
oval-shaped. Thus finding a suitable representation forµ involves the problem of representing an arbitrary
part of the environment, and is thus far from a routine task.

The main idea of our work is that we can specify a probability distribution by answering“How can we
generate samples from it?”, or equivalently, by providinga sampling functionfor it. A sampling function is
defined as a mapping from the unit interval(0.0, 1.0] to a probability domainD. Given a random number
drawn fromU(0.0, 1.0], it returns a sample inD, and thus specifies a unique probability distribution. In this
way, random numbers serve as the source of probabilistic choices.

In specifying how to generate samples, we wish to exploit sampling techniques developed in simulation
theory [10], most of which consume multiple (independent) random numbers to produce a single sample.
To this end, we use a generalized notion of sampling functionwhich maps(0.0, 1.0]∞ to D × (0.0, 1.0]∞

where(0.0, 1.0]∞ denotes an infinite product of(0.0, 1.0]. Operationally a sampling function now takes
as input an infinite sequence of random numbers drawn independently fromU(0.0, 1.0], consumes zero or
more random numbers, and returns a sample with the remainingsequence. This generalization of the notion
of sampling function is acceptable arithmetically (but notmeasure-theoretically). For example, we can use
the technique of expanding a single real number in(0.0, 1.0] into an infinite sequence of real numbers in
(0.0, 1.0] by taking even and odd bits of a binary representation of a given real number to produce two real
numbers and repeating the procedure.

As the mathematical basis of PTP, we choose sampling functions, which overcome the problem with
probability measures: they are applicable to all kinds of probability distributions, and are also easy to rep-
resent because a global random number generator (which generates as many random numbers as necessary
from U(0.0, 1.0]) supplants the use of infinite sequences of random numbers. As a comparison with prob-
ability measures, consider the probability distributionP of the position of a robot discussed above. In
devising a sampling function forP , we only have to construct an algorithm that probabilistically generates
possible positions of the robot; hence we do not need to consider the problem of representing an arbitrary
part of the environment (which is essential in the case of probability measures). Intuitively it is easier to
both formalize and answer“Where is the robot likely to be?”than“How likely is the robot to be in a given
region?”.

The use of sampling functions as the mathematical basis leads to three desirable properties of PTP. First
it provides a unified representation scheme for probabilitydistributions: we no longer distinguish between
discrete distributions, continuous distributions, and even those belonging to neither group. Such a unified
representation scheme is difficult to achieve with other candidates for the mathematical basis. Second it en-
joys rich expressiveness: we can specify probability distributions over infinite discrete domains, continuous
domains, and even unusual domains such as infinite data structures (e.g., trees) and cyclic domains (e.g.,
angular values). Third it enjoys high versatility: there can be more than one way to specify a probability
distribution, and the more we know about it, the better we canencode it. Section 3.2 demonstrates these
properties with various examples written in PTP.

6

Data abstraction for probability distributions

In PTP, a sampling function is represented by a probabilistic computation that consumes zero or more
random numbers (rather than a single random number) drawn from U(0.0, 1.0]. In the context of data
abstraction, it means that a probability distribution isconstructedfrom such a probabilistic computation. The
expressive power of PTP allows programmers to construct (orencode) all kinds of probability distributions
in a uniform way. Equally important is, however, the question of how toobserve(or reason about) a given
probability distribution,i.e., how to get information out of it, through various queries. Since a probabilistic
computation in PTP only describes a procedure for generating samples, the only way to observe a probability
distribution is by generating samples from it. As a result, PTP is limited in its support for queries on
probability distributions. For example, it does not permita precise implementation of such queries as means,
variances, and probabilities of specific events.

PTP alleviates this limitation by exploiting the Monte Carlo method [40], which approximately answers
a query on a probability distribution by generating a large number of samples and then analyzing them. As
an example, consider a (continuous) probability distribution P of the pose (i.e., position and orientation)
of a robot in a two-dimensional environment. Here are a few queries onP all of which can be answered
approximately:

• Draw a sample of robot pose at random.

• What is the expected (average) pose of the robot?

• What is the probability that the robot is facing within five degrees of due east?

• What is the probability that the robot is in Peter’s office?

• Under the assumption that the robot is in Peter’s office, whatis the probability that the robot is within
two feet of the door?”

These queries can be answered approximately by repeatedly performing the probabilistic computation as-
sociated withP and then analyzing resultant samples. For example, the lastquery can be answered as
follows:

1. Generate samples fromP .

2. Filter out those samples indicating that the robot is not in Peter’s office.

3. Count the number of samples indicating that the robot is within two feet of the door, and divide it by
the total number of remaining samples.

Certain queries on probability distributions are, however, difficult to answer even approximately by the
Monte Carlo method. For example, the following queries are difficult to answer approximately by a simple
analysis of samples:

• What is the most likely position of the robot?

• In what room is the robot most likely to be when the number of rooms is unknown?

Due to the nature of the Monte Carlo method, the cost of answering a query is proportional to the
number of samples used in the analysis. The cost of generating a single sample is determined by the specific
procedure chosen by programmers, rather than by the probability distribution itself from which to draw
samples. For example, a geometric distribution can be encoded with a recursive procedure which simulates

7

coin tosses until a certain outcome is observed, or by a simple transformation (called theinverse transform
method) which requires only a single random number. These two methods of encoding the same probability
distribution differ in the cost of generating a single sample and hence in the cost of answering the same query
by the Monte Carlo method. For a similar reason, the accuracyof the result of the Monte Carlo method,
which improves with the number of samples, is also affected by the procedure chosen by programmers.

Measure-theoretic view of sampling functions

The accepted mathematical basis of probability theory is measure theory [65], which associates every prob-
ability distribution with a unique probability measure. Wegive a summary of measure theory before dis-
cussing the connection between sampling functions and measure theory. In the discussion below, sampling
functions refer to those taking(0.0, 1.0] as input, rather than generalized ones taking(0.0, 1.0]∞ as input.

• Measurable setsof a spaceD are subsets ofD.

• A measurable spaceM(D) is a collection of measurable sets ofD such that:

– D ∈ M(D).

– If S ∈ M(D), thenD − S ∈ M(D). That is,M(D) is closed under complement.

– For a countable collection of measurable setsSi ∈ M(D), it holds∪iSi ∈ M(D). That is,M(D)
is closed under countable union.

• A measurable functionf fromD to E is a mapping fromM(D) to M(E) such that ifS ∈ M(E), then
f−1(S) ∈ M(D).

• A measureµ overM(D) is a mapping fromM(D) to [0.0,∞] such that:

– µ(∅) = 0.

– For a countable disjoint union∪iSi of measurable setsSi ∈ M(D), it holdsµ(∪iSi) = Σiµ(Si).

• A probability measureµ overM(D) satisfiesµ(D) = 1.

• A Lebesgue measureν over the unit interval(0.0, 1.0] is a probability measure such thatν(S) is equal
to the total length of intervals inS.

Measure theory allows certain (but not all) sampling functions to specify probability distributions. Con-
sider a sampling functionf from (0.0, 1.0] toD. While it is introduced primarily as a mathematical function,
f may be interpreted as a measurable function as well, in whichcase it defines a unique probability measure
µ overM(D) such that

µ(S) = ν(f−1(S))

whereν is a Lebesgue measure over the unit interval. The intuition is thatS, as an event, is assigned a
probability equal to the size of it inverse image underf .

This dissertation does not investigate measure-theoreticproperties of sampling functions definable in
PTP. If a probabilistic computation expressed in PTP consumes at most one random number (drawn from
U(0.0, 1.0]), it is easy to identify a corresponding sampling function.If more than one sample is consumed,
however, it is not always obvious how to construct such a sampling function. In fact, the presence of fixed
point constructs in PTP (for recursive computations which can consume an arbitrary number of random
numbers) makes it difficult even to define measurable spaces to which sampling functions map the unit in-
terval, since fixed point constructs use domain-theoretic structures, rather than measure-theoretic structures,
in order to solve resultant recursive equations.

8

Every probabilistic computation expressed in PTP is easilytranslated into a generalized sampling func-
tion (which takes(0.0, 1.0]∞ as input). It is, however, unknown if generalized sampling functions definable
in PTP are all measurable. Also unknown is if generalized sampling functions are measure-theoretically
equivalent to ordinary sampling functions (i.e., if a measurable function from(0.0, 1.0]∞ toD× (0.0, 1.0]∞

determines a unique measurable function from(0.0, 1.0] to D). Nevertheless generalized sampling func-
tions definable in PTP are shown to be closely connected with sampling techniques from simulation theory,
which, like measure theory, are widely agreed to be a form of probabilistic computation and PTP is designed
to support. A further discussion is found in Section 3.3.

1.4 Linguistic framework for PTP

We develop PTP as a functional language extending theλ-calculus, rather than an imperative language or a
library embedded in an existing conventional language. We decide to use a monadic syntax for probabilis-
tic computations. The decision is based upon two observations. First sampling functions are operationally
equivalent to probabilistic computations in that they describe procedures for generating samples from in-
finite sequences of random numbers. Second sampling functions form astate monad[44, 45, 64] whose
set of states is(0.0, 1.0]∞. These two observations imply that if we use a monadic syntaxfor probabilistic
computations, it becomes straightforward to interpret probabilistic computations in terms of sampling func-
tions. The monadic syntax treats probability distributions as first-class values and offers a clean separation
between regular values and probabilistic computations.

Instead of designing a monadic syntax specialized for sampling functions, we begin by developing a
linguistic frameworkλ© which accounts for computational effects in general.λ© does not borrow its syntax
from Moggi’s monadic metalanguageλml [44, 45]. Instead it extends the monadic language of Pfenning
and Davies [60], which is a reformulation ofλml from a modal logic perspective.λ© may be thought of as
their monadic language combined with the possible world interpretation [35] of modal logic.

A characteristic feature ofλ© is that it classifies computational effects into two kinds: world effects and
control effects. World effects are stateful computationaleffects such as mutable references and input/output;
control effects are contextual computational effects suchas exceptions and continuations. Probabilistic
choices are a particular case of world effect, and PTP arisesas an instance ofλ© with a language construct
for consuming (or drawing) random numbers fromU(0.0, 1.0].

1.5 Applications to robotics

Instead of implementing PTP as a complete programming language of its own, we embed it in an existing
functional language by building a translator. Specificallywe extend the syntax of Objective CAML [2] to
incorporate the syntax of PTP, and then translate language constructs of PTP back into the original syntax.
The translator is sound and complete in the sense that both type and reducibility of any program in PTP,
whether well-typed/reducible or ill-typed/irreducible,are preserved when translated in Objective CAML.

An important part of our work is to demonstrate the use of PTP by applying it to real problems. As
the main testbed, we chooserobotics[72]. It offers a variety of real problems that necessitate probabilistic
computations over continuous distributions. We use PTP forthree applications in robotics: robot localiza-
tion [72], people tracking [50], and robotic mapping [75]. In each case, the state of a robot is represented
with a probability distribution, whose update equation is formulated at the level of probability distributions
and translated directly in PTP. All experiments in our work have been carried out with real robots.

A comparison between our robot localizer and another written in C gives evidence that the benefit of
implementing probabilistic computations in PTP, such as readability and conciseness of code, can outweigh

9

its disadvantage in speed (see Section 5.5 for details). Thus PTP serves as another example of high-level
language whose power is well exploited in a problem domain where imperative languages have been tradi-
tionally dominant.

1.6 Outline

The rest of this dissertation is organized as follows. Chapter 2 presents the linguistic frameworkλ© to
be used for PTP. Chapter 3 presents the syntax, type system, and operational semantics of PTP. Chapter 4
describes the translator of PTP in Objective CAML. Chapter 5presents three applications of PTP in robotics.
Chapter 6 concludes.

10

Chapter 2

Linguistic Framework

This chapter presents our linguistic frameworkλ© to be used for PTP.λ© is an extension of theλ-calculus
(with a modality©) which accounts for computational effects in general. In developingλ©, we are interested
in modeling such computational effects as input/output, mutable references, and continuations. We view
probabilistic choices as a particular case of computational effect, and PTP arises as an instance ofλ© with a
language construct for probabilistic choices.

Key concepts used in the development ofλ© are as follows:

• Segregation of world effects and control effects. λ© classifies computational effects into two kinds:
stateful world effects and contextual control effects. Thedistinction makes it easy to combine com-
putational effects at the language design level.

• Possible world interpretation of modal logic. λ© uses modal logic [12] to characterize world effects,
and relates modal logic to world effects by the possible world interpretation [35]. As a result, the
notion of world in “world effects” coincides with the notionof world in the “possible world interpre-
tation.” In formulating the logic forλ©, we use the judgmental style of Pfenning and Davies [60].

At its core, λ© applies the possible world interpretation to the monadic language of Pfenning and
Davies [60], which useslax logic [19, 7] in the judgmental style to reformulate Moggi’s monadic meta-
languageλml [44, 45]. The monadic language of Pfenning and Davies analyzes computational effects only
at an abstract level from a proof-theoretic perspective, and does not readily extend to a programming lan-
guage with computational effects.λ© is an attempt to extend their monadic language with an operational
semantics so as to support concrete notions of computational effect. The key idea is to combine the possi-
ble world interpretation and the judgmental style in such a way that the accessibility relation (which is an
integral part of the possible world interpretation) is not used in inference rules (unlike the system of modal
logic of Simpson [71], for example).

Although λ© is not specific to probabilistic computations and the development ofλ© is thus optional
for the purpose of designing PTP, we investigateλ© to better explain the logical foundation of PTP. As the
definition of PTP in Chapter 3 is self-contained, this chapter can be skipped without loss of continuity by
those readers who want to understand only PTP.

2.1 Computational effects inλ©

This section gives a definition of computational effects. The clarification of the notion of computational
effect may appear to be of little significance (because we already know what is called computational effects

11

12

and how they work), but it has a profound impact on the overalldesign ofλ©. This section also gives an
overview ofλ© at an abstract level (i.e., without its syntax and semantics).

Definition of computational effects

In the context of functional languages, computation effects are usually defined as what destroys the “pu-
rity” of functional languages. Informally the purity of a functional language means that every function in
it denotes a mathematical function,i.e., a black box converting a valid argument into a unique outcome.
For example, a functionfn x => x + !y in ML does not denote a mathematical function because its
outcome depends on the content of referencey as well as argumentx ; hence we conclude that mutable refer-
ences are computational effects. Other examples of computational effects include input/output, exceptions,
continuations, non-determinism, concurrency, and probabilistic choices.

The notion of purity, however, is subtle and there is no universally accepted definition of purity. Sabry [67]
shows that common criteria for purity, such as soundness of theβ-equational axiom, confluence (the Church-
Rosser property or independence of order of evaluation), and preservation of observational equivalences,
are incomplete in that either they fail to hold in some pure functional languages or they continue to hold
in some impure functional languages (referential transparency is not considered because it does not have a
universally accepted definition). He proposes a definition of purity based upon independence of reduction
strategies, but this definition has a drawback that a given functional language must have implementations of
three reduction strategies, namely, call-by-value, call-by-need, and call-by-name.

As a result, the definition of computational effects as what destroys the purity of functional languages is
ambiguous, and some concepts are called computational effects without any justification. For example, non-
termination is called a computational effect only by convention (as a special kind of computational effect
which is not observable). At the same time, one may argue thatnon-termination is not a computational effect
because the use of pointed types (i.e., types augmented with a bottom element⊥ denoting non-termination)
preserves the property of mathematical functions.

A definition of computational effects is not necessary in designing a functional language, such as ML
and Scheme, that allows any program fragment to produce computational effects. It is, however, crucial
to the design of a functional language, such as Haskell 981 [55] (andλ©), that subsumes a sublanguage
for computational effects, since a criterion for computational effects determines features supported by the
sublanguage. The case of Haskell illustrates the importance of a proper definition of computational effects,
and also inspires our definition of computational effects.

Computational effects in Haskell

Since their introduction to the programming language community, monads [44, 45] have been considered
as an elegant means of structuring functional programs and incorporating computational effects into func-
tional languages [76, 77]. A good example of a functional language that makes extensive use of monads
in its design is Haskell. At the programming level, it provides a type classMonad to facilitate modular
programming; at the language design level, it provides a built-in IO monad for producing computational
effects without compromising its properties as a pure functional language.

Haskell does not assume a particular definition of computational effects. Instead it implicitly identifies
computational effects with monads and confines all kinds of computational effects to theIO monad [56, 58]
(or a similar one such as theST monad). Thus Haskell conceptually consists of two sublanguages: a
functional sublanguage which never produces computational effects, and a monadic sublanguage which is
formed by theIO monad.

1Abbreviated as Haskell henceforth.

13

The identification between computational effects and monads may appear to be innocuous, perhaps
because of the success of monads as a means of modeling different computational effects in a uniform
manner. When all kinds of computational effects are presenttogether, however, the identification becomes
problematic because monads do not combine well with each other [32, 31, 39]. Haskell uses theIO monad
for all kinds of computational effects without explicitly addressing this difficulty.

The identification also enforces unconventional treatments of some computational effects. For example,
it disallows exceptions for the functional sublanguage, which would be useful for handling division by
zero or pattern-match failures. It also disallows continuations for the functional sublanguage, which would
be useful for implementing advanced control constructs such as non-local exits and co-routines. Hence
the identification significantly limits the practical utility of exceptions and continuations. For this reason, an
extension of Haskell proposed by Peyton Joneset al.[57] allows exceptions not for the monadic sublanguage
but for the functional sublanguage, thereby deviating fromthe identification between computational effects
and monads.

Our view is that computational effects are not identified with monads and that the identification between
computational effects and monads in Haskell is a consequence of lack of a proper definition of computational
effects. The capability of monads to model all kinds of computational effects may be the rationale for the
identification, but it does not really warrant the identification; rather it only implies that monads are a
particular tool for studying the denotational semantics ofcomputational effects.

As an example, consider the set monad for modeling non-determinism [76].2 The set monad is suitable
for specifying the denotational semantics of a non-deterministic language (which has a non-deterministic
choice construct), since a program can be translated into a set enumerating all possible outcomes. The set
monad does not, however, lend itself to the operational design of a non-deterministic language, in which a
program returns a single outcome, instead of the set of all possible outcomes, after producing computational
effects. Therefore the set monad is useful for developing the denotational semantics (and also possibly
the syntax) of a non-deterministic language, but not for implementing it operationally. In fact, if the set
monad was enough for implementing a non-deterministic language operationally, we could argue that the
built-in IO monad is unnecessary in Haskell because we can instantiate the type classMonad to mimic
all computational effects supported by theIO monad. Thus the main lesson learned from Haskell is that
modeling a computational effect is a separate issue from implementing it operationally.

Another lesson learned from Haskell is that as its implementation is based upon a state monad, the
IO monad is suitable forstatefulcomputational effects such as mutable references and input/output, but
not compatible withcontextualcomputational effects such as exceptions and continuations. That is, while
stateful computational effects may well be identified with the IO monad, contextual computational effects
do not need to be restricted to the monadic sublanguage. Our definition of computational effects captures
the distinction between these two kinds of computational effects, calling the formerworld effectsand the
lattercontrol effects.

World effects and control effects

We directly define computational effects without relying onanother notion such as purity of functional
languages. A central assumption is that the run-time systemconsists of a program and a world. A program
is subject to a set of reduction rules. For example, a programin the λ-calculus runs by applying theβ-
reduction rule. A world is an object whose behavior is specified by the programming environment rather
than by reduction rules. For example, a keyboard buffer can be part of a world such that a keystroke or a
read operation changes its contents. In contrast, a heap is not part of a world because it is just a convenience
for implementing reduction rules. That is, we can implementall reduction rules without using heaps at all.

2If the reader holds the view that computational effects and monads are identified, this example may well be hard to follow!

14

When an external agent or a program interacts with a world andcauses a transition to another world, we
say that a world effect occurs. For example, if a keyboard buffer is part of a world, a keystroke by a user or
a read operation by a program changes its contents and thus causes a world effect. As another example, if a
store for mutable references is part of a world, an operationto allocate, dereference, or deallocate references
interacts with the world and thus causes a world effect.

When a program undergoes a change that no sequence of reduction rules can induce, we say that a
control effect occurs. For example, if theβ-reduction rule is the only reduction rule, raising an exception
causes a control effect because in general, it induces a change that is independent of theβ-reduction rule.
For a similar reason, capturing and throwing continuationscause control effects. Note that the concept of
control effect is relative to the set of “basic” reduction rules assumed by the run-time system. One could
imagine a run-time system with built-in reduction rules forexceptions, in which case raising an exception
would not be regarded as a control effect.

Thus world effects and control effects have fundamentally different characteristics and are realized in
different ways. World effects are realized by specifying a world structure — empty world structure if there
are no world effects, keyboard buffer and display window forinput/output, store for mutable references, and
so on. Control effects are realized by introducing program transformation rules (that cannot be defined in
terms of existing reduction rules). Since world structuresand program transformation rules are concerned
with different parts of the run-time system, world effects and control effects are treated in orthogonal ways.

The distinction between world effects and control effects makes it easy to combine computational ef-
fects at the language design level. Different world effectsare combined by merging corresponding world
structures. For example, a world structure with a keyboard buffer and display window and a store realizes
both input/output and mutable references. There is no need to explicitly combine control effects with other
computational effects, since control effects become pervasive once corresponding program transformation
rules are introduced.

World effects are further divided intointernal world effects and andexternalworld effects. An internal
world effect is always caused by a program and is ephemeral inthe sense that the change it makes to a
world can be undone by the run-time system. An example is to allocate new references, which can be later
reclaimed by the run-time system. An external world effect is caused either by an external agent, affecting
a program, or by a program, affecting an external agent. It isperpetual in the sense that the change it makes
to a world cannot be undone by the run-time system. An exampleis to use keyboard input or to send output
to a printer — once you type a password to a malicious program or print it on a public printer, there is no
going back from the catastrophic consequence!

While internal world effects occur within the run-time system, external world effects involve interactions
with external agents. In this regard, all external world effects are examples of concurrency in the presence
of external agents.λ© is not intended to model external agents, and we restrict ourselves to internal world
effects in developingλ©.

From Haskell to λ©

As mentioned earlier, Haskell conceptually consists of twosublanguages: 1) a functional sublanguage which
is essentially theλ-calculus and never produces computational effects; 2) a monadic sublanguage which is
formed by theIO monad and produces both world effects and control effects. Peyton Jones [58] clarifies
the distinction between the two sublanguages with a two-level semantics: an inner denotational semantics
for the functional sublanguage and an outer transition (operational) semantics for the monadic sublanguage.

As control effects do not need to be restricted to the monadicsublanguage, we consider a variant of
Haskell that allows both its functional and monadic sublanguages to produce control effects. In comparison
with Haskell, this variant has a disadvantage that a function may not denote a mathematical function, but it

15

overcomes the limitation of Haskell in dealing with controleffects.
λ© can be thought of as a reformulation of the variant of Haskellfrom a logical perspective. It has

two syntactic categories:termsandexpressions. Terms form a sublanguage which subsumes theλ-calculus
and is allowed to produce only control effects; expressionsforms another sublanguage which is allowed to
produce both world effects and control effects. The logic behind the definition of expressions is the same
as the logic underlying monads, namely lax logic [7]. Thus, like the monadic sublanguage of Haskell,
expressions inλ© enforce the monadic syntax (with the modality©).

2.2 Logical preliminaries

λ© has a firm logical foundation, providing a logical analysis of computational effects. This section explains
those concepts from logic that play key roles in the development ofλ©.

2.2.1 Curry-Howard isomorphism and judgmental formulation

The Curry-Howard isomorphism [27] is a principle connecting logic and programming languages. It states
that propositions in logic correspond to types in programming languages (propositions-as-typescorrespon-
dence) and that proofs in logic correspond to programs in programming languages (proofs-as-programs
correspondence). Given a formulation of logic, it systematically derives the type system and reduction
rules of a corresponding programming language. The development ofλ© follows the same pattern: we first
formulate the logic forλ©, and then apply the Curry-Howard isomorphism to obtain the type system and
reduction rules.

The logic forλ© is formulated in the judgmental style of Pfenning and Davies[60]. A judgmental
formulation of logic adopts Martin-Löf’s methodology of distinguishing betweenpropositionsand judg-
ments[42]. It differs from a traditional formulation which relies solely on propositions. Below we review
results from Pfenning and Davies [60].

Propositions and judgments

In a judgmental formulation of logic, a proposition is an object of verification whose truth is checked by
inference rules, whereas a judgment is an object of knowledge which becomes evident by aproof. Examples
of propositions are ‘1 + 1 is equal to 0’ and ‘1 + 1 is equal to 2’,both under inference rules based upon
arithmetic. Examples of judgments are “‘1 + 1 is equal to 0’ istrue”, for which there is no proof, and “‘1 +
1 is equal to 2’ is true”, for which there is a proof.

To clarify the difference between propositions and judgments, consider a statement ‘the moon is made
of cheese.’ The statement is not yet an object of verification, or a proposition, since there is no way to check
its truth. It becomes a proposition when an inference rule isgiven, for example, (written in a pedantic way)
“‘the moon is made of cheese’ is true if ‘the moon is greenish white and has holes in it’ is true.” Now we
can attempt to verify the proposition, for example, by taking a picture of the moon. That is, we still do
not know whether the proposition is true or not, but by virtueof the inference rule, we know at least what
counts as a verification of it. If the picture indeed shows that the moon is greenish white and has holes in
it, the inference rule makes evident the judgment “‘the moonis made of cheese’ is true.” Now we know
“‘the moon is made of cheese’ is true” by the proof consistingof the picture and the inference rule. Thus
a proposition is an object of verification which may or may notbe true, whereas a judgment is an object of
knowledge which we either know or do not know.

As a more concrete example, consider the conjunction connective ∧. In order forA ∧B to be a propo-
sition, we need a way to check its truth. SinceA ∧B is intended to be true whenever bothA andB are true,

16

we use the following inference rule to explainA ∧B as a proposition; we assume that bothA andB are
propositions, and abbreviate a truth judgment “A is true” asA true:

A true B true
A ∧B true

∧I

The rule∧I says that ifA is true andB is true, thenA ∧B is true. It follows the usual interpretation of an
inference rule: if the premises hold, then the conclusion holds. We use the rule∧I to construct a proofD of

A ∧B true from a proofDA of A true and a proofDB of B true; we write
DA

A true to mean thatDA is a

proof ofA true:

D =
DA

A true
DB

B true
A ∧B true

∧I

ThusA ∧B is a proposition because we can check its truth according to the rule∧I, whereasA ∧B true is
a judgment because we either know it or do not know it, depending on the existence of a proof.

The rule∧I above is called anintroduction rulefor the conjunction connective∧, since its conclusion
deduces a truth judgment with∧, or introduces∧. A dual concept is anelimination rule, whose premises
exploit a truth judgment with∧ to prove another judgment in the conclusion, or eliminates∧. In the case of
∧, there are two elimination rules,∧EL and∧ER:

A ∧B true
A true

∧EL
A ∧B true

B true
∧ER

These elimination rules make sense becauseA ∧B true implies bothA true andB true. We will later
discuss their properties in a more formal way.

It is important that in a judgmental formulation of logic, the notion of judgment takes priority over the
notion of proposition. Specifically the notion of judgment does not depend on propositions, and a new
kind of judgment is defined only in terms of existing judgments (but without using existing connectives or
modalities). On the other hand, propositions are always explained with existing judgments (including at least
truth judgments), and a new connective or modality is definedso as to compactly represent the knowledge
expressed by existing judgments. For example, we could define a falsehood judgmentA false as “A true

does not hold,” and then use a new modality¬ with the following introduction rule:

A false

¬A true
¬I

We say that the rule¬I internalizesA false as a proposition¬A.
If the definition of a connective or modality involves another connective or modality, we say that orthog-

onality is destroyed in the sense that the two connectives ormodalities cannot be developed independently,
or orthogonally. In this dissertation, we use no connectiveor modality destroying orthogonality.

Categorical judgments and hypothetical judgments

A judgment such as “A is true” is called acategorical judgmentbecause it involves no hypotheses and is
thus unconditional. Another judgment that we need is ahypothetical judgment, which involves hypotheses.
A general form of hypothetical judgment reads “if judgmentsJ1, · · · , Jn hold, then a judgmentJ holds,”
written asJ1, · · · , Jn ` J . We refer toJi, 1 ≤ i ≤ n, as anantecedentandJ as thesuccedent.

A hypothetical judgmentJ1, · · · , Jn ` J becomes evident by a proof ofJ in which J1, · · · , Jn are
assumed to be evident without proofs. Such a proofD is called ahypothetical proofand is written as

17

follows:

D =

J1 · · · Jn

. } inference rules
J

Inference rules here use judgmentJi without requiring a proof, that is, as a hypothesis. We say that a
hypothesisJi is dischargedwhen inference rules use it to deduceJi. Note that a hypothetical proof of· ` J
(with no antecedent) is essentially a proof of judgmentJ and vice versa, since both proofs show thatJ holds
categorically.3

The notion of hypothetical proof is illustrated by the implication connective⊃. In order forA ⊃ B to
be a proposition, we need a way to check its truth. SinceA ⊃ B is intended to be true wheneverA true

impliesB true, the introduction rule uses a hypothetical proof in its premise:

[A true]
...

