Engineering Formal Security Policies
for Proof-Carrying Code

Andrew Bernard
April 13, 2004
CMU-CS-04-124

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Thesis Committee:
Peter Lee, Chair
Karl Crary
Frank Pfenning
Fred B. Schneider, Cornell University

Copyright (©2004 Andrew Bernard

This work has been partially supported by the National Science Foundation under grant
CCR-0121633.

The author wishes to acknowledge support through the High Dependability Computing Pro-
gram from NASA Ames cooperative agreement NCC-2-1298.

Keywords: proof-carrying code, temporal logic, formal verification, proof
engineering, security policies

Abstract

Thesis statement: It is practical to engineer a system for proof-carrying code (PCC)
in which policy is separated from mechanism. In particular, I exhibit a generic
implementation of the PCC infrastructure that accepts a wide variety of security
properties encoded in a formal specification language. I approach the problem by
addressing two distinct subproblems: enforcement (checking programs and proofs)
and certification (constructing programs and proofs).

for Lisa

Acknowledgements

This dissertation would not have been possible without the assistance, guidance,
and support of many different people.

I would like to thank my advisor, Peter Lee, for his unwavering confidence in my
abilities and for his thoughtful attention to the progress of my graduate education.
Peter’s guidance and insights have been an invaluable asset to my research, and I
sincerely hope that this work reflects his usual high standard for quality.

I would like to thank my thesis committee for their careful attention to the
content of my dissertation, and to my research work as a whole. Any individual
characterization of their contributions must necessarily be incomplete, but I will
attempt to describe them nonetheless. Frank Pfenning pushed me to delve more
deeply into mathematical logic and introduced me to the profound effect that seem-
ingly minor changes can have on the properties of a deductive system. Fred B.
Schneider challenged many of my unfounded assumptions about how security poli-
cies can be expressed, employed, and understood—the work is much stronger as
a result. Karl Crary uncovered several subtle ambiguities in the original formal
system and enabled me to develop the more careful account that is presented here.

Bob Harper had a deep influence on my thinking early on in my graduate studies.
John C. Reynolds had many helpful suggestions on the formalization of procedure
specifications in the derived program logic. And without Peter B. Andrews’ excellent
class on mathematical logic, I would not have been able to develop the formal
semantics for my logical framework.

Michael Donohue and Stephen Magill contributed proofs of many of the derived
inference rules that make up the prelude implementation.

I would like to thank Brigitte Pientka, Kevin Watkins, and all the members of the
ConCert reading group for many lively discussions of various topics in programming
language research. I also had many productive discussions with Josh Berdine and
Aaron Stump during the later stages of my dissertation research. My officemates
Rob O’Callahan and Yang-hua Chu helped me to refine the initial ideas that led to
my dissertation research.

I would like to thank my fiancé Lisa Price for her love and support, for her tireless
proof reading, and for her many sacrifices during the later stages of my graduate
study. Finally, I would like to thank my parents, Nancy and Rudy Bernard, for
their love and support throughout my life.

Contents

Abstract

Acknowledgements

1

Introduction

1.1 Proof-Carrying Code
1.2 Specialdo
1.3 Towards a Security-Policy Language
1.4 Dissertation Synopsis. oo oL oo

Background
2.1 Security Policies and Certified Code
2.1.1 Security Policies
2.1.2 Certified Code o o
2.1.3 Approaches to Security-Policy Specification
2.1.3.1 Proof-Carrying Code
2.1.3.2 Typed Assembly Language
2.1.3.3 Safe Interpreters
2.1.3.4 Software Fault Isolation
2.1.4 Limitations of Current Approaches
2.1.5 Goals for a Security-Policy Language
2.2 Proof Engineering and Temporal-Logic PCC.
2.2.1 Temporal-Logic PCC.
2.2.2 Proof Engineering
2.2.3 Proof Reconstruction.o
2.2.3.1 Symbolic Evaluation
2.23.2 ProofOutlines
2.3 Dissertation Scope e

Temporal Logic

3.1 Syntaxo e e e e e
3.1.1 Substitution o

3.2 Model-Theoretic Semantics
3.2.1 Definitions
3.2.2 Valuation oo

vii

<

S O W N =

3.2.3 Satisfactiono 32

3.3 Proof System 36
3.4 Theories e e e e e e e e 43
3.4.1 Algebraic Properties 43
342 Equality 46
3.421 Semantics i e 46

3422 InferenceRules. 46

3.4.3 Pairs. e e e e e e 46
3.43.1 Semanticst e 46

3.4.32 InferenceRules. 46

344 Lists e e e e e e e e 47
3.44.1 Semantics i e e 47

3.4.4.2 Inference Rules. 47

3.5 Soundness L e e e e e e e e 47
Machine Model 49
4.1 Instruction Set e 50
4.2 Syntaxo e e e e e e 52
4.3 Operational Semantics 57
4.3.1 Execution Sets 57
4.3.2 Types . . . o . e e 58
4.3.3 TA-32Functions 59
4.3.4 Generic Functions 66
4.4 Inference Rules o @ i i i e e 68
441 MachineWords 69
4.4.2 Machine Operators o 70
4.4.3 Conditional Operators 71
444 RegisterFiles o Lo 71
4.4.5 Machine-word Mappings 72
4.4.6 Instruction-Set Constructors 72
4.4.7 TransitionRules 73
4.5 Soundness e e e e e e e e e e e e e 74
Security Policies T
5.1 Overview e e e e e e e e e e 77
5.2 Enforcement. e 80
5.3 Soundness of Enforcement oL 81
5.4 Security Automatao 82
5.4.1 Operational Semanticso 84
5.4.2 Inference Rules 84
5.5 Memory Access 85
5.5.1 Operational Semantics 85
5.5.2 Inference Rules 86
5.6 Memory Safety 86

5.6.1 Operational Semantics 88

5.6.2 Inference Rules 90

5.6.3 Soundness e e 93
5.6.4 Stack Overflow 96
5.7 Java Types o i e e e e e 97
5.7.1 Operational Semantics 100
572 Inference Rules 102
5.8 Java TypeSafety o 103
5.8.1 Pointer Rules ..o, 103
5.8.2 Memory Rule o000 104
5.9 Soundness e e 104
Program Logic 105
6.1 Overview e e e e 106
6.2 Program Logicsin PCC, 107
6.3 A Logic of Programs for Invariance Properties. 109
6.3.1 Transitions L., 112
6.3.2 Strict Evaluation 113
6.3.3 Evaluation ... 114
6.3.4 Procedures ... 114
6.3.5 Demonstration00 0000, 116
6.4 Deriving the Logic of Programs 118
6.4.1 Semantic Rigidity ..., 118
6.4.2 Transitions L. L., 119
6.4.3 Strict Evaluation 119
6.4.4 Evaluation ... 120
6.4.5 Procedures L. 121
6.4.6 Derivability L oo 122
6.5 Supporting the Logic of Programs 122
6.5.1 Specification Elements 122
6.5.2 Preservation Elements 123
6.5.3 ResidualProofs 124
6.5.4 Derivability 126
6.6 Proof Outlines for the Logic of Programs 126
6.6.1 Syntax e 128
6.6.2 Demonstration 130
Proof Construction 131
7.1 OVerview o i e e e e e e e e e e e e e e 132
7.2 Tracing the Symbolic Evaluator 133
721 Syntax e e e e e e 134
7.2.2 Construction 134
7.2.3 Demonstration00 0. 140
7.3 Constructing Proof-Outline Derivations 140
7.3.1 Syntaxo 141

7.3.2 HypothesisRule 144

7.3.3
7.3.4
7.3.5
7.3.6
7.3.7
7.3.8
7.3.9
7.3.10
7.3.11

Callee Rule
Evaluation Rules
Checking Rules
Loop Rule
Continuation Rules
UZ Discharge Rule
Discharge Rules
VC Rules
Hypothetical Rules

7.4 Extracting Proof Outlines

7.4.1
7.4.2
7.4.3
7.4.4
7.4.5

8 Proof Engi

8.1 Proof Reconstruction
Syntax
Hypothesis Rule
Callee Rules.

8.1.1
8.1.2
8.1.3
8.14
8.1.5
8.1.6
8.1.7
8.1.8
8.1.9
8.1.10
8.1.11
8.1.12
8.1.13
8.1.14

8.2.1
8.2.2

9 Experimen

9.1 Performance Analysis
gic Interpreter

9.2 The Lo

10 Conclusion

10.1 Related Work
PCC..............
TAL
TL-PCC.

10.1.1
10.1.2
10.1.3

CalleeRule
Evaluation Rules
Checking Rules
VCRules

Hypothetical Rules

neering

Evaluation Rules
Checking Rule
Specification Rules
VC Rules
Preservation Rules
Initialization Rules

Or-Introduction Rules

Type-State Rules
Next-State Rule
Fetch Rule

Proof-Embedding Rule
8.2 Proof Encoding
Reconstruction-Scope Encoding
Binary Encoding

tal Results

10.1.4 Other Related Work 187

10.2 Future Worko 189
10.2.1 Certificationo o oL 189
10.2.2 Flat Address Spaces oo 190

A Glossary of Notation 207
A.1 Variables 207
A2 Sets e 209

B LF Representation 211

B.1 Temporal Logic 212

B.1.1 Abstract Syntax Lo 212
B.1.1.1 Syntactic Types 212
B.1.1.2 Parameters 213
B.1.1.3 Constants 213
B.1.1.4 Propositions 0oL 213
B.1.1.b Times o e 213
B.1.1.6 Functions 213
B.1.1.7 Relations 214
B.1.1.8 Equality, 214
B.1.1.9 Equivalence. 214
B.1.1.10 Function Properties 214
B.1.1.11 Relation Properties 217
B.1.1.12 Pairs e 219
B.1.1.13 Triples 219
B.1.1.14 Lists. oo o 220

B.1.2 Semantics L L e 220
B.1.2.1 Derivation Types. 220
B.1.2.2 Integers 221
B.1.2.3 32-BitIntegers 222

B.1.3 Inference Rules 224
B.1.3.1 Derivation Types. 224
B.1.3.2 Judgments 224
B.1.3.3 Locality 227
B.1.3.4 Rigidity 227
B.1.3.5 Rewriting oL 228
B.1.3.6 Time 229
B.1.3.7 Propositions oL 230
B.1.3.8 Restricted Truth 231
B.1.3.9 Functions L. 231
B.1.3.10 Relations 233
B.1.3.11 Equality 235
B.1.3.12 Equivalence oo 236
B.1.3.13 Pairs 236

B.1.3.14 Triples 237

B.1.3.15 Lists. - . . o . o oo o 237

B.2 Machine Modelo 238
B.2.1 Abstract Syntaxo 238
B.2.1.1 MachineWords 238
B.2.1.2 Arithmetic Operators 239
B.2.1.3 Conditional Operators 241
B.2.14 Register Tokens 242
B.2.1.5 Register Maps 242
B.21.6 WordMaps oo 242
B.2.1.,7 Registers L. 243
B.2.1.8 States 243
B.2.1.9 Memory Addresses 244
B.2.1.10 Effective Addresses 244
B.2.1.11 Imstructions. 245
B.2.1.12 Programso 246

B.2.2 Inference Rules 246
B.2.2.1 Machine Words 246
B.2.2.2 Arithmetic Operators 248
B.2.2.3 Conditional Operators 252
B.2.2.4 Register Tokens 253
B.225 Register Maps 253
B.22.6 WordMaps 253
B.2.2.7 Memory Addresses 253
B.2.2.8 Effective Addresses 254
B.2.2.9 Imstructions. 255
B.2.2.10 Programs 262

B.3 Security Policy 263
B.3.1 Abstract Syntaxo 263
B.3.1.1 Security Registers 263
B.3.1.2 Security Automata L. 263
B.3.1.3 Extended States 264
B.3.1.4 AccessModes 265
B.3.1.5 AccessMaps 265
B.3.1.6 JavaTypes L. 265
B.3.1.7 Java Type Assignments 266
B.3.1.8 Java Type Environments 267
B.3.1.9 Safety 268

B.3.2 Inference Rules 269
B.3.2.1 Security Registers 269
B.3.2.2 Security Automatao L. 270
B.3.2.3 Extended States 270
B.3.24 Access Modes 270
B.3.25 AccessMaps 271
B.3.2.6 JavaTypes 271
B.3.2.7 Java Type Assignments 271

B.3.2.8 Java Type Environments 272

B3.29 Safety 272

C Benchmark Programs 277
C.1 Java Source Code L e 277
Cll Alloc. o e 277
C.1.2 Binary Searcho 277
C.1.3 BubbleSort 278
C.1.4 Checksum o e e e e e 278
C.1.5 Clone i e e e e 278
C.1.6 Dec e 279
C.1.7 Fact e 279
C18 Fib. . . . e 279
C.1.9 Filter o e 279
Cl10 Heap Sort o o e 280
Clll Huffman e 281
ClI12 Loop -« o v v o e e e e e e 283
Cl13 Matrix o e e e e e e e e e 283
C.1.14 Matrix Multiply 284
C.1.15 Matrix Transpose o v v i v vt 285
C.1.16 Merge Sort 285
C.1.17 Mino e 286
C.1.18 NADbs o e e 286
CLIINOD - v v v e e e e e e 287
C.1.20 Not oo e e e 287
Cl2I NQueens i i it i e e e 287
C.122 Packet e 288
C.1.23 Quicksorto 288
C.1.24 Reverse i v it e e e e e e 289

Col25 SWAD « « « o v e e e e 289

List of Figures

1.1 PCCVision ottt 2
1.2 PCCPrinciples 3
1.3 PCC Reality e 4
1.4 Chapter Synopsis o 7
2.1 Instruction-Bound Security Automaton 13
22 Secure PDA 14
3.1 Abstract Syntax 26
3.2 Substitution oL 29
3.3 Satisfaction 34
3.4 Inference Rules (Time Structure) 37
3.5 Inference Rules (Locality) 38
3.6 Inference Rules (Rigidity) 39
3.7 Inference Rules (Term Rewriting) 40
3.8 Inference Rules (Normalization) 41
3.9 Inference Rules (Instants) 42
4.1 Imstruction Set e 51
4.2 Computing the Overflow Flag 64
4.3 Computing the Carry Flag. 64
4.4 Encoding the Status Flags 65
4.5 Arithmetic and Logical Operations 67
5.1 Type Safety Implies Memory Safety 78
5.2 Safety Proof (Conventional PCC) 81
5.3 Safety Proof (Temporal-Logic PCC) 81
5.4 Operations on Paired States, 83
5.5 Memory Safety for a Procedure, 87
5.6 Stack Preservation L. 88
5.7 Inference Rules for Memory Safety 92
5.8 Inference Rules for Instruction Safety (1) 93
5.9 Inference Rules for Instruction Safety (2) 94
5.10 Java Typing Rules for Constants 102
6.1 Deriving an Inference Rule 106

XV

6.2
6.3
6.4
6.5

7.1
7.2
7.3

9.1
9.2
9.3
9.4
9.5
9.6
9.7

Completing a Program-Logic Derivation 108

Instantiating Specification Variables 111
Condition-Code Rules 125
Abstract Syntax for Proof Outlines 127
Trace Construction Lo 139
Abstract Syntax for Proof Generation 142
Extracting Evaluation Qutlines 153
Proof Size o 175
Proof-Checking Time, 175
Logic-Program Goals 176
Proof-Construction Time 177
Proof-Size Comparisono o000 oL 178
Signature Indexing Lo 180

Hash-Consed Applications 181

List of Tables

3.1
3.2
3.3

4.1
4.2
4.3
4.4

5.1
5.2

7.1
7.2
7.3

9.1

Judgmentso 28
Properties of Functions 44
Properties of Relations o L. 45
Functions and Relations on Machine Words 54
Functions and Relations for the Machine Model 54
Constants and Functions for the Instruction Set 55
Functions for Evaluation, 56
Instruction Safety 91
Operations on Java Types it 98
Trace Constructors o o v i i e e e e e e e e 135
Trace Next Instruction 139
Proof Classifiers @ o o e e e 143
Benchmark Programs, 174

xvii

Chapter 1

Introduction

We use an increasing number of programs in our daily lives. And the number of
sources from which we obtain these programs is also increasing. But when we install
a new program on our computer, we should ask ourselves, “is this program safe for
me to run?” id.e., “will it preserve the integrity of my operating system and my
data?” Technologies for code safety enable us to answer “yes” to this question
before we run a new program on our computer.

There are several technologies for code safety that are currently in widespread
use:

o A byte-code interpreter interprets a program written in a language that is
inherently safe—the program essentially has no opportunity to execute an
unsafe operation. But because the byte-code language is interpreted, any given
program takes longer to execute than does an equivalent compiled program.
Not only does this make the user wait longer than he or she should have to
for the program to run, but this technology can also result in an unacceptable
drain on the battery of a small device such as a cell phone or a personal digital
assistant (PDA).

e A just-in-time compiler overcomes some of the performance limitations asso-
ciated with the byte-code interpreter by compiling the byte-code language to
machine code just before it is run. Thus, the program is able to run almost
as fast as an equivalent compiled program, but the just-in-time compiler is
itself a large and complex piece of software. Because of this complexity, it is
more likely that a serious vulnerability will be introduced into the compiler
implementation, and thus compromise the safety of the host computer. Ad-
ditionally, such vulnerabilities can be very expensive to fix if the just-in-time
compiler is widely deployed.

o A digitally-signed program is an ordinary machine-code program that contains
a digital signature that attests to the safety of the code. Unfortunately, the
digital signature does not in and of itself guarantee that the code is safe—it
only guarantees that the person who signed the code believes that the code is
safe. The digital signature infrastructure also introduces a new vulnerability:

2 CHAPTER 1. INTRODUCTION

Proof Check
Code Certifying Program roof Checker Code

Producer Compiler Proof Security Policy |Consumer

Figure 1.1: PCC Vision

if the private key of the code signer is ever compromised, then anyone who
trusts the corresponding public key is potentially subject to having malicious
code loaded onto their system.!

1.1 Proof-Carrying Code

I believe that proof-carrying code (PCC) is the right architecture for code safety
because it addresses the aforementioned limitations directly:

e PCC enables good performance because source code is compiled to machine
code in advance with all compiler optimizations enabled. In addition, some
compilers can remove run-time checks that are needed by alternative tech-
nologies because the compiler can construct a proof that the run-time check
is unnecessary.

e PCC has a small trusted-computing base (TCB) because the checking soft-
ware is relatively easy to implement and the size of the checking program is
small. Additionally, some PCC implementations are simple enough to verify
for correctness according to a rigorous mathematical standard.

e Finally, PCC introduces no trusted third parties into the program checking in-
frastructure. Each host need trust only its own implementation of a relatively
simple proof checker.

I outline the original vision for the PCC architecture in Figure 1.1. Many read-
ers will already be familiar with PCC according to a similar mental model. In this
figure, a code producer sends a program and its attached safety proof to a code
consumer who eventually wants to run the code. The code producer uses a cer-
tifying compiler to construct the machine-code program and its safety proof from
an corresponding source-code program. The code consumer uses a proof checker to
check that the proof corresponds to the program and that the proof is a proof of a
particular security policy. The security policy is chosen by the code consumer, and
it defines precisely what it means for a given program to be “safe to run.”

!This is not just a hypothetical scenario. In 2002, a serious buffer-overflow vulnerability was
discovered in a widely-distributed ActiveX control signed by Microsoft. Because the control is
signed by a trusted source, any web page can simply embed the flawed control to reintroduce
the vulnerability into the Internet Explorer web browser. The company’s response did not instill
confidence: “Without a hint of irony, the company recommends removing ‘Microsoft’ from IE’s
Trusted Publisher list ...” [Com02]

1.2. SPECIALJ 3

: t | Proof Check

; Code Certifying Program | : root hecker Code

: | Producer Compiler Proof i | security Policy |Consumer
: i 7

Untrusted

Certification can be comple Enforcement must be simple

Figure 1.2: PCC Principles

I illustrate the principles behind the PCC architecture in Figure 1.2. In a PCC
system, every action the code producer takes is untrusted. In particular, any claim
the code producer makes about the program (i.e., that it is safe) is checked explicitly
by the code consumer according to a rigorous set of inference rules. In order to
make the system trustworthy, “enforcement” is designed to be as simple as possible,
even if this entails making “certification” more complex. By enforcement, I mean
every action that the code consumer takes to check the program and the proof.
By certification, I mean every action that the code producer takes to construct the
program and the proof. It is a salient and essential feature of PCC that certification
is not part of the TCB.

1.2 Speciall

A particularly successful implementation of the PCC architecture revolves around
the SpecialJ Certifying Compiler [CLN100], the successor of the Touchstone Certi-
fying Compiler[Nec98] which was a cornerstone of the original PCC research. Spe-
cialJ was developed by Cedilla Systems as a production-quality certifying compiler
for the Java Programming Language [GJS96]. SpecialJ translates Java source code
into certified, optimized IA-32 [Int01] machine code—unlike other implementations
of the Java language, SpecialJ does not rely on a byte-code interpreter. Speciall
enforces a security policy that is based on Java type safety. Essentially, the typing
invariants that already exist in type-correct source code are translated to the com-
piled machine code.? Special] is successful in the sense that it can compile large
programs efficiently. For example, it can compile the entire Java Development Kit,
version 1.3, as well as the HotJava web browser. The HotJava web browser alone
consists of over 150,000 lines of source code.

Unfortunately, the actual implementation of the SpecialJ infrastructure is not
quite as simple as Figure 1.1 would suggest. As I illustrate in Figure 1.3, when the

2Note that although SpecialJ incidentally relies on an automatic theorem prover to synthesize
typing derivations, the theorem prover does not “discover” any new properties of the code. The
function of the theorem prover is simply to recover any information that is not cost effective to
propagate explicitly through the compiler.

4 CHAPTER 1. INTRODUCTION

= Proof Checker
Code SpecialJ Program Code
Producer Proof Security Policy |Consumer

Loop Invariants/
Procedure SpecificationS/ VC Generator
Machine Semantics.

General Security Policy

Figure 1.3: PCC Reality

code producer uses SpeciallJ as a certifying compiler, the program must be accom-
panied by an additional set of code annotations that consist of loop invariants and
procedure specifications. The code annotations are needed because the code con-
sumer will use a software component called a VC generator to analyze the program
before the proof is checked. The annotations enable the VC generator to inter-
pret loops and procedure calls in the code efficiently. The VC generator embodies
the processor semantics of the host computer as well as key aspects of the general
security policy that the code consumer will enforce.

The verification condition (VC) is a formal proposition that is true only if the
program is safe to execute. The VC is essentially an “intermediate” proposition
generated by the code consumer that entails safety. The logical justification for the
statement “VC entails safety” is normally established by informally verifying the
implementation of the VC generator—it is essentially the correctness of the VC-
generator code that determines the soundness of this argument. Thus, the safety of
the code consumer rests upon a relatively fragile base if the VC generator is only
poorly understood or incompletely verified. The VC itself is derived by an algorithm
known as symbolic evaluation [Nec97] that essentially simulates the operation of the
program on an abstract representation of the machine state.

