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Abstract

As probabilistic computations play an increasing role iwisg various problems, researchers have designed
probabilistic languageso facilitate their modeling. Most of the existing probadtic languages, however,
focus only on discrete distributions, and there has beta diffort to develop probabilistic languages whose
expressive power is beyond discrete distributions. Tliseattation presents a probabilistic language, called
PTP (ProbabilisTic Programming), which supports all kinds of probability dilstitions.

The key idea behind PTP is to usampling functiond.e., mappings from the unit interva0.0, 1.0] to
probability domains, to specify probability distribut&nBy using sampling functions as its mathematical
basis, PTP provides a unified representation scheme foabild distributions, without drawing a syntactic
or semantic distinction between different kinds of probgbdistributions.

Independently of PTP, we develop a linguistic frameworlleda\o, to account for computational
effects in general\o extends a monadic language by applying the possible wodpretation of modal
logic. A characteristic feature ofo is the distinction between stateful computational effecédledworld
effects and contextual computational effects, caltamhtrol effects PTP arises as an instance)of with a
language construct for probabilistic choices.

We use a sound and complete translator of PTP to embed it iaclm CAML. The use of PTP is
demonstrated with three applications in robotics: robogaliazation, people tracking, and robotic mapping.
Thus PTP serves as another example of high-level languadie@ypo a problem domain where imperative
languages have been traditionally dominant.
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Chapter 1

Introduction

This dissertation describes the design, implementatind,agplications of a probabilistic language called
PTP (ProbabilisTic Programming). PTP usesampling functionsi.e., mappings from the unit interval
(0.0, 1.0] to probability domains, to specify probability distribois. By using sampling functions in spec-
ifying probability distributions, PTP supports all kind$ grobability distributions in a uniform manner.
The use of PTP is demonstrated with three applications iatitd robot localization, people tracking, and
robotic mapping.

The contribution of this dissertation is three-fold:

e Sampling functions for specifying probability distritaris As most of the existing probabilistic lan-
guages focus only on discrete distributions, probalslisimputations involving non-discrete distri-
butions have usually been implemented in conventionaldaggs. Sampling functions open a new
way to specify all kinds of probability distributions, arfils serve as a mathematical basis for prob-
abilistic languages whose expressive power is beyondeadesdistributions.

e Linguistic framework for computational effecté/e develop a new linguistic framework, called,
to account for computational effects in generak extends the monadic language of Pfenning and
Davies [60] by applying the possible world interpretatidnmodal logic. It distinguishes between
stateful computational effects (callegrld effecty and contextual computational effects (caltzxuh-
trol effect3, and provides a different view on how to combine computatieffects at the language
design level. PTP arises as an instancg@®fvith a language construct for probabilistic choices.

e Applications of PTP in roboticsIn order to execute PTP programs, we use a sound and complete
translator of PTP to embed it in Objective CAML. The use of R§Fhen demonstrated with three
applications in robotics: robot localization, people kiag, and robotic mapping. Thus PTP serves
as another example of high-level language applied to a enolbdomain where imperative languages
have been traditionally dominant.

1.1 Motivation

A probabilistic computation is a computation which makesbabilistic choices or whose result is repre-
sented with probability distributions. As an alternativergdigm to deterministic computation, it has been
used successfully in diverse fields of computer science asisipeech recognition [63, 29], natural language
processing [11], and robotics [72]. Its success lies in Hut that probabilistic approaches often overcome
the practical limitation of deterministic approaches. Ki&l example is the problem of testing whether
a multivariate polynomial given by a program without brarsthtements is identically zero or not. It is

1



difficult to find a practical deterministic solution, but tkeds a simple probabilistic solution: evaluate the
polynomial on a randomly chosen input and check if the résuero.

As probabilistic computations play an increasing role ilvieg various problems, researchers have
also designedgrobabilistic languagedo facilitate their implementation [33, 24, 74, 59, 64, 43).5A
probabilistic language treats probability distributiassbuilt-in datatypes and thus abstracts from represen-
tation schemed,e., data structures for representing probability distritmsi. For example, a conventional
language may be extended with an abstract datatype for Ipiiipalistributions, which is specified by a
certain choice of representation scheme and a set of apesatin probability distributions. As a result,
it allows programmers to concentrate on how to formulatdabdistic computations at the level of prob-
ability distributions rather than representation scheméfhen translated in a probabilistic language (by
programmers), such a formulation usually produces corariskeelegant code.

A typical probabilistic language supports at least digcdistributions, for which there exists a represen-
tation scheme sufficient for all practical purposes: a sgtaifs consisting of a value from the probability
domain and its probability. We can use such a probabilistigliage for those problems involving only
discrete distributions. If non-discrete distributiong amvolved, however, we usually use a conventional
language for the sake of efficiency, assuming a specific kingrabability distributions €.g, Gaussian
distributions) or choosing a specific representation sehng, a set of samples from the probability dis-
tribution). For this reason, there has been little effortiéwelop probabilistic languages whose expressive
power is beyond discrete distributions.

The unavailability of such probabilistic languages meé#rag tvhen implementing a probabilistic com-
putation involving non-discrete distributions, we havedsort to a conventional language. Thus we wish to
develop a probabilistic language supporting all kinds afbability distributions —discrete distributions,
continuous distributions, and even those belonging tdeeijroup. Furthermore we wish to draw no dis-
tinction between different kinds of probability distrilris, both syntactically and semantically, so that we
can achieve a uniform framework for probabilistic compiotat Such a probabilistic language can have a
significant practical impact, since once formulated at évell of probability distributions, any probabilistic
computation can be directly translated into code.

Below we present an example that illustrates the disadgerghconventional languages in implement-
ing probabilistic computations and also motivates the kbgveent of PTP.

Notation

If a variablez ranges over the domain of a probability distributiBnthen P(z) means, depending on the
context, either the probability distribution itself (as“probability distribution P(z)”) or the probability of
a particular valuer (as in “probability P(z)”). We write P(x) for probability distribution” when we want
to emphasize the use of variahte If we do not need a specific name for a probability distribotiwe use
Prob (as in “probability distributionProb(x)”).

Similarly P(z|y) means either the conditional probabiliitself or the probability ofc conditioned on
y. We write P, or P(-|y) for the probability distribution conditioned an

U (0.0, 1.0] denotes a uniform distribution over the unit inter¢@l0, 1.0].

A motivating example for PTP

A Bayes filtef28] is a popular solution to a wide range of state estimagimblems. It estimates the state
s of a system from a sequence aftionsand measurementsvhere an actiom induces a change to the
state and a measurementgives information on the state. At its core, a Bayes filter patas a probability



distribution Bel(s) of the state according to the following update equations:

(1.2) Bel(s) « [A(s|a,s")Bel(s")ds'
(1.2) Bel(s) « mnP(m|s)Bel(s)

A(s|a, ') is the probability that the system transitions to stagfter taking actiom: in another state’,
P(m|s) the probability of measurement in states, andn a normalizing constant ensuringBel(s)ds =
1.0. The update equations are formulated at the level of prtéibadistributions in the sense that they do
not assume a particular representation scheme.

Unfortunately the update equations are difficult to implatri@r arbitrary probability distributions.
When it comes to implementation, therefore, we usually 8fyniihe update equations by making additional
assumptions on the system or choosing a specific repreisensgheme. For example, with the assumption
that Bel is a Gaussian distribution, we obtain a variant of the Bayts fialled aKalman filter[79]. If Bel
is approximated with a set of samples, we obtain anotheamadalled garticle filter [15].

Even these variants of the Bayes filter are, however, naalttio implement in conventional languages.
For example, a Kalman filter requires various matrix operetiincluding matrix inversion. A particle
filter manipulates weights associated with individual sk®pwhich often results in complicated code.
Since conventional languages can only simulate probgliigitributions, it is also difficult to figure out the
intended meaning of the code, namely the update equatiotis@®@ayes filter.

An alternative approach is to use an existing probabiligtimguage after discretizing all probability
distributions. This idea is appealing in theory, but impiced for two reasons. First, given a probability
distribution, it may not be easy to choose an appropriateetutif its support upon which discretization is
performed. For example, in order to discretize a Gausssirildition (whose support {s-oo, o)), we need
to choose a threshold for probabilities so that discrétimais confined to an interval of finite length; for an
arbitrary probability distribution, such a threshold candomputed only by examining its entire probability
domain. Even when the subset of its support is fixed in adyaheeprocess of discretization may incur
a considerable amount of programming. For example, é&ia. [20] develop two non-trivial techniques
(specific to their applications) for the sole purpose of &ffidy manipulating discretized probability distri-
butions. Second some probability distributions cannotiberétized in any meaningful way. An example
is probability distributions over probability distribotis or functions, which do occur in real applications
(Chapter 5 presents such an example).

If there were a probabilistic language supporting all kinfgrobability distributions, we could imple-
ment the update equations with much less effort. PTP is agpiltiktic language designed with these goals
in mind.

1.2 Previous work

There are a number of probabilistic languages that focussamade distributions. Such a language usually
provides a probabilistic construct that is equivalent toirsaly choice construct. Saheb-Djahromi [69]
presents a probabilistic language with a binary choiceteoais(p; — e1, p2 — e2) wherep; + py = 1.0.1
Koller, McAllester, and Pfeffer [33] present a first ordenétional language with a coin toss constriligt(p)
wherep is a probability in(0.0, 1.0). Pfeffer [59] generalizes the coin toss construct to a ipleltchoice
constructdist [p; : e1,--- ,py : e,] Whered . p; = 1.0. Gupta, Jagadeesan, and Panangaden [24] present
a stochastic concurrent constraint language with a prég@bichoice constructhoose x from Dom in e
whereDom is a finite set of real numbers. Ramsey and Pfeffer [64] ptesstochastic lambda calculus with

1In this sectionp (with or without indices) stands for probabilitiesprogram fragments, andvalues.



a binary choice construchoose p e; es. All these constructs, although in different forms, areiegent to
a binary choice construct and have the same expressive power

An easy way to process a binary choice construct (or an elgayaluring a computation is to generate
a sample from the probability distribution it denotes, athimabove probabilistic languages. Another way
is to return an accurate representation of the probabilgtgridution itself, by enumerating all elements in
its support along with their probabilities. Pless and LU@di present an extended lambda calculus which
uses a probabilistic construct of the fobn), e; : p; where) . p; = 1.0. A program denoting a probability
distribution computes to a normal for, v; : p;, which is an accurate representation of the probability
distribution. Jones [30] presents a metalanguage with arpichoice construat; or, e;. Its operational
semantics uses a judgment= > p;v;. Mogensen [43] presents a language for specifying die-rdts
denotational semantics (called probability semantic$drisiulated in a similar style, directly in terms of
probability measures.

Jones and Mogensen also provide an equivalent of a recursimiruct which enables programmers to
specify discrete distributions with infinite suppogtd, geometric distribution). Such a probability distribu-
tion is, however, difficult to represent accurately becaige infinite number of elements in its support. For
this reason, Jones assun)ey; < 1.0 in the judgment = ) p;v; and Mogensen uses partial probability
distributions in which the sum of probabilities may be Idsat1.0. The intuition is that a finite recursion
depth is used so that some elements in the support are onnittieel enumeration.

There are a few probabilistic languages supporting coatiaulistributions. Kozen [34] investigates the
semantics of probabilistizhile programs. A random assignment= random assigns a random number
to variablez. Since it does not assume a specific probability distriloutay the random number generator,
the language serves only as a framework for probabilistiguages. Thrun [73, 74] extends C++ with
probabilistic data types which are created from a templatie < type>. Although the language, call€&cES
supports common continuous distributions, its semansiasot formally defined. Our work is originally
motivated by the desire to develop a probabilistic languigé is as expressive as CES and also has a
formal semantics.

1.3 Sampling functions as the mathematical basis

The expressive power of a probabilistic language is detexthio a large extent by its mathematical basis.
That is, the set of probability distributions expressilsieiprobabilistic language is determined principally
by mathematical objects used in specifying probabilitytribiations. Since we intend to support all kinds
of probability distributions without drawing a syntactic ®mantic distinction, we cannot choose what is
applicable only to a specific kind of probability distributis. Examples are probability mass functions
which are specific to discrete distributions, probabiligndity functions which are specific to continuous
distributions, and cumulative distribution functions wfiassume an ordering on each probability domain.

Probability measures [65] are a possibility because theywanonymous with probability distributions.
A probability measureg: over a domairD is a mapping satisfying the following conditions:

o 1(0) =0.

o (D) =1.

e For a countable disjoint unian; D; of subsets); of D,
w(UiD;) = >, u(D;)

whereU; D; is required to be a subset DX



Conceptually it maps the set of subsetdfor, the set of events oR) to probabilities in[0.0, 1.0]. Prob-
ability measures are, however, not a practical choice amtthematical basis because they are difficult to
represent if the domain in infinite. As an example, consideorginuous probability distributiot® of the
position of a robot in a two-dimensional environment. (®ifitis continuous, the domain is infinite even
if the environment is physically finite.) The probability asreu corresponding ta” should be able to
calculate a probability for any given part of the environin@s opposed to a particular spot in the environ-
ment) — whether it is a contiguous region or a collection afjalnt regions, or whether it rectangular or
oval-shaped. Thus finding a suitable representation: fiovolves the problem of representing an arbitrary
part of the environment, and is thus far from a routine task.

The main idea of our work is that we can specify a probabilistribution by answeringHow can we
generate samples from it?br equivalently, by providing sampling functiorfor it. A sampling function is
defined as a mapping from the unit interyal0, 1.0] to a probability domairD. Given a random number
drawn fromU (0.0, 1.0], it returns a sample i®, and thus specifies a unique probability distribution. is th
way, random numbers serve as the source of probabilisticeho

In specifying how to generate samples, we wish to exploitping techniques developed in simulation
theory [10], most of which consume multiple (independeat)dom numbers to produce a single sample.
To this end, we use a generalized notion of sampling funatibith maps(0.0, 1.0]°>° to D x (0.0, 1.0]*°
where (0.0, 1.0]°>° denotes an infinite product @0.0,1.0]. Operationally a sampling function now takes
as input an infinite sequence of random numbers drawn indepély fromU (0.0, 1.0], consumes zero or
more random numbers, and returns a sample with the remaieipgence. This generalization of the notion
of sampling function is acceptable arithmetically (but n@asure-theoretically). For example, we can use
the technique of expanding a single real numbef0if, 1.0] into an infinite sequence of real numbers in
(0.0, 1.0] by taking even and odd bits of a binary representation of argreal number to produce two real
numbers and repeating the procedure.

As the mathematical basis of PTP, we choose sampling fursstiwhich overcome the problem with
probability measures: they are applicable to all kinds obability distributions, and are also easy to rep-
resent because a global random number generator (whichages@s many random numbers as necessary
from U(0.0, 1.0]) supplants the use of infinite sequences of random numbers ddmparison with prob-
ability measures, consider the probability distributibnof the position of a robot discussed above. In
devising a sampling function faP, we only have to construct an algorithm that probabilistjcgenerates
possible positions of the robot; hence we do not need to denslie problem of representing an arbitrary
part of the environment (which is essential in the case obaldity measures). Intuitively it is easier to
both formalize and answéWhere is the robot likely to be?'than“How likely is the robot to be in a given
region?”.

The use of sampling functions as the mathematical basis tedtiree desirable properties of PTP. First
it provides a unified representation scheme for probahilisgributions: we no longer distinguish between
discrete distributions, continuous distributions, andrethose belonging to neither group. Such a unified
representation scheme is difficult to achieve with othedwdates for the mathematical basis. Second it en-
joys rich expressiveness: we can specify probability ihistions over infinite discrete domains, continuous
domains, and even unusual domains such as infinite datdwstsd.g, trees) and cyclic domain®.Q,
angular values). Third it enjoys high versatility: therendse more than one way to specify a probability
distribution, and the more we know about it, the better we @acode it. Section 3.2 demonstrates these
properties with various examples written in PTP.



Data abstraction for probability distributions

In PTP, a sampling function is represented by a probalulistimputation that consumes zero or more
random numbers (rather than a single random number) drawn & (0.0, 1.0]. In the context of data
abstraction, it means that a probability distributioodsstructedrom such a probabilistic computation. The
expressive power of PTP allows programmers to construar{oode) all kinds of probability distributions
in a uniform way. Equally important is, however, the queastid how toobserve(or reason about) a given
probability distribution,.e., how to get information out of it, through various queriegce® a probabilistic
computation in PTP only describes a procedure for gengratimples, the only way to observe a probability
distribution is by generating samples from it. As a resullPHs limited in its support for queries on
probability distributions. For example, it does not peraiitrecise implementation of such queries as means,
variances, and probabilities of specific events.

PTP alleviates this limitation by exploiting the Monte @amhethod [40], which approximately answers
a guery on a probability distribution by generating a largenber of samples and then analyzing them. As
an example, consider a (continuous) probability distidsut” of the posei(e., position and orientation)
of a robot in a two-dimensional environment. Here are a feerigg onP all of which can be answered
approximately:

e Draw a sample of robot pose at random.

What is the expected (average) pose of the robot?

What is the probability that the robot is facing within fivegdees of due east?

What is the probability that the robot is in Peter’s office?

Under the assumption that the robot is in Peter’s office, vibh#lie probability that the robot is within
two feet of the door?”

These queries can be answered approximately by repeatedtyiping the probabilistic computation as-
sociated withP and then analyzing resultant samples. For example, thejlesty can be answered as
follows:

1. Generate samples frofm
2. Filter out those samples indicating that the robot is ndeter’s office.

3. Count the number of samples indicating that the robot ikiviwo feet of the door, and divide it by
the total number of remaining samples.

Certain queries on probability distributions are, howe\dfficult to answer even approximately by the
Monte Carlo method. For example, the following queries élffecdlt to answer approximately by a simple
analysis of samples:

e What is the most likely position of the robot?
¢ In what room is the robot most likely to be when the number @f®is unknown?

Due to the nature of the Monte Carlo method, the cost of ansger query is proportional to the
number of samples used in the analysis. The cost of gengi@simgle sample is determined by the specific
procedure chosen by programmers, rather than by the piitpabstribution itself from which to draw
samples. For example, a geometric distribution can be ebwdth a recursive procedure which simulates



coin tosses until a certain outcome is observed, or by a sitn@hsformation (called thaverse transform
method which requires only a single random number. These two nastbbencoding the same probability
distribution differ in the cost of generating a single saggehd hence in the cost of answering the same query
by the Monte Carlo method. For a similar reason, the accupftlye result of the Monte Carlo method,
which improves with the number of samples, is also affectethb procedure chosen by programmers.

Measure-theoretic view of sampling functions

The accepted mathematical basis of probability theory iasuee theory [65], which associates every prob-
ability distribution with a unique probability measure. \§fwe a summary of measure theory before dis-
cussing the connection between sampling functions andureéseory. In the discussion below, sampling
functions refer to those takin@.0, 1.0] as input, rather than generalized ones taking, 1.0]> as input.

e Measurable setsf a spaceD are subsets db.
e A measurable spackl(D) is a collection of measurable sets®fsuch that:

- D e M(D).
— If S € M(D), thenD — S € M(D). That is,M(D) is closed under complement.

— For a countable collection of measurable sgts M(D), it holdsU;S; € M(D). That is,M(D)
is closed under countable union.

e A measurable functiorf from D to £ is a mapping fronM (D) to M(&) such that ifS € M(E), then
f~H(S) e M(D).

e A measureu overM(D) is a mapping fronM (D) to [0.0, oo] such that:

— (@) =0.
— For a countable disjoint unian; S; of measurable set$; € M(D), it holdsu(U;S;) = 2;1(S;).

e A probability measurg: over M(D) satisfiesu(D) = 1.

e A Lebesgue measureover the unit interva(0.0, 1.0] is a probability measure such thats) is equal
to the total length of intervals if.

Measure theory allows certain (but not all) sampling funrsi to specify probability distributions. Con-
sider a sampling functioyfi from (0.0, 1.0] to D. While itis introduced primarily as a mathematical funotio
f may be interpreted as a measurable function as well, in wd@sh it defines a unique probability measure
woverM(D) such that

u(S) =v(f71(S))

wherev is a Lebesgue measure over the unit interval. The intuitiothat.S, as an event, is assigned a
probability equal to the size of it inverse image under

This dissertation does not investigate measure-thegpetiperties of sampling functions definable in
PTP. If a probabilistic computation expressed in PTP corsuat most one random number (drawn from
U (0.0, 1.0]), itis easy to identify a corresponding sampling functiinmore than one sample is consumed,
however, it is not always obvious how to construct such a §amfunction. In fact, the presence of fixed
point constructs in PTP (for recursive computations whiah consume an arbitrary number of random
numbers) makes it difficult even to define measurable spaceith sampling functions map the unit in-
terval, since fixed point constructs use domain-theorétictires, rather than measure-theoretic structures,
in order to solve resultant recursive equations.



Every probabilistic computation expressed in PTP is edsilyslated into a generalized sampling func-
tion (which takeg0.0, 1.0]> as input). Itis, however, unknown if generalized samplimgctions definable
in PTP are all measurable. Also unknown is if generalizedpdiaugn functions are measure-theoretically
equivalent to ordinary sampling functionise(, if a measurable function frorf®.0, 1.0]>° to D x (0.0, 1.0]*°
determines a unique measurable function fr@nd, 1.0] to D). Nevertheless generalized sampling func-
tions definable in PTP are shown to be closely connected witiping techniques from simulation theory,
which, like measure theory, are widely agreed to be a fornrababilistic computation and PTP is designed
to support. A further discussion is found in Section 3.3.

1.4 Linguistic framework for PTP

We develop PTP as a functional language extending\tbelculus, rather than an imperative language or a
library embedded in an existing conventional language. @éde to use a monadic syntax for probabilis-
tic computations. The decision is based upon two obsenatifirst sampling functions are operationally
equivalent to probabilistic computations in that they dibscprocedures for generating samples from in-
finite sequences of random numbers. Second sampling fasctiom astate monad44, 45, 64] whose
set of states i$0.0, 1.0]°°. These two observations imply that if we use a monadic syfaagrobabilistic
computations, it becomes straightforward to interprebphilistic computations in terms of sampling func-
tions. The monadic syntax treats probability distribusi@s first-class values and offers a clean separation
between regular values and probabilistic computations.

Instead of designing a monadic syntax specialized for sag@linctions, we begin by developing a
linguistic framework\o which accounts for computational effects in genekal.does not borrow its syntax
from Moggi’'s monadic metalanguage,; [44, 45]. Instead it extends the monadic language of Pfgnnin
and Davies [60], which is a reformulation &f,; from a modal logic perspective.\o may be thought of as
their monadic language combined with the possible worlerpretation [35] of modal logic.

A characteristic feature ofo is that it classifies computational effects into two kindsirld effects and
control effects. World effects are stateful computatiafédcts such as mutable references and input/output;
control effects are contextual computational effects sagtexceptions and continuations. Probabilistic
choices are a particular case of world effect, and PTP aaises instance ofo with a language construct
for consuming (or drawing) random numbers fréf0.0, 1.0].

1.5 Applications to robotics

Instead of implementing PTP as a complete programming Egegof its own, we embed it in an existing
functional language by building a translator. Specifically extend the syntax of Objective CAML [2] to
incorporate the syntax of PTP, and then translate languaggracts of PTP back into the original syntax.
The translator is sound and complete in the sense that bp¢hagd reducibility of any program in PTP,
whether well-typed/reducible or ill-typed/irreduciblee preserved when translated in Objective CAML.

An important part of our work is to demonstrate the use of PYRytplying it to real problems. As
the main testbed, we choosgbotics[72]. It offers a variety of real problems that necessitatebpbilistic
computations over continuous distributions. We use PTRhime applications in robotics: robot localiza-
tion [72], people tracking [50], and robotic mapping [75h dach case, the state of a robot is represented
with a probability distribution, whose update equationasniulated at the level of probability distributions
and translated directly in PTP. All experiments in our woakd been carried out with real robots.

A comparison between our robot localizer and another wriitteC gives evidence that the benefit of
implementing probabilistic computations in PTP, such aslability and conciseness of code, can outweigh



its disadvantage in speed (see Section 5.5 for details)s PHUP serves as another example of high-level
language whose power is well exploited in a problem domaiare/imperative languages have been tradi-
tionally dominant.

1.6 Outline

The rest of this dissertation is organized as follows. Céraptpresents the linguistic framewoblNgo to

be used for PTP. Chapter 3 presents the syntax, type systehoparational semantics of PTP. Chapter 4
describes the translator of PTP in Objective CAML. Chapteresents three applications of PTP in robotics.
Chapter 6 concludes.
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Chapter 2

Linguistic Framework

This chapter presents our linguistic framewaoik to be used for PTP\o is an extension of th&-calculus
(with a modalityO) which accounts for computational effects in general. Wetteping Ao, we are interested
in modeling such computational effects as input/outputiaile references, and continuations. We view
probabilistic choices as a particular case of computatiefiect, and PTP arises as an instance gfwith a
language construct for probabilistic choices.

Key concepts used in the developmentefare as follows:

e Segregation of world effects and control effecls, classifies computational effects into two kinds:
stateful world effects and contextual control effects. @sinction makes it easy to combine com-
putational effects at the language design level.

e Possible world interpretation of modal logid - uses modal logic [12] to characterize world effects,
and relates modal logic to world effects by the possible evarterpretation [35]. As a result, the
notion of world in “world effects” coincides with the notiasf world in the “possible world interpre-
tation.” In formulating the logic for\o, we use the judgmental style of Pfenning and Davies [60].

At its core, Ao applies the possible world interpretation to the monadiglege of Pfenning and
Davies [60], which usetax logic [19, 7] in the judgmental style to reformulate Moggi’s mortatheta-
language\,,; [44, 45]. The monadic language of Pfenning and Davies amalgpmputational effects only
at an abstract level from a proof-theoretic perspectivd, goes not readily extend to a programming lan-
guage with computational effectd.o is an attempt to extend their monadic language with an dpesdt
semantics so as to support concrete notions of computatdieat. The key idea is to combine the possi-
ble world interpretation and the judgmental style in suchag that the accessibility relation (which is an
integral part of the possible world interpretation) is neéd in inference rules (unlike the system of modal
logic of Simpson [71], for example).

Although Ao is not specific to probabilistic computations and the dgu@lent of \o is thus optional
for the purpose of designing PTP, we investigateto better explain the logical foundation of PTP. As the
definition of PTP in Chapter 3 is self-contained, this chept: be skipped without loss of continuity by
those readers who want to understand only PTP.

2.1 Computational effects in\o

This section gives a definition of computational effects.e Tharification of the notion of computational
effect may appear to be of little significance (because wesadly know what is called computational effects

11
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and how they work), but it has a profound impact on the oveatedign of\c. This section also gives an
overview of \o at an abstract level.¢., without its syntax and semantics).

Definition of computational effects

In the context of functional languages, computation effeae usually defined as what destroys the “pu-
rity” of functional languages. Informally the purity of arfational language means that every function in
it denotes a mathematical functioine., a black box converting a valid argument into a unique outom
For example, a functiofn x => x + ly in ML does not denote a mathematical function because its
outcome depends on the content of refergnas well as argument; hence we conclude that mutable refer-
ences are computational effects. Other examples of conimadh effects include input/output, exceptions,
continuations, non-determinism, concurrency, and pritisiib choices.