B true

A ⊃ B true
⊃I

The elimination rule for⊃ exploitsA ⊃ B true in its premises to proveB true in its conclusion:

A ⊃ B true A true
B true

⊃E

The rule⊃E makes sense becauseA ⊃ B true licenses us to deduceB true if A true holds, which is the
case by the second premise.

Our definition of hypothetical judgments makes two implicitassumptions: 1) the order of antecedents
is immaterial; 2) an antecedent may be used zero or more timesin a hypothetical proof. These assumptions
are formally stated in the three structural rules of hypothetical judgments:

(Exchange) IfJ1, · · · , Ji, Ji+1, · · · , Jn ` J ,
thenJ1, · · · , Ji+1, Ji, · · · , Jn ` J .

(Weakening) IfJ1, · · · , Jn ` J ,
thenJ1, · · · , Jn, Jn+1 ` J for any judgmentJn+1.

(Contraction) IfJ1, · · · , Ji, Ji, · · · , Jn ` J ,
thenJ1, · · · , Ji, · · · , Jn ` J .

A hypothetical proof can be combined with another hypothetical proof. For example, a hypothetical
proofD of J1, · · · , Jn ` J is combined with a hypothetical proofE1 of J2, · · · , Jn ` J1 to produce another
hypothetical proof, written as[E1/J1]D, of J2, · · · , Jn ` J :

[E1/J1]D =

J2 · · · Jn

E1
...

...
J1 J2 · · · Jn

.. } D
J

3This equivalence does not mean that a hypothetical judgment· ` J is equivalent to judgmentJ . While the former states that
J holds categorically, the latter is unaware of whether thereare hypotheses or not, and could be even a hypothesis in a hypothetical
proof. For example, from the assumption thatJ impliesJ ′, we can show that· ` J implies · ` J ′. The converse is not the case,
however.

18

Note that hypothesesJ2, · · · , Jn may be used twice: when provingJ1 in E1 and when provingJ in D. This
property of hypothetical judgments that a hypothetical proof can be substituted into another hypothetical
proof is called thesubstitution principle:

• (Substitution principle) IfΓ ` J andΓ, J ` J ′, thenΓ ` J ′.

A convenient way to prove hypothetical judgments is to use inference rules for hypothetical judgments
without relying on hypothetical proofs. For example, we canexplain the implication connective⊃ with the
following inference rules for hypothetical judgments; we abbreviate a collection of antecedents asΓ:

Γ, A true ` B true

Γ ` A ⊃ B true
⊃I

Γ ` A ⊃ B true Γ ` A true
Γ ` B true

⊃E

Here the introduction rule⊃I uses hypothetical judgments to express that a propositionA ⊃ B is true
wheneverA true implies B true; the elimination rule⊃E uses hypothetical judgments to express that
A ⊃ B true licenses us to deduceB true if A true holds. A proof ofΓ ` J with these inference rules
guarantees the existence of a corresponding hypothetical proof of Γ ` J .

A special form of hypothetical judgmentJ1, · · · , Ji, · · · , Jn ` Ji (where the succedent matches an an-
tecedent) is evident by a vacuous proof. The following inference rule, called thehypothesis rule, expresses
this property of hypothetical judgments; it simply says that any hypothesis can be used:

Γ, J ` J
Hyp

From now on, we assume that antecedents and succedents in hypothetical judgments are all basic judg-
ments. For example, we do not consider such hypothetical judgments as(Γ1 ` J1) ` J2 andΓ1 ` (Γ2 ` J).

The Curry-Howard isomorphism

The Curry-Howard isomorphism connects logic and programming languages by representing a proof of a
judgment with a program of a corresponding type. In other words, a well-typed program is a compact rep-
resentation of a valid proof under the Curry-Howard isomorphism. Typically we apply the Curry-Howard
isomorphism by translating inference rules of logic into typing rules of a programming language. By con-
vention, a typing rule is given the same name as the inferencerule from which it is derived.

As an example, we consider the logic of truth with the conjunction connective∧ and the implication
connective⊃. Under the Curry-Howard isomorphism, the logic corresponds to the type system of theλ-
calculus with product types. A proofD of A true is represented with aproof termM of typeA. Note that
A is interpreted both as a proposition and as a type. We use a judgmentM : A to mean that proof termM
represents a proof ofA true, or that proof termM has typeA. Thus we have the following correspondence:

D
A true ⇔ M : A

Now consider the use of the inference rule∧I in constructing a proofD of A ∧B true from a proofDA

of A true and a proofDB of B true. When proof termsMA andMB representDA andDB , respectively,
we use aproduct term(MA,MB) of product typeA ∧B to representD. Thus the inference rule∧I is
translated into the following typing rule:

MA : A MB : B

(MA,MB) : A ∧B
∧I

19

Γ, A true ` A true
Hyp

Γ, x : A ` x : A
Hyp

Γ ` A true Γ ` B true
Γ ` A ∧B true

∧I
Γ `M : A Γ ` N : B
Γ ` (M,N) : A ∧B

∧I

Γ ` A ∧B true
Γ ` A true

∧EL
Γ `M : A ∧B
Γ ` fst M : A

∧EL

Γ ` A ∧B true
Γ ` B true

∧ER
Γ `M : A ∧B
Γ ` snd M : B

∧ER

Γ, A true ` B true

Γ ` A ⊃ B true
⊃I

Γ, x : A `M : B

Γ ` λx :A.M : A ⊃ B
⊃I

Γ ` A ⊃ B true Γ ` A true
Γ ` B true

⊃E
Γ `M : A ⊃ B Γ ` N : A

Γ `M N : B
⊃E

Figure 2.1: Translation of inference rules for hypothetical judgmentsinto typing rules.

We useprojection termsfst M andsnd M in translating the rules∧EL and∧ER:

M : A ∧B
fst M : A

∧EL
M : A ∧B
snd M : B

∧ER

When a hypothetical proof usesA true as a hypothesis, it assumes the existence of a proof. Since
such a proof is actually unknown, it cannot be represented with a concrete proof term. Hence it is repre-
sented with avariablex, a special proof term which can be replaced by another proof term. Then a proof
D of A1 true, · · · , An true ` A true is represented with a proof termM satisfying a hypothetical judg-
mentx1 : A1, · · · , xn : An `M : A, which means that proof termM has typeA under the assumption that
variablexi, 1 ≤ i ≤ n, has typeAi:

D
A1 true, · · · , An true ` A true ⇔ x1 : A1, · · · , xn : An `M : A

We refer to a collection of judgmentsx1 : A1, · · · , xn : An as atyping context. As with collections of
antecedents, we abbreviate typing contexts asΓ; all variables in a typing context are assumed to be distinct.

With the correspondence of hypothetical judgments above, inference rules for hypothetical judgments
in logic are translated into typing rules for hypothetical judgmentsΓ `M : A. For example, the inference
rules⊃I and⊃E are translated into the following typing rules, which use alambda abstractionλx :A.M
and alambda applicationM N as proof terms:

Γ, x : A `M : B

Γ ` λx :A.M : A ⊃ B
⊃I

Γ `M : A ⊃ B Γ ` N : A
Γ `M N : B

⊃E

Figure 2.1 shows inference rules for hypothetical judgments in logic (shown in the left column) and
their translation into typing rules (shown in the right column). The left column shows inference rules for
hypothetical judgments, and right column shows corresponding typing rules. The hypothesis ruleHyp is
translated into a typing rule, also called the hypothesis rule, that typechecks a variable. The typing rules in
the right column constitute the type system of theλ-calculus with product types.

As a hypothetical proof can be substituted into another hypothetical proof, a proof term can also be
substituted into another proof term. SupposeΓ `M : A andΓ, x : A ` N : B. M andN represent hypo-
thetical proofsD andE of Γ ` A true andΓ, A true ` B true, respectively, where we use the same symbol
Γ for the collection of antecedents corresponding to the typing contextΓ. If we replace all occurrences ofx
in N byM , we obtain a proof term, written as[M/x]N , which contains no occurrence ofx. The substitution
principle for proof terms states that[M/x]N represents the hypothetical proof[D/A true]E of Γ ` B true:

20

• (Substitution principle)
If Γ `M : A andΓ, x : A ` N : B, thenΓ ` [M/x]N : B.

A true andΓ ` A true are calledsynthetic judgmentsbecause no prior information on their proofs is
given and we search for, orsynthesize, their proofs from inference rules. In contrast,M : A andΓ `M : A
are calledanalytic judgmentsbecause their proofs are already represented inM and can be reconstructed
by analyzingM . To proveM : A or Γ `M : A with typing rules, we only have to analyzeM because it
determines which typing rule should be applied to deduceM : A or Γ `M : A. For example, ifM is a
product term (i.e., M = (M1,M2)), a deduction ofΓ `M : A always ends with an application of the typing
rule∧I. For this reason, a deduction ofM : A or Γ `M : A is often called aderivationrather than a proof.

When we construct a (unique) derivation ofM : A or Γ `M : A, we check ifM indeed represents a
proof ofA true, rather than searching for a yet unknown proof. Such a derivation effectively typechecksM
by testing ifM indeed has typeA, and we callM : A andΓ `M : A typing judgments.

Reduction and expansion rules

All the inference rules presented so far make sense intuitively, but their correctness is yet to be established
in a formal way. To this end, we show that the inference rules satisfy two properties:local soundnessand
local completeness. Under the Curry-Howard isomorphism, the two properties correspond to reduction and
expansion rules for proof terms, thus culminating in a foundation for operational semantics of programming
languages.

An introduction rule compresses the knowledge expressed inits premises into a truth judgment in the
conclusion, whereas an elimination rule retrieves the knowledge compressed within a truth judgment in a
premise to deduce another judgment in the conclusion. The local soundness property states that the knowl-
edge retrieved from a judgment by an elimination rule is onlypart of the knowledge compressed within that
judgment. Therefore, if the local soundness property fails, the elimination rule is too strong in the sense
that it is capable of contriving some knowledge that cannot be justified by that judgment. The local com-
pleteness property states that the knowledge retrieved from a judgment by an elimination rule includes at
least the knowledge compressed within that judgment. Therefore, if the local completeness property fails,
the elimination rule is too weak in the sense that it is incapable of retrieving all the knowledge compressed
within that judgment. If an elimination rule satisfies both properties, it retrieves exactly the same knowledge
compressed within a judgment in a premise.

We verify the local soundness property by showing how to reduce a proof in which an introduction rule
is immediately followed by a corresponding elimination rule. As an example, consider the following proof
for the conjunction connective∧:

D
A true

E
B true

A ∧B true
∧I

A true
∧EL

The elimination rule∧EL is not too strong because what it deduces in the conclusion, namelyA true, is one
of the two judgments used to deduceA ∧B true. Hence the whole proof reduces to a simpler proofD:

D
A true

E
B true

A ∧B true
∧I

A true
∧EL

=⇒R
D

A true

If the elimination rule was too strong (e.g., deducingA ⊃ B true somehow), the proof would not be re-

21

ducible. As another example, consider the proof for the implication connective⊃:

D
Γ, A true ` B true

Γ ` A ⊃ B true
⊃I E

Γ ` A true
Γ ` B true

⊃E

By the substitution principle, the whole proof reduces to a simpler proof[E/A true]D:

D
Γ, A true ` B true

Γ ` A ⊃ B true
⊃I E

Γ ` A true
Γ ` B true

⊃E
=⇒R

[E/A true]D
Γ ` B true

We refer to these reductions=⇒R aslocal reductions.
We verify the local completeness property by showing how to expand a proof of a judgment into another

proof in which one or more elimination rules are followed by an introduction rule for the same judgment.
As an example, consider a proofD of A ∧B true. The elimination rules∧EL and∧ER are not too weak
because what they deduce in their conclusions, namelyA true and B true, are sufficient to reconstruct
another proof ofA ∧B true:

D
A ∧B true =⇒E

D
A ∧B true

A true
∧EL

D
A ∧B true

B true
∧ER

A ∧B true
∧I

If the elimination rules were too weak (e.g., being unable to deduceA true somehow), the proof would not
be expandable. As another example, consider a proofD of Γ ` A ⊃ B true. By the weakening property,
D is also a proof ofΓ, A true ` A ⊃ B true. Then we can reconstruct another proof ofA ⊃ B true by
expandingD:

D
Γ ` A ⊃ B true =⇒E

D
Γ, A true ` A ⊃ B true Γ, A true ` A true

Hyp

Γ, A true ` B true
⊃E

Γ ` A ⊃ B true
⊃I

We refer to these expansions=⇒E aslocal expansions.
Since proof terms are essentially proofs, local reductionsand expansions induce reduction and expansion

rules for proof terms:
fst (M,N) =⇒R M
snd (M,N) =⇒R N

(λx :A.M) N =⇒R [N/x]M

M : A ∧B =⇒E (fst M, snd M)
M : A ⊃ B =⇒E λx :A.M x

Note that these reduction and expansion rules preserve the type of a given proof term. That is, ifM =⇒R N
or M =⇒E N , thenΓ `M : A implies Γ ` N : A. The reduction rules are called theβ-reduction rules,
and the expansion rules are called theη-expansion rules.

In a programming language based upon theλ-calculus, a program is defined as a well-typed closed
proof term, that is, a proof termM such that· `M : A for a certain typeA. Usually we run a program
by applying reduction rules under a specificreduction strategy. For example, thecall-by-namereduction
strategy reduces a program(λx :A.M) N to [N/x]M (by theβ-reduction rule) regardless of the form of
term N . In contrast, thecall-by-valuereduction strategy reduces(λx :A.M) N to [N/x]M only if no
reduction rule is applicable toN (i.e., N is a value). Thus the operational semantics of a programming
language based upon theλ-calculus is specified by the reduction strategy for applying reduction rules.

22

2.2.2 Semantics of modal logic

Modal logic is a form of logic in which truth may be qualified bymodalities. Examples of modalities
common in the literature are thenecessitymodality � and thepossibilitymodality ♦. Informally “�A is
true” means “A is necessarily true,” and “♦A is true” means “A is possibly true.” Thus modal logic is
more expressive than ordinary logic without modalities, and when applied to the design of a programming
language, it enables the type system to specify richer properties that would otherwise be difficult to specify.

One popular way to explain the semantics of modal logic is thepossible world interpretation [35, 71]. It
assumes a set of worlds and relativizes truth to worlds. Thatis, instead of ordinary truth “A is true,” it uses
relative truth“A is true at worldω” as the primitive notion. Hence the same proposition may be true at one
world but not at another world.

The possible world interpretation also assumes anaccessibility relation≤ between worlds to explain the
meaning of each modality. For example, the necessity and possibility modalities are defined as follows:

• �A is true at worldω if for every worldω′ accessible fromω (i.e., ω ≤ ω′), A is true atω′.

• ♦A is true at worldω if A is true at some worldω′ accessible fromω (i.e., ω ≤ ω′).

Ordinary connectives (such as⊃ and∧) are explained locally at individual worlds, irrespectiveof ≤. For
example,A ⊃ B is true at worldω if “ A is true atω” implies “B is true atω.”

With the above definition of the modalities� and♦, some proposition becomes true at every world,
regardless of the accessibility relation≤. For example,�(A ⊃ B) ⊃ (�A ⊃ �B) is true at every world,
since�(A ⊃ B) and�A are sufficient to show thatB is true at any accessible world. Moreover various
systems of modal logic are obtained by requiring≤ to satisfy certain properties. The following table shows
some properties of≤ and corresponding propositions that become true at every world:

property of≤ proposition
reflexivity ∀ω. ω ≤ ω �A ⊃ A
symmetry ∀ω.∀ω′. ω ≤ ω′ impliesω′ ≤ ω A ⊃ �♦A
transitivity ∀ω.∀ω′.∀ω′′. ω ≤ ω′ andω′ ≤ ω′′ imply ω ≤ ω′′ �A ⊃ ��A

Euclideanness ∀ω.∀ω′.∀ω′′. ω ≤ ω′ andω ≤ ω′′ imply ω′ ≤ ω′′ ♦A ⊃ �♦A

For example, if≤ is reflexive and transitive, we obtain a system of modal logic, usually referred to as S4, in
which both�A ⊃ A and�A ⊃ ��A are true at every world.

The semantics of modal logic can also be explained without explicitly using the notion of world [62, 8,
60]. In their judgmental formulation of modal logic, Pfenning and Davies [60] define avalidity judgment
A valid as· ` A true, and internalizeA valid as a modal proposition�A:

A valid
�A true

�I

Thus�A true is interpreted asA being true at a world about which we know nothing, or equivalently, at
every world. (Note that a judgment is defined first and then a corresponding modality is introduced.) A
possibility judgmentA poss is based upon the interpretation ofA poss asA being true at a certain world,
but still its definition does not use worlds explicitly:

1. If Γ ` A true, thenΓ ` A poss .

2. If Γ ` A poss andA true ` B poss , thenΓ ` B poss .

23

A possibility judgmentA poss is internalized as a modal proposition♦A:

A poss

♦A true
♦I

The possible world interpretation is richer than the judgmental formulation in that some proposition
is true in the possible world interpretation but not in the judgmental formulation. An example of such a
proposition is(♦A ⊃ �B) ⊃ �(A ⊃ B). It is true in the possible world interpretation as follows;we write
A @ ω for A being true at worldω:

♦A ⊃ �B @ ω,A @ ω′ ` ♦A ⊃ �B @ ω
Hyp

♦A ⊃ �B @ ω,A @ ω′ ` A @ ω′ Hyp

♦A ⊃ �B @ ω,A @ ω′ ` ♦A @ ω
♦I

♦A ⊃ �B @ ω,A @ ω′ ` B @ ω′ ⊃E

ω ≤ ω′, ♦A ⊃ �B @ ω ` A ⊃ B @ ω′ ⊃I

♦A ⊃ �B @ ω ` �(A ⊃ B) @ ω
�I

· ` (♦A ⊃ �B) ⊃ �(A ⊃ B) @ ω
⊃I

Its truth is, however, not provable in the judgmental formulation:

???
· ` A ⊃ B true

♦A ⊃ �B true ` �(A ⊃ B) true
�I

· ` (♦A ⊃ �B) ⊃ �(A ⊃ B) true
⊃I

In a certain sense, the possible world interpretation is inherently more expressive than the judgmental
formulation because it explicitly specifies the world at which a proposition is true. On the other hand, it may
not be a good basis for the type system of a programming language, since the use of the accessibility relation
in proofs implies that the type system also needs to reason about the relation between worlds, which can be
difficult depending on the concrete notion of world chosen bythe type system. The judgmental formulation
lends itself well to this purpose because it does not use worlds explicitly in the inference rules.

The logic forλ© combines the possible world interpretation and the judgmental style by assuming an
accessibility relation between worlds and relativizing all judgments to worlds. For example, it uses a truth
judgment of the formA true @ ω to mean thatA is true at worldω. Its inference rules, however, do not
use judgments showing accessibility between two worlds, asis the case in the judgmental formulation of
modal logic (see Simpson [71] for a system of modal logic which uses such judgments in inference rules).
Instead it requires the accessibility relation to satisfy acertain condition (monotonicity), which eliminates
the need for such judgments in inference rules. Since the possible world interpretation inλ© is to use the
same worlds that are part of the run-time system, lack of suchjudgments in inference rules implies that the
type system ofλ© does not explicitly model changes in the run-time system, asis the case in a typical type
system.

2.3 Languageλ©

Pfenning and Davies [60] present a monadic language which reformulates Moggi’s monadic metalanguage
λml [44, 45]. It applies the Curry-Howard isomorphism to lax logic formulated in the judgmental style (with
a lax truth judgmentA lax):

1. If Γ ` A true, thenΓ ` A lax .

24

2. If Γ ` A lax andΓ, A true ` B lax , thenΓ ` B lax .

λ© is essentially the monadic language of Pfenning and Davies coalesced with the possible world in-
terpretation. The difference is that inλ©, the definition of each judgment relies only on truth and the
accessibility relation, instead of clauses describing itsproperties (such as the above two clauses). In other
words, the definition of each judgment directly conveys its intuitive meaning.

2.3.1 Logic forλ©

The development ofλ© begins by formulating the logic forλ©. Since the logic forλ© uses the possible
world interpretation, we first define an accessibility relation ≤ between worlds. Now a world refers to the
same notion that describes part of the run-time system.

Definition 2.1. A world ω′ is accessible from another worldω, written asω ≤ ω′, if there exists a world
effect that causes a transition fromω to ω′.

As it describes transitions between worlds when world effects are produced, the accessibility relation≤
is a temporalrelation between worlds. Ifω ≤ ω′, we say thatω′ is a future world ofω and thatω is a past
world of ω′. Note that≤ is reflexive and transitive, since a vacuous world effect causes a transition to the
same world and the combination of two world effects can be regarded as a single world effect.

The logic forλ© uses two kinds of basic judgments, both of which are relativized to worlds:

• A truth judgmentA true @ ω means thatA is true at worldω.

• A computability judgmentA comp @ ω means thatA is true at some future world ofω, that is,
A true @ ω′ holds whereω ≤ ω′.

A truth judgmentA true @ ω represents a known fact about worldω. Since a future world can be reached
only by producing some world effect, a computability judgment A comp @ ω may be interpreted as meaning
thatA becomes true after producing some world effect at worldω.

The following properties of hypothetical judgments characterize truth judgments, whereJ is either a
truth judgment or a computability judgment:

Characterization of truth judgments

1. Γ, A true @ ω ` A true @ ω.

2. If Γ ` A true @ ω andΓ, A true @ ω ` J , thenΓ ` J .

The first clause expresses thatA true @ ω may be used as a hypothesis. The second clause expresses the
substitution principle for truth judgments.

The definition of computability judgments gives the following characterization, which is an adaptation
of the characterization of lax truth for the possible world interpretation:

Characterization of computability judgments

1. If Γ ` A true @ ω, thenΓ ` A comp @ ω.

2. If Γ ` A comp @ ω andΓ, A true @ ω′ ` B comp @ ω′ for any worldω′ such thatω ≤ ω′,
thenΓ ` B comp @ ω.

25

The first clause expresses that ifA is true atω, thenA becomes true without producing any world effect at
ω. It follows from the reflexivity of≤: if A true @ ω holds, thenA is true atω, which is accessible fromω
itself, and henceA comp @ ω holds. The second clause expresses that ifA is true atω′ after producing some
world effect atω, we may useA true @ ω′ as a hypothesis in deducing a judgment atω′. If the judgment at
ω′ is a computability judgmentB comp @ ω′, the transitivity of≤ allows us to deduceB comp @ ω:

Proof of the second clause.Assume thatA comp @ ω impliesA true @ ω1 whereω ≤ ω1. We proveB comp @ ω
from hypothesesΓ as follows:

A comp @ ω holds becauseΓ ` A comp @ ω.
A true @ ω1 holds by the assumption onA comp @ ω.
B comp @ ω1 holds becauseΓ, A true @ ω1 ` B comp @ ω1.
B true @ ω2 holds for some worldω2 such thatω1 ≤ ω2 (by the definition ofB comp @ ω1).
B comp @ ω holds becauseω ≤ ω2 by the transitivity of≤ (i.e., ω ≤ ω1 ≤ ω2).

We use the second clause as the substitution principle for computability judgments.

Monotonicity of the accessibility relation≤
We intend to use world effects for accumulating more knowledge, but not for discarding existing knowledge.
Informally a world effect causes a transition to a world where more facts are known and more world effects
can be produced. The monotonicity of the accessibility relation ≤ formalizes our intention to use world
effects only for accumulating more knowledge:

Definition 2.2. The accessibility relation≤ is monotonicif for two worldsω andω′ such thatω ≤ ω′,
1) A true @ ω impliesA true @ ω′;
2)A1 true @ ω, · · · , An true @ ω ` A comp @ ω impliesA1 true @ ω′, · · · , An true @ ω′ ` A comp @ ω′.

The first condition,monotonicity of truth, states that a future world inherits all facts known about its past
worlds. It proves two new properties of hypothetical judgments:

1. If Γ ` A true @ ω andω ≤ ω′, thenΓ ` A true @ ω′.

2. If Γ, A true @ ω′ ` J andω ≤ ω′, thenΓ, A true @ ω ` J .

The second condition,persistence of computation, states that a world effect that can be produced at world
ω under some facts (aboutω) can be reproduced at any future worldω′ under equivalent facts (aboutω′).
Unlike monotonicity of truth, it uses hypothetical judgments in which all antecedents are truth judgments at
the same world as the succedent. The reason is that a world effect may require some facts about the world
at which it is produced (e.g., allocating a new reference requires an argument for initializing a new heap
cell), and its corresponding computability judgments at different worlds can be compared for persistence
only under equivalent facts about individual worlds.

Note that monotonicity of truth does not imply persistence of computation. For example, ifA comp @ ω
holds becauseA true @ ω′ whereω ≤ ω′, monotonicity of truth allows us to concludeA comp @ ω′′ for
every worldω′′ accessible fromω′, but not for every world accessible fromω.

Simplified form of hypothetical judgment

In principle, a hypothetical judgmentΓ ` J imposes no restriction on antecedentsΓ and succedentJ . That
is, if J is a judgment at worldω, thenΓ may include both truth judgments and computability judgments
at world ω itself, past worlds ofω, future worlds ofω, or even those worlds unrelated toω. Thus such a

26

general form of hypothetical judgment allows us to express reasoning about not only the present but also the
past and future.

Examples of reasoning about the past and future are:

• If there has been a transaction failure in a database system in thepast, we create a log filenow.

• If the program has produced no output yet, we stop taking input.

• If the heap cell is deallocated in thefuture and becomes no longer available, we make a copy of it
now.

• If the program is to open the file eventually, we do not close it.

Since we intend to useλ© only to reason about the present, the logic forλ© imposes restrictions on an-
tecedents in hypothetical judgments and uses a simplified form of hypothetical judgment as described below.

First the simplified form uses as antecedents only truth judgments. If a computability judgment is to
be exploited, we use as an antecedent a truth judgment that itasserts, as shown in the second clause of
the characterization of computability judgments. Second the simplified form uses only judgments at the
same world. In other words, a hypothetical proof reasons about one present world and does not consider
its relation to past and future worlds (or unrelated worlds). The rationale for the second simplification is
two-fold:

1. Facts about past worlds automatically become facts aboutthe present world by the monotonicity of
≤. Therefore there is no reason to consider facts about the past.

2. In general, facts about future worlds are unknown to the present world because of the temporal nature
of ≤. If we were to support reasoning about future worlds, the necessity and possibility modalities
would be necessary.

Thus the logic forλ© uses the following two forms of hypothetical judgments:

• A1 true @ ω, · · · , An true @ ω ` A true @ ω,
which is abbreviated asA1 true, · · · , An true `s A true @ ω.

• A1 true @ ω, · · · , An true @ ω ` A comp @ ω,
which is abbreviated asA1 true, · · · , An true `s A comp @ ω.

As the logic forλ© requires only the simplified form of hypothetical judgment,we simplify the charac-
terization of truth and computability judgments accordingly. The new characterization of truth judgments is
just a special case of the previous characterization:

Characterization of truth judgments with Γ `s J

1. Γ, A true `s A true @ ω.

2. If Γ `s A true @ ω andΓ, A true `s J , thenΓ ` J , whereJ is a judgment at worldω.

The new characterization of computability judgments does not consider transitions between worlds:

Characterization of computability judgments with Γ `s J

1. If Γ `s A true @ ω, thenΓ `s A comp @ ω.

2. If Γ `s A comp @ ω andΓ, A true `s B comp @ ω, thenΓ `s B comp @ ω.

27

Proof of the second clause.Given Γ = A1 true, · · · , An true, we write Γ @ ω for A1 true @ ω, · · · ,
An true @ ω. AssumeΓ @ ω ` A comp @ ω andΓ @ ω,A true @ ω ` B comp @ ω. For any worldω′

such thatω ≤ ω′,
Γ @ ω′, A true @ ω′ ` B comp @ ω′ holds by persistence of computation;
Γ @ ω,A true @ ω′ ` B comp @ ω′ holds by monotonicity of truth.

ThenΓ @ ω ` B comp @ ω, or Γ `s B comp @ ω, holds by the substitution principle for computability
judgments.

Note that in the second clause,A comp @ ω leads to (as a new hypothesis) a truth judgment at the
same world instead of a future world. That is, even ifA comp @ ω holds becauseA true @ ω′ where
ω ≤ ω′, we use as a new hypothesisA true @ ω instead ofA true @ ω′. Thus we reason as if the world
effect corresponding toA comp @ ω did not cause a transition to the future worldω′. By virtue of the
monotonicity of≤, this reasoning provides a simple way to testB comp @ ω′′ for everyfuture worldω′′ of
ω, as in the previous characterization of computability judgments. The second clause allows the type system
of λ© to typecheck a program producing a sequence of world effectswithout actually producing them, as
will be seen in the next subsection.