The key feature of the VC-generator approach that makes it attractive for PCC
is that a typical proof of a VC is relatively scalable, in the sense that the size of
the proof is close to the size of the program itself.> However, the VC-generator
approach also suffers from a number of limitations:

e The VC generator is a relatively compler piece of software. For example, in
the SpecialJ implementation, it consists of over 16,000 lines of particularly
dense C code.

e The VC generator is machine specific in the sense that it must be extended
or re-implemented for each new processor architecture.

3The proof size can also be significantly smaller, depending on the representation [NRO1], al-
though the code annotations will still occupy a significant amount of space.

1.3. TOWARDS A SECURITY-POLICY LANGUAGE 5

e The VC generator is compiler specific in the sense that it depends upon the
idiosyncrasies of the data-structure formats and calling conventions of the
SpecialJ compiler.

e The VC generator is source-language specific in the sense that the control flow
of the program is restricted to correspond to high-level control structures such
as method invocations, case statements, and exception handlers.

e Finally, The VC generator is security-policy specific in the sense that key as-
pects of the code consumer’s security policy are built into the implementation.

Several new approaches to PCC, such as Foundational PCC [App01] are designed
to overcome the aforementioned limitations of the VC-generator approach. In my
research, I am particularly interested in overcoming the last limitation that ties the
security policy to the VC-generator implementation. I shall show, however, that
my approach to PCC also overcomes some of the other limitations as an additional
benefit.

How exactly is a PCC security policy represented? In Speciall, it is a combina-
tion of C code (part of the VC generator), along with a set of typing rules (encoded
in the LF Logical Framework [HHP93]). Typing rules are relatively trustworthy, be-
cause they are specified formally and can be proven sound individually with respect
to a formal semantics. C code, by contrast, is much more obscure and error prone.
Essentially, if one wants to verify that a particular security policy is enforced by
the VC generator, then the entire implementation must be verified for correctness.
Additionally, any change to the code will require that the entire implementation
be re-verified to preserve its correct status. This lack of modularity makes the VC
generator an inherently brittle component that is either untrustworthy or inflexible,
according to the diligence of the implementor.

1.3 Towards a Security-Policy Language

Furthermore, in the SpecialJ implementation,

e if the code consumer wants to enforce an expressive security policy beyond
Java type safety (such as resource bounds or information flow),

e or if the code consumer wants to manage a set of security policies,
e or if the code consumer wants to manipulate security policies,

then the VC-generator implementation must be updated at each new turn. And,
of course, once the implementation is updated, any effort put into verification is
potentially lost.

A better enforcement mechanism for PCC would be based on a universal pro-
gram checker for a broad spectrum of security policies. Such an enforcement mech-
anism would let the code consumer distinguish policy from mechanism in the PCC
infrastructure. What I would like to see, then, is a formal language of security

6 CHAPTER 1. INTRODUCTION

policies that can be enforced by a universal program checker. Once such a formal
language is enforceable, it might even be feasible to encode the security policy itself
in a certificate, and thus provide the code consumer with additional flexibility in
terms of which particular security policy is enforced.

In my research, I have focused on using temporal logic [MP91, CGP99] as the
basis for a formal security-policy language. I believe that temporal logic is an
attractive notation for security-policies for the following reasons:

e Temporal logic enables direct security-policy specifications, especially when
compared to a security policy that is embedded in the code of an enforcement-
mechanism implementation. For example, the following specification enforces
a simple form of control-flow safety in which the program counter is restricted
to a limited range of addresses:

O(pc > 0 A pc < 1000)

e Temporal logic has a well-understood semantics that has been developed
through decades of rigorous study.

e Temporal logic can express a wide variety of security properties—probably
more, in fact, than any foreseeable PCC system would try to enforce.

e Finally, temporal logic enables the reuse of type-safety specifications from
existing PCC systems such as SpecialJ, provided that a sufficiently expressive
variant of temporal logic is selected.

Therefore, I alter the obligation of the code producer to show directly that a
particular temporal-logic security property holds for any possible execution of the
untrusted program. This proof obligation subsumes the existing SpecialJ proof
obligation that requires a proof of an intermediate VC. In this approach, the code
consumer need no longer incorporate a complex and inflexible VC generator into the
TCB. This approach provides a trustworthiness benefit in addition to a flexibility
benefit: a complex piece of code is removed from the TCB, and the implementa-
tion of the enforcement mechanism is no longer machine specific, compiler specific,
source-language specific, or security-policy specific.

In the remainder of this dissertation, I examine whether or not the above ap-
proach can be adopted as a practical solution to the code safety problem.

1.4 Dissertation Synopsis

In Chapter 2, I review background material that will serve as a foundation for the
remainder of the dissertation. The body of this dissertation is structured as in
Figure 1.4.

In Chapter 3, I define the variant of temporal logic that I will use as a framework
in later chapters. In Chapter 4, I formalize an abstract subset of the Intel 1A-32
instruction set architecture that I will use as a target machine model. The primary

1.4. DISSERTATION SYNOPSIS 7

Ch. 5: Program Logic Ch. 2: Temporal Logic
Ch. 6: Proof Construction Ch. 3: Machine Model
AN AN
. Proof Checker
Code Certifying Program Code
Producer Compiler Proof Security Policy |Consumer
7
Ch. 7: Proof Engineering Ch. 4: Security Policies

Figure 1.4: Chapter Synopsis

purpose of these two chapters is to provide a sound basis for proof checking. In
Chapter 5, I define the precise memory safety policy that is enforced by the code
consumer, and is likewise certified by the code producer.

In Chapter 6, I introduce a derived logic of programs that forms the basis for
my approach to certification and proof reconstruction. In Chapter 7, I show how
proofs are automatically constructed from an annotated object-code program and
certificate produced by the SpecialJ compiler. In Chapter 8, I survey how proofs are
encoded, and how complete safety proofs are reconstructed from minimal outlines
at proof-checking time.

In Chapter 9, I present the results of my experiments with a prototype imple-
mentation. Finally, in Chapter 10, I review the contributions of this research, survey
further related work, and suggest future improvements.

Note that Appendix A contains a glossary of the formal notation I use in this
dissertation—I suggest that the reader refer to this appendix when an unfamiliar
symbol is encountered, although I do take care to define the role of each symbol as
it is introduced. Appendix B consists of the complete trusted type signature that I
use for proof checking, and Appendix C contains the source code for my benchmark
programs.

CHAPTER 1. INTRODUCTION

Chapter 2

Background

This chapter contains background material that serves as a foundation for subse-
quent chapters. In Section 2.1, I review how security policies are treated in existing
approaches to certified code, whereas in Section 2.2, I present an overview of my
approach to proof-carrying code.

2.1 Security Policies and Certified Code

In this section, I examine security policies and how they relate to certified code, a
generalization of the concept of proof-carrying code. First, in Section 2.1.1, I present
a general framework for classifying security policies. In Section 2.1.2, T define the
concept of certified code, and in Section 2.1.3, I show how security policies are
treated by current approaches to certified code. Finally, in Section 2.1.4 I point
out the limitations of these approaches with regard to security policies, and in
Section 2.1.5, T suggest goals for a more systematic treatment of security policies in
certified code.

2.1.1 Security Policies

Let an ezecution be a state sequence of some system: for example, the trace of
a single program run. Following Alpern and Schneider [Sch99, AS85, AS86], a
security policy is a predicate on sets of executions. Each program has a set of
possible executions. A program satisfies a security policy if the security policy
holds for its execution set. A program wviolates a security policy if it does not
satisfy the security policy. Security policies allow one to characterize prescribed
and proscribed behavior for a given program.

A security property, on the other hand, is a predicate on executions—all secu-
rity properties can be regarded as security policies. A program satisfies a security
property if the property holds for each of its possible executions. Equivalently, a
program satisfies a security property if its execution set is a subset of the executions
for which the property holds.

Some security properties are safety properties, others are liveness properties, and
some are neither. Informally, a safety property asserts that a specific “bad thing”

10 CHAPTER 2. BACKGROUND

does not occur in an execution: if a safety property holds for an execution, then
it holds for each prefix of the execution. A liveness property asserts that a specific
“good thing” will occur: if a liveness property does not hold for an execution, then
the execution is a prefix of an execution for which the property holds. For example,
“each lock can be acquired only once” is a safety property, while “all acquired locks
must be released” is a liveness property. Alpern and Schneider [AS85, Sch87] showed
that all security properties are the conjunction of a safety property and a liveness
property.

Henceforth, I will discuss only security properties in this dissertation. In par-
ticular, the variant of temporal logic I use is only capable of expressing security
properties. All safety properties are expressible in principle, as are many interest-
ing liveness properties.! Note that in some cases I still use the term “security policy”
when the distinction between a policy and a property is unimportant. Because all
security properties are also security policies, these are correct uses of the term.

2.1.2 Certified Code

A system for certified code ensures that an untrusted, certified program will not vio-
late a particular security policy. I use the term “certified code” to encompass proof-
carrying code (PCC) [Nec97], as well as typed assembly language (TAL) [MWCG98],
and some other code-safety technologies.

A certified program is packaged with a certificate that attests that the program
satisfies the security policy. The host checks the program and certificate without
external trust relationships—in particular, the host does not trust the provider of
the program. The certificate is encoded in a formal language and it contains enough
information to make it possible to efficiently check the program against the security
policy. The checker is normally conservative in the sense that it will only accept
certified programs, even if an uncertified program would not violate the security
policy during an actual run.

An enforcement mechanism prevents a program from violating a security policy.
Enforcement can be accomplished by certification or by other means, such as run-
time monitoring or program instrumentation. For certified code, the enforcement
mechanism checks the program and its certificate. An enforcement mechanism is
sound with respect to a security policy if it rejects all programs that violate the
security policy. An enforcement mechanism is complete with respect to a security
policy if it accepts all programs that satisfy the security policy.

Note that certified code does not presume a trust relationship between code
producer and code consumer, or with any third party—contrast this scheme with
cryptographic code certification (e.g., signed applets [GMPS97]), in which the code
consumer is presumed to trust the code producer and only doubts the authenticity
of the program. Certified code is compatible with cryptographic certification (e.g.,
the signature might attest that the program is correct as well as harmless), but
certified code protects the code consumer from defective programs in addition to

'Because there are an uncountable number of liveness properties, no recursively enumerable
language can hope to distinguish them all.

2.1. SECURITY POLICIES AND CERTIFIED CODE 11

malicious ones. Cryptographic certification requires the code consumer to trust the
competence of the code producer, in addition to his or her intentions.

Refer to Kozen [Ko0z99] for further elaboration on the principles behind certified
code.

2.1.3 Approaches to Security-Policy Specification

In this section, I review current approaches to security-policy specification for var-
ious enforcement mechanisms.

2.1.3.1 Proof-Carrying Code

Proof-carrying code (PCC) [Nec97, Nec98, NL96, NLI8c, NL98a] is form of certified
code in which the code producer packages the program with a formal proof that
demonstrates that the program satisfies a specific security policy. The code producer
constructs the proof and encodes it in a formal logic. The enforcement mechanism
checks that the proof is valid, and that it matches the program and the security
policy. PCC deliberately places a heavier burden on the code producer than on the
code consumer (proof checking is usually easier than proof discovery). PCC enables
the code consumer to enforce security policies that are not decidable—the code
producer must combine programs and proof generators such that valid proofs are
possible. The code producer can even construct proofs manually, but this approach
is feasible only for small programs.

Conventional PCC implementations invoke a verification-condition (VC) gener-
ator [Kin71] to derive a proposition from the program and a built-in security policy.
The code producer is obliged to show that the VC is valid under a set of axioms
and inference rules. The code consumer need not trust the code producer, because
the enforcement mechanism independently validates the proof.

Necula [Nec98] defines a security policy according to the valid transitions of
a safe interpreter for an abstract assembly language. The VC generator is based
on the operational semantics of the safe interpreter, and he proves its soundness
in his dissertation. This approach anticipates limited parameterization, because
the preconditions of dangerous instructions are uninterpreted predicates on states.
The corresponding predicate symbols are axiomatized to encode security policies for
instruction safety and memory safety. Necula developed sample safety properties
for proscribing memory access, for sand-boxing memory, and for abstract types.

In foundational proof-carrying code (F-PCC) [AF00], the safety property is built
into the machine model. The semantics of the abstract machine is not specified for
unsafe transitions, and the code producer is obliged to show that the program can
always make some transition.

2.1.3.2 Typed Assembly Language

In typed assembly language (TAL) [MWCGY98, MCG199, CM99], the enforcement
mechanism is a type checker that does not accept programs that violate a security

12 CHAPTER 2. BACKGROUND

policy; type annotations accompany program instructions. A TAL compiler trans-
lates a well-typed source program into a well-typed assembly program. TAL has
a potential efficiency advantage over PCC because safety proofs are not present—
however, a TAL type checker must reconstruct type derivations from type annota-
tions. Because PCC transmits complete type derivations, it is practical even when
reconstruction is prohibitively expensive.

The original TAL [MWCGY8] defines a security policy implicitly by the type
system of an assembly language. Walker [Wal00] developed a TAL type system
based on an arbitrary security automaton. Alpern and Schneider [AS86, Sch99]
invented security automata to encode safety properties as formal automata. The
approach Walker takes to TAL is novel because it separates the security policy from
the enforcement mechanism, and because security automata are not tailored to the
type checker.

Crary and Weirich [CWO00] developed a TAL type system that enforces re-
source bounds. The compiler for this type system is automatic, but it must be
given a resource-bound annotation for each function. Crary, Walker, and Mor-
risett [CWM99] developed a TAL type system to enforce security policies based
on a capability [DvH66] calculus. This calculus can ensure the safety of explicit
deallocation. This enables an enforcement mechanism without a trusted garbage
collector—the inclusion of a garbage collector in the TCB is a drawback of many
current enforcement mechanisms.

2.1.3.3 Safe Interpreters

For a safe interpreter, the execution language of the program ensures that no
security-policy violations can occur. On the one hand, the enforcement mechanism
can check the program dynamically, in which case each operation is tested during
execution. On the other hand, it can check the program statically, in which case
all tests occur before execution. It is common to see a hybrid of both techniques,
because static enforcement is typically both more efficient and less automatic than
dynamic enforcement.

The Java virtual machine (JVM) [LY99] is a well-known enforcement mechanism
for Java class files, which I consider to be a form of certified code. Java class files
contain instructions in the Java byte code language; the byte-code verifier checks
Java byte code statically. The JVM specification [LY99] documents the type-safety
policy of the byte-code verifier, in addition to other run-time security checks—this
specification thus fixes the security policy for Java byte code. Determining precisely
what security policy the JVM enforces is a challenge, because of its informal prose
specification. Original implementations of the JVM interpreted byte codes directly,
but modern implementations translate byte code into machine code.

The Java Language Specification [GJS96] documents the Java Security Manager,
a trusted system that enforces access control. Permissions determine the operations
that a process can perform; the JVM manages permissions transparently. Although
this approach is convenient in some respects, it prevents optimizing compilers from
inlining method calls because of stack introspection [WBDF97].

2.1. SECURITY POLICIES AND CERTIFIED CODE 13

Any Inst. Any Inst. Any Inst. Any Inst. Any Inst.
o—0—— ... ——0O0—>0—0
0 1 k-1 k Bad

Figure 2.1: Instruction-Bound Security Automaton

For the Java Development Kit (JDK) 1.2 Security Model [GMPS97], the security
policy is partially specified through configuration files. A policy file specifies which
permissions an program receives based on predefined attributes (e.g., its origin
or digital signature). Other researchers (e.g., PoET [ES00], J-Kernel [HCC*97],
Naccio [ET99]) have developed extensions for more expressive security policies.

2.1.3.4 Software Fault Isolation

Software fault isolation (SFI) [WLAG93, ALLW96] instruments the program so
that it cannot violate a built-in security policy. I do not consider SF1 certified code,
because it does not rely on a certificate. SFI enforces a memory safety policy that
the instrumentation tool implicitly defines. SFI is fully automatic because it can
instrument any program, regardless of code producer. Unfortunately, SFI relies on
run-time checks that entail run-time overhead and preclude fine-grain confidentiality
policies [ML97].

Security automata SFI implementation (SASI) is an SFI-based tool developed
by Erlingsson and Schneider [ES99, ES00] for enforcing safety properties encoded
in a security-automata language. Like security automata for TAL, I consider SASI
an important contribution, because it disentangles the security policy from the
enforcement mechanism.

A security automaton is a state machine that responds to the actions of a tar-
get system. The security automaton enters a “bad” state when the target violates
its safety property. In fact, concrete safety properties can be interpreted as secu-
rity automata. Security automata are an attractive representation because they
are enforceable with different mechanisms, and because they encompass all safety
properties [Sch99]. For example, to represent the instruction-bound security policy,
one constructs a sequence of automaton states of the same length as the bound &
(see Figure 2.1). The automaton transitions to a successor state after executing an
instruction; the successor of the kth state is the bad state. Note that more con-
cise representations of resource bounds are possible when using security-automata
notation (see Schneider [Sch99] for examples).

2.1.4 Limitations of Current Approaches

Unfortunately, enforcement mechanisms often determine security policies, rather
than vice-versa. Such security policies (e.g., SFI [WLAG93]) are difficult to doc-
ument independently. Witness attempts to formalize the Java byte code veri-
fier [SA99, FM98, O’C99]. In the absence of precise definitions, it is impossible
to establish rigorously that a security policy prohibits malicious behavior.

14 CHAPTER 2. BACKGROUND

Alarm Clock Synchronizer
Wait Frequen: Instruction Bound
SmaIIHeq chd L H Bound Enfor ent
oun arge oun .
= i s Mechanism
Memory Safety

Operating System/Libraries

Hardware

Figure 2.2: Secure PDA

PCC and TAL are based on formal models, but it is often impossible to change
a security policy without modifying the enforcement mechanism. For example,
Necula [Nec98] parameterizes his PCC by predicates for a memory safety policy,
but a resource bound or confidentiality policy requires a change to the code of the
implementation.

Because of this rigidity, any work put into verifying an enforcement mechanism
is lost when the security policy is changed, because changes may introduce bugs
that are not in the formal model. Additionally, enforcing a set of security policies
requires a corresponding set of distinct implementations, each of which must be
verified. Adding enforcement mechanisms increases the size of the TCB and makes
the entire system harder to trust.

To motivate the problems addressed by this research, consider how one might
design a PCC-based personal digital assistant (PDA). The PDA can be enhanced by
new programs, with the proviso that each such program is checked by PCC before
it is installed, thereby ensuring that the PDA (a code consumer) will not cease to
work because of faulty or malicious software. Untrusted extensions are provided by
a code producer. I will focus on two such extensions for the moment:

e The alarm clock runs continuously, but only for brief intervals. It updates the
display once per second and emits a special sound, when appropriate.

e The synchronizer runs only when the user “docks” the PDA. The synchronizer
ensures that the PDA is consistent with a desktop computer.

Figure 2.2 contains a diagram of this design. A trusted enforcement mechanism
checks each program against several distinct security policies before it is allowed
to run. A memory-safety policy protects the operating system and libraries from
corruption. Additional resource-bound policies place limits on the system resources
that programs can consume. The memory-safety policy is common to all programs,
but the resource-bound policies are tailored to individual programs.

2.1. SECURITY POLICIES AND CERTIFIED CODE 15

The alarm clock needs little memory to run, but runs continuously for an un-
limited period of time; it is usually waiting in between clock ticks. The alarm
clock is thus assigned the wait-frequency policy that limits it to a small number
of instructions before invoking the wait system call. The small-heap-bound pol-
icy constrains the alarm clock to only a small amount of dynamic memory. The
instruction-bound policy requires the synchronizer to terminate after executing a
number of instructions proportional to the size of the PDA address book. The
large-heap-bound policy constrains the synchronizer to a large amount of dynamic
memory (also proportional to the address-book size). Because the synchronizer will
terminate in a limited time frame, its dynamic memory will be released promptly.

A typical implementation of this design would require a separate enforcement
mechanism for each distinct security policy. This approach has drawbacks, however,
because all enforcement mechanisms are in the TCB. Unfortunately, it is relatively
difficult to tailor an enforcement mechanism to a new security policy (in general),
especially if one expects to change the policy over time or if one wants to vary it
for different programs. On the one hand, one can try to incorporate all the security
policies at once into a single mechanism, but this leaves a complex mass of code
that is difficult to reuse in new situations. On the other hand, one can implement
a separate mechanism for each security policy, but this is potentially inefficient
because each mechanism must examine the program and its proof. In addition,
implementations are relatively difficult to understand and change, and also tend
to depart from a specification over time. The system designer is thus interested
in developing security policies as opposed to enforcement mechanisms. Ideally, the
security policy is a parameter of the enforcement mechanism.

A better approach would instead treat security policies as parameters of a single
universal enforcement mechanism. One could then develop policy and mechanism
independently, and reuse a single implementation for an unlimited number of ap-
plications. I first attempted to address this problem by extending a standard en-
forcement mechanism with a security-policy interpreter [BLO1]—unfortunately, this
approach entails considerable complexity. In this dissertation, I present an alter-
native approach that uses a simpler enforcement mechanism, but at the expense of
longer proof-checking times.

2.1.5 Goals for a Security-Policy Language

To address the problems uncovered in Section 2.1.4, T have developed a security-
policy language based on temporal logic. A security-policy language encodes security
policies in a concrete notation—each “program” of this language denotes a set of
executions. For any given concrete security policy, one wants to do the following;:

e Understand it in terms of an abstract model
e Reason about it with respect to the language semantics
e Enforce it with a generic implementation

e Enable (or disable) it based on a particular program

16 CHAPTER 2. BACKGROUND

e Modify it independently of an implementation

The security-policy language thus has the following goals:

Abstraction The language should be defined mathematically so that it specifies
precisely what actions a security policy permits. A developer should not need
detailed knowledge of an enforcement mechanism.

Abstraction is a benefit because the language semantics can be defined with-
out reference to an enforcement mechanism. Any enforcement mechanism that
implements the language semantics will enforce the correct execution set, so
a developer need check only that the security policy has the desired charac-
teristics. Most of the work put into verifying an enforcement mechanism can
thus be leveraged by many security policies. Thus, the language semantics
becomes the common interface between reasoning about security policies and
reasoning about the enforcement mechanism.

In this dissertation, I show the soundness of a particular enforcement mech-
anism. To ensure that this mechanism enforces a given security policy, one
need show only that the security policy has the desired characteristics. For ex-
ample, for an instruction-bound security policy, one shows that all executions
permitted by the security policy do not exceed the intended length.

Expressiveness The security-policy language should encompass specialized secu-
rity policies (i.e., beyond programming language type safety). For example,

Resource bounds A resource bound limits consumption of system resources
(e.g., processor, memory). It is important for critical resources (e.g.,
mutexes, input—output devices) to be released promptly once acquired.
Other applications (e.g., networking) must limit the rate at which a re-
source is used.