The notion of purity, however, is subtle and there is no uisigly accepted definition of purity. Sabry [67]
shows that common criteria for purity, such as soundnegsegf-equational axiom, confluence (the Church-
Rosser property or independence of order of evaluatiorg,pgeservation of observational equivalences,
are incomplete in that either they fail to hold in some punecfional languages or they continue to hold
in some impure functional languages (referential trarepay is not considered because it does not have a
universally accepted definition). He proposes a definitibpunity based upon independence of reduction
strategies, but this definition has a drawback that a giveational language must have implementations of
three reduction strategies, namely, call-by-value, logiheed, and call-by-name.

As aresult, the definition of computational effects as whestiebys the purity of functional languages is
ambiguous, and some concepts are called computationats¥ighout any justification. For example, non-
termination is called a computational effect only by corian (as a special kind of computational effect
which is not observable). At the same time, one may arguantiratermination is not a computational effect
because the use of pointed typées.(types augmented with a bottom elemeéntienoting non-termination)
preserves the property of mathematical functions.

A definition of computational effects is not necessary inigleag a functional language, such as ML
and Scheme, that allows any program fragment to produce aiatiqgnal effects. It is, however, crucial
to the design of a functional language, such as Haskéll[98] (and \c), that subsumes a sublanguage
for computational effects, since a criterion for computadl effects determines features supported by the
sublanguage. The case of Haskell illustrates the impogtaha proper definition of computational effects,
and also inspires our definition of computational effects.

Computational effects in Haskell

Since their introduction to the programming language comigumonads [44, 45] have been considered
as an elegant means of structuring functional programs rmsaiporating computational effects into func-
tional languages [76, 77]. A good example of a functionaplaage that makes extensive use of monads
in its design is Haskell. At the programming level, it praedda type clasMonad to facilitate modular
programming; at the language design level, it provides #-iouiO monad for producing computational
effects without compromising its properties as a pure fonel language.

Haskell does not assume a particular definition of companatieffects. Instead it implicitly identifies
computational effects with monads and confines all kindofutational effects to th€® monad [56, 58]
(or a similar one such as theT monad). Thus Haskell conceptually consists of two sublaggs: a
functional sublanguage which never produces computdteffeects, and a monadic sublanguage which is
formed by thdO monad.

1Abbreviated as Haskell henceforth.
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The identification between computational effects and memady appear to be innocuous, perhaps
because of the success of monads as a means of modelingmliffemmputational effects in a uniform
manner. When all kinds of computational effects are presgggther, however, the identification becomes
problematic because monads do not combine well with eadr (88, 31, 39]. Haskell uses th® monad
for all kinds of computational effects without explicitigldressing this difficulty.

The identification also enforces unconventional treatsiehtome computational effects. For example,
it disallows exceptions for the functional sublanguagejctwiwould be useful for handling division by
zero or pattern-match failures. It also disallows contiiwres for the functional sublanguage, which would
be useful for implementing advanced control construct$rsagnon-local exits and co-routines. Hence
the identification significantly limits the practical utjliof exceptions and continuations. For this reason, an
extension of Haskell proposed by Peyton Jogtes. [57] allows exceptions not for the monadic sublanguage
but for the functional sublanguage, thereby deviating ftheidentification between computational effects
and monads.

Our view is that computational effects are not identifiecwitonads and that the identification between
computational effects and monads in Haskell is a conseguafiiack of a proper definition of computational
effects. The capability of monads to model all kinds of comafianal effects may be the rationale for the
identification, but it does not really warrant the identifioa; rather it only implies that monads are a
particular tool for studying the denotational semantics@hputational effects.

As an example, consider the set monad for modeling non+détsm [76]2 The set monad is suitable
for specifying the denotational semantics of a non-detaistic language (which has a non-deterministic
choice construct), since a program can be translated inéd ensimerating all possible outcomes. The set
monad does not, however, lend itself to the operationalgdesi a non-deterministic language, in which a
program returns a single outcome, instead of the set of aflipe outcomes, after producing computational
effects. Therefore the set monad is useful for developimgdianotational semantics (and also possibly
the syntax) of a non-deterministic language, but not forlamenting it operationally. In fact, if the set
monad was enough for implementing a non-deterministicdagg operationally, we could argue that the
built-in IO monad is unnecessary in Haskell because we can instartimtiypge clasdMonad to mimic
all computational effects supported by th@ monad. Thus the main lesson learned from Haskell is that
modeling a computational effect is a separate issue fronteimgnting it operationally.

Another lesson learned from Haskell is that as its impleatéoti is based upon a state monad, the
IO monad is suitable fostatefulcomputational effects such as mutable references and/daupptit, but
not compatible withcontextualcomputational effects such as exceptions and continugatidhat is, while
stateful computational effects may well be identified whik kO monad, contextual computational effects
do not need to be restricted to the monadic sublanguage. &nittbn of computational effects captures
the distinction between these two kinds of computationtdot$, calling the formeworld effectsand the
latter control effects

World effects and control effects

We directly define computational effects without relying amother notion such as purity of functional
languages. A central assumption is that the run-time systamists of a program and a world. A program
is subject to a set of reduction rules. For example, a prograthe A-calculus runs by applying thg-
reduction rule. A world is an object whose behavior is spedifty the programming environment rather
than by reduction rules. For example, a keyboard buffer @apébnt of a world such that a keystroke or a
read operation changes its contents. In contrast, a heap figrt of a world because it is just a convenience
for implementing reduction rules. That is, we can implenahiteduction rules without using heaps at all.

2If the reader holds the view that computational effects andans are identified, this example may well be hard to follow!
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When an external agent or a program interacts with a worlcdcandes a transition to another world, we
say that a world effect occurs. For example, if a keyboardebig part of a world, a keystroke by a user or
a read operation by a program changes its contents and thsesca world effect. As another example, if a
store for mutable references is part of a world, an operati@tiocate, dereference, or deallocate references
interacts with the world and thus causes a world effect.

When a program undergoes a change that no sequence of oedugts can induce, we say that a
control effect occurs. For example, if tiiereduction rule is the only reduction rule, raising an exicap
causes a control effect because in general, it induces aelhthat is independent of thigreduction rule.
For a similar reason, capturing and throwing continuaticasse control effects. Note that the concept of
control effect is relative to the set of “basic” reductionesiassumed by the run-time system. One could
imagine a run-time system with built-in reduction rules éxceptions, in which case raising an exception
would not be regarded as a control effect.

Thus world effects and control effects have fundamentaffigrént characteristics and are realized in
different ways. World effects are realized by specifying @lal structure — empty world structure if there
are no world effects, keyboard buffer and display windowifipuut/output, store for mutable references, and
so on. Control effects are realized by introducing progreandformation rules (that cannot be defined in
terms of existing reduction rules). Since world structuaed program transformation rules are concerned
with different parts of the run-time system, world effectgl@ontrol effects are treated in orthogonal ways.

The distinction between world effects and control effecekas it easy to combine computational ef-
fects at the language design level. Different world efferts combined by merging corresponding world
structures. For example, a world structure with a keyboaifteband display window and a store realizes
both input/output and mutable references. There is no reegficitly combine control effects with other
computational effects, since control effects become argsonce corresponding program transformation
rules are introduced.

World effects are further divided intaternal world effects and andxternalworld effects. An internal
world effect is always caused by a program and is ephemertleirsense that the change it makes to a
world can be undone by the run-time system. An example iddoate new references, which can be later
reclaimed by the run-time system. An external world effeatdused either by an external agent, affecting
a program, or by a program, affecting an external agent.péipetual in the sense that the change it makes
to a world cannot be undone by the run-time system. An exampteuse keyboard input or to send output
to a printer — once you type a password to a malicious prognapriot it on a public printer, there is no
going back from the catastrophic consequence!

While internal world effects occur within the run-time ssst, external world effects involve interactions
with external agents. In this regard, all external worlecef§ are examples of concurrency in the presence
of external agentsAo is not intended to model external agents, and we restrictebees to internal world
effects in developing\o.

From Haskell to Mo

As mentioned earlier, Haskell conceptually consists ofswllanguages: 1) a functional sublanguage which
is essentially the\-calculus and never produces computational effects; 2) mantio sublanguage which is

formed by thelO monad and produces both world effects and control effectyto Jones [58] clarifies

the distinction between the two sublanguages with a twellsgmantics: an inner denotational semantics
for the functional sublanguage and an outer transitionr@mal) semantics for the monadic sublanguage.

As control effects do not need to be restricted to the monsdlitanguage, we consider a variant of

Haskell that allows both its functional and monadic subleggs to produce control effects. In comparison
with Haskell, this variant has a disadvantage that a funati@y not denote a mathematical function, but it
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overcomes the limitation of Haskell in dealing with contefflects.

Ao can be thought of as a reformulation of the variant of Haskelh a logical perspective. It has
two syntactic categoriesermsandexpressionsTerms form a sublanguage which subsumesiticalculus
and is allowed to produce only control effects; expressionsis another sublanguage which is allowed to
produce both world effects and control effects. The logibihé the definition of expressions is the same
as the logic underlying monads, namely lax logic [7]. Thulse the monadic sublanguage of Haskell,
expressions ino enforce the monadic syntax (with the modality.

2.2 Logical preliminaries

Ao has a firm logical foundation, providing a logical analydisamputational effects. This section explains
those concepts from logic that play key roles in the devekmnof Ao.

2.2.1 Curry-Howard isomorphism and judgmental formulation

The Curry-Howard isomorphism [27] is a principle connegtiagic and programming languages. It states
that propositions in logic correspond to types in programgrianguagespfopositions-as-typesorrespon-
dence) and that proofs in logic correspond to programs igraraming languagespfoofs-as-programs
correspondence). Given a formulation of logic, it systeoadlly derives the type system and reduction
rules of a corresponding programming language. The denetap of A\ follows the same pattern: we first
formulate the logic for\o, and then apply the Curry-Howard isomorphism to obtain fipe tsystem and
reduction rules.

The logic for Ao is formulated in the judgmental style of Pfenning and Day&. A judgmental
formulation of logic adopts Martin-Lof's methodology ofstinguishing betweeipropositionsand judg-
mentg42]. It differs from a traditional formulation which rebesolely on propositions. Below we review
results from Pfenning and Davies [60].

Propositions and judgments

In a judgmental formulation of logic, a proposition is aneitij of verification whose truth is checked by
inference ruleswhereas a judgment is an object of knowledge which becomesre by aproof. Examples

of propositions are ‘1 + 1 is equal to 0’ and ‘1 + 1 is equal tot®th under inference rules based upon
arithmetic. Examples of judgments are “1 + 1 is equal to Qrig”, for which there is no proof, and “1 +
1lis equal to 2’ is true”, for which there is a proof.

To clarify the difference between propositions and judgtseconsider a statement ‘the moon is made
of cheese.’ The statement is not yet an object of verificatiola proposition, since there is no way to check
its truth. It becomes a proposition when an inference ruggvien, for example, (written in a pedantic way)
“the moon is made of cheese’ is true if ‘the moon is greenigdfitevand has holes in it’ is true.” Now we
can attempt to verify the proposition, for example, by tgkapicture of the moon. That is, we still do
not know whether the proposition is true or not, but by virti¢he inference rule, we know at least what
counts as a verification of it. If the picture indeed shows tha moon is greenish white and has holes in
it, the inference rule makes evident the judgment “the m@omade of cheese’ is true.” Now we know
“the moon is made of cheese’ is true” by the proof consistifighe picture and the inference rule. Thus
a proposition is an object of verification which may or may bettrue, whereas a judgment is an object of
knowledge which we either know or do not know.

As a more concrete example, consider the conjunction céimeet. In order forA A B to be a propo-
sition, we need a way to check its truth. Sin€¢e\ B is intended to be true whenever botrand B are true,
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we use the following inference rule to explaihA B as a proposition; we assume that batland B are
propositions, and abbreviate a truth judgmentis true” asA true:

A true B true
A A B true

Al

The ruleAl says that ifA is true andB is true, thenA A B is true. It follows the usual interpretation of an

inference rule: if the premises hold, then the conclusidd$id/NVe use the rulal to construct a proaD of

Dy

A A B true from a proofD 4 of A true and a proofDg of B true; we write A true 0 Mmean thaD, is a

proof of A true:

Da Dg
D = Atrue B true Al
A A B true

ThusA A B is a proposition because we can check its truth accordirigetouleAl, whereasA A B true is
a judgment because we either know it or do not know it, depgndn the existence of a proof.

The ruleAl above is called aimtroduction rulefor the conjunction connectiva, since its conclusion
deduces a truth judgment with, or introducesA. A dual concept is aelimination rule whose premises
exploit a truth judgment with to prove another judgment in the conclusion, or eliminatek the case of
A, there are two elimination rulesE, andAEg:

A N B true AEL A N B true

A true B true NEr

These elimination rules make sense becadigeB true implies bothA true and B true. We will later
discuss their properties in a more formal way.

It is important that in a judgmental formulation of logicgethotion of judgment takes priority over the
notion of proposition. Specifically the notion of judgmerted not depend on propositions, and a new
kind of judgment is defined only in terms of existing judgmee¢idut without using existing connectives or
modalities). On the other hand, propositions are alwayi&exgd with existing judgments (including at least
truth judgments), and a new connective or modality is defswds to compactly represent the knowledge
expressed by existing judgments. For example, we couldalefiialsehood judgmemt false as “A true
does not hold,” and then use a new modatityith the following introduction rule:

A false
—A true

We say that the ruleil internalizesA false as a proposition-A.

If the definition of a connective or modality involves anathennective or modality, we say that orthog-
onality is destroyed in the sense that the two connectivesaatalities cannot be developed independently,
or orthogonally. In this dissertation, we use no conneativenodality destroying orthogonality.

Categorical judgments and hypothetical judgments

A judgment such asA is true” is called acategorical judgmenbecause it involves no hypotheses and is
thus unconditional. Another judgment that we needliypothetical judgmentvhich involves hypotheses.
A general form of hypothetical judgment reads “if judgmedits- - - , J,, hold, then a judgmenf holds,”
written as.Jy, - -- , J, - J. We refer toJ;, 1 < i < n, as anantecedenand.J as thesuccedent

A hypothetical judgment/y,--- ,J, F J becomes evident by a proof of in which Jy,--- ,J, are
assumed to be evident without proofs. Such a prBak called ahypothetical proofand is written as
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follows:
Jl . Jn
D = } inference rules
J

Inference rules here use judgmehtwithout requiring a proof, that is, as a hypothesis. We say th
hypothesisJ; is dischargedwhen inference rules use it to deduge Note that a hypothetical proof of- J
(with no antecedent) is essentially a proof of judgméaind vice versa, since both proofs show tlhdiolds
categorically?

The notion of hypothetical proof is illustrated by the ingaliion connectived. In order forA O B to
be a proposition, we need a way to check its truth. SiAce B is intended to be true whenevdrtrue
implies B true, the introduction rule uses a hypothetical proof in its pgam

[A true]

B true

A D B true ol

The elimination rule for> exploits A O B true in its premises to prové& true in its conclusion:

A D Btrue A true
B true

DE

The ruleDE makes sense becaude> B true licenses us to dedudB true if A true holds, which is the
case by the second premise.

Our definition of hypothetical judgments makes two implacs#isumptions: 1) the order of antecedents
is immaterial; 2) an antecedent may be used zero or more timaebypothetical proof. These assumptions
are formally stated in the three structural rules of hyptithéjudgments:

(Exchange) |fJ1, e diy vty In =J,

thenJl,--- ,Ji+1,JZ‘ s B
(Weakening)  IfJjy, .-, J, F J,

thenJy, -, Jp, Jpy1 = J for any judgment/, ;.
(Contraction) IfJy,--- ,J;, Ji, -+, Jo E J,

thenJy, -, Ji, -+ I J.

A hypothetical proof can be combined with another hypotatproof. For example, a hypothetical
proofD of Jy,--- , J, F J is combined with a hypothetical proéf of J,,--- , J, - J; to produce another
hypothetical proof, written a&;, / J;|D, of Jo,- -+ | J, F J:

Jo e I

&1/ NH]D = Ji Jyo - I
. . | D

3This equivalence does not mean that a hypothetical judgnent is equivalent to judgmeni. While the former states that
J holds categorically, the latter is unaware of whether tlagechypotheses or not, and could be even a hypothesis in #hefigal
proof. For example, from the assumption thaimplies .J’, we can show thatk J implies- - J’. The converse is not the case,
however.
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Note that hypothese$, - - - , J,, may be used twice: when proving in £ and when proving/ in D. This
property of hypothetical judgments that a hypotheticaloprman be substituted into another hypothetical
proof is called thesubstitution principle

e (Substitution principle) I" + J andT", J = J’, thenT - .J'.

A convenient way to prove hypothetical judgments is to userance rules for hypothetical judgments
without relying on hypothetical proofs. For example, we eaplain the implication connective with the
following inference rules for hypothetical judgments; vidbeeviate a collection of antecedentslas

I', A true & B true 5 I'FADBtrue Tk Atrue
' A D B true '+ B true

DE

Here the introduction ruleol uses hypothetical judgments to express that a propositiam B is true
wheneverA true implies B true; the elimination ruleDE uses hypothetical judgments to express that
A D B true licenses us to deducB true if A true holds. A proof ofl" F J with these inference rules
guarantees the existence of a corresponding hypotheticaf pfI" - J.

A special form of hypothetical judgment,--- , J;,--- , J, F J; (where the succedent matches an an-
tecedent) is evident by a vacuous proof. The following iefee rule, called theypothesis ruleexpresses
this property of hypothetical judgments; it simply sayst #way hypothesis can be used:

T g P

From now on, we assume that antecedents and succedentsoithétygal judgments are all basic judg-
ments. For example, we do not consider such hypotheticghpeats agl’; - J;) - Jy andl'y F (o F J).

The Curry-Howard isomorphism

The Curry-Howard isomorphism connects logic and programgntanguages by representing a proof of a
judgment with a program of a corresponding type. In otherdspa well-typed program is a compact rep-
resentation of a valid proof under the Curry-Howard isorh@m. Typically we apply the Curry-Howard
isomorphism by translating inference rules of logic intpitg rules of a programming language. By con-
vention, a typing rule is given the same name as the inferariedrom which it is derived.

As an example, we consider the logic of truth with the confiamcconnectiver and the implication
connectiveD. Under the Curry-Howard isomorphism, the logic correspotadthe type system of the
calculus with product types. A pro@ of A true is represented with proof termM of type A. Note that
A is interpreted both as a proposition and as a type. We usegangnt M/ : A to mean that proof term/
represents a proof of true, or that proof term\/ has typed. Thus we have the following correspondence:

D
A true & M:A

Now consider the use of the inference rulein constructing a proob of A A B true from a proofD 4
of A true and a proofDp of B true. When proof terms\/4 and Mg represenD 4 andDp, respectively,
we use gproduct term(M 4, Mp) of product typeA A B to representD. Thus the inference rulel is
translated into the following typing rule:

Ms:A Mp:B
(Mg, Mp): ANB

Al
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I, A true - A true Hyp F,x:AI—m:AHyp

I'Atrue T'F B true Al I'EM: A FI—N:B/\I
' AN B true 'F(M,N): ANB
' AA B true I'EM:AANB
'+ A true NEL IPHfstM: A NEL
I' A A B true I'M:AANB
TFBiue 'SR Trsnddl:B R
', A true - B true | z:AFM:B |
TFASBtrue © TFM:AM:A>B -~
I'A>D Btrue T'F A true SE I'-M:AD>DB FI—N:ADE
'+ B true I'HM N : B

Figure 2.1: Translation of inference rules for hypothetical judgments typing rules.

We useprojection termdst M andsnd M in translating the rulesE,. andAEg:

M:ANB M:ANB

A B sddr B

AER

When a hypothetical proof uses true as a hypothesis, it assumes the existence of a proof. Since
such a proof is actually unknown, it cannot be representdéd aiconcrete proof term. Hence it is repre-
sented with avariable z, a special proof term which can be replaced by another pesai.t Then a proof
D of Ay true,--- , A, true b A true is represented with a proof terd satisfying a hypothetical judg-
mentxy : Ay, -+ ,x, 0 Ay B M A, which means that proof ter/ has typeA under the assumption that
variablex;, 1 < i < n, has typeA;:

D
Aq true,--- , A, true - A true & wp Ay wy AnE M A

We refer to a collection of judgments, : Ay, --- ,z, : A, as atyping context As with collections of
antecedents, we abbreviate typing contextB;aal variables in a typing context are assumed to be distinct
With the correspondence of hypothetical judgments abafereénce rules for hypothetical judgments
in logic are translated into typing rules for hypotheticadigments” - M : A. For example, the inference
rules DI and DE are translated into the following typing rules, which uskmbda abstractiomx: A. M
and alambda application/ N as proof terms:
Iz:A-M:B 'FM:ADB THEN:A

TFr e AM-A5B - T-MN:B ok

Figure 2.1 shows inference rules for hypothetical judgmémtiogic (shown in the left column) and
their translation into typing rules (shown in the right awoin). The left column shows inference rules for
hypothetical judgments, and right column shows corresipgntyping rules. The hypothesis ruléyp is
translated into a typing rule, also called the hypotheds, that typechecks a variable. The typing rules in
the right column constitute the type system of Mealculus with product types.

As a hypothetical proof can be substituted into another thgiwal proof, a proof term can also be
substituted into another proof term. Suppdse M : Aandl',z: AF N : B. M andN represent hypo-
thetical proofsD and€ of I' - A true andl', A true - B true, respectively, where we use the same symbol
T" for the collection of antecedents corresponding to thentygiontexf". If we replace all occurrences of
in N by M, we obtain a proof term, written &8/ /x| N, which contains no occurrenceof The substitution
principle for proof terms states thgt/ /x| N represents the hypothetical prd®f/ A true]€ of ' - B true:
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e (Substitution principle)
IfI'-M:Aandl',z: A- N : B, thenl' - [M/z]N : B.

A true andT' + A true are calledsynthetic judgmentbecause no prior information on their proofs is
given and we search for, synthesizetheir proofs from inference rules. In contradf,: AandI'+ M : A
are calledanalytic judgmentdecause their proofs are already representetf iand can be reconstructed
by analyzingM. To proveM : AorT'+ M : A with typing rules, we only have to analyZd because it
determines which typing rule should be applied to dedute A orI' - M : A. For example, ifM is a
product termite., M = (M, Ms)), adeduction of' - M : A always ends with an application of the typing
rule Al. For this reason, a deduction df : AorI' - M : A is often called alerivationrather than a proof.

When we construct a (unique) derivationfaf : A orT"+ M : A, we check ifM indeed represents a
proof of A true, rather than searching for a yet unknown proof. Such a daivaffectively typecheckd/
by testing if M indeed has typel, and we callM/ : A andl’ = M : A typing judgments

Reduction and expansion rules

All the inference rules presented so far make sense irglyjtitut their correctness is yet to be established
in a formal way. To this end, we show that the inference rudisfy two propertiesiocal soundnesand
local completenesdJnder the Curry-Howard isomorphism, the two propertiesespond to reduction and
expansion rules for proof terms, thus culminating in a fatimh for operational semantics of programming
languages.

An introduction rule compresses the knowledge expresséid premises into a truth judgment in the
conclusion, whereas an elimination rule retrieves the kadge compressed within a truth judgment in a
premise to deduce another judgment in the conclusion. Tda smundness property states that the knowl-
edge retrieved from a judgment by an elimination rule is gyt of the knowledge compressed within that
judgment. Therefore, if the local soundness property fails elimination rule is too strong in the sense
that it is capable of contriving some knowledge that canmojulstified by that judgment. The local com-
pleteness property states that the knowledge retrieved &gudgment by an elimination rule includes at
least the knowledge compressed within that judgment. Towxeif the local completeness property fails,
the elimination rule is too weak in the sense that it is intégaf retrieving all the knowledge compressed
within that judgment. If an elimination rule satisfies botberties, it retrieves exactly the same knowledge
compressed within a judgment in a premise.

We verify the local soundness property by showing how to ceduproof in which an introduction rule
is immediately followed by a corresponding eliminationeruAs an example, consider the following proof
for the conjunction connective:

D &
A true B true

A A B true
A true

Al

The elimination ruleAnE, is not too strong because what it deduces in the conclusanely A true, is one
of the two judgments used to deduden B true. Hence the whole proof reduces to a simpler prbof

D E
A true B true Al D
AN B true R A true
A true

If the elimination rule was too strong.g, deducingA D> B true somehow), the proof would not be re-
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ducible. As another example, consider the proof for the iwagbn connective:

D
T, A true = B true | £
I'A D B true - ' A true

'+ B true ok
By the substitution principle, the whole proof reduces tanapter proof[£/ A true|D:
D
I', A true - B true 5 < [£/A true]D
'~ A D B true I+ A true “E =R '+ B true
I'+ B true

We refer to these reductiors=- aslocal reductions

We verify the local completeness property by showing howkfmed a proof of a judgment into another
proof in which one or more elimination rules are followed byiatroduction rule for the same judgment.
As an example, consider a probfof A A B true. The elimination rules\E_ and AEr are not too weak
because what they deduce in their conclusions, namelyue and B true, are sufficient to reconstruct
another proof ofA A B true:

D D
D AN B true AN B true
A N B true —E A true NEL B true NEr

A N B true Al

If the elimination rules were too weak.g, being unable to deducé true somehow), the proof would not
be expandable. As another example, consider a gfoof I' - A O B true. By the weakening property,
D is also a proof ofl’, A true = A D B true. Then we can reconstruct another proofAoD B true by
expandingD:

D Hyp

D I'Atrue- AD B true T, A trueb A true e

I'-A>Btrue ~F I', A true - B true -
I'AD B true

We refer to these expansioass p aslocal expansions
Since proof terms are essentially proofs, local reductamsexpansions induce reduction and expansion
rules for proof terms:

fst (M, N) =R M
snd (M, N) =R N
(Ax:A.M) N =R [N/x|M

M:ANB =5 (fst M,snd M)
M:ADB —F A A Mz

Note that these reduction and expansion rules preserveb®f a given proof term. Thatis, #/ —r N
orM =g N,thenl' M : AimpliesI' = N : A. The reduction rules are called tlyereduction rules,
and the expansion rules are called thexpansion rules.

In a programming language based upon ¥ealculus, a program is defined as a well-typed closed
proof term, that is, a proof term/ such that - M : A for a certain typed. Usually we run a program
by applying reduction rules under a speciduction strategy For example, theall-by-namereduction
strategy reduces a prographz: A. M) N to [N/xz]|M (by the 5-reduction rule) regardless of the form of
term N. In contrast, thecall-by-valuereduction strategy reducdsx: A. M) N to [N/x|M only if no
reduction rule is applicable t®/ (i.e., N is a value). Thus the operational semantics of a programming
language based upon thecalculus is specified by the reduction strategy for apgiygduction rules.
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2.2.2 Semantics of modal logic

Modal logic is a form of logic in which truth may be qualified loyodalities. Examples of modalities
common in the literature are thecessitymodality (0 and thepossibility modality ¢. Informally “CJA is
true” means A is necessarily true,” and(A is true” means A4 is possibly true.” Thus modal logic is
more expressive than ordinary logic without modalitie amen applied to the design of a programming
language, it enables the type system to specify richer ptiepehat would otherwise be difficult to specify.