2.3.2 Language constructs ofλ©

To represent proofs of judgments, we use two syntactic categories: termsM,N for truth judgments and
expressionsE,F for computability judgments. Thus the Curry-Howard isomorphism gives the following
correspondence, where typing judgments are annotated withworlds where terms or expressions reside:

D
A true @ ω ⇔ M : A @ ω

E
A comp @ ω ⇔ E ÷A @ ω

That is, we represent a proofD of A true @ ω as a termM of typeA at worldω, written asM : A @ ω,
and a proofE of A comp @ ω as an expressionE of typeA at worldω, written asE ÷A @ ω. Analogously
hypothetical judgments (of the formΓ `s J) correspond to typing judgments with typing contexts:

Γ s̀ M : A @ ω Γ s̀ E ÷A @ ω

A typing contextΓ is a set of bindingsx : A:

typing context Γ ::= · | Γ, x : A

x : A in Γ means that variablex assumes a term that has typeA at a given world (i.e., world ω in
Γ s̀ M : A @ ω or Γ s̀ E ÷A @ ω) but may not typecheck at other worlds. Then a term typing judg-
mentΓ s̀ M : A @ ω means thatM has typeA at worldω if Γ is satisfied at the same world; similarly an
expression typing judgmentΓ s̀ E ÷A @ ω means thatE has typeA at worldω if Γ is satisfied at the same
world. Alternatively we may think ofΓ s̀ M : A @ ω or Γ s̀ E ÷A @ ω as typing judgments indexed by
worlds.

Terms and expressions form separate sublanguages ofλ©. Their difference is manifest in the opera-
tional semantics ofλ©, which draws a distinction betweenevaluationsof terms, involving no worlds, and
computationsof expressions, involving transitions between worlds:

M ⇀ V E @ ω ⇁ V @ ω′

A term evaluationM ⇀ V does not interact with the world where termM resides; hence the resultant
valueV resides at the same world. In contrast, an expression computationE @ ω ⇁ V @ ω′ may interact

28

type A,B ::= A ⊃ A | ©A
term M,N ::= x | λx :A.M |M M | cmp E
expression E,F ::= M | letcmp x / M in E
value V ::= λx :A.M | cmp E

Figure 2.2: Abstract syntax forλ©.

Γ, x : A s̀ x : A @ ω
Hyp

Γ, x : A s̀ M : B @ ω

Γ s̀ λx :A.M : A ⊃ B @ ω
⊃I

Γ s̀ M1 : A ⊃ B @ ω Γ s̀ M2 : A @ ω
Γ s̀ M1 M2 : B @ ω

⊃E
Γ s̀ E ÷A @ ω

Γ s̀ cmp E : ©A @ ω
©I

Γ s̀ M : A @ ω

Γ s̀ M ÷A @ ω
Term

Γ s̀ M : ©A @ ω Γ, x : A s̀ E ÷B @ ω

Γ s̀ letcmp x / M in E ÷B @ ω
©E

Figure 2.3: Typing rules ofλ©.

with world ω where expressionE resides, causing a transition to another worldω′; hence the resultant
valueV may not reside at the same world. Thus term evaluations are always effect-free whereas expression
computations are potentially effectful (with respect to world effects).

Note that worlds are required by both the type system and the operational semantics ofλ©. That is,
worlds are both compile-time objects and run-time objects in the definition ofλ©. As worlds are involved
in expression computations and hence definitely serve as run-time objects, one could argue that abstractions
of worlds rather than worlds themselves (e.g., store typing contexts rather than stores) are more appropriate
for the type system. Our view is that worlds are acceptable touse in the type system for the same reason
that terms and expressions appear in both the type system andthe operational semantics: the type system
determines static properties of terms and expressions, andthe operational semantics describes how to reduce
terms and expressions; likewise the type system determinesstatic properties of worlds (with respect to terms
and expressions), and the operational semantics describestransitions between worlds.

Incidentally the type system ofλ© is designed in such a way that only an initial world at which the
run-time system starts (e.g., an empty store) is required for typechecking any program. Hence no practical
problem arises in implementing the type system as we can simply disregard worlds.

Below we introduce all term and expression constructs ofλ©. Figure 2.2 summarizes the abstract syntax
for λ©. Figure 2.3 summarizes the typing rules ofλ©. We usex, y, z for variables.

Term constructs

As terms represent proofs of truth judgments, the characterization of truth judgments gives properties of
terms when interpreted via the Curry-Howard isomorphism. The first clause gives the following rule where
variablex is used as a term:

Γ, x : A s̀ x : A @ ω
Hyp

The second clause gives the substitution principle for terms:

Substitution principle for terms
If Γ s̀ M : A @ ω andΓ, x : A s̀ N : B @ ω, thenΓ s̀ [M/x]N : B @ ω.
If Γ s̀ M : A @ ω andΓ, x : A s̀ E ÷B @ ω, thenΓ s̀ [M/x]E ÷B @ ω.

29

[M/x]N and [M/x]E denote capture-avoidingterm substitutionswhich substituteM for all occurrences
of x in N andE. We will give the definition of term substitution after introducing all term and expression
constructs.

We apply the Curry-Howard isomorphism to truth judgments byintroducing an implication connective
⊃ such thatΓ `s A ⊃ B true @ ω expressesΓ, A true `s B true @ ω. It gives the following introduction
and elimination rules, where we use a lambda abstractionλx :A.M and a lambda applicationM1 M2 as
terms:

Γ, x : A s̀ M : B @ ω

Γ s̀ λx :A.M : A ⊃ B @ ω
⊃I

Γ s̀ M1 : A ⊃ B @ ω Γ s̀ M2 : A @ ω

Γ s̀ M1 M2 : B @ ω
⊃E

We use a reduction relation⇒β term in both the term reduction rule for⊃ and its corresponding proof
reduction:

(λx :A.N) M ⇒β term [M/x]N (β⊃)

Γ, x : A s̀ N : B @ ω

Γ s̀ λx :A.N : A ⊃ B @ ω
⊃I

Γ s̀ M : A @ ω

Γ s̀ (λx :A.N) M : B @ ω
⊃E ⇒β term

Γ s̀ [M/x]N : B @ ω

Expression constructs

Similarly to truth judgments, we begin by interpreting the characterization of computability judgments in
terms of typing judgments. The first clause means that a term of type A is also an expression of the same
type:

Γ s̀ M : A @ ω
Γ s̀ M ÷A @ ω

Term

The second clause gives the substitution principle for expressions:

Substitution principle for expressions
If Γ s̀ E ÷A @ ω andΓ, x : A s̀ F ÷B @ ω, thenΓ s̀ 〈E/x〉F ÷B @ ω.

Unlike a term substitution[M/x]F which analyzes the structure ofF , anexpression substitution〈E/x〉F
analyzes the structure ofE instead ofF . This is because〈E/x〉F is intended to ensure that bothE and
F are computed exactly once and in that order: first we computeE to obtain a value; then we proceed to
computeF with x bound to the value. Therefore we should not replicateE within F (at those places where
x occurs), which would result in computingE multiple times. Instead we should conceptually replicate
F within E (at those places where the computation ofE finishes) so that the whole computation ends up
computing bothE andF only once. In this sense, an expression substitution〈E/x〉F substitutes notE
into F , butF into E. We will give the definition of expression substitution after introducing all expression
constructs.

We apply the Curry-Howard isomorphism to computability judgments by internalizingA comp @ ω
with a modality© so thatΓ `s ©A true @ ω expressesΓ `s A comp @ ω. The introduction and elimination
rules use acomputation termcmp E and abind expressionletcmp x / M in E:

Γ s̀ E ÷A @ ω
Γ s̀ cmp E : ©A @ ω

©I
Γ s̀ M : ©A @ ω Γ, x : A s̀ E ÷B @ ω

Γ s̀ letcmp x / M in E ÷B @ ω
©E

We use a reduction relation⇒β exp in both the expression reduction rule for© and its corresponding proof
reduction:

letcmp x / cmp E in F ⇒β exp 〈E/x〉F (β©)

30

Γ s̀ E ÷A @ ω
Γ s̀ cmp E : ©A @ ω

©I
Γ, x : A s̀ F ÷B @ ω

Γ s̀ letcmp x / cmp E in F ÷B @ ω
©E ⇒β exp

Γ s̀ 〈E/x〉F ÷B @ ω

cmp E denotes the computation ofE, but does not actually computeE; hence we say thatcmp E encapsu-
latesthe computation ofE. letcmp x / M in E enables us to sequence two computations (ifM evaluates to
a computation term).

Note that the typing rule©E does not accurately reflect the operational behavior ofletcmp x / M in E.
Specifically, while the rule©E typechecksE at the same worldω that it typechecksM , the computation of
E may take place at a different worldω′ (whereω ≤ ω′) because of an expression computation preceding
the computation ofE. Nevertheless it is a sound typing rule because the monotonicity of the accessibility
relation≤ allows the type system to reason as if a world effect did not cause a transition to another world,
as clarified in the characterization of computability judgments.

Computation terms and bind expressions may be thought of as monadic constructs, since the modality
© forms a monad. In Haskell syntax, the monad could be written as follows:

instance Monad © where

return M = cmp M
M >>= N = cmp letcmp x / M in

letcmp y / N x in

y

The above definition satisfies the monadic laws [77], modulo the expression reduction ruleβ© and a term
expansion ruleγ© for the modality©:

M ⇒η exp cmp letcmp x / M in x (γ©)

However, once we introduce a fixed point construct for terms,the ruleγ© becomes invalid. For example,
if M is a fixed point construct whose reduction never terminates,its expansion intocmp letcmp x / M in x
is not justified because the reduction of the expanded term immediately terminates. Hence the modality©

ceases to form a monad, and we do not callλ© a monadic language.

2.3.3 Substitutions

Now that all term and expression constructs have been introduced, we define term and expression substitu-
tions. We first consider term substitutions, which are essentially textual substitutions.

Term substitution

Term substitutions[M/x]N and [M/x]E are straightforward to define as they correspond to substituting
a proof ofA true @ ω for a hypothesis in a hypothetical proof. To formally define term substitutions, we
need a mappingFV (·) for obtaining the set offree variablesin a given term or expression; a free variable
is one that is not bound in lambda abstractions and bind expressions:

FV (x) = {x}
FV (λx :A.M) = FV (M)− {x}
FV (M1 M2) = FV (M1) ∪ FV (M2)
FV (cmp E) = FV (E)
FV (letcmp x / M in E) = FV (M) ∪ (FV (E) − {x})

31

A comp @ w

E

A true @ ω
M

B comp @ ω

F

[
x

A true @ ω]

B comp @ ω

F

A true @ ω
M

B comp @ ω

E

=⇒

Figure 2.4: A schematic view of〈E/x〉F .

In the definition of[M/x]N and[M/x]E, we implicitly rename bound variables inN andE as necessary
to avoid the capture of free variables inM :4

[M/x]y = M x = y
= y otherwise

[M/x]λy :A.N = λy :A. [M/x]N x 6= y, y 6∈ FV (M)
[M/x](N1 N2) = [M/x]N1 [M/x]N2

[M/x]cmp E = cmp [M/x]E
[M/x]letcmp y / N in E = letcmp y / [M/x]N in [M/x]E x 6= y, y 6∈ FV (M)

The above definition of term substitution conforms to the substitution principle for terms:

Proposition 2.3 (Substitution principle for terms).
If Γ s̀ M : A @ ω andΓ, x : A s̀ N : B @ ω, thenΓ s̀ [M/x]N : B @ ω.
If Γ s̀ M : A @ ω andΓ, x : A s̀ E ÷B @ ω, thenΓ s̀ [M/x]E ÷B @ ω.

Proof. By simultaneous induction on the structure ofN andE.

Proposition 2.3 implies that term reductions by⇒β term are indeed type-preserving:

Corollary 2.4 (Type preservation of⇒β term).
If Γ s̀ (λx :A.N) M : B @ ω, thenΓ s̀ [M/x]N : B @ ω.

4Hence a term substitution does not need to be defined in all cases.

32

Expression substitution

Given Γ s̀ E ÷A @ ω and Γ, x : A s̀ F ÷B @ ω, an expression substitution combines the two typing
judgments by finding an expression〈E/x〉F such thatΓ s̀ 〈E/x〉F ÷B @ ω. It corresponds to substituting
a hypothetical proof usingA true @ ω as a hypothesis into a proof ofA comp @ ω.

Figure 2.4 shows a schematic view of an expression substitution 〈E/x〉F . ExpressionE contains a term
M of type A which ultimately determines its type. For example,E = letcmp x / N in M has the same
type asM , and ifM is replaced by another expressionE′ of typeA′, the resultant expression also has type
A′. Operationally the computation ofE finishes by evaluatingM . ExpressionF contains variablex which
corresponds to a hypothesisA true @ ω in a hypothetical proof ofB comp @ ω. 〈E/x〉F first substitutes
M for x in F , which results in a new expression[M/x]F of typeB; then it replacesM in E by [M/x]F .
In this way,〈E/x〉F substitutesF into E, rather thanE into F . Note that although〈E/x〉F transforms the
structure ofE, it has the same type asF because its type is ultimately determined by whatever expression
replacesM .

Thus〈E/x〉F analyzes the structure ofE, instead ofF , to find a term that ultimately determines the
type ofE:

〈M/x〉F = [M/x]F
〈letcmp y / M in E′/x〉F = letcmp y / M in 〈E′/x〉F

The above definition of expression substitution conforms tothe substitution principle for expressions:

Proposition 2.5 (Substitution principle for expressions).
If Γ s̀ E ÷A @ ω andΓ, x : A s̀ F ÷B @ ω, thenΓ s̀ 〈E/x〉F ÷B @ ω.

Proof. By induction on the structure ofE (notF).

Proposition 2.5 implies that expression reductions by⇒β exp are indeed type-preserving:

Corollary 2.6 (Type preservation of⇒β exp).
If Γ s̀ letcmp x / cmp E in F ÷B @ ω, thenΓ s̀ 〈E/x〉F ÷B @ ω.

2.3.4 World terms and instructions

The operational semantics ofλ© provides rules for term evaluationsM ⇀ V and expression computations
E @ ω ⇁ V @ ω′. For term evaluations, we introduce a term reductionM 7→t N such thatM 7→∗

t V is
identified withM ⇀ V , where7→∗

t is the reflexive and transitive closure of7→t; for expression computations,
we introduce an expression reductionE @ ω 7→e F @ ω′ such thatE @ ω 7→∗

e V @ ω′ is identified with
E @ ω ⇁ V @ ω′, where7→∗

e is the reflexive and transitive closure of7→e:

M 7→∗
t V iff M ⇀ V E @ ω 7→∗

e V @ ω′ iff E @ ω ⇁ V @ ω′

At this point, there is no language construct for producing world effects and no typing rules and reduction
rules actually require worlds. That is, all language constructs introduced so far are purely logical in that their
definition is explained either by properties of judgments (e.g., variables, inclusion of terms into expressions)
or by introduction and elimination rules (e.g., lambda abstractions, lambda applications). In fact, if weerase
@ ω from typing judgments,λ© reverts to the monadic language of Pfenning and Davies [60].Thus we
introduce language constructs for interacting with worldsbefore presenting the operational semantics.

We useinstructionsI as expressions for producing world effects. As an interfaceto worlds, they are
provided by the programming environment. For example, an instructionnew M for allocating new refer-
ences produces a world effect by causing a change to the store, and returns a reference. An instruction may

33

have arguments, and term substitution on instructions witharguments is defined in a structural way; hence
Proposition 2.3 continues to hold.

We refer to those objects originating from worlds, such as references, asworld termsW . Since they
cannot be decomposed into ordinary terms, world terms are assumed to be atomic values (containing no
subterms) and are given specialworld term typesW. For example, reference typeref A is a world term type
for references. Note that while world terms may not contain ordinary terms, world term types may contain
ordinary types (e.g., ref A).

The new abstract syntax forλ© is as follows:

type A ::= · · · | W
world term type W
term M ::= · · · |W
world term W
expression E ::= · · · | I
instruction I
value V ::= · · · |W

The type of a world term may depend on the world where it resides. For example, a reference is a pointer
to a heap cell and its type depends on the store for which it is valid. Therefore typing rules for world terms
may have to analyze worlds. Since world terms are atomic values, typing judgments for world terms do
not require typing contexts. In contrast, typing judgmentsfor instructions require typing contexts because
instructions may include terms as arguments:

W :W @ ω Γ s̀ I ÷A @ ω

Note that an instruction does not necessarily have a world term type. For example, an instruction for deref-
erencing references can have any type because heap cells cancontain values of any type.

If an instructionI whose arguments are all values typechecks at a worldω under an empty typing
context, we regard it as reducible atω; moreover we require that an instruction reductionI @ ω 7→e V @ ω′

be type-preserving so thatV has the same type asI:

Type-preservation/progress requirement on instructions

If · s̀ I ÷A @ ω and arguments toI are all values, then there exists a worldω′ satisfying
I @ ω 7→e V @ ω′ and · s̀ V : A @ ω′.

We allowω = ω′, which means that a world effect does not always causes a change to a world (e.g., reading
the contents of a store is still a world effect).

As I @ ω 7→e V @ ω′ means that instructionI computes to valueV causing a transition of world from
ω to ω′, it impliesω ≤ ω′. Now the accessibility relation≤ is fully specified by instruction reductions under
the assumption that it is reflexive and transitive. Note thatwithout additional requirements on instructions,
there is no guarantee that the monotonicity of≤ is maintained. For example, an instruction for deallocating
an existing referencel violates monotonicity of truth ifl no longer typechecks after it is deallocated, and
violates persistence of computation if its corresponding heap cell is discarded. In order to maintain the
monotonicity of≤, we further require that all instruction reductions be designed in such a way that types of
world terms and instructions are unaffected by≤:

Monotonicity requirement on instructions

1) If ω ≤ ω′, thenW :W @ ω impliesW :W @ ω′.

2) If ω ≤ ω′, thenΓ s̀ I ÷A @ ω impliesΓ s̀ I ÷A @ ω′, where for each argumentM to I,
we assume thatΓ s̀ M : B @ ω impliesΓ s̀ M : B @ ω′.

34

M 7→t M ′

M N 7→t M ′ N
TβL (λx :A.M) N 7→t [N/x]M

Tβ
M 7→t N

M @ ω 7→e N @ ω
ETerm

M 7→t N

letcmp x / M in F @ ω 7→e letcmp x / N in F @ ω
EBind

E 6= I

letcmp x / cmp E in F @ ω 7→e 〈E/x〉F @ ω
EBindβ

I @ ω 7→e V @ ω′

letcmp x / cmp I in F @ ω 7→e letcmp x / cmp V in F @ ω′ EBindI

Figure 2.5: Operational semantics ofλ© which uses expression substitutions for expression computations.

The first clause corresponds to monotonicity of truth, and the second clause to persistence of computa-
tion. Under the monotonicity requirement, instruction reductions never affect types of existing terms and
expressions:

Proposition 2.7 (Monotonicity of≤).
If ω ≤ ω′, then

Γ s̀ M : A @ ω impliesΓ s̀ M : A @ ω′, and
Γ s̀ E ÷A @ ω impliesΓ s̀ E ÷A @ ω′.

Proof. By simultaneous induction on the structure ofM andE.

Unlike other expression constructs, instructions are not explained logically and no expression substi-
tution can be defined on them. Intuitively〈I/x〉E cannot be reduced into another expression becauseI
itself does not reveal a term that is evaluated at the end of its computation. Such a term (which is indeed
a value) becomes known only after an instruction reductionI @ ω 7→e V @ ω′. We should therefore never
attempt to directly reduceletcmp x / cmp I in E into 〈I/x〉E. For the sake of convenience and uniform
notation, however, we abuse the notation〈I/x〉E with the following definition, which effectively prevents
letcmp x / cmp I in E from being reduced by⇒β exp:

〈I/x〉E = letcmp x / cmp I in E

This definition of〈I/x〉E allows⇒β exp to be applied to any part of a given expression; Proposition 2.5 also
continues to hold.

2.3.5 Operational semantics

A term reduction by⇒β term and an expression reduction by⇒β exp are both proof reductions and may be
applied to any part of a given term or expression without affecting its type. An operational semantics of
λ© defines the term reduction relation7→t and the expression reduction relation7→e by specifying a strategy
for arranging reductions by⇒β term and⇒β exp. Below we consider two different styles of operational
semantics (both of which use the same syntax for reduction relations). For each instructionI, we assume an
instruction reductionI @ ω 7→e V @ ω′, which causes a transition of world fromω toω′; if I has arguments,
we first reduce them into values by applying7→t repeatedly.

Figure 2.5 shows an operational semantics ofλ© which uses expression substitutions〈E/x〉F for ex-
pression computations; for term evaluations, we can chooseany reduction strategy (Figure 2.5 uses a call-
by-name discipline). The ruleTβ is a shorthand for applying⇒β term to (λx :A.M) N . The rulesETerm

35

M 7→t M ′

M N 7→t M ′ N
TβL

N 7→t N ′

(λx :A.M) N 7→t (λx :A.M) N ′
TβR

(λx :A.M) V 7→t [V/x]M
TβV

M 7→t N

M @ ω 7→e N @ ω
ETerm

M 7→t N
letcmp x / M in F @ ω 7→e letcmp x / N in F @ ω

EBind

E @ ω 7→e E′ @ ω′

letcmp x / cmp E in F @ ω 7→e letcmp x / cmp E′ in F @ ω′ EBindR

letcmp x / cmp V in F @ ω 7→e [V/x]F @ ω
EBindV

Figure 2.6: Operational semantics ofλ© in the direct style.

andEBind use a term reductionM 7→t N to reduce a term into a value. The ruleEBindβ is a shorthand
for applying⇒β exp to letcmp x / cmp E in F ; in the case ofE = M , it reducesletcmp x / cmp M in F
into 〈M/x〉F = [M/x]F without further reducingM . The ruleEBindI perform an instruction reduction
I @ ω 7→e V @ ω′.

Figure 2.6 shows an alternative style of operational semantics, called the direct style, which requires
only term substitutions[V/x]E for expression computations; for term evaluations, we can choose any re-
duction strategy (Figure 2.6 uses a call-by-value discipline). The rulesETerm andEBind are the same as in
Figure 2.5. Givenletcmp x / cmp E in F , we apply the ruleEBindR repeatedly untilE is reduced into a
valueV ; then the ruleEBindV reducesletcmp x / cmp V in F into 〈V/x〉F = [V/x]F . Thus a variable is
always replaced by a value (during both term evaluations andexpression computations).

The direct style is more extensible than the first style because it does not use expression substitutions.
That is, the introduction of a new expression construct requires only new reduction rules. In comparison,
the first style hinges on expression substitutions, and requires not only new reduction rules but also an
augmented definition of expression substitution for each new expression construct. If expression substitution
cannot be defined on a new expression construct, we may have tofurther specialize existing reduction rules.
For example, the rulesEBindβ andEBindI can be thought of as derived from a common reduction rule when
instructions are introduced.

The type safety ofλ© consists of two properties: type preservation and progress. The proof of type
preservation uses Corollaries 2.4 and 2.6, the type-preservation/progress requirement on instructions, and
Proposition 2.7. The proof of progress requires a canonicalforms lemma. In either style of the operational
semantics, all proofs proceed in the same way.

Theorem 2.8 (Type preservation).
If M 7→t N and · s̀ M : A @ ω, then· s̀ N : A @ ω.
If E @ ω 7→e F @ ω′ and · s̀ E ÷A @ ω, then· s̀ F ÷A @ ω′.

Proof. By induction on the structure ofM andE.

Lemma 2.9 (Canonical forms).
If V is a value of typeA ⊃ B, thenV is a lambda abstractionλx :A.M .
If V is a value of type©A, thenV is a computation termcmp E.

Proof. By inspection of the typing rules.

36

Theorem 2.10 (Progress).
If · s̀ M : A @ ω, then eitherM is a value or there existsN such thatM 7→t N .
If · s̀ E ÷A @ ω, then eitherE is a value or there existF andω′ such thatE @ ω 7→e F @ ω′.

Proof. By induction on the structure ofM andE.

Since expressions may produce world effects, they cannot beconverted into terms. In contrast, terms
can always be lifted to expressions by the typing ruleTerm. Therefore we define a program as a closed
expressionE that typechecks at a certain initial worldωinitial , i.e., · s̀ E ÷A @ ωinitial . We chooseωinitial

according to the world structure being employed. To run a programE, we compute it atωinitial .

2.4 Examples of world effects

In order to implement a specific notion of world effect inλ©, we specify a world structure and provide
instructions to interact with worlds. In this section, we discuss three specific notions of world effect.

2.4.1 Probabilistic computations

In order to facilitate the coding of sampling techniques developed in simulation theory, we model a proba-
bilistic computation as a computation that returns a value after consuming real numbers drawn independently
from U(0.0, 1.0], rather than a single such real number. A real numberr is a world term of typereal. A
world, the source of probabilistic choices, is representedas an infinite sequence of real numbers drawn
independently fromU(0.0, 1.0]. We use an instructionS for consuming the first real number of a given
world.

world term type W ::= real

world term W ::= r
instruction I ::= S
world ω ::= r1r2 · · · ri · · · where ri ∈ (0.0, 1.0]

r : real @ ω
Real

Γ s̀ S ÷ real @ ω
Sampling

S @ r1r2r3 · · · 7→e r1 @ r2r3 · · ·
Sampling

It is easy to show that instructionS satisfies the type-preservation/progress requirement. Since a world
does not affect types of world terms and instructions, the monotonicity of≤ also holds trivially. We can use
any world as an initial world. As we will see in Chapter 3,λ© with the above constructs for probabilistic
computations serves as the core of PTP.

2.4.2 Sequential input/output

We model sequential input/output with a computation that consumes an infinite input character streamis

and outputs to a finite output character streamos , where a character is a world term of typechar. We use
two instructions:read c for reading a character from the input stream andwrite c M for writing a character
to the output stream.

world term type W ::= char

world term W ::= c
instruction I ::= read c | write c M
world ω ::= (is, os)

is ::= c1c2c3 · · ·
os ::= nil | c :: os

37

c : char @ ω
Char

Γ s̀ read c÷ char @ ω
Read c

Γ s̀ M : char @ ω

Γ s̀ write c M ÷ char @ ω
Write c

read c @ (c1c2c3 · · · , os) 7→e c1 @ (c2c3 · · · , os)
Read c

M 7→t N
write c M @ ω 7→e write c N @ ω

Write c

write c c @ (is , os) 7→e c @ (is , c :: os)
Write c′

It is easy to show that both instructions satisfy the type-preservation/progress requirement. As in prob-
abilistic computations, a world does not affect types of world terms and instructions, and the monotonicity
of ≤ holds trivially. We use an empty output character streamnil in an initial world.

2.4.3 Mutable references

Probabilistic computations and sequential input/output are easy to model because worlds do not affect types
of world terms and instructions. Mutable references, however, require world terms whose type depends on
worlds, namely references. Consequently worlds should be designed in such a way that they provide enough
information on a given reference to correctly determine itstype.

We useref A as world term types for references. A world is represented asa collection of pairs
[l 7→ V : A] of a referencel and a closed valueV annotated with its typeA. It may be thought of as a
well-typed store: if[l 7→ V : A] ∈ ω, thenV has typeA at worldω (i.e., · s̀ V : A @ ω) and references in it
are all distinct. We use three instructions:new M : A for initializing a fresh reference,read M for reading
the contents of a world, andwrite M M for updating a world. Reading the contents of a world is a world
effect, even though it does not cause a change to the world.

world term type W ::= ref A
world term W ::= l
instruction I ::= new M : A | read M | write M M
world ω ::= · | ω, [l 7→ V : A]

Figure 2.7 shows new typing rules and reduction rules:
To prove the type-preservation/progress requirement on instructions, we first show that well-typed in-

structions never generate corrupt worlds (Corollaries 2.12 and 2.14). In Lemma 2.11, we do not postulate
thatω, [l 7→ V : A] is a world (i.e., it possesses the structure of a store, but may not be well-typed).

Lemma 2.11. If ω is a world and· s̀ V : A @ ω, then
Γ s̀ M : B @ ω impliesΓ s̀ M : B @ ω, [l 7→ V : A], and
Γ s̀ E ÷B @ ω impliesΓ s̀ E ÷B @ ω, [l 7→ V : A], wherel is a fresh reference.

Proof. By simultaneous induction on the structure ofM andE. An interesting case is whenM = l′ 6= l.
If M = l′, thenΓ s̀ M : B @ ω implies B = ref B′ and [l′ 7→ V ′ : B′] ∈ ω by the ruleRef. Since

[l′ 7→ V ′ : B′] ∈ ω, [l 7→ V : A], we haveΓ s̀ M : B @ ω, [l 7→ V : A].

Corollary 2.12. If · s̀ V : A @ ω whereω is a world, thenω, [l 7→ V : A] is also a world for any fresh
referencel.

Proof. For each[l′ 7→ V ′ : A′] ∈ ω, we have· s̀ V ′ : A′ @ ω becauseω is a world. By Lemma 2.11, we
have· s̀ V ′ : A′ @ ω, [l 7→ V : A]. From· s̀ V : A @ ω and Lemma 2.11,· s̀ V : A @ ω, [l 7→ V : A] also
follows.

38

[l 7→ V : A] ∈ ω

l : ref A @ ω
Ref

Γ s̀ M : A @ ω
Γ s̀ new M : A÷ ref A @ ω

New

Γ s̀ M : ref A @ ω
Γ s̀ read M ÷A @ ω

Read
Γ s̀ M : ref A @ ω Γ s̀ N : A @ ω

Γ s̀ write M N ÷A @ ω
Write

M 7→t N

new M : A @ ω 7→e new N : A @ ω
New

fresh l such that [l 7→ V ′ : A′] 6∈ ω

new V : A @ ω 7→e l @ ω, [l 7→ V : A]
New ′

M 7→t N
read M @ ω 7→e read N @ ω

Read
[l 7→ V : A] ∈ ω

read l @ ω 7→e V @ ω Read ′

M 7→t M ′

write M N @ ω 7→e write M ′ N @ ω
Write

N 7→t N ′

write l N @ ω 7→e write l N ′ @ ω
Write ′

[l 7→ V ′ : A] ∈ ω

write l V @ ω 7→e V @ ω − [l 7→ V ′ : A], [l 7→ V : A]
Write ′′

Figure 2.7: Typing rules and reduction rules for mutable references.