Protection An operating-system protection mechanism prevents unautho-
rized access to resources [SG98, Lam71, WCC*74]. The JDK 1.2 Secu-
rity Model [GMPS97] specifies an access control mechanism. It should
be possible to encode the JDK 1.2 Security Model in the security-policy
language.

Confidentiality A confidentiality policy [DD77] is a conservative approxima-
tion of an information flow policy that partitions the program into dis-
tinct security classes. Some approaches to confidentiality [ML97] classify
communication channels according to the highest security class to which
a message may belong. An enforcement mechanism prevents higher-
security information from flowing to lower-security areas.

Integrity An integrity policy helps to guarantee that information is authentic
and complete. There has been little work to date on using proof-carrying
code to enforce integrity policies, but it is not difficult to imagine a secu-
rity policy that requires the untrusted program to only supply answers
that are based on the results of some trusted set of cryptographic prim-
itives, for example.

2.2. PROOF ENGINEERING AND TEMPORAL-LOGIC PCC 17

Modularity A modular security-policy language supports independently devel-
oped security policies, and enforces them without interference. Specifically,
if several security properties are enforced in combination, then the permitted
executions should be the intersection of the independent execution sets. Thus,
the soundness of an individual security policy should not depend on whether
it is enforced in combination with other security policies. Schneider [Sch99]
identifies similar goals for security automata.

See Chapter 5 for further discussion of how temporal logic can be employed as
a security-policy language.

2.2 Proof Engineering and Temporal-Logic PCC

Since its emergence [NL96], a considerable amount of research has been devoted to
the engineering aspects of PCC. Much of this research has focused on representation
issues, with the three goals of making certificates that (1) are very small, (2) allow
the code to be verified quickly, and (3) require only a small and simple program to do
the verification. One early approach involved the use of a variant of the LF Logical
Framework (LF) [HHP93] to represent certificates as formal proofs [NL98b]. This
approach gave encouraging results, by showing that certificate sizes and verification
times could, in typical practical situations, scale linearly with code size. Further-
more, the use of LF allowed a key component of the verifier to be generic (simply
a type checker for LF), parameterized by an LF signature that formally specifies
the inference system for the proof certificates. Later, Necula and Rahul developed
the concept of “oracle”-based checking [NRO1], which made further reductions in
certificate sizes without unduly increasing either the verification time or the com-
plexity of the verification process. Indeed, using oracle-based checking, Colby and
others were able to implement a system called SpecialJ that compiled a large suite
of production Java programs into certified Intel x86 object programs [CLNT00].

While these early results clearly showed that certified code, and in particular
PCC, could be practical in terms of certificate size and verification time, it became
clear that the process of verification was more complicated than it needed to be and
thus less trustworthy than it ought to be. To this end, three of the most fundamental
problems have been addressed by later research:

e Appel and Felty observed that the logical system used by a PCC system made
use of constants and axioms based only on an informal understanding of the
semantics of the type system and the machine instructions. In making this
observation, they proposed the concept of foundational proof-carrying code
(F-PCC) [AF00] and have embarked on the construction of a PCC system
in which the entire safety policy, all the way down to the semantics of the
machine instructions, is formally defined and available for use in certificates
and certificate checking.

e Hamid, Shao, et al.proposed an approach to F-PCC in which the syntac-
tic meta theory of the machine instructions and type system is proved and

18 CHAPTER 2. BACKGROUND

represented in LF. Crary later proposed a similar approach for TAL, called
TALT [Cra03].

e Finally, Peter Lee and I recognized that, in practice, temporal logic could
be used as the basis for a practical, formal specification language for PCC.
This led us to propose the concept of temporal-logic proof-carrying code (TL-
PCCQC) [BL02a], which allows safety policies to be specified directly, while also
achieving the benefit of eliminating the VC generator from the TCB.

Besides increasing our understanding of the nature of certified code, F-PCC
improves the engineering of proof-carrying code by eliminating the need for the VC
generator. TL-PCC extends this benefit by allowing safety policies to be specified
concisely.

A key practical problem, however, is the impact of F-PCC and TL-PCC on the
size of the certificates. Indeed, F-PCC and TL-PCC proofs contain more informa-
tion than their conventional PCC counterparts, and thus a naive encoding leads to
certificates that are so large as to be completely impractical. Even using a compact
binary encoding, my previous experience indicates that certificates are likely to be
many times larger than the corresponding programs [BL02a]. While I do not have
data on certificate sizes for F-PCC and TALT, I believe they are likely to be similar
to what I have observed for TL-PCC.

Fortunately, the situation may not be as dire as it appears. In this dissertation, I
present an approach to PCC engineering in which certificates are represented as logic
programs that are derived from a sound program logic. Intuitively, these certificates,
when executed by a small trusted interpreter, perform the verification-condition
generation and proof search needed for safety verification. A key property of the
interpretation process is that it can itself be trusted, even if the certificate itself is
not trusted. Using this approach, I have achieved, for a suite of relatively simple
test cases, certificate sizes on par with those that have been observed for previous
conventional PCC systems. While I present this new approach and its results with
the specific purpose of reducing certificate sizes for TL-PCC, the approach is general
and can, in principle, be adapted for use in F-PCC or TALT.

The cost of this approach comes in the amount of time required for the verifica-
tion. My current experimental results show that, while certificate sizes are relatively
small, verification requires significantly more time, sometimes as much as three or-
ders of magnitude more. While it is not yet known how much room for improvement
there is in verification time, it is clear that the new approach is essentially “proving
more” than conventional approaches, so in reducing proof sizes, space must have
been effectively traded for time.

In Section 2.2.1, T present my approach to PCC. Next, in Section 2.2.2, I discuss
the proof engineering problem for my approach to PCC in greater detail, and in
Section 2.2.3, I show how I address this problem.

2.2. PROOF ENGINEERING AND TEMPORAL-LOGIC PCC 19

2.2.1 Temporal-Logic PCC

Until now, practical PCC implementations have encoded security proofs in first-
order logic, and the enforcement mechanism included a trusted VC generator that
essentially encoded the security policy in a C implementation (e.g., Necula [Nec97]).
I will argue here that temporal logic [MP91, Eme90, CGP99] has certain advantages
over first-order logic for PCC. Using temporal logic, one can reclassify the VC
generator as an untrusted component and thereby allow the security policy to be
separated from the enforcement mechanism. This also provides the crucial advan-
tage of reducing the amount of software in the TCB, though as I shall show, this
advantage appears to come at the cost of larger proofs. In this respect, my approach
resembles foundational PCC [App01, AF00], although, unlike foundational PCC,
my code producer and consumer must agree on a shared notion of type safety.

A temporal logic is characterized by its temporal operators. Such operators
enable one to distinguish the different times at which a proposition is true. In this
dissertation, I will identify time with the CPU clock and regard propositions as
statements about machine states. For example, the proposition

pc =0>D O(pc =1)

asserts that “if the program counter is 0 now, then it will be 1 in the next state.”
One can also specify security policies in temporal logic. For example, the proposition

O(pc > 0 A pc < 100)

asserts that “the program counter is always between zero and 100,” but one can
also interpret this as the requirement “the program counter must always be between
zero and 100”"—a specification for a simple form of control-flow safety [Koz98]. I
will exploit this duality to reap a practical benefit.

For a PCC system based on first-order logic, the enforcement mechanism gener-
ates a proposition from the program and the security policy together—the security
proof is a proof of this proposition. For temporal-logic PCC, the enforcement mech-
anism recognizes the program as a formal term, and the operational semantics of the
host machine is encoded as a set of trusted inference rules or as a trusted temporal
logic formula. One can then encode the security policy directly—the security proof
shows that the security policy is a consequence of running the program from a set of
initial conditions. Notice that the security policy is independent of the enforcement
mechanism, but no additional mechanism is required to interpret it.

One also wants to be confident that the security policy is correct. This confidence
is difficult to obtain for a security policy written in C code. In contrast, temporal
logic has a clear semantics, and security policies are comparatively compact.

Temporal logic can express a wide variety of security policies [MP90], including
type-safety, resource-bound, and liveness policies. For example,

m=0A0O(OMm =n+1)) DO > 1000 O ®pc = halt)

20 CHAPTER 2. BACKGROUND

is an encoding of an instruction bound. Read this proposition as “for any n such
that n is initially zero and increases by one at each cycle,? the program must halt
by the time n reaches 1000.”

As I shall show, a simple enforcement mechanism for temporal-logic PCC can be
implemented at the cost of increasing proof-checking times. This can be a favorable
trade-off, because it is shifting work from a trusted component to an untrusted one.

2.2.2 Proof Engineering

TL-PCC offers several engineering advantages over conventional PCC:

e The suite of trusted software is easier to verify informally because there
is no VC generator. For example, if one wants to use the SpecialJ com-
piler [CLNT00], one no longer needs to trust over 15,000 lines of C code.

e Programs can be checked against a wide variety of interesting security policies
(e.g., type safety, resource bounds, access control) without adding any new
trusted code.

e A broader selection of code generation strategies can be supported because
there is no built-in program analysis or any need for program annotations.

As T discuss earlier in this section, however, TL-PCC safety proofs must “prove
more” than their conventional counterparts. To overcome this difficulty and still
obtain reasonably compact certificates, I outline an approach to proof engineering
in which an untrusted logic program essentially extracts and proves its own VCs
when executed.

A proof engineering technique that has been shown to be extremely useful in
practice is based on equipping a logic interpreter with an “oracle string” [NRO1].
In this approach, the trusted collection of logical inference rules (the signature) is
treated as a nondeterministic logic program. If one starts this program with the VC
proof obligations as an initial goal, any trace of a successful run is a proof of safety.
The oracle string enables the interpreter to make “don’t-know” nondeterministic
choices correctly every time.

While oracle-based interpretation has proven to be very efficient in practice for
conventional PCC, I am not optimistic about the prospect of applying it to TL-
PCC without significant adjustments. Based on my experience, a TL-PCC safety
proof (in normal form) contains at least an order of magnitude more inferences
than a conventional PCC safety proof. To make proof generation even feasible, one
must factor common sequences of inferences into derived rules that are treated as
primitives by the proof checker.

A second difficulty arises due to the number of rules whose conclusions match
any goal in a TL-PCC signature, but are only actually used to justify derived rules.
Because these former rules are always possible candidates, the oracle string must

2Here I use ()() as an abbreviation for a more complex expression (see Section 4.4.7 for examples
of incrementing parameters).

2.2. PROOF ENGINEERING AND TEMPORAL-LOGIC PCC 21

spend five or six bits just to discount them for each inference. A rough calculation
predicts that a proof for a typical program will be many times larger than the
program itself. One can address this second problem by considering only derived
rules during search, and if their conclusions are carefully tailored, one can minimize
the number of choices for each inference.

Thus, one is led to conclude that the entire logic program should be included
in the untrusted proof for TL-PCC. Essentially, this reflects a more foundational
viewpoint by not trusting the logic program itself.

But I can take my proposal even further by constraining the logic program to the
point where it becomes deterministic. By adopting an idea originally suggested by
Pfenning [Pfe01], one can embed the oracle string in the search goal and interpret it
explicitly within a logic program. Thus, one can dispense with the external oracle
entirely and simply use a deterministic interpreter. A deterministic interpreter
yields an additional benefit by not charging for “don’t-care” nondeterminism, among
others.

At this point the astute reader will object to running an untrusted logic program,
because there is no assurance that it is sound, or that it will terminate. The
soundness concern is easily addressed, however, because each clause of the logic
program must have an associated derivation. Once these derivations are checked,
one is assured that any successful run of the logic program will have a derivation
in the original signature. The termination concern is less easily dispensed with,
but many ad-hoc solutions exist for bounding the time spent interpretation one
can decrement a counter as the logic program is executed, or, in the case of an
interactive download, one can bound the interpretation time by the patience of
the user by providing an explicit “reject” button. To a certain extent, the correct
solution to the nontermination problem depends on the particular application. In
effect, the program obligation is changed from “there must be a proof of safety” to
“a proof of safety must be constructed in time ¢” (the certificate might even supply
t). Finally, I should point out that in any PCC system based on LF [HHP93],
type checking is already vulnerable to a denial-of-service attack based on effective
nontermination, simply because testing LF terms for equivalence is not elementary
recursive [Sta77]—in practical terms, nontermination is not a new vulnerability.

2.2.3 Proof Reconstruction

In order to show that a program is safe in TL-PCC, one must prove that a particular
proposition (a security policy) holds based on ordinary logical inference rules as well
as another set of inference rules that encode the machine semantics. The latter rules
typically enable one to infer a value of the machine state at the next time from a
value of the machine state at the current time.

For this dissertation, I am primarily interested in security policies in the follow-
ing form:

Ppre D Dsafe Z/{ppost

Ppre 18 a precondition that holds when the program starts, psase is an invariance
property that must hold at each time step, and ppost is a postcondition that must

22 CHAPTER 2. BACKGROUND

hold for the program to exit successfully. The above proposition can be read as
“precondition implies safe unless postcondition.” The crux of the problem is to
show that psare holds at any given time.

Note that because one does not know the precise initial state that the program
will be started from, one cannot simply simulate a complete execution from the
machine semantics and then show that psaze holds at each time. Even if the precise
initial state was known, such a proof would be unreasonably large or infinite for any
program with loops. Thus, a more sophisticated approach is needed.

2.2.3.1 Symbolic Evaluation

In previous work by Necula and Lee [Nec98], VCs are generated by a technique
known as symbolic evaluation. While a symbolic evaluator produces the same re-
sults as a VC generator, the symbolic evaluator is structurally more similar to the
operational semantics of the machine. In effect, the operational semantics is ap-
plied to expressions that are an abstraction of a machine state. The machine state
is abstract because it is only partially instantiated: it represents many possible
run-time states. In practice, one can use an automatic theorem prover to discover a
proof that psase holds for a given abstract state when pgase is restricted to relatively
simple safety properties.

In previous work [BL02a], I developed a proof generation strategy for PCC that
is based on deriving inference rules that mimic the action of a symbolic evaluator.
A typical such rule shows that the invariance property holds from the current time
whenever a single potentially unsafe instruction is executed. An infinite tower of de-
rived rules is avoided by deferring to a loop invariant rule once inside each program
loop.

In this dissertation, I generalize this approach by constructing a derived logic of
programs that is used by the code producer as a foundation for proofs of invariance
properties. A logic of programs [Flo67, Hoa69] consists of a set of formal inference
rules that can be used to prove properties of programs in a given programming
language. A derived logic of programs is a logic of programs in which the formal
inference rules are derived from standard logical rules. Because the logic of programs
is derived formally, it is an untrusted component of the PCC infrastructure, and thus
adds no complexity to the TCB. In my PCC system, the derived logic of programs
provides the essential formal foundation for the logic program that implements proof
reconstruction.

2.2.3.2 Proof Outlines

A logical framework provides a representation of proofs and terms that is inde-
pendent of any particular logic. LF [HHP93] is one such framework that has been
particularly successful for PCC applications. It is not feasible to simply send a
proof of safety encoded directly in LF, because embedded type information grows
non-linearly with the size of the proof [NL98b]. Significant effort has been devoted
to automatically reconstructing type information for LF terms [Nec98]. Unfortu-

2.2. PROOF ENGINEERING AND TEMPORAL-LOGIC PCC 23

nately, my experience indicates that even with a powerful type reconstruction algo-
rithm [PS99], explicit proofs are still many times the size of the program [BL02a).

As T discussed in Section 2.2.2, the safety proof will instead be reconstructed
by interpreting derived rules as a logic program—these derived rules will be based
on the derived logic of programs. Although the interpreter is actually based on a
search over the constant declarations of a LF signature, in the interest of brevity, I
will usually pretend that it is a logic interpreter that performs a bottom-up search
over temporal-logic inference rules.

One cannot simply search over the same derived rules as would be used in an
explicit proof. For example, the conclusion of a the most common transition rule
also matches six other rules in my signature. Most reasonable search strategies
will require exponential time to execute this program, if they terminate at all.
The derived rules will instead be constrained so that they become a deterministic
algorithm, given an appropriate initial goal.

A proof checker can support such a strategy with only minimal extensions. As
I observed in Section 2.2.2, the search space for derived rules must be isolated from
the search space for trusted rules. This is accomplished by introducing, for any p,

a new goal
()

with the following introduction and elimination rules:

Obviously, the logic interpreter must ignore (())i during proof search—its sole pur-
pose is to define derived rules.

The only thing left to add is a special marker for omitted derivations (x): this
will trigger a proof search when they are encountered by the proof checker. It is
the responsibility of the code producer to ensure that only decidable derivations are
omitted. Thus, the code consumer expects to see an explicit safety proof with some
derivations omitted. In practice, the code producer will omit almost the entire proof,
but this approach gives the code producer the flexibility to choose any agreeable
balance between explicit and omitted proofs.

Now, the strategy of the code producer is to provide a derivation of safety that
is constructed as follows:

*
«ppo A (ppre D Psatfe Z/{ppost)»
Ppre O Psate U Ppost

Ppo is an encoding of a proof outline as a proposition. The proof outline functions
as an artificial constraint on proof search. The proof outline is structured so as to
make only one derived rule applicable for any given goal, though it also contains
instantiations for existential variables at certain key junctions. Given the above
derivation, proof search starts off with a constrained judgment that will result in a
deterministic strategy.

24 CHAPTER 2. BACKGROUND

Any explicit proof is in direct correspondence with some proof outline, so it
is not difficult to extract a proof outline once the code producer finds an explicit
proof. However, because the proof outline is much smaller than the explicit proof,
the code producer will send it in place of the proof to the code consumer.

For my purposes, a proof outline can be represented as a binary tree with some
token from a countable set (and occasionally a proposition) at each node. Although
this representation of a proof outline is not particularly conservative with respect to
memory usage, by using a simple customized binary encoding it can be compressed
to the point where it consumes much less space in a certificate.

2.3 Dissertation Scope

Many of the techniques presented in this dissertation cannot be applied to arbitrary
temporal-logic security properties. In particular, the techniques for automatic proof
construction are specialized to invariance properties, and Java type safety in par-
ticular. In the following table, I illustrate how the scope of the dissertation evolves
in terms of what class of security properties are considered:

Security Properties Notation

Chapter 3: Temporal Logic Reactivity P

Chapter 4: Machine Model Reactivity p

Section 5.2: Enforcement Reactivity P

Section 5.3: Soundness of Enf. Reactivity p

Section 5.4: Security Automata Safety Opsate

Section 5.5: Memory Access Memory Safety Ppre O safeld Ppost
Section 5.6: Memory Safety Memory Safety Ppre O safeld ppost
Section 5.7: Java Types Java Type Safety Ppre D safeld ppost
Section 5.8: Java Type Safety Java Type Safety Ppre O safeld ppost

Chapter 6: Program Logic
Chapter 7: Proof Construction
Chapter 8: Proof Engineering

Invariance
Java Type Safety
Java Type Safety

Ppre O Psate U Ppost
Ppre D safeld ppost
ppre D Safeuppost

The reactivity properties [MP90] are precisely those security properties that can
be encoded in temporal-logic and include all safety properties as well as the most
familiar liveness properties. In this table, ppre, Psate, and ppost are arbitrary state
specifications that do not contain temporal operators. safe is a particular memory
safety specification that is defined in Section 5.6.

Chapter 3

Temporal Logic

I choose to use temporal logic [MP91, CGP99] as a notation because it provides
a concise encoding for many kinds of security policies. Most of the techniques I
present later, however, do not depend in an essential way on the choice of notation
and can also be applied to systems based on first-order and higher-order logics.

I use a discrete linear-time first-order temporal logic that resembles classical tem-
poral logic [MP91]. However, instead of developing an axiomatization of this logic,
I follow Davies [Dav96] and Simpson [Sim94] and construct a natural-deduction
system based on explicit times [BPW02]. The extension of Davies’ system to addi-
tional temporal operators is straightforward. The extension to first-order quantifiers
requires more care to accommodate both rigid and flexible variables.

I use a natural-deduction system to enable compatibility with other PCC sys-
tems, and because the orthogonal treatment of connectives facilitates incremental
extensions and restrictions. A natural deduction system establishes a clear rela-
tionship between the set of connectives and the set of inference rules, because the
inference rules are intended to define the meaning of the connectives. In a classical
axiomatic system, this relationship is less clear and a separate proof is needed to
show that axioms are independent. It is also possible to treat connectives orthog-
onally in a classical sequent system [Gen69], but it is difficult to represent proof
terms compactly in such systems.

I will present things at the level of temporal logic for most of my dissertation.
However, keep in mind that the logic is itself encoded as a formal system of the LF
logical framework [HHP93]. I reproduce the complete LF representation of my logic
as Appendix B.1.

This chapter is structured as follows: in Section 3.1, I present the syntax of the
logic, along with the informal meaning of each construct. Section 3.2 is devoted
to establishing a precise model-theoretic semantics for the logic that shares the
mathematical domain of the operational semantics of the abstract machine. In
Section 3.3, I introduce the inference rules of the logic, developed according to the
principles of natural deduction [Pfe99]. In Section 3.4, I present generic theories for
algebra, equality, pairs, and lists. Finally, in Section 3.5, I prove that the natural
deduction system is sound with respect to the model-theoretic semantics.

25

26 CHAPTER 3. TEMPORAL LOGIC

Times t ==b|0|t1+1

Rigidities p u=ri|fl

Parameter lists a =-|a,a

Expressions eT u=a’ | g7 | frRTRTT (et L efk)
Propositions p = RTVCXTRTO(eT L ek)

|PrAp2 | p1Vpe|p1Dpo | Ve ip.p1 | a7 :p.pr
| Op1 | Op1 | prUC p2

Judgments J u=1t; <ty|p:lo(a)]|e:p(a)|p:p(a)
e— "€ |le—e |le=—="€ |e="¢€
| 0 /| /| *k /| x Ll
|p:>0p'|p:>p'\p:>**p'|p:>*p'
| pet|pelti,tz) | pet

Contexts I o=-|T,J

Figure 3.1: Abstract Syntax

3.1 Syntax

The syntax of my logic (see Figure 3.1) is based on disjoint countably infinite sets
of parameters and variables. A parameter a is always free in a proposition, whereas
a wariable = is normally bound.! This is a many-sorted logic, so each parameter
and variable is annotated with an explicit type 7 (as a superscript), of which there
are countably many. Types have no internal structure. I almost always omit type
annotations when they can be inferred or are immaterial.

Primitive functions and relations are named by a countable set of constants (f
and R, respectively). Constants are also annotated with types: 73 X - X 7%, = 7
is the annotation of a function from k parameters to a value of type 7, whereas
T1 X -++ X T, — 0 is the annotation of a relation on k& parameters. When £ is zero,
I use the meta variable ¢” instead of the more general meta variable f 7. Thus,
constant values ¢’ are nullary functions, whereas constant propositions (i.e., T,
1) are nullary relations. There is a binary equality relation for each type. Each
constant relation also has an associated complement relation of the same type: the
complement of R is denoted by —=R. — = is written #, and —T is written L. This
is a first-order logic, so functions and relations appear only as constants.