One popular way to explain the semantics of modal logic ipthesible world interpretation [35, 71]. It
assumes a set of worlds and relativizes truth to worlds. Bhatstead of ordinary truthA is true,” it uses
relative truth“ A is true at worldw” as the primitive notion. Hence the same proposition mayrbe &t one
world but not at another world.

The possible world interpretation also assumeaaessibility relatiorn< between worlds to explain the
meaning of each modality. For example, the necessity anslplity modalities are defined as follows:

e [JA s true at worldw if for every worldw’ accessible fromw (i.e., w < '), A is true at’.
e OAistrue at worldw if A is true at some world’ accessible from (i.e., w < &').

Ordinary connectives (such asandA) are explained locally at individual worlds, irrespectivie<. For
example,A D B is true at worldw if “ A is true atw” implies “B is true atw.”

With the above definition of the modaliti€s and ), some proposition becomes true at every world,
regardless of the accessibility relatish For example[J(A D B) D (HA D OB) is true at every world,
sinceJ(A D B) andJA are sufficient to show thaB is true at any accessible world. Moreover various
systems of modal logic are obtained by requiriado satisfy certain properties. The following table shows
some properties of and corresponding propositions that become true at evergwo

property of< proposition
reflexivity Vw. w < w OAD A
symmetry Vo V' w < W impliesw’ <w A>OOA

transitivity  Vw.Vo'.Vo". w < W andw’ <o’ implyw <w” | OA D OOA
Euclideanness Vw.Vw' Vw”. w < ' andw < " imply o’ < w” | 0A D OOA

For example, iK is reflexive and transitive, we obtain a system of modal logsuially referred to as S4, in
which bothJA O A andJA D OO A are true at every world.

The semantics of modal logic can also be explained withopli@tty using the notion of world [62, 8,
60]. In their judgmental formulation of modal logic, Pfengiand Davies [60] define aalidity judgment
A valid as- + A true, and internalized valid as a modal proposition A:

A valid

OA true L

ThusUA true is interpreted as! being true at a world about which we know nothing, or equivilye at
every world. (Note that a judgment is defined first and thenraesponding modality is introduced.) A
possibility judgmentd poss is based upon the interpretation 4fposs as A being true at a certain world,
but still its definition does not use worlds explicitly:

1. f T+ A true, thenl' - A poss.

2. f ' A poss and A true b B poss, thenl' - B poss.
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A possibility judgmentA poss is internalized as a modal propositigm:

A poss
OA true

Ol

The possible world interpretation is richer than the judgtakformulation in that some proposition
is true in the possible world interpretation but not in thdgmental formulation. An example of such a
proposition is(0A D OB) D (A D B). ltis true in the possible world interpretation as followse write
A @ w for A being true at worldy:

Hyp
Ol
SE

0ADOBQuw,AQwW FAQW
0ADOBQw,AQW FOADIOBQwW 0ADOBQuw,AQuWFQ0AQw
0ADOBQuw, AQwW B QW
w<o OASOBQuwrA>Baw -
0ADOBQuwkFOADB)Quw Hi
‘H(OADOB)DOADB)Quw

Hyp

Dl

Its truth is, however, not provable in the judgmental foratiain:

777
-FA D B true -
OA D OB true - O(A D B) true
"+ (OA > OB) > O(A > B) true ~

In a certain sense, the possible world interpretation isnahtly more expressive than the judgmental
formulation because it explicitly specifies the world at @¥ha proposition is true. On the other hand, it may
not be a good basis for the type system of a programming l@egsince the use of the accessibility relation
in proofs implies that the type system also needs to reasout #ifie relation between worlds, which can be
difficult depending on the concrete notion of world chosertigytype system. The judgmental formulation
lends itself well to this purpose because it does not usedwaxkplicitly in the inference rules.

The logic for A\o combines the possible world interpretation and the juddalestyle by assuming an
accessibility relation between worlds and relativizingjadigments to worlds. For example, it uses a truth
judgment of the formA true @ w to mean thatd is true at worldw. Its inference rules, however, do not
use judgments showing accessibility between two worldss #% case in the judgmental formulation of
modal logic (see Simpson [71] for a system of modal logic Whises such judgments in inference rules).
Instead it requires the accessibility relation to satisfyegtain condition (monotonicity), which eliminates
the need for such judgments in inference rules. Since thgigesvorld interpretation ino is to use the
same worlds that are part of the run-time system, lack of guddpments in inference rules implies that the
type system of\o does not explicitly model changes in the run-time systenis #se case in a typical type
system.

2.3 Language\o

Pfenning and Davies [60] present a monadic language whfohmelates Moggi's monadic metalanguage
Ami [44, 45]. It applies the Curry-Howard isomorphism to laxitofiprmulated in the judgmental style (with
a lax truth judgmentd lax):

1. '+ A true, thenl' + A laz.
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2. fT'F A laxz andI', A true - B lax, thenI' - B lazx.

Ao is essentially the monadic language of Pfenning and Daweakesced with the possible world in-
terpretation. The difference is that ko, the definition of each judgment relies only on truth and the
accessibility relation, instead of clauses describingpitgperties (such as the above two clauses). In other
words, the definition of each judgment directly conveysritsitive meaning.

2.3.1 Logic for \o

The development ol begins by formulating the logic foko. Since the logic for\o uses the possible
world interpretation, we first define an accessibility rielat< between worlds. Now a world refers to the
same notion that describes part of the run-time system.

Definition 2.1. A world '’ is accessible from another world, written asw < «’/, if there exists a world
effect that causes a transition framto «’.

As it describes transitions between worlds when world é&dface produced, the accessibility relation
is atemporalrelation between worlds. b < ', we say that.’ is a future world ofv and thatw is a past
world of w’. Note that< is reflexive and transitive, since a vacuous world effecseala transition to the
same world and the combination of two world effects can baneded as a single world effect.

The logic for Ao uses two kinds of basic judgments, both of which are relagivito worlds:

e A truth judgmentd true @ w means thatl is true at worldw.

e A computability judgmentd comp @ w means thatd is true at some future world af, that is,
A true @ ' holds wherev < o',

A truth judgmentA true @ w represents a known fact about wotd Since a future world can be reached
only by producing some world effect, a computability judging comp @ w may be interpreted as meaning
that A becomes true after producing some world effect at world

The following properties of hypothetical judgments chéeaee truth judgments, wheré is either a
truth judgment or a computability judgment:

Characterization of truth judgments

1. T, A true Quwt A true Q w.

2. fT'F A true @Qw andI', A true Q w - J, thenI' - J.
The first clause expresses thatrue @ w may be used as a hypothesis. The second clause expresses the
substitution principle for truth judgments.

The definition of computability judgments gives the follogicharacterization, which is an adaptation
of the characterization of lax truth for the possible worlterpretation:

Characterization of computability judgments

1. fI'F A true Q w, thenl' - A comp Q w.

2. fT'F A comp @wandl', A true Q w' - B comp @ «’ for any worldw’ such that < o/,
then' - B comp Q w.
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The first clause expresses thatifis true atw, then A becomes true without producing any world effect at
w. It follows from the reflexivity of<: if A true @ w holds, thenA is true atw, which is accessible froma
itself, and hencel comp @ w holds. The second clause expresses thaisftrue at.’ after producing some
world effect atw, we may used true @ ' as a hypothesis in deducing a judgmentatlf the judgment at
w' is a computability judgmenB comp @ ’, the transitivity of< allows us to deduc® comp @ w:

Proof of the second clauséssume thatd comp @ w implies A true @ w; wherew < w;. We proveB comp Q w
from hypothese§' as follows:

A comp @Q w holds becausE - A comp Q w.

A true @Q wy holds by the assumption afi comp @ w.

B comp @ wy holds becausg, A true @ wy = B comp Q@ w;.

B true @ ws holds for some world; such thatv; < wy (by the definition ofB comp @ wy).

B comp @ w holds because < w, by the transitivity of< (i.e., w < w; < wa). O

We use the second clause as the substitution principle fopatability judgments.

Monotonicity of the accessibility relation <

We intend to use world effects for accumulating more knogéedbut not for discarding existing knowledge.
Informally a world effect causes a transition to a world wehetore facts are known and more world effects
can be produced. The monotonicity of the accessibilitytimia< formalizes our intention to use world
effects only for accumulating more knowledge:

Definition 2.2. The accessibility relatior< is monotonicif for two worldsw andw’ such thatv < o/,
1) A true @ w implies A true @ ';
2) Ay true Q w, -+ , A, true @ wt A comp @ wimpliesA; true Q ', --- | A, true Q W' = A comp Q o'

The first conditionmonotonicity of truthstates that a future world inherits all facts known ab@ipést
worlds. It proves two new properties of hypothetical judgise

1. fTF A true Qw andw < o/, thenT' - A true Q ',
2. IfT', A true Q W'+ J andw < o/, thenl', A true Q w F J.

The second conditiomersistence of computatipstates that a world effect that can be produced at world
w under some facts (abouf) can be reproduced at any future wosllunder equivalent facts (about).
Unlike monotonicity of truth, it uses hypothetical judgntem which all antecedents are truth judgments at
the same world as the succedent. The reason is that a woeltt effay require some facts about the world
at which it is producedg.g, allocating a new reference requires an argument for lizitig a new heap
cell), and its corresponding computability judgments #fiedént worlds can be compared for persistence
only under equivalent facts about individual worlds.

Note that monotonicity of truth does not imply persistenteamputation. For example, & comp Q w
holds becausel true @ ' wherew < w’, monotonicity of truth allows us to concludé comp @ w" for
every worldw” accessible from’, but not for every world accessible fram

Simplified form of hypothetical judgment

In principle, a hypothetical judgmeiitt- J imposes no restriction on antecedelitand succedenf. That
is, if J is a judgment at world, thenI' may include both truth judgments and computability judgtaen
at world w itself, past worlds ofv, future worlds ofw, or even those worlds unrelatedd¢o Thus such a
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general form of hypothetical judgment allows us to expressoning about not only the present but also the
past and future.
Examples of reasoning about the past and future are:

¢ If there has been a transaction failure in a database systémpast we create a log filaow.
e If the program has produced no output yet, we stop takingtinpu

¢ If the heap cell is deallocated in tHieture and becomes no longer available, we make a copy of it
Now.

e If the program is to open the file eventually, we do not close it

Since we intend to usgc only to reason about the present, the logic Xerimposes restrictions on an-
tecedents in hypothetical judgments and uses a simplified &6 hypothetical judgment as described below.

First the simplified form uses as antecedents only truthrpgtgs. If a computability judgment is to
be exploited, we use as an antecedent a truth judgment thaséirts, as shown in the second clause of
the characterization of computability judgments. Secdmdimplified form uses only judgments at the
same world. In other words, a hypothetical proof reasonsitaboe present world and does not consider
its relation to past and future worlds (or unrelated wotldEhe rationale for the second simplification is
two-fold:

1. Facts about past worlds automatically become facts aheypresent world by the monotonicity of
<. Therefore there is no reason to consider facts about the pas

2. In general, facts about future worlds are unknown to tlesgumt world because of the temporal nature
of <. If we were to support reasoning about future worlds, theegsity and possibility modalities
would be necessary.

Thus the logic for\o uses the following two forms of hypothetical judgments:

o A true Quw, -, A, true Qw F A true Q w,
which is abbreviated ad; true,--- , A, true Fs A true Q w.

o Ay true Qu,--- A, true Quw E A comp Q w,
which is abbreviated ad; true,--- , A, true bs A comp Q w.

As the logic forAo requires only the simplified form of hypothetical judgmenig simplify the charac-
terization of truth and computability judgments accordinghe new characterization of truth judgments is
just a special case of the previous characterization:

Characterization of truth judgments with T" 4 J

1. I', A true b5 A true @ w.
2. fT'k5 A true Q w andT’, A true ¢ J, thenl' - J, whereJ is a judgment at world.

The new characterization of computability judgments dagsconsider transitions between worlds:

Characterization of computability judgments with " - J

1. 'k A true @ w, thenI 5 A comp Q w.
2. fT'kg A comp @Quw andTl’, A true Fs B comp Q w, thenl" -5 B comp Q w.
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Proof of the second claus&iven I = A; true,--- , A, true, we writeI’ @ w for Ay true Q w,-- -,
Ay, true Q w. Assumel’ @ w - A comp Q@ w andT’ @ w, A true Q w = B comp @ w. For any worldw’
such thaty < «/,

I'@w', A true QW'+ B comp @ w' holds by persistence of computation;

' Qw, A true QW'+ B comp @ ' holds by monotonicity of truth.
ThenT' Quw + B comp Qw, orT' 5 B comp @ w, holds by the substitution principle for computability
judgments. O

Note that in the second clausd, comp @ w leads to (as a new hypothesis) a truth judgment at the
same world instead of a future world. That is, eveMitomp @ w holds becausel true @ ' where
w < W', we use as a new hypothesistrue @ w instead ofA true @ «’. Thus we reason as if the world
effect corresponding tel comp @ w did not cause a transition to the future woud By virtue of the
monotonicity of<, this reasoning provides a simple way to tBstomp @ w"” for everyfuture worldw” of
w, as in the previous characterization of computability juégts. The second clause allows the type system
of \o to typecheck a program producing a sequence of world effeitkout actually producing them, as
will be seen in the next subsection.

2.3.2 Language constructs oho

To represent proofs of judgments, we use two syntactic odesy terms M, N for truth judgments and
expressionds, F' for computability judgments. Thus the Curry-Howard isoptosm gives the following
correspondence, where typing judgments are annotatedwwitids where terms or expressions reside:

& F-AQuw

D E
Atrue@w < M:AQu A comp Q w

That is, we represent a pro®f of A true Q w as a termM of type A at worldw, written asM : A Q w,
and a proof of A comp @ w as an expressioR of type A at worldw, written ast - A @ w. Analogously
hypothetical judgments (of the forint J) correspond to typing judgments with typing contexts:

T'EM:AQuw 'k EF+-AQuw
A typing contextl’ is a set of bindings: : A:
typing context ' == -|T,z: A

z : A in T" means that variable assumes a term that has tygeat a given world i(e., world w in
'kM:AQworl'k EF+ AQw) but may not typecheck at other worlds. Then a term typingy{jud
mentl' s M : A @ w means thail/ has typeA at worldw if T is satisfied at the same world; similarly an
expression typing judgmeitr £+~ A @ w means thal’ has typeAd at worldw if T is satisfied at the same
world. Alternatively we may thinkof' k M : AQuworT' E + A @ w as typing judgments indexed by
worlds.

Terms and expressions form separate sublanguagas.of heir difference is manifest in the opera-
tional semantics oA, which draws a distinction betwe@avaluationsof terms, involving no worlds, and
computation®f expressions, involving transitions between worlds:

M-V FQw—-Vad

A term evaluationM — V does not interact with the world where terld resides; hence the resultant
valueV resides at the same world. In contrast, an expression catqu¥ @ w — V @ o’ may interact
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type AB == ADA|OA

term M,N x| Ax:AM|MM|cmp E
expression FE,F M |letcmpaz<Min E
value 1% n= Ax:A.M|cmp E

Figure 2.2: Abstract syntax foho.

H Ne: Ak M:BQuw |
Tz Akz:AQw P TRMAM:A>BQw -

IT'kEM:ADBQw TKkM:AQuw E I'EE+-AQuw ol
I'k My My:BQuw - I'kcmpE:0AQuw

I‘}—S,M:A@w_l_ I'kEM:0AQuw T,z2: AR E+-BQuw E

TRMtAGQw &M Thietempz<MinE-Baw

Figure 2.3: Typing rules ofAc.

with world w where expressioiy resides, causing a transition to another waslgl hence the resultant
valueV may not reside at the same world. Thus term evaluations &aeyaleffect-free whereas expression
computations are potentially effectful (with respect tarld@ffects).

Note that worlds are required by both the type system and pleeational semantics ofc. That is,
worlds are both compile-time objects and run-time objectthée definition ofAc. As worlds are involved
in expression computations and hence definitely serve asmanobjects, one could argue that abstractions
of worlds rather than worlds themselvesd, store typing contexts rather than stores) are more apptepr
for the type system. Our view is that worlds are acceptablgswin the type system for the same reason
that terms and expressions appear in both the type systerthargberational semantics: the type system
determines static properties of terms and expressiongharaperational semantics describes how to reduce
terms and expressions; likewise the type system deterrastats properties of worlds (with respect to terms
and expressions), and the operational semantics destrdnsitions between worlds.

Incidentally the type system ofo is designed in such a way that only an initial world at whichk th
run-time system start®(g, an empty store) is required for typechecking any programnde no practical
problem arises in implementing the type system as we cansiligregard worlds.

Below we introduce all term and expression constructsofFigure 2.2 summarizes the abstract syntax
for Ao. Figure 2.3 summarizes the typing rules)ef. We user, y, z for variables.

Term constructs

As terms represent proofs of truth judgments, the chaiaatemn of truth judgments gives properties of
terms when interpreted via the Curry-Howard isomorphisime first clause gives the following rule where
variablez is used as a term:

lNe:Akz:AQuw Hyp
The second clause gives the substitution principle for $erm
Substitution principle for terms

fTkM:AQwandl,z: AL N: BQuw,thenl'k [M/z]N : B Q w.
fITkM:AQwandl'z: Ak F+ B Qu,thenl' 5 [M/z]E +~ B Qu.
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[M/x]|N and [M/z]E denote capture-avoidingrm substitutionsvhich substitute)M for all occurrences
of x in N and E. We will give the definition of term substitution after inthacing all term and expression
constructs.

We apply the Curry-Howard isomorphism to truth judgmentsritsoducing an implication connective
D suchthafl' ¢ A D B true @ w expresses§', A true b B true @ w. It gives the following introduction
and elimination rules, where we use a lambda abstractiord. M and a lambda application/; M- as
terms:

I'ax: AR M:BQuw 'kM:ADBQw T'kMy:AQuw

Thoww AM-ASBGw TL M M, BQw ok

We use a reduction relatios>girm in both the term reduction rule fop and its corresponding proof
reduction:
(/\Z’A N) M :>6term [M/x]N (ﬁ))

MNz: AR N:BQuw
TE AN A5BQw - ThM:AQuw
k(AN M:BQw B e
'k [M/z]N:BQuw

Expression constructs

Similarly to truth judgments, we begin by interpreting thearacterization of computability judgments in
terms of typing judgments. The first clause means that a témype A is also an expression of the same
type:

TEM:AQuw

ThM:AGw oM

The second clause gives the substitution principle foresgions:

Substitution principle for expressions
fTkE+AQwandlz: Ak F+BQuw,thenl'k; (E/z)F +~ B Quw.

Unlike a term substitutiofM /x] F' which analyzes the structure &f, anexpression substitutiot/x) F’
analyzes the structure @ instead ofF'. This is becauséE/x)F is intended to ensure that bof and
I are computed exactly once and in that order: first we compute obtain a value; then we proceed to
computeF’ with z bound to the value. Therefore we should not replidateithin F' (at those places where
x occurs), which would result in computingl multiple times. Instead we should conceptually replicate
F within E (at those places where the computationkofinishes) so that the whole computation ends up
computing bothZ and F' only once. In this sense, an expression substitutiyz)F' substitutes not
into F, but F' into E. We will give the definition of expression substitution afitetroducing all expression
constructs.

We apply the Curry-Howard isomorphism to computability gotents by internalizingd comp Q w
with a modalityO so thatl” H; OA true @ w expresseF g A comp @ w. The introduction and elimination
rules use @omputation termemp £ and abind expressiofetcmp x < M in E:

'k EFE+-AQuw ol 'kM:QAQuw TI'z:ARE+-BQuw
I'kcmpE:0OAQuw I'kletcmpr<MinE+BQuw

OE

We use a reduction relatios g, in both the expression reduction rule forand its corresponding proof
reduction:
letcmp x <cmp Ein F' =geqp (E/x)F (Bo)
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ITEE+-AQuw
'kemp E: OAQuw Nz: AR F+-BQuw
I‘I—sletcmpxqcmpEmF.B@w OFE = Bexp
k(E/x)F ~+BQuw

cmp E denotes the computation &f, but does not actually compute; hence we say thainp E encapsu-
latesthe computation oF. letcmp = < M in E enables us to sequence two computationg/iévaluates to
a computation term).

Note that the typing rul©E does not accurately reflect the operational behavidstofp = < M in E.
Specifically, while the rule©E typechecksr at the same world that it typechecks\/, the computation of
E may take place at a different world (wherew < w’) because of an expression computation preceding
the computation of2. Nevertheless it is a sound typing rule because the moreitpmif the accessibility
relation < allows the type system to reason as if a world effect did nasea transition to another world,
as clarified in the characterization of computability judgris.

Computation terms and bind expressions may be thought ofoagdic constructs, since the modality
O forms a monad. In Haskell syntax, the monad could be writtefoldows:

Ol

instance Monad O where

return M = cmp M

M >=N = cmp letcmpax <M in
letcmp y < N x in
Y

The above definition satisfies the monadic laws [77], moduéoexpression reduction rulg, and a term
expansion ruley for the modalityO:

M =pexp cmpletcmp z <M inx (7o)

However, once we introduce a fixed point construct for terims,ruley~ becomes invalid. For example,
if M is a fixed point construct whose reduction never termindifeexpansion intemp letcmp z < M in

is not justified because the reduction of the expanded temmeitnately terminates. Hence the modality
ceases to form a monad, and we do not galla monadic language.

2.3.3 Substitutions
Now that all term and expression constructs have been intext] we define term and expression substitu-
tions. We first consider term substitutions, which are dsslntextual substitutions.

Term substitution

Term substitutiongM /x]N and [M /x| E are straightforward to define as they correspond to subaetitu
a proof of A true @ w for a hypothesis in a hypothetical proof. To formally defieent substitutions, we
need a mappind’V (-) for obtaining the set ofree variablesin a given term or expression; a free variable
is one that is not bound in lambda abstractions and bind sgjanes:

M) — FV(M) {z}

Il
=
5

FV(x

FV(A

(M )

FV(cmp E)
FV(letempz<MinE) = FV
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A true Q w [A true @ W]

A comp Q@ w B comp Q@ w

M
A true Q w

B comp Q w

E

B comp Q w

Figure 2.4: A schematic view of E/x) F.

In the definition of[M /x| N and[M /z]E, we implicitly rename bound variables /¥ and E' as necessary
to avoid the capture of free variables/ifi:*

[M/zly = M T=y
=y otherwise
[M/zx]A\y:A.N = Xy:A.[M/z|N x#yyg FV(M)
M/2(Ny No) = [M/2]Ny [M/2]N,
[M/x]emp E = cmp [M/z|E

[M/x]letcmp y <N in E letcmp y < [M/x|N in [M/z]E z #y,y & FV(M)
The above definition of term substitution conforms to thessitition principle for terms:

Proposition 2.3 (Substitution principle for terms).
fITkM:AQwandl',z: Ak N: BQuw,thenl'kk [M/z]N : B Q w.
frkM:AQuwandl',z: Ak F+ B Quw,thenl' s [M/z]E + B Q w.

Proof. By simultaneous induction on the structureMfand . O

Proposition 2.3 implies that term reductions-by;...m are indeed type-preserving:

Corollary 2.4 (Type preservation of = gterm).
fI'k (AM:A.N)M : BQuw,thenl' 5 [M/z]N : B Q w.

“Hence a term substitution does not need to be defined in &cas
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Expression substitution

GvenTk F+-AQwandT',z: Ak F+ B @Qw, an expression substitution combines the two typing
judgments by finding an expressioh/x) F such thal ; (E/z)F + B @ w. It corresponds to substituting
a hypothetical proof usingl true @ w as a hypothesis into a proof df comp @ w.

Figure 2.4 shows a schematic view of an expression sulbistit(®'/x) F'. ExpressiornF contains a term
M of type A which ultimately determines its type. For example,= letcmp x < N in M has the same
type asM, and if M is replaced by another expressifihof type A’, the resultant expression also has type
A’. Operationally the computation @f finishes by evaluating/. Expression/ contains variable: which
corresponds to a hypothesistrue @ w in a hypothetical proof o3 comp @ w. (E/x)F first substitutes
M for x in F, which results in a new expressioh//z|F' of type B; then it replaces\/ in E by [M/x]F.
In this way, (E'/x) F' substitutes into E, rather than® into F'. Note that althoughE/z) F' transforms the
structure ofF, it has the same type ds because its type is ultimately determined by whatever agwa
replaces\.

Thus (E/z)F analyzes the structure @, instead ofF, to find a term that ultimately determines the
type of E:

(M/z)F = [M/x]|F
(letempy< M in E'/2)F = letempy< M in (E'/z)F

The above definition of expression substitution conformihigosubstitution principle for expressions:

Proposition 2.5 (Substitution principle for expressions)
fITkEF+AQuwandlz: Ak F+~BQu,thenl' 5 (E/x)F +~ B Q w.

Proof. By induction on the structure df (not F'). O
Proposition 2.5 implies that expression reductions=hy.,,, are indeed type-preserving:

Corollary 2.6 (Type preservation of = geyp).
If 'k letcmpxz <cmp Ein F +~ B Qu, thenl'  (E/z)F +~ B Q w.

2.3.4 World terms and instructions

The operational semantics & provides rules for term evaluatiodd — V' and expression computations
EQw— V @u'. For term evaluations, we introduce a term reductidn—; N such that\/ —; V is
identified withA/ — V', where—! is the reflexive and transitive closureef;; for expression computations,
we introduce an expression reductiéh@ w —. F' @Q w’ such thatl @ w —% V @ ' is identified with
EQw — V @', where— is the reflexive and transitive closure:ef.:

M~V 4ff M—=V FQw—iVadJ iff FQw—-Vad

At this point, there is no language construct for producimglaveffects and no typing rules and reduction
rules actually require worlds. That is, all language cartttrintroduced so far are purely logical in that their
definition is explained either by properties of judgmemrtg)( variables, inclusion of terms into expressions)
or by introduction and elimination rules.g, lambda abstractions, lambda applications). In fact, ibvase
@ w from typing judgments\o reverts to the monadic language of Pfenning and Davies [68lis we
introduce language constructs for interacting with wolldfore presenting the operational semantics.

We useinstructions as expressions for producing world effects. As an intertaceorlds, they are
provided by the programming environment. For example, atrustionnew M for allocating new refer-
ences produces a world effect by causing a change to the atateeturns a reference. An instruction may
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have arguments, and term substitution on instructions arigaments is defined in a structural way; hence
Proposition 2.3 continues to hold.

We refer to those objects originating from worlds, such dsremces, asvorld termsW/. Since they
cannot be decomposed into ordinary terms, world terms aen@ed to be atomic values (containing no
subterms) and are given speaiarld term types). For example, reference typef A is a world term type
for references. Note that while world terms may not contadirary terms, world term types may contain
ordinary typesé€.g, ref A).

The new abstract syntax fok is as follows:

type A o= W
world term type W

term M = - |W
world term W

expression E = - |I
instruction 1

value vV o= - |W

The type of a world term may depend on the world where it resiBler example, a reference is a pointer
to a heap cell and its type depends on the store for which #lid.vTherefore typing rules for world terms
may have to analyze worlds. Since world terms are atomicegaltyping judgments for world terms do
not require typing contexts. In contrast, typing judgmdntsinstructions require typing contexts because
instructions may include terms as arguments:

W:Waw I'klI+-AQuw

Note that an instruction does not necessarily have a waomnhd tgpe. For example, an instruction for deref-
erencing references can have any type because heap cetisrtain values of any type.