In Lemma 2.13, we do not postulate thatω − [l 7→ V ′ : A], [l 7→ V : A] is a world.

Lemma 2.13.
If · s̀ V : A @ ω and [l 7→ V ′ : A] ∈ ω whereω is a world, then

Γ s̀ M : B @ ω impliesΓ s̀ M : B @ ω − [l 7→ V ′ : A], [l 7→ V : A] and
Γ s̀ E ÷B @ ω impliesΓ s̀ E ÷B @ ω − [l 7→ V ′ : A], [l 7→ V : A].

Proof. By simultaneous induction on the structure ofM andE. An interesting case is whenM = l.

Corollary 2.14.
If · s̀ V : A @ ω and [l 7→ V ′ : A] ∈ ω whereω is a world, then

ω − [l 7→ V ′ : A], [l 7→ V : A] is also a world.

Proof. Similarly to the proof of Corollary 2.12.

Proposition 2.15 (Type-preservation/progress requirement on instructions). If · s̀ I ÷A @ ω and ar-
guments toI are all values, then there exists a worldω′ satisfyingI @ ω 7→e V @ ω′ and · s̀ V : A @ ω′.

Proof. By case analysis ofI. We use Corollaries 2.12 and 2.14.

For the monotonicity requirement on instructions, we directly prove Proposition 2.7 exploiting Lem-
mas 2.11 and 2.13.

Proof of Proposition 2.7.Since the accessibility relation≤ is specified by instruction reductions,ω ≤ ω′

implies that
ω = ω1 ≤ · · · ≤ ωi ≤ · · · ≤ ωn = ω′,

whereωi+1 is equal to eitherωi, [l 7→ V : A] or ωi − [l 7→ V ′ : A], [l 7→ V : A] for 1 ≤ i < n. We proceed
by induction onn.

39

In order to maintain the monotonicity of≤, all references in a world must be persistent, since once a
reference is deallocated, its type can no longer be determined. This means that an explicit instruction for
deallocating references (e.g., delete M) is not allowed inλ©. In the present framework ofλ©, even garbage
collections are not allowed because they destroy the monotonicity of ≤: a garbage collection transition
from ω to ω′ must ensure thatl : ref A @ ω implies l : ref A @ ω′ for every possible referencel, including
those references not found in a given program, which are precisely what it deallocates. (In practice, garbage
collections do not interfere with evaluations and computations, and are safe to implement.) We use an empty
store as an initial world.

2.4.4 Supporting multiple notions of world effect

Since a world structure realizes a specific notion of world effect and instructions provide an interface to
worlds, we can support multiple notions of world effect by combining individual world structures and letting
each instruction interact with its relevant part of worlds.For example, we can use all the above instructions
if a world consists of three sub-worlds: an infinite sequenceof real numbers, input/output streams, and a
well-typed store. This is howλ© combines world effects at the language design level.

We may think ofλ© as providing a built-in implementation of a state monad whose states are worlds.
Then the ease of combining world effects inλ© reflects the fact that state monads combine well with each
other (by combining individual states).

2.5 Fixed point constructs

In this section, we investigate an extension ofλ© with fixed point constructs. We first consider those based
upon the unfolding semantics, in which a fixed point construct reduces by unrolling itself. Next we consider
those based upon the backpatching semantics, as used in Scheme [3]. For expressions, we assume the
operational semantics in the direct style in Figure 2.6.

For a uniform treatment of types, we choose to allow fixed point constructs for all types. An alternative
approach would be to confine fixed point constructs only to lambda abstractions (as in ML), but it would be
inadequate for our purpose because recursive computationsrequire fixed point constructs for computation
terms (of type©A) anyway.

2.5.1 Unfolding semantics

We usefix x :A.M as aterm fixed point constructfor recursive evaluations. Its typing rule and reduction
rule are as usual:

term M ::= · · · | fix x :A.M

Γ, x : A s̀ M : A @ ω

Γ s̀ fix x :A.M : A @ ω
Fix

fix x :A.M 7→t [fix x :A.M/x]M
TFix

In the presence of term fixed point constructs, any truth judgmentA true holds vacuously, sincefix x :A.x
typechecks for every typeA and represents a proof ofA true. Now a termM of typeA does not always
represent a constructive proof ofA true; rather it may contain nonsensical proofs such asfix x :B.x. The
definition of a computability judgmentA comp, however, remains the same because it is defined relative to
a truth judgmentA true.

In conjunction with computation termscmp E, term fixed point constructs enable us to encode recursive
computations: we first build a term fixed point constructM of type©A and then convert it into an expression
letcmp x / M in x, which denotes a recursive computation. Generalizing thisidea, we define syntactic sugar

40

for recursive computations. We introduce anexpression variablex and anexpression fixed point construct
efix x÷A.E; a new form of bindingx÷A for expression variables is used in typing contexts:

expression E ::= · · · | x | efix x÷A.E
typing context Γ ::= · · · | Γ,x÷A

New typing rules and reduction rule are as follows:

Γ,x÷A s̀ x÷A @ ω
Evar

Γ,x÷A s̀ E ÷A @ ω

Γ s̀ efix x÷A.E ÷A @ ω
Efix

efix x÷A.E @ ω 7→e [efix x÷A.E/x]E @ ω
Efix

In the ruleEfix , [efix x÷A.E/x]E denotes a capture-avoiding substitution ofefix x÷A.E for expression
variablex. Thus efix x÷A.E behaves like term fixed point constructs except that it unrolls itself by
substituting an expression for an expression variable, instead of a term for an ordinary variable.

To simulate expression fixed point constructs, we define a function (·)? which translates(efix x÷A.E)?

into:
letcmp yr / fix xp :©A. cmp [letcmp yv / xp in yv/x]E? in yr

That is, we introduce a variablexp to encapsulateefix x÷A.E and expandx to a bind expressionletcmp yv / xp in yv.
The translation of other terms and expressions is structural; for the sake of simplicity, we do not consider
world terms and instructions:

x? = x
(λx :A.M)? = λx :A.M?

(M1 M2)
? = M1

? M2
?

(cmp E)? = cmp E?

(fix x :A.M)? = fix x :A.M?

(letcmp x / M in E)? = letcmp x / M? in E?

x? = x

Proposition 2.17 shows that when translated via the function (·)?, the typing rulesEvar andEfix are
sound with respect to the original type system (without the rulesEvar andEfix).

Lemma 2.16.
If Γ s̀ F ÷A @ ω andΓ,x÷A s̀ M : B @ ω, thenΓ s̀ [F/x]M : B @ ω.
If Γ s̀ F ÷A @ ω andΓ,x÷A s̀ E ÷B @ ω, thenΓ s̀ [F/x]E ÷B @ ω.

Proof. By simultaneous induction on the structure ofM andE.

Proposition 2.17.
If Γ s̀ M : A @ ω, thenΓ s̀ M? : A @ ω.
If Γ s̀ E ÷A @ ω, thenΓ s̀ E? ÷A @ ω.

Proof. By simultaneous induction on the structure of the derivation ofΓ s̀ M : A @ ω andΓ s̀ E ÷A @ ω.
An interesting case is whenE = efix x÷A.F .
Case E = efix x÷A.F :
Γ,x÷A s̀ F ÷A @ ω by Efix

Γ,x÷A s̀ F ? ÷A @ ω by induction hypothesis

41

Γ, xp : ©A,x÷A s̀ F ? ÷A @ ω by weakening
Γ, xp : ©A s̀ letcmp yv / xp in yv ÷A @ ω (typing derivation)
Γ, xp : ©A s̀ [letcmp yv / xp in yv/x]F ? ÷A @ ω by Lemma 2.16

Γ s̀ letcmp yr / fix xp :©A. cmp [letcmp yv / xp in yv/x]F ? in yr ÷A @ ω

(typing derivation)
Γ s̀ (efix x÷A.F)? ÷A @ ω by the definition of(·)?

SinceM? andE? do not contain expression fixed point constructs, the ruleEfix is not used inΓ s̀ M? : A @ ω
and Γ s̀ E? ÷A @ ω. Neither is the ruleEvar used unlessM or E contains free expression variables.
Therefore, given a term or expression with no free expression variable, the function(·)? returns another
term or expression of the same type which does not need the rulesEvar andEfix.

Propositions 2.22 and 2.23 show that the reduction ruleEfix is sound and complete with respect to the
operational semantics (in the direct style) in Section 2.3.5. We use the fact that the computation ofE? does
not require the ruleEfix .

Proposition 2.18.
For any termN , we have([N/x]M)? = [N?/x]M? and([N/x]E)? = [N?/x]E?.
For any expressionF , we have([F/x]M)? = [F ?/x]M? and([F/x]E)? = [F ?/x]E?.

Proof. By simultaneous induction on the structure ofM andE.

Lemma 2.19. If M 7→t N , thenM? 7→t N?.

Proof. By induction on the structure of the derivation ofM 7→t N .

Lemma 2.20.
If M? 7→t N ′, then there existsN such thatN ′ = N? andM 7→t N .

Proof. By induction on the structure of the derivation ofM? 7→t N ′.

We introduce an equivalence relation≡e on expressions to state that two expressions compute to the
same value.

Definition 2.21.
E ≡e F if and only ifE @ ω 7→∗

e V @ ω′ impliesF @ ω 7→∗
e V @ ω′, and vice versa.

The following equivalences are used in proofs below:

letcmp x / cmp E in x ≡e E
letcmp x / cmp E in F ≡e letcmp x / cmp E′ in F where E ≡e E′

(efix x÷A.E)? ≡e [(efix x÷A.E)?/x]E?

The third equivalence follows from an expression reduction

(efix x÷A.E)? @ ω 7→e letcmp yr / cmp [(efix x÷A.E)?/x]E? in yr @ ω.

Proposition 2.22.
If E @ ω 7→e F @ ω′ with the ruleEfix , thenE? @ ω 7→e F ′ @ ω′ andF ′ ≡e F ?.

42

Proof. By induction on the structure of the derivation ofE @ ω 7→e F @ ω′. We consider the caseE =
letcmp x / M in E0 whereM 6= cmp E′.

If letcmp x / M in E0 @ ω 7→e letcmp x / N in E0 @ ω by the ruleEBind , thenM 7→t N .

By Lemma 2.19,M? 7→t N?.

Since(letcmp x / M in E0)
? = letcmp x / M? in E0

? and(letcmp x / N in E0)
? = letcmp x / N? in E0

?,
we have(letcmp x / M in E0)

? @ ω 7→e (letcmp x / N in E0)
? @ ω.

Then we letF ′ = (letcmp x / N in E0)
?.

Proposition 2.23.

If E? @ ω 7→e F ′ @ ω′, then there existsF such thatF ′ ≡e F ? andE @ ω 7→e F @ ω′.

Proof. By induction on the structure of the derivation ofE? @ ω 7→e F ′ @ ω′. An interesting case is when
the ruleEBind is applied last in a given derivation.
If E = letcmp x / M in E0, thenE? = letcmp x / M? in E0

?.

By Lemma 2.20, there existsN such thatM 7→t N andM? 7→t N?.

Hence we haveE @ ω 7→e letcmp x / N in E0 @ ω′ andE? @ ω 7→e letcmp x / N? in E0
? @ ω′ (where

ω = ω′).

Then we letF = letcmp x / N in E0.
If E = efix x÷A.E0, thenF ′ ≡e ([efix x÷A.E0/x]E0)

? (andω = ω′)

because(efix x÷A.E0)
? ≡e [(efix x÷A.E0)

?/x]E0
? = ([efix x÷A.E0/x]E0)

?.

Then we letF = [efix x÷A.E0/x]E0.

As seen in the definition of expression fixed point constructs, term fixed point constructs can leak into
expressions to give rise to recursive computations. Note that non-terminating computations inλ© are not
necessarily due to (term or expression) fixed point constructs, since mutable references can also be ex-
ploited to encode recursive computations. For example, thefollowing expression initiates a non-terminating

43

computation in which referencex stores a computation term which dereferences itself:

letcmp x / cmp new cmp 0 in

letcmp y / cmp write x cmp (letcmp y / cmp read x in

letcmp z / y in

z)
in

letcmp z / y in

z





















@ ·

7→∗
e

letcmp y / cmp write l cmp (letcmp y / cmp read l in

letcmp z / y in

z)
in

letcmp z / y in

z

















@ [l 7→ cmp 0 : © int]

7→∗
e

letcmp z / cmp (letcmp y / cmp read l in

letcmp z / y in

z)
in

z













@ [l 7→ cmp (letcmp y / cmp read l in

letcmp z / y in

z) : © int]

7→∗
e

letcmp z /
cmp (letcmp z / cmp (letcmp y / cmp read l in

letcmp z / y in

z)
in

z)
in

z

























@ [l 7→ cmp (letcmp y / cmp read l in

letcmp z / y in

z) : © int]

7→∗
e · · ·

2.5.2 Backpatching semantics

Unlike the unfolding semantics, the backpatching semantics evaluates or computes a fixed point construct
by first finishing the reduction of its body and then“tying a recursive knot”, or “backpatching” the result.
For term evaluations, the two semantics are equivalent except that when the unfolding semantics gives rise
to an infinite loop, the backpatching semantics generates anerror.

We investigate a fixed point constructvfix z :A.E for expressions that is based upon the backpatching
semantics. Unlikeefix x÷A.E which computes a fixed point over both values and world effects and thus
x is interpreted as an expression, it computes a fixed point only over values andz in it is a term.5 For
this reason, the computation is usually referred to asvalue recursion[18]. Similar constructs are found in
Erkök and Launchbury [18] (fixed point constructmfix in Haskell) and Launchbury and Peyton Jones [37]
(recursive state transformerfixST in Haskell).

5In this regard, the two fixed point constructs for expressions cannot be compare directly.

44

Syntax and type system

We introduce arecursion variablez (with an underscore) as a term and avalue recursion constructvfix z :A.E
as an expression:

term M ::= · · · | z
expression E ::= · · · | vfix z :A.E

A substitution forz is defined in a standard way. To simplify the presentation of the type preservation
theorem (Theorem 2.25), we separate recursion variables from ordinary variables in the type system by
introducing avalue recursion contextΣ for recursion variables:

value recursion context Σ ::= · | Σ, z : A

A typing judgment now includes a value recursion context to record the type of each recursion variable:

term typing judgment Γ;Σ s̀ M : A @ ω
expression typing judgment Γ;Σ s̀ E ÷A @ ω

Typing rules for judgmentsΓ s̀ M : A @ ω andΓ s̀ E ÷A @ ω induce those for judgmentsΓ;Σ s̀ M : A @ ω
andΓ;Σ s̀ E ÷A @ ω in a straightforward way (by addingΣ to every judgment). We also need additional
rules for recursion variables and value recursion constructs:

Γ;Σ, z : A s̀ z : A @ ω
Vvar

Γ;Σ, z : A s̀ E ÷A @ ω

Γ;Σ s̀ vfix z :A.E ÷A @ ω
Vfix

The monotonicity of the accessibility relation≤ (in Proposition 2.7) is now stated with new typing
judgments.

Proposition 2.24.
If ω ≤ ω′, then

Γ;Σ s̀ M : A @ ω impliesΓ;Σ s̀ M : A @ ω′, and
Γ;Σ s̀ E ÷A @ ω impliesΓ;Σ s̀ E ÷A @ ω′.

Operational semantics

Conceptually we computevfix z :A.E as follows: first we bindz to a black holeso that any premature
attempt to read it results in avalue recursion error; next we computeE to obtain a valueV ; finally we
“backpatch” every occurrence ofz in V with V itself and return the backpatched value as the result.

One approach to backpatchingz with V is by replacingz by a fixed point constructfix z :A.V (as in
[47]). A problem with this approach is thatz may appear at the resultant world after computingE. That is, if
E at a worldω computes toV at another worldω′, z may be used byω′. Then we would need substitutions
on worlds as well (e.g., [fix z :A.V /z]ω′), which should be defined for each kind of world effect and thus
we want to avoid; besides the type preservation property becomes difficult to prove.

To eliminate the need for substitutions on worlds, we maintain a recursion storeσ. It associates each
recursion variable with a valueV :

recursion store σ ::= · | σ, z = V

Now we reformulate the operational semantics with two reduction judgments:

• A term reductionM
�
σ 7→t N means thatM with recursion storeσ reduces toN .

45

• An expression reductionE @ ω
�
σ 7→e F @ ω′

�
σ′ means thatE at worldω with recursion storeσ

reduces toF at worldω′ with recursion storeσ′.

A term reduction requires (but does not update) a recursion store because it may read recursion variables. An
expression reduction may update both a world (by reducing instructions) and a recursion store (by reducing
value recursion constructs). Reduction rules for judgments M 7→t N andE @ ω 7→e F @ ω′ induce those
for judgmentsM

�
σ 7→t N andE @ ω

�
σ 7→e F @ ω′

�
σ′ in a straightforward way (by addingσ to every

judgment).
Instead of directly modeling black holes with certain special values, we indirectly model black holes by

reducingvfix z :A.E to an intermediate value recursion constructvfix• z : A.E. That is, the presence of
vfix• z :A.E means thatz is assumed to be bound to a black hole and thatE is currently being reduced; if
a term inE attempts to readz, it results in a value recursion error and the whole reduction gets stuck. The
typing rule forvfix• z :A.E is the same as forvfix z :A.E:

expression E ::= · · · | vfix• z :A.E

Γ;Σ, z : A s̀ E ÷A @ ω

Γ;Σ s̀ vfix• z :A.E ÷A @ ω
Vfix•

The rules for reducing recursion variables and value recursion constructs are as follows:

z = V ∈ σ

z
�

σ 7→t V
Vvar

vfix z :A.E @ ω
�
σ 7→e vfix• z :A.E @ ω

�
σ

Vfixinit

E @ ω
�
σ 7→e F @ ω′

�
σ′

vfix• z :A.E @ ω
�
σ 7→e vfix• z :A.F @ ω′

�
σ′ Vfixred

z = V ′ 6∈ σ

vfix• z :A.V @ ω
�
σ 7→e V @ ω

�
σ, z = V

Vfixbpatch

These rules ensure that any premature attempt to read a recursion variable bound to a black hole results in a
value recursion error and the whole reduction gets stuck. The ruleVvar implies thatz is not a value in itself.
The ruleVfixinit initiates the computation ofvfix z :A.E by reducing it tovfix• z : A.E; the ruleVfixred

reduces the bodyE of vfix• z :A.E; the ruleVfixbpatch backpatchesz with V . Note thatα-conversion is
freely applicable even tovfix• z :A.E.

The reduction ruleVfixbpatch assumesdynamic renamingof recursion variables so that all recursion
variables in a recursion store remain distinct. As an example, consider the following expression:

letcmp x1 / cmp vfix z :A.E1 in letcmp x2 / cmp vfix z :A.E2 in F

Although we do not need to rename either instance ofz during typechecking, we have to rename the second
instance after computingvfix z :A.E2 because the recursion store already contains a recursion variable of
the same name.

Since the result of an evaluation or a computation may contain recursion variables, we need to incorpo-
rate recursion stores or their abstractions in stating the type preservation property. We use value recursion
contexts for this purpose as they are essentially the resultof typing recursion stores. Formally we write
|= σ : Σ @ ω if there exists a one-to-one correspondence betweenz = V ∈ σ andz : A ∈ Σ such that
·; Σ s̀ V : A @ ω holds. Now type preservation property is stated as follows:

46

Theorem 2.25 (Type preservation).Suppose|= σ : Σ @ ω.

If M
�
σ 7→t N and ·; Σ s̀ M : A @ ω, then·; Σ s̀ N : A @ ω.

If E @ ω
�
σ 7→e F @ ω′

�
σ′ and ·; Σ s̀ E ÷A @ ω, then there existsΣ′ such that·; Σ′

s̀ F ÷A @ ω′

and |= σ′ : Σ′ @ ω′.

Proof. By induction on the structure of the derivation ofM
�
σ 7→t N andE @ ω

�
σ 7→e F @ ω′

�
σ′. In-

teresting cases are when one of the rulesVvar , Vfixinit , Vfixred , andVfixbpatch is applied last in a given
derivation. We consider two representative cases below.

Case
z = V ∈ σ

z
�

σ 7→t V
Vvar :

·; Σ s̀ z : A @ ω impliesz : A ∈ Σ by the ruleVvar.
From |= σ : Σ @ ω, z = V ∈ σ, andz : A ∈ Σ,

we have·; Σ s̀ V : A @ ω.

Case
z = V ′ 6∈ σ

vfix• z :A.V @ ω
�
σ 7→e V @ ω

�
σ, z = V

Vfixbpatch

Since|= σ : Σ @ ω,
for anyz′ = V ′ ∈ σ, we have·; Σ s̀ V ′ ÷A′ @ ω andz′ : A′ ∈ Σ for some typeA′.

We letΣ′ = Σ, z : A.
Then, for anyz′ = V ′ ∈ σ, we have·; Σ′

s̀ V ′ ÷A′ @ ω andz′ : A′ ∈ Σ′ for some typeA′.
The ruleVfix• implies ·; Σ s̀ vfix• z :A.V ÷A @ ω and·; Σ, z : A s̀ V ÷A @ ω.
Then·; Σ′

s̀ V ÷A @ ω andz : A ∈ Σ′.
Therefore|= σ, z = V : Σ′ @ ω.

Since the type system does not detect value recursion errors, the computation of a well-typed expression
may end up with a value recursion error. To catch value recursion errors statically, we can adopt advanced
type systems for value recursion in [9, 16].

Simulating value recursion constructs

Section 2.5.1 has shown thatefix x÷A.E can be simulated withfix x :A.M . Can we also simulate
vfix z :A.E with fix x :A.M? In Haskell, a value recursion constructmfix for a specific monad can be
defined in terms of the ordinary fixed point constructfix. For example, Moggi and Sabry [47] show that for
a state monadM A = S → (A × S) whereM is a type constructor andS is the type of states,mfix can be
defined as follows:

mfix x :A.M = λs :S. fix p :A× S. (λx :A.M) (fst p) s

Here we use a product typeA × S and a projection termfst p; both M and mfix x : A.M have type
M A = S → (A × S). Since the type constructor© in λ© essentially forms a state monad, it may appear
that we can definevfix z :A.E in terms offix x :A.M . Unlike the state monadM A, however, we cannot
access states (i.e., worlds) as terms. Therefore we cannot exploit the above idea to simulatevfix z :A.E with
fix x :A.M .

Another idea to simulatevfix z :A.E is to use instructions for mutable references: to computevfix z :A.E,
we initialize a fresh reference forz; to backpatchz, we update the store. In this case,z can no longer be a
term because its evaluation requires an access to the store.In other words,z should now be defined as an
expression.

47

term M ::= · · · | contt κ | callcct x.M | throwt M M
value V ::= · · · | contt κ
evaluation context κ ::= [] | κ M | (λx :A.M) κ | throwt κ M | throwt (contt κ) κ

Figure 2.8: Syntax for continuations for terms.

2.6 Continuations

So far, we have restricted ourselves to world effects,i.e., transitions between worlds.λ© confines world
effects to expressions so that terms are free of world effects. When we extendλ© with control effects,
however, it is not immediately clear which syntactic category should be permitted to produce control effects.
On one hand, we could choose to confine control effects to expressions so that terms remain free of any kind
of effect. Then the distinction between effect-free evaluations and effectful computations is drawn in a
conventional sense. On the other hand, in order to developλ© into a practical programming language, it
is desirable to allow control effects in terms. For example,exceptions for terms would be an easy way to
handle division by zero or pattern-match failures occurring during evaluations. At the same time, however,
exceptions for expressions are also useful for those instructions whose execution does not always succeed.

We hold the view that expressions are in principle a syntactic category specialized for world effects,
and allow control effects inboth terms and expressions. The decision does not prevent us from developing
control effects orthogonally to world effects, since control effects are realized with reduction rules whereas
world effects are realized with world structures. In fact, there is no reason to confine control effects only to
one syntactic category, since the concept of control effectis relative to what constitutes the “basic” reduction
rules anyway.

As an example of control effect, we consider continuations.We consider two kinds: one for terms
and another for expressions. A continuation for terms denotes an evaluation parameterized over terms; a
continuation for expressions denotes a computation parameterized over terms. The two are independent
notions, and we discuss them separately. Since we are primarily interested in how continuations change the
state of the run-time system, we focus on the operational semantics only; for the type system, we refer the
reader to the literature (e.g., [25]).

In the syntax, we assume value recursion constructs which interact with continuations for expres-
sions in an interesting way. Hence we continue to use the two reduction judgmentsM

�
σ 7→t N and

E @ ω
�
σ 7→e F @ ω′

�
σ′ in Section 2.5.2 (but in a different style).

2.6.1 Continuations for terms

Figure 2.8 shows the syntax for continuations for terms. Anevaluation contextκ is a term with a hole[]
which can be filled with a termM to produce another termκ[M]; it assumes a call-by-value discipline.
contt κ lifts an evaluation contextκ to a value and is called aterm continuation. callcct and throwt are
constructs for capturing and throwing term continuations,respectively.

The operational semantics in Figure 2.9 uses a reduction judgment in the form ofκ[M]
�

σ 7→t κ′[N]
whereσ is a recursion store. Note that it is the same term reduction judgment as in Section 2.5.2 because both
κ[M] andκ′[N] are terms. The ruleCTred uses a term reductionM ⇒β term N . The ruleCTcallcc binds
variablex to a term continuation containing the current evaluation contextκ; the ruleCTthrow nullifies the
current evaluation contextκ to activate a new evaluation contextκ′.

The formulation of continuations for terms is standard. What is interesting is that from a logical perspec-
tive, continuations for terms change the meaning ofA true from intuitionistic truth to classical truth [23].
The change in the meaning ofA true, however, does not mean that we have to change the definition of

48

M ⇒β term N

κ[M]
�

σ 7→t κ[N]
CTred

z = V ∈ σ

κ[z]
�

σ 7→t κ[V]
CTvvar

κ[callcct x.M]
�

σ 7→t κ[[contt κ/x]M]
CTcallcc

κ[throwt (contt κ′) V]
�

σ 7→t κ′[V]
CTthrow

Figure 2.9: Reduction rules for continuations for terms.

term M ::= · · · | conte φ
value V ::= · · · | conte φ
expression E ::= · · · | callcce x.E | throwe M E
computation context φ ::= []e | []t | letcmp x / []t in E | letcmp x / cmp φ in E |

vfix• z :A.φ | throwe []t E | throwe (conte φ) φ

Figure 2.10: Syntax for continuations for expressions.

expressions accordingly, since our definition ofA comp is not subject to a particular definition ofA true.
In other words, even if we change the meaning ofA true, the same definition ofA comp remains valid with
respect to the new definition ofA true; hence the previous definition of expressions also remains valid.

2.6.2 Continuations for expressions

Figure 2.10 shows the syntax for continuations for expressions. Acomputation contextφ is an expression
with a hole[]t or []e. []t can be filled only with a term, and[]e only with an expression.conte φ lifts a
computation contextφ to a value and is called anexpression continuation. callcce andthrowe are constructs
for capturing and throwing expression continuations, respectively.

The operational semantics in Figure 2.11 uses a reduction judgment in the form of
φ[E] @ ω

�
σ 7→e φ′[F] @ ω′

�
σ′. Note that it is the same expression reduction judgment as inSection 2.5.2

because bothφ[E] and φ′[F] are expressions. The ruleCEcallcc binds variablex to a expression con-
tinuation containing the current computation contextφ; the ruleCEthrow nullifies the current computation
contextφ to activate a new computation contextφ′. By the ruleCEvfixo, a computation contextvfix• z :A.φ
marks thatz is bound to a black hole.

It is important that the ruleCEvfixc does not requirez = V ′ 6∈ σ in the premise; ifz = V ′ is already
in σ, it is removed inσ, z = V (so that all recursion variables remain distinct). The reason is that an
expression continuation that has been capturedbeforethe completion of the computation ofvfix• z : A.E
may be thrownafter its completion. In this case, recursion variablez is alreadybound to the value that the
previous computation ofvfix• z :A.E has returned. We can exploit this property to show that, for example,
vfix z :A. letcmp x / M in E andletcmp x / M in vfix z :A.E behave differently even whenz is not free in
M .6

Consider an expression

vfix z :A. letcmp x / cmp callcce y.E in F

wherez is not free inE. The expression continuation captured bycallcce y.E may escape the scope of the
whole value recursion construct. When it is thrown later,z is already bound to a value and every attempt to

6Erkök and Launchbury [18] call the equivalence between thetwo expressions theleft-shrinkingproperty of value recursion.