Ezxpressions €” are constructed from parameters, variables, and applications of
constant functions; 7 is the type of e. The simple type system for my logic is
essentially built into the syntax.

Following Manna and Pnueli [MP91], some expressions are rigid. It is syntac-
tically evident that a rigid expression has the same value at all times. A flexible
expression may (but need not) have different values at different times. For exam-

1The syntactic distinction between parameters and variables simplifies the notation for inference
rules.

3.1. SYNTAX 27

ple, a constant such as 5 is rigid, whereas the contents of a stack pointer register is
flexible. Variables also have rigidity—rigidities must agree when a bound variable
is instantiated. The rigidity p of a variable is declared when the variable is bound:
ri denotes a rigid variable, whereas fl denotes a flexible variable. A rigid expression
contains only rigid variables and parameters.

Propositions p encompass the usual connectives and quantifiers of first-order
logic, plus the following temporal operators:

e (Op holds iff p holds at the next future time.

Op holds iff p holds at all future times.

<p holds iff p holds at some future time.

e p1U° py holds iff p, holds at some future time, and p; holds until then.

p1U po holds iff p; holds until the first future time at which po holds, but p,
need never hold.

The equivalence connective = is an abbreviation for mutual implication:?

def
pr=p1 = (p1 Dp2) A(p2 Dp1)

Two temporal operators are also defined by abbreviation:

def
$p = Tuop

def
p1Upy = Op1 V (p1UC po)

I use the following customary precedence conventions (higher to lower) when
writing concrete propositions:

R(e1,...,er) Op Op Op
piUpy piUps

p1 A p2

p1Vp2

P1 D P2

p1 = Dp2

Ve:p.p dx:p.p

As is usual, the scope of a universal or existential quantifier extends as far to the
right as possible.

A proposition is local in a parameter if it is sensitive only to the current-time
value of the parameter (e.g., the value of the parameter can be changed at any other
time without affecting the truth of the proposition). A rigid proposition has only
rigid parameters (bound variables may be flexible). Propositions differing only in
the names of their bound variables are identified, as is customary.

def . . . s s . def
2p1 = p» means that proposition p; is a syntactic abbreviation for proposition ps. e; = e2 means

that expression e is a syntactic abbreviation for expression es.

28 CHAPTER 3. TEMPORAL LOGIC

t1 <to t1 denotes the same time as t» or an earlier time than ¢s.

p:lo (a) pis local in a.

e:p(a) e denotes a sequence with rigidity p. Each parameter in « is as-
sumed rigid.

p:p(a) p is a proposition with rigidity p. Each parameter in « is assumed
rigid.

e ="¢’ e reduces to normal form €' (in one step) when all subterms of e
are normal.

e=¢ e reduces to e’ (in one step) when all subterms of e are normal.

e =>** ¢/ e reduces to normal form e’ when all subterms of e are normal.
e =*¢ e reduces to normal form e’.

p="p' p reduces to normal form p’ (in one step) when all subterms of p
are normal.

p=7p p reduces to p’ (in one step) when all subterms of p are normal.

p="**p preduces to normal form p' when all subterms of p are normal.

p="*p" preduces to normal form p'.

pat p is true at time t.
palti,t2) pistrue at all times in the interval [t1,t2) (“p holds over t1 to t2”).
pat p is true at time ¢ according to a restricted formal system.

Table 3.1: Judgments

A time expression t denotes a specific instant in time. Time is counted in unary
notation: 0 denotes the earliest possible time (e.g., the start of execution), and t+1
denotes the time immediately following time ¢t. A parameter b is a time parameter,
designating an arbitrary time.

Following Martin-Lof [ML85], a judgment J (see Figure 3.1) is an object of
knowledge (i.e., a statement which can be established with evidence). An informal
interpretation for each judgment is suggested in Table 3.1. Note that “over” is
a derived concept that exist primarily to simplify the encoding of inference rules.
In Section 2.2.3.2, T explained the need for a restricted truth judgment for which
the code producer can develop a decidable formal system. e is the notation for this
judgment in the formal system of this chapter and the remainder of this dissertation.

Term rewriting [BN98] plays an important role in proof reconstruction by al-
lowing the code producer to elide the derivations of many decidable equivalence
problems. I treat term rewriting as an explicit formal system instead of building
it into my logical framework to allow the code producer to customize the rewriting
strategy. For the purposes of this section, however, term rewriting can be viewed
simply as an alternative notion of equality between expressions or equivalence be-
tween propositions.

3.1.1 Substitution

[e]/x7] e is the usual substitution of the expression e; for free occurrences of the
variable z in expression e. For substitution to be well formed, e; must have the

3.1. SYNTAX

[e/z]a =a
[e/z] x =e
[e/z] z1 =z ifzx #11

le/z] fle1,...,ex) = f([e/z]e1,...,[e/x]ex)
[e/z] R(e1,...,ex) = R([e/z]e1,...,[e/z]ek)

[e/z](p1 Ap2) = [e/a]p1 Ale/z]pa
[e/z](pr Vp2) =l[e/z]p1V[e/z]p2
[e/z](p1 D p2) = T[e/a]p1 D [e/]p2
[e/z]Vz. p =Vz.p

le/z]Vzi.p =Vzi.[e/z]pif ¢ # 11
[e/z]Tz. p =3dz.p

[e/x] 3z1.p = dz1. [e/z]p if z # x4
[e/z] Op = Ole/«]p

[e/z] Op = Ofe/«]p

le/z] (1 U p2) = [e/x]p1U°[e/]p2

Figure 3.2: Substitution

same type as z, and e; must be closed (i.e., it must not contain free variables); e
need not be closed. [e”/z"]p is the usual extension to propositions where e must be
closed, but p need not be. See Figure 3.2 for a precise definition of substitution. I
write A(p) for the set of parameters appearing in the proposition p. Thus, a ¢ A(p)
asserts that a does not appear in p. Similarly, I write B(¢) for the set of parameters

appearing in the time expression £.
Substitution has the following properties:

Proposition 3.1.1 (Absence) [e1/z]e = e if x does not appear free in e

PROOF: by induction on the structure of e

Proposition 3.1.2 (Elimination) z does not appear free in [e1/z]e

PROOF: by induction on the structure of e

Proposition 3.1.3 (Exchange) [e1/z1] [e2/x2] e = [e2/z2] [e1/z1] € if 1 # z2

PROOF: by induction on the structure of e

Proposition 3.1.4 (Idempotency) [e1/z][e2/z]e = [e2/x]e
PROOF: by Absence and Elimination

Proposition 3.1.5 (Idempotency) [e1/z][ea/z]p = [ea/z]p

PROOF: by induction on the structure of p

Proposition 3.1.6 (Exchange) [e1/z1] [e2/z2]p = [e2/x2][e1/x1]p if x1 # z2

PROOF: by induction on the structure of p

30 CHAPTER 3. TEMPORAL LOGIC

3.2 Model-Theoretic Semantics

In this section, I define a formal model for my temporal logic based on environ-
ments of infinite sequences of values. Each expression is associated with an infinite
sequence of values that represent the values that the expression takes over time. A
satisfaction relation determines whether a given judgment holds for a given environ-
ment. This model is similar to the usual models of temporal logic [MP91, CGP99]
and follows a standard semantic development [And86].

The purpose of the formal model is to relate the logic precisely to a mathematical
machine model. The machine model itself is developed in Chapter 4. A rigorous
mathematical semantics is needed to given each statement of a security policy a
precise, unambiguous meaning,.

In this section, I first introduce supporting definitions for the model-theoretic
semantics, then I define satisfaction and valuation for each element of the formal
syntax. Finally, I derive some properties of the formal model that will be used to
support later meta-theoretic proofs.

In Section 3.3, I develop a proof system that is sound with respect to the formal
semantics.

3.2.1 Definitions

Each type 7 is associated with a set that contains the mathematical values that be-
long to that type. Val” is the set of values v™ of type 7. A sequence 7™ is a mapping
from natural numbers (representing times) to values of type 7. An environment ¢
maps each parameter to a sequence of the same type. A time environment 1 maps
each time parameter to a natural number.

I assume an interpretation function J mapping each constant to a mathematical
value of the same type, which may be an ordinary value such as a number (nullary
functions), a total function (other functions), or a set of tuples (relations). I assume
that J is defined as follows for the universal constants:

where () is the “unit” or nullary tuple.

Additionally, when J can be inferred from context, I often write f for J(f)
and T for the constant ¢ such that J(c) = v, when such a c exists.? I also write
R(v1,...,v;) when (v1,...,v,) € R. J is only partially specified in this chapter—I
will incrementally refine the definition as new constants are introduced.

3The notation ¢ is intended to suggest that the constant c is “pushed downwards,” from syntax
into semantics, whereas the notation v is intended to suggest that the mathematical value v is
“lifted upwards,” from semantics to syntax.

3.2. MODEL-THEORETIC SEMANTICS 31

3.2.2 Valuation

A waluation function assigns values to expressions. V,(t) is the value of time ex-
pression t as a natural number in environment 7:
Vi (b)

n(b)
V,(0) 0
Volt +1) =V, (t) +1

n(b) is always defined because environments are total functions.
Vg evaluates expressions of type T to sequences of values of type 7 in the envi-

ronment ¢; e must be closed for Vg (e) to be defined:

Vv (a) = ¢(a)
VI (fler, - ser)) = § = TNV (e)(d)s---, V] (ex) ()

The notation j — v constructs an “anonymous” mapping 1 such that ¥ (j) = v.
The notation t[v; — wg] is the redefinition of the mapping % such that vy is
mapped to vo:
dom(¢[vy — v9]) = dom U {v;}

(%) if V1 = U3

(Plvr = v2])(vs) = {

¥(vs) otherwise

Let Seq™ be the set of all sequences of values of type 7. Valuation has the
following properties:

Proposition 3.2.1 (Type Preservation) Vg(eT) € Seq” if e is closed

PROOF: by induction on the structure of e” O
Proposition 3.2.2 (Renaming) Vp,.;1(b1) = Vipyiss1(b2)

PROOF: by definition of V, O

Proposition 3.2.3 (Renaming) Vg[al’_m]([al/a:] e) = Vg ([az/z] €)

[ag+>r7]
if a1 and a9 do not appear in e and [a1/x]e is closed

PROOF: by induction on the structure of e O

Proposition 3.2.4 (Independence) V., ;)(t) = Vy(t)
if b does not appear in t

PROOF: by induction on the structure of ¢ O

Proposition 3.2.5 (Independence) V7 (e) = Vq{(e)

olar>]
if a does not appear in e and e is closed

32 CHAPTER 3. TEMPORAL LOGIC

PROOF: by induction on the structure of e O

Proposition 3.2.6 (Past/Future Independence) Vg[w_m](e)(j) = Vg(e)(j)
if m(J) = é(a)(j) and e is closed

PROOF: by induction on the structure of e O
Proposition 3.2.7 (Extraction) V,(t) = Vs, 1) (0)
PROOF: by definition of V), O

Proposition 3.2.8 (Extraction) Vg([el/x] e) = Vg[v 1)]([a/ac] e)
a P €

if a does not appear in e and [e1/z]e is closed

PROOF: by induction on the structure of e O

3.2.3 Satisfaction

A sequence is rigid if it has the same value at all times. The value of a rigid
expression is always a rigid sequence, but an expression is not necessarily rigid if its
value is a rigid sequence. I write 7 : p when 7 has rigidity p:

w:p iff p=riimplies w(j1) = w(j2) for all jq, jo

When viewed semantically, a judgment J is a property of an environment ¢ and
a time environment 7. The satisfaction relation

g.nE7J

defines when J holds for a particular pair of such environments ¢ and 7; J must be
closed for satisfaction to be defined.

The time precedence judgment holds when the value of the first time expression
is less than or equal to the value of the second:

d,nET t <ty HE Vy(t1) < Vy(ta)

The locality judgment holds when the value of the local parameter can be
changed at any time other than the current time without affecting the truth of
the proposition:*

é,nE7 pilo(a) iff #,nm[b+— j] EY pab implies ¢p[a — 7],n[b— j] 7 pab
for some b and all 7, j such that 7(j) = ¢(a)(j)

*Note that locality might alternatively be introduced as a derived concept based on a syntactic
encoding such as

p:lo(a)dglj(\fw:fl.xza DpDlx/a]p)

3.2. MODEL-THEORETIC SEMANTICS 33

A rigidity judgment holds when a rigid ascription implies that the value of an
expression (or the truth of a proposition) is invariant for all times:

¢,nE7 e:p(a) iff p=riimplies Vg(e) (31)
¢,nE pip(a) iff p=ri
implies ¢,m[b > j1] 7 pab

implies ¢(j, _j,)..|a> N0 > Jo2] ET pab
for some b and all 71, 72

—_ 7 . o
- V¢(j1—12)--|a (6)(]2) for all J1,72

Because the rigidity of a bound variable does not influence the rigidity of the propo-
sition in which it appears,’ it is necessary to maintain a list of parameters o that
have instantiated such variables when the rigidity judgment is defined semantically.
At a syntactic level, such parameters are “assumed to be rigid.” At a semantic
level, rigidity is defined by comparing the value of an expression or proposition at
any given time with its value at any other time. The semantic interpretation of the
statement “a is assumed to be rigid” is to shift the sequence 7 that a is mapped to
such that a appears to have the same value at the current pair of reference times j;
and jg.
.. is the notation for the sequence 7 shifted by k time steps:

[0 ij+k<0
Tk, =J . .
w(j + k) otherwise

®k..|a 18 the environment ¢ such that the sequence for each parameter in « is shifted
by k time steps:

(¢p(a))k. ifa€a
¢(a) otherwise

¢k..|a =a {

Thus, ¢ will agree with ¢’ = }(j—j)..|}a Tor all parameters in o when ¢ is interpreted
at time 7 and ¢' is interpreted at time j’. This is the informal justification for the
treatment of o in the definition of rigidity—the formal justification is established
by the soundness proof.

Note that I often abbreviate e:p (-) as e:p and p:p () as p:p.

Satisfaction for the remaining judgments is defined in Figure 3.3—this definition
is similar to the usual semantic models for temporal logic. Thus, ¢, 7 pat (“¢
and 7 satisfy p at time ¢”) holds if p is true of ¢ and n at time ¢. Because term
rewriting is inherently syntactic, its semantic manifestation is simple equivalence,
and is thus rather uninteresting when viewed in terms of the satisfaction relation.
I say that a proposition is valid for a given time environment iff it is satisfied by all
value environments and that time environment. A proposition is valid (in general)
iff it is valid for all time environments.

Rigidity, shifting, and satisfaction have the following properties:

Proposition 3.2.9 (Equivalence) ¢,nE7 e:p iff Vg(e))
if e is closed

SFor example, Jz:fl. z = 5 is a rigid proposition, even though z is a flexible variable.

34

p,nET e =0¢
¢,nET e = ¢

¢, ET e = ¢

p,nET e ="¢
¢,nEl p="p

¢,nES p=>p

¢,nET p =9

¢,nES p="p

é,n =7 Rles,. ..,
¢a77 '=j (_'R)(ela--'a
¢777'=jp1 /\p2@t
¢,nE7 p1Vpret

ek)@t
ex) ot

¢a7l':‘7171 Dprat
d,nEI Nz :p.pat

é,nEI xT:p.pat

¢,nE7 Op1 ot
¢,n =7 Opy ot

¢,’f] hjp1u0p2@t

¢,n T palty, ts)

¢777 hjp@t

iff
iff
iff
iff
iff
iff
iff

iff

iff
iff
iff
iff
iff

—

iff
iff
iff
iff

iff

iff

CHAPTER 3. TEMPORAL LOGIC

v (e) = VI (€)
V7 (e) = VY (€)
V7 (e) = VY (€)
V7 (e) = VY (€)

(¢ynb = 5] E7 pabiff ¢,n[b— j] =7 p'ab)
for some b and all j
(@:n[b = 5] ET pabiff ¢,n[b— j]F7 p'ab)
for some b and all j
(#sn[b = 5] 7 pabiff ¢,nlb— j]F7 p'ab)
for some b and all j
(#sn[b = 5] 7 pabiff ¢,nlb— j]F7 p'ab)
for some b and all j

(VT () V(1) -, VT (ex) (Vy(1)) € T(R)
VT () (Va(8),- -, VT (er) V(1)) ¢ T(R)
é,nEI pretand ¢,nET pyat

¢,nE7 prator g,nE7 pyat

é,nE7 prat implies ¢,n ET pyat

dla” > 1) £ (07 27]pat

for some a” ¢ A(p) and all ©7 : p

gla” = 77],nE7 a7 /aT]pet

for some a” ¢ A(p) and some 77 : p

¢,nb+— Vy(t) + 1] 7 p1ab for some b

¢,nb+— 5] E7 p1eb for some b and all j > V,(t)
¢, n[b > ja] F7 prab

for some b and some ja > Vy(t)

such that ¢,’I][b1 = Vn(t)][bQ —]2] |:‘7 D1 @[bl, b2)
for some by, by such that b; # by

é,n[b +— 7] EY pab for some b and all 5
such that V; (1) < j < Vy(t2)

¢,77':‘7P@t

Figure 3.3: Satisfaction

3.2. MODEL-THEORETIC SEMANTICS

PROOF: by the definition of F

Proposition 3.2.10 (Rigidity) = :pifm:p

PROOF: by the definition of 7y

Proposition 3.2.11 (Cancellation) (7x..)—k)..(4) = 7(j) ifj > k
PROOF: by the definition of 7y .

Proposition 3.2.12 (Cancellation) (¢;..)(—k)..|a(@)(F) = ¢(a)(j) ifj > k

PROOF: by Proposition 3.2.11 and the definition of ¢y,

35

a

Proposition 3.2.13 (Renaming) ¢,n[b; — j] F paby iff ¢,n[bs — j]1 7 paby

if p is closed
PROOF: by induction on the structure of p

Proposition 3.2.14 (Renaming) ¢[a; — 7],n 7 [a1/z]pat

iff plag = 7,0 E Jag/z]pot
if a1 and ag do not appear in p and [a1/z]p is closed

PROOF: by induction on the structure of p

Proposition 3.2.15 (Independence) ¢,n[b— j]E7 pat iff p,nE pat
if b does not appear in t and p is closed

PROOF: by induction on the structure of p

Proposition 3.2.16 (Independence) ¢[a +— 7|,nE7 pat iff p,n E pat
if a does not appear in p and p is closed

PROOF: by induction on the structure of p

a

Proposition 3.2.17 (Past Independence) ¢[a — 7],n F7 pat iff b0 F7 pat

if 7(3) = ¢(a)(4) for all j > Vy(t) and p is closed
PROOF: by induction on the structure of p

Proposition 3.2.18 (Extraction) ¢,nF7 pat iff ¢,n[b— V,(t)] F7 pab
if p is closed

PROOF: by induction on the structure of p
Proposition 3.2.19 (Extraction) ¢, 7 [e/z]pat
iff dla = VI (e)],n £7 [a/a]pat

if a does not appear in p and [e/z]p is closed

PROOF: by induction on the structure of p

36 CHAPTER 3. TEMPORAL LOGIC

3.3 Proof System

I now develop a proof system for temporal logic that is sound with respect to the
model-theoretic semantics.

An affirmation

T J

asserts that there is a proof of the judgment J under assumptions I'. Affirmation
is predicated on the interpretation function J because the correct instantiation of
certain inference rules depends on the interpretation of particular constants. Note
that in most cases, I omit the interpretation function when presenting an inference
rule. It should be understood in these cases that the interpretation function is the
same for all affirmations in the rule. Note also that locality, rigidity, and (normally)
term rewriting affirmations are efficiently decidable.

A context T' is a collection of hypothetical judgments that weaken provability.
For example,

a:rit [a/z]pet

asserts that it is provable that [a/z]p holds at time ¢, assuming that a is rigid. Note
that I could clarify the (lack of) dependencies between judgment types by stratifying
the context accordingly (e.g., pat is a useless assumption for proving t; < t2), but
this is not practical here due to the number of distinct judgment types.

A pair of environments satisfy a context (¢,n 7 T') when they satisfy each
judgment in the context (the context must be closed for satisfaction to be defined).
Thus, context satisfaction can be defined inductively as follows:

¢7n':j :
bnEIT, J ff ¢,nEI T and ¢p,nET J

It has the following properties:

Proposition 3.3.1 (Independence) ¢,n[b+— j]F/ T iff p,n I T
if b does not appear in I' and I is closed

PROOF: by induction on the structure of I' O

Proposition 3.3.2 (Independence) ¢[a — 7],n F7 T iff ,n I T
if a does not appear in T and I is closed

PROOF: by induction on the structure of T’ O

I now present the natural deduction system for my logic. The proof theory of a
similar system is examined in another work [BPW02]. Note that because my proof
system includes first-order quantifiers and arithmetic over infinite sets of numbers,
I cannot hope to make it complete [G6d31]. In fact, it is actually less strong than
most classical systems for temporal logic, because there is no rule for “excluded
middle.”®

The hypothesis rule lets one use a hypothesis as a conclusion in a derivation:

5The “excluded middle” axiom is pV p D L for an arbitrary proposition p. In practice, I have
not yet found a need for an excluded middle axiom, but adding it to the system would result in no
technical complications.

3.3. PROOF SYSTEM 37

FEt4+1<¢

- <y = < ——="<e
TF0<t =" Tre<tdi ="' Trpaer — ot

PFtg<t T'kpaty I,tg<b, pabkpab+1 b

TFpat > €nd1
< I'Ft1 <ty THt<tH P"p@t1<i
Tht<t— TFpots = asym

'kt <ty THEty<ts
l-\l_tl St,?, X ltrans

Fl‘tlfto Fl‘tggto F,tQStll_p@t F,t1+1§t2|—p@t
'Fpot

< €linp

'ty <ty TrFitg<ty T ty<tiFpat P,t1+1st2|—p@t<e.
TFpat = inf

Figure 3.4: Inference Rules (Time Structure)

T J T, J P

In this section, I label introduction rules with i and elimination rules with e. The
inference rules in Figure 3.4 enable one to derive judgments on relations between
times based on the underlying time structure I have chosen. The first four rules
come from Peano arithmetic and reflect the underlying model of times as natural
numbers. The induction rule < ej,q1 enables one to infer that a judgment holds at
an arbitrary future time if it holds now, and if it is preserved at each future time.
This rule is a standard feature of discrete-time temporal logics.” The induction rule
is actually a specialized version of a more general rule that cannot be translated
from the LF representation without awkward notation (see Appendix B.1.3.6)—
however, it is equivalent to the following rule in which certain LF constructs are
internalized as temporal operators:

F'Fpiaty T,tg<b piabkpiVprab+1 b
T Fplupz aty = Cind2

The next three rules reflect standard properties of partial orders (reflexivity, anti-
symmetry, transitivity). The final two rules are totality properties that reflect the
fact that the time structure is linear in the past and linear in the future (respec-
tively). Because the past is rooted at zero, the past linearity rule is unnecessary: one
can always instantiate the first two premises of the future linearity rule with < ig.
However, I keep these rules in their present form to preserve orthogonality and be-
cause the zero-instantiated form of the future linearity rule cannot be treated as an

"When a parameter appears as a superscript of an inference-rule label, it should be understood
to mean that the parameter is “fresh” (i.e., it does not appear in the conclusion of the rule).