If an instruction/ whose arguments are all values typechecks at a wondder an empty typing
context, we regard it as reducible.atmoreover we require that an instruction reductio® w +—. V @ o’
be type-preserving so th&t has the same type ds

Type-preservation/progress requirement on instructions

If -1+ A@w and arguments td are all values, then there exists a world satisfying
IQuw— . VQAQuwand-KV:4AQuw.

We alloww = «’, which means that a world effect does not always causes @ehara world é.g, reading
the contents of a store is still a world effect).

As Qw —, V @ «' means that instructiof computes to valu® causing a transition of world from
wtow’, itimpliesw < w’. Now the accessibility relatioq is fully specified by instruction reductions under
the assumption that it is reflexive and transitive. Note thigtiout additional requirements on instructions,
there is no guarantee that the monotonicity<os maintained. For example, an instruction for deallogatin
an existing referencéviolates monotonicity of truth if no longer typechecks after it is deallocated, and
violates persistence of computation if its correspondiegphcell is discarded. In order to maintain the
monotonicity of<, we further require that all instruction reductions be dgesd in such a way that types of
world terms and instructions are unaffected<by

Monotonicity requirement on instructions
DIfw <o/, thenW : W Q@ wimpliesW : W @ ',

2) Ifw <, thenT'k I+ AQwimpliesT' kg I + A @ o', where for each argumerit/ to I,
we assume thdt x M : B @Q w impliesI' s M : B @Q /.
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M*—)tM/ Ml—)tN

T T
MN—MN % DA M) N NaM ? MOwo, Nay JTem
MHtN En;
letcmpz <M in F Qw . letcmpz <N in F @ = 2ind

EAT .

letcmp z <cmp Ein FF Q w +—¢ (E/x)F Quw Bindfs

TQwr—. Vad
Eginar

letcmp z<cmp I in F' Q w ¢ letcmpz<cmp Vin F Q o/

Figure 2.5: Operational semantics of> which uses expression substitutions for expression coatipat.

The first clause corresponds to monotonicity of truth, areddecond clause to persistence of computa-
tion. Under the monotonicity requirement, instructionuetibns never affect types of existing terms and
expressions:

Proposition 2.7 (Monotonicity of <).

If w < ', then
'k M:AQuwimpliesT'ks M : A @ ', and
'k E+AQuwimpliesT'k E+ A Q W',

Proof. By simultaneous induction on the structureiddfand £. O

Unlike other expression constructs, instructions are rptaned logically and no expression substi-
tution can be defined on them. Intuitively /z) E' cannot be reduced into another expression because
itself does not reveal a term that is evaluated at the end ainputation. Such a term (which is indeed
a value) becomes known only after an instruction reducfiéhw —. V @ «’. We should therefore never
attempt to directly reducktcmp z <cmp I in E into (I/z)E. For the sake of convenience and uniform
notation, however, we abuse the notatidiiz) E with the following definition, which effectively prevents
letcmp x <cmp I in E from being reduced by gexp:

(I/x)E = letcmpxz<cmplinE

This definition of(I /z) E allows =3, to be applied to any part of a given expression; Propositiéraio
continues to hold.

2.3.5 Operational semantics

A term reduction by= 3:erm and an expression reduction byg.,, are both proof reductions and may be
applied to any part of a given term or expression withoutciffig its type. An operational semantics of
Ao defines the term reduction relatien; and the expression reduction relatien, by specifying a strategy
for arranging reductions by gierm and =ge.p. Below we consider two different styles of operational
semantics (both of which use the same syntax for reductiatioes). For each instructioh, we assume an
instruction reductiod @ w +—, V @ w’, which causes a transition of world fraoto ’; if I has arguments,
we first reduce them into values by applying repeatedly.

Figure 2.5 shows an operational semantica@fwhich uses expression substitutioffs/z) F' for ex-
pression computations; for term evaluations, we can chaongeeduction strategy (Figure 2.5 uses a call-
by-name discipline). The rul@} is a shorthand for applying>gterm t0 (Az: A. M) N. The rulesEzen,
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MHt M/ NHt N,
T, Tap
M N~y M N (Ax:A. M) N ¢ (\x:A. M) N’
T MHtN E
Oz A MV = V/zlM %Y MQuweNaQw ™
M*—)tN
letcmpz <M in F Quw e letcmpxz <N in FFQ w
EFEQuw— E' QW
letcmp z<cmp Ein F Q w ¢ letcmp z <cmp E' in F @Q o/

EBing

EBindr

Fn:
letcmp z <cmp V in F @ w ¢ [V/2z]F @w =~ 2"V

Figure 2.6: Operational semantics o> in the direct style.

and Ep;nq use a term reductiod/ — N to reduce a term into a value. The rukg;,,s is a shorthand
for applying = gexp 10 letcmp z <cmp E in F; in the case of? = M, it reducedetcmp x <cmp M in F
into (M /z)F = [M/xz]F without further reducing\/. The rule Ep;,4; perform an instruction reduction
TQww—. Vadud.

Figure 2.6 shows an alternative style of operational seicgntalled the direct style, which requires
only term substitution$V/z] E' for expression computations; for term evaluations, we daose any re-
duction strategy (Figure 2.6 uses a call-by-value disog)li The rules 1., and E;,,4 are the same as in
Figure 2.5. Giverletcmp z <cmp E in F, we apply the ruleF'g;, 4z repeatedly untilE is reduced into a
valueV; then the ruleEp;,,qv reducedetcmp z <cmp V in F'into (V/z)F = [V/z]F. Thus a variable is
always replaced by a value (during both term evaluationseapdession computations).

The direct style is more extensible than the first style beeaudoes not use expression substitutions.
That is, the introduction of a new expression constructireguonly new reduction rules. In comparison,
the first style hinges on expression substitutions, andinegjunot only new reduction rules but also an
augmented definition of expression substitution for eaghepression construct. If expression substitution
cannot be defined on a new expression construct, we may héweher specialize existing reduction rules.
For example, the ruleB;,q3 and Eg;,qr can be thought of as derived from a common reduction rule when
instructions are introduced.

The type safety of\o consists of two properties: type preservation and progrése proof of type
preservation uses Corollaries 2.4 and 2.6, the type-pr&s@n/progress requirement on instructions, and
Proposition 2.7. The proof of progress requires a canofiicads lemma. In either style of the operational
semantics, all proofs proceed in the same way.

Theorem 2.8 (Type preservation).
fM—Nand-k M : AQuw,then-k N : A Q w.
fEQw—.FQuwand -k E+AQuw,then- ks F+AQu.

Proof. By induction on the structure ¥/ andE. O

Lemma 2.9 (Canonical forms).
If V is a value of typed O B, thenV is a lambda abstractionz: A. M.
If V' is a value of typeD A, thenV is a computation termmp E.

Proof. By inspection of the typing rules. O
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Theorem 2.10 (Progress).
If - M : AQ w,then eitherM is a value or there existd such thatM —; N.
If - £+ A Q@ w, then eitherE is a value or there exisf’ andw’ such thattl @ w +—, F @ o',

Proof. By induction on the structure a¥/ andE. O

Since expressions may produce world effects, they cannobiyerted into terms. In contrast, terms
can always be lifted to expressions by the typing fléem. Therefore we define a program as a closed
expressiont that typechecks at a certain initial wotlg,,;i;q1, 1.€. - | E + A Q wipnitia. We choosev;,ivial
according to the world structure being employed. To run gam £, we compute it at;,iziql-

2.4 Examples of world effects

In order to implement a specific notion of world effect ip, we specify a world structure and provide
instructions to interact with worlds. In this section, wedliss three specific notions of world effect.

2.4.1 Probabilistic computations

In order to facilitate the coding of sampling techniquesaiieped in simulation theory, we model a proba-
bilistic computation as a computation that returns a vaftex aonsuming real numbers drawn independently
from U(0.0, 1.0], rather than a single such real number. A real numbiera world term of typeeal. A
world, the source of probabilistic choices, is represerggdn infinite sequence of real numbers drawn
independently fron?/(0.0,1.0]. We use an instructios for consuming the first real number of a given
world.

world term type W ::= real
world term W = r
instruction I =S
world w  u= rrg---ri--- where r; € (0.0,1.0]
r:real @ w Real I'kS+real@w Sampling
Sampling

SQrirgry .- e Qrorg .-

It is easy to show that instructiafi satisfies the type-preservation/progress requiremente&i world
does not affect types of world terms and instructions, thaatunicity of < also holds trivially. We can use
any world as an initial world. As we will see in Chapter.3; with the above constructs for probabilistic
computations serves as the core of PTP.

2.4.2 Sequential input/output

We model sequential input/output with a computation thatscones an infinite input character stream
and outputs to a finite output character streeamwhere a character is a world term of tygear. We use
two instructions:read_c for reading a character from the input stream amide_c M for writing a character
to the output stream.

world term type W == char
world term W = ¢
instruction I == read_c|writec M
world w u= (is,0s)
1S = c1CcaC3- -

os == nil|c:os
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Char Read_c

I'kread_c+charQuw

'k M:char@Quw
I' ks write_.c M + char Q@ w

c:char Qw

Write_c

read_c @ (c1cocy -+ ,08) —e ¢1 @ (cacg -+, 08) Read_c

M ¢ N
write_c M Q@ w ¢ write.c N Q w

Write_c

- /
write_c ¢ @ (is, 0s) e ¢ @ (is, ¢ :: 05) Write-c
It is easy to show that both instructions satisfy the typesprvation/progress requirement. As in prob-
abilistic computations, a world does not affect types ofldéerms and instructions, and the monotonicity
of < holds trivially. We use an empty output character stredrim an initial world.

2.4.3 Mutable references

Probabilistic computations and sequential input/outpeteasy to model because worlds do not affect types
of world terms and instructions. Mutable references, h@raequire world terms whose type depends on
worlds, namely references. Consequently worlds shouldebigded in such a way that they provide enough
information on a given reference to correctly determingyipe.

We useref A as world term types for references. A world is represented asllection of pairs
[l — V : A] of a referencd and a closed valu® annotated with its typel. It may be thought of as a
well-typed store: ifl — V : A] € w, thenV has typeA at worldw (i.e,, - x V : A @ w) and references in it
are all distinct. We use three instructiomgw M : A for initializing a fresh referencegead M for reading
the contents of a world, andrite M M for updating a world. Reading the contents of a world is a @orl
effect, even though it does not cause a change to the world.

world term type W == ref A

world term W ou= 1

instruction I == newM: A|read M | write M M
world w o o= |w [l VA

Figure 2.7 shows new typing rules and reduction rules:

To prove the type-preservation/progress requirement sinuictions, we first show that well-typed in-
structions never generate corrupt worlds (Corollarie® 2dd 2.14). In Lemma 2.11, we do not postulate
thatw, [l — V : A] is a world {.e,, it possesses the structure of a store, but may not be vy

LemmaZ2.11.lfwisaworldand £k V : A @ w, then
'kM:BQuwimpliesTk M : BQuw,[l— V : A],and
'k EF+~BQuwimpliesT'k E + B Qu,|[l — V : A], wherel is a fresh reference.

Proof. By simultaneous induction on the structureMfand E. An interesting case is whel = [’ # |.
If M =1,thenTx M : BQw implies B = ref B’ and[l’ — V' : B'] € w by the ruleRef. Since
'—V' :Blewl[l—V:A,wehavel k M : BQuw,[l+— V: A O

Corollary 2.12. If -V : A @Q w wherew is a world, thenw, [l — V : A] is also a world for any fresh
reference.

Proof. For eachll’ — V' : A'] € w, we have ¢ V': A’ @ w becausev is a world. By Lemma 2.11, we
have V' : A Quw,[l—V :Al.From-kV:AQwandLemma21l,kV:AQuw,[l— V: A]also
follows. O
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[ZHV:A]Gwa rkM:AQuw N
l:ref AQuw € I'knewM:A+-ref AQw ew

'kEM:ref AQuw Read 'kEM:refAQw TKN:AQuw
I'kread M - AQuw ca 'kwrite M N -AQuw

M'—>tN N
newM: AQuwi—enew N : AQw €
fresh | such that [l — V' : A" ¢ w

newV:AQuw— [ Quw,[l—V:A]
M —¢ N l—V:Alew
readM@wHereadN@wRead readl Quw —, V Qw

MHtM/
write M N @ w +—, write M’/ N Q w

N'—>tN/
write Il N Q w —. write] N’ Q w

=V :Alew
write [V Quwi—e VQw—[l— V' Al =V : A

Write

w

New'

Read’

Write

Write

Write"

Figure 2.7: Typing rules and reduction rules for mutable references.

In Lemma 2.13, we do not postulate that- [l — V' : A],[l — V : A] is a world.

Lemma 2.13.

If - kV:AQuwand[l— V': A] € wwherew is a world, then
'kM:BQuwimpliesTk M :BQw—[l—V': A],[l—V:A]and
I'kE+-BQuwimpliesTk E+~BQw—[l—V': A],[l—V: A

Proof. By simultaneous induction on the structureddfand £. An interesting case is wheld = [. O

Corollary 2.14.
If - kV:AQuwand[l— V': A] € wwherew is a world, then
w—[l—V'":A]l[l— V:A]is also aworld.

Proof. Similarly to the proof of Corollary 2.12. O

Proposition 2.15 (Type-preservation/progress requiremst on instructions). If -k 7+~ A @ w and ar-
guments td are all values, then there exists a wodd satisfyingl @ w —. V @Quw' and- £V : A Q o'

Proof. By case analysis of. We use Corollaries 2.12 and 2.14. O

For the monotonicity requirement on instructions, we dlyeprove Proposition 2.7 exploiting Lem-
mas 2.11 and 2.13.

Proof of Proposition 2.7.Since the accessibility relation is specified by instruction reductions, < w’
implies that
w=w < - <w < Swy =W,

wherew; 11 is equal to eithew;, [l — V : AJorw; — [l — V' : A],[l— V : A]for 1 < i < n. We proceed
by induction onn. O



39

In order to maintain the monotonicity &f, all references in a world must be persistent, since once a
reference is deallocated, its type can no longer be detednifhis means that an explicit instruction for
deallocating references.@, delete M) is not allowed in\o. In the present framework ofo, even garbage
collections are not allowed because they destroy the maoiwity of <: a garbage collection transition
from w to w’ must ensure thdt: ref A @ w implies! : ref A @ w' for every possible referendeincluding
those references not found in a given program, which aregaigonvhat it deallocates. (In practice, garbage
collections do not interfere with evaluations and compaitest, and are safe to implement.) We use an empty
store as an initial world.

2.4.4 Supporting multiple notions of world effect

Since a world structure realizes a specific notion of worfeafand instructions provide an interface to
worlds, we can support multiple notions of world effect byrtmning individual world structures and letting
each instruction interact with its relevant part of worl&sr example, we can use all the above instructions
if a world consists of three sub-worlds: an infinite sequeoiceeal numbers, input/output streams, and a
well-typed store. This is how o combines world effects at the language design level.

We may think of\o as providing a built-in implementation of a state monad vehstates are worlds.
Then the ease of combining world effects)ip reflects the fact that state monads combine well with each
other (by combining individual states).

2.5 Fixed point constructs

In this section, we investigate an extensiomefwith fixed point constructs. We first consider those based
upon the unfolding semantics, in which a fixed point constreduces by unrolling itself. Next we consider
those based upon the backpatching semantics, as used im&¢BE For expressions, we assume the
operational semantics in the direct style in Figure 2.6.

For a uniform treatment of types, we choose to allow fixed poimstructs for all types. An alternative
approach would be to confine fixed point constructs only tdidanabstractions (as in ML), but it would be
inadequate for our purpose because recursive computatguge fixed point constructs for computation
terms (of typeO A) anyway.

2.5.1 Unfolding semantics

We usefix z: A. M as aterm fixed point construdor recursive evaluations. Its typing rule and reduction
rule are as usual:
teem M o= - [fixx: A M

Ne:AkM:AQuw £ T
Fhkfxa: A M:AQuw ' ™ fixw: A M —y [fixx: A. M /2] M P

In the presence of term fixed point constructs, any truthijueit A ¢rue holds vacuously, sindéx x: A.
typechecks for every typd and represents a proof df true. Now a termM of type A does not always
represent a constructive proof dftrue; rather it may contain nonsensical proofs suctivag: B.z. The
definition of a computability judgmem comp, however, remains the same because it is defined relative to
a truth judgment4 true.

In conjunction with computation termsnp E, term fixed point constructs enable us to encode recursive
computations: we first build a term fixed point constriifof type O A and then convert it into an expression
letcmp x < M in z, which denotes a recursive computation. Generalizingdle, we define syntactic sugar
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for recursive computations. We introduce expression variable& and anexpression fixed point construct
efix x+ A. E; a new form of bindings - A for expression variables is used in typing contexts:

expression E = - |x|efixx+AE
typing context I' == - |T'|,x+ A

New typing rules and reduction rule are as follows:

I'x+AkKE+-AQuw
F,X+AI—SX+A@wEvar I'kefixx+A. F+-AQuw

Efix

Efix

efix x+A. E Qw —, [efixx+A. E/x|E Qw

In the rule Efiz, [efix x+ A. E /x| E denotes a capture-avoiding substitutiorefit x+ A. F for expression
variablex. Thusefix x + A. E behaves like term fixed point constructs except that it usritdelf by
substituting an expression for an expression variablégdusof a term for an ordinary variable.
To simulate expression fixed point constructs, we define eitum(-)* which translategefix x+A. E)*
into:
letcmp y, < fix 2,: OA. cmp [letemp y, <z in Yy, /X|E* in y,
Thatis, we introduce a variablg, to encapsulatefix x:+-A. I/ and expane to a bind expressiolketcmp y,, <, in y,.

The translation of other terms and expressions is structiorathe sake of simplicity, we do not consider
world terms and instructions:

*

= =z
Az:A.M)* = Xx:A M*
(My My)* = M* My~

(cmp E)* = cmp E*
(fixz: A. M) = fixz: A M*
(letcmp x < M in E)* letcmp z < M* in E*
X* = x

Proposition 2.17 shows that when translated via the fundtig', the typing rulesEvar and Efix are
sound with respect to the original type system (without thlesEvar andEfix).

Lemma 2.16.
fTkF+AQwandl,x+ Ak M : BQu,thenl'k [F/x]M : B Q w.
Tk F+AQwandl,x+ Ak E+ B Quw,thenlk [F/x]E + B Q w.

Proof. By simultaneous induction on the structureidfand £. O

Proposition 2.17.
FI'kM:AQuw,thenT'k M*: AQ w.
fFI'kE+-AQuw,then'k E* - A Q w.

Proof. By simultaneous induction on the structure of the derivatitl’' ; M : AQuwandl'k EF + A Q w.

An interesting case is whefi = efix x+ A. F.

Case B = efixx+A. F":

Nx+ AR F+-AQuw by Efix
Nx+ AR F*+-AQuw by induction hypothesis
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Iz, OAx+AKF*+AQu by weakening
Iz, : OAk letemp y, <zpiny, + AQw (typing derivation)
Iz, : OAk [letemp y, <zp in yp /X|F* + AQ w by Lemma 2.16

I' ks letemp y, < fix z,: OA. cmp [letemp y, < xp in Yy /X]F* iny, + AQw
(typing derivation)
Ik (efixx+A. F)*+AQuw by the definition of(-)*
]

SinceM™* and E* do not contain expression fixed point constructs, thektileis notused ii' k M*: A Q w
andT'k E* - A @w. Neither is the ruleEvar used unless\/ or E contains free expression variables.
Therefore, given a term or expression with no free exprassaviable, the functior{-)* returns another
term or expression of the same type which does not need thebwidr andEfix.

Propositions 2.22 and 2.23 show that the reduction Efle is sound and complete with respect to the
operational semantics (in the direct style) in Section32.9/e use the fact that the computation/f does
not require the ruléfiz.

Proposition 2.18.
For any termN, we have([N/z]M)* = [N*/x]|M* and ([N/z]|E)* = [N*/z]E*.
For any expressioi’, we have([F/x|M)* = [F*/x]M* and ([F/x|E)* = [F* /x| E*.
Proof. By simultaneous induction on the structureiddfand £. O

Lemma 2.19.If M —; N, thenM* —; N*.

Proof. By induction on the structure of the derivationf — V. O

Lemma 2.20.
If M* —, N’, then there exist&’ such thatN' = N* and M —; N.

Proof. By induction on the structure of the derivationaf* —; N’. O

We introduce an equivalence relatiaa, on expressions to state that two expressions compute to the
same value.

Definition 2.21.
E =, FifandonlyifEF Qw —}V Q' impliesF Qw —} V @/, and vice versa.

The following equivalences are used in proofs below:

letcmpx<cmp Finz =, FE
letcmpz<cmp Ein ' =, letcmpx<cmp E' in ' where E =, E'
(efixx+A. E)* =, [(efixx+A. E)*/x|E*
The third equivalence follows from an expression reduction

(efix x+A. E)* Q w ¢ letcmp y, <cmp [(efix x+ A. E)*/x]E* iny, Q w.

Proposition 2.22.
If £ Qw . F @' with the ruleEfiz, thenE* Q w —, F' Q@ o' andF’ =, F*.
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Proof. By induction on the structure of the derivation BfQ w —. F' @ «’. We consider the casé =
letcmp x < M in Ey whereM # cmp E'.

If letcmp x <M in By @ w +—¢ letcmp 2 < N in £y @Q w by the ruleEpg;,q, thenM —; N.
By Lemma 2.19M* —; N*.

Since(letcmp 2 < M in Ey)* = letcmp 2 < M* in Ey* and(letcmp 2 < N in Eg)* = letcmp 2 < N* in Ep*,
we have(letemp z < M in Ey)* @Q w +—, (letcmp z < N in Ep)* Q w.

Then we letF’ = (letcmp x < N in Ey)*. O

Proposition 2.23.

If E* Qw . F' @ ', then there exist§’ such thatF’ =, F* andE Q w —, F Q ',

Proof. By induction on the structure of the derivation Bf @ w +—. F’ @ ’. An interesting case is when
the rule E'g;,,q is applied last in a given derivation.
If £ =letcmpxz< M in Ey, thenE* = letcmp x < M* in Ey*.

By Lemma 2.20, there exisf§ such thatV —; N andM* —; N*.

Hence we havé&y @ w +— letcmp z < N in Ey @ o’ andE* Q w +, letcmp < N* in Ep* @ ' (where
w=uw).

Then we letF' = letcmp x < N in Fy.
If E = efixx+A. Ey, thenF’ =, ([efix x+A. Ey/x]|Ep)* (andw = w')

becausdefix x+A. Ey)* =, [(efix x+A. Ey)* /x| Eo* = ([efix x+A. Ey/x]Ep)*.

Then we letF’ = [efix x+A. Ey/x] Ep. O

As seen in the definition of expression fixed point construetsn fixed point constructs can leak into
expressions to give rise to recursive computations. Naertbn-terminating computations kv are not
necessarily due to (term or expression) fixed point constyugnce mutable references can also be ex-
ploited to encode recursive computations. For exampldpolfmving expression initiates a non-terminating
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computation in which referencestores a computation term which dereferences itself:

letcmp & <cmp new cmp 0 in
letcmp y < cmp write z cmp ( letcmp y <cmp read z in
letcmp z <y in
z) Q-
in
letcmp z <y in
z

letcmp y <cmp write [ cmp ( letcmp y <cmp read [ in
letcmp z <y in
[ - z) Q[l—cmp0:Oint
letcmp z <y in
z

letcmp z <cmp ( letcmp y <cmp read [ in
letcmp z <y in

— z) @ [l — cmp ( letcmp y <cmp read [ in
in letcmp z <y in
z z) : O int]
letcmp z < 1
cmp ( letcmp z <cmp ( letcmp y <cmp read [ in
letcmp z <y in
— - z) @ [l — cmp ( letcmp y <cmp read [ in
) letcmp z <y in
" z) : Oint]
Z -

2.5.2 Backpatching semantics

Unlike the unfolding semantics, the backpatching semami@luates or computes a fixed point construct
by first finishing the reduction of its body and thging a recursive knot’, or “backpatching” the result.
For term evaluations, the two semantics are equivalentpexbat when the unfolding semantics gives rise
to an infinite loop, the backpatching semantics generatesran

We investigate a fixed point construdix z: A. ¥ for expressions that is based upon the backpatching
semantics. Unlikefix x+ A. F which computes a fixed point over both values and world effacd thus
x is interpreted as an expression, it computes a fixed poiyt ovéér values and in it is a term® For
this reason, the computation is usually referred tvase recursior{18]. Similar constructs are found in
Erkdk and Launchbury [18] (fixed point construafix in Haskell) and Launchbury and Peyton Jones [37]
(recursive state transform&xST in Haskell).

®In this regard, the two fixed point constructs for expressicannot be compare directly.
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Syntax and type system

We introduce aecursion variable: (with an underscore) as a term angedue recursion construeffix z: A. &/
as an expression:

term M = -z

expression F = .- |vfixz: A E

A substitution forz is defined in a standard way. To simplify the presentationhef tiype preservation
theorem (Theorem 2.25), we separate recursion variabbes @rdinary variables in the type system by
introducing avalue recursion context for recursion variables:

value recursion context ¥ u= -|X;z:A4
A typing judgment now includes a value recursion contexetmrd the type of each recursion variable:

term typing judgment 'YXk M:AQuw
expression typing judgment 'YK EF+AQuw

Typing rules for judgmentE L M : A @Qwandl' iy F + A @ winduce those for judgmeniy > <k M : A Q w
andl'; X k F + A @Q w in a straightforward way (by adding to every judgment). We also need additional
rules for recursion variables and value recursion contsruc

Y, 2:ARE+-AQu
F;E,g:AI—ngA@wvvar Ykviixz:AE+-AQuw

Vfix

The monotonicity of the accessibility relation (in Proposition 2.7) is now stated with new typing
judgments.

Proposition 2.24.

If w < ', then
'YK M:AQwimpliesT; X M : AQ W, and
'YK E+-AQuwimpliesT; Xk F+ AQW.

Operational semantics

Conceptually we computefix z: A. E as follows: first we bind: to ablack holeso that any premature
attempt to read it results in\alue recursion error next we computer to obtain a valud/; finally we
“backpatch” every occurrence efin V' with V' itself and return the backpatched value as the result.

One approach to backpatchingwith V is by replacingz by a fixed point construdix z: A. V' (as in
[47]). A problem with this approach is thatmay appear at the resultant world after compufihgrhat is, if
E at a worldw computes td/ at another world.’, z may be used by’. Then we would need substitutions
on worlds as well€.g, [fix z: A. V /z]w"), which should be defined for each kind of world effect andsthu
we want to avoid; besides the type preservation propertgrhes difficult to prove.

To eliminate the need for substitutions on worlds, we maingrecursion stores. It associates each
recursion variable with a valug:

recursion store o = -|o,z=V
Now we reformulate the operational semantics with two rédagudgments:

e Aterm reductionM , ¢ —+ N means thafl/ with recursion store reduces taV.
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e An expression reductioft @ w, o —, F' Q o', 0/ means thaf at worldw with recursion storer
reduces td" at worldw’ with recursion store’.

Aterm reduction requires (but does not update) a recursae because it may read recursion variables. An
expression reduction may update both a world (by reducistguntions) and a recursion store (by reducing
value recursion constructs). Reduction rules for judgmént—, N andE Q w —. F' @ w’ induce those
for judgmentsM , o —¢ N andE Q w0 — F @Qw', ¢’ in a straightforward way (by adding to every
judgment).