49

M
�
σ 7→t N

φ[M] @ ω
�
σ 7→e φ[N] @ ω

�
σ

CEtred

φ[letcmp x / cmp V in E] @ ω
�
σ 7→e φ[[V/x]E] @ ω

�
σ

CEbind

φ[callcce x.E] @ ω
�
σ 7→e φ[[conte φ/x]E] @ ω

�
σ

CEcallcc

φ[throwe (conte φ′) V] @ ω
�
σ 7→e φ′[V] @ ω

�
σ

CEthrow

φ[vfix z :A.E] @ ω
�
σ 7→e φ[vfix• z :A.E] @ ω

�
σ

CEvfixo

φ[vfix• z :A.V] @ ω
�
σ 7→e φ[V] @ ω

�
σ, z = V

CEvfixc

Figure 2.11:Reduction rules for continuations for expressions.

readz in F succeeds without raising a value recursion error. This is not the case for the following expression:

letcmp x / cmp callcce y.E in vfix z :A.F

During the computation ofF , z is bound to a black hole by the ruleCEvfixo. Consequently any attempt to
readz in F results in a value recursion error.

In general, value recursion is unsafe in the presence of expression continuations because a value recur-
sion construct may compute to a value containingunresolved recursion variables, that is, recursion variables
bound to black holes (the counter-example in [47] can be rewritten in λ©). An error resulting from reading
an unresolved recursion variable is similar to a value recursion error in that both result from an attempt to
read a recursion variable bound to a black hole. The difference is that while a value recursion error results
from a premature attempt to read a recursion variable that will be eventually bound to a value, an unresolved
recursion variable remains bound to a black hole forever.

2.7 Summary

Moggi’s monadic metalanguageλml [44, 45] has served as thede factostandard for subsequent monadic
languages [36, 37, 6, 70, 46, 78, 47]. Benton, Biermann, and de Paiva [7] show that from a type-theoretic
perspective,λml is connected to lax logic via the Curry-Howard isomorphism.Pfenning and Davies [60]
reformulateλml by applying Martin-Löf’s methodology of distinguishing between propositions and judg-
ments [42] to lax logic. The new formulation ofλml draws a syntactic distinction between values and com-
putations, and uses the modality© for computations. It is used in the design of a security-typed monadic
language [13]; its underlying modal type theory inspires type systems in [4, 5] and effect systems in [51, 52].

The idea of the syntactic distinction but without an explicit modality for computations is used by Petersen
et al.[54]. The same idea is also used by Mandelbaum, Walker, and Harper [41]. Their language is similar to
λ© in that the operational semantics (but not the type system) uses an accessibility relation between worlds.
The meaning of a world is, however, slightly different: a world in their language is a collection of facts on a
world in λ©.

λ© extends the new formulation ofλml by Pfenning and Davies with an operational semantics to support
concrete notions of computational effect. Compared with those monadic languages based uponλml, it
does not strictly increase the expressive power — it is straightforward to devise a translation fromλ© to
a typical monadic language based uponλml and vice versa. In this regard, the syntactic distinction in
λ© may be thought of as a cosmetic change to the syntax of monadiclanguages. It, however, inspires a

50

new approach to incorporating computational effects into monadic languages by allowing control effects
both in terms and in expressions while confining world effects to expressions. In a monadic language
based uponλml, this (unorthodox) approach would mean that its pure functional sublanguage is allowed to
produce control effects. The syntactic distinction also leads to the interpretation of terms and expressions
as complete languages of their own, which makesλ© a candidate for a unified framework under which to
study two languages that have traditionally been studied separately: Haskell (corresponding to terms) and
ML (corresponding to expressions). Ultimately we believe that the idea of the syntactic distinction conveys
a design principle not found in other monadic languages.

Chapter 3

The Probabilistic Language PTP

This chapter presents the syntax, type system, and operational semantics of PTP. We give examples to
demonstrate properties of PTP, and show how to verify that a program correctly encodes a target probability
distribution. We propose the Monte Carlo method [40] as a means of overcoming a limitation of PTP,
namely lack of support for precise reasoning about probability distributions.

For the reader who has read the previous chapter, PTP may be viewed as a simplified account ofλ©

with language constructs for probabilistic computations in Section 2.4.1. A source of simplification is that
a world, which is an infinite sequence of random numbers, doesnot affect types of terms and expressions;
hence typing judgments in PTP do not require worlds. The following table show judgments inλ© and their
corresponding judgments in PTP:

Judgments inλ© Judgments in PTP
Γ s̀ M : A @ ω Γ p̀ M : A
Γ s̀ E ÷A @ ω Γ p̀ E ÷A

M 7→t N (same)
M ⇀ V (same)

E @ ω 7→e F @ ω′ (same)
E @ ω ⇁ V @ ω′ (same)

The syntax of PTP uses type constructors familiar from programming languages (rather than logic) and more
specific keywords specialized to probability distributions:

Syntax ofλ© Syntax of PTP
A ⊃ B A→B
A ∧B A×B
cmp E prob E

letcmp x / M in E sample x from M in E

The definition of PTP in this chapter is self-contained, but should be supplemented by the previous
chapter for its logical foundation.

3.1 Definition of PTP

3.1.1 Syntax and type system

PTP augments the lambda calculus, consisting ofterms, with a separate syntactic category, consisting of
expressionsin a monadic syntax. Terms denote regular values and expressions denote probabilistic compu-
tations. We say that a termevaluatesto a value and an expressioncomputesto a sample.

51

52

type A,B ::= A→A | A×A | ©A | real
term M,N ::= x | λx :A.M |M M | (M,M) | fst M |

snd M | fix x :A.M | prob E | r
expression E,F ::= M | sample x from M in E | S
value/sample V ::= λx :A.M | (V, V) | prob E | r
real number r
sampling sequence ω ::= r1r2 · · · ri · · · where ri ∈ (0.0, 1.0]
typing context Γ ::= · | Γ, x : A

Figure 3.1: Abstract syntax for PTP.

Γ, x : A p̀ x : A
Hyp

Γ, x : A p̀ M : B

Γ p̀ λx :A.M : A→B
Lam

Γ p̀ M1 : A→B Γ p̀ M2 : A

Γ p̀ M1 M2 : B
App

Γ p̀ M1 : A1 Γ p̀ M2 : A2

Γ p̀ (M1,M2) : A1 ×A2
Prod

Γ p̀ M : A1 ×A2

Γ p̀ fst M : A1
Fst

Γ p̀ M : A1 ×A2

Γ p̀ snd M : A2
Snd

Γ, x : A p̀ M : A

Γ p̀ fix x :A.M : A
Fix

Γ p̀ E ÷A

Γ p̀ prob E : ©A
Prob

Γ p̀ r : real
Real

Γ p̀ M : A

Γ p̀ M ÷A
Term

Γ p̀ M : ©A Γ, x : A p̀ E ÷B

Γ p̀ sample x from M in E ÷B
Bind

Γ p̀ S ÷ real
Sampling

Figure 3.2: Typing rules of PTP.

Figure 3.1 shows the abstract syntax for PTP. We usex for variables.λx :A.M is a lambda abstraction,
andM M is an application term.(M,M) is a product term, andfst M andsnd M are projection terms; we
include these terms to support joint distributions.fix x :A.M is a fixed point construct for recursive evalu-
ations. Aprobability termprob E encapsulates expressionE; it is a first-class value denoting a probability
distribution.r is a real number.

There are three kinds of expressions: termM , bind expressionsample x from M in E, andsampling ex-
pressionS. As an expression,M returns (with probability 1) the result of evaluatingM . sample x from M in E
sequences two probabilistic computations (ifM evaluates to a probability term).S consumes a random num-
ber in asampling sequence, an infinite sequence of random numbers drawn independentlyfrom U(0.0, 1.0].

The type system employs two kinds of typing judgments:

• Term typing judgmentΓ p̀ M : A, meaning thatM evaluates to a value of typeA under typing
contextΓ.

• Expression typing judgmentΓ p̀ E ÷A, meaning thatE computes to a sample of typeA under
typing contextΓ.

A typing contextΓ is a set of bindingsx : A. Figure 3.2 shows the typing rules of PTP. The ruleProb

is the introduction rule for the type constructor©; it means that type©A denotes probability distributions
over typeA. The ruleBind is the elimination rule for the type constructor©. The ruleTerm means that

53

M 7→t M ′

M N 7→t M ′ N
TβL

N 7→t N ′

(λx :A.M) N 7→t (λx :A.M) N ′
TβR

(λx :A.M) V 7→t [V/x]M
TβV

M 7→t M ′

(M,N) 7→t (M ′,N)
TPL

N 7→t N ′

(V,N) 7→t (V,N ′)
TPR

M 7→t N
fst M 7→t fst N

TFst
fst (V, V ′) 7→t V

TFst ′

M 7→t N

snd M 7→t snd N
TSnd

snd (V, V ′) 7→t V ′ TSnd ′

fix x :A.M 7→t [fix x :A.M/x]M
TFix

M 7→t N
M @ ω 7→e N @ ω

ETerm

M 7→t N
sample x from M in F @ ω 7→e sample x from N in F @ ω

EBind

E @ ω 7→e E′ @ ω′

sample x from prob E in F @ ω 7→e sample x from prob E′ in F @ ω′ EBindR

sample x from prob V in F @ ω 7→e [V/x]F @ ω
EBindV

S @ rω 7→e r @ ω
Sampling

Figure 3.3: Operational semantics of PTP.

every term converts into a probabilistic computation that involves no probabilistic choice. The ruleReal

shows thatreal is the type of real numbers. A sampling expressionS has also typereal, as shown in the rule
Sampling, because it computes to a real number.

3.1.2 Operational semantics

Since PTP draws a syntactic distinction between regular values and probabilistic computations, its opera-
tional semantics needs two kinds of judgments:

• Term evaluation judgmentM ⇀ V , meaning that termM evaluates to valueV .

• Expression computation judgmentE @ ω ⇁ V @ ω′, meaning that expressionE with sampling se-
quenceω computes to sampleV with remaining sampling sequenceω′. ConceptuallyE @ ω ⇁ V @ ω′

consumes random numbers inω − ω′. Properties of the consumed sequenceω − ω′ (e.g., its length)
are not directly observable.

For term evaluations, we introduce a term reductionM 7→t N in a call-by-value discipline (we could
equally choose call-by-name or call-by-need). We identifyM 7→∗

t V with M ⇀ V , where 7→∗
t is the re-

flexive and transitive closure of7→t. For expression computations, we introduce an expression reduction
E @ ω 7→e F @ ω′ such thatE @ ω 7→∗

e V @ ω′ is identified withE @ ω ⇁ V @ ω′, where7→∗
e is the re-

flexive and transitive closure of7→e. Both reductions use capture-avoiding term substitutions[M/x]N and
[M/x]E defined in a standard way, as in Section 2.3.3.

Figure 3.3 shows the reduction rules in the operational semantics of PTP. Expression reductions may
invoke term reductions (e.g., to reduceM in sample x from M in E). The rulesEBindR andEBindV mean
that given a bind expressionsample x from prob E in F , we finish computingE before substituting a value

54

for x in F . Note that like a term evaluation, an expression computation itself is deterministic; it is only when
we vary sampling sequences that an expression exhibits probabilistic behavior.

An expression computationE @ ω 7→∗
e V @ ω′ means thatE takes a sampling sequenceω, consumes a

finite prefix ofω in order, and returns a sampleV with the remaining sampling sequenceω′:

Proposition 3.1. If E @ ω 7→∗
e V @ ω′, thenω = r1r2 · · · rnω′ (n ≥ 0) where

E @ ω 7→∗
e · · · 7→∗

e Ei @ ri+1 · · · rnω′ 7→∗
e · · · 7→∗

e En @ ω′ 7→∗
e V @ ω′

for a sequence of expressionsE1, · · · , En.

Thus an expression computation coincides with the operational description of a sampling function when
applied to a sampling sequence, which implies that an expression represents a sampling function. (Here we
use a generalized notion of sampling function mapping(0.0, 1.0]∞ to A× (0.0, 1.0]∞ for a certain typeA.)

The type safety of PTP consists of two properties: type preservation and progress. Their proofs are
omitted as they are special cases of Theorems 2.8 and 2.10, except forS which satisfies the type-preservation
and monotonicity requirements on instructions.

Theorem 3.2 (Type preservation).
If M 7→t N and · p̀ M : A, then· p̀ N : A.
If E @ ω 7→e F @ ω′ and · p̀ E ÷A, then· p̀ F ÷A.

Theorem 3.3 (Progress).
If · p̀ M : A, then eitherM is a value (i.e., M = V), or there existsN such thatM 7→t N .
If · p̀ E ÷A, then eitherE is a sample (i.e., E = V), or for any sampling sequenceω, there existF

andω′ such thatE @ ω 7→e F @ ω′.

3.1.3 Fixed point construct for expressions

In PTP, expressions describe non-recursive probabilisticcomputations. Since some probability distributions
are defined in a recursive way (e.g., geometric distributions), it is desirable to be able to describe recursive
probabilistic computations as well. To this end, we introduce anexpression variablex and anexpression
fixed point constructefix x÷A.E; a new form of bindingx ÷ A for expression variables is used in typing
contexts:

expression E ::= · · · | x | efix x÷A.E
typing context Γ ::= · · · | Γ,x÷A

New typing rules and reduction rule are as follows:

Γ,x÷A p̀ x÷A
Evar

Γ,x÷A p̀ E ÷A

Γ p̀ efix x÷A.E ÷A
Efix

efix x÷A.E @ ω 7→e [efix x÷A.E/x]E @ ω
Efix

In the ruleEfix , [efix x÷A.E/x]E denotes a capture-avoiding substitution ofefix x÷A.E for expression
variablex.

Expression fixed point constructs are syntactic sugar as they can be simulated with fixed point constructs
for terms. See Section 2.5.1 for details.

55

3.1.4 Distinguishing terms and expressions

The syntacticdistinction between terms and expressions in PTP is optional in the sense that the grammar
does not need to distinguish expressions as a separate non-terminal. On the other hand, thesemanticdis-
tinction, both statically (in the form of term and expression typing judgments) and dynamically (in the form
of evaluation and computation judgments) appears to be essential for a clean formulation of PTP.

PTP is a conservative extension of a conventional language because terms constitute a conventional
language of their own. In essence, term evaluations are always deterministic and we need only terms when
writing deterministic programs. As a separate syntactic category, expressions provide a framework for
probabilistic computation that abstracts from the definition of terms. For example, the addition of a new
term construct does not change the definition of expressions. When programming in PTP, therefore, the
syntactic distinction between terms and expressions aids us in deciding which of deterministic evaluations
and probabilistic computations we should focus on. In the next section, we show how to encode various
probability distributions and further investigate properties of PTP.

3.2 Examples

When encoding a probability distribution in PTP, we naturally concentrate on a method of generating sam-
ples, rather than calculating the probability assigned to each event. If the probability distribution itself is
defined in terms of a process of generating samples, we simplytranslate the definition. If, however, the
probability distribution is defined in terms of a probability measure or an equivalent, we may not always de-
rive a sampling function in a mechanical manner. Instead we have to exploit its unique properties to devise
a sampling function.

Below we show examples of encoding various probability distributions in PTP. These examples demon-
strate three properties of PTP: a unified representation scheme for probability distributions, rich expressive-
ness, and high versatility in encoding probability distributions. The sampling methods used in the examples
are all found in simulation theory [10]. Thus PTP is a programming language in which sampling methods
developed in simulation theory can be formally expressed ina fashion that is concise and readable while
remaining as efficient as the originals.

We assume primitive typesint andbool (with boolean valuesTrue andFalse), arithmetic and comparison
operators, and a conditional term constructif M then N1 else N2. We also assume standardlet-binding, re-
cursivelet rec-binding, and pattern matching when it is convenient for theexamples.1 We use the following
syntactic sugar for expressions:

unprob M ≡ sample x from M in x
eif M then E1 else E2 ≡ unprob (if M then prob E1 else prob E2)

unprob M chooses a sample from the probability distribution denotedbyM (we choose the keywordunprob

to suggest that it does the opposite of whatprob does.)eif M then E1 else E2 branches to eitherE1 or E2

depending on the result of evaluatingM .

1If type inference and polymorphism are ignored,let-binding and recursivelet rec-binding may be interpreted as follows, where
is a wildcard pattern for types:

let x = M in N ≡ (λx : . N) M

let rec x = M in N ≡ let x = fix x : . M in N

56

Unified representation scheme

PTP provides a unified representation scheme for probability distributions. While its type system distin-
guishes between different probability domains, its operational semantics does not distinguish between dif-
ferent kinds of probability distributions, such as discrete, continuous, or neither. We show an example for
each case.

We encode a Bernoulli distribution over typebool with parameterp as follows:

let bernoulli = λp : real. prob sample x from prob S in

x ≤ p

bernoulli can be thought of as a binary choice construct. It is expressive enough to specify any discrete
distribution with finite support. In fact,bernoulli 0.5 suffices to specify all such probability distributions,
since it is capable of simulating a binary choice construct [21] (if the probability assigned to each element
in the domain is computable).

As an example of continuous distribution, we encode a uniform distribution over a real interval(a, b] by
exploiting the definition of the sampling expression:

let uniform = λa : real. λb : real. prob sample x from prob S in

a + x ∗ (b− a)

We also encode a combination of a point-mass distribution and a uniform distribution over the same domain,
which is neither a discrete distribution nor a continuous distribution:

let point uniform = prob sample x from prob S in

if x < 0.5 then 0.0 else x

Rich expressiveness

We now demonstrate the expressive power of PTP with a number of examples.

We encode a binomial distribution with parametersp andn0 by exploiting probability terms:

let binomial = λp : real. λn0 : int.
let bernoullip = bernoulli p in

let rec binomialp = λn : int.
if n = 0 then prob 0
else prob sample x from binomial p (n− 1) in

sample b from bernoullip in

if b then 1 + x else x
in

binomial p n0

Herebinomial p takes an integern as input and returns a binomial distribution with parameters p andn.

If a probability distribution is defined in terms of a recursive process of generating samples, we can trans-
late the definition into a recursive term. For example, we encode a geometric distribution with parameterp,

57

which is a discrete distribution with infinite support, as follows:

let geometric rec = λp : real.
let bernoullip = bernoulli p in

let rec geometric = prob sample b from bernoullip in

eif b then 0
else sample x from geometric in

1 + x
in

geometric

Here we use a recursive termgeometric of type©int. Equivalently we can use an expression fixed point
construct:

let geometric efix = λp : real. let bernoullip = bernoulli p in

prob efix geometric÷int.
sample b from bernoullip in

eif b then 0
else sample x from prob geometric in

1 + x

We encode an exponential distribution by using the inverse of its cumulative distribution function as a
sampling function, which is known as theinverse transform method:

let exponential 1.0 = prob sample x from S in

−log x

Therejection method, which generates a sample from a probability distribution by repeatedly generating
samples from other probability distributions until they satisfy a certain termination condition, can be imple-
mented with a recursive term. For example, we encode a Gaussian distribution with meanm and variance
σ2 by the rejection method with respect to exponential distributions:

let bernoulli0.5 = bernoulli 0.5
let gaussian rejection = λm : real. λσ : real.

let rec gaussian = prob sample y1 from exponential 1.0 in

sample y2 from exponential 1.0 in

eif y2 ≥ (y1 − 1.0)2/2.0 then

sample b from bernoulli0.5 in

if b then m + σ ∗ y1 else m− σ ∗ y1

else unprob gaussian

in

gaussian

Since the probabilityp of y2 ≥ (y1 − 1.0)2/2.0 (the termination condition) is positive, the rejection method
above terminates with probabilityp + (1− p)p + (1− p)2p + · · · = p

1−(1−p) = 1. In this way, programmers
can ensure that a particular sampling strategy by the rejection method terminates with probability1.

We encode the joint distribution between two independent probability distributions using a product term.
If MP denotesP (x) andMQ denotesQ(y), the following term denotes the joint distributionProb(x, y) ∝
P (x)Q(y):

prob sample x from MP in

sample y from MQ in

(x, y)

58

For the joint distribution between two interdependent probability distributions, we use a conditional
probability, which we represent as a lambda abstraction taking a regular value and returning a probability
distribution. If MP denotesP (x) andMQ denotes a conditional probabilityQ(y|x), the following term
denotes the joint distributionProb(x, y) ∝ P (x)Q(y|x):

prob sample x from MP in

sample y from MQ x in

(x, y)

By returningy instead of(x, y), we compute the integrationProb(y) =
∫

P (x)Q(y|x)dx:

prob sample x from MP in

sample y from MQ x in

y

Due to lack of semantic constraints on sampling functions, we can specify probability distributions over
unusual domains such as infinite data structures (e.g., trees), function spaces, cyclic spaces (e.g., angular
values), and even probability distributions themselves. For example, we add two probability distributions
over angular values in a straightforward way:

let add angle = λa1 :©real. λa2 :©real. prob sample s1 from a1 in

sample s2 from a2 in

(s1 + s2) mod (2.0 ∗ π)

With the modulo operationmod, we take into account the fact that an angleθ is identified withθ + 2π.
As a simple application, we implement a belief network [66]:

We assume thatPalarm |burglary denotes the probability distribution that the alarm goes off when a burglary
happens; other variables of the formP·|· are interpreted in a similar way.

let alarm = λ(burglary , earthquake) :bool× bool.
if burglary then Palarm |burglary

else if earthquake then Palarm |¬burglary∧earthquake

else Palarm |¬burglary∧¬earthquake

let john calls = λalarm :bool.
if alarm then PJohn calls|alarm

else PJohn calls|¬alarm

let mary calls = λalarm :bool.
if alarm then PMary calls|alarm

else PMary calls|¬alarm

59

The conditional probabilitiesalarm , john calls , and mary calls do not answer any query on the
belief network and only describe its structure. In order to answer a specific query, we have to imple-
ment a corresponding probability distribution. For example, in order to answer “What is the probability
pMary calls |John calls that Mary calls when John calls?”, we useQMary calls|John calls below, which essen-
tially implements logic sampling [26]:

let rec QMary calls|John calls = prob sample b from Pburglary in

sample e from Pearthquake in

sample a from alarm (b, e) in

sample j from john calls a in

sample m from mary calls a in

eif j then m else unprob QMary calls|John calls

in

QMary calls|John calls

Pburglary denotes the probability distribution that a burglary happens, andPearthquake the probability distri-
bution that an earthquake happens. Then the mean ofQMary calls|John calls givespMary calls|John calls . We
will see how to calculatepMary calls|John calls in Section 3.4.

We can also implement most of the common operations on probability distributions. An exception is
the Bayes operation] (which is used in the second update equation of the Bayes filter). P] Q results in
a probability distributionR such thatR(x) = ηP (x)Q(x) whereη is a normalization constant ensuring
∫

R(x)dx = 1.0; if P (x)Q(x) is zero for everyx, thenP] Q is undefined. Since it is difficult to achieve
a general implementation ofP] Q, we usually make an additional assumption onP and Q to achieve
a specialized implementation. For example, if we have a function p and a constantc such thatp(x) =
kP (x) ≤ c for a certain constantk, we can implementP] Q by the rejection method:

let bayes rejection = λp :A→ real. λc : real. λQ :©A.
let rec bayes = prob sample x from Q in

sample u from prob S in

eif u < (p x)/c then x else unprob bayes

in

bayes

We will see another implementation in Section 3.4.

High versatility

PTP allows high versatility in encoding probability distributions: given a probability distribution, we can
exploit its unique properties and encode it in many different ways. For example,exponential 1.0 uses a
logarithm function to encode an exponential distribution,but there is also an ingenious method (due to von

60

Neumann) that requires only addition and subtraction operations:

let exponential von Neumann1.0 =
let rec search = λk : real. λu : real. λu1 : real.

prob sample u′ from prob S in

eif u < u′ then k + u1

else

sample u from prob S in

eif u ≤ u′ then unprob (search k u u1)
else

sample u from prob S in

unprob (search (k + 1.0) u u)
in

prob sample u from prob S in

unprob (search 0.0 u u)

The recursive term ingaussian rejection consumes at least three random numbers. We can encode a
Gaussian distribution with only two random numbers:

let gaussian Box Muller = λm : real. λσ : real.
prob sample u from prob S in

sample v from prob S in

m + σ ∗ √−2.0 ∗ log u ∗ cos (2.0 ∗ π ∗ v)

We can also approximate a Gaussian distribution by exploiting the central limit theorem:

let gaussian central = λm : real. λσ : real.
prob sample x1 from prob S in

sample x2 from prob S in

· · ·
sample x12 from prob S in

m + σ ∗ (x1 + x2 + · · ·+ x12 − 6.0)

The three examples above serve as evidence of high versatility of PTP: the more we know about a
probability distribution, the better we can encode it.

All the examples in this section just rely on our intuition onsampling functions and do not actually prove
the correctness of encodings. For example, we still do not know if bernoulli indeed encodes a Bernoulli
distribution, or equivalently, if the expression in it generatesTrue with probabilityp. In the next section, we
investigate how to formally prove the correctness of encodings.

3.3 Proving the correctness of encodings

When programming in PTP, we often ask“What probability distribution characterizes outcomes ofcomput-
ing a given expression?”The operational semantics of PTP does not directly answer this question because
an expression computation returns only a single sample froma certain, yet unknown, probability distribu-
tion. Therefore we need a different methodology for interpreting expressions directly in terms of probability
distributions.

We take a simple approach that appeals to our intuition on themeaning of expressions. We writeE ∼
Prob if outcomes of computingE are distributed according toProb. To determineProb from E, we

61

supply an infinite sequence of independentrandom variablesfrom U(0.0, 1.0] and analyze the result of
computingE in terms of these random variables. IfE ∼ Prob, thenE denotes a probabilistic computation
for generating samples fromProb and we regardProb as the denotation ofprob E.

We illustrate the above approach with a few examples. In eachexample,Ri means thei-th random
variable andR∞

i means the infinite sequence of random variables beginning from Ri (i.e., RiRi+1 · · ·). A
random variable is regarded as a value because it representsreal numbers in(0.0, 1.0].

As a trivial example, considerprob S. The computation ofS proceeds as follows:

S @ R∞
1 7→e R1 @ R∞

2

Since the outcome is a random variable fromU(0.0, 1.0], we haveS ∼ U(0.0, 1.0].

As an example of discrete distribution, considerbernoulli p. The expression in it computes as follows:

sample x from prob S in x ≤ p @ R∞
1

7→e sample x from prob R1 in x ≤ p @ R∞
2

7→e R1 ≤ p @ R∞
2

7→e True @ R∞
2 if R1 ≤ p;

False @ R∞
2 otherwise.

SinceR1 is a random variable fromU(0.0, 1.0], the probability ofR1 ≤ p is p. Thus the outcome isTrue

with probabilityp andFalse with probability1.0− p, andbernoulli p denotes a Bernoulli distribution with
parameterp.

As an example of continuous distribution, consideruniform a b. The expression in it computes as
follows:

sample x from prob S in a + x ∗ (b− a) @ R∞
1

7→∗
e a + R1 ∗ (b− a) @ R∞

2

Since we have

a + R1 ∗ (b− a) ∈ (a0, b0] iff R1 ∈ (
a0 − a

b− a
,
b0 − a

b− a
],

the probability that the outcome lies in(a0, b0] is

b0 − a

b− a
− a0 − a

b− a
=

b0 − a0

b− a
∝ b0 − a0

where we assume(a0, b0] ⊂ (a, b]. Thusuniform a b denotes a uniform distribution over(a, b].

The following proposition shows thatbinomial p n denotes a binomial distribution with parametersp
andn, which we write asBinomialp,n:

Proposition 3.4. If binomialp n 7→∗
t prob Ep,n, thenEp,n ∼ Binomial p,n.

Proof. By induction onn.

Base casen = 0. We haveEp,n = 0. SinceBinomial p,n is a point-mass distribution centered on0, we
haveEp,n ∼ Binomialp,n.

62

Inductive casen > 0. The computation ofEp,n proceeds as follows:

sample x from binomialp (n− 1) in

sample b from bernoullip in

if b then 1 + x else x @ R∞
1

7→∗
e sample x from prob xp,n−1 in

sample b from bernoullip in

if b then 1 + x else x @ R∞
i

7→∗
e sample b from prob bp in

if b then 1 + xp,n−1 else xp,n−1 @ R∞
i+1

7→∗
e 1 + xp,n−1 @ R∞

i+1 if bp = True;
xp,n−1 @ R∞

i+1 otherwise.

By induction hypothesis,binomialp (n− 1) generates a samplexp,n−1 from Binomial p,n−1 after consum-
ing R1 · · ·Ri−1 for somei (which is actuallyn). SinceRi is an independent random variable,bernoullip
generates a samplebp that is independent ofxp,n−1. Then we obtain an outcomek with the probability of

bp = True andxp,n−1 = k − 1 or
bp = False andxp,n−1 = k,

which is equal top ∗Binomial p,n−1(k − 1) + (1.0− p) ∗Binomial p,n−1(k) = Binomial p,n(k). Thus we
haveEp,n ∼ Binomialp,n.

As a final example, we show thatgeometric rec p denotes a geometric distribution with parameterp.
Supposegeometric 7→∗

t prob E andE ∼ Prob. The computation ofE proceeds as follows:

E @ R∞
1

7→∗
e sample b from prob bp in

eif b then 0
else sample x from geometric in

1 + x
@ R∞

2

7→∗
e 0 @ R∞

2 if bp = True;
sample x from prob E in 1 + x @ R∞

2 otherwise.