38 CHAPTER 3. TEMPORAL LOGIC

IC'Fpi:lo(a) TF pa:lo(a)

'k R(e1,...,ex):lo(a) loir I'Fp1 Apa:lo(a) loi
C'kpi:lo(a) T'Fpy:lo(a) o Ckpi:lo(a) TFps:lo(a) o
'k p1 Vpa:lo(a) v 'k p1 D pa:lo(a) -
I't[d'/z]p:lo(a) . TFk[d'/z]p:lo(a) .,
C'FVz:p.p:lo(a) Oly 'k 3z:p.p:lo (a) ©13
. |oia¢A(P1)
I'QOpi:lo(a) O
:a A(p1)UA(p2)

) |oi‘|%A(P1)

T'F Opi:lo(a T Fp1U° pa:lo(a) loiyo

Tk [a/z]p:lo(a) ThHe=¢ot TFe/z]pat
Lk [e/z]pet

a

loe

Figure 3.5: Inference Rules (Locality)

elimination rule, and thus has undesirable proof-theoretic properties—see Bernard,
et al. [BPWO02] for a more detailed discussion.

The inference rules in Figure 3.5 enable one to infer locality: any parameter
that does not appear in the scope of a temporal operator is local. The rule loe
declares that equality at the current time is sufficient to perform substitutions for
local variables.®

The inference rules in Figure 3.6 enable one to infer rigidity for expressions
and propositions. The rule fli declares that all expressions are flexible (e.g., rigid
expressions are also flexible). The rule riiy declares that rigidity is preserved by
constant functions. The rule rie lets one infer the truth of a rigid proposition from
one time to another.

When interpreted as a logic program, the inference rules in Figure 3.7 and
Figure 3.8 implement a standard rewriting algorithm [BN98] on expressions and
propositions if the atomic introduction rules are ignored (= iexp, = iprop, =
lexpy = ipmp)9 and if =" istop_exp and =="" istop_prop are only allowed to succeed
when no other rule is applicable.

I optimize this algorithm by providing a special “step” judgment =9 that is
guaranteed to introduce no new redices. In practice, this optimization enables a
dramatic increase in performance, because many reductions fall into this category
and terms that are already in normal form need not be rebuilt. There are built-in
step introduction rules for constants, based on the constant interpretation function
J—these rules enable a proof checker to establish ordinary facts about constant ex-

8Note that this rule is unsound if the logic is extended to include “next-time expressions” such
as are found in Manna and Pnueli [MP91].
%In practice, these rules are only used to introduce derived rules.

3.3. PROOF SYSTEM 39

" C'ke:pla) ,
IW
I'ke:fl(a) ! Fl—e:p(al,a,az)p eak
. . Fhepri(a) ... Thkegiri(a) i
——— fipgr ——————— n _
Tha:ri(a) ™ TFecri(a) Hico T'F fler,...,ex):ri () !
Fkep:p(a) ... Tregp(a) o Ckpiip(a) TEpip(a) o
'k R(er,...,ex):p (@) " C'EpiAp2ip (@) "
LEpiip(e) TEpeip(a) o L'Epiip(e) TEpeipla) o
v
I'Ep1Vpeip(a) I'kp1 Dpaip(a) D
Ik [a/z]p:p (,a) o I'F[a/z]p:p (e, a) pig
CHVz:p.pip(e) 7 Tr3z:p.pipla)
Phpiple) . Thpiple) . Thpiipla) TEpeip(a) pingo

R — I R ——
T Opip(@ C TrOpip(e MO TEpUCprip(a)

CrEpiri(r) Tkpet
'kFpat

rie

Figure 3.6: Inference Rules (Rigidity)

pressions. The other step introduction rules enable the code producer to customize
the rewriting strategy according to the certification strategy by introducing derived
rules from provable equivalences. The normalization elimination rules enable the
results of a rewriting search to be used in an ordinary derivation (usually a derived
rule).

The inference rules for connectives (see Figure 3.9) are straightforward adap-
tations of the standard introduction and elimination rules for natural deduction.
Note that the rule Ve does not require the time of the first premise to match the
time of the conclusion. The generalization of this rule to conclusions on the in-
terval judgment can be derived from within the system. The introduction and
elimination rules for these connectives are locally sound and locally complete in
the sense of Pfenning [Pfe99] by adapting the standard reductions and expansions.
The standard introduction and elimination rules for quantifiers can be adapted to
local soundness and local completeness by explicitly considering the rigidity of the
appropriate parameter (see Figure 3.9).

The introduction and elimination rules for temporal operators are based on
Simpson [Sim94] and Davies [Dav96] (see Figure 3.9). The rule [Ji enables one to
infer that a proposition is true at all future times if it can be proven at any arbitrary
future time. The rule (e follows directly from the definition of (1. The rule e
resembles Je: given p1 U pa ot, one can derive p’ ot’ if one can derive p’ o t' under
the assumption that ps holds at some arbitrary point in the future, and p; holds

40 CHAPTER 3. TEMPORAL LOGIC

— 0 ;T (NI (e1)ssT (eh))=T (¢))
T+ flet,...,cp) =0¢

.0 Tig(m),.--,.’f(ck))Ej(R)

I'+7 Rlcr,...,ce) =0T

0 | (T (e1)nd (ci))ET(R)
TH Ricr,.. cp) —0 1L 'R

Fl—e:el@b 0 -b FFpEpl@b 0:b
TFe=0¢ TP Thp=0yp prop

TFe=¢ab b IF'Fp=pab b

TFe=¢ P Thp=yp 'prop
' € :>0 el sk *%
W =" Istep0_exp W =" lIstop_exp

T'Fe=¢ TlFe=*¢
F'kFe="*¢"

b
=" Istep_exp

Fkp="p

Trp—rp Sobop

'kp=p Ttp=*p"
Fl_p_—_>**p”

L3 I
=" Istep_prop

Figure 3.7: Inference Rules (Term Rewriting)

3.3. PROOF SYSTEM

. "
TFa=—*aq lpar P"C:>*c:> icon
Pre="¢ ... Tre="¢ TFfle,....q)="e _,
I
Pl—f(el,...,ek):}*e” f
Fbep="¢; ... Theg="¢ TFR(e,....e) ="p" =%
Fl—R(el,...,ek):*p" R
Phpi="p Thkpp="ph TEpiAD="p" .
P"pl/\p2:>*p” A
Phpi="p Thkpp="ph TEpVRy="p" .
P"plvpzi*pn \Y
F|_p1:>*p’1 P}—p2:>*pl2 Pl_plljpé:}**pll .
P|_p13p2:>*p” 2
L+ fa/slp =" [a/a]y) THVep ="p" .,
Pl_v.xp:}*pu \Y
I'Fla/slp="[a/alp TF3s.p=""p" _ ..,
'k 3z.p=*p"” 3
Thp="p THOp ="p" __..
] O
Fl—p:>*p’ I‘|_|:|pI:>**p// :>*i|:|
]_"|_|:|p:>*pll
Tkp="py Tkpp="p) THpiUPy=""p"
" y°

r }—p1u0p2 —x p//

Phe="*e __.« Pkp=*yp

= ¢ —*e
F'Fe==¢at &P F'Fp=9pat prop

Figure 3.8: Inference Rules (Normalization)

41

42 CHAPTER 3. TEMPORAL LOGIC

F"pl@t Pl—pg@t . Pl‘pl/\pg@t F"pl/\pQ@t
'Fpi Apaat Al I'tFpret € I'Fpoat

I'kpat _ I'-prat .
I'Fp1Vprat Vi I'p1 Vpoat vir

FFpiVprat T, pretkp et T, prattp et Ve
L'tpat

I, pretkFpret . T'Fp; Dprot I-‘I—pl@tD
TFpDprat = TFpyoal ¢

I,a:ptla/z]lpet =~ THVzip.pet Theip
THVz:ip.pat L'k le/z]peat

Ve

IF'ke:p Thle/z]pat . T'F3Iz:ip.pat T,a:p, [a/w]p@tl-p'@t'zla
Tk3z:p.pat 3i Tkpat ¢

IT'FQOpet
'Fpet+1

'Fpet+1
'FQOpet

I'Nt<biFpreb by 'FOpiet THt<H e
' [Opiet : I'Fprety

Oi Qe

T'Ht <t Fl—pl@[t,tz) I'Fpoaty
T'FpiU° pyat

U®i

TEpiUlprat T,t<by, praft,by), ppaby b p'at
I'kpat

qubz

Figure 3.9: Inference Rules (Instants)

3.4. THEORIES 43

until then. The introduction and elimination rules for the temporal operators are
also locally sound and locally complete [BPW02].

The inference rules for the interval judgment internalize the semantic interpre-
tation of the judgment:

i1 <b,b+1<tyFpab b Pl—p@[tl,tQ) I'Ft1 <t THt+1<t
T+ palts,ts) ovi TFpat

ove

T always holds:

TFTat

Additionally, the following generic inference rules apply to all constant relations:

T, R(e1,...,ex) ot p'at’ T, (=R)(e1,...,ex)attp' at’ .
I'kpat Ricase

't R(e1,...,ex)et T'F(=R)(e1,...,ex)at
L'kpat

Recontr

Any relation is either true or false (but never both) at a given time for any given
set of argument expressions. Note that because this is a natural-deduction system,
I do not generalize this principle to all propositions in the form of an “excluded
middle” rule.

Finally, the following inference rules take propositions in and out of the restricted
formal system, governed by e:

I'pat i Fl—p@t@
TFpet ™ TFrpet

See Section 8.2 for a discussion of how this judgment is used by the code producer
to define a restricted formal system.

3.4 Theories

In this section, I develop theories for equality, natural numbers, pairs, and lists.
First, however, I introduce notation for general algebraic properties of functions
and relations.

3.4.1 Algebraic Properties

In this section, I catalog a set of derived indexed propositions that encode general
algebraic properties of functions and relations. The definitions of these propositions
are based on generally accepted mathematical practice [DP90, Cla84], so I do not
elaborate them here, but I refer the interested reader to Appendix B.1.1.10 and
Appendix B.1.1.11, where they can be examined in their entirety.

In Table 3.2, I enumerate the relevant properties on function constants.

In Table 3.3, I enumerate the relevant properties on relation constants.

inj(f)
assoc(f)
idl(fa cl)
idr(f, CQ)
id(f,)
invl(f,c, f1)

invr(f, c, f2)
inv(f,c, f')

comn(f)
distl(fl, fg)
distr(fl, fg)
dist(fl, f2)

monoid(f, c)

comm_group(f, ¢, f')

ring(f1,c1, f1, f2)

comm ring(f1,c1, f1, f2,¢2)

idem(f)
absorb(f1, f2)

CHAPTER 3. TEMPORAL LOGIC

f is an injective function

Z is an associative binary function

c1 is a left identity for binary function f

cg is a right identity for binary function f

¢ is an identity for binary function f a

f1 computes left inverses for binary function
i_and identity element c

fo computes right inverses for binary function
f_and identity element ¢

f! computes inverses for binary function f and
identity element ¢ B

f is a commutative binary function

E distributes to the left over f;

f2 distributes to the right over fi

f2 distributes over fi o

f is a monoid with identity element ¢

f is a group product with identity element c;

f' computes inverses for f and ¢

f is a commutative group product with iden-
tity element c; f_’ computes inverses for f and
c

f2 is a ring product for ring sum f; with iden-
tity element c;; f{ computes inverses for fi
and ¢; - o
fo is a commutative ring product for ring sum
E with identity element ¢;; f] computes in-
verses for f1 and c¢;; ¢ is the identity for fo
f is idempotent

ﬁ absorbs é

Table 3.2: Properties of Functions

3.4. THEORIES

fun(R)
ref(R)
irref(R)
sym(R)
antisym(R)
trans(R)
total(R)
bot(R, c)
top(R,c)
preorder(R)
equiv(R)
order(R)
tot_order(R)
str_order(R)

str_tot_order(R)

meet(R, f)
join(R, f)
1att(Ra fla f2)

dist_latt(R, f1, f)

comp(f1, fa,co,c1, f')

bool latt(R, f1, f2, co,c1, f')

45

R is a partial function

R is reflexive

R is irreflexive

R is symmetric

R is antisymmetric

R is transitive

R is total

¢ is a bottom element for R

c is a top element for R

R is a preorder

R is an equivalence relation

R is an order

R is a total order

R is a strict order

R is a strict total order

f is the meet operation for order R

f is the join operation for order R

Val™ is a lattice under order R™*7° with
meet fi; and join fo

Val™ is a distributive lattice under order
R™7° with meet f; and join fo

f' computes complements for meet fi, join fo,
zero element ¢, and one element c_1_ o
Val™ is a boolean lattice under order R™*7°
with meet f; and join fo; f’ computes com-
plements for zero element c_o_ and one element
4!

Table 3.3: Properties of Relations

46 CHAPTER 3. TEMPORAL LOGIC

3.4.2 Equality
3.4.2.1 Semantics

The semantics of equality is based on mathematical identity:

J(="T) ={{v,v) [ve Val"}

3.4.2.2 Inference Rules

The rules for equality take Necula [Nec98] as a point of departure:

. I'La:p,a=coattpat _
TFe=ecat THpat some

F'e=¢€ab T'Fle/z]pat
=e
Tk[e/z]pat cong

Note that the congruence rule = econg must be weakened to account for the case
in which p contains temporal operators: one must show that e and €' are equal at
all times (this rule complements loe). The rule = igome enables one to introduce
a parameter (typically rigid) that is equal to the current value of some expression
(typically flexible).

3.4.3 Pairs

71 XTo—pair (T){72)

pair(r)(me) is the type of pairs of elements of types 7, and 75. mkp
is a function that constructs a new pair, whereas the function 1eftP2ir(11){m2)=71 and
the function righ’cpail”<71)<72>_”2 project particular elements out of a given pair.
3.4.3.1 Semantics
Pairs are represented semantically as mathematical pairs:

ValP2ir(mim2) — ygI™ x Val™

The interpretation of the pair functions is similarly straightforward:

J(mkp) = vi,ve > (v1,v2)
J(left) = (v1,v2) — v1
J(right) = <U1,U2> = Vo

3.4.3.2 Inference Rules

The pair functions are characterized by the following axioms:

left_mk right_mk

't left(mkp(ei,ez)) =e1 @t 'k right(mkp(ei,e2)) = ex @t

Additionally, the pair constructor function is injective:

i
T+ inj(mkp)at

3.5. SOUNDNESS 47

3.4.4 Lists

list(r) is the type of lists of elements of type 7. emptyliSt<T> is the empty list of
type 7, cons”*Hst(n)=1ist() g 54 function that adds an element to the head of a
list, and head™ (") =7 and taillis®{m—=14s%(7) are functions that project out the
head and tail of a given list.

3.4.4.1 Semantics

The type of a list of type 7 is modeled semantically by the set of all finite sequences

of values of type 7: .
Valllst(r) _ (ValT)*

The list functions are interpreted as follows:

J (empty) =)
J(cons) =v,v" = (v,0)
J(headlist(T)—W) = v’ ifv= <'U17,U”)
v' € Val™ otherwise
v if v = (v, v")
J(tail B .
() {U' € Val*is*(") otherwise

1ist(7)) is an unspecified value of type 7. Similarly, the

is an unspecified value of type list(7).

The value of head(empty
value of tail(empty'ist{m)

3.4.4.2 Inference Rules

The list functions are characterized by the following axioms:

head_cons tail_cons

I' F head(cons(ei,eq2)) = €1 @t 'k tail(cons(ei,e2)) = esat

The list constructor function is also injective:

't inj(cons)et cons-m)

3.5 Soundness

I can now show that my inference rules are sound with respect to the formal model
of Section 3.2. In Chapter 4, I show that additional domain-specific inference rules
for the machine model are also sound.

Proposition 3.5.1 (Soundness) ¢,nF7 J if g,nEI T and T +7 J

48

PROOF:

by induction on the derivation of I' 7 J

¢

let D be the derivation of T +7 J

nEIT THJ

D

Dy

CHAPTER 3. TEMPORAL LOGIC

DI

3
case: J=pet " D=TFt;<# Trpaty T,tg<b pabkpab+1

¢, ET tg <t/
let jO = Vn(tO),j, = V?](tl)
jo<j

let b ¢ B(to) UB(t') UB(T)

¢7n[bHJO] Isz@b
for all 7 > 7

¢, m[b— j1 7 pab
let ' = n[b — 7]

Vi (b) = j

é,n EI T

¢, F 1o <b

¢, ET T, t9g < b, pab
¢, EI pab+1
Vyb+1)=j+1

let b b

¢, ' = j+1F pat/
¢,nb—j+1]F pab
¢, j'1F7 pab
¢a77lsz@tl

other cases are similar

é,nE7 paty

'pat

Prem.

b
> a1

1.H.
Def. E

Prop. 3.2.18

Hyp.

Def. V,
Prop. 3.3.1
Def. E
Def. E
I.H.

Def. V;,

Prop. 3.2.18
Prop. 3.2.13

induction
Prop. 3.2.18

O

Chapter 4

Machine Model

In this section, I develop an abstract model for an idealized subset of the Intel IA-32
processor architecture [Int01], and then prove that a formal encoding of this seman-
tics in temporal logic is sound with respect to the original model. This abstract
model was chosen to correspond directly to my PCC implementation and is not the
simplest way to model a processor (refer to Bernard and Lee [BL02b], for example,
for a simpler machine model). However, the exercise does demonstrate that my
approach can accommodate an irregular instruction set with complex addressing
modes and few registers without causing an unacceptable amount of complication.

This processor operates on “words,” each of which is 32 bits in size. There are a
small number of general-purpose registers that each contain a single word, a word-
sized program counter, a word-sized collection of status flags, and two mappings
from words to words that model the memory and stack.! The processor executes
a program that is a partial function from addresses to instructions. I assume that
the program is effectively in a separate memory and thereby protected from modi-
fication.

The stack is in a separate register from the memory so that the code producer
can treat it as an extension of the register file (as in Necula [Nec98]) and thereby not
have to provide an explicit proof that aliasing cannot occur between the stack and
heap. Although this design slightly constrains the code generation options available
to the code consumer, I believe that it is a favorable trade-off, given the importance
of having an efficient stack representation for processors with a small number of
registers. In effect, I treat the stack as though it were in a different segment from
the heap. In an implementation of this model, one can actually set up an isolated
address space for the stack using the TA-32 segment registers. Alternatively, one
can use a “flat” address space and design a security policy to ensure that stack and
heap addresses cannot alias. In Section 10.2.2, I suggest how this latter approach
might be realized.

This chapter is organized as follows: in Section 4.1, I define the instruction
set of the abstract machine. Section 4.2 contains the new syntactic elements that

! Accesses to the memory and stack are restricted to aligned addresses by the memory-safety
policy (see Chapter 5).

49

50 CHAPTER 4. MACHINE MODEL

are need to model the abstract machine formally in temporal logic. Section 4.3
contains the complete operational semantics of the machine, specified in informal
mathematical notation. In Section 4.4, I sample the logical inference rules that
formalize the operational semantics in temporal logic (see Appendix B.2 for the
complete formalization). Finally, in Section 4.5, I show that the inference rules are
sound with respect to the operational semantics.

I will define the following new types to represent abstract machine states and
machine-language programs:

wd 32-bit machine words

opl Unary operator identifiers

op2 Binary operator identifiers

op3 Ternary operator identifiers
cop Conditional operator identifiers

greg General-purpose register identifiers/register tokens
mapg Mappings from register tokens to machine words
mapw Mappings from machine words to machine words
state Machine-state tuples

ma Memory addresses

ea Effective addresses

inst Instructions

prog Programs

This table is intended to suggest an informal reading for each of the type identifiers—
precise definitions will be given later in this chapter.

I first develop the instruction-set representation at the level of values, then
“reflect” this representation into the language of expressions by providing a constant
or constant function for each possible value.

4.1 Instruction Set

Figure 4.1 contains a definition of the value-level representation of instructions.

A machine word n is a value of type wd. The semantic interpretation of wd is
the first 232 natural numbers. Words are inherently unsigned, but negative numbers
can be simulated by signed operators using the two’s complement convention. A
register token r identifies a general-purpose register; each register token is a value of
type greg. A small subset of the total functions from words to words are designated
as unary operators opl (type opl). A binary operator op2 (type op2) designates
a total function from pairs of words to words. A ternary operator op3 (type op3)
designates a total function from word triples to words. A conditional operator
cop (type cop) designates a property of the machine status flags. Each operator
corresponds to a distinct arithmetic or logical operation in the TA-32 instruction set.
Note that an operator that would ordinarily correspond to partial function (such as
division) is assigned unspecified results for the undefined elements of its domain in
order to make the operator total.

4.1. INSTRUCTION SET 51

Unary op. opl = opl_inc | opl.dec | opl neg | opl not
Binary op. op2 ::= op2_add | op2_sub | op2_imul
| op2_and | op2_or | op2_xor
| op2_sf2
Ternary op. op3 = op3_idiv | op3_irem
Conditional op. cop ::= cop_z | cop_s | cop-o | cop_c | copna | cop-1 | copng

| copnz | copns | copno | copnc | cop-a | copnl | cop_g

Register tokens r ::=eax|ebx|ecx|edx|esi|edi|ebp|esp
Memory addr. ma ::=ma_d(n) | ma_r(r)(n)(mai)

Effective addr. ea :=ea i(n)|earx(r)|eas(ma)|eam(ma)
Instructions I = mov(n;)(eay)(eas) | xchg(n;)(ea)(r) | Lea(n;)({ea)(r)
| push(ni)(ea) | pop(ni){ea)

| op1(ni)(op1){ea)

| op2(ni){op2)(ea1)(eaz) | op2n(ni)(op2){ea1)(eaz)
| op3(ni)(0p31){op3s)(ea)(ri)(rs

| Jmp(ni)(ea) | 3(ni){cop){n

| call(ni)(ea) | ret(n;)

Figure 4.1: Instruction Set

A memory address ma specifies how to compute the run-time address of a par-
ticular memory location. An effective address ea specifies the location of an operand
of an instruction, which can be located in a register, in the instruction stream itself
(i.e., immediate), on the stack, or in memory. Each memory or stack addressing
mode is composed of a displacement ng, plus zero or more indez registers ri;, each
of which is multiplied by a corresponding scale factor ns;. The actual address n of
a stack or memory effective address is computed from a register file vyapg as follows:

N = Unapg (i) X Mg, - - - + Unapg (i) X s, + Mg

where + is addition modulo 23? and x is multiplication modulo 232.