Instead of directly modeling black holes with certain speealues, we indirectly model black holes by
reducingvfix z: A. F to an intermediate value recursion construiit, z : A. E. That is, the presence of
vfixe 2: A. E means that is assumed to be bound to a black hole and & currently being reduced; if
a term inE attempts to read, it results in a value recursion error and the whole redaagets stuck. The
typing rule forvfix, z: A. E is the same as farfix z: A. E:

expression FE = .- |Vfixe z:A. FE

Y 2: AR E+-AQuw
Yk vfixg 2: A FE+-AQuw

Vfixe

The rules for reducing recursion variables and value rémuisonstructs are as follows:

=Veo
Y ooV Vvar

zZ
2,0 ¢

vfix 2: A. E QW , 0 e Vfixe 2: A.E Quw o Viiinit
EFEQuw., o FQW o
Viixe 21 A.E Qw0 e Vfixe 2:A. F QW' o

z=V'é&o
Vfixe 2: AV Qu 0= VQuw,o,z2=V Vfizspaten

i V.ﬁxred

These rules ensure that any premature attempt to read sim@tuariable bound to a black hole results in a
value recursion error and the whole reduction gets stuck.riile Vvar implies thatz is not a value in itself.
The rule Vfiz;,;; initiates the computation offix z: A. F by reducing it tovfixe z : A. E; the rule Vfiz,.q
reduces the body' of vfix, 2: A. E; the rule Vfizy,q., backpatcheg with V. Note thata-conversion is
freely applicable even tofix, z: A. E.

The reduction ruleVfizy,,.., assumeslynamic renamingf recursion variables so that all recursion
variables in a recursion store remain distinct. As an exangansider the following expression:

letcmp z1 <cmp vfix z2: A. Eq in letcmp 2o <cmp vfix z: A. E5 in F

Although we do not need to rename either instancedirring typechecking, we have to rename the second
instance after computingfix z: A. E5 because the recursion store already contains a recursiiabeaof
the same name.

Since the result of an evaluation or a computation may comegursion variables, we need to incorpo-
rate recursion stores or their abstractions in statingythe preservation property. We use value recursion
contexts for this purpose as they are essentially the re§ujping recursion stores. Formally we write
E o : ¥ @ w if there exists a one-to-one correspondence betweenV € o andz : A € X such that
<Yk V:AQwholds. Now type preservation property is stated as follows:
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Theorem 2.25 (Type preservation).Suppose= o : ¥ Q w.

fM, o~ Nand ;X M: AQuw,then; Xk N: AQw.

f FEQuw,or—e FQuwW o and; Xk E+ A Qw, then there existy’ such that; X' F - A Q o'
andE= o' : Y Q.

Proof. By induction on the structure of the derivation bf, 0 +—+ N andE Qw0 — F Qw' o’. In-
teresting cases are when one of the rulesr, Vfiziii, Vfitreq, and Vfizy,q.p, iS applied last in a given
derivation. We consider two representative cases below.

z=Veo

— Vwar :
z2. 0=V

Y kz: AQuwimpliesz: A € ¥ by the ruleVvar.
FromEo: X Quw,z=V €o,andz: A€ X,
we have; XKV : AQw.
z=V'do

Viixe 2: AV Qw, o0~ VQuw, o,z=
Sincel=0: ¥ Qw,

foranyz =V’ € o,wehave; X V' + A Qwandz’ : A’ € ¥ for some typeAd’.
We letY = X,z : A.
Then, forany:’ = V' € o0, we have; X' K V' -+ A’ @Qw andz’ : A’ € ¥/ for some typed’.
The ruleVfix, implies-; ¥ I vfixe z: A.V -+ AQuwand; X,z : ARV -+ AQw.
Then; YKV +-AQuwandz: AeY.
Therefore= 0,2 =V : ¥/ Q w. O

Case

Case % Viizypatch

Since the type system does not detect value recursion gitnersomputation of a well-typed expression
may end up with a value recursion error. To catch value remumsrors statically, we can adopt advanced
type systems for value recursion in [9, 16].

Simulating value recursion constructs

Section 2.5.1 has shown thefix x + A. E can be simulated withix x: A. M. Can we also simulate
viix z: A. E with fix z: A. M? In Haskell, a value recursion construsfix for a specific monad can be
defined in terms of the ordinary fixed point constrtigt For example, Moggi and Sabry [47] show that for
a state monal A = S — (A x S) whereM is a type constructor anfl is the type of statesnfix can be
defined as follows:

mfix z: A. M = As:S.fixp: A x S. (Az:A. M) (fstp) s

Here we use a product typé x S and a projection ternfist p; both M and mfix x : A. M have type
MA=S5— (AxS). Since the type constructay in Ao essentially forms a state monad, it may appear
that we can definefix z: A. FE in terms offix x: A. M. Unlike the state monail A, however, we cannot
access stateg€., worlds) as terms. Therefore we cannot exploit the abowetiolsimulatesfix z: A. E with
fixz:A. M.

Another idea to simulatefix z: A. F is to use instructions for mutable references: to compfite: : A. E,
we initialize a fresh reference far, to backpatch:, we update the store. In this cagecan no longer be a
term because its evaluation requires an access to the stoother wordsz should now be defined as an
expression.
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term M == ... |cont k| callccy z. M | throwy M M
value V. u= ... |cont Kk
evaluation context « = [||k M | (Az:A. M) k | throw; K M | throw; (cont; k) k

Figure 2.8: Syntax for continuations for terms.

2.6 Continuations

So far, we have restricted ourselves to world effeces, transitions between worlds\o confines world
effects to expressions so that terms are free of world effeéfhen we extendo with control effects,
however, it is not immediately clear which syntactic catggahould be permitted to produce control effects.
On one hand, we could choose to confine control effects tassns so that terms remain free of any kind
of effect. Then the distinction between effect-free evadues and effectful computations is drawn in a
conventional sense. On the other hand, in order to devitpmto a practical programming language, it
is desirable to allow control effects in terms. For exampbaeptions for terms would be an easy way to
handle division by zero or pattern-match failures occgrdiniring evaluations. At the same time, however,
exceptions for expressions are also useful for those ictiins whose execution does not always succeed.

We hold the view that expressions are in principle a syrtazdtegory specialized for world effects,
and allow control effects iboth terms and expressianghe decision does not prevent us from developing
control effects orthogonally to world effects, since cohgffects are realized with reduction rules whereas
world effects are realized with world structures. In fabere is no reason to confine control effects only to
one syntactic category, since the concept of control eiaetative to what constitutes the “basic” reduction
rules anyway.

As an example of control effect, we consider continuatiokiée consider two kinds: one for terms
and another for expressions. A continuation for terms denah evaluation parameterized over terms; a
continuation for expressions denotes a computation paesined over terms. The two are independent
notions, and we discuss them separately. Since we are fisinmerested in how continuations change the
state of the run-time system, we focus on the operationahs#os only; for the type system, we refer the
reader to the literature2(g, [25]).

In the syntax, we assume value recursion constructs whighnaict with continuations for expres-
sions in an interesting way. Hence we continue to use the &daation judgments\/, o — N and
EQuw,o—e F QW' o' inSection 2.5.2 (but in a different style).

2.6.1 Continuations for terms

Figure 2.8 shows the syntax for continuations for terms. e&aluation contexk is a term with a hold]
which can be filled with a termd/ to produce another term[)M]; it assumes a call-by-value discipline.
cont; k lifts an evaluation context to a value and is called &#®rm continuation callccy andthrow; are
constructs for capturing and throwing term continuatigespectively.

The operational semantics in Figure 2.9 uses a reductiaynjedt in the form of[M] o — £'[N]
whereo is a recursion store. Note that it is the same term redudtidgrent as in Section 2.5.2 because both
k[M] andx’[N] are terms. The rul€'Tred uses a term reductio® =-gterm N. The ruleCTcallcc binds
variablex to a term continuation containing the current evaluatiantext «; the rule CTthrow nullifies the
current evaluation contextto activate a new evaluation context

The formulation of continuations for terms is standard. YWhiteresting is that from a logical perspec-
tive, continuations for terms change the meaninglafue from intuitionistic truth to classical truth [23].
The change in the meaning df true, however, does not mean that we have to change the definition o



48

2 Zoem Ny —2=VET o
K/[M] . 0 ¢ K/[N] re K/[g] i 0 =y K/[V] vvar
k[callccy . M o+ K[[cont, x/z]M] CTecallce

CTthrow

k[throw; (conty k') V] o ¢ K'[V]

Figure 2.9: Reduction rules for continuations for terms.

term M == .- |conte¢
value V. o= ... |conte ¢
expression E = ... |callecce z. E | throwe M E

le | [Jt | letcmp z <[]y in E | letcmp z <cmp ¢ in E |
vfixe 2: A. ¢ | throwe [J¢ F | throwe (conte ¢) ¢

computation context ¢

Figure 2.10: Syntax for continuations for expressions.

expressions accordingly, since our definitionbtomyp is not subject to a particular definition df true.
In other words, even if we change the meaninglafrue, the same definition ol comp remains valid with
respect to the new definition of true; hence the previous definition of expressions also remahd.v

2.6.2 Continuations for expressions

Figure 2.10 shows the syntax for continuations for expoessi Acomputation contexp is an expression
with a hole[J; or [Je. [J+ can be filled only with a term, anfe only with an expressioncont. ¢ lifts a
computation contexp to a value and is called axpression continuatiortallcc, andthrow, are constructs
for capturing and throwing expression continuations, eetpely.

The operational semantics in Figure 2.11 uses a reductiomgnjent in the form of
¢F] Quw,o—. ¢[F] Qu', o'. Note that it is the same expression reduction judgment 8edation 2.5.2
because botlp[E] and ¢'[F] are expressions. The rul€Ecallcc binds variabler to a expression con-
tinuation containing the current computation contéxthe rule CEthrow nullifies the current computation
contextg to activate a new computation context By the ruleCEvfizo, a computation contexffix, z: A. ¢
marks thatz is bound to a black hole.

It is important that the rul&’Fvfizc does not require = V' ¢ o in the premise; it = V' is already
in o, it is removed inc,z = V (so that all recursion variables remain distinct). The oeais that an
expression continuation that has been captirefdrethe completion of the computation ofix, z: A. E
may be throwrafter its completion. In this case, recursion variables alreadybound to the value that the
previous computation offix, z: A. F has returned. We can exploit this property to show that, fan®le,
vfix z: A. letcmp x < M in F andletcmp x < M in vfix z: A. E behave differently even whenis not free in
M.®

Consider an expression

vfix z: A. letcmp x <cmp callcce y. E in F'

wherez is not free inE. The expression continuation captureddalicce y. E may escape the scope of the
whole value recursion construct. When it is thrown latdg already bound to a value and every attempt to

®Erkok and Launchbury [18] call the equivalence betweertwlteexpressions thieft-shrinkingproperty of value recursion.
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M,oc— N
M) Quw, o e ¢[N]Quw

CEtred
o

dlletcmp x<cmp Vin E] Qw0 . ¢[[V/2]E] Quw , o CEbind

CEcallce
e

¢lcallcce . E] Q w, 0 —, ¢[[conte ¢/z]FE] Q w
. CEthrow

¢[throwe (conte ¢') V] Qw0 +—e ¢'[V] Quw

OVfix2: A.E] Qw , 0 ¢ P[Vfixe 2: A.E] Quw o CEvfizo

v CFEvfixc

O|Vfixe 2: A V] Qw, o —e ¢[V]Quw, o,z =

Figure 2.11: Reduction rules for continuations for expressions.

readz in F' succeeds without raising a value recursion error. Thistiheocase for the following expression:
letcmp z <cmp callcce y. E in vfix z: A. F

During the computation of’, z is bound to a black hole by the rul@Evfizo. Consequently any attempt to
readz in F' results in a value recursion error.

In general, value recursion is unsafe in the presence okegm continuations because a value recur-
sion construct may compute to a value containingesolved recursion variablethat is, recursion variables
bound to black holes (the counter-example in [47] can beitinrin Ac). An error resulting from reading
an unresolved recursion variable is similar to a value oarerror in that both result from an attempt to
read a recursion variable bound to a black hole. The diffaxés that while a value recursion error results
from a premature attempt to read a recursion variable tHebgeventually bound to a value, an unresolved
recursion variable remains bound to a black hole forever.

2.7 Summary

Moggi’'s monadic metalanguage,,; [44, 45] has served as tlie factostandard for subsequent monadic
languages [36, 37, 6, 70, 46, 78, 47]. Benton, Biermann, andaiva [7] show that from a type-theoretic
perspective \,,,; is connected to lax logic via the Curry-Howard isomorphidgiienning and Davies [60]
reformulate),,,; by applying Martin-Lof's methodology of distinguishingetveen propositions and judg-
ments [42] to lax logic. The new formulation &f,,; draws a syntactic distinction between values and com-
putations, and uses the modalityfor computations. It is used in the design of a security-typ®nadic
language [13]; its underlying modal type theory inspirgeetgystems in [4, 5] and effect systems in [51, 52].

The idea of the syntactic distinction but without an explicodality for computations is used by Petersen
et al.[54]. The same idea is also used by Mandelbaum, Walker, argrpt1]. Their language is similar to
Ao in that the operational semantics (but not the type syste@d an accessibility relation between worlds.
The meaning of a world is, however, slightly different: a t@dn their language is a collection of facts on a
world in \o.

Ao extends the new formulation of,,; by Pfenning and Davies with an operational semantics to@tipp
concrete notions of computational effect. Compared witts¢hmonadic languages based upgp, it
does not strictly increase the expressive power — it isgiitbdrward to devise a translation froin to
a typical monadic language based upgp; and vice versa. In this regard, the syntactic distinction in
Ao may be thought of as a cosmetic change to the syntax of motaticiages. It, however, inspires a
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new approach to incorporating computational effects intmadic languages by allowing control effects
both in terms and in expressions while confining world effatt expressions. In a monadic language
based upon,,,,;, this (unorthodox) approach would mean that its pure foneti sublanguage is allowed to
produce control effects. The syntactic distinction alsdketo the interpretation of terms and expressions
as complete languages of their own, which makesa candidate for a unified framework under which to
study two languages that have traditionally been studipdrsgéely: Haskell (corresponding to terms) and
ML (corresponding to expressions). Ultimately we belidvat the idea of the syntactic distinction conveys
a design principle not found in other monadic languages.



Chapter 3

The Probabillistic Language PTP

This chapter presents the syntax, type system, and opsahtiemantics of PTP. We give examples to
demonstrate properties of PTP, and show how to verify thabgram correctly encodes a target probability
distribution. We propose the Monte Carlo method [40] as amma# overcoming a limitation of PTP,
namely lack of support for precise reasoning about proibvaliistributions.

For the reader who has read the previous chapter, PTP mayewedias a simplified account af
with language constructs for probabilistic computatiam&ection 2.4.1. A source of simplification is that
a world, which is an infinite sequence of random numbers, doesaffect types of terms and expressions;
hence typing judgments in PTP do not require worlds. TheWihg table show judgments k- and their
corresponding judgments in PTP:

Judgments il Judgments in PTP

'EM:AQuw ' M:A
I'kE+-AQuw 'L E+A
M — N (same)
M-V (same)
EQuwi— FQW (same)
FQuw—Vauw (same)

The syntax of PTP uses type constructors familiar from @ogning languages (rather than logic) and more
specific keywords specialized to probability distribugon

Syntax ofAo Syntax of PTP
ADB A—B
ANB Ax B
cmp E prob

letcmpx <M in E sample x from M in £

The definition of PTP in this chapter is self-contained, butwdd be supplemented by the previous
chapter for its logical foundation.

3.1 Definition of PTP

3.1.1 Syntax and type system

PTP augments the lambda calculus, consistingeofis with a separate syntactic category, consisting of
expressionsn a monadic syntax. Terms denote regular values and expnsssenote probabilistic compu-
tations. We say that a teravaluatedo a value and an expressioomputego a sample.

51
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type AB 1= A—A|Ax A|OA]real

term M,N = x| x:AM|MM|(M,M)|fst M |
snd M |fixx:A. M | prob E | r

expression E,F == M |samplexfromMinE|S

value/sample 14 n= A:A.M | (V,V)|prob E | r

real number r

sampling sequence w n= rire---r;---  wherer; € (0.0,1.0]

typing context r w= | Tz: A

Figure 3.1: Abstract syntax for PTP.

H Fx:AR M: B
Frz:Apz: A YpP ' Az:AM:A—B Lam

'k M, :A—B F'—pMziAA ' My Ay F}—pM2:A2P ]
Th M, M, : B PP T h (M, M) : Ay x Ay ' ©
F}_pM:AleQ P}_pM:AleQ
- Fst - Snd
F}—pfStM.Al F}—psndM.Ag
Fe: AR M:A 'L E+A
N fixe:AM: A Fix 'k prob E: OA Prob 'k r:real Real
e M:A ', M:0A Tyx: AR E+B
= Term - - Bind
'L M+A I' b sample « from M in E <+ B

I'p S =+ real Sampling

Figure 3.2: Typing rules of PTP.

Figure 3.1 shows the abstract syntax for PTP. Wexwlse variables.\x: A. M is a lambda abstraction,
andM M is an application term(M, M) is a product term, anfdt M/ andsnd M are projection terms; we
include these terms to support joint distributiofig.z: A. M is a fixed point construct for recursive evalu-
ations. Aprobability termprob E encapsulates expressi@h it is a first-class value denoting a probability
distribution. r is a real number.

There are three kinds of expressions: tévmbind expressiomample x from M in E, andsampling ex-
pressionS. As an expressiony/ returns (with probability 1) the result of evaluating. sample z from M in E
sequences two probabilistic computationsififevaluates to a probability termy. consumes a random num-
ber in asampling sequencan infinite sequence of random numbers drawn independeattyU (0.0, 1.0].

The type system employs two kinds of typing judgments:

e Term typing judgment’ i, M : A, meaning that)/ evaluates to a value of typé under typing
contextI".

e Expression typing judgmerif i, £ + A, meaning that? computes to a sample of typé under
typing contextl".

A typing contextI” is a set of bindings: : A. Figure 3.2 shows the typing rules of PTP. The raleb
is the introduction rule for the type constructor it means that typ& A denotes probability distributions
over typeA. The ruleBind is the elimination rule for the type constructor The ruleTerm means that
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M|—>tM, N|—>tN/

T T
MN— MN " Oz AM)N — Oz:AM)N "
T M o M T
Oz A M)V ¢ [V/z]M " (M, N) — (M, N) ™"
NHt N, M g N
Tp, —— "t Ty
VN) oy (VN 7% Tt Mooy ft N L5 Tt (VU)o v Lot
M0—>t N T T ,
snd M —¢snd N 5™ snd (V, V') = V7 75
fixx: A. M ¢ [fixz: A M/z]M "™ MQuw—e N Qw o™
MHt N En:
sample z from M in F @ w +—¢ sample z from N in F @ o = 2nd
EFEQuw— E' QW
Epindr

sample x from prob E in ' @ w ¢ sample x from prob E’ in F @ o’

E N,
sample z from prob Vin FF Q w +—¢ [V/z]F Q w BindV
Sampling

SQrwrerQuw

Figure 3.3: Operational semantics of PTP.

every term converts into a probabilistic computation timebives no probabilistic choice. The rulReal
shows thateal is the type of real numbers. A sampling express$dmas also typeeal, as shown in the rule
Sampling, because it computes to a real number.

3.1.2 Operational semantics

Since PTP draws a syntactic distinction between regularegaind probabilistic computations, its opera-
tional semantics needs two kinds of judgments:

e Term evaluation judgment/ — V', meaning that termi/ evaluates to valug.

e Expression computation judgmeht@ w — V' @ w’, meaning that expressiail with sampling se-
guencev computes to samplé with remaining sampling sequengé Conceptually? @ w — V @ o/
consumes random numbersuin- w’. Properties of the consumed sequence w’ (e.g, its length)
are not directly observable.

For term evaluations, we introduce a term reductidn—; NV in a call-by-value discipline (we could
equally choose call-by-name or call-by-need). We identify—; V with M — V, where—{ is the re-
flexive and transitive closure of;. For expression computations, we introduce an expressiduction
FEQuw+—. F Quw' suchthatr @ w —* V @ ' is identified withE @ w — V @ o', where—? is the re-
flexive and transitive closure ef.. Both reductions use capture-avoiding term substitutjddgx] N and

[M /x| E defined in a standard way, as in Section 2.3.3.

Figure 3.3 shows the reduction rules in the operational séosaof PTP. Expression reductions may

invoke term reductionse(g, to reduceM in sample 2 from M in E). The rulesEg;,qr and Fg;,q1y mean
that given a bind expressieample x from prob E in F', we finish computing® before substituting a value
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for z in . Note that like a term evaluation, an expression computatée|f is deterministic; it is only when
we vary sampling sequences that an expression exhibitalpitiic behavior.

An expression computatiol @ w —* V @ w’ means thaf’ takes a sampling sequenceconsumes a
finite prefix ofw in order, and returns a samglewith the remaining sampling sequence

Proposition 3.1. If F Qw —} V @/, thenw = ryry - - - rpw’ (n > 0) where
EQuwwl =l EQry - rw =l =l E,Qd »iVad
for a sequence of expressioRs, - - - , Fy,.

Thus an expression computation coincides with the operatidescription of a sampling function when
applied to a sampling sequence, which implies that an esioresepresents a sampling function. (Here we
use a generalized notion of sampling function mapging, 1.0]°>° to A x (0.0, 1.0]> for a certain typeA.)

The type safety of PTP consists of two properties: type pvatien and progress. Their proofs are
omitted as they are special cases of Theorems 2.8 and 2cHptdrrS which satisfies the type-preservation
and monotonicity requirements on instructions.

Theorem 3.2 (Type preservation).
If M —¢ Nand-t, M : A, then- N : A.
fEQuw— FQuw and - E + A, then -, F =+ A.

Theorem 3.3 (Progress).

If - M : A, then eitherM is a value (.e., M = V'), or there existsV such that\/ —¢ V.

If - E + A, then eitherE is a samplei(e., E = V), or for any sampling sequencs there existF
andw’ such thattll Q w +—, F @Q /.

3.1.3 Fixed point construct for expressions

In PTP, expressions describe non-recursive probabilisticputations. Since some probability distributions
are defined in a recursive wag.(J, geometric distributions), it is desirable to be able tocdés recursive
probabilistic computations as well. To this end, we introel@anexpression variablex and anexpression
fixed point constructfix x+ A. E; a new form of bindingx =+ A for expression variables is used in typing
contexts:

expression E = .. |x|efixx+AE

typing context I' == - |T',x+ A

New typing rules and reduction rule are as follows:

x+ARE+A
Nx+Apx+A Evar Mpefixx+A E+ A

Efix

E
efixx+A. E Qw —, [efixx+A. E/x|E Qw fix
In the rule Efiz, [efix x+ A. E /x| E denotes a capture-avoiding substitutiorefit x+ A. F for expression
variablex.
Expression fixed point constructs are syntactic sugar gtebe simulated with fixed point constructs
for terms. See Section 2.5.1 for details.
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3.1.4 Distinguishing terms and expressions

The syntacticdistinction between terms and expressions in PTP is ogtiarthe sense that the grammar
does not need to distinguish expressions as a separatemoimdl. On the other hand, temanticdis-
tinction, both statically (in the form of term and expressigping judgments) and dynamically (in the form
of evaluation and computation judgments) appears to beeglstor a clean formulation of PTP.

PTP is a conservative extension of a conventional languagause terms constitute a conventional
language of their own. In essence, term evaluations areyaldeterministic and we need only terms when
writing deterministic programs. As a separate syntactiegary, expressions provide a framework for
probabilistic computation that abstracts from the definitof terms. For example, the addition of a new
term construct does not change the definition of expressitisen programming in PTP, therefore, the
syntactic distinction between terms and expressions a@ds deciding which of deterministic evaluations
and probabilistic computations we should focus on. In the section, we show how to encode various
probability distributions and further investigate prdjpes of PTP.

3.2 Examples

When encoding a probability distribution in PTP, we natiyrabncentrate on a method of generating sam-
ples, rather than calculating the probability assignedattheevent. If the probability distribution itself is
defined in terms of a process of generating samples, we sitriptglate the definition. If, however, the
probability distribution is defined in terms of a probalyiliheasure or an equivalent, we may not always de-
rive a sampling function in a mechanical manner. Instead ave o exploit its unique properties to devise
a sampling function.

Below we show examples of encoding various probabilityritistions in PTP. These examples demon-
strate three properties of PTP: a unified representatioenselior probability distributions, rich expressive-
ness, and high versatility in encoding probability disitibns. The sampling methods used in the examples
are all found in simulation theory [10]. Thus PTP is a progmng language in which sampling methods
developed in simulation theory can be formally expressea fashion that is concise and readable while
remaining as efficient as the originals.

We assume primitive typest andbool (with boolean valueSrue andFalse), arithmetic and comparison
operators, and a conditional term constrifict/ then Ny else N5. We also assume standded-binding, re-
cursivelet rec-binding, and pattern matching when it is convenient forekamples. We use the following
syntactic sugar for expressions:

unprob M
eif M then E else s

= sample xz from M in x

= unprob (if M then prob E; else prob E3)

unprob M chooses a sample from the probability distribution denbied/ (we choose the keywornehprob
to suggest that it does the opposite of wpath does.)eif M then F; else F5 branches to eithek; or Es
depending on the result of evaluatifg.

LIf type inference and polymorphism are ignor&d;binding and recursiviet rec-binding may be interpreted as follows, where
_is a wildcard pattern for types:

let x = M in N

letrecx = M in N

Az:o. N) M
letx =fixz:..Min N
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Unified representation scheme

PTP provides a unified representation scheme for probabiigtributions. While its type system distin-
guishes between different probability domains, its openal semantics does not distinguish between dif-
ferent kinds of probability distributions, such as diseratontinuous, or neither. We show an example for
each case.

We encode a Bernoulli distribution over typeol with parametep as follows:

let bernoulli = Ap:real. prob sample x from prob S in
r<p

bernoulli can be thought of as a binary choice construct. It is expressnough to specify any discrete
distribution with finite support. In facternoulli 0.5 suffices to specify all such probability distributions,
since it is capable of simulating a binary choice constr@d{ [if the probability assigned to each element
in the domain is computable).

As an example of continuous distribution, we encode a umifdistribution over a real intervak, b] by
exploiting the definition of the sampling expression:

let uniform = Aa:real. Ab:real. prob sample x from prob S in
a+zx*(b—a)

We also encode a combination of a point-mass distributi@heaimiform distribution over the same domain,
which is neither a discrete distribution nor a continuowsgribiution:

let point_uniform = prob sample x from prob & in
if x < 0.5 then 0.0 else z

Rich expressiveness

We now demonstrate the expressive power of PTP with a nunflexamples.
We encode a binomial distribution with parametgi@ndng by exploiting probability terms:

let binomial = Ap:real. Ang:int.
let bernoulli, = bernoulli p in
let rec binomial, = An:int.
if n =0 then prob 0
else prob sample z from binomial,, (n — 1) in
sample b from bernoulli, in
if bthen 14 z else z
in
binomial, no

Herebinomial,, takes an integet as input and returns a binomial distribution with paranssteaind.