The first case happens with probabilityp and we getProb(0) = p. In the second case, we compute the
same expressionE with R∞

2 . Since all random variables are independent,R∞
2 can be thought of as a fresh

sequence of random variables. Therefore the computation ofE with R∞
2 returns samples from the same

probability distributionProb and we getProb(1 + k) = (1.0 − p) ∗ Prob(k). Solving the two equations,
we getProb(k) = p ∗ (1.0− p)k−1, which is the probability mass function for a geometric distribution with
parameterp.

The above approach can be thought of as an adaption of the methodology established in simulation
theory [10]. The proof of the correctness of a sampling method in simulation theory is easily transcribed
into a proof similar to those shown in this section by interpreting random numbers in simulation theory
as random variables in PTP. Thus PTP serves as a programming language in which sampling methods
developed in simulation theory can be not only formally expressed but also formally reasoned about. All
this is possible in part because an expression computation in PTP is provided with an infinite sequence of
random numbers to consume, or equivalently, because of the use of generalized sampling functions as the
mathematical basis.

An alternative approach would be to develop a denotational semantics based upon measure theory [65]
by translating expressions into a measure-theoretic structure. Such a denotational semantics would be useful
in answering such questions as:

63

• Does every expression in PTP result in a measurable samplingfunction? Or is it possible to write a
pathological expression that corresponds to no measurablesampling function?

• Does every expression in PTP define a probability distribution? Or is it possible to write a pathological
expression that defines no probability distribution?

If we ignore fixed point constructs of PTP, it is straightforward to translate expressions even directly
into probability measures, since probability measures form a monad [22, 64] and expressions already follow
a monadic syntax; a sampling expressionS is translated into a Lebesgue measure over the unit interval
(0.0, 1.0]. Let us write[M]term for the denotation of termM . Then we can translate each expressionE into
a probability measure[E]exp as follows:

• [prob E]term = [E]exp.

• [M]exp(S) = 1 if [M]term is in S.
[M]exp(S) = 0 if [M]term is not inS.

• [sample x from M in E]exp =
∫

fd[M]term where a functionf is defined asf(x) = [E]exp and
∫

fd[M]term is an integral off over measure[M]term.

• [S]exp is a Lebesgue measure over the unit interval(0.0, 1.0].

Note that the translation does not immediately reveal the probability measure corresponding to a given
expression because it returns aformulafor the probability measure rather than the probability measure itself.
Hence, in order to obtain the probability measure, we have togo through essentially the same analysis as
in the above approach. Ultimately we have to invert a sampling function represented by a given expression
(because an event is assigned a probability proportional tothe size of its inverse image under the sampling
function), which may not be easy to do in a mechanical way in the presence of various operators.

Once we add fixed point constructs to PTP, expressions shouldbe translated into a domain-theoretic
structure because of recursive equations. Specifically a term fix x :©A.M gives rise to a recursion equation
on type©A, and if a measure-theoretic structure is used for the denotation of terms of type©A, it is
difficult to solve the recursive equation; only with a domain-theoretic structure, the recursive equation can
be given a theoretical treatment. The work by Jones [30] suggests that such a domain-theoretic structure
could be constructed from a domain-theoretic model of real numbers [17], and we leave the development of
a denotational semantics of PTP based upon domain theory as future work.

3.4 Approximate Computation in PTP

We have explored both how to encode probability distributions in PTP and how to interpret PTP in terms
of probability distributions. In this section, we discuss another important aspect of probabilistic languages:
reasoning about probability distributions.

The expressive power of a probabilistic language is an important factor affecting its practicality. Another
important factor is its support for reasoning about probability distributions to determine their properties. In
other words, it is important not only to be able to encode various probability distributions but also to be
able to determine their properties such as means, variances, and probabilities of specific events. Unfortu-
nately PTP does not support precise reasoning about probability distributions. That is, it does not permit
a precise implementation of queries on probability distributions. Intuitively we must be able to calculate
probabilities of specific events, but this is tantamount to inverting sampling functions. Hence, for example,
we cannot calculatepMary calls|John calls in the belief network example in Section 3.2 unless we analyze
QMary calls|John calls to compute its mean in a similar way to the previous section.

64

Given that we cannot hope for precise reasoning in PTP, we choose to support approximate reasoning by
the Monte Carlo method [40]. It approximately answers a query on a probability distribution by generating
a large number of samples and then analyzing them. For example, we can approximatepMary calls|John calls ,
which is equal to the proportion ofTrue’s among an infinite number of samples fromQMary calls|John calls ,
by generating a large number of samples and counting the number of True’s. Although the Monte Carlo
method gives only an approximate answer, its accuracy improves with the number of samples. Moreover it
is applicable to all kinds of probability distributions andis therefore particularly suitable for PTP.

In this section, we use the Monte Carlo method to implement the expectation query. We also show
how to exploit the Monte Carlo method in implementing the Bayes operation. Both implementations are
provided as primitive constructs of PTP.

3.4.1 Expectation query

Among common queries on probability distributions, the most important is the expectation query. The
expectation of a functionf with respect to a probability distributionP is the mean off overP , which we
write as

∫

fdP . Other queries may be derived as special cases of the expectation query. For example, the
mean of a probability distribution over real numbers is the expectation of an identity function; the probability
of an eventEvent under a probability distributionP is

∫

IEventdP whereIEvent(x) is 1 if x is in Event

and 0 if not.
The Monte Carlo method states that we can approximate

∫

fdP with a set of samplesV1, · · · , Vn from
P :

lim
n→∞

f(V1) + · · ·+ f(Vn)

n
=

∫

fdP

We introduce a term constructexpectation which exploits the above equation:

term M ::= · · · | expectation Mf MP

Γ p̀ Mf : A→ real Γ p̀ MP : ©A

Γ p̀ expectation Mf MP : real
Exp

Mf 7→∗
t f MP 7→∗

t prob EP

for i = 1, · · · , n new sampling sequence ωi EP @ ωi 7→∗
e Vi @ ω′

i f Vi 7→∗
t vi

expectation Mf MP 7→t

P

i
vi

n

Exp

The ruleExp says that ifMf evaluates to a lambda abstraction denotingf andMP evaluates to a prob-
ability term denotingP , then expectation Mf MP reduces to an approximation of

∫

fdP . A run-time
variablen (to be chosen by programmers) specifies the number of samplesto generate fromP . To eval-
uateexpectation Mf MP , the run-time system initializes sampling sequenceωi to generate sampleVi for
i = 1, · · · , n (as indicated bynew sampling sequence ωi).

In the ruleExp, the accuracy of
P

i
vi

n
is controlled not by PTP but solely by programmers. That is, PTP

is not responsible for choosing a value ofn (e.g., by analyzingEP) to guarantee a certain level of accuracy
in estimating

∫

fdP . Rather it is programmers that decide a suitable value ofn to achieve a desired level
of accuracy (as well as an expressionEP for encodingP). Programmers are also allowed to pick up a
particular value ofn for each expectation query, rather than using the same valueof n for all expectation
queries. We do not consider this as a weakness of PTP, sinceEP itself, chosen by programmers, affects the

accuracy of
P

i
vi

n
after all.

Although PTP provides no concrete guidance in choosing a value of n in the ruleExp, programmers
can empirically determine a suitable value ofn, namely the largest value ofn that finishes an expectation

65

query within a given time constraint. (A large value ofn is better because it results in a more faithful

approximation ofP by samplesVi and a smaller difference between
P

i
vi

n
and the true expectation

∫

fdP .)
Ideally the time to evaluateexpectation Mf MP should be directly proportional ton, but in practice, the
computation of the same expressionEP may take a different time, especially ifEP expresses a recursive
computation. Therefore programmers can try different values ofn and find the largest one that finishes the
expectation query within a given time constraint.

A problem with the above definition is that althoughexpectation is a term construct, its reduction is
probabilistic because of sampling sequenceωi in the ruleExp. This violates the principle that a term
evaluation is always deterministic, and now the same term may evaluate to different values if it contains
expectation. In order not to violate the principle, we assume that sampling sequenceωi in the ruleExp is
uniquely determined by expressionEP .

Now we can calculatepMary calls|John calls as:

expectation (λx :bool. if x then 1.0 else 0.0) QMary calls |John calls

3.4.2 Bayes operation

The previous implementation of the Bayes operationP] Q assumes a functionp and a constantc such that
p(x) = kP (x) ≤ c for a certain constantk. It is, however, often difficult to find the optimal value ofc (i.e.,
the maximum value ofp(x)) and we have to take a conservative estimate ofc. The Monte Carlo method,
in conjunction with importance sampling [40], allows us to dispense withc by approximatingQ with a set
of samples andP] Q with a set of weighted samples. We introduce a term constructbayes for the Bayes
operation and an expression constructimportance for importance sampling:

term M ::= · · · | bayes Mp MQ

expression E ::= · · · | importance {(Vi, wi)|1 ≤ i ≤ n}

In the spirit of data abstraction,importance represents only an internal data structure and is not directly
available to programmers.

Γ p̀ Mp : A→ real Γ p̀ MQ : ©A

Γ p̀ bayes Mp MQ : ©A
Bayes

Γ p̀ Vi : A Γ p̀ wi : real 1 ≤ i ≤ n

Γ p̀ importance {(Vi, wi)|1 ≤ i ≤ n} ÷A
Imp

Mp 7→∗
t p MQ 7→∗

t prob EQ

for i = 1, · · · , n new sampling sequence ωi EQ @ ωi 7→∗
e Vi @ ω′

i p Vi 7→∗
t wi

bayes Mp MQ 7→t prob importance {(Vi, wi)|1 ≤ i ≤ n}
Bayes

P

k−1

i=1
wi

S
< r ≤

P

k

i=1
wi

S
where S =

∑n
i=1 wi

importance {(Vi, wi)|1 ≤ i ≤ n} @ rω 7→e Vk @ ω
Imp

The ruleBayes uses sampling sequencesω1, · · · , ωn initialized by the run-time system and approximates
Q with n samplesV1, · · · , Vn, wheren is a run-time variable as in the ruleExp. Then it appliesp to each
sampleVi to calculates its weightwi and creates a set{(Vi, wi)|1 ≤ i ≤ n} of weighted samples as an
argument toimportance. The ruleImp implements importance sampling: we use a random numberr to
probabilistically select a sampleVk by taking into account the weights associated with all the samples. As
with expectation, we decide to definebayes as a term construct with the assumption that sampling sequence
ωi in the ruleBayes is uniquely determined by expressionEQ.

66

3.4.3 expectation and bayes as expression constructs

Since their reduction involves sampling sequences,expectation andbayes could be defined as expression
constructs so that the assumption on sampling sequenceωi (in the rulesExp andBayes) would be unneces-
sary. Still we choose to defineexpectation andbayes as term constructs for pragmatic reasons. Consider a
probability distributionP (s) defined in terms of probability distributionsQ(s) andR(u):

P (s) = ηQ(s)
∫

f(s, u)R(u)du

(A similar example is found in Section 5.3.)P (s) is obtained by the Bayes operation betweenQ(s) and
Prob(s) =

∫

f(s, u)R(u)du, and is encoded in PTP as

bayes (λs : . expectation (λu : .Mf (s, u)) MQ) MP

whereMP andMQ are probability terms denotingP andQ, respectively, andMf is a lambda abstrac-
tion denotingf . If expectation was an expression construct, however, it would be difficult to encodeP (s)
because expressionexpectation (λu : .Mf (s, u)) MQ cannot be converted into a term. In essence, math-
ematically the expectation of a function with respect to a probability distribution and the result of a Bayes
operation are always unique (if they exist), which in turn implies that ifexpectation andbayes are defined
as expression constructs, we cannot write code involving expectations and Bayes operations in the same
manner that we reason mathematically.

The actual implementation of PTP (to be presented in the nextchapter) does not enforce the assumption
on sampling sequenceωi in the rulesExp andBayes , which is unrealistic in practice and required only
for the semantic clarity of PTP. Strictly speaking, therefore, term evaluations are not necessarily deter-
ministic and there is no clear separation between terms and expressions in this regard. Since terms are not
protected from computational effects (such as input/output and mutable references) and term evaluations
do not always result in unique values anyway, non-deterministic term evaluations should not be regarded
as a new problem. Thus expressions are best interpreted as a syntactic category dedicated to probabilistic
computations only in the mathematical sense — strict adherence at the implementation level to the semantic
distinction between terms and expressions (e.g., definingexpectation andbayes as expression constructs)
would cost code readability without any apparent benefit.

3.4.4 Cost of generating random numbers

The essence of the Monte Carlo method is to trade accuracy forcost — it only gives approximate answers,
but relieves programmers of the cost of exact computation (which can be even impossible in certain prob-
lems). Since PTP relies on the Monte Carlo method to reason about probability distributions, it is important
for programmers to be able to determine the cost of the Monte Carlo method.

We decide to define the cost of the Monte Carlo method as proportional to the number of random num-
bers consumed. The decision is based upon the assumption that random number generation can account for
a significant portion of the total computation time. (If the cost of random number generation was negligible,
the number of random numbers consumed would be of little importance.) Under our implementation of PTP,
random number generation for the following examples from Section 3.2 accounts for an average of 74.85%
of the total computation time. The following table shows execution times (in seconds) and percentages of
random number generation when generating 100,000 samples (on a Pentium III 500Mhz with 384 MBytes
memory):

67

test case execution time random number generation (%)
uniform 0.0 1.0 0.25 78.57
binomial 0.25 16 4.65 64.84

geometric efix 0.25 1.21 63.16
gaussian rejection 2.5 5.0 1.13 77.78

exponential von Neumann1.0 1.09 80.76
gaussian Box Muller 2.0 4.0 0.57 77.27

gaussian central 0.0 1.0 2.79 83.87
QMary calls|John calls 21.35 72.57

In PTP, it is the programmers’ responsibility to reason about the cost of generating random numbers,
since for an expression computation judgmentE @ ω ⇁ V @ ω′, the length of the consumed sequence
ω − ω′ is not observable. A analysis similar to those in Section 3.3can be used to estimate the cost of
obtaining a sample in terms of the number of random numbers consumed. In the case ofgeometric rec p,
for example, the expected numbern of random numbers consumed is calculated by solving the equation

n = 1 + (1− p) ∗ n

where1 accounts for the random number generated from the Bernoullidistribution and(1 − p) is the
probability that another attempt is made to generate a sample from the same probability distribution. The
same technique applies equally to the rejection method (e.g., gaussian rejection).

3.5 Summary

Although conceptually simple, the idea of using sampling functions in specifying probability distributions
is new in the history of probabilistic languages. PTP is an example of probabilistic language that indirectly
expresses sampling functions in a monadic syntax. We could also choose a different syntax for expressing
sampling functions. For example, the author [53] extends the lambda calculus with asampling constructγ

�
e

to directly encodes sampling functions (γ is a formal argument ande denotes the body of a sampling func-
tion). The computation ofγ

�
e proceeds by generating a random number fromU(0.0, 1.0] and substituting it

for γ in e. Compared with PTP, the resultant calculus facilitates theencoding of some probability distribu-
tion (e.g., γ

�
γ for U(0.0, 1.0]), but it also reduces code readability because every program fragment denotes

a probability distribution and there is no separation between regular values and probabilistic computations.
The idea of using a monadic syntax for PTP was inspired by the stochastic lambda calculus of Ramsey

and Pfeffer [64], whose denotational semantics is based upon the monad of probability measures, or the
probability monad [22]. In implementing a query for generating samples from probability distributions,
they note that the probability monad can also be interpretedin terms of sampling functions, both denota-
tionally and operationally. In designing PTP, we take the opposite approach: first we use a monadic syntax
for probabilistic computations and relate it directly to sampling functions; then we interpret it in terms of
probability distributions.

The operational semantics of PTP can be presented in different styles. For example, expression compu-
tations could use a judgment of the formE

r1r2···rn⇁ V , meaning that expressionE computes to sampleV by
consuming a finite sequence of random numbersr1, r2, · · · , rn. Although the new judgment better reflects
the actual implementation of expression computation, we stick to the formulation given in this chapter to
emphasize the logical foundation of PTP.

68

Chapter 4

Implementation

This chapter describes the implementation of PTP. Instead of implementing PTP as a complete programming
language of its own, we choose to embed it in an existing functional language for two pragmatic reasons.
First the conceptual basis of probabilistic computations in PTP is simple enough that it is easy to simulate all
language constructs of PTP without any modification to the run-time system. Second we intend to use PTP
for real applications in robotics, for which we wish to exploit advanced features such as a module system,
an interface to foreign languages, and a graphics library. Hence building a complete compiler for PTP is not
justified when extending an existing functional language issufficient for examining the practicality of PTP.

We emphasize that embedding PTP in an existing functional language is different from adding a library
to the host language. For example, the syntax of the host language is extended with the syntax of PTP,
which is not the case when a library is added. Since the type system of PTP is also faithfully reflected in the
host language, programmers can benefit from the type system of PTP even when programming in the host
language environment. (A library can also partially reflectthe type system of PTP through type abstraction,
but not completely because of different syntax in the library.)

In our implementation, we use Objective CAML [2] as the host language. First we formulate a sound
and complete translation of PTP in a simple call-by-value language which can be thought of a sublanguage
of Objective CAML. Then we extend the syntax of Objective CAML using CAMLP4, a preprocessor for
Objective CAML, to incorporate the syntax of PTP. The extended syntax is translated back in the original
syntax.

4.1 Representation of sampling functions

Since a probability term denotes a probability distribution specified by a sampling function, the imple-
mentation of PTP translates probability terms into representations of sampling functions. We translate a
probability term of type©A into a value of typeA prob, where the type constructorprob is conceptually
defined as follows:

type A prob = real∞ −> A ∗ real∞

real is the type of real numbers, and we usereal∞ for the type of infinite sequences of random numbers.
We simplify the definition ofprob in two steps. First we implement real numbers of typereal as

floating point numbers of typefloat (as in Objective CAML). Second we dispense with infinite sequences
of random numbers by using a global random number generator whenever fresh random numbers are needed
to compute sampling expressions. Thus we use the following definition ofprob:

type A prob = unit −> A

69

70

type A,B ::= A→A | ©A | real
term M,N ::= x | λx :A.M |M M | prob E | r
expression E,F ::= M | sample x from M in E | S | x |

efix x÷A.E
value/sample V ::= λx :A.M | prob E | r
floating point number r
sampling sequence ω ::= r1r2 · · · ri · · · where ri ∈ (0.0, 1.0]
typing context Γ ::= · | Γ, x : A | Γ,x÷A

Figure 4.1: A fragment of PTP as the source language.

Hereunit is the unit type which is inhabited only by a unit value().
The use of typefloat instead of typereal means that we use finite precision in representing sampling

functions. Although the overhead of exact real arithmetic is not justified in those applications (e.g., robotics)
where we work with samples and approximations, programmersmay demand higher precision than is sup-
ported by typefloat. As a contrived example, consider a binary distribution assigning probability0.25 to
True and probability0.75 to False:

prob sample x from prob S in

2.0 ∗ x ≤ 0.5

If type float uses only one bit in mantissa part (andS computes to either0.5 or 1.0), the above probability
term denotes a wrong probability distribution (namely a point-mass distribution centered onFalse); only
with two or more bits in the mantissa part, it denotes the intended probability distribution. Therefore, while
the finite precision supported by the implementation of PTP (64 bits floating point numbers in Objective
CAML) is adequate for typical applications, it should also be noted that there can be sampling functions
demanding higher precision and that errors induced by floating point numbers can be problematic in some
applications.

We use the type constructorprob as an abstract datatype. That is, the definition ofprob is not exposed to
PTP and values of typeA prob are accessed only via member functions. We provide two member functions:
prb andapp. prb builds a value of typeA prob from a function of typeunit −> A; it is actually defined
as an identity function.app generates a sample from a value of typeA prob; it applies its argument to a
unit value. The interface and implementation of the abstract datatypeprob are given as follows:

type A prob type A prob = unit −> A
val prb : (unit −> A) −> A prob let prb = fun f :unit −> A. f
val app : A prob −> A let app = fun f :A prob. f ()

We useprb in translating probability terms andapp in translating bind expressions. In conjunction with
the use of the type constructorprob as an abstract data type, they provide a sound and complete translation
of PTP, as shown in the next section.

4.2 Translation of PTP in a call-by-value language

We translate a fragment of PTP shown in Figure 4.1 in a call-by-value language shown in Figure 4.2. The
source language excludes product types, which are straightforward to translate if the target language is
extended with product types. We directly translate expression fixed point constructs without simulating

71

type A,B ::= A −> A | A prob | float | unit
expression e, f ::= x | fun x :A. e | e e | prb e | app e | r |

() | random | fix x :A. u
value v ::= fun x :A. e | prb v | r | ()
function u ::= fun x :A. e
floating point number r
sampling sequence ω ::= r1r2 · · · ri · · · where ri ∈ (0.0, 1.0]
typing context Γ ::= · | Γ, x : A

Figure 4.2: A call-by-value language as the target language.

Γ, x : A v̀ x : A
Hyp

Γ, x : A v̀ e : B

Γ v̀ fun x :A. e : A −> B
Lam

Γ v̀ e1 : A −> B Γ v̀ e2 : A

Γ v̀ e1 e2 : B
App

Γ v̀ e : unit −> A

Γ v̀ prb e : A prob
Prb

Γ v̀ e : A prob

Γ v̀ app e : A
Papp

Γ v̀ r : float
Float

Γ v̀ () : unit
Unit

Γ v̀ random : float
Random

Γ, x : A v̀ u : A

Γ v̀ fix x :A. u : A
Fix

Figure 4.3: Typing rules of the target language.

them with fixed point constructs for terms. As the target language supports only floating point numbers,r
in the source language is restricted to floating point numbers.

The target language is a call-by-value language extended with the abstract datatypeprob. It has a single
syntactic category consisting of expressions (because it does not distinguish between effect-free evalua-
tions and effectful computations). As in PTP, every expression denotes a probabilistic computation and we
say that an expression computes to a value. Note that fixed point constructsfix x :A. u allow recursive
expressions only over function types.

The type system of the target language is shown in Figure 4.3.It employs a typing judgmentΓ v̀ e : A,
meaning that expressione has typeA under typing contextΓ. The rulesPrb andPapp conform to the
interface of the abstract datatypeprob.

The operational semantics of the target language is shown inFigure 4.4. It employs an expression
reduction judgmente @ ω 7→v e′ @ ω′, meaning that the computation ofe with sampling sequenceω
reduces to the computation ofe′ with sampling sequenceω′. A capture-avoiding substitution[e/x]f is
defined in a standard way. The ruleEAppPrb is defined according to the implementation of the abstract
datatypeprob. The ruleERandom shows thatrandom, like sampling expressions in PTP, consumes a random
number in a given sampling sequence. We write7→∗

v for the reflexive and transitive closure of7→v.
Figure 4.5 shows the translation of the source language in the target language.1 We overload the function

[·]v for types, typing contexts, terms, and expressions. Both terms and expressions of typeA in the source
language are translated into expressions of type[A]v in the target language.[prob E]v suspends the com-
putation of[E]v by building a functionfun :unit. [E]v, just asprob E suspends the computation ofE.
Since the target language allows recursive expressions only over function types, an expression variablex of
typeA (i.e., x ÷ A) is translated intoxx () wherexx is a special variable of typeunit −> [A]v annotated

1 is a wildcard pattern for variables and types.

72

e @ ω 7→v e′ @ ω′

e f @ ω 7→v e′ f @ ω′
EβL

f @ ω 7→v f ′ @ ω′

(fun x :A. e) f @ ω 7→v (fun x :A. e) f ′ @ ω′
EβR

(fun x :A. e) v @ ω 7→v [v/x]e @ ω
EβV

e @ ω 7→v e′ @ ω′

prb e @ ω 7→v prb e′ @ ω′ EPrb

e @ ω 7→v e′ @ ω′

app e @ ω 7→v app e′ @ ω′
EApp

app prb v @ ω 7→v v () @ ω
EAppPrb

random @ rω 7→v r @ ω
ERandom

fix x :A. u @ ω 7→v [fix x :A. u/x]u @ ω
EFix

Figure 4.4: Operational semantics of the target language.

[A→B]v = [A]v −> [B]v
[©A]v = [A]v prob
[real]v = float

[·]v = ·
[Γ, x : A]v = [Γ]v, x : [A]v

[Γ,x÷A]v = [Γ]v, xx : unit −> [A]v

[x]v = x
[λx :A.M]v = fun x : [A]v. [M]v

[M N]v = [M]v [N]v
[prob E]v = prb (fun :unit. [E]v)

[r]v = r
[sample x from M in E]v = (fun x : . [E]v) (app [M]v)

[S]v = random

[x]v = xx ()
[efix x÷A.E]v = (fix xx :unit −> [A]v. fun :unit. [E]v) ()

Figure 4.5: Translation of the source language.

with x; if the target language allowed recursive expressions overany type,x and efix x÷A.E could be
translated intoxx andfix xx : [A]v. [E]v, respectively.2

Propositions 4.1 and 4.2 show that the translation is faithful to the type system of the source language.
Proposition 4.1 proves the soundness of the translation: a well-typed term or expression in the source lan-
guage is translated into a well-typed expression in the target language. Proposition 4.2 proves the com-
pleteness of the translation: only a well-typed term or expression in the source language is translated into a
well-type expression in the target language.

Proposition 4.1.
If Γ p̀ M : A, then[Γ]v v̀ [M]v : [A]v.
If Γ p̀ E ÷A, then[Γ]v v̀ [E]v : [A]v.

Proof. By simultaneous induction on the structure ofM andE.

Proposition 4.2.

2In the Objective CAML syntax,[efix x÷A. E]v can be rewritten aslet rec xx () = [E]v in xx () .

73

If [Γ]v v̀ [M]v : A, then there existsB such thatA = [B]v andΓ p̀ M : B.
If [Γ]v v̀ [E]v : A, then there existsB such thatA = [B]v andΓ p̀ E ÷B.

Proof. By simultaneous induction on the structure ofM andE. The conclusion in the first clause also
impliesΓ p̀ M ÷B. An interesting case is whenE = x.
Case E = x:

[Γ]v v̀ [x]v : A by assumption
[Γ]v v̀ xx () : A because[x]v = xx ()
xx : unit −> A ∈ [Γ]v by App andUnit

Sincexx is a special variable annotated with expression variablex,
xx ÷B ∈ Γ andA = [B]v for someB.
A = [B]v andΓ p̀ E ÷B.

The translation is also faithful to the operational semantics of the source language. We first show that the
translation is sound: a term reduction in the source language is translated into a corresponding expression
reduction which consumes no random number (Proposition 4.6); an expression reduction in the source
language is translated into a corresponding sequence of expression reductions which consumes the same
sequence of random numbers (Proposition 4.7). Note that in Proposition 4.7,[E]v does not directly reduce
to [F]v; instead it reduces to an expressione to which [F]v eventually reduces without consuming random
numbers.

Lemma 4.3. [[M/x]N]v = [[M]v/x][N]v and [[M/x]E]v = [[M]v/x][E]v.

Proof. By simultaneous induction on the structure ofN andE.

Lemma 4.4.
[[efix x÷A.E/x]M]v = [(fix xx :unit −> [A]v. fun :unit. [E]v)/xx][M]v.
[[efix x÷A.E/x]F]v = [(fix xx :unit −> [A]v. fun :unit. [E]v)/xx][F]v.

Proof. By simultaneous induction on the structure ofM andF .

Corollary 4.5.
[[efix x÷A.E/x]E]v = [(fix xx :unit −> [A]v. fun :unit. [E]v)/xx][E]v.

Proposition 4.6.
If M 7→t N , then[M]v @ ω 7→v [N]v @ ω for any sampling sequenceω.

Proof. By induction on the structure of the derivation ofM 7→t N .

Case
M 7→t M ′

M N 7→t M ′ N
TβL :

[M]v @ ω 7→v [M ′]v @ ω by induction hypothesis
[M N]v = [M]v [N]v
[M]v [N]v @ ω 7→v [M ′]v [N]v @ ω by EβL

[M ′]v [N]v = [M ′ N]v

Case
N 7→t N ′

(λx :A.M) N 7→t (λx :A.M) N ′
TβR :

[N]v @ ω 7→v [N ′]v @ ω by induction hypothesis
[(λx :A.M) N]v = (fun x : [A]v. [M]v) [N]v
(fun x : [A]v. [M]v) [N]v @ ω 7→v (fun x : [A]v. [M]v) [N ′]v @ ω by EβR

(fun x : [A]v. [M]v) [N ′]v = [(λx :A.M) N ′]v

Case (λx :A.M) V 7→t [V/x]M
TβV :

74

[(λx :A.M) V]v = (fun x : [A]v. [M]v) [V]v
(fun x : [A]v. [M]v) [V]v @ ω 7→v [[V]v/x][M]v @ ω by EβV

[[V]v/x][M]v = [[V/x]M]v by Lemma 4.3

Proposition 4.7.
If E @ ω 7→e F @ ω′, there existse such that[E]v @ ω 7→∗

v e @ ω′ and [F]v @ ω′ 7→∗
v e @ ω′.

Proof. By induction on the structure of the derivation ofE @ ω 7→e F @ ω′. We consider two interesting
cases.