An instruction I is a value of type inst, a program @ is a value of type prog.
Actual TA-32 instructions vary in size. Because the original opcodes of the instruc-
tion are lost by my instruction abstraction, each instruction includes a word n; that
specifies the size of the original instruction in bytes. Other components of an in-
struction specify the effective addresses of operands, as well as various operators and
immediate operands. Operators are abstracted in order to treat a group of similar
instructions (e.g., add, sub) as essentially the same instruction in the operational
semantics.

52 CHAPTER 4. MACHINE MODEL

The effect of each instruction can be summarized informally as follows:

mov(n;)(ea1)(eas) Move word from ea; to eas
xchg(n;){ea)(r) Exchange word in ea with word in r
lea(ni)(ea)(r) Load address of ea into r
push(n;){ea) Push word from ea on stack
pop(n;)(ea) Pop word from stack into ea
opl(n;){op1){ea) Apply opl to ea
op2(ni)(op2)(eai)(eaz) Apply 0p2 to contents of ea; and eas
op2n(n;){op2)(ea1){eas) Set flags from op2(n;){op2)(ea1)(eas)
op3(ni){op31){op3,)(ea)(r1)(re) Apply op3, and op3, in parallel
jmp(n;){ea) Jump to word from eq

j(ni){cop)(n) Jump to offset n if cop holds
call(n,)(ea Call procedure at word from ea
ret(n;) Return from current procedure

Several additional instructions can be defined by abbreviation:

cmp(n;)(eai)(eas) def op2n(n;)(op2_sub)(eai){eas)
nop(n;) %t mov(n;)(ea_r(edi))(ea r(edi))
test(n;)(ea1)(eas) def op2n(n;)(op2_and)(ea1)(eas)

When checking an actual TA-32 program for safety, the object code is mapped
onto the abstract machine model. Note that in order to simplify the instruction rep-
resentation and operational semantics, the machine model includes many instruc-
tions that are not available on an actual TA-32 processor (for example, memory-to-
memory moves). In practice, this simply means that although these instructions
are defined correctly by the semantics, none will ever appear in an actual program.
Also note that because a real TA-32 effective address does not distinguish stack
from memory accesses, the object-code reader infers whether the stack or memory
is referred to based on which segment register is selected in the object code.

As an illustrative example, the following procedure returns the factorial of the
argument at stack offset 4 in register eax:

4 mov(5)(ea-i(1))(ea-r(eax)) eax < 1
9 v<5)<ea i(1))(ea_r(ebx)) ebx «+ 1
14 Jmp(2)(ea i(20)) goto 20 '
16 op2(3)(op2-imul)({ea r(ebx))(ea.r(eax)) eax < ebx X eax
19 opi1(1){opl_inc)(ea r({ebx)) ebx + ebx+1
20 cmp(4)({ea_s{ma_r(esp)(1)(ma_d(4))))(ea_r({ebx)) ebx—s(esp-+4)
24 j(2)(copng)(23? — 10) goto 16 if ebx < s(esp +4)
26 ret(l) return to caller
4.2 Syntax

I introduce the functions and relations in Table 4.1 and Table 4.2 to model vari-
ous aspects of the operational semantics in temporal logic, including functions to

4.2. SYNTAX 53

construct and deconstruct machine-state tuples. State tuples are chiefly an abbre-
viation that simplifies notation. In addition, each value from Section 4.1 is assigned
a constant or a constant function of the appropriate type in Table 4.3. Finally, Ta-
ble 4.4 contains functions that support the definition of the operational semantics
in Section 4.3.

I model a general-purpose register file as a single value of type mapg, mapping
register tokens to words. The stack and memory are modeled by total functions
from words to words (type mapw).

The constants cf?, ¢i?, ... denote words, but I usually write 0, 1, ... when the
type wd can be inferred from context. selw (select from map) and updw (update
map) are function constants. For example, updw(m, 3,4) denotes the same map as
m, except that address 3 is mapped to 4. The constants selg (select register) and
updg (update register) are similar except that they operate on register files. There
are no operations yielding register tokens, just designated constants (c,).

I associate a constant czzi with each unary operator op!, and likewise with each
binary, ternary, and conditional operator. app1 is a function constant that applies a
unary operator, app?2 is a function constant that applies a binary operator, and app3
is a function constant that applies a ternary operator. not is a function constant
that complements a conditional operator (e.g., not(cop_z) = copmnz).

My logic encompasses instructions and programs by means of constant functions
and relations. For example, fyoy constructs a move instruction from two effective ad-
dresses, and fetch assigns a particular instruction to a particular program address.
The logic is coupled to a particular untrusted program by means of the constant pm:
J (pm) is the program in the “program memory.”? Instruction expressions enable
me to model the operational semantics of the abstract IA-32 machine directly in
temporal logic and are also useful for specifying security policies.

Other functions from the figures are used less frequently—their roles will be
clarified in the operational semantics in Section 4.3.

Identifiers for the special-purpose registers are chosen from parameters—the
interpretation of these parameters is constrained by the machine model. Reg is the
set of all register parameters (note that these are not register tokens). The following
are register parameters:

pc*® The program counter
f¥¢ The status flags
g"®P€ The register file

s™@PY The stack

m™@P" The contents of memory

Propositions can express properties of machine states. For example, selg(g,eax) #
0 asserts that general-purpose register eax is not zero at the current time.

2Because the program code is presumably ready to be run by the code consumer, pm is treated
as a “stand in” to avoid replicating the program inside the proof. Alternatively, the program
code could be stored in the proof and extracted by the code consumer after proof checking (i.e.,
“code-carrying proof”).

54

wawd—)wd

wd—wd

sfw
ne gwwd—)wd

addwwd Xwd—wd

Subwwd Xwd—wd

mulwwd Xwd—wd

divwwd Xwd Xwd—wd
remwwd Xwd Xwd—wd
andw
OI‘WWd Xwd—wd
Xorw

notw
ltWWd Xwd—0

wd Xwd—wd

wd Xwd—wd

wd—wd

ltuwwdxwd—m

incwwdx wd—0

wd Xwd—o0
geqw
wd Xwd—o0

gequw

nincw"d Xwd—0

CHAPTER 4. MACHINE MODEL

Zero flag from a word result
Sign flag from a word result
Word negation

Word addition

Word subtraction

Word multiplication

Word division

Word remainder

Word bitwise “and”

Word bitwise “or”

Word bitwise “exclusive or”
Word bitwise complement
Word signed “less than”
Word unsigned “less than”
Word bitwise inclusion

= —-1ltw

= -1ltuw

= —incw

Table 4.1: Functions and Relations on Machine Words

Selgmapg Xgreg—rwd
up dgmapg X greg X wd—mapg

selwmapv X wd—wd

up dw™apw X wd X wd —mapw
j 01inwmaPv X wd X mapw—mapw

s _mkwd Xwd Xmapg XmapwXmapw—state
S_pcstate—wd

s f state—wd

state—mapg

s-g
S_S

Sm

state—mapw

state—mapw

Select value of general-purpose register
Update value of general-purpose register

Select value at address
Update value at address
Superimpose address spaces

Construct machine state

Select program counter from machine state
Select status flags from machine state
Select register file from machine state
Select stack from machine state

Select memory from machine state

Table 4.2: Functions and Relations for the Machine Model

4.2. SYNTAX 55

c#d Machine word with value n

opl
Copl
op2
Cop2
op3
Cops
Coop Conditional operator with value cop

78 Register token with value r

Unary operator with value op1
Binary operator with value op2
Ternary operator with value op3

wd—rma

%ar;ngWdea_ma Memory-address constructors

ma.r

fwd—)ea

ea_i
greg—ea
ear
ma—ea
ea_s
ma—ea
eam

Effective-address constructors

wdXeaXea—inst
mov
wdXeaxXgreg—inst
fxchg
wdXeaxXgreg—inst
lea
fwdxea—>inst
push
fdeea—)inst
po
wdpx oplXxXea—inst
fopi
wdXop2XeaXea—rinst .
fona Instruction constructors
wdXop2XeaxXea—rinst
op2n
wdXop3Xop3XeaxgregXgreg—rinst
fop3
fdeea—>inst

f%InéPX copXwd—inst

f%ld)(ea—rinst
call
wd—inst
ret

Table 4.3: Constants and Functions for the Instruction Set

app 1op1 Xwd—wd
app20p2 XwdXwd—wd
app30p3 XwdXwdXwd—wd
of 1op1 Xwd—wd

of 20p2 XwdXwd—wd
Of3°P3 XwdXwd Xwd—wd
cf 1op1 Xwd—wd

cf 2op2 XwdXwd—wd
Cf30p3 XwdXwd Xwd—wd

selszd—)wd
selsfwd—)wd
Selofwd—)wd

Selcfwd—md
'llpdf 1op1 Xwd Xwd—wd

updf20p2 XwdXwdXwd—wd
updf3°P3 XwdXwdXwd X wd—wd

selfcopxwd—nld

notceP—cop

ma_addr™aeprs Xma—wd

ea addrstate Xea—rwd

ea Selstate Xea—wd

state XeaxXwd—mapg

ea_updg

ea_upds
e a_updmstate X eaXwd—rmapw

state XeaXwd—mapw

nextpcstate Xinst—wd
nextfstate Xinst—wd

nextgstate Xinst—mapg

nexts
nextm

state Xinst—mapw

state X inst—mapw

fet Chprogxwdx inst—o

CHAPTER 4. MACHINE MODEL

Apply unary operator

Apply binary operator

Apply ternary operator

Overflow flag from a unary operator
Overflow flag from a binary operator
Overflow flag from a ternary operator
Carry flag from a unary operator

Carry flag from a binary operator

Carry flag from a ternary operator
Select zero flag

Select sign flag

Select overflow flag

Select carry flag

Update status flags for a unary operator
Update status flags for a binary operator
Update status flags for a ternary operator

Select flag according to a conditional operator
Complement conditional operator

Evaluate memory address for register file

Evaluate effective address for state

Select value at effective address in state

Update register file for effective address and state
Update stack for effective address and state
Update memory for effective address and state

Next-state program counter for instruction
Next-state status flags for instruction
Next-state register file for instruction
Next-state stack for instruction

Next-state memory for instruction

Assign instruction to program address

Table 4.4: Functions for Evaluation

4.3. OPERATIONAL SEMANTICS o7

4.3 Operational Semantics

I now specify the operational semantics of the abstract IA-32 machine. This seman-
tics is based directly on the IA-82 Intel Architecture Software Developer’s Man-
ual [Int01].

4.3.1 Execution Sets

My operational semantics defines a set of executions for each program.

A state s maps each register parameter to a value of its type.? A state is simply a
snapshot of the machine at a particular time. An ezecution o is an infinite sequence
of states representing the trace of a computation. Finite executions are represented
by repeating the final state infinitely.

An environment can be transformed into an execution (see Section 3.2) by sam-
pling each register at each time. ¢|gey is the execution for environment ¢:

®|Reg = 0 such that o; = a > ¢(a)(j) for all times j and a € Reg

@|Reg is called the erasure of ¢ (i.e., non-register parameters are “erased”). An
execution o satisfies a proposition p at a time j (o, j 7 p) if all environments that
erase to ¢ satisfy p at j:

0,j EY piff ¢,n[b+> j]F7 peb for all ¢ such that ¢|ge, = o and some 7,b

This definition effectively treats the non-register parameters in the proposition as
“history registers,” or uninterpreted components of the state of a security automa-
ton [Sch99]. When 7 is understood from context, the ezecution set ¥, of a propo-
sition p is the set of executions that satisfy it at time zero:

Sp={0 0,07 p}

Temporal logic can now be treated as a formal security-policy language in the sense
of Bernard and Lee [BLO01]. Given a security policy p, an execution o does not violate
security if and only if o € ¥,. I discuss security policies further in Chapter 5.

The operational semantics is based on a transition relation between states for
any given program. ® [> s — s’ asserts that there is a valid transition from state s

3Note that a state s is distinct from a state tuple (a value of type state). A state tuple simply
packages together five relevant components of a state.

58 CHAPTER 4. MACHINE MODEL

to state s’ when executing program ®:

® > s — s[pc = nyJ[f = nellg = vgl[s = vglim = vy

if s(pc) € dom ®

where ng, = nextpc(v,I)
ny = nextf(v,I)
vy = nextg(v,I)
v, = nexts(v,I)
vy = nextm(v,[)
v = (s(pc),s(f),s(g), s(s), s(m))
I =®(s(pc))
dp>s—+s

if s(pc) ¢ dom @

Note that certain instructions can generate run-time exceptions (e.g., divide by
zero) that are handled transparently by the run-time system—in the interest of
simplicity, I do not attempt to model such exceptions in the operational semantics.
The execution set of a program (i.e., its possible behavior) comprises all executions
with valid transitions:

Yo ={o|®>0; = 041 forall j >0}

4.3.2 Types

The semantic model for each of the types introduced in this section can be summa-
rized as follows:

Val** = {neN|n <232}
ValP' = {op1}ops

Val®®® = {op2}ope

Val’®® = {0p3}ops

Val®® = {cop}cop

Val®%® = {r},

Val™@P& = Val8™°8 — Val*¢
Val™® = Val*® — Val*®
Val®*®*® = Val*® x Val*® x Val™P& x Val™P" x Val™P*
Val™ = {ma}ma

Val‘fa . = %e(;}ea

Val*™s* = {I};

ValP™& = Val*® — Valis*

I will use various arithmetic and logical operations on machine words that are

4.3. OPERATIONAL SEMANTICS 59

defined mathematically as follows:

32 31
o _jn- 2 ifn>2
n otherwise
'—2%% ifny > 23
I-'_’n‘].aln'Q_‘-I - n, " _.
n otherwise
where n' = ny x 232 + ny
n1+ne = (n1 + ng) mod 232
ni—ng = (n1 —ng) mod 232
n1 Xxng = (n1 X ng) mod 232
niAny =3 31027 x ([n1/27] mod 2) x (|[n2/27] mod 2)
n1 V no = %(—Wnl /\ —'%2)
1 v n9 = (nl \/ ’ng) /\(—'ml V _.|7L2)
-n =22 _-1-n

™7 converts a word to an integer (i.e. a member of Z) according to the two’s
complement convention. A, etc. are bitwise operations on words.

4.3.3 IA-32 Functions

I provide interpretations for the functions (e.g., nextpc) used to define the transition
relation in this subsection. Recall that I use underlining to express the interpretation
of a constant, so, for example, nextpc denotes the mathematical function that is the
interpretation of the constant nextpc according to the interpretation function J.
Specifying the mathematical interpretation of the various function constants listed
in Section 4.2 amounts to constructing a mathematical model for the operation of
the abstract processor. These constants will appear later in the formal specification
of the abstract processor as provided by the code consumer.

I proceed through the functions that comprise the semantic model in “top-down”
order, so it may be advisable to skim the rest of this section prior to a detailed
reading.

First, I define functions that compute the individual components of the next-
time state tuple according to the current-time state tuple. 1 use the following
abbreviation in these definitions:

(V) ea def ea sel(v, ea)

nextpc(v, I) determines the next-state program counter according to the current

60 CHAPTER 4. MACHINE MODEL

state tuple v and current instruction I:

‘ I ‘ nextpc(v, I), where v = (nyc, ns, Vg, Vs, Un) ‘
mov(ni)(ea1){eas) Npc +ni
xchg(n;)(ea)(r Npe + Ni
Llea(ni)(ea)(r) Npe + i
push(n;){ea) Npe + 7
pop(ni)({ea) Npe 7
opi(ni){op1)(ea) Npe 7
op2(ni)(op2)(ea1)(eaz) Npe + i
op2n(n;){op2)(eai)(eas) Npe + Ni
op3(ni){op31)(op3){ea)(ri)(rz) | npc +ni
smp () (ca) G
j(ni)<cop)<’n) Tpc 'i‘ni'i‘nxﬂ(copanf)
call(n;)(ea (V) eq
ret(n) vs(vg(esp))

nextf(v, I) determines the next-state status flags according to the current state
tuple v and current instruction I:

‘ I ‘ nextf(v,I), where v = (nyc, n, Vg, Vs, Un) ‘
mov(n;)(ea1)(eas) ng

xchg(n;)(ea)(r ng

lea(n;)(ea)(r) ng

push(n;)(ea) ng

pop(ni){ea) ns

op(ni)(op1)(ea) updfi(opl,ns, (v)ea)
op2(ni){op2)(ea1)(eas) updf2(0p2, ng, (v)eas, (V) eas)
op2n(n;)(op2)(ea1)(eas) updf2(0p2, e, (v)eas, (V) eas)
op3(ni)(0p31){op3s)(ea)(r1)(rz) | updf3(op3,,ne, vg(r1), vg(r2), (v)ea)
jmp(ni)(ea) ne

j(ni)(cop){n) n

call(n;)(ea ng

ret(n;) ng

nextg(v, I) determines the next-state register file according to the current state

4.3. OPERATIONAL SEMANTICS

61

tuple v and current instruction I:

‘ I ‘ nextg(v,I), where v = (npc, n¢, Vg, Vs, Un)

mov(ni)(ea1)(eaz) ea updg(v, ea2, (V) eq,)

xchg(n;)(ea)(r ea_updg(v, ea, vg(r))[r = (V) ed]

lea(n;)(ea)(r) vglr ea_addr('u,_ea)]

push(n;)(ea) vglesp — vg(esp) — 4]

pop(n;){ea) ea_updg(v, ea, vs(vg(esp)))[esp — vg(esp) +4]

op1(ni)(op1)(ea) ea updg(v, ea, app1(0pl, (v)ed))

op2(ni){op2)(ea1)(eas) ea_updg(v, eas, app2(0p2, (V) eay, (V) eas))

op2n(n;)(op2){ea1)(eas) Vg

op3(ni)(op31){op3s)(ea)(r1)(ra) | vg[r1 — app3(opdy,vg(r1), vg(r2), (v)ea)]
[r2 — app3(0p3y, vg(r1), vg(r2), (v)ea)]

Jupm) (ea) o

30 (eop)) 5 |

call(n;){ea) vglesp — vg(esp) — 4]

ret(n;) vglesp — vg(esp) +4]

nexts(v,) determines the next-state stack according to the current state tuple

v and current instruction I:

‘ M(U,I), where v = <npcanf7vgalusalum> ‘

mov{m){ear)(eas) ca-upds (v, eas, (V) ea;)
xchg(n;)(ea)(r) ea_upds(v, ea, vg(r))
lea(ni)(ea)(r) Vs

push(ni)(ea) vs[(vg(esp) —4) = (v)ed]
pop(n;){ea) ea_upds(v, ea,vs(vg(esp)))
opl(n;){(op1){ea) ea_upds(v, ea,appl(opl, (v)eq))
op2(ni){op2)(ea1)(eaz) ea_upds(v, eaz, app2(0p2, (v)eas; (V) ear))
op2n(n;)(op2)(ea1){eas) Vs
op3(ni)(0p31){op3s)(ea)(ri)(ra) | vs

jmp(ni) (ea) Us

Jmacop) () v |

cal?(r;;)(ea vs[(vg(esp) —4) = npc + i
ret(n; Vs

nextm(v, I) determines the next-state memory according to the current state

62 CHAPTER 4. MACHINE MODEL

tuple v and current instruction I:

‘ I ‘ nextm(v, I), where v = (nyc, ns, Vg, Vs, Un) ‘
mov(n;)(ea1){eas) ea updm(v, eas, (V) eq,)
xchg(n;)(ea)(r) ea_updm(v, ea, vg(r))
lea(n;)(ea)(r) Up
push(n;)(ea) Un
pop(ni)(ea) ea_updm(v, ea, vs(vg(esp)))
op1(ni){op1)({ea) ea_updm(v, ea, app1(op1, (v)es))
op2(ni){op2)(ea1)(eaz) ea_updm(v, eas, app2(0p2, (v) eas (V) eas))
op2n(n;)(op2){ea1)(eas) Un
op3(ni){op3,){op3s){ea)(r1)(ra) | va
jmp(ni){ea) Un
j{ni){cop){n) Un
call(n;){ea Un
ret(n;) Un

Next, I define functions that evaluate memory addresses and effective addresses
into actual addresses, and load and store values based on these addresses. The
function ma_addr(vg, ma) evaluates a given memory address ma to an actual address
with respect to a given register file vg:

g if ma = ma_d(nq)
ma_addr(vg, ma) = S .
vg(ri) X ns +ma_addr(vg, ma’) if ma = ma_r(r;)(ns)(ma’)

ea_addr(v, ea) evaluates a given effective address ea to an actual address with
respect to a given state tuple v:

n' € Val* if ea = ea_i(n)
n' € Val* if ea = ea_r(r)
w(<HPC7nfavgavsaym>aea) = .
ma_addr(vg, ma) if ea = ea_s(ma)
(

ma_addr(vg, ma) if ea = eam(ma)

ea sel(v, ea) (often abbreviated (v)e,) is the value stored at a given effective
address ea according to a given state tuple v:

n if ea = ea_i(n)

vg (7 if ea = ea_x(r

M«“pc,nfa“ga”m%% 60,) = g() . <)
vs(ma_addr(vg, ma)) if ea = ea_s(ma)
(

vn(ma_addr(vg, ma)) if ea = eam(ma)

ea_updg(v, ea,n) is the new register file that results from storing a given value

4.3. OPERATIONAL SEMANTICS

63

n at a given effective address ea with respect to a given state tuple v:

n' € Val*d

Vg|T =N
ea—updg(<’n’PCanf7Ug7vsavm>7 ea,n) = /Ug[]
g

Vg

if ea = ea_i(nq)

if ea = ea_r(r)

if ea = ea_s(ma)
{

if ea = ea_m(ma)

ea_upds(v, ea,n) is the new stack that results from storing a given value n at a
given effective address ea with respect to a given state tuple v:

n' € Val*d

v
ea_upds({npc, N¢, Vg, Vs, Un), €4, 1) = s

Vs

vs[ma_addr(vg, ma) > n]

if ea = ea_i(nq)

(
if ea = ea r(r)
if ea = ea_s(ma)
(

if ea = ea_m(ma)

ea updm(v, ea,n) is the new memory that results from storing a given value n
at a given effective address ea with respect to a given state tuple v:

n' € Val*

v
ea—updm(<nPCa g, Vg, Us, ’Um>, ea, n) = Um
'm

vn[ma_addr(vg, ma) > n]

if ea = ea_i(nq)

if ea = ea_s

(
if ea = ea_r(r)

(ma)

(

if ea = ea_m(ma)

appl(op!,n) applies unary operator op! to argument n:

appi(opl.inc,n) = n+1
appi(opl.dec,n) =n—1
appi(oplneg,n) =0-n
appi(opl not,n) = -n

app2(op2,n1,n9) applies binary operator op2 to arguments ny and ng:

app2(op2.add,ni,n2) =mni+neo
app2(op2_sub,n1, ne) =mny —no
app2(op2-imul,n1,n2) = n1 X N
app2(op2_and, ni,ng) = ng Ang
app2(
(
(

pp2(op2.or,ni,mg) = mniVne
app2 op2_x0r,ni,n2) = niYng

— (232 _

app2(op2_s£2,n1,ns)

1) x sfu(ns)

app3(0p3,n1,ne,n3) applies ternary operator op3 to arguments ni, ng, and ng:

app3(op3_idiv, ni, na, n3) = —diVW(’I’I,l, n2, n3)
app3(op3_irem,ni,ng,n3) = remw(ni, ns,n3)

CHAPTER 4. MACHINE MODEL

2(op2-add,n, 1)
2(op2_sub,n, 1)
2(op2_sub, 0, n)

jes}
l-hl-hl-h

of2(op2-add, n1,n2) = (sfu(ni Vng)V1)A sfw((m + 1) Ynp)
op2_sub,n1,n2) = sfu(ng Vng) Asfu((ng = ng)Vny)
0 if —(231) <™y x Ty <230 —1

of2(op2_imul, ni,n9) =
of2(op 5 m2) {1 otherwise

of2(op2_and, n1,ny) =0
of2(op2.or,ny,ng) =0
of2(op2.xor,ni,n) =0
Q(OPQ—sz,nl,nQ) =0
ﬁ(op37n17n2an3) =ncE {071}

Figure 4.2: Computing the Overflow Flag

cfi(opl_inc,n) = cf2(op2-add,n, 1)
cfi(opl_dec,n) = cf2(op2_sub, n,1)
cfi(opl neg,n) = cf2(op2_sub,0,n)
cfi(oplmot,n) =

0
1 ifni+na<mn
cf2(op2_add, n1,n2) { LT .