If a probability distribution is defined in terms of a recuesprocess of generating samples, we can trans-
late the definition into a recursive term. For example, weode@a geometric distribution with parameter
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which is a discrete distribution with infinite support, afidws:

let geometric_rec = Ap:real.
let bernoulli, = bernoulli p in
let rec geometric = prob sample b from bernoulli, in
eif b then 0
else sample x from geometric in
1+=z
in
geometric
Here we use a recursive tergaometric of type Oint. Equivalently we can use an expression fixed point
construct:

let geometric_efiz = Ap:real. let bernoulli, = bernoulli p in
prob efix geometric—+int.
sample b from bernoulliy, in
eif b then 0
else sample x from prob geometric in
142

We encode an exponential distribution by using the invefsts cumulative distribution function as a
sampling function, which is known as tiveverse transform method

let exponential, ; = prob sample z from S in
—log x

Therejection methogwhich generates a sample from a probability distributipmdpeatedly generating
samples from other probability distributions until theyisy a certain termination condition, can be imple-
mented with a recursive term. For example, we encode a Gewudstribution with meam: and variance
o2 by the rejection method with respect to exponential distiims:

let bernoullio.s = bernoulli 0.5
let gaussian_rejection = Am :real. Ao :real.
let rec gaussian = prob sample y; from ezponential; ¢ in
sample ya from exponential{  in
eif yo > (y1 — 1.0)2/2.0 then
sample b from bernoullig 5 in
if bthenm + o xyp elsem — o * 1q
else unprob gaussian
in
gaussian
Since the probability of y» > (y; — 1.0)2/2.0 (the termination condition) is positive, the rejection het
above terminates with probability+ (1 —p)p+ (1 —p)?p+--- = ﬁ = 1. In this way, programmers
can ensure that a particular sampling strategy by the refeotethod terminates with probability
We encode the joint distribution between two independeribglvility distributions using a product term.
If Mp denotesP(z) and Mg denotes)(y), the following term denotes the joint distributidtrob(x, y) o
P(2)Q(y):
prob sample z from Mp in
sample y from Mg in

(z,9)
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For the joint distribution between two interdependent piulity distributions, we use a conditional
probability, which we represent as a lambda abstractioimga& regular value and returning a probability
distribution. If Mp denotesP(x) and M denotes a conditional probability(y|x), the following term
denotes the joint distributio®rob(z,y) o P(z)Q(y|x):

prob sample z from Mp in
sample y from Mg x in
(2,9)

By returningy instead of(z, y), we compute the integratioRrob(y) = [ P(z)Q(y|x)dx:

prob sample z from Mp in
sample y from Mg x in
Yy

Due to lack of semantic constraints on sampling functiorescan specify probability distributions over
unusual domains such as infinite data structueeg, (trees), function spaces, cyclic spacegy( angular
values), and even probability distributions themselves: éxample, we add two probability distributions
over angular values in a straightforward way:

let add_angle = Aaq:Oreal. Aag: Oreal. prob sample s from aq in
sample s9 from as in

(81 + 82) mod (2.0 * 7T)

With the modulo operatiomod, we take into account the fact that an anglie identified withg + 27.
As a simple application, we implement a belief network [66]:

John calls.

We assume thal,q,, |purglary d€NOtes the probability distribution that the alarm godswien a burglary
happens; other variables of the forf. are interpreted in a similar way.

let alarm = A(burglary, earthquake) :bool x bool.
if burglary then P otarm|burglary
else if earthquake then Palarm|ﬁburgla7‘y/\earthquake
else Palarm\ﬁburglaryl\ﬁearthquake

let john_calls = Aalarm :bool.
if alarm then PJohn_calls\alarm
else PJohn_calls|—\ala7"m

let mary_calls = Aalarm :bool.
if alarm then PMary_calls|alarm

else PMary_calls\ﬁalarm
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The conditional probabilitiesilarm, john_calls, and mary_calls do not answer any query on the
belief network and only describe its structure. In order naveer a specific query, we have to imple-
ment a corresponding probability distribution. For exaepph order to answer “What is the probability
P Mary_calls| John_catis that Mary calls when John calls?”, we UB\4y_caiis| John_calis PEIOW, Which essen-
tially implements logic sampling [26]:

let rec QMary_callonhn_calls = prOb Sample b from Pburglary in
sample e from Pegrinquake in

sample a from alarm (b, e) in
sample j from john_calls a in
sample m from mary_calls a in
elf] then m else unprob QMary_calls\John_calls
in
QMary_callonhn_calls

Pyyurgiary denotes the probability distribution that a burglary happendP,,,quak. the probability distri-
bution that an earthquake happens. Then the me&mpf., s john_caits GVESD Mary_calis| John_calis- W
will see how to calculat® y/qry_caiis| John._cais IN Section 3.4.

We can also implement most of the common operations on pilidatistributions. An exception is
the Bayes operatioft (which is used in the second update equation of the Bayeg)fille f () results in
a probability distributionR such thatR(z) = nP(x)Q(z) wheren is a normalization constant ensuring
[ R(z)dz = 1.0; if P(z)Q(x) is zero for everyr, thenP # Q is undefined. Since it is difficult to achieve
a general implementation d? # @, we usually make an additional assumption Brand  to achieve
a specialized implementation. For example, if we have atfong and a constant such thatp(z) =
kP(z) < c¢for a certain constari, we can implemenP § @ by the rejection method:

let bayes_rejection = A\p: A—real. Ac:real. A\Q: OA.
let rec bayes = prob sample x from Q) in
sample u from prob S in
eif u < (p x)/c then z else unprob bayes
in
bayes

We will see another implementation in Section 3.4.

High versatility

PTP allows high versatility in encoding probability dibtitions: given a probability distribution, we can
exploit its unique properties and encode it in many diffeneays. For examplegzponential, , uses a
logarithm function to encode an exponential distributibut there is also an ingenious method (due to von
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Neumann) that requires only addition and subtraction dijpers

let exponential_von_Neumann, o =
let rec search = Ak :real. Au:real. Auq :real.
prob sample «’ from prob S in
eif u < v then k + uq
else
sample u from prob S in
eif u < u' then unprob (search k u uq)
else
sample u from prob S in
unprob (search (k+ 1.0) u u)
in
prob sample u from prob S in
unprob (search 0.0 u )

The recursive term igaussian_rejection consumes at least three random numbers. We can encode a
Gaussian distribution with only two random numbers:

let gaussian_Box_Muller = Am:real. Ao :real.
prob sample u from prob S in
sample v from prob S in

m + o * /—2.0 * log u * cos (2.0 x 7 % v)

We can also approximate a Gaussian distribution by expipttie central limit theorem:

let gaussian_central = Am:real. Ao :real.
prob sample x1 from prob S in
sample o from prob S in

sample x12 from prob S in
m+ox*(x1+ 22+ -+ x12 —6.0)

The three examples above serve as evidence of high vdysafilPTP: the more we know about a
probability distribution, the better we can encode it

All the examples in this section just rely on our intuitionsampling functions and do not actually prove
the correctness of encodings. For example, we still do nowkih bernoulli indeed encodes a Bernoulli
distribution, or equivalently, if the expression in it geaiesTrue with probability p. In the next section, we
investigate how to formally prove the correctness of ernuogsli

3.3 Proving the correctness of encodings

When programming in PTP, we often d8&hat probability distribution characterizes outcomescoimput-
ing a given expression?The operational semantics of PTP does not directly ansviegttestion because
an expression computation returns only a single sample &aertain, yet unknown, probability distribu-
tion. Therefore we need a different methodology for intetipg expressions directly in terms of probability
distributions.

We take a simple approach that appeals to our intuition omg@ning of expressions. We write ~
Prob if outcomes of computing® are distributed according t&rob. To determineProb from E, we
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supply an infinite sequence of independesmidom variablesrom U (0.0, 1.0] and analyze the result of
computingF in terms of these random variables.Hf~ Prob, thenE denotes a probabilistic computation
for generating samples frorob and we regard’rob as the denotation gfrob E.

We illustrate the above approach with a few examples. In eaxeimple,R; means the-th random
variable andR?° means the infinite sequence of random variables beginnimg &; (i.e., RiR;+1---). A
random variable is regarded as a value because it represahtsumbers irf0.0, 1.0].

As a trivial example, considerob S. The computation of proceeds as follows:
S Q R —e R @ RY

Since the outcome is a random variable froi0.0, 1.0], we haveS ~ U(0.0, 1.0].
As an example of discrete distribution, considernoulli p. The expression in it computes as follows:

samplez fromprobSinz <p Q R{®

e samplez fromprob Ry inz <p @ R

—e R1<p @ RSO
e True Q@RS® if Ry <p;
False @ RS° otherwise.

—

—

SinceR; is a random variable frorty (0.0, 1.0], the probability ofR; < p is p. Thus the outcome i$rue
with probability p andFalse with probability 1.0 — p, andbernoulli p denotes a Bernoulli distribution with
parametep.

As an example of continuous distribution, consideriform a b. The expression in it computes as
follows:

sample z from probSina+z* (b—a) Q@ R
s a+ Ryx(b—a) Q@ Rs°

Since we have
ap — a bo—a]
b—a' b—a”’

a+ Ry x(b—a) € (ap,bo] iff Ry € (
the probability that the outcome lies (ng, b is

bo—a_ao—a_bo—aoocb —a
b—a b—a b—a 0 0

where we assum@u, by] C (a, b]. Thusuniform a b denotes a uniform distribution ovét, b].

The following proposition shows thatnomial p n denotes a binomial distribution with parametgrs
andn, which we write asBinomialy, ,,:

Proposition 3.4. If binomial, n —{ prob E, ,,, thenE, , ~ Binomialy, .
Proof. By induction onn.

Base case = 0. We haveE, ,, = 0. SinceBinomial, , is a point-mass distribution centered @nwe
haveE, , ~ Binomial, p.
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Inductive case: > 0. The computation ofz,, ,, proceeds as follows:

sample z from binomial, (n — 1) in

sample b from bernoulli, in

if bthen 1 + x else z Q@ RY°
¢ sample x from prob z;, ,_1 in

sample b from bernoulliy in

if bthen1 4z else Q@ Rg°
& sample b from prob b, in
if bthen 1+ xp 1 else zp, 1 @ R$Y,
e L4+mpn1 QR if by = True;
Tpn—1 @ R??,  otherwise.

By induction hypothesishinomial,, (n — 1) generates a samplg, ,,_; from Binomial,, ,—1 after consum-
ing Ry --- R;—; for some: (which is actuallyr). SinceR; is an independent random variabbernoulli,
generates a sampbg that is independent af,, ,,_;. Then we obtain an outconiewith the probability of
b, = Trueandz,,,—1 =k —1o0r
b, = False andz, ,—1 =k,
which is equal t@ * Binomialy ,—1(k — 1) + (1.0 — p) * Binomial, ,—1(k) = Binomial, ,,(k). Thus we
haveFE, ,, ~ Binomialp . O

As a final example, we show thatometric_rec p denotes a geometric distribution with parameter
Supposegjeometric —{ prob E andE ~ Prob. The computation of proceeds as follows:

E Q@ R¥®
¢ sample b from prob b, in
eif b then 0
else sample x from geometric in Q@ Rs°
1+
—s 0 @ R3® if by = True;

sample x from prob Ein1+2 @ R3® otherwise.

The first case happens with probabiljtyand we getProb(0) = p. In the second case, we compute the
same expressiofy with R5°. Since all random variables are independéiif, can be thought of as a fresh
sequence of random variables. Therefore the computatidn with R5° returns samples from the same
probability distributionProb and we getProb(1 + k) = (1.0 — p) * Prob(k). Solving the two equations,
we getProb(k) = p* (1.0 — p)*~1, which is the probability mass function for a geometric riisttion with
parametep.

The above approach can be thought of as an adaption of theodwddgy established in simulation
theory [10]. The proof of the correctness of a sampling metinosimulation theory is easily transcribed
into a proof similar to those shown in this section by intetrg random numbers in simulation theory
as random variables in PTP. Thus PTP serves as a programariggdge in which sampling methods
developed in simulation theory can be not only formally egsed but also formally reasoned about. All
this is possible in part because an expression computati®TP is provided with an infinite sequence of
random numbers to consume, or equivalently, because ofsth®fugeneralized sampling functions as the
mathematical basis.

An alternative approach would be to develop a denotatiogrmlasmtics based upon measure theory [65]
by translating expressions into a measure-theoretictstieicSuch a denotational semantics would be useful
in answering such questions as:
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e Does every expression in PTP result in a measurable sanfplimgion? Or is it possible to write a
pathological expression that corresponds to no measusabipling function?

e Does every expression in PTP define a probability disti@m®iOr is it possible to write a pathological
expression that defines no probability distribution?

If we ignore fixed point constructs of PTR is straightforward to translate expressions even tirec
into probability measures, since probability measuresfamonad [22, 64] and expressions already follow
a monadic syntax; a sampling expressi®ns translated into a Lebesgue measure over the unit interval
(0.0, 1.0]. Let us write[M Jierm for the denotation of termd/. Then we can translate each expresdibimto
a probability measurff]., as follows:

o [prob E]term = [E]exp-

o [Mexp(S) = 1if [M]term isin S.
[Mexp(S) = 0if [M]term is nOtinS.

e [sample z from M in Elex, = [ fd[M]ierm Where a functionf is defined asf(z) = [Elep and
| fd[M]ierm is an integral off over measuréM Jierm.

e [Slexp is @ Lebesgue measure over the unit intefvad, 1.0].

Note that the translation does not immediately reveal tlodaiility measure corresponding to a given
expression because it returnfoamulafor the probability measure rather than the probability suea itself.
Hence, in order to obtain the probability measure, we hawgotthrough essentially the same analysis as
in the above approach. Ultimately we have to invert a sargglinction represented by a given expression
(because an event is assigned a probability proportiorthietgize of its inverse image under the sampling
function), which may not be easy to do in a mechanical way eéyitesence of various operators.

Once we add fixed point constructs to PTP, expressions shutcanslated into a domain-theoretic
structure because of recursive equations. Specificallynafie x: OA. M gives rise to a recursion equation
on typeOA, and if a measure-theoretic structure is used for the daootaf terms of typeOA, it is
difficult to solve the recursive equation; only with a dom#ieoretic structure, the recursive equation can
be given a theoretical treatment. The work by Jones [30] ssiggthat such a domain-theoretic structure
could be constructed from a domain-theoretic model of raadlvers [17], and we leave the development of
a denotational semantics of PTP based upon domain theounyuae fvork.

3.4 Approximate Computation in PTP

We have explored both how to encode probability distrimgian PTP and how to interpret PTP in terms
of probability distributions. In this section, we discusether important aspect of probabilistic languages:
reasoning about probability distributions.

The expressive power of a probabilistic language is an itapbfactor affecting its practicality. Another
important factor is its support for reasoning about prolitgtdistributions to determine their properties. In
other words, it is important not only to be able to encodeotegiprobability distributions but also to be
able to determine their properties such as means, variaandsprobabilities of specific events. Unfortu-
nately PTP does not support precise reasoning about piitpalistributions. That is, it does not permit
a precise implementation of queries on probability distitns. Intuitively we must be able to calculate
probabilities of specific events, but this is tantamounnt@iting sampling functions. Hence, for example,
we cannot calculat® ysq,y_caiis| john_caiis IN the belief network example in Section 3.2 unless we amalyz
Q Mary_calls| John_calls 10 COMpUte its mean in a similar way to the previous section.
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Given that we cannot hope for precise reasoning in PTP, wesehim support approximate reasoning by
the Monte Carlo method [40]. It approximately answers ayoera probability distribution by generating
a large number of samples and then analyzing them. For eeamiplcan approximat@ysary_caiis|.John._cails
which is equal to the proportion dirue’s among an infinite number of samples fr&M ..y _caiis| John_catis:
by generating a large number of samples and counting the ewuailrue’'s. Although the Monte Carlo
method gives only an approximate answer, its accuracy imegrwith the number of samples. Moreover it
is applicable to all kinds of probability distributions aistherefore particularly suitable for PTP.

In this section, we use the Monte Carlo method to implemeatetkpectation query. We also show
how to exploit the Monte Carlo method in implementing the Bapperation. Both implementations are
provided as primitive constructs of PTP.

3.4.1 Expectation query

Among common queries on probability distributions, the triogortant is the expectation query. The
expectation of a functiorf with respect to a probability distributioR is the mean off over P, which we
write as [ fdP. Other queries may be derived as special cases of the etipeajaery. For example, the
mean of a probability distribution over real numbers is thigeetation of an identity function; the probability
of an eventEvent under a probability distributiot is | Igyen:dP Wherelgyen, () is 1 if x is in Event
and O if not.

The Monte Carlo method states that we can approxinfiaté P with a set of sample®y, - - - , V;, from
P:
n—oo n

We introduce a term construetpectation which exploits the above equation:

term M = --- |expectation My Mp

't Myp:A—real T'H Mp:OA
I' b expectation My Mp : real

Exp

Mf I—>>tk f Mp *—>:< prob Ep
fori=1,---,n new sampling sequence w; Ep Qu; —:V,Quw, fV;—fuv
2oivi

n

FExp
expectation My Mp

The rule Exzp says that ifM, evaluates to a lambda abstraction denotfngnd M p evaluates to a prob-
ability term denotingP, then expectation My Mp reduces to an approximation g¢f fdP. A run-time
variablen (to be chosen by programmers) specifies the number of sanmptgEnerate fromP. To eval-
uateexpectation My Mp, the run-time system initializes sampling sequeng¢o generate samplg; for
i=1,---,n(as indicated byiew sampling sequence w;).

In the rule Exp, the accuracy ogn—” is controlled not by PTP but solely by programmers. ThatT$ P
is not responsible for choosing a valuerofe.g, by analyzingE p) to guarantee a certain level of accuracy
in estimating/ fdP. Rather it is programmers that decide a suitable value wf achieve a desired level
of accuracy (as well as an expressiéip for encodingP). Programmers are also allowed to pick up a
particular value of, for each expectation query, rather than using the same wadludor all expectation
gueries. We do not consider this as a weakness of PTP, Bipdtself, chosen by programmers, affects the
accuracy of% after all.

Although PTP provides no concrete guidance in choosing @gevafn in the rule Ezp, programmers
can empirically determine a suitable valuergfnamely the largest value af that finishes an expectation
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query within a given time constraint. (A large value1ofis better because it results in a more faithful
approximation ofP by sampled/; and a smaller difference betwe&;’zﬁ and the true expectatiofi fdP.)
Ideally the time to evaluatexpectation M; Mp should be directly proportional te, but in practice, the
computation of the same expressifip may take a different time, especially p expresses a recursive
computation. Therefore programmers can try differenteslofn and find the largest one that finishes the
expectation query within a given time constraint.

A problem with the above definition is that althougkpectation is a term construct, its reduction is
probabilistic because of sampling sequengen the rule Exp. This violates the principle that a term
evaluation is always deterministic, and now the same term ewaluate to different values if it contains
expectation. In order not to violate the principle, we assume that samypsiequence; in the rule Ezp is
uniquely determined by expressidfp.

Now we can calculat® yzqry_caiis| John_calls @S-

expectation (Az:bool.if x then 1.0 else 0.0) Q arary_calis| John_calls

3.4.2 Bayes operation

The previous implementation of the Bayes operatibii () assumes a functiomand a constant such that
p(z) = kP(x) < cfor a certain constari. It is, however, often difficult to find the optimal value ofi.e.,
the maximum value op(z)) and we have to take a conservative estimate. ofFhe Monte Carlo method,
in conjunction with importance sampling [40], allows us tspnse withe by approximatingy with a set
of samples and® # ) with a set of weighted samples. We introduce a term conshaes for the Bayes
operation and an expression constriugbortance for importance sampling:

term M = ... |bayes M, Mg
expression FE = --- |importance {(V;,w;)|1 <i<n}

In the spirit of data abstractiommportance represents only an internal data structure and is not tirect
available to programmers.

'k M,:A—real T'H, Mg:0A
I' b, bayes M, Mg : OA

'L Vi:A Thw :real 1<i<n |

I' b importance {(V;,w;)|1 <i<n}+ A mP

Bayes

M, —{p Mg —f prob Eg
fori=1,---,n new sampling sequence w; Eg Qu; —;V; Quw! pV;—] w;

- - Bayes
bayes M,, M¢ +—+ prob importance {(V;, w;)|1 <i < n}

k=1, k )
722-:51 Yo < Lizsl 2L where S =1 w;
importance {(V;,w;)|1 <i<n} Qrw e Vi Qu

Imp

The rule Bayes uses sampling sequences, - - - , w, initialized by the run-time system and approximates
Q with n sampled/y, - - - , V,,, wheren is a run-time variable as in the rulérp. Then it appliep to each
sampleV; to calculates its weighty; and creates a sé{(V;, w;)|1 < i < n} of weighted samples as an
argument tamportance. The ruleImp implements importance sampling: we use a random numliber
probabilistically select a samplé, by taking into account the weights associated with all thedas. As
with expectation, we decide to definBayes as a term construct with the assumption that sampling seguen
wj in the rule Bayes is uniquely determined by expressidiy.
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3.4.3 expectation and bayes as expression constructs

Since their reduction involves sampling sequeneggectation andbayes could be defined as expression
constructs so that the assumption on sampling sequen@e the rulesExp and Bayes) would be unneces-
sary. Still we choose to defirexpectation andbayes as term constructs for pragmatic reasons. Consider a
probability distributionP(s) defined in terms of probability distributio@(s) and R(u):

P(s) =nQ(s) [ f (s, u)R(u)du

(A similar example is found in Section 5.35(s) is obtained by the Bayes operation betwégfs) and
Prob(s) = [ f(s,u)R(u)du, and is encoded in PTP as

bayes (\s: _. expectation (Au:_. Mf(s,u)) Mq) Mp

where Mp and Mg are probability terms denoting’ and @, respectively, and/; is a lambda abstrac-
tion denotingf. If expectation was an expression construct, however, it would be diffiuricodeP(s)
because expressi@pectation (Au:_. M(s,u)) Mg cannot be converted into a term. In essence, math-
ematically the expectation of a function with respect to @opbility distribution and the result of a Bayes
operation are always unique (if they exist), which in turmpli@s that ifexpectation andbayes are defined

as expression constructs, we cannot write code involvimeetations and Bayes operations in the same
manner that we reason mathematically.

The actual implementation of PTP (to be presented in thectegter) does not enforce the assumption
on sampling sequence; in the rulesFzp and Bayes, which is unrealistic in practice and required only
for the semantic clarity of PTP. Strictly speaking, therefaerm evaluations are not necessarily deter-
ministic and there is no clear separation between terms gm@ssions in this regard. Since terms are not
protected from computational effects (such as input/dugimg mutable references) and term evaluations
do not always result in unigue values anyway, non-detestiinterm evaluations should not be regarded
as a new problem. Thus expressions are best interpretedyasaatec category dedicated to probabilistic
computations only in the mathematical sense — strict adigerat the implementation level to the semantic
distinction between terms and expressioag ( definingexpectation andbayes as expression constructs)
would cost code readability without any apparent benefit.

3.4.4 Cost of generating random numbers

The essence of the Monte Carlo method is to trade accura@p$br— it only gives approximate answers,
but relieves programmers of the cost of exact computatidricfwcan be even impossible in certain prob-
lems). Since PTP relies on the Monte Carlo method to reasout gipobability distributions, it is important
for programmers to be able to determine the cost of the Moatéo@nethod.

We decide to define the cost of the Monte Carlo method as piopal to the number of random num-
bers consumed. The decision is based upon the assumpttoarkdam number generation can account for
a significant portion of the total computation time. (If tresstof random number generation was negligible,
the number of random numbers consumed would be of little ntapee.) Under our implementation of PTP,
random number generation for the following examples fromiiSe 3.2 accounts for an average of 74.85%
of the total computation time. The following table showsax@n times (in seconds) and percentages of
random number generation when generating 100,000 sangpies RPentium [l 500Mhz with 384 MBytes
memory):
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test case execution time| random number generation (%)
uniform 0.0 1.0 0.25 78.57
binomial 0.25 16 4.65 64.84
geometric_efix 0.25 1.21 63.16
gaussian_rejection 2.5 5.0 1.13 77.78
exponential_von_Neumann 1.09 80.76
gaussian_Box_Muller 2.0 4.0 0.57 77.27
gaussian_central 0.0 1.0 2.79 83.87
QMary_callonhn_calls 21.35 72.57

In PTP, it is the programmers’ responsibility to reason alibe cost of generating random numbers,
since for an expression computation judgménht w — V @ /, the length of the consumed sequence
w — w' is not observable. A analysis similar to those in Sectionca be used to estimate the cost of
obtaining a sample in terms of the number of random numberswroed. In the case gkometric_rec p,
for example, the expected numbeof random numbers consumed is calculated by solving thetiequa

n=14+(1—-p)xn

where 1 accounts for the random number generated from the Berndigliiibution and(1 — p) is the
probability that another attempt is made to generate a safrph the same probability distribution. The
same technique applies equally to the rejection methayl Gaussian_rejection).

3.5 Summary

Although conceptually simple, the idea of using samplingcfions in specifying probability distributions
is new in the history of probabilistic languages. PTP is aan@xle of probabilistic language that indirectly
expresses sampling functions in a monadic syntax. We cdsitdchoose a different syntax for expressing
sampling functions. For example, the author [53] extendddmbda calculus with sampling construct.e
to directly encodes sampling functiongié a formal argument anddenotes the body of a sampling func-
tion). The computation of,e proceeds by generating a random number fi6(0.0, 1.0] and substituting it
for v in e. Compared with PTP, the resultant calculus facilitateseti@ding of some probability distribu-
tion (e.g, ~.y for U(0.0, 1.0]), but it also reduces code readability because every progiegment denotes
a probability distribution and there is no separation betweegular values and probabilistic computations.

The idea of using a monadic syntax for PTP was inspired byttiehastic lambda calculus of Ramsey
and Pfeffer [64], whose denotational semantics is based thp® monad of probability measures, or the
probability monad [22]. In implementing a query for genergtsamples from probability distributions,
they note that the probability monad can also be interpratédrms of sampling functions, both denota-
tionally and operationally. In designing PTP, we take thpagite approach: first we use a monadic syntax
for probabilistic computations and relate it directly torgding functions; then we interpret it in terms of
probability distributions.

The operational semantics of PTP can be presented in diffet@es. For example, expression compu-

tations could use a judgment of the foitn" "%, "™ V', meaning that expressidii computes to sample by
consuming a finite sequence of random numbeyss,, - - -, r,. Although the new judgment better reflects

the actual implementation of expression computation, voi& $0 the formulation given in this chapter to
emphasize the logical foundation of PTP.
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Chapter 4

Implementation

This chapter describes the implementation of PTP. InstEacxementing PTP as a complete programming
language of its own, we choose to embed it in an existing fonat language for two pragmatic reasons.
First the conceptual basis of probabilistic computationBTP is simple enough that it is easy to simulate all
language constructs of PTP without any modification to timetimne system. Second we intend to use PTP
for real applications in robotics, for which we wish to expladvanced features such as a module system,
an interface to foreign languages, and a graphics libraepndd building a complete compiler for PTP is not
justified when extending an existing functional languagsui§icient for examining the practicality of PTP.