Case
E @ ω 7→e E′ @ ω′

sample x from prob E in F @ ω 7→e sample x from prob E′ in F @ ω′ EBindR :

[E]v @ ω 7→∗
v e @ ω′ where[E′]v @ ω′ 7→∗

v e @ ω′ by induction hypothesis
[sample x from prob E in F]v = (fun x : . [F]v) (app (prb (fun :unit. [E]v)))
(fun x : . [F]v) (app (prb (fun :unit. [E]v))) @ ω
7→v (fun x : . [F]v) ((fun :unit. [E]v) ()) @ ω by EAppPrb
7→v (fun x : . [F]v) [E]v @ ω by EβV

7→∗
v (fun x : . [F]v) e @ ω′ by [E]v @ ω 7→∗

v e @ ω′

[sample x from prob E′ in F]v = (fun x : . [F]v) (app (prb (fun :unit. [E′]v)))
(fun x : . [F]v) (app (prb (fun :unit. [E′]v))) @ ω′

7→∗
v (fun x : . [F]v) [E′]v @ ω′ by EAppPrb andEβV

7→∗
v (fun x : . [F]v) e @ ω′ by [E′]v @ ω′ 7→∗

v e @ ω′

Case efix x÷A.E @ ω 7→e [efix x÷A.E/x]E @ ω
Efix :

[efix x÷A.E]v = (fix xx :unit −> [A]v. fun :unit. [E]v) ()
(fix xx :unit −> [A]v. fun :unit. [E]v) () @ ω
7→v (fun :unit. [fix xx :unit −> [A]v. fun :unit. [E]v/xx][E]v) () @ ω by EFix
7→∗

v [fix xx :unit −> [A]v. fun :unit. [E]v/xx][E]v @ ω by EβV

[[efix x÷A.E/x]E]v = [fix xx :unit −> [A]v. fun :unit. [E]v/xx][E]v by Corollary 4.5

The completeness of the translation states that only a validterm or expression reduction in the source
language is translated into a corresponding sequence of expression reductions in the target language. In
other words, a term or expression that cannot be further reduced in the source language is translated into
an expression whose reduction eventually gets stuck. To simplify the presentation, we introduce three
judgments, all of which express that a term or expression does not further reduces.

• M 7→t • means that there exists no term to whichM reduces.

• E @ ω 7→e •means that there exists no expression to whichE reduces.

• e @ ω 7→v •means that there exists no expression to whiche reduces (in the target language).

Corollary 4.9 proves the completeness of the translation for terms; Proposition 4.10 proves the com-
pleteness of the translation for expressions.

Proposition 4.8. If [M]v @ ω 7→v e @ ω′, thene = [N]v, ω = ω′, andM 7→t N .

Proof. By induction on the structure ofM . We only need to consider the caseM = M1 M2. There are
three cases of the structure of[M1 M2]v @ ω 7→v e @ ω′ (corresponding to the rulesEβL

, EβR
, andEβV

). The
case for the ruleEβV

uses Lemma 4.3.

75

Corollary 4.9. If M 7→t •, then[M]v @ ω 7→v • for any sampling sequenceω.

Proposition 4.10. If E @ ω 7→e •, then there existse such that[E]v @ ω 7→∗
v e @ ω 7→v •.

Proof. By induction on the structure ofE. We consider two casesE = M andE = sample x from M in F ;
the remaining cases are all trivial.
Case E = M , [E]v = [M]v:

M 7→t • by ETerm

[M]v @ ω 7→v • by Corollary 4.9
We lete = [M]v.

Case E = sample x from M in F , [E]v = (fun x : . [F]v) app [M]v:
If M 6= prob ·,

M 7→t • by EBind

[M]v @ ω 7→v • by Corollary 4.9
The ruleEApp does not apply to[E]v.
The ruleEAppPrb does not apply to[E]v. [M]v 6= prb ·
We lete = [E]v.

If M = prob E′, E′ 6= V ,
E′ @ ω 7→e • by EBindR

There existse′ such that[E′]v @ ω 7→∗
v e′ @ ω 7→v • by induction hypothesis.

[E]v @ ω
7→∗

v (fun x : . [F]v) [E′]v @ ω [M]v = prb fun :unit. [E′]v
7→∗

v (fun x : . [F]v) e′ @ ω [E′]v @ ω 7→∗
v e′ @ ω

7→v • e′ @ ω 7→v •
We lete = (fun x : . [F]v) e′.

If M = prob V , thenE @ ω 7→e • does not hold because of the ruleEBindV .

The target language can be thought of as a sublanguage of Objective CAML in which the abstract
datatypeprob is built-in andrandom is implemented asRandom.float 1.0 .3 Since Objective CAML
also serves as the host language for PTP, we need to extend thesyntax of Objective CAML to incorporate
the syntax of PTP. The extended syntax is then translated back in the original syntax of Objective CAML
using the function[·]v. The next section gives the definition of the extended syntax.

4.3 Extended syntax

We use CAMLP4 to conservatively extend the syntax of Objective CAML, which is assumed to be specified
by a non-terminal〈term〉 (corresponding to terms in PTP), with a new non-terminal〈expr 〉 (corresponding
to expressions in PTP);〈patt 〉 is a non-terminal for patterns and〈id〉 for identifiers:

〈term〉 ::= · · · | PROB { 〈expr 〉 } probability term
〈expr 〉 ::= [〈term〉] | term as an expr.

sample 〈patt 〉 from 〈term〉 in 〈expr 〉 | bind expr.
UNIFORM| sampling expr.
efix 〈id〉 -> 〈expr 〉 | expr. fixed.p.c.
#〈id〉 | expr. variable
unprob 〈term〉 | unprob

eif 〈term〉 then 〈expr 〉 else 〈expr 〉 eif

3To be strict,random would be implemented as1.0 -. Random.float 1.0 .

76

[〈term〉] explicitly marks a term as an instance of expression.#〈id〉 refers to an expression variable〈id〉.
All other expression constructs resemble their counterparts in Chapter 3.

As an example, we encode a Bernoulli distribution over typebool as follows:

let bernoulli = fun p ->
PROB { sample x from PROB { UNIFORM } in

[if x <= p then true else false] }

A geometric distribution is encoded with an expression fixedpoint construct as follows:

let geometric = fun p ->
let bernoulli_p = bernoulli p in
PROB {

efix geo ->
sample b from bernoulli_p in
eif b then [0]
else

sample x from PROB { #geo } in
[1 + x]

}

All other examples in Section 3.2 can be encoded in a similar way.

4.4 Approximate computation

In PTP, reasoning about a probability distribution is accomplished by generating multiple samples and
analyzing them. The implementation of PTP provides two functions for generating independent samples
from a given probability distribution:

type ’a set
type ’a wset
val prob_to_set : ’a prob -> ’a set
val prob_to_wset : ’a prob -> (’a -> float) -> ’a wset

• ’a set is a datatype for sets of samples of type’a .

• ’a wset is a datatype for sets of weighted samples of type’a . Each sample is assigned a weight of
typefloat and’a wset may be thought of as(’a * float) set . All weights are normalized
(i.e., their sum is1.0).

• prob_to_set p generates samples fromp by evaluatingapp p repeatedly.

• prob_to_wset p f generates samples fromp and assigns to each sampleV a weight off V .

Programmers can specify the number of samples generated from prob_to_set andprob_to_wset ,
thereby controlling the accuracy in approximating probability distributions.

The implementation of PTP provides two functions for applying the Monte Carlo method:

val set_monte_carlo : ’a set -> (’a -> float) -> float
val wset_monte_carlo : ’a wset -> (’a -> float) -> float

77

wset to prob truncate ws

samplesample

ws
weight weight

Figure 4.6: wset to prob truncate .

• set_monte_carlo s f returns
P

V ∈s f V

|s| .

• wset_monte_carlo ws f returns
∑

(V,w)∈ws(f V) · w.

The following two functions convert sets and weighted sets back to probability distributions:

val set_to_prob_resample : ’a set -> ’a prob
val wset_to_prob_resample : ’a wset -> ’a prob

• set_to_prob_resample s returns a uniform distribution overs .

• wset_to_prob_resample ws returnsprob importance wswhich performs importance sampling
on ws to select samples.

Now the expectation query (in Section 3.4.1) and the Bayes operation (in Section 3.4.2) are implemented by
composing these functions:

expectation f p = set_monte_carlo (prob_to_set p) f

bayes f p = wset_to_prob_resample (prob_to_wset p f)

The implementation of PTP also provides a function for approximating the support of a given probability
distribution. Since the support of an arbitrary probability distribution cannot be calculated accurately, we
represent it as a uniform distribution:

val wset_to_prob_truncate : ’a wset -> ’a prob

wset_to_prob_truncate ws returns a uniform distribution overn samples of highest weights inws,
wheren is the parameter specifying the number of samples generatedby prob_to_set andprob_to_wset .
Figure 4.6 illustrates howwset_to_prob_truncate works. ws has five samples in it, and
wset_to_prob_truncate is invoked when the parametern is set to three. The two samples with
lowest weights perish, and all the surviving samples are assigned the same weight.

wset_to_prob_truncate is useful particularly when we want to extract a small numberof sam-
ples of high weights from a probability distribution. For (an approximation of) the uniform distribution over
the support ofp, we usewset_to_prob_truncate (prob_to_wset p (fun _ -> 1.0)) ,
where(fun _ -> 1.0) is a constant Objective CAML function returning1.0 .

78

horizontal computation{V1, · · · , Vn}

ve
rtica

lco
m

p
u

ta
tio

n
s

expression

VnV2 · · · Vn−1V1

Figure 4.7: Horizontal and vertical computations.

4.5 Simultaneous computation of multiple samples

The implementation of PTP uses a simple strategy to generatemultiple samples from a given probabil-
ity distribution: compute the same expression repeatedly.An alternative strategy is to perform a single
parallel computation that simulates multiple independentcomputations. To distinguish the two kinds of
computations, we refer to the former strategy asvertical computationsand the latter strategy as ahorizontal
computation, as shown in Figure 4.7.

A horizontal computation can be potentially faster than an equivalent number of vertical computations.
For example, a horizontal computation ofsample x from M in E avoids the overhead of evaluating the same
termM more than once; thus the advantage of a horizontal computation becomes pronounced ifM takes a
long time to evaluate. The cost associated with each language construct also remains constant in a horizontal
computation. For example, a horizontal computation ofsample x from M in E performs a substitution for
x only once, but vertical computations perform as many substitutions forx.

To examine the potential benefit of horizontal computations, we implement a translator of PTP for hori-
zontal computations. Conceptually an expression now computes to an ordered set of samples in such a way
that each sample corresponds to the result of an independentvertical computation of the same expression.
We may think of the translator as implementing an operational semantics based upon the judgment

E @ [ω1, · · · , ωn] ⇁⇁ {V1, · · · , Vn} @ [ω′
1, · · · , ω′

n]

which meansE @ ωi ⇁ Vi @ ω′
i for 1 ≤ i ≤ n.

The translator is implemented in a similar way to the operational semantics for vertical computations:
the syntax of Objective CAML is extended using CAMLP4, and terms and expressions of the extended
syntax are translated back in Objective CAML. The definitionof the type constructorprob , however, is
more complex because of conditional constructs (if · then · else · and eif · then · else ·). To motivate our
definition ofprob , consider the following expression:

sample x from prob S in

sample y from prob E in

eif x ≤ 0.5 then E1 else E2

A vertical computation reduces the whole expression to eitherE1 or E2 and needs to keep only one reduced
expression. A horizontal computation, however, may have tokeep bothE1 andE2 because multiple samples
are generated fromU(0.0, 1.0] for variablex. For example, if an ordered set{0.1, 0.6, 0.3, 0.9} is generated
for variablex, the horizontal computation reduces to two smaller horizontal computations: one ofE1 with
x bound to{0.1,−, 0.3,−} and another ofE2 with x bound to{−, 0.6,−, 0.9}. Note that we may not

79

compress{0.1,−, 0.3,−} to {0.1, 0.3} and{−, 0.6,−, 0.9} to {0.6, 0.9} because the ordered set to which
variabley is bound may be correlated to variablex.

Thus we are led to define the type constructorprob using bit vectors and ordered sets:

type bflag
type ’a oset
type ’a prob = bflag -> ’a oset

• bflag is the type of bit vectors of fixed size.

• ’a oset is a datatype for ordered sets of element type’a . An ordered set of element type’a may
contain not only ordinary values of type’a but alsonull values(‘−’ in the above example). Ordinary
values correspond to values of 1 and null values to values of 0in bit vectors.

• ’a prob is a datatype for both probability distributions over type’a and expressions of type’a .
It is defined as the type of a function that takes a bit vector, performs a horizontal computation for
values of 1 in the given bit vector, and returns the resultantordered set.

Since variables from bind expressions are always bound to ordered sets, we distinguish between terms
manipulating ordinary values and terms manipulating ordered sets. The new syntax, further augmenting the
extended syntax in Section 4.3, introduces a non-terminal〈pterm〉 for those terms manipulating ordered
sets; the definition of the non-terminal〈expr 〉 uses〈pterm〉 in place of〈term〉:

〈term〉 ::= · · · | 〈pterm〉
〈pterm〉 ::= lam 〈patt 〉 -> 〈pterm〉 | lambda abstraction

app 〈pterm〉 to 〈pterm〉 | application term
pif 〈pterm〉 then 〈pterm〉

else 〈pterm〉 | cond. term construct
@〈id〉 | variable
const 〈term〉 | constants
ptrue | pfalse |@+| CMP <=. | · · · built-in constants

In the new syntax, a Bernoulli distribution and a geometric distribution are encoded as follows:

let bernoulli = fun p ->
PROB { sample x from PROB { UNIFORM } in

[pif @x CMP <=. const p then ptrue else pfalse] }

let geometric = fun p ->
let bernoulli_p = bernoulli_prob p in
PROB {

efix geo ->
sample b from bernoulli_p in
eif @b then [const 0]
else

sample x from PROB { #geo } in
[const 1 @+ @x]

}

Compared with the examples in Section 4.3, the code is the same except that all terms within expressions
manipulate ordered sets rather than ordinary values.

80

test case vertical horizontal overhead (%)
bernoulli 0.25 0.922 1.188 28.85
uniform 0.0 1.0 0.906 1.078 18.98
binomial 0.25 16 16.563 23.187 39.99

geometric efix 0.25 3.937 7.157 81.78
gaussian rejection 2.5 5.0 4.688 7.593 61.96

exponential von Neumann1.0 4.031 6.922 71.71
gaussian Box Muller 2.0 4.0 4.796 5.031 4.89

gaussian central 0.0 1.0 10.594 12.157 14.75
QMary calls|John calls 90.063 138.922 54.24

Figure 4.8: Execution times (in seconds) for generating a total of 3,100,000 samples.

Experimental results

We compare execution times for generating the same number ofsamples in vertical and horizontal com-
putations. The typebflag uses 31-bit integers (of typeint in Objective CAML), which means that a
single horizontal computation performs up to 31 independent vertical computations; the datatype’a oset
uses arrays of 31 elements of type’a . We use an AMD Athlon XP 1.67GHz with 512MB memory for all
experiments.

Figure 4.8 shows execution times for various test cases fromChapter 3. In all test cases, horizontal
computations are slower than vertical computations, as indicated by their overhead relative to vertical com-
putations. The overhead of horizontal computations is especially high in those test cases involving condi-
tional constructs (namely,binomial , geometric efix , gaussian rejection , exponential von Neumann1.0,
andQMary calls|John calls). The high overhead can be attributed to the fact that a horizontal computation
allocates an array of size 31 for every expression, regardless of the number of ordinary values from it. For
example, even when a horizontal computation is simulating just a single vertical computation (after en-
countering several conditional constructs), the computation of an expression still requires an array of size
31.

The experimental results show that the overhead for maintaining ordered sets and handling conditional
constructs exceeds the gain from simulating multiple vertical computations with a single horizontal compu-
tation. Our implementation is just a translator which does not rely on support from the compiler. In order
to fully realize the potential of horizontal computations,it seems necessary to integrate the implementa-
tion within the compiler and the run-time system. As a speculation, horizontal computations can be up to
twice faster than vertical computations: random number generation, which costs the same in both vertical
and horizontal computations, accounts for about half the total computation time; hence, with no overhead
other than random number generation, horizontal computations would be about twice faster than vertical
computations.

4.6 Summary

Although PTP is implemented indirectly via a translation inObjective CAML, both its type system and its
operational semantics are faithfully mirrored through theuse of an abstract datatype. Besides all existing
features of Objective CAML are available when programming in PTP, and we may think of the implemen-
tation of PTP as a conservative extension of Objective CAML.The translation is easily generalized to any
monadic language, thus complementing the well-established result that a call-by-value language is translated

81

in a monadic language (e.g., see [68]).
The translator of PTP does not protect terms from computational effects already available in Objective

CAML such as input/output, mutable references, and even direct uses ofRandom.float . Thus, for
example, termM in a bind expressionsample x from M in E is supposed to produce no world effect, but
the translator has no way to verify that the evaluation ofM is effect-free. Therefore the translator of PTP
relies on programmers to ensure that every term denotes a regular value.

Since the linguistic framework for PTP is a reformulation ofMoggi’s monadic metalanguageλml (see
Chapter 2), Haskell is also a good choice as a host language for embedding PTP. To embed PTP in Haskell,
one would define a Haskell monad, sayProb , for probabilistic choices and translate an expression of
type A into a program fragment of typeProb A, while ignoring the keywordprob in probability terms.
Alternatively one could exploit the global random number generator maintained by theIO monad and
translate©A of PTP intoIO A of Haskell. (Our choice of Objective CAML is due to personal preference.)

We could directly implement PTP by extending the compiler and the run-time system of Objective
CAML. An immediate benefit is that type error messages are more informative because type errors are
detected at the level of PTP. (Our implementation detects type errors in the translated code rather than in
the source code; hence programmers should analyze type error messages to locate type errors in the source
code.) As for execution speed, we conjecture that the gain isnegligible, since the only overhead incurred
by the abstract datatypeprob is to invoke two tiny functions when its member functions areinvoked: an
identity function (forprb) and a function applying its argument to a unit value (forapp).

82

Chapter 5

Applications

This chapter presents three applications of PTP in robotics: robot localization, people tracking, and robotic
mapping, all of which are popular topics in robotics. Although different in goal, all these applications share
a common characteristic: the state of a robot is estimated from sensor readings, where the definition of state
differs in each case. A key element of these applications is uncertainty in sensor readings, due to limitations
of sensors and noise from the environment. It makes the problem of estimating the state of a robot both
interesting and challenging: if all sensor readings were accurate, the state of a robot could be accurately
traced by a simple (non-probabilistic) analysis of sensor readings. In order to cope with uncertainty in
sensor readings, we estimate the state of a robot with probability distributions.

As a computational framework, we use Bayes filters. In each case, we formulate the update equations
at the level of probability distributions and translate them in PTP. All implementations are tested using data
collected with real robots.

5.1 Sensor readings: action and measurement

To update the state of a robot, we use two kinds of sensor readings:actionandmeasurement. As in a Bayes
filter, an action induces a state change whereas a measurement gives information on the state:

• An actiona is represented as an odometer reading which returns the pose(i.e., position(x, y) and
orientationθ) of the robot relative to its initial pose. It is given as a tuple (∆x,∆y,∆θ).

• A measurementm consists of range readings which return distances to objects visible at certain an-
gles. It is given as an array[d1; · · · ; dn] where eachdi, 1 ≤ i ≤ n, denotes the distance between the
robot and the closest object visible at a certain angle.

Figure 5.1 shows a typical example of measurement. It displays range readings produced by a laser range
finder covering 180 degrees. The robot is shown in the center;occluded regions are colored in grey.

Odometers and range finders are prone to errors because of their mechanical nature. An odometer
usually tends to drift in one direction over time. Its accumulated error becomes manifest especially when
the robot closes a loop after taking a circular route. Range finders occasionally fail to recognize obstacles and
report the maximum distance measurable. In order to correctthese errors, we use a probabilistic approach
by representing the state of the robot with a probability distribution.

In the probabilistic approach, an action increases the set of possible states of the robot because it induces
a state change probabilistically. In contrast, a measurement decreases the set of possible states of the robot
because it gives negative information on unlikely states (and positive information on likely states). We now
demonstrate how to probabilistically update the state of the robot in three different applications.

83

84

Figure 5.1: Range readings produced by a laser range finder. The robot faces a person on its right, visible as the
shadows of two legs.

5.2 Robot localization

Robot localization [72] is the problem of estimating the pose of a robot when a map of the environment is
available. If the initial pose is given, the problem becomespose trackingwhich keeps track of the robot
pose by compensating errors in sensor readings. If the initial pose is not given, the problem becomesglobal
localizationwhich begins with multiple hypotheses on the robot pose (andis therefore more involved than
pose tracking).

We consider robot localization under the assumption (called theMarkov assumption) that the past and
the future are independent if the current pose is known, or equivalently that the environment is static. This
assumption allows us to use a Bayes filter in estimating the robot pose. Specifically the state in the Bayes
filter is the robot poses = (x, y, θ), and we estimates with a probability distributionBel(s) over three-
dimensional real space. We computeBel(s) according to the following update equations (which are the
same as shown in Section 1.1):

Bel(s) ←
∫

A(s|a, s′)Bel(s′)ds′(5.1)

Bel(s) ← ηP(m|s)Bel(s)(5.2)

η a normalizing constant ensuring
∫

Bel(s)ds = 1.0. We use the following interpretation ofA(s|a, s′) and
P(m|s):

• A(s|a, s′) is the probability that the robot moves to poses after taking actiona at another poses′. A
is called anaction model.

• P(m|s) is the probability that measurementm is taken at poses. P is called aperception model.

Given an actiona and a poses′, a new poses can be generated from the action modelA(·|a, s′) by
adding a noise toa and applying it tos′. In our implementation,A(·|a, s′) assumes constant translational
and rotational velocities while actiona is taken from poses′. It also assumes that errors in translational and

85

Figure 5.2: Samples from the action model.

rotational velocities obey Gaussian distributions. Figure 5.2 shows samples of the new pose after taking a
curved trajectory.

Given a measurementm and a poses, we can also computeκP(m|s) whereκ is an unknown constant:
the map determines a unique (accurate) measurementms for poses, and the squared Euclidean distance
betweenm andms is assumed to be proportional toP(m|s). Figures 5.3 and 5.4 illustrate how to compute
κP(m|s). Figure 5.3 shows points in the map that correspond to measurementm whens is set to the true
pose of the robot, in which case the unique measurementms for poses coincides withm (recall that a
measurement consists of not points in the map but range readings). Hence each point is projected on the
contour of the map and is assigned a high likelihood as indicated by the dark color. Figure 5.4 shows points
in the map that correspond to the same measurementm, but whens is set to a hypothetical pose of the robot;
the unique measurementms for poses is represented by points with crosses. Since the measurement is not
taken at the hypothetical pose, no point is correctly aligned along the contour of the map. Thus each point
is assigned a relatively low likelihood as indicated by the grey color (the degree of darkness indicates its
likelihood). We computeκP(m|s) as the product of all individual likelihoods.1

Our implementation simplifies the computation ofκP(m|s) by approximatingms with those points on
the contour of the map that are closest to the points corresponding to measurementm; Figure 5.5 shows how
to approximatems with those points with crosses. This simplification allows us to precompute the likelihood
of every point in the map, since its closest point on the contour of the map is fixed. Our implementation uses
a grid map at 10 centimeter resolution and generates alikelihood mapwhich stores the likelihood of each
cell in the map; see Figures 5.6 for a grid map and its likelihood map.

Now, if MA denotes conditional probabilityA andMP m returns a functionf(s) = κP(m|s), we
implement update equations (5.1) and (5.2) as follows:

let Belnew = prob sample s′ from Bel in

sample s from MA (a, s′) in

s







(5.1)

let Belnew = bayes (MP m) Bel } (5.2)

Both pose tracking and global localization are achieved by specifying an appropriate initial probability
distribution of robot pose. For pose tracking, we use a point-mass distribution or a Gaussian distribution;

1Our implementation filters out outlier range readings inm before computingκP(m|s).

86

Figure 5.3: Points in the map that correspond to measurements whens is set to the true pose of the robot.

Figure 5.4: Points in the map that correspond to measurements whens is set to a hypothetical pose of the robot.

for global localization, we use a uniform distribution overthe open space in the map.

Experimental results

To test the robot localizer, we use a Nomad XR4000 mobile robot in Wean Hall at Carnegie Mellon Univer-
sity. The robot is equipped with 180 laser range finders (one for each degree so as to cover 180 degrees).
The robot localizer uses every fifth range reading, and thus ameasurement consists of a batch of180

5 = 36
range readings. We use CARMEN [49] for controlling the robotand collecting sensor readings. The robot
localizer runs on a Pentium III 500Mhz with 384 MBytes memory.

We test the robot localizer for global localization. The initial probability distribution of robot pose is
a uniform distribution over the open space in the map, which is approximated with 100,000 samples. The
first batch of range readings is processed according to update equation (5.2). The resultant probability
distribution, which is still approximated with 100,000 samples, is then replaced by its support approximated
with 500 samples. The number of samples, 100,000 or 500, is chosen empirically — both too many and too
few samples prevent the probability distribution from converging to a correct pose.

Figure 5.7 shows a probability distribution of robot pose after processing the first batch of range readings
in Figure 5.1; pluses represent samples generated from the probability distribution. The robot starts right
below characterA, but there are relatively few samples around the true position of the robot. Figure 5.8
shows the progress of a real-time robot localization run that continues with the probability distribution in
Figure 5.7. The first two pictures show that the robot localizer is still performing global localization. The
last picture shows that the robot localizer has started posetracking as the probability distribution of robot

87

Figure 5.5: Approximatingms from measurementm and poses.

pose has converged to a single hypothesis.
We test the robot localizer with 8 runs, each of which takes a different path. In a test experiment, it

succeeds to localize the robot on 5 runs and fails on 3 runs. (The result should not be considered statistically
significant.) As a comparison, the CARMEN robot localizer, which uses particle filters and is written in C,
succeeds on 3 runs and fails on 5 runs under the same condition(100,000 samples during initialization, 500
samples during localization, and 36 range readings in each measurement). Note that the same sequence of
sensor readings does not guarantee the same result because of the probabilistic nature of the robot localizer.
In the worst scenario, for example, the initial probabilitydistribution of robot pose may have no samples
around the true pose, in which case the robot localizer is unlikely to recover from errors. Hence it is difficult
to precisely quantify the performance of the robot localizer; the goal is to convince that our implementation
in PTP is reasonably acceptable, not totally fake.

5.3 People tracking

People tracking [50] is an extension of robot localization in that it estimates not only the robot pose but
also positions of people (or unmapped objects). As in robot localization, the robot takes an action to change
its pose. Unlike in robot localization, however, the robot categorizes sensor readings in a measurement
by deciding whether they correspond with objects in the map or with people. Those sensor readings that
correspond with objects in the map are used to update the robot pose; the rest of sensor readings are used to
update positions of people.

A simple approach is to maintain a probability distributionBel(s, ~u) of robot poses and positions~u
of people. Although it works well for pose tracking, this approach is not a general solution for global
localization. The reason is that sensor readings from people are correctly interpreted only with a correct
hypothesis on the robot pose, but during global localization, there may be incorrect hypotheses that lead
to incorrect interpretation of sensor readings. For example, the two objects in the upper right region in
Figure 5.1 are interpreted as a person only with a correct hypothesis on the robot pose. This means that
during global localization, there exists a dependence between the robot pose and positions of people, which
is not captured byBel(s, ~u).

Hence we maintain a probability distributionBel(s, Ps(~u)) of robot poses andprobability distribution
Ps(~u) of positions~u of people conditioned on robot poses.2 Ps(~u) captures the dependence between the

2Our implementation assumes that people move independentlyof each other, and representsPs(~u) as a set of independent
probability distributions each of which keeps track of the position of an individual person.

88

Figure 5.6: A grid map and its likelihood map.

robot pose and positions of people.Bel(s, Ps(~u)) can be thought of as a probability distribution over
probability distributions.

As in robot localization, we updateBel(s, Ps(~u)) with a Bayes filter. The difference from robot local-
ization is that the state is a pair ofs andPs(~u) and that the action model takes as input both an actiona and
a measurementm. We use update equations (5.3) and (5.4) in Figure 5.9 (whichare obtained by replacing
s by s, Ps(~u) anda by a,m in update equations (1.1) and (1.2)).

The action modelA(s, Ps(~u)|a,m, s′, Ps′(~u′)) generatess, Ps(~u) from s′, Ps′(~u′) utilizing actiona and
measurementm. We first generates and thenPs(~u) according to equation (5.5) in Figure 5.9. We write
the firstProb in equation (5.5) asArobot(s|a,m, s′, Ps′(~u′)). The secondProb in equation (5.5) indicates
that we generatePs(~u) from Ps′(~u′) utilizing actiona and measurementm, which is exactly a situation
where we can use another Bayes filter. For this inner Bayes filter, we use update equations (5.6) and (5.7)
in Figure 5.9. We writeProb in equation (5.6) asApeople(~u|a, ~u′, s, s′); we simplifyProb in equation (5.7)
into Prob(m|~u, s) becausem does not depend ons′ if s is given, and write it asPpeople(m|~u, s).