0 otherwise
1 ifny <neo

c£2(0p2-sub, n1,ny) = 0 otherwise

—N

(
i(op2_and, ni, n2) =0
i(0p2_or,n1,n2) =0
cf2(op2xor,ni,ne) =0
cf2(op2_sf2,n1,m3) =0
cf3(op3,ni,n2,n3) =mn € {0,1}

Figure 4.3: Computing the Carry Flag

4.3. OPERATIONAL SEMANTICS 65

selzf(n) = (nA26)/26
selsf(n) = (nA27)/27
selof(n) = (nA2!) 2l
selcf(n) = (nA20)/2°

nA=(20v2Tval) if op1 € {opl_inc,opl_dec}
V zfu(appi(opl,mn1)) x 2°
V sfu(appi(opl,n1)) x 27
V ofi(opl,nq) x 2!

AS(20v27v 21 v 20) if opl = opl neg
% sz(appl(opl ny)) x 2%
V sfu(appl(opl,ny)) x 27
V of1(opl,n;) x 211
V cf1(opl,ng) x 20

updfi(opl,n,ni) = <

n if op! = opl not

\

[n A2 V2 if op2 = op2_imul
V of2(0p2,ny,n2) x 211

Vv ﬁ(opganlanZ) x 20

updf2(op2,mn,n1,n2) = < A=(20 V2T v 2t v 20) otherwise
\ ZfW(aPP2(0p2 ni,ng)) x 26

V sfw(app2(op2,n1,n2)) x 27

V of2(op2,n1,n9) x 211

|V c£2(0p2,n1,n2) X 20

updf3(op8,n,ny,ne,n3) =n' € Val*®

Figure 4.4: Encoding the Status Flags

66 CHAPTER 4. MACHINE MODEL

The functions in Figure 4.2 compute the overflow flag for the result of applying
a given operator to a given set of arguments. The functions in Figure 4.3 compute
the carry flag for the result of applying a given operator to a given set of arguments.
Note that the effect of the two ternary operators (op3_idiv, op3_irem) on the status
flags is not defined according to the IA-32 specification [Int01]. Finally, the functions
in Figure 4.4 encode and decode individual status flags that are stored collectively
in the status flags register.

self(cop,n) determines if a given conditional operator cop holds according to
the encoded status flags n:

cop-na, n)Vl

[42]
(D
|_l

cop-a,n) = self(c
copnl,n) = self(cop_-1,n) V1
self(

self(cop_z,n) = selzf(n)
self(cop_s,n) = selsf(n)
self(cop_o,n) = selof(n)
self(cop_c,n) = selcf(n)
self(copna,n) = selzf(n)V selcf(n)
self(cop.l,n) = selsf(n)Y selof(n)
self(cop.ng,n) = selzf(n)V self(cop_1,n)
self(cop.nz,n) = selzf(n) V1
self(cop.ns,n) = selsf(n) V1
self(cop_no,n) = selof(n) V1
self(cop.nc,n) = selcf(n) V1

(

(

(

cop_g,n) = self(cop.ng,n)V1

not(cop) is the complement of the conditional operator cop:

not(cop-z) = copnz not(cop-nz) = cop_z
not(cop_s) = cop.ns not(cop_ns) = cop_s
not(cop-o) = copmno not(cop-no) = cop-o
not(cop_c) = copnc not(cop.nc) = cop_c
not(cop-na) = cop-a not(cop-a) = copna
not(cop_1l) = copmnl not(copnl) = cop_1
not(cop-ng) = cop-g not(cop-g) = copng

The complement of cop holds exactly when cop does not hold itself.
Finally, the interpretation of an instruction-set constant or function is governed

by its subscript (e.g., J(cop2) = 0p2, and J (fear)(r) = ear(r)).

4.3.4 Generic Functions

The remaining functions, defined in this subsection, are generic operations that are
not specifically tailored to the IA-32 architecture.

Figure 4.5 contains basic arithmetic and logical operations on machine words.
Note that divide and remainder return an unspecified value when the divisor is zero.

4.3. OPERATIONAL SEMANTICS

67

1 ifn=20
zfw(n) = .
0 otherwise
1 ifn>23
sfu(n) = .
0 otherwise
negw(n) =0-n
addw(ni,n2) =nq+no
subw(ni, ng) =n;—ngy
mulw(nl, TLQ) =N X)
|n'] if n3 # 0 and 0 < n' < 23!
divw(ni,ne,n3) = ¢ [n/]1+232 ifng#0and — 23 <n/ <0
n € Val"® otherwise
where n' = Tnq,ny™/ ng”
Tny,me ™ — [n'] X ng ifng #0and 0 < n' < 23!
remw(ni,n2,n3) = { Tni,ne ' — (0] +232) xn3 ifng#0and —23 <n' <0
n € Val™ otherwise
where n' = Tny,ny ™/ ng”
andw(ni,ny) =mni1Ang
orw(ni,ns) =n1Vny
xorw(ni,mg) =mni¥Yng
notw(n) =nV2¥2_1
1tw(ng,ng) iff "m7 < Ty

ltuw(ni,n2)
incw(ny, ng)

iff ny < no
iff n1 \./’nQ = "N2

Figure 4.5: Arithmetic and Logical Operations

68 CHAPTER 4. MACHINE MODEL

The following functions construct and project elements out of state tuples:

K (Npc, e, Vgy Usy Un) = (Tpc, Ny Vg, Vs s Un)

(

({npc, s, Vg, Vs, Un)) = Npc
Npc, N, Vg, Vs, Un)) = Mg
Npcs Nt Vg, Vs, Un)) = Vg
)
)

npca”fa”ga'”s;'”m) = Us
npca”fa”ga”sa”m) = Un

m
AN AN AN N
e~ i~~~

The following functions are the fundamental operations on register files and
word mappings:

selg(v,r) = v(r)
v,r,n) = v[r—n]

v,m) =v(n)
updw(v ,m1,n2) = v[ng — ngl
. {vl(n') ifn' <n
joinw(vy,n,v9) = n' .
— vo(n') otherwise
The joinw operation is used to “superimpose” two distinct address spaces. This
function is used in the memory safety policy (see Chapter 5) to enforce that the
stack is not changed above a particular address.

fetch(®P,n,I) assigns the instruction I to address n of program ®:

J(fetch)(®,n,I) iff n € dom® and &(n) =1

4.4 Inference Rules

At this point, the semantics of the abstract machine is fully specified. However, in
order to construct a safety proof based on this semantics, the code producer must
be provided with a set of inference rules that formalizes this semantics in logical
notation. The presentation in this chapter follows the same pattern as in Chapter 3.
First, a formal semantics is defined, then a set of inference rules are introduced that
are sound with respect to this semantics.

The inference rules in this section are specific to the IA-32 machine model.
Specifically, I introduce rules that encode properties of the machine-model functions
and relations from Table 4.1, Table 4.2, and Table 4.3. In Section 4.4.7 I introduce
rules that encode properties of the transition relation. These rules only hold for
executions that respect the transition relation ® > s — s’ (see Section 4.3).

Many inference rules are direct encodings of semantic definitions of particular
machine-model functions. For example,

— app2_add
I' - app2(op2-add, e1, e2) = addw(ey, e9) at PP

4.4. INFERENCE RULES 69

formally encodes the defining equation of the addition operator:
app2(op2-add, ni,n2) = n1 +ny

Because most of the formal encodings are so similar to the machine semantics, I do
not reproduce them here—instead, I refer the interested reader to Appendix B.2, in
which I give a complete LF encoding of the machine model. In this section, I only
explicitly mention theories that do not simply embody equations from the machine
semantics.

4.4.1 Machine Words

The induction rule is a variation on the standard rule from Peano arithmetic that
can demonstrate universal properties of the natural numbers:
Crke:ri T a:ri, Vziri. ltuw(z,a) D pett [a/z]pat
I'tle/z]pet

wd_ind?®

The second premise requires the property p to be established for an arbitrary ma-
chine word a, under the assumption that p holds for all machine words that are
strictly less than a. Note that the hypothetical proposition here is an internal-
ized version of an LF construct that is awkward to express in standard deductive
notation—see Appendix B.2.2.1 for the true LF representation.

The following rules formalize the mathematical definition of the “zero flag” and
“sign flag” functions:

iy DFe#0et
TFzfu(0) =lat =" TF zfu(e) =0at - "
I'Fzfu(e) =1let 't zfw(e) =0et
Tre=0at 2%l “Treozoar 2zfwel
't 1tw(e,0)at " I+ gequ(e,0) et £ui0
It sfu(e) =1lat stull ¢ sfw(e) =0at st
'k sfu(e) =1at) 'k sfu(e) =0at £l
't 1tw(e,0)at sfwe 't geqw(e,0)at stue

The following rules establish the algebraic properties of the machine-word oper-
ations:

wd_comm_rin
I' - comm_ring(addw,0,negw, mulw, 1) ot g

't mulw(e,0) =0ot mulw.id-0

wd_bool_latt
T I bool_latt(incw, andw, orw, 0,232 — 1,notw) at

[+ subw(e, e2) = addw(e;,negw(es)) ot wd-sub

70

CHAPTER 4. MACHINE MODEL

I'F xorw(ey, ez) = andw(orw(ey, es), orw(notw(e;),notw(es))) @t wd.xor

[tw_str_tot_orde
't str_tot_order(ltw)et WSt raer

ltw_bot " ltw_top

'+ bot(1tw,2%) at I' top(1tw, 2% —1)a

| r_tot_order
T F str_tot_order(ltuw)at tuw_str_tot_orde

Vot [tuw_bot ; ltuw_top

It bot(1tuw,0 I' - top(ltuw, 232 — 1) e

Vot incw_bot incw_top

I bot(incw, 0 T I top(incw, 232 — 1) at

4.4.2 Machine Operators

In the interest of brevity, the rules in this section are presented in tabular form.
The header of each table contains a prototype inference rule. Each column of the
table identifies a particular meta variable of the prototype that has a restriction
on how it can be instantiated. Each row of the table contains a single set of valid
instantiations for the meta variables that are identified by the column header. Thus,
each row of each table effectively introduces a distinct inference rule.

The following rules encode the behavior of a given flag-selection function when

applied to a corresponding unary flag-update function:

updfl

Copt

't f(updfi(cops,es,€)) =€ at
S Jol [¢ |
selzf | opl_inc | zfw(appl(Cop1_ inc,€))
selzf | opl_dec | zfw(appl(Copt dec,€))
selzf | opl neg | zfw(appl(Copt neg,€))
selzf | opl not | selzf(es)

selsf | opl_inc | sfw(app1(Cop1_inc,€))
selsf | opl_dec | sfw(appl(Copt dec,€))
selsf | opl neg | sfw(appl(Copi neg,€))
selsf | opl not | selsf(es)

selof | opl_inc | of1(Copt_inc;€)
selof | opl_dec | of1(Copt dec, €)
selof | oplneg | of1(Copt neg; €)
selof | opl not | selof(es)

selcf | opl_inc | selcf(es)
selcf | opl_dec | selcf(es)
selcf | oplneg | cf1(Copt neg; €)
selcf | oplnot | selcf(es)

4.4. INFERENCE RULES 71

The following rules encode the behavior of a given flag-selection function when
applied to a corresponding binary flag-update function:

ipdt2;
I'F f(updf2(cops, ez, €1,€2)) = € at

F |

selzf | zfw(app2(cop2,€1,€2))
selsf | sfw(app2(cop2,e1,€2))
selof | of2(cop2, €1, €2)
selcf | cf2(cop2,e1,€2)

There are no rules for updf3, because its behavior should be undefined according
to the TA-32 specification [Int01].

Finally, the following rules restrict the value of an overflow flag or a carry flag
to zero or one:

TFe#0at

0
TFe=1lot 04
e |

of1(eopt,e1)

(
of2(eop2, €1, €2)
f3(6°p3, €1,€9, 63)
(
(
(

@]

(]

f1(eop1,e1)
2 eop2aela62)
£3 eop3761,62763)

(]

(]

4.4.3 Conditional Operators
The rule self,eqo constrains the value of a conditional operator to zero or one:

I'+ self(ecop,) # 0at
I'F self(ecop,e¢) = lat

selfeqo

self o specifies that the effect of the not function is to invert the state of a
given conditional operator:

self
I' F self(not(ecop), €¢) = xorw(self(ecop,es), 1) at not

notnet specifies that the complement of a complement is the identity:

not
I' - not(not(ecop)) = €cop @t not

4.4.4 Register Files

The following theory encodes the semantics of register files:

sel
I+ selg(updg(en, er,en),€r) = €nat Emeo

72 CHAPTER 4. MACHINE MODEL

C'Hel #e ot
'+ selg(updg(en, €, €n), €,) = selg(en, €}) et

Se]-gmcl

T+ selg(en,a,) = selg(el,a,) et

selg¥
TFen=clat Bext

selg, and selg, are the standard McCarthy rules [MP67] for arrays here
adapted to register files. selg,,, expresses an extensionality principle for register
files.

4.4.5 Machine-word Mappings

The following theory encodes the semantics of word mappings:

selwmco

I'+ selw(updw(em, €ny, €ny)s€ny) = €n, @

Ik ep, #en, at

selwnc
I' - selw(updw(en, €n; , €n,), €,) = selw(en, €) at me

'k 1tuw(el,e,) ot

'k selw(joinw(ey, , €n,€n,), eh) = selu(ey,,€h) e

selwy,

[+ gequu(e!,en) at

!/

— ; selwgequ
I+ selw(joinw(ey,, €n,€n,), €,) = selu(ey,,eh) at

[+ selw(ey,an) = selw(el,an)at
F'key=c¢clot

Qn
selwey;

The McCarthy rules and extensionality are similar to the rules for register files.
selwjy, and selwgequ encode the semantics of the “join” operation.

4.4.6 Instruction-Set Constructors

The following rules establish the injectivity of the various constructors that encode
the TA-32 instruction set:

m ma_injfe{fma_d,fma_r}

- @ H 'fe{fea_i7fea_r;faa_s;fea_m}
T+ inj(f)et '™

T+ —(f) t inSt_injfE{f“"’f“hg’fl“’fp“’h’fP°P’f°P17f°P27f°P2nvf°p3:fjmpafjafcall,fret}
inj @

4.4. INFERENCE RULES 73

4.4.7 Transition Rules

The following transition rules specify how the special-purpose registers change from
state to state according to the transition relation:

nextpc_fetch

Tk Vz:ri. Vo :ri. 2 = ss D fetch(pm, s_pc(z), z;) D OQ(pc = nextpc(z,z))) ot

nextf_fetch

Tk Vz:ri.Vz:ri. z = ss D fetch(pm, s_pc(z),z) DO O(f = nextf(z, 1)) at

nextg_fetch

Tk Vz:ri.Va:ri.x = ss D fetch(pm, s pc(z),z1) D O(g = nextg(z,2)) ot

nexts_fetch

Tk Vz:ri. Vo :ri. £ = ss D fetch(pm, s_pc(z),2)) D O(s = nexts(z,2)) ot

nextm_fetch

Ik Vz:ri.Vz:ri. £ = ss D fetch(pm, s_pc(z),2) D O(m = nextm(z, x)) «
where ss is an abbreviation:
ss & s mk(pc, f, g, s,m)

(i.e., all the special-purpose registers packaged together as a single state tuple).

In each rule, the current-time values of the registers are identified with the rigid
variable z. Then, new values of the registers are provided at the next time instant
according to the instruction of the program in the program memory at the current
program counter. Rigid variables name the previous-time values of the registers
inside the () operator. The new value of the register in question is determined by a
function (e.g., nextpc) of the current-time state () and the current-time instruction
(fetch(pm, s_pc(z))).-

Note that the transition rules do not check that the program has proper control
flow, unlike other implementations of PCC. Any control flow that has a valid security
proof is permitted, but the security policy will generally require that the program
counter stay within the program.

It is occasionally convenient to refer to a complete next-time state, so I use the
following abbreviation:

s_next(e, e)

def s_mk(nextpc(e, ¢),nextf(e, e),nextg(e, e),nexts(e, e)), nextm(e, €))

Additionally, gsp is the current stack pointer:

gsp & selg(g,&sp)

Finally, I provide an inference rule that associates each address of the program
memory with the corresponding instruction:

nedom J (pm),J (pm) (n)=Vy (e)

I' 7 fetch(pm,7,e)at fetchpm

74 CHAPTER 4. MACHINE MODEL

e is the instruction at address n, and is composed solely of constants and constant
functions for this rule, so ¢ is arbitrary. Note that in my implementation, there is
no single fetch_pm rule. It is simpler to extend the LF signature with individual
rules for each address according to the contents of the program.

Additionally, the fetch relation is a (partial) function:

T'F fun(fetch)at cron-fun

4.5 Soundness

In this section, I show that the formal encoding of the machine model is sound with
respect to the operational semantics. Informally, I am simply extending Proposi-
tion 3.5.1 to encompass more inference rules, but in order to make my argument
more convincing to a skeptic, I will be more thorough and assign a subscript to
the affirmation judgment according to which inference rules were used to derive the
affirmation:

o ' -7 J asserts that J is derivable from I' using only inference rules from
Chapter 3.

o T I—;(786 J asserts that J is derivable from I' using only inference rules from
Chapter 3 and Section 4.4.1 through Section 4.4.5.

T I—;£6 + J asserts that J is derivable from I' using only inference rules from
Chapter 3 and Section 4.4.

Proposition 3.5.1 shows that ¢,n 7 J follows from ¢,n EY T'and T F7 J. 1
now extend this proposition to the functions that define the machine-model:

Proposition 4.5.1 (Soundness) ¢,n 7 J if I T and T I—;(786 J

PROOF:
by induction on the derivation of " l—;(786 J, using the proof of Proposition 3.5.1
¢,nEIT r |_>‘<786 J Prem.

let D be the derivation of T' -, J
case: J = [e/z]pet,

D D,
D=Tte:ri T,a:ri,Vr:ri. ltuw(z,a) D pett [a/z]pat C
Lk [e/z]peat wd-ind
let j = Vy(t),n' = V7 (e)(4), 7" = (j = n)
¢,n 7 e:ri LH.
Vg(e) S Prop. 3.2.9
for all n
dla (5= n1)],nE7 [a/z]pat for allng < n Hyp.

let 7= (j+— n)

4.5. SOUNDNESS 75

mer Def. ri

J e J
V¢[GHW](a) i Def. Vg
Bla— 7,n BT a:ri Prop. 3.2.9

let a; ¢ A(p) U {a}

for all 7y : ri

dla — 7][as — m],n ET 1tuw(ai,a) et Hyp.
Vg[al—)ﬂ'][all—)m](al) = T Def. Vg
Vg[a,_m][al._ml](a) = Def. Vg
m1(3) < 7(4) Def. E
let ny = 7T1(j)
n<n
dla > m],nE [a/z]peat Def. ri
Blar — m],nE7 [a1/z]pet Prop. 3.2.14
dla +— [ay = m],n ET [ay/z]pat Prop. 3.2.16
#la — w],n EY Vz:ri. 1tuw(z,a) D pet Def. F
#la = w),n EI T, a:ri, Va:ri. 1tuw(z,a) D pat Def. F
dla— w),nEI [a/z]pat I.H.
dla 7'],n E7 [a/z]pat induction
Vg(e) = Def. ri
é,nE7 le/z]pat Prop. 3.2.19

other cases are similar
a
Finally, I show that the proof system including the transition rules is sound for
any environment that erases to a valid execution:

Proposition 4.5.2 (Soundness) ¢,nF7 J
if p,nEI T and T I—;(786+ J and ¢|pey € 2 7 (pm)

PROOF:
by induction on the derivation of I' I—;(786 + J, using the proof of Proposition 4.5.1
$,nEI T Thre J Slre € S Prem.

let D be the derivation of ' I—;(786 o J
case: J =Vz:ri.Vz:ri. z = ss D fetch(pm, s_pc(z), 7)) D O(pc = nextpc(z,x))) at,

D= TEJ nextpc_fetch
let j = Vn(t)aa = ¢|R€g’q) = J(pm),s = ijsl =0j+1
dPps— 4 Def. 35

let a,a; ¢ Reg such that a # a
for all 7w :riym @ ri
let ¢y = ¢[a — 7r][a| — 7T|]

é,nEY a=ssat é1,mn EY fetch(pm, s_pc(a),a)) at Hyp.
V7 (a)(j) = V3 (s5)(1) Det. £
= Vg ss)(J) Prop. 3.2.5
() = {¢(pc)(4), ¢(£)(5), ¢(g) (4), #(s) (1), P(m)(5)) Def. V
= (s(pc), s(£), s(g), s(s), s(m)) Def. ¢|Reg

76

CHAPTER 4.

fetch(VJ (pm)(4), Vi (s-pc(a)) (4), Vi (@) (7))
fetch(®, s(pc), m(4))
s(pc) €dom® ¥(s(pc)) = m(j)
nextpe(n(j), ®(s(pc))) = s'(pc)
= ¢i(pc)(j +1)
¢i(pc)(j + 1) = nextpe(n(j), m(7))
= nextpc(r(j + 1), m(j + 1))
= nextpc(di(a)(j + 1), di(a)(j + 1))
V7 (pc)(j + 1) = nextpc(VY (a)(j + 1), V7 (a1)(j + 1))
Vap—j+1(b) =3 +1
é1,mb— j+ 1] E7 pc = nextpc(a,a)) eb
é1,m 7 O(pc = nextpc(a,a)) at
o,nETJ

other cases are similar

MACHINE MODEL

Def. E

Def. Vq{
Def. fetch
Def. &> s — &'

Def. ¢|Rgeg

Def. ri

Def. Vg
Def. V;,
Def. E
Def. E
Def. E

O

Chapter 5

Security Policies

I now address the principal concern of the code consumer: “how do I tell if my
system is secure when I execute an untrusted program?”