We emphasize that embedding PTP in an existing functionguage is different from adding a library
to the host language. For example, the syntax of the hosuéeyis extended with the syntax of PTP,
which is not the case when a library is added. Since the typesyof PTP is also faithfully reflected in the
host language, programmers can benefit from the type syst&mR even when programming in the host
language environment. (A library can also partially reftbettype system of PTP through type abstraction,
but not completely because of different syntax in the Ijadar

In our implementation, we use Objective CAML [2] as the hasiguage. First we formulate a sound
and complete translation of PTP in a simple call-by-valugisge which can be thought of a sublanguage
of Objective CAML. Then we extend the syntax of Objective CAMsing CAMLP4, a preprocessor for
Objective CAML, to incorporate the syntax of PTP. The extshdyntax is translated back in the original
syntax.

4.1 Representation of sampling functions

Since a probability term denotes a probability distribatpecified by a sampling function, the imple-
mentation of PTP translates probability terms into repregt®mns of sampling functions. We translate a
probability term of typeD A into a value of typeA prob, where the type constructgt-ob is conceptually
defined as follows:

type A prob = real®™ —> A * real™

real is the type of real numbers, and we usa1°° for the type of infinite sequences of random numbers.
We simplify the definition ofprob in two steps. First we implement real numbers of typal as

floating point numbers of typgloat (as in Objective CAML). Second we dispense with infinite saues

of random numbers by using a global random number generéteneyver fresh random numbers are needed

to compute sampling expressions. Thus we use the followéfigition of prob:

type A prob = unit —> A

69
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type A,B = A—A|OA]real

term M,N == x| x:AM|MM|prob E|r

expression E,F := M |samplexfromMinE|S|x|
efixx+A. FE

value/sample Vv n= Ax:A.M |prob E | r

floating point number r

sampling sequence w n= rire---r;---  wherer; € (0.0,1.0]

typing context r = | xz:A|T,x+ A

Figure 4.1: A fragment of PTP as the source language.

Hereunit is the unit type which is inhabited only by a unit valie

The use of type&loat instead of typereal means that we use finite precision in representing sampling
functions. Although the overhead of exact real arithmetiedt justified in those applications.§, robotics)
where we work with samples and approximations, programmenssdemand higher precision than is sup-
ported by typefloat. As a contrived example, consider a binary distributiorigmésg probability0.25 to
True and probability0.75 to False:

prob sample x from prob S in
20x2<0.5

If type f1loat uses only one bit in mantissa part (afi@omputes to eithed.5 or 1.0), the above probability
term denotes a wrong probability distribution (namely anponass distribution centered dialse); only
with two or more bits in the mantissa part, it denotes thenidéel probability distribution. Therefore, while
the finite precision supported by the implementation of PG4 l{its floating point numbers in Objective
CAML) is adequate for typical applications, it should als® foted that there can be sampling functions
demanding higher precision and that errors induced by figgidint numbers can be problematic in some
applications.

We use the type constructprob as an abstract datatype. Thatis, the definitiopreh is not exposed to
PTP and values of typé prob are accessed only via member functions. We provide two mefabetions:
prb andapp. prb builds a value of typed prob from a function of typeunit —> A; it is actually defined
as an identity functionapp generates a sample from a value of typ@rob; it applies its argument to a
unit value. The interface and implementation of the absttatatypeprob are given as follows:

type A prob type A prob = unit —> A
val prb : (unit —> A) —> A prob let prb = fun f:unit —> A. f
val app : Aprob—> A let app = fun f: A prob. f ()

We useprb in translating probability terms arupp in translating bind expressions. In conjunction with
the use of the type constructprob as an abstract data type, they provide a sound and compegdtion
of PTP, as shown in the next section.

4.2 Translation of PTP in a call-by-value language

We translate a fragment of PTP shown in Figure 4.1 in a calldiye language shown in Figure 4.2. The
source language excludes product types, which are stiaiglard to translate if the target language is
extended with product types. We directly translate expoasixed point constructs without simulating
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type AB = A-—>A|Aprob|float |unit
expression e, w= z|funx:A.e|ee|prbe|appe|r]|
()| random | fix x: A. u

value v n= funz:A.e|prbuv|r]()

function U n= funzx:A.e

floating point number r

sampling sequence w = ryrg---ri---  where r; € (0.0,1.0]
typing context r n= Tz A

Figure 4.2: A call-by-value language as the target language.

i Nz: AR e: B L
I'e: Ak x: A P ' funz:A.e: A—> B an
I'He:A—>B Fl—veQ:AA I'k e:unit —> A

'k ejeg: B PP '~ prbe: Aprob Prb
P}_v€3—AP1"0b app =—————— Float == ——— Unit
'~ appe: A I'k 7r:float '~ () :unit

Random I'e:Aku: A

I' , random : float Ik fixz:A u: A Fix

Figure 4.3: Typing rules of the target language.

them with fixed point constructs for terms. As the target laage supports only floating point numbers,
in the source language is restricted to floating point nusiber

The target language is a call-by-value language extendirthé abstract datatygerob. It has a single
syntactic category consisting of expressions (becauseei$ diot distinguish between effect-free evalua-
tions and effectful computations). As in PTP, every expogsdenotes a probabilistic computation and we
say that an expression computes to a value. Note that fixed ponstructsfix z: A. v allow recursive
expressions only over function types.

The type system of the target language is shown in FigurdteBiploys a typing judgmert i e : A,
meaning that expressianhas typeA under typing contexi”. The rulesPrb andPapp conform to the
interface of the abstract datatypeob.

The operational semantics of the target language is showrigure 4.4. It employs an expression
reduction judgment @ w —, ¢ @ w’, meaning that the computation efwith sampling sequence
reduces to the computation ef with sampling sequence’. A capture-avoiding substitutiofe/z]f is
defined in a standard way. The rulg,.p.1, is defined according to the implementation of the abstract
datatypeprob. The ruleEgangon Shows thatandom, like sampling expressions in PTP, consumes a random
number in a given sampling sequence. We wite for the reflexive and transitive closure of;.

Figure 4.5 shows the translation of the source languageitatiget language We overload the function
[-]v for types, typing contexts, terms, and expressions. Bathd@nd expressions of typgin the source
language are translated into expressions of fyfje in the target languag€prob E], suspends the com-
putation of[E], by building a functionfun _:unit. [E]y, just asprob E suspends the computation Bt
Since the target language allows recursive expressioysoosl function types, an expression variaklef
type A (i.e, x + A) is translated intax () wherezy is a special variable of typenit —> [A], annotated

!_is a wildcard pattern for variables and types.
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eQuwi-, e @ E fQuwr, ff@uw E

efQuye f@uw o (funz:A.e) fQuw i, (funz:A.e) ff QW P
eQuwi—, e Quw

Eprp

E
(funz:A.e)v Qw —y [v/x]e Qw o prbe @Qw i, prbe @ W'

eQuwi, e @

EApp EAppPrb

appe @w iy appe’ Quw' appprbv Quw =y v () Qw

E Er:
random @ rw —y 7 Qw " fix gz A uQw oy [fix A u/zluQw

Figure 4.4: Operational semantics of the target language.

[A—=Bl, = [Ay —> [Blv
[OA]V = [A]v prob
[really, = float
Hv -
Cz:Aly, = [[y,z:[A
[,x+Aly = [[y,2x :unit —> [4]y
[z]y, = =
[Az:A.M], = funz:[A]y. [M]y
[M N]v = [M]v [N]v
[prob ﬂv = prb (fun _:unit. [Ely)
[sample 2 from M in E]: = (funz:. [Ely) (app [M]y)
[S]y = random
Xy = 2x ()
[efixx+A.E]y, = (fixax:unit —> [A]y. fun _:unit. [Ely) ()

Figure 4.5: Translation of the source language.

with x; if the target language allowed recursive expressions aagrtype,x andefix x+ A. E could be
translated intac, andfix x:[A],. [E],, respectively

Propositions 4.1 and 4.2 show that the translation is falittaf the type system of the source language.
Proposition 4.1 proves the soundness of the translatiorellatyped term or expression in the source lan-
guage is translated into a well-typed expression in thestdanguage. Proposition 4.2 proves the com-
pleteness of the translation: only a well-typed term or egpion in the source language is translated into a
well-type expression in the target language.

Proposition 4.1.
IfT' M : A, then['y k [M]y : [Aly.
IfI' £+ A, then[[')y  [E]y : [Aly.

Proof. By simultaneous induction on the structureidfand £. O

Proposition 4.2.

%In the Objective CAML syntaxfefix x+ A. E], can be rewritten alet rec  z, () = [E], in zx () .
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If Ty kv [M]y : A, then there exist® such thatd = [B], andI' k;, M : B.
If Iy K [Ely - A, then there exist® such thatd = [B], andT'k, £ + B.

Proof. By simultaneous induction on the structure faf and E. The conclusion in the first clause also
impliesT" i, M =+ B. An interesting case is whefi = x.

Case E = x:
T [x]v: A by assumption
Tvhax () A becauséx], = zx ()
Zx tunit —> A € [y by App andUnit

Sincezy is a special variable annotated with expression variable
zx + B € I'and A = [B], for someB.
A=[B]yandl', E + B. O

The translation is also faithful to the operational sentif the source language. We first show that the
translation is sound: a term reduction in the source langisgranslated into a corresponding expression
reduction which consumes no random number (Propositio)] 46 expression reduction in the source
language is translated into a corresponding sequence oéssipn reductions which consumes the same
sequence of random numbers (Proposition 4.7). Note thatopdBition 4.7 E], does not directly reduce
to [Fy; instead it reduces to an expressioto which [F], eventually reduces without consuming random
numbers.

Lemma 4.3. [[M/z]N], = [[M],/x][N], and[[M /z]E], = [[M]y/x][E]y.
Proof. By simultaneous induction on the structure/fand £. O
Lemma 4.4.

[[efix x+A. E/x|M]y = [(fix zx:unit —> [A]y. fun _:unit. [E]y)/z«][M]s.
[[efix x+A. E/x|F]y = [(fix zx:unit —> [A]y. fun _:unit. [E]y)/z«]|[F]v.

Proof. By simultaneous induction on the structureidfand £'. O

Corollary 4.5.
[[efix x+A. E/x]|E]y = [(fix zx:unit —> [A],. fun _:unit. [E]y)/2x][E]y.

Proposition 4.6.
If M — N, then[M], Q w — [N], @Q w for any sampling sequence

Proof. By induction on the structure of the derivation iaf — V.
M —t M/
NN M N o
t

My Qw —y [M'], @w by induction hypothesis
[M N]v = [M]v [N]v
[
[

Case

My [N]y @ sy [M']y [N]y @w by Eg,
M']y [N]y = [M" N, ,

(Ax:A.M)N r—»i (Ax:A. M) N’ Lo

N]y Qw - [N']y Qu by induction hypothesis
[(Az:A. M) N)y = (fun z:[A]y. [M]y) [N]y

(fun z:[4]y. [M]y) [N]y Q w +—y (fun z:[A]y. [M]y) [N']y Qw by Eg,
(fun z:[A]y. [M]y) [N']y = [(Ax: A. M) N,

T3, .
Case (\g:A. M)V o [V/z]M PV ¢
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[(Az: A. M) ‘f] = (fun z:[A]y. [M],) [V]y

(funz:[Aly. [M]y) [V]y @w =y [[V]y/2][M], @w by Ej,
[V]e/z][M]y = [[V/x]M], byLemmag3

Proposition 4.7.
If EQuw—, F Qu', there exist such thafF], @ w —% e @Qw and[F], Q w' +—} e @ W',

Proof. By induction on the structure of the derivation Bf@ w —, F' @ w’. We consider two interesting
cases.

EFEQuw— E'Qw
sample z from prob E in F' @Q w ¢ sample x from prob E' in FF Q w
[E]ly @w —*e@uw where[E'], Quw' —ie@du by induction hypothesis
[sample z from prob E in F, = (funz:_. [F]y) (app (prb (fun _:unit. [E]y)))
(fun z:_. [F)y) (app (prb (fun _:unit. [E]y))) Q w

Case 7 EBindr

—y (funz: . [Fly) ((fun :unit. [Ely) () Qw bY Epperb
e (fun 2. [F),) [E), @ by Ey
=¥ (funa: . [F ])e@w by [Ely Qw —ke @/
[sample = from prob E’ in F], = (fun z:_. [F]y) (app (prb (fun _:unit. [E']y)))
(fun x:_. [F]y) (app (prb (fun _:unit. [F']y))) @ '
= (fun z:_. [Fly) [E']y Q' by Expppro @aNdEg,
=¥ (funz:_. [Fly) e QW' by [F']y @w' ke @ W'
Case efixx+A. E Qw —, [efixx+A. E/x|E Quw Efiw
[efix x+A. E]y = (fix 2x:unit —> [A],. fun _:unit. [E]y) ()
(fix xx:unit —> [A]y. fun _:unit. [E]y) () Qw
—y (fun _tunit. [fix 2x:unit —> [A]y. fun _:unit. [E]y/2x][E]y) () Qw by Erix
=2 [fix ox:unit —> [A]y. fun _tunit. [Ely/z][E]ly Qw by Eg,
[[efix x+A. E/X|E]y = [fix x:unit —> [A],. fun _:unit. [E]y/zx|[Ely by Corollary 4.5
U

The completeness of the translation states that only a texlid or expression reduction in the source
language is translated into a corresponding sequence oéssipn reductions in the target language. In
other words, a term or expression that cannot be furthercestiin the source language is translated into
an expression whose reduction eventually gets stuck. Toliginthe presentation, we introduce three
judgments, all of which express that a term or expressios doefurther reduces.

e M —; e means that there exists no term to whithreduces.
e F @ w +—, e means that there exists no expression to wiifateduces.

e ¢ @ w+—, e means that there exists no expression to whictduces (in the target language).

Corollary 4.9 proves the completeness of the translationieions; Proposition 4.10 proves the com-
pleteness of the translation for expressions.

Proposition 4.8. If [M], @ w —y e @ &', thene = [N}y, w = ', and M +— N.

Proof. By induction on the structure af/. We only need to consider the ca&é = M; M,. There are
three cases of the structure[df; Ms], @ w —, e @ W’ (corresponding to the rulé; , Eg,, andEg,). The
case for the rul&s, uses Lemma 4.3. O
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Corollary 4.9. If M . e, then[M], @ w — e for any sampling sequence
Proposition 4.10. If E @ w —. e, then there exists such thaf £}, Q w —} ¢ Q w r— o.

Proof. By induction on the structure df. We consider two casds = M andFE = sample x from M in F
the remaining cases are all trivial.
Case E = M, [E]y = [M]y:

M —y e by Ererm
M)y Qw —y by Corollary 4.9
We lete = [M].
Case E = sample x from M in F, [E], = (fun z:_. [Fy) app [M]y:
If M = prob -,
Mo by EBina
M)y Qw -y @ by Corollary 4.9
The rulek,,, does not apply to£],.
The ruleEppper does not apply toF], . [M], # prb -
We lete = [E],.
If M =prob E', E' #V,
F Quwee by Epindr
There existg’ such thafE’'], @ w —¥ ¢/ @ w —, e by induction hypothesis.
[E]ly Qw
=¥ (funz:_. [Fy) [F]y Qw [M]y = prb fun _:unit. [E']y
=¥ (funz:_. [Fly) € Quw [Fly Quwr—ie Quw
=y ® € Quwis, e
We lete = (fun z:_. [F]y) €.
If M = probV,thenE @ w —. e does not hold because of the rillg;,.qv . O

The target language can be thought of as a sublanguage oft@éj€AML in which the abstract
datatypeprob is built-in andrandom is implemented aRandom.float 1.0 .2 Since Objective CAML
also serves as the host language for PTP, we need to extesyrtax of Objective CAML to incorporate
the syntax of PTP. The extended syntax is then translatddibabe original syntax of Objective CAML
using the function-|,. The next section gives the definition of the extended syntax

4.3 Extended syntax

We use CAMLP4 to conservatively extend the syntax of Objed@AML, which is assumed to be specified
by a non-terminalterm) (corresponding to terms in PTP), with a new non-termirapr) (corresponding
to expressions in PTP)patt) is a non-terminal for patterns anjdl) for identifiers:

(term) = ... |PROB{ (expr) } probability term

(expry = [ (term)] | term as an expr.
sample (patt) from (term) in (expr) | bind expr.
UNIFORM sampling expr.
efix  (id) -> (expr) | expr. fixed.p.c.
#(id) | expr. variable
unprob  (term) | unprob
eif (term) then (expr) else (expr) eif

3To be strictrandom would be implemented as0 -. Random.float 1.0
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[ (term)] explicitly marks a term as an instance of expressibfid) refers to an expression variahl&l).
All other expression constructs resemble their counté&sparChapter 3.
As an example, we encode a Bernoulli distribution over tiypel as follows:

let bernoulli = fun p ->
PROB { sample x from PROB { UNIFORM } in
[if x <= p then true else false] }

A geometric distribution is encoded with an expression figeitht construct as follows:

let geometric = fun p ->
let bernoulli_p = bernoulli p in
PROB {
efix geo ->
sample b from bernoulli_p in
eif b then [0]
else
sample x from PROB { #geo } in
1+ x]
}

All other examples in Section 3.2 can be encoded in a simi&f w

4.4 Approximate computation

In PTP, reasoning about a probability distribution is acplshed by generating multiple samples and
analyzing them. The implementation of PTP provides two fions for generating independent samples
from a given probability distribution:

type ’'a set

type 'a wset

val prob_to set : 'a prob -> 'a set

val prob to wset : 'a prob -> ('a -> float) -> 'a wset

e 'a set is adatatype for sets of samples of type.

e 'a wset isadatatype for sets of weighted samples of tygpe Each sample is assigned a weight of
typefloat and'a wset may bethoughtofaga * float) set . All weights are normalized
(i.e., their sum isl.0).

e prob_to_set p  generates samples frgmby evaluatingapp p repeatedly.

e prob_to wset p f  generates samples frgmand assigns to each samplea weight off V.

Programmers can specify the number of samples generatedpitab_to set andprob_to_wset ,
thereby controlling the accuracy in approximating prolighidlistributions.
The implementation of PTP provides two functions for appdyihe Monte Carlo method:

val set_ monte carlo : 'a set -> (‘a -> float) -> float
val wset_monte_carlo : 'a wset -> (‘a -> float) -> float
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The following two functions convert sets and weighted satsklio probability distributions:

val set to_prob_resample : 'a set -> 'a prob
val wset to _prob_resample : 'a wset -> 'a prob

e set to_prob_resample s returns a uniform distribution oves.

e wset_to_prob_resample ws returnsprob importance ws which performs importance sampling
onws to select samples.

Now the expectation query (in Section 3.4.1) and the Bayesatipn (in Section 3.4.2) are implemented by
composing these functions:

expectation f p = set_monte_carlo (prob_to_set p) f

bayes f p =wset_to_prob_resample (prob_to_wset p f)

The implementation of PTP also provides a function for apipnating the support of a given probability
distribution. Since the support of an arbitrary probapitiistribution cannot be calculated accurately, we
represent it as a uniform distribution:

val wset_to_prob_truncate : 'a wset -> ’a prob

wset_to_prob_truncate ws returns a uniform distribution over samples of highest weights ws,
wheren is the parameter specifying the number of samples gendrgifmab _to set andprob_to wset
Figure 4.6 illustrates howwset to_prob_truncate works. ws has five samples in it, and
wset_to_prob_truncate is invoked when the parameteris set to three. The two samples with
lowest weights perish, and all the surviving samples arigiaad the same weight.

wset_to_prob_truncate is useful particularly when we want to extract a small nundfesam-
ples of high weights from a probability distribution. Fon(@pproximation of) the uniform distribution over
the support ofp, we usewset_to_prob_truncate (prob_to wset p (fun _ -> 1.0)) ,
where(fun _ -> 1.0) is a constant Objective CAML function returniigO .
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Figure 4.7: Horizontal and vertical computations.

4.5 Simultaneous computation of multiple samples

The implementation of PTP uses a simple strategy to generatiple samples from a given probabil-
ity distribution: compute the same expression repeately.alternative strategy is to perform a single
parallel computation that simulates multiple independahputations. To distinguish the two kinds of
computations, we refer to the former strategywerical computationsind the latter strategy asharizontal
computationas shown in Figure 4.7.

A horizontal computation can be potentially faster than gumivealent number of vertical computations.
For example, a horizontal computationsefnple x from M in E avoids the overhead of evaluating the same
term M more than once; thus the advantage of a horizontal compataécomes pronouncedM takes a
long time to evaluate. The cost associated with each lamgoagstruct also remains constant in a horizontal
computation. For example, a horizontal computatioradfiple z from M in E performs a substitution for
x only once, but vertical computations perform as many stutigtns forz.

To examine the potential benefit of horizontal computatiovesimplement a translator of PTP for hori-
zontal computations. Conceptually an expression now coesfdo an ordered set of samples in such a way
that each sample corresponds to the result of an indepewmddital computation of the same expression.
We may think of the translator as implementing an operatisemantics based upon the judgment

EQwy, - wy] — {V4, -+, V,} @ [w&,--- ,w’]

n

which mean& Q w; — V; @ w} for1 <i <n.

The translator is implemented in a similar way to the opereti semantics for vertical computations:
the syntax of Objective CAML is extended using CAMLP4, andrg and expressions of the extended
syntax are translated back in Objective CAML. The definitiadrthe type constructoprob , however, is
more complex because of conditional construdfs then - else - andeif - then - else -). To motivate our
definition of prob , consider the following expression:

sample x from prob § in
sample y from prob E in
eif x < 0.5 then Ej else s

A vertical computation reduces the whole expression teeith or E5 and needs to keep only one reduced
expression. A horizontal computation, however, may hakeép both; and E, because multiple samples
are generated froi (0.0, 1.0] for variablex. For example, if an ordered sfi.1,0.6,0.3,0.9} is generated
for variablex, the horizontal computation reduces to two smaller hot&lotomputations: one aF; with

x bound to{0.1,—,0.3,—} and another off, with x bound to{—,0.6, —,0.9}. Note that we may not
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compress0.1, —, 0.3, —} to {0.1,0.3} and{—, 0.6, —, 0.9} to {0.6,0.9} because the ordered set to which
variabley is bound may be correlated to variahie
Thus we are led to define the type construgiob using bit vectors and ordered sets:

type bflag
type 'a oset
type 'a prob = bflag -> 'a oset

e bflag is the type of bit vectors of fixed size.

e 'a oset s a datatype for ordered sets of element tigpe An ordered set of element typg may
contain not only ordinary values of type but alsonull values(‘ —’ in the above example). Ordinary
values correspond to values of 1 and null values to valuesrobi vectors.

e 'a prob is a datatype for both probability distributions over type and expressions of typa .
It is defined as the type of a function that takes a bit vecterfgpms a horizontal computation for
values of 1 in the given bit vector, and returns the resulbatéred set.

Since variables from bind expressions are always bounddered sets, we distinguish between terms
manipulating ordinary values and terms manipulating adesets. The new syntax, further augmenting the
extended syntax in Section 4.3, introduces a non-terniimal-m) for those terms manipulating ordered
sets; the definition of the non-termingzpr) uses(pterm) in place of(term):

(term) = ... | (pterm)
(pterm) = lam (patt) -> (pterm) | lambda abstraction
app (pterm) to (pterm) | application term
pif  (pterm) then (pterm)
else (pterm) | cond. term construct
@id) | variable
const  (term) | constants
ptrue |pfalse |@HCMP <=.|--- built-in constants

In the new syntax, a Bernoulli distribution and a geometistrdbution are encoded as follows:

let bernoulli = fun p ->
PROB { sample x from PROB { UNIFORM } in
[pif @x CMP <=. const p then ptrue else pfalse] }

let geometric = fun p ->
let bernoulli_p = bernoulli_prob p in
PROB {
efix geo ->
sample b from bernoulli_p in
eif @b then [const O]
else
sample x from PROB { #geo } in
[const 1 @+ @X]
}

Compared with the examples in Section 4.3, the code is the sxaept that all terms within expressions
manipulate ordered sets rather than ordinary values.
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test case vertical | horizontal | overhead (%)

bernoulli 0.25 0.922 1.188 28.85
uniform 0.0 1.0 0.906 1.078 18.98
binomial 0.25 16 16.563 23.187 39.99
geometric_efix 0.25 3.937 7.157 81.78
gaussian _rejection 2.5 5.0 4.688 7.593 61.96
exponential_von_Neumann g 4.031 6.922 71.71
gaussian_Box_Muller 2.0 4.0 4.796 5.031 4.89
gaussian_central 0.0 1.0 10.594 12.157 14.75
QMary_calls\John_calls 90.063 138.922 54.24

Figure 4.8: Execution times (in seconds) for generating a total of 3,000 samples.

Experimental results

We compare execution times for generating the same numbsaroples in vertical and horizontal com-
putations. The typdflag uses 31-bit integers (of typaet in Objective CAML), which means that a
single horizontal computation performs up to 31 indepehdertical computations; the datatyj@e oset
uses arrays of 31 elements of type. We use an AMD Athlon XP 1.67GHz with 512MB memory for all
experiments.

Figure 4.8 shows execution times for various test cases hapter 3. In all test cases, horizontal
computations are slower than vertical computations, asated by their overhead relative to vertical com-
putations. The overhead of horizontal computations is@albg high in those test cases involving condi-
tional constructs (namelyinomial, geometric_efix, gaussian_rejection, exponential_von_Neumann, g,
and Qpsary_calis| John_calls)- 1he high overhead can be attributed to the fact that a twatét computation
allocates an array of size 31 for every expression, regasdiethe number of ordinary values from it. For
example, even when a horizontal computation is simulatirgl & single vertical computation (after en-
countering several conditional constructs), the comjortaif an expression still requires an array of size
31.

The experimental results show that the overhead for maintgaiordered sets and handling conditional
constructs exceeds the gain from simulating multiple garttomputations with a single horizontal compu-
tation. Our implementation is just a translator which doetrely on support from the compiler. In order
to fully realize the potential of horizontal computationisseems necessary to integrate the implementa-
tion within the compiler and the run-time system. As a spatborh, horizontal computations can be up to
twice faster than vertical computations: random numbeegaion, which costs the same in both vertical
and horizontal computations, accounts for about half tked tmmputation time; hence, with no overhead
other than random number generation, horizontal compunsitwould be about twice faster than vertical
computations.

4.6 Summary

Although PTP is implemented indirectly via a translatiorGOhjective CAML, both its type system and its
operational semantics are faithfully mirrored through tise of an abstract datatype. Besides all existing
features of Objective CAML are available when programmm@TP, and we may think of the implemen-
tation of PTP as a conservative extension of Objective CANhe translation is easily generalized to any
monadic language, thus complementing the well-estalisbsult that a call-by-value language is translated
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in a monadic language(g, see [68]).

The translator of PTP does not protect terms from computatieffects already available in Objective
CAML such as input/output, mutable references, and evescdinses ofRandom.float . Thus, for
example, termV/ in a bind expressiosample x from M in E' is supposed to produce no world effect, but
the translator has no way to verify that the evaluatiorbis effect-free. Therefore the translator of PTP
relies on programmers to ensure that every term denotesuareglue.

Since the linguistic framework for PTP is a reformulationMdggi’s monadic metalanguage,,; (see
Chapter 2), Haskell is also a good choice as a host languagenfeedding PTP. To embed PTP in Haskell,
one would define a Haskell monad, sByob , for probabilistic choices and translate an expression of
type A into a program fragment of typerob A, while ignoring the keyworgrob in probability terms.
Alternatively one could exploit the global random numbenegator maintained by thED monad and
translateD A of PTP intolO A of Haskell. (Our choice of Objective CAML is due to personedfprence.)