Figure 5.10 shows the implementation of people tracking in PTP. MArobot
andMApeople

denote condi-
tional probabilitiesArobot andApeople, respectively.MPpeople

m s returns a functionf(~u) = κPpeople(m|~u, s)
for a constantκ. Since bothm ands are fixed when computingf(~u), we consider only those range readings
in m that correspond with people. In implementing update equation (5.4), we use the fact thatP(m|s, Ps(~u))
is the expectation of a functiong(~u) = Ppeople(m|~u, s) with respect toPs(~u):

(5.8) P(m|s, Ps(~u)) =
∫

Ppeople(m|~u, s)Ps(~u)d~u

Our implementation further simplifies the models used in theupdate equations. We useArobot(s|a, s′)
instead ofArobot(s|a,m, s′, Ps′(~u′)) as in robot localization. That is, we ignore the interactionbetween
the robot and people when generating new poses of the robot. Similarly we useApeople(~u|~u′) instead of

89

Figure 5.7: Probability distribution of robot pose after processing the first batch of range readings in Figure 5.1.

Apeople(~u|a, ~u′, s, s′) on the assumption that positions of people are not affected by the robot pose;~u is
obtained by adding a random noise to~u′. We also simplifyP(m|s, Ps(~u)) in update equation (5.4) into
P(m|s), which is computed in the same way as in robot localization; hence equation (5.8) is not actually
exploited in our implementation.

Experimental results

We test the people tracker on the same robot and machine that are used in robot localization. The people
tracker uses the implementation in Figure 5.10 during global localization, but once it succeeds to localize
the robot and starts pose tracking, it maintains a probability distributionBel(s, ~u) as there is no longer a
dependence between the robot pose and positions of people. Like the robot localizer, we do not intend to
quantitatively measure the success rate of people tracking; rather the focus is on ensuring that our imple-
mentation in PTP is not completely useless.

Figure 5.11 shows the progress of a real-time people tracking run which uses the same sequence of
sensor readings as Figure 5.8. The first picture is taken after processing the first batch of range readings
in Figure 5.1; pluses (+) represent robot poses and crosses (×) represent positions of people. The second
picture shows that the people tracker is still performing global localization. The last picture shows that the
people tracker has started pose tracking; the position of each person in sight is indicated by a grey dot.
Figure 5.12 shows range readings when the third picture in Figure 5.11 is taken; the right picture shows
a magnified view of the area around the robot. Note that a person may be occluded by another person or
objects in the map, so grey dots do not always reflect the movement of people instantly. A refined action
model for people (e.g.,Apeople(~u|a, ~u′, s, s′) or one estimating not only the position but also the velocityof
each person) would alleviate the problem.

5.4 Robotic mapping

Robotic mapping [75] is the problem of building a map (or a spatial model) of the environment from sensor
readings. Since measurements are a sequence of inaccurate local snapshots of the environment, a robot
simultaneously localizes itself as it explores the environment so that it corrects and aligns local snapshots to
construct a global map. For this reason, robotic mapping is also referred to assimultaneous localization and
mapping(or SLAM).

90

Taking a probabilistic approach, we formulate the robotic mapping problem with a Bayes filter which
maintains a probability distributionBel(s, g) of robot poses and mapg. Given an actiona and a measure-
mentm, we updateBel(s, g) as follows:

Bel(s, g) ←
∫

s′,g′
A(s, g|a, s′, g′)Bel(s′, g′)d(s′, g′)(5.9)

Bel(s, g) ← ηP(m|s, g)Bel(s, g)(5.10)

We assume that an action is independent of the map and does notchange the environment; that is,A(s, g|a, s′, g′)
= A(s|a, s′) if g = g′, andA(s, g|a, s′, g′) = 0 if g 6= g′. Then we can simplify update equation (5.9) as
follows:

Bel(s, g) ←
∫

s′
A(s|a, s′)Bel(s′, g)ds′(5.11)

Therefore the action model becomes the same as in robot localization. We implement the new update
equation (5.11) as follows:

let Belnew = prob sample (s′, g) from Belold in sample s from MA (a, s′) in (s, g)

The update equation (5.10) is implemented with a Bayes operation as before.
Unfortunately the space of maps has a huge dimension, which makes it impossible to maintainBel(s, g)

without simplifying their representation. Therefore we usually make additional assumptions on maps to
derive a specific representation. For example, assuming that a map consists of a set of landmarks whose
locations are estimated with Gaussian distributions, we can use a Kalman filter instead of a general Bayes
filter. If measurements, or local snapshots of the environment, are assumed to be accurate relative to robot
poses, we can represent a map by the sequence of robot poses when the measurements are taken, as in [38].
We can also exploit expectation maximization [14], in whichwe perform hill climbing in the space of maps
to find the most likely map. This approach does not maintain a probability distribution over maps because it
keeps only one (most likely) map at each iteration.

Here we assume that the environment consists of an unknown number of stationary landmarks. Then
the goal is to estimate positions of landmarks as well as the robot pose. The key observation is that we
may think of landmarks as people who never move in an empty environment. It means that the problem is
a special case of people tracking and we can use all the equations in Figure 5.9. Below we use subscript

landmark instead ofpeople for the sake of clarity.
As in people tracking, we maintain a probability distribution Bel(s, Ps(~u)) of robot poses and prob-

ability distribution Ps(~u) of positions~u of landmarks conditioned on robot poses. Since landmarks are
stationary andAlandmark(~u|a, ~u′, s, s′) is non-zero if and only if~u = ~u′, we skip update equation (5.6) in
implementing update equation (5.3).Arobot in equation (5.5) usesPlandmark(m|~u′, s) to test the likelihood
of each new robot poses with respect to old positions~u′ of landmarks, as in FastSLAM 2.0 [48]:

Arobot(s|a,m, s′, Ps′(~u′))(5.12)

=
∫

Prob(s|a,m, s′, u′)Ps′(~u′)d~u′

=

∫

Prob(s|a, ~u′)Prob(m, s′|s, a, ~u′)

Prob(m, s′|a, ~u′)
Ps′(~u′)d~u′

=
∫

η′′Prob(m, s′|s, a, ~u′)Ps′(~u′)d~u′ where η′′ =
Prob(s|a, ~u′)

Prob(m, s′|a, ~u′)

=
∫

η′′Prob(s′|s, a, ~u′,m)Prob(m|s, a, ~u′)Ps′(~u′)d~u′

=
∫

η′′Prob(s′|s, a)Prob(m|s, ~u′)Ps′(~u′)d~u′

= η′′Arobot(s|a, s′)
∫

Plandmark(m|~u′, s)Ps′(~u′)d~u′

91

Givena ands′, we implement equation (5.12) with a Bayes operation onArobot(·|a, s′).
Figure 5.13 shows the implementation of robotic mapping in PTP. Compared with the implementation

of people tracking in Figure 5.10, it omits update equation (5.6) and incorporates equation (5.12).MArobot

and MPlandmark
denote conditional probabilitiesArobot andPlandmark, respectively, as in people tracking.

Since landmarks are stationary, we no longer needMAlandmark
. If we approximateBel(s, Ps(~u)) with a

single sample (i.e., with one most likely robot pose and an associated map), update equation (5.4) becomes
unnecessary.

Experimental results

To test the mapper, we use a data set collected with an outdoorvehicle in Victoria Park, Sydney [1]. The
mapper runs on the same machine that is used in robot localization and people tracking (Pentium III 500Mhz
with 384 MBytes memory). The data set is collected while the vehicle moves approximately 323.42 meters
(according to the odometry readings) in 128.8 seconds. Since the vehicle is driving over uneven terrain, raw
odometry readings are noisy and do not reflect the true path ofthe vehicle, in particular when the vehicle
follows a loop.

Figure 5.14 shows raw odometry readings in the data set. The true positions of the vehicle measured
by a GPS sensor are represented by crosses, which are available only for part of the entire traverse and
are not exploited by the mapper. Note that the odometry readings eventually diverge from the true path
of the vehicle. Figure 5.15 shows the result of the robotic mapping experiment in which we approximate
Bel(s, Ps(~u)) with a single sample and use 1,000 samples for the expectation query and the Bayes operation.
The circles represent landmark positions (mean of their probability distributions). The mapper successfully
closes the loop, building a map of the landmarks around the path. The experiment, however, takes 145.89
seconds, which is 13.26% longer than it takes to collect the data set (128.8 seconds).

5.5 Summary

PTP is a probabilistic language which allows programmers toconcentrate on how to formulate probabilistic
computations at the level of probability distributions, regardless of the kind of probability distributions
involved. The three applications in robotics substantiatethe practicality of PTP by illustrating how to directly
translate a probabilistic computation into code and providing experimental results on real robots.

Our finding is that the benefit of implementing probabilisticcomputations in PTP, such as improved
readability and conciseness of code, can outweigh its disadvantage in speed. For example, our robot localizer
is 1307 lines long (826 lines of Objective CAML/PTP code for probabilistic computations and 481 lines of
C code for interfacing with CARMEN) whereas the CARMEN robotlocalizer, which uses particle filters
and is written in C, is 3397 lines long. (Our robot localizer also uses the translator of PTP which is 306 lines
long: 53 lines of CAMLP4 code and 253 lines of Objective CAML code.) The comparison is, however,
not conclusive because not every piece of code in CARMEN contributes to robot localization. Moreover
the reduction in code size is also attributed to the use of Objective CAML as the host language. Hence the
comparison should not be taken as indicative of reduction incode size due to PTP alone. The speed loss is
also not significant. For example, while the CARMEN robot localizer processes 100.0 sensor readings, our
robot localizer processes on average 54.6 sensor readings (and nevertheless shows comparable accuracy).

On the other hand, PTP does not allow programmers to exploit aparticular representation scheme for
probability distributions, which is inevitable for achieving high scalability in some applications. In the
robotic mapping problem, for example, one may choose to approximate the position of each landmark with a
Gaussian distribution. As the cost of representing a Gaussian distribution is relatively low, the approximation
makes it possible to build a highly scalable mapper. For example, Montemerlo [48] presents a FastSLAM

92

2.0 mapper which handles maps with over 1,000,000 landmarks. For such a problem, PTP would be useful
for quickly building a prototype implementation to test thecorrectness of a probabilistic computation.

93

Figure 5.8: Progress of a real-time robot localization run. Taken at 20 seconds, 40 seconds, and 80 seconds after
processing the first batch of sensor readings in Figure 5.1.

94

Bel(s, Ps(~u)) ←
∫

A(s, Ps(~u)|a,m, s′, Ps′(~u′))Bel(s′, Ps′(~u′))d(s′, Ps′(~u′))(5.3)

Bel(s, Ps(~u)) ← ηP(m|s, Ps(~u))Bel(s, Ps(~u))(5.4)

= ηBel(s, Ps(~u))
∫

Ppeople(m|~u, s)Ps(~u)d~u

A(s, Ps(~u)|a,m, s′, Ps′(~u′)) = Prob(s|a,m, s′, Ps′(~u′)) Prob(Ps(~u)|a,m, s′, Ps′(~u′), s)(5.5)

= Arobot(s|a,m, s′, Ps′(~u′)) Prob(Ps(~u)|a,m, s′, Ps′(~u′), s)

Ps(~u) ←
∫

Prob(~u|a, ~u′, s, s′)Ps′(~u′)d~u′(5.6)

=
∫

Apeople(~u|a, ~u′, s, s′)Ps′(~u′)d~u′

Ps(~u) ← η′Prob(m|~u, s, s′)Ps(~u)(5.7)

= η′Ppeople(m|~u, s)Ps(~u)

Figure 5.9: Equations used in people tracking. (5.3) and (5.4) for the Bayes filter computingBel(s, Ps(~u)). (5.5) for
decomposing the action model. (5.6) and (5.7) for the inner Bayes filter computingPs(~u).

let Belnew =

prob sample (s′, Ps′(~u′)) from Bel in

sample s from MArobot
(a,m, s′, Ps′(~u′)) in

let Ps(~u) = prob sample ~u′ from Ps′(~u′) in

sample ~u from MApeople
(a, ~u′, s, s′) in

~u







(5.6)

in

let Ps(~u) = bayes (MPpeople
m s) Ps(~u) in } (5.7)

(s, Ps(~u))











































(5.5)



























































(5.3)

let Belnew =
bayes λ(s, Ps(~u)) : . (expectation (MPpeople

m s) Ps(~u)) Bel
} (5.4)

Figure 5.10: Implementation of people tracking in PTP. Numbers on the right-hand side show corresponding equa-
tions in Figure 5.9.

95

Figure 5.11: Progress of a real-time people tracking run. Taken at 0 seconds, 20 seconds, and 70 seconds after
processing the first batch of sensor readings in Figure 5.1.

96

Figure 5.12: Range readings and the area around the robot during a people tracking run.

let Belnew =

prob sample (s′, Ps′(~u′)) from Bel in

sample s from

bayes λs : . (expectation (MPlandmark
m s) Ps′(~u′))

(MArobot
(a, s′)) in







(5.12)

let Ps(~u) = bayes (MPlandmark
m s) Ps′(~u′) in } (5.7)

(s, Ps(~u))























(5.5)











































(5.3)

let Belnew = bayes λ(s, Ps(~u)) : . (expectation (MPlandmark
m s) Ps(~u)) Bel } (5.4)

Figure 5.13: Implementation of robotic mapping in PTP.

97

Figure 5.14:Raw odometry readings in the robotic mapping experiment.

Figure 5.15: Result of the robotic mapping experiment.

98

Chapter 6

Conclusion

We have presented a probabilistic language PTP whose mathematical basis is sampling functions. PTP sup-
ports all kinds of probability distributions — discrete distributions, continuous distributions, and even those
belonging to neither group — without drawing a syntactic or semantic distinction. We have developed a lin-
guistic frameworkλ© for PTP and demonstrated the use of PTP with three applications in robotics. To the
best of our knowledge, PTP is the only probabilistic language with a formal semantics that has been applied
to real problems involving continuous distributions. There are a few other probabilistic languages that are
capable of simulating continuous distributions (by combining an infinite number of discrete distributions),
but they require a special treatment such as the lazy evaluation strategy in [33, 59] and the limiting process
in [24].

PTP does not support precise reasoning about probability distributions. Note, however, that this is
not an inherent limitation of PTP due to its use of sampling functions as the mathematical basis; rather
this is a necessary feature of PTP because precise reasoningabout probability distributions is impossible in
general. In other words, if PTP supported precise reasoning, it would support a smaller number of probability
distributions and operations.

The utility of a probabilistic language depends on each problem to which it is applied. PTP is a good
choice for those problems in which all kinds of probability distributions are used or precise reasoning is
unnecessary. Robotics is a good example, since all kinds of probability distributions are used (even those
probability distributions similar topoint uniform in Section 3.2 are used in modeling laser range finders)
and also precise reasoning is unnecessary (sensor readingsare inaccurate at any rate). On the other hand,
PTP may not be the best choice for those problems involving only discrete distributions, since its rich
expressiveness is not fully exploited and approximate reasoning may be too weak for discrete distributions.

Although we have presented only an operational semantics ofPTP (which suffices for all practical
purposes), a denotational semantics can also be used to argue that PTP is a probabilistic language. It may
also answer important questions about PTP such as:

• What is exactly the expressive power of PTP?

• Can we encode any probability distribution in PTP?

• If not, what kinds of probability distributions are impossible to encode in PTP?

The challenge is that in the presence of fixed point constructs, measure theory does not come to our rescue
because of recursive equations. Hence a domain-theoretic structure for probability distributions should be
constructed to properly handle recursive equations. The work by Jones [30] suggests that such a structure
could be constructed from a domain-theoretic model of real numbers [17].

99

100

The development of PTP is an effort to marry, in one of many possible ways, two seemingly unrelated
disciplines: programming language theory and robotics. Toprogramming language theory, it contributes a
new linguistic frameworkλ© and another installment in the series of probabilistic languages. To robotics,
it sets a precedent that a high level formulation of a problemdoes not always have to be discarded when it
comes to implementation. It remains to be seen in what other ways the two disciplines can be married.

Bibliography

[1] Experimental data.http://www.acfr.usyd.edu.au/homepages/academic/eneb ot/
dataset.htm . Australian Centre for Field Robotics, The University of Sydney.

[2] Objective CAML. http://caml.inria.fr .

[3] H. Abelson, R. K. Dybvig, C. T. Haynes, G. J. Rozas, N. I. A.IV, D. P. Friedman, E. Kohlbecker, G. L.
Steele Jr., D. H. Bartley, R. Halstead, D. Oxley, G. J. Sussman, G. Brooks, C. Hanson, K. M. Pitman,
and M. Wand. Revised report on the algorithmic language Scheme. Higher-Order and Symbolic
Computation, 11(1):7–105, Aug. 1998.

[4] U. A. Acar, G. E. Blelloch, and R. Harper. Adaptive functional programming. InProceedings of the
29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 247–259.
ACM Press, 2002.

[5] U. A. Acar, G. E. Blelloch, and R. Harper. Selective memoization. InProceedings of the 30th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 14–25. ACM Press,
2003.

[6] Z. M. Ariola and A. Sabry. Correctness of monadic state: an imperative call-by-need calculus. InPro-
ceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 62–73, New York, NY, 1998.

[7] P. N. Benton, G. M. Bierman, and V. C. V. de Paiva. Computational types from a logical perspective.
Journal of Functional Programming, 8(2):177–193, 1998.

[8] G. M. Bierman and V. de Paiva. Intuitionistic necessity revisited. Technical Report CSR-96-10, Uni-
versity of Birmingham, School of Computer Science, June 1996.

[9] G. Boudol. The recursive record semantics of objects revisited. Lecture Notes in Computer Science,
2028:269+, 2001.

[10] P. Bratley, B. Fox, and L. Schrage.A guide to simulation. Springer Verlag, 2nd edition, 1996.

[11] E. Charniak.Statistical Language Learning. MIT Press, Cambridge, Massachusetts, 1993.

[12] B. F. Chellas.Modal Logic: An Introduction. Cambridge University Press, 1980.

[13] K. Crary, A. Kliger, and F. Pfenning. A monadic analysisof information flow security with mutable
state. Technical Report CMU-CS-03-164, School of ComputerScience, Carnegie Mellon University,
2003.

101

102

[14] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM
algorithm.Journal of the Royal Statistical Society (Series B), 39(1):1–38, 1977.

[15] A. Doucet, N. de Freitas, and N. Gordon.Sequential Monte Carlo Methods in Practice. Springer
Verlag, New York, 2001.

[16] D. Dreyer. A type system for well-founded recursion. InProceedings of the 31st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. ACM Press, 2004.

[17] A. Edalat and P. J. Potts. A new representation for exactreal numbers. In S. Brookes and M. Mislove,
editors,Electronic Notes in Theoretical Computer Science, volume 6. Elsevier Science Publishers,
2000.

[18] L. Erkök and J. Launchbury. Recursive monadic bindings. InProceedings of the Fifth ACM SIGPLAN
International Conference on Functional Programming, pages 174–185. ACM Press, 2000.

[19] M. Fairtlough and M. Mendler. Propositional lax logic.Information and Computation, 137(1):1–33,
1997.

[20] D. Fox, W. Burgard, and S. Thrun. Markov localization for mobile robots in dynamic environments.
Journal of Artificial Intelligence Research, 11:391–427, 1999.

[21] J. Gill. Computational complexity of probabilistic Turing machines.SIAM Journal on Computing,
6(4):675–695, 1977.

[22] M. Giry. A categorical approach to probability theory.In B. Banaschewski, editor,Categorical Aspects
of Topology and Analysis, volume 915 ofLecture Notes In Mathematics, pages 68–85. Springer Verlag,
1981.

[23] T. G. Griffin. A formulae-as-type notion of control. InProceedings of the 17th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 47–58. ACM Press, 1990.

[24] V. Gupta, R. Jagadeesan, and P. Panangaden. Stochasticprocesses as concurrent constraint programs.
In Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 189–202. ACM Press, 1999.

[25] R. Harper, B. Duba, and D. MacQueen. Typing first-class continuations in ML.Journal of Functional
Programming, 3(4):465–484, October 1993.

[26] M. Henrion. Propagation of uncertainty in Bayesian networks by probabilistic logic sampling. In
J. F. Lemmer and L. N. Kanal, editors,Uncertainty in Artificial Intelligence 2, pages 149–163.
Elsevier/North-Holland, 1988.

[27] W. Howard. The formulas-as-types notion of construction. In J. P. Seldin and J. R. Hindley, editors,
To H. B. Curry: Essays on Combinatory Logic, Lambda-Calculus, and Formalism, pages 479–490.
Academic Press, NY, 1980.

[28] A. H. Jazwinski.Stochastic Processes and Filtering Theory. Academic Press, New York, 1970.

[29] F. Jelinek.Statistical Methods for Speech Recognition (Language, Speech, and Communication). MIT
Press, Boston, MA, 1998.

103

[30] C. Jones.Probabilistic Non-Determinism. PhD thesis, Department of Computer Science, University
of Edinburgh, 1990.

[31] M. P. Jones and L. Duponcheel. Composing monads. Technical Report YALEU/DCS/RR-1004, De-
partment of Computer Science, Yale University, December 1993.

[32] D. J. King and P. Wadler. Combining monads. In J. Launchbury and P. M. Sansom, editors,Glasgow
Functional Programming Workshop, Glasgow, 1992. Springer Verlag.

[33] D. Koller, D. McAllester, and A. Pfeffer. Effective Bayesian inference for stochastic programs. In
Proceedings of the 14th National Conference on Artificial Intelligence and 9th Innovative Applications
of Artificial Intelligence Conference (AAAI-97/IAAI-97), pages 740–747. AAAI Press, 1997.

[34] D. Kozen. Semantics of probabilistic programs.Journal of Computer and System Sciences, 22(3):328–
350, 1981.

[35] S. A. Kripke. Semantic analysis of modal logic. I: Normal propositional calculi.Zeitschrift f̈ur Math-
ematische Logik und Grundlagen der Mathematik, 9:67–96, 1963.

[36] J. Launchbury and S. L. Peyton Jones. Lazy functional state threads. InProceedings of the ACM
SIGPLAN 1994 Conference on Programming Language Design andImplementation, pages 24–35.
ACM Press, 1994.

[37] J. Launchbury and S. L. Peyton Jones. State in Haskell.Lisp and Symbolic Computation, 8(4):293–
341, Dec. 1995.

[38] F. Lu and E. Milios. Globally consistent range scan alignment for environment mapping.Autonomous
Robots, 4:333–349, 1997.

[39] C. Lüth and N. Ghani. Composing monads using coproducts. In Proceedings of the Seventh ACM
SIGPLAN International Conference on Functional Programming, pages 133–144. ACM Press, 2002.

[40] D. J. C. MacKay. Introduction to Monte Carlo methods. InM. I. Jordan, editor,Learning in Graphical
Models, NATO Science Series, pages 175–204. Kluwer Academic Press, 1998.

[41] Y. Mandelbaum, D. Walker, and R. Harper. An effective theory of type refinements. InProceedings
of the Eighth ACM SIGPLAN International Conference on Functional Programming, pages 213–225.
ACM Press, 2003.

[42] P. Martin-Löf. On the meanings of the logical constants and the justifications of the logical laws.
Nordic Journal of Philosophical Logic, 1(1):11–60, 1996. Text of lectures originally given in 1983
and distributed in 1985.

[43] T. Mogensen. Roll: A language for specifying die-rolls. In V. Dahl and P. Wadler, editors,5th In-
ternational Symposium on Practical Aspects of DeclarativeLanguages, volume 2562 ofLNCS, pages
145–159. Springer, 2002.

[44] E. Moggi. Computational lambda-calculus and monads. In Proceedings, Fourth Annual Symposium
on Logic in Computer Science, pages 14–23. IEEE Computer Society Press, 1989.

[45] E. Moggi. Notions of computation and monads.Information and Computation, 93:55–92, 1991.

104

[46] E. Moggi and A. Sabry. Monadic encapsulation of effects: a revised approach (extended version).
Journal of Functional Programming, 11(6):591–627, Nov. 2001.

[47] E. Moggi and A. Sabry. An abstract monadic semantics forvalue recursion.Theoretical Informatics
and Applications, 38(4):375–400, 2004.

[48] M. Montemerlo.FastSLAM: A Factored Solution to the Simultaneous Localization and Mapping Prob-
lem with Unknown Data Association. PhD thesis, Robotics Institute, Carnegie Mellon University,
2003.

[49] M. Montemerlo, N. Roy, and S. Thrun. CARMEN: Carnegie Mellon Robot Navigation Toolkit.
http://www.cs.cmu.edu/˜carmen/ .

[50] M. Montemerlo, W. Whittaker, and S. Thrun. Conditionalparticle filters for simultaneous mobile
robot localization and people-tracking. InIEEE International Conference on Robotics and Automation
(ICRA), pages 695–701, Washington, DC, 2002. ICRA.

[51] A. Nanevski. From dynamic binding to state via modal possibility. In Proceedings of the 5th ACM
SIGPLAN International Conference on Principles and Practice of Declaritive Programming, pages
207–218. ACM Press, 2003.

[52] A. Nanevski. A modal calculus for effect handling. Technical Report CMU-CS-03-149, School of
Computer Science, Carnegie Mellon University, 2003.

[53] S. Park. A calculus for probabilistic languages. InProceedings of the 2003 ACM SIGPLAN Interna-
tional Workshop on Types in Language Design and Implementation, pages 38–49. ACM Press, 2003.

[54] L. Petersen, R. Harper, K. Crary, and F. Pfenning. A typetheory for memory allocation and data
layout. InProceedings of the 30th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 172–184. ACM Press, 2003.

[55] S. Peyton Jones, editor.Haskell 98 Language and Libraries: The Revised Report. Cambridge Univer-
sity Press, 2003.

[56] S. Peyton Jones, A. Gordon, and S. Finne. Concurrent haskell. In Proceedings of the 23rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 295–308. ACM
Press, 1996.

[57] S. Peyton Jones, A. Reid, F. Henderson, T. Hoare, and S. Marlow. A semantics for imprecise excep-
tions. InProceedings of the ACM SIGPLAN 1999 Conference on Programming Language Design and
Implementation, pages 25–36. ACM Press, 1999.

[58] S. L. Peyton Jones. Tackling the awkward squad: monadicinput/output, concurrency, exceptions,
and foreign-language calls in Haskell. In C. A. R. Hoare, M. Broy, and R. Steinbrüggen, editors,
Engineering Theories of Software Construction. IOS Press, Amsterdam, 2001.

[59] A. Pfeffer. IBAL: A probabilistic rational programming language. In B. Nebel, editor,Proceedings of
the Seventeenth International Joint Conference on Artificial Intelligence (IJCAI-01), pages 733–740.
Morgan Kaufmann Publishers, Inc., 2001.

[60] F. Pfenning and R. Davies. A judgmental reconstructionof modal logic. Mathematical Structures in
Computer Science, 11(4):511–540, 2001.

105

[61] D. Pless and G. Luger. Toward general analysis of recursive probability models. In J. Breese and
D. Koller, editors,Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence
(UAI-01), pages 429–436. Morgan Kaufmann Publishers, 2001.

[62] D. Prawitz.Natural Deduction. Almquist and Wiksell, Stockholm, 1965.

[63] L. R. Rabiner. A tutorial on hidden Markov models and selected applications in speech recognition.
Proceedings of the IEEE, 77(2):257–285, Feb. 1989.

[64] N. Ramsey and A. Pfeffer. Stochastic lambda calculus and monads of probability distributions. InPro-
ceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 154–165. ACM Press, 2002.

[65] W. Rudin. Real and Complex Analysis. McGraw-Hill, New York, 3 edition, 1986.

[66] S. Russell and P. Norvig.Artificial Intelligence: A Modern Approach. Prentice Hall, 1995.

[67] A. Sabry. What is a purely functional language?Journal of Functional Programming, 8(1):1–22,
1998.

[68] A. Sabry and P. Wadler. A reflection on call-by-value.ACM Transactions on Programming Languages
and Systems, 19(6):916–941, 1997.

[69] N. Saheb-Djahromi. Probabilistic LCF. In J. Winkowski, editor,Proceedings of the 7th Symposium on
Mathematical Foundations of Computer Science, volume 64 ofLNCS, pages 442–451. Springer, 1978.

[70] M. Semmelroth and A. Sabry. Monadic encapsulation in ML. In Proceedings of the Fourth ACM
SIGPLAN International Conference on Functional Programming, pages 8–17. ACM Press, 1999.

[71] A. K. Simpson.The Proof Theory and Semantics of Intuitionistic Modal Logic. PhD thesis, Department
of Philosophy, University of Edinburgh, 1994.

[72] S. Thrun. Probabilistic algorithms in robotics.AI Magazine, 21(4):93–109, 2000.

[73] S. Thrun. A programming language extension for probabilistic robot programming. InWorkshop notes
of the IJCAI Workshop on Uncertainty in Robotics (RUR), 2000.

[74] S. Thrun. Towards programming tools for robots that integrate probabilistic computation and learning.
In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). IEEE,
2000.

[75] S. Thrun. Robotic mapping: A survey. In G. Lakemeyer andB. Nebel, editors,Exploring Artificial
Intelligence in the New Millenium. Morgan Kaufmann, 2002.

[76] P. Wadler. Comprehending monads.Mathematical Structures in Computer Science, 2:461–493, 1992.

[77] P. Wadler. The essence of functional programming. InProceedings of the 19th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 1–14. ACM Press, 1992.

[78] P. Wadler and P. Thiemann. The marriage of effects and monads.ACM Transactions on Computational
Logic, 4, 2003.

[79] G. Welch and G. Bishop. An introduction to the Kalman filter. Technical Report TR95-041, Depart-
ment of Computer Science, University of North Carolina - Chapel Hill, 1995.

106