In this chapter, I will focus principally on ensuring that each access to a memory
location is properly aligned, and that it respects an access mode assigned to the
location by the run-time system. This property is known as memory safety.

I choose to focus on memory safety for the following reasons:

e Memory safety is an important safety property in and of itself for ensuring
that run-time data structures are not compromised or exposed.

e A formal encoding of memory safety provides a concrete evidence that the
temporal-logic security-policy notation introduced in Chapter 3 is adequate
for specifying at least one nontrivial safety property.

e Current certifying compilers are developed with memory safety as the prin-
cipal target safety property—in order to take advantage of such automatic
certification tools, the code consumer must be able to enforce memory safety.

Thus, this chapter supports my thesis statement by demonstrating that temporal
logic is in fact a practical notation for specifying at least on nontrivial security
policy that is used in current certified-code systems.

5.1 Overview

The purpose of this chapter to is fully develop a formal security policy for memory
safety that ensures that access to memory is restricted to a prescribed set of safe
operations. The formal memory-safety property is designed to ensure that three
informal properties hold:

Control-flow safety The program counter is restricted to memory locations with
defined instructions (except when the program makes a call to a specific run-
time procedure provided by the code consumer). This property ensures that
the untrusted program will not try to read invalid addresses or execute unde-
fined instructions.

7

78 CHAPTER 5. SECURITY POLICIES

precond.: js_mem(m) A selg(g,eax) : array(int) = eax is aligned

: Y

ebx < 24(eax) eax } 24 is aligned
ret

postcond.: js_mem(m) heap is still o.k.

Figure 5.1: Type Safety Implies Memory Safety

Stack continuity The stack is only accessed based on small positive offsets from
the current stack pointer, and the stack grows contiguously downwards in
small increments. This property ensures that accesses to the stack do not
corrupt other parts of memory, and that stack overflow can be detected by a
run-time mechanism.

Heap integrity The heap is only accessed through properly aligned addresses, and
each such access respects a read/write access mode assigned to the address by
the code consumer. Additionally, when data structures provided by the code
consumer are modified, the program preserves certain structural invariants
that are defined by a type system. This property ensures that the untrusted
program cannot read sensitive parts of the heap, and that the data structures
of the code consumer in the heap will not be corrupted when the untrusted
program is run.

Thus, the memory safety policy is designed to ensure system integrity when the
untrusted program shares an address space with other software used by the code
consumer. Recall that the machine model is based on a “segmented” memory in
which the program, stack, and heap are mapped to distinct address spaces. However,
the memory-safety policy can also be applied to systems that have a “flat” address
space—I outline how such an arrangement might be realized in Section 10.2.2.
The formal memory-safety property is comprised of alignment constraints and
access modes for memory addresses that ensure that running the untrusted program
will not result in a processor exception. This property is satisfied indirectly, however,
by first satisfying a higher-level type-safety property that additionally guarantees
that certain internal structural invariants hold for the current heap. This strategy
is illustrated in Figure 5.1 for a procedure that loads a single element from offset
24 of an array. Not only does this ensure that future memory accesses will continue
to respect the low-level memory-safety property (i.e., because the heap is still in-
ternally consistent), it also ensures that data structures that are visible to both the
code consumer and the untrusted program are mutually consistent.! To a certain

!This use of type safety to share complex data structures is in contrast to the viewpoint taken
by foundational PCC (F-PCC) [App01, AF00], in which the type system is effectively invented
by the code producer, and is thus unavailable to the code consumer for the purpose of developing
procedure specifications.

5.1. OVERVIEW 79

extent, ensuring heap consistency is actually more important than preventing pro-
cessor exceptions. Many instruction-set architectures provide a facility for handling
run-time exceptions, but heap corruption is much harder to prevent with a run-time
check.

In order to formalize a memory-safety policy, I first develop an abstraction of
memory-management hardware. In particular, the code consumer is able to stipu-
late that a given address is “readable” or “writable” when an instruction is executed.
Instead of including the abstract memory manager in the abstract machine model,
I prefer to include it in the security-policy specification. This approach has the
notable advantage of making it possible to specify several distinct memory-safety
policies for a given machine model. However, including the memory manager in the
abstract machine model is also a defensible choice, but I will not explore it further
in this dissertation.

I need to be able to track the abstract state of the memory manager as it
evolves over time. Security automata [Sch99] (see Section 2.1.3.4) provide a sys-
tematic framework for the representation of such states, in addition to being an
attractive notation for specifying “expressive” safety policies. Security automata
will thus play a key role in specifying the memory-safety policy by providing “his-
tory registers” [MP95] to track the abstract memory manager, among other things.
Essentially, access constraints on the heap are modeled as a map from heap ad-
dresses to access modes that is updated as new blocks are allocated from the heap.
Additionally, as part of the specification of type safety, the interpretation of each
type is explicitly modeled as a representation function (assigning sets of values to
types) that is refined as the program executes.? Finally, security automata provide
an expedient mechanism for ensuring stack continuity by tracking the base of the
current stack frame.

Because security automata are so important to specifying memory safety and
type safety policies, I develop a systematic formal representation of automaton
states in Section 5.4. This representation is additionally suitable for encoding ex-
pressive safety policies such as resource bounds, access control, and confidentiality
(see Bernard and Lee [BLO01] for concrete examples).

In order to formalize the memory-safety policy in temporal logic, certain ad-
ditional low-level data types are needed. These data types are introduced in Sec-
tion 5.5 as a simple lattice of access modes and maps from addresses to access
modes. Given this theory, the memory-safety policy itself can be encoded—this is
the subject of Section 5.6, in which the essential memory-safety relations are de-
fined, and in which I prove the key theorems that establish control-flow safety and
heap integrity.

As T stated earlier in this section, the heap-integrity policy is not established
directly—rather, a stronger property of Java type safety [GJS96, LY99, CLN100]
is demonstrated, and the representation invariants of this type system are used to
show that the heap-integrity policy is indirectly satisfied. This approach also gives
the code consumer the opportunity to pass typed data structures to the untrusted

*This approach to type safety was originally studied by Necula [Nec98], but the representation
function is notably not assigned to a named register in conventional PCC implementations.

80 CHAPTER 5. SECURITY POLICIES

program as procedure parameters or global variables. The formal representation
of the Java type system is developed in Section 5.7. This representation follows
an approach developed by Necula [Nec98] for encoding a programming-language
type system in logical notation. However, I deconstruct this encoding further by
defining the type environment and memory validity constraints syntactically, thus
exposing the precise low-level invariants that must be preserved by the heap al-
location procedures. The informal operational semantics for the type system is
therefore much simpler than in previous work, and could itself be derived in a more
expressive framework such as higher-order logic—perhaps paving the way to a more
foundational treatment of type safety in Speciall.

Based on the material in Section 5.7, T can derive the typing rules that are actu-
ally used in safety proofs constructed by the SpecialJ compiler. This is the subject
of Section 5.8, in which the typing rules are presented in terms of the low-level
encoding of the Java type system. Finally, the derivability and soundness theorems
for the inference rules introduced in this chapter are presented in Section 5.9.

I now proceed with a study of enforcement in my PCC system.

5.2 Enforcement

Conventional PCC enforcement mechanisms are implemented in the C programming
language and generate a verification condition [Kin71] (VC) that is true only if the
program does not violate the security policy. An LF type checker establishes that
the security proof is a correct proof of the VC. I argue in an earlier report [BL01]
that the VC generator should interpret a security policy specification instead of
“hard coding” a security policy. However, temporal logic is expressive enough to
encode security properties directly—therefore, no special interpreter is needed.
For temporal-logic PCC, the code producer provides a proof of

F pspal

instead of a proof of a VC. pg, is a security property that must hold for the system
to be secure.? psp is specified by the code consumer directly. The definition of
satisfaction can be used to verify that it has the intended meaning.

Contrast this approach with a conventional PCC system, in which the code
producer proves a VC derived from the security property by a trusted analysis. In
my system, the code producer proves the security property directly from a formal
encoding of the abstract machine model (compare Figure 5.2 with Figure 5.3). To
show that my enforcement mechanism is sound, I need only show that the machine-
model encoding is valid (see Section 4.5).

Note that the standard connectives of temporal logic allow one to combine se-
curity properties in a modular way. For example, X, Ay, is equal to X, N X,
(i.e., the program must simultaneously satisfy both p; and p;). Disjunction can
similarly be interpreted as the union of execution sets (i.e., the code producer can
choose which of two possible security properties to satisfy). Additionally, one can

3Recall that a security property is a security policy that corresponds to an execution set.

5.3. SOUNDNESS OF ENFORCEMENT 81

code consumer computes VCsp(®) = Vzi.... Dz : array(int) A ...
VCsp(®) implies psp (by an informal argument)

typing rules

FVzi.... Dz : array(int) A ...

Figure 5.2: Safety Proof (Conventional PCC)

universally quantify a flezible history parameter (such as n in the instruction bound
example from Section 2.2.1) to specify that the parameter is local to a given security
property. This quantification ensures that the parameter will not be interpreted in-
consistently when the security property is combined with other security properties.
These properties, among others, make temporal logic an excellent foundation for a
security-property language.

5.3 Soundness of Enforcement

Let psp be a security property. The following proposition establishes that the system
is secure with respect to any program that has a security proof:

Proposition 5.3.1 (Soundness) ¥ 7n) C 3y, if F pep @0

PROOF:
for all o € X 7(om)
for all ¢ such that ¢|rey = o

¢,nE Pspal Proposition 4.5.2
0,0 7 pgp Def. 0,5 E7 p
o € dp, Def. %,

a

i.e., if there is a proof of the security property, then the execution set of the program
is contained within the execution set of the security property.
Let ® = J(pm). The code producer provides a derivation of

F pspal

machine semantics typing rules

l_psp@O

Figure 5.3: Safety Proof (Temporal-Logic PCC)

82 CHAPTER 5. SECURITY POLICIES

along with ®. The code consumer uses a trusted proof checker to verify the cor-
rectness of the derivation. From Proposition 5.3.1, the code consumer can conclude
e C ¥p,: no execution of @ violates pgp.

5.4 Security Automata

In Section 2.1.3, I introduced security automata as a universal representation for
safety properties. In this section, I define a formal representation for security au-
tomata that facilitates the specification of new safety properties.

Following Schneider [Sch99], a security automaton is a set of states (includ-
ing a distinguished “bad” state), plus a transition function that specifies how the
automaton changes from state to state. The current machine state is also a pa-
rameter of the transition function, and a given execution is safe if and only if the
security automaton never reaches the bad state. In my formal encoding, I depart
from the standard security-automaton model slightly by allowing any state to be
designated a bad state. Essentially, I provide a generic representation for history
registers [MP95], then explicitly specify which states of the generic representation
are safe.

Let sa be the type of security-automaton states. These states are inherently
composite values, mapping each element of an unspecified finite set of security
registers to a value. sreg(r) is the type of security registers that have values of
type 7. By convention, the parameter g holds the current state of the security
automaton.

It is important to note that because q is not part of the machine model, it need
not be implemented with any concrete representation. In fact, q can be viewed as a
fictional or “ghost” state that only exists for the purpose of specifying security prop-
erties. The state of g might coincidentally correspond to some particular portion of
the concrete machine state, but it not necessary to provide it with any actual run-
time representation. This is an important departure from other implementations of
security automata such as SASI [ES99, ES00] that necessarily associate the security
automaton with a concrete run-time representation. As I point out in Section 10.2,
however, instrumentation tools such as SASI are still potentially useful to the code
producer for constructing certified code.

Giving the security registers first-class status for procedure specifications en-
ables a relatively high degree of expressiveness when specifying safety properties.
For example, one can require that a given resource bound be unchanged by a proce-
dure, or that the bound stay within some specified limit relative to its value at the
start of the procedure. Note that a liveness or termination property is also needed
in conjunction with this kind of specification to ensure that the postcondition is
actually reached at some point.

4Note that q is not a register parameter, and is thus not assigned a value by program states
(é.e., q is “erased,” along with all other non-register parameters). However, the state of q can affect
which executions are allowed by a given security property according to the definition of satisfaction
for executions (see Section 4.3).

5.4. SECURITY AUTOMATA 83

def
q-mk(epc, e, €g, €s, €n, €q) = mkp(s_mk(epc, s, €g, €s, €n), €q)

a-pc(e) ' s pe(left(e))

q-£(e) & s_f(Lleft(e))

q-g(e) = s_g(left(e))

q-s(e) *f s s(left(e))

q-m(e) = sm(left(e))

a-q(e) = right(e)

g-esp(e) = selg(q-g(e),esp)
q-fps(e) = sels(q.q(e), Tps)
g-accm(e) def sels(q-q(e),accm)
q-ta(e) “ sels(q.q(e), Ta)
q-ts(e) “ nikp(q-ta(e), -accn(e))
q-next(e, e|) def mkp(s_next(left(e),e),nextq(e, ¢))

Figure 5.4: Operations on Paired States

Two function constants operate on security-automaton states as though they
were register files. The function constant sels®2*sTe&(T)>7 gelects the value of a
given security register from a given security-automaton state. Likewise, the function
constant upds®2*sTe&(T)X7=s2 redefines the value of a given security register in a
given security-automaton state.

In practice, the code consumer chooses a suitable set of security registers to
record properties that are of interest to his or her safety property. For example, one
security register might count the number of instructions executed, while another
might become nonzero once any confidential information is read from the heap. A
suitable set of history registers is sufficient to rewrite any safety property into the
form of an invariance property [Sch99]. The invariance properties [MP90] are safety
properties that have a certain syntactic form in temporal logic notation:

Lp

where p contains no temporal operators (i.e., p is a predicate on individual states).
The security-automaton framework thus provides the code consumer with a conve-
nient theory that is expressive enough to encompass all safety properties.

It is often useful to pair a state tuple with an explicit security-automaton state.
Thus, the type gstate is an abbreviation for the type of pairs consisting of a machine
state and a security-automaton state:

gstate def pair(state)(sa)

84 CHAPTER 5. SECURITY POLICIES

sq is also an abbreviation:
def
sq = mkp(ss, q)

i.e., sq is the pair consisting of ss and q. Figure 5.4 contains additional abbrevia-
tions for operations on paired states. In this figure, fps, accm, and ta are security
registers that I introduce in Section 5.6 and Section 5.8.

5.4.1 Operational Semantics

The operational semantics of security automata is straightforward.

SReg™ is an unspecified finite set containing all the security registers of type 7.
Security automata are modeled as total functions from security registers to values
of the same type:

Val***8(") = SReg”
Val®® = SReg — Val

The select and update operations are modeled as function application and point-
wise extension, as for register files:

(v)

[v V]

sels(q,v) =g¢q
upds(q,v,v") = ¢
5.4.2 Inference Rules

The McCarthy and extensionality rules for security-automaton states are similar to
the rules for register files:

sels
I' - sels(upds(eq, er,€),e) = eat me0

kel #e ot
I' - sels(upds(eq, €, €),€;) = sels(eq, €;) at

selsmc

7T

mcl’

sels
?reg(’r), 6), efreg('r’)) sreg(T’)) ot

I' - sels(upds(eg, e = sels(eq,

'k sels(eq,ar) = sels(ey, ar) ot Leo
sels,,
I'Feq=¢got ext

The rule selspycys is needed to distinguish security registers of different types (in-
equality is only defined for expressions of the same type). The meta-theoretic side
condition requires the types at which the rule is instantiated to be distinct. In
practice, the enforcement mechanism simply instantiates the rule at each distinct
pair of types that has an associated security register.

5.5. MEMORY ACCESS 85

5.5 Memory Access

In this section, I introduce data types that enable me to model the constraints
on memory accesses that might be imposed on the code producer by an operating
system or run-time system.

acc is the type of memory access modes. These modes (nacc, rd, wr, rw) are
partially ordered according to whether read or write access is permitted by the

mode:
nacc No access

rd Read-only access
wr Write-only access
v Read-write access

mapa is the type of access-mode maps. A value of this type maps each machine-word
address to an access mode according to whether or not that address is readable or
writable.

The following functions and relations operate on access modes:

accXacc—o0

leqa Partial order relation for access modes

selamepaxwdxwd=acc Qelact access mode for address and length

The result of sela(v,ny,ng) is the greatest access mode (see Section 5.5.1) that is
less than or equal to the access mode of each addresses in the range ni,...,n;+ns—1.
Note that my encoding of the memory access policy does not require an “update”
operation on access-mode maps.

leqam™@P2xmaP2—0 ig a5 defined relation that is the point-wise partial order on
access-mode maps:

def
leqgam(en,, €m,) = Vzn, :fl. Vz,, :fl. leqa(sela(en,, Zn,, Tn,), S€la(em,, Tny, ZTn,))

5.5.1 Operational Semantics

The type acc is modeled as a finite set, whereas the type mapa is modeled as a set
of total functions:

Val**¢ = {nacc,rd,vwr,rw}

Val™P = Val"® — Val®°®

The formal definitions of 1eqa and sela follow from the informal understanding;:
lega(vi,ve) iff w3 =we or v1 = nacc or vo = rw

sela(v,ny,n9) = Vace such that vace < vp; p,

and leqa(vl.., Vacc) for all v]

acc S Uny 12

where I write vace < vp, 5, When leqa(vacc,v(n)) for all n such that n; < n <
ni +na.

86 CHAPTER 5. SECURITY POLICIES

5.5.2 Inference Rules

The following inference rules encode the algebraic properties of leqa:

leqaorder
't order(leqa) et 4

leqabot leqgatop

I' - bot(leqa,nacc) et '+ top(leqa,Tw)at

There are no inference rules for sela.

5.6 Memory Safety

I can now formalize the memory safety policy.

I first introduce two security registers. The security register fps € SReg
contains the current stack of frame pointers. This stack consists of all the frame
pointers of procedures that have been called, but have not yet returned. The security
register accm € SReg™P? is the current access-mode map. It assigns an access mode
to each possible memory address. Note that the access-mode granularity of a typical
operating system or run-time system is likely to be much coarser than individual
addresses (e.g., whole pages), but this need not be reflected in the formalization of
the memory-safety policy.

I use the following functions and relations to encode the memory safety policy:

list(wd)

nextgqistatexinst—sa Next security-automaton state for instruction
safe_spdstatexwd—o Stack-pointer address is safe for state
safe_rdsdastatexwd—o Stack address is safe to read
safe_wrgdstatexwdxuwd=o GQack address is safe to write with value
safe_rdmastatexwd—o Memory address is safe to read
safe_wrmdstatexwdxwd=o Memory address is safe to write with value
safe_rdeadstatexea—o Effective address is safe to read

safe wreadstatexeaxwd—o Fffactive address is safe to write with value
safe_instastatexinst—=o Tngtryction is safe to execute in state

Recall that 7 X -+ X 7, — 0 is the type annotation for a relation on parameters of
types 71,...,Tk-

The memory-safety policy for a procedure is specified in Figure 5.5. This safety
policy is imposed on the initial entry point, which is called directly by the code
consumer to execute the untrusted program. This safety policy imposes a particular
calling convention on the interface between the code consumer and code producer,
but this calling convention need not be used by the code producer for any other
procedures.

€pc, 18 the address of the first instruction of the procedure. eesp, is the stack
pointer at the time the procedure is called. ppre, is the specific precondition of
the procedure, ordinarily asserting that particular registers and stack slots have
particular types. ppost, is similarly the specific postcondition of the procedure. pcs,

5.6. MEMORY SAFETY 87

O(Vsq, :ri. sq = Tsq, D Ppre(Zsq,) O safeld ppost(Tsq,))

def
where safe = Iz :fl. fetch(pm, pc, 7)) A safe_inst(sq, z))
def
ppre(xsqo) = PC = épc,

N gsp = €esp,
A (ppreo
A (sels(q,fps) = cons(q_esp(a:sqo),tail(q_fps(acsqo)))
AT))
e

ppost(xsqo) = PpCc= Selw(q—s(xsqo)aq—esp(xsqo))
A (pposto
A (gsp = addw(q_esp(zsq,), 4)
A (s = joinu(s,addw(q-esp(Zsq,); €ncso), A-5(Tsq,))
A (sels(q,fps) = tail(q fps(zsq,))
A Peso))))

a
-

Figure 5.5: Memory Safety for a Procedure

is the callee-save register set of the procedure, asserting that particular registers and
stack slots are unchanged by the procedure. This proposition is a list of equalities
that relate registers in sq at the postcondition to corresponding registers in zsq. €ncs
is the least offset from the stack pointer above which the entire stack is unchanged
by the procedure.

The safety specification for a procedure requires that once the precondition
holds, the instruction-level memory-safety property safe must hold until the post-
condition holds. safe requires that there be some instruction I at the current
program counter, and that I be safe according to the definition of safety for an
individual instruction. In addition to the specific precondition for the procedure,
the general precondition pp.e requires that the current stack pointer be on the top
of the frame-pointer stack fps. The general postcondition ppest ensures that the
program counter is set to the address on the top of the stack at the time the proce-
dure was called. Additionally, the stack pointer will be one word higher than when
the procedure was called, the stack contents will be preserved above this address,
and the frame-pointer stack will be popped to reflect the loss of the current frame
pointer.®

To elaborate on the stack-preservation requirement, the proposition

q-s(sq) = joinw(q-s(sq), addw(q-esp(sq,), €ncso) A-5(Zsq,)

stipulates that the current contents of the stack (q-s(sq)) be equal to the contents
of the stack at the time the procedure was called (q-s(zsq,)) above the stack pointer
in effect at the time of the call (q_esp(zsq,)), biased by the callee-save offset (encs,)-

®Note that because the frame-pointer stack is held in a security register, it need not given a
concrete representation at run time.

88 CHAPTER 5. SECURITY POLICIES

sle|7]|4]2]|3]5 s(xsq0)
[T 1
s8le6|7]|5]3]0]09 S
[1T 1 -
[T 1T 1
8le|7|5]13[0]o9 join(s, sp+ncs, s(xsq0))
A

sp+ncs

Figure 5.6: Stack Preservation

The current contents of the stack need only be equal to itself below the stack
pointer (plus the callee-save offset), and thus can be modified arbitrarily by callee
throughout this region (see Figure 5.6).

5.6.1 Operational Semantics

In this section, I give a formal semantics for the memory-safety relations that em-
bodies a full formalization of the memory-safety policy.

nextq(v, I) determines the next security-automaton state according to the cur-
rent state tuple v and current instruction I:

I nextq(v, I)
where v = ((npc, N, Vg, Vs, Vn), Vq)
mov(n;)(ea1){eas) Vg
xchg(n;)(ea)(r Vg
lea(n;)(ea)(r) Vg
push(n;)(ea) Vg
pop(ni)(ea) Vg
op1(ni){op1){ea) Ug
op2(ni