We could directly implement PTP by extending the compiled éme run-time system of Objective
CAML. An immediate benefit is that type error messages areenmdormative because type errors are
detected at the level of PTP. (Our implementation deteqis grrors in the translated code rather than in
the source code; hence programmers should analyze typeneessages to locate type errors in the source
code.) As for execution speed, we conjecture that the gaiegtigible, since the only overhead incurred
by the abstract datatygmob is to invoke two tiny functions when its member functions emeked: an
identity function (forprb ) and a function applying its argument to a unit value épp).
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Chapter 5

Applications

This chapter presents three applications of PTP in rohatidsot localization, people tracking, and robotic
mapping, all of which are popular topics in robotics. Altigpudifferent in goal, all these applications share
a common characteristic: the state of a robot is estimated fensor readings, where the definition of state
differs in each case. A key element of these applicationadgainty in sensor readings, due to limitations
of sensors and noise from the environment. It makes the gmolof estimating the state of a robot both
interesting and challenging: if all sensor readings wemiaate, the state of a robot could be accurately
traced by a simple (hon-probabilistic) analysis of sensadings. In order to cope with uncertainty in
sensor readings, we estimate the state of a robot with pilapatistributions.

As a computational framework, we use Bayes filters. In eask,cae formulate the update equations
at the level of probability distributions and translaterthie PTP. All implementations are tested using data
collected with real robots.

5.1 Sensor readings: action and measurement

To update the state of a robot, we use two kinds of sensomgsidictionandmeasurementAs in a Bayes
filter, an action induces a state change whereas a measurgivesinformation on the state:

e An actiona is represented as an odometer reading which returns the(peseosition (z,y) and
orientationd) of the robot relative to its initial pose. It is given as al&ipAz, Ay, Af).

e A measurementn consists of range readings which return distances to abjésible at certain an-
gles. ltis given as an arrdy; ;- - - ;d,| where eachl;, 1 < i < n, denotes the distance between the
robot and the closest object visible at a certain angle.

Figure 5.1 shows a typical example of measurement. It displange readings produced by a laser range
finder covering 180 degrees. The robot is shown in the cemtetyded regions are colored in grey.

Odometers and range finders are prone to errors becauseirofmehanical nature. An odometer
usually tends to drift in one direction over time. Its acclated error becomes manifest especially when
the robot closes a loop after taking a circular route. Ramgiefs occasionally fail to recognize obstacles and
report the maximum distance measurable. In order to cotinese errors, we use a probabilistic approach
by representing the state of the robot with a probabilityritistion.

In the probabilistic approach, an action increases thefggissible states of the robot because itinduces
a state change probabilistically. In contrast, a measunederreases the set of possible states of the robot
because it gives negative information on unlikely states {@ositive information on likely states). We now
demonstrate how to probabilistically update the state ®ftibot in three different applications.

83



84

li‘ Rohot Graph

Figure 5.1: Range readings produced by a laser range finder. The rokeg aperson on its right, visible as the
shadows of two legs.

5.2 Robot localization

Robot localization [72] is the problem of estimating the @a$ a robot when a map of the environment is
available. If the initial pose is given, the problem becomese trackingwhich keeps track of the robot
pose by compensating errors in sensor readings. If thalipitise is not given, the problem becongésbal
localizationwhich begins with multiple hypotheses on the robot pose (atiderefore more involved than
pose tracking).

We consider robot localization under the assumption (date Markov assumptionthat the past and
the future are independent if the current pose is known, oivelgntly that the environment is static. This
assumption allows us to use a Bayes filter in estimating thetrpose. Specifically the state in the Bayes
filter is the robot pose = (z,y,0), and we estimate with a probability distributionBel(s) over three-
dimensional real space. We compugel(s) according to the following update equations (which are the
same as shown in Section 1.1):

(5.1) Bel(s) « [A(s|a,s")Bel(s")ds’
(5.2) Bel(s) <« nP(m|s)Bel(s)

n a normalizing constant ensurinfgBel(s)ds = 1.0. We use the following interpretation of(s|a, s") and
P(m|s):

e A(s|a,s’) is the probability that the robot moves to posefter taking actioru at another pose’. A
is called araction model

e P(mls) is the probability that measurementis taken at pose. P is called aperception model

Given an actiomm and a pose’, a new poses can be generated from the action modgl|a, s’) by
adding a noise ta and applying it tos’. In our implementationA(-|a, s’) assumes constant translational
and rotational velocities while actianis taken from pose’. It also assumes that errors in translational and
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Figure 5.2: Samples from the action model.

rotational velocities obey Gaussian distributions. Feghr2 shows samples of the new pose after taking a
curved trajectory.

Given a measurement and a pose, we can also computeP (m/|s) wherex is an unknown constant:
the map determines a unique (accurate) measuremefior poses, and the squared Euclidean distance
betweenmn andm, is assumed to be proportional ®R(m|s). Figures 5.3 and 5.4 illustrate how to compute
kP(mls). Figure 5.3 shows points in the map that correspond to meamntm whens is set to the true
pose of the robot, in which case the unique measuremgnfor poses coincides withm (recall that a
measurement consists of not points in the map but rangengs)diHence each point is projected on the
contour of the map and is assigned a high likelihood as itelichy the dark color. Figure 5.4 shows points
in the map that correspond to the same measuremebtit whens is set to a hypothetical pose of the robot;
the uniqgue measurement, for poses is represented by points with crosses. Since the measutésnest
taken at the hypothetical pose, no point is correctly aligaleng the contour of the map. Thus each point
is assigned a relatively low likelihood as indicated by theygcolor (the degree of darkness indicates its
likelihood). We computeP(m|s) as the product of all individual likelihoods.

Our implementation simplifies the computation«d?(m|s) by approximatingn, with those points on
the contour of the map that are closest to the points cornelipg to measurement; Figure 5.5 shows how
to approximaten with those points with crosses. This simplification allovgdaprecompute the likelihood
of every point in the map, since its closest point on the aemdd the map is fixed. Our implementation uses
a grid map at 10 centimeter resolution and generafdeihood mapwhich stores the likelihood of each
cell in the map; see Figures 5.6 for a grid map and its likedhmap.

Now, if M4 denotes conditional probabilityl and Mp m returns a functionf(s) = xP(m]|s), we
implement update equations (5.1) and (5.2) as follows:

let Bel,e,, = prob sample s’ from Bel in
sample s from M4 (a,s’) in (5.1)
s

let Belpe, = bayes (Mp m) Bel 1 (5.2)

Both pose tracking and global localization are achieved gBciying an appropriate initial probability
distribution of robot pose. For pose tracking, we use a pwoiass distribution or a Gaussian distribution;

*our implementation filters out outlier range readingsritbefore computing:P (m|s).
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Figure 5.3: Points in the map that correspond to measurements wigeset to the true pose of the robot.

o © ©
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Figure 5.4: Points in the map that correspond to measurements wigeset to a hypothetical pose of the robot.

for global localization, we use a uniform distribution ovlee open space in the map.

Experimental results

To test the robot localizer, we use a Nomad XR4000 mobiletrimbd/ean Hall at Carnegie Mellon Univer-
sity. The robot is equipped with 180 laser range finders (on@#&ch degree so as to cover 180 degrees).
The robot localizer uses every fifth range reading, and thmeasurement consists of a batch%% = 36
range readings. We use CARMEN [49] for controlling the roaotl collecting sensor readings. The robot
localizer runs on a Pentium 11l 500Mhz with 384 MBytes memory

We test the robot localizer for global localization. Thetiadi probability distribution of robot pose is
a uniform distribution over the open space in the map, whichpiproximated with 100,000 samples. The
first batch of range readings is processed according to epetatation (5.2). The resultant probability
distribution, which is still approximated with 100,000 gales, is then replaced by its support approximated
with 500 samples. The number of samples, 100,000 or 500psechempirically — both too many and too
few samples prevent the probability distribution from oemging to a correct pose.

Figure 5.7 shows a probability distribution of robot posegprocessing the first batch of range readings
in Figure 5.1; pluses represent samples generated fronrdfalglity distribution. The robot starts right
below characteA, but there are relatively few samples around the true posibf the robot. Figure 5.8
shows the progress of a real-time robot localization rum ¢oatinues with the probability distribution in
Figure 5.7. The first two pictures show that the robot loealiz still performing global localization. The
last picture shows that the robot localizer has started prasking as the probability distribution of robot
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Figure 5.5: Approximatingm, from measurement, and poses.

pose has converged to a single hypothesis.

We test the robot localizer with 8 runs, each of which takesffardnt path. In a test experiment, it
succeeds to localize the robot on 5 runs and fails on 3 rure (@sult should not be considered statistically
significant.) As a comparison, the CARMEN robot localizehjiet uses particle filters and is written in C,
succeeds on 3 runs and fails on 5 runs under the same condi@i6r000 samples during initialization, 500
samples during localization, and 36 range readings in eadsutement). Note that the same sequence of
sensor readings does not guarantee the same result bettus@mbabilistic nature of the robot localizer.
In the worst scenario, for example, the initial probabiligtribution of robot pose may have no samples
around the true pose, in which case the robot localizer ikelglto recover from errors. Hence it is difficult
to precisely quantify the performance of the robot localiflee goal is to convince that our implementation
in PTP is reasonably acceptable, not totally fake.

5.3 People tracking

People tracking [50] is an extension of robot localizatiarthat it estimates not only the robot pose but
also positions of people (or unmapped objects). As in ratc#lization, the robot takes an action to change
its pose. Unlike in robot localization, however, the robategorizes sensor readings in a measurement
by deciding whether they correspond with objects in the nrapwith people. Those sensor readings that
correspond with objects in the map are used to update the polse; the rest of sensor readings are used to
update positions of people.

A simple approach is to maintain a probability distributiBal(s, @) of robot poses and positionsi
of people. Although it works well for pose tracking, this apgch is not a general solution for global
localization. The reason is that sensor readings from peap@ correctly interpreted only with a correct
hypothesis on the robot pose, but during global localiratibere may be incorrect hypotheses that lead
to incorrect interpretation of sensor readings. For examibie two objects in the upper right region in
Figure 5.1 are interpreted as a person only with a correcothngsis on the robot pose. This means that
during global localization, there exists a dependence detvthe robot pose and positions of people, which
is not captured byBel(s, ).

Hence we maintain a probability distributidsel (s, Ps()) of robot poses andprobability distribution
P, (i) of positionsi of people conditioned on robot pose P, (i) captures the dependence between the

20ur implementation assumes that people move independehtiach other, and represerits(i) as a set of independent
probability distributions each of which keeps track of thusigion of an individual person.
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Figure 5.6: A grid map and its likelihood map.

robot pose and positions of people3el(s, Ps(i)) can be thought of as a probability distribution over
probability distributions.

As in robot localization, we updatBel(s, Ps(u)) with a Bayes filter. The difference from robot local-
ization is that the state is a pair #fand Ps(@) and that the action model takes as input both an actiand
a measurement.. We use update equations (5.3) and (5.4) in Figure 5.9 (wdmetobtained by replacing
s by s, Ps(i) anda by a, m in update equations (1.1) and (1.2)).

The action modeH (s, P,(ii)|a, m, s, Py (u')) generates, P, (@) from s, Py (u') utilizing actiona and
measurementn. We first generate and thenP; (%) according to equation (5.5) in Figure 5.9. We write
the first Prob in equation (5.5) asiopot(s|a, m, s', Py (u')). The secondProb in equation (5.5) indicates
that we generaté, (%) from P, (u/) utilizing actiona and measurement, which is exactly a situation
where we can use another Bayes filter. For this inner Bayes, filte use update equations (5.6) and (5.7)
in Figure 5.9. We writeProb in equation (5.6) asl,eopie (@]a, w s, s"); we simplify Prob in equation (5.7)
into Prob(m|, s) becausen does not depend ofl if s is given, and write it a®p,eopie (M|, 5).

Figure 5.10 shows the implementation of people tracking®PM 4, and M 4, denote condi-
tional probabilitiesA,obor aNd.Apeople, respectivelyMp . m s returns afunctionf (@) = £Ppeople (M|, s)
for a constant. Since bothn ands are fixed when computingi(«), we consider only those range readings
in m that correspond with people. In implementing update eqod6.4), we use the fact th®(m/|s, Py (1))
is the expectation of a functiof(i) = Ppeople (1|1, ) With respect taPs(i):

(58) P(m‘s, Ps(ﬁ)) = fppeople(m‘ﬁa S)Ps(ﬁ)dﬁ

Our implementation further simplifies the models used inupdate equations. We us&qpot(s|a, s’)
instead ofAopot(s|a, m, s’, Py (u')) as in robot localization. That is, we ignore the interactimiween
the robot and people when generating new poses of the roliwilaBy we useA,epie(%|u’) instead of
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Figure 5.7: Probability distribution of robot pose after processing finst batch of range readings in Figure 5.1.

Apeop|e(ﬁ|a,u7, s, s') on the assumption that positions of people are not affecyethé robot poseji is
obtained by adding a random noisedtb We also simplifyP(m|s, Ps(i)) in update equation (5.4) into
P(m|s), which is computed in the same way as in robot localizatiamde equation (5.8) is not actually
exploited in our implementation.

Experimental results

We test the people tracker on the same robot and machineréhasad in robot localization. The people
tracker uses the implementation in Figure 5.10 during dltgalization, but once it succeeds to localize
the robot and starts pose tracking, it maintains a proltistribution Bel(s, @) as there is no longer a
dependence between the robot pose and positions of peoikkethe robot localizer, we do not intend to
guantitatively measure the success rate of people trackatiger the focus is on ensuring that our imple-
mentation in PTP is not completely useless.

Figure 5.11 shows the progress of a real-time people trgckin which uses the same sequence of
sensor readings as Figure 5.8. The first picture is taken pifteessing the first batch of range readings
in Figure 5.1; pluses) represent robot poses and crosselrepresent positions of people. The second
picture shows that the people tracker is still performingpgl localization. The last picture shows that the
people tracker has started pose tracking; the position dfi earson in sight is indicated by a grey dot.
Figure 5.12 shows range readings when the third picturegargi5.11 is taken; the right picture shows
a magnified view of the area around the robot. Note that a parsty be occluded by another person or
objects in the map, so grey dots do not always reflect the mewmenf people instantly. A refined action
model for people€.qg, Apeople (U]a, o, s, s’) or one estimating not only the position but also the veloafty
each person) would alleviate the problem.

5.4 Robotic mapping

Robotic mapping [75] is the problem of building a map (or atisppanodel) of the environment from sensor
readings. Since measurements are a sequence of inacagalesmapshots of the environment, a robot
simultaneously localizes itself as it explores the envinent so that it corrects and aligns local snapshots to
construct a global map. For this reason, robotic mappintgsraferred to asimultaneous localization and
mapping(or SLAM).
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Taking a probabilistic approach, we formulate the robotapping problem with a Bayes filter which
maintains a probability distributiofel(s, g) of robot poses and mapy. Given an actiorn and a measure-
mentm, we updateBel(s, g) as follows:

(5.9) Bel(s,g) « [y ,A(s.gla,s',g")Bel(s',g')d(s',q)
(5.10) Bel(s,g) < nP(mls,g)Bel(s,g)

We assume that an action is independent of the map and dogsamgte the environment; thatid(s, g|a, s, ¢')
= A(s|a,s) if g = ¢, andA(s,gla,s',¢") = 0if g # ¢’. Then we can simplify update equation (5.9) as
follows:

(5.11) Bel(s,g) «— [,A(s|a,s")Bel(s', g)ds'

Therefore the action model becomes the same as in roboiZatah. We implement the new update
equation (5.11) as follows:

let Bely,e, = prob sample (s, g) from Belyq in sample s from M 4 (a,s’) in (s, g)

The update equation (5.10) is implemented with a Bayes tiparas before.

Unfortunately the space of maps has a huge dimension, whaglesrit impossible to maintaiBel(s, g)
without simplifying their representation. Therefore waially make additional assumptions on maps to
derive a specific representation. For example, assumingath@p consists of a set of landmarks whose
locations are estimated with Gaussian distributions, weusz a Kalman filter instead of a general Bayes
filter. If measurements, or local snapshots of the envirarirere assumed to be accurate relative to robot
poses, we can represent a map by the sequence of robot paseshehmeasurements are taken, as in [38].
We can also exploit expectation maximization [14], in whied perform hill climbing in the space of maps
to find the most likely map. This approach does not maintairobability distribution over maps because it
keeps only one (most likely) map at each iteration.

Here we assume that the environment consists of an unknomberof stationary landmarks. Then
the goal is to estimate positions of landmarks as well asdbetrpose. The key observation is that we
may think of landmarks as people who never move in an emptiyament. It means that the problem is
a special case of people tracking and we can use all the egadti Figure 5.9. Below we use subscript
landmark INStead of,eqpe fOr the sake of clarity.

As in people tracking, we maintain a probability distrilmmtiBel(s, Ps(@)) of robot poses and prob-
ability distribution P,(«) of positions« of landmarks conditioned on robot pose Since landmarks are
stationary andA|andmark(ﬁ]a,J’, s,s’) is non-zero if and only ifi = ul, we skip update equation (5.6) in
implementing update equation (5.3),.p0: in €quation (5.5) use”s'ﬁandmark(mh?, s) to test the likelihood
of each new robot posewith respect to old positioné” of landmarks, as in FastSLAM 2.0 [48]:

(5.12) Arobot(8|a>m> S/>PS’ (,L?/))
= [Prob(s|a,m, s, u') Py (u)du
/Prob(s\a,QZ’)Prob(m, s'|s, a,)

Prob(m, s'|a, )

Py (u')du'

Prob(s|a, ')

Prob(m, s'|a,u)

= [ Prob(m,s'|s,a,u') Py (u/)du! where 7" =

= [ Prob(s'|s, a,u’, m) Prob(ml|s, a,u’) Py (u')du’
[ Prob(s'|s, a) Prob(m|s, ) Py (u!)du’
= "7//~Arobot(3|aa 3/)fplandmark (m|1?> S)PS’ (’L;/)d’LZ/
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Givena ands’, we implement equation (5.12) with a Bayes operationd@syo: (-|a, s').

Figure 5.13 shows the implementation of robotic mappingTi? PCompared with the implementation
of people tracking in Figure 5.10, it omits update equat®®) and incorporates equation (5.12).4,,
and Mp, , . denote conditional probabilitiesl,oper and Plandmark, respectively, as in people tracking.
Since landmarks are stationary, we no longer négg . . If we approximateBel(s, Ps(u)) with a
single samplei(e., with one most likely robot pose and an associated map),tagpation (5.4) becomes
unnecessary.

Experimental results

To test the mapper, we use a data set collected with an out@ébdcle in Victoria Park, Sydney [1]. The
mapper runs on the same machine that is used in robot lottatiznd people tracking (Pentium Il 500Mhz
with 384 MBytes memory). The data set is collected while thiiele moves approximately 323.42 meters
(according to the odometry readings) in 128.8 seconds.eSimevehicle is driving over uneven terrain, raw
odometry readings are noisy and do not reflect the true patheofehicle, in particular when the vehicle
follows a loop.

Figure 5.14 shows raw odometry readings in the data set. rlileepbsitions of the vehicle measured
by a GPS sensor are represented by crosses, which are kvaitdyp for part of the entire traverse and
are not exploited by the mapper. Note that the odometry mgadéventually diverge from the true path
of the vehicle. Figure 5.15 shows the result of the robotippieg experiment in which we approximate
Bel(s, Ps(i)) with a single sample and use 1,000 samples for the expettiiery and the Bayes operation.
The circles represent landmark positions (mean of theiogdodity distributions). The mapper successfully
closes the loop, building a map of the landmarks around tkie gghe experiment, however, takes 145.89
seconds, which is 13.26% longer than it takes to collect #ia dget (128.8 seconds).

5.5 Summary

PTP is a probabilistic language which allows programmertwentrate on how to formulate probabilistic
computations at the level of probability distributionsgaedless of the kind of probability distributions
involved. The three applications in robotics substantia¢epracticality of PTP by illustrating how to directly
translate a probabilistic computation into code and piiogiégdxperimental results on real robots.

Our finding is that the benefit of implementing probabilistimputations in PTP, such as improved
readability and conciseness of code, can outweigh its disddge in speed. For example, our robot localizer
is 1307 lines long (826 lines of Objective CAML/PTP code foolpabilistic computations and 481 lines of
C code for interfacing with CARMEN) whereas the CARMEN rolbatalizer, which uses particle filters
and is written in C, is 3397 lines long. (Our robot localizEoauses the translator of PTP which is 306 lines
long: 53 lines of CAMLP4 code and 253 lines of Objective CAMade.) The comparison is, however,
not conclusive because not every piece of code in CARMENTritartes to robot localization. Moreover
the reduction in code size is also attributed to the use oé@ivp CAML as the host language. Hence the
comparison should not be taken as indicative of reductiarode size due to PTP alone. The speed loss is
also not significant. For example, while the CARMEN robotalimer processes 100.0 sensor readings, our
robot localizer processes on average 54.6 sensor readindsévertheless shows comparable accuracy).

On the other hand, PTP does not allow programmers to explugtrtcular representation scheme for
probability distributions, which is inevitable for achieg high scalability in some applications. In the
robotic mapping problem, for example, one may choose tooxpiate the position of each landmark with a
Gaussian distribution. As the cost of representing a Ganssstribution is relatively low, the approximation
makes it possible to build a highly scalable mapper. For gtanMontemerlo [48] presents a FastSLAM
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2.0 mapper which handles maps with over 1,000,000 landm&idkssuch a problem, PTP would be useful
for quickly building a prototype implementation to test tmrectness of a probabilistic computation.
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Figure 5.8: Progress of a real-time robot localization run. Taken at&tbrds, 40 seconds, and 80 seconds after
processing the first batch of sensor readings in Figure 5.1.
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[A(s, Py(@)|a,m, s, Py (u))Bel(s', Py (u))d(s', Py (u'))

(5.3) Bel(s, Ps(d@)) «
(5.4) Bel(s, Ps(@)) <« nP(m]s, P( i))Bel(s, Ps(1))
= nBel(s, Ps(u preop|e(m]u s)Ps(@)du
(5.5) A(s, Ps(i)|a,m, s’, Py (J)) = Prob(s|la,m,s’, Py(u )) Prob(Ps(@)|a,m, s, Py (u ’),s)
= Arobot(s|a,m, s, Py (u )) Prob( s ( )]a,m,s,Ps/(zp),s)
(5.6) Py(@) « [Prob(ila, u', 5,8 )Py (u)du
= [Apeople(tla, o ,8,8 )Py (u )du
(5.7) P,(@) « n'Prob(ml|i,s,s")Ps(i)

s (
= 77/7Dpe0ple (mld, ) Ps(1)

Figure 5.9: Equations used in people tracking. (5.3) and (5.4) for thgeBdilter computingBel(s, Ps(@)). (5.5) for
decomposing the action model. (5.6) and (5.7) for the inragre filter computing?, ().

let Belyew = )
prob sample (s', Py (u/)) from Bel in

sample s from M4, (a,m,s’, Py (—‘)) in

let P,(7) = prob sample o’ from Py (u/) in
sample @ from My, . (a, s, s')in ¢ (5.6) (5.3)
@ (5.5)

in
let Py() = bayes (Mp,,,.,. m s) Ps() in }(5.7)
(s, Ps(1)) ) y
let Belyew = } (5.4)
bayes (s, Ps(%)): _. (expectation (Mp,,,.,. m s) Ps(i)) Bel '

Figure 5.10: Implementation of people tracking in PTP. Numbers on thktrltand side show corresponding equa-
tions in Figure 5.9.
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Figure 5.11: Progress of a real-time people tracking run. Taken at 0 $s;a2D seconds, and 70 seconds after
processing the first batch of sensor readings in Figure 5.1.
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lE‘ Robot Grapk

Figure 5.12: Range readings and the area around the robot during a peagkéng run.

let Belpew =
prob sample (s, Py (u')) from Bel in
sample s from

-

bayes \s:_. (expectation (Mp, .. ms) Py(u')) (5.12) (5.3)
(M Aoy (@, ) in (5.5)
let P;(i7) = bayes (Mp,,, ., m s) Py(u/) in } (5.7)
(s, Ps(10))
let Belpew = bayes (s, Py(1)): _. (expectation (Mp,, ., m s) Ps(@)) Bel 1 (5.4)

Figure 5.13: Implementation of robotic mapping in PTP.
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Figure 5.14: Raw odometry readings in the robotic mapping experiment.
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Figure 5.15: Result of the robotic mapping experiment.
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Chapter 6

Conclusion

We have presented a probabilistic language PTP whose maticahbasis is sampling functions. PTP sup-
ports all kinds of probability distributions — discrete iisutions, continuous distributions, and even those
belonging to neither group — without drawing a syntacticemantic distinction. We have developed a lin-
guistic framework\o for PTP and demonstrated the use of PTP with three applitatiorobotics. To the
best of our knowledge, PTP is the only probabilistic languagh a formal semantics that has been applied
to real problems involving continuous distributions. Tdnare a few other probabilistic languages that are
capable of simulating continuous distributions (by conmmran infinite number of discrete distributions),
but they require a special treatment such as the lazy ei@ustrategy in [33, 59] and the limiting process
in [24].

PTP does not support precise reasoning about probabibtyilaitions. Note, however, that this is
not an inherent limitation of PTP due to its use of samplingcfions as the mathematical basis; rather
this is a necessary feature of PTP because precise reasdrongprobability distributions is impossible in
general. In other words, if PTP supported precise reasoitiwguld support a smaller number of probability
distributions and operations.

The utility of a probabilistic language depends on each lprakto which it is applied. PTP is a good
choice for those problems in which all kinds of probabilitigtdbutions are used or precise reasoning is
unnecessary. Robatics is a good example, since all kindsoblapility distributions are used (even those
probability distributions similar t@oint_uniform in Section 3.2 are used in modeling laser range finders)
and also precise reasoning is unnecessary (sensor reaglengsgccurate at any rate). On the other hand,
PTP may not be the best choice for those problems involvifg discrete distributions, since its rich
expressiveness is not fully exploited and approximateoriag may be too weak for discrete distributions.

Although we have presented only an operational semantid3Téf (which suffices for all practical
purposes), a denotational semantics can also be used ® thi@fuP TP is a probabilistic language. It may
also answer important questions about PTP such as:

e What is exactly the expressive power of PTP?
e Can we encode any probability distribution in PTP?
¢ If not, what kinds of probability distributions are impdsig to encode in PTP?

The challenge is that in the presence of fixed point consiruceasure theory does not come to our rescue
because of recursive equations. Hence a domain-theoteiitige for probability distributions should be
constructed to properly handle recursive equations. Thid# W Jones [30] suggests that such a structure
could be constructed from a domain-theoretic model of reailers [17].
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The development of PTP is an effort to marry, in one of mansids ways, two seemingly unrelated
disciplines: programming language theory and roboticsprbgramming language theory, it contributes a
new linguistic framework\o and another installment in the series of probabilistic lawges. To robotics,
it sets a precedent that a high level formulation of a problleas not always have to be discarded when it
comes to implementation. It remains to be seen in what othgsthe two disciplines can be married.
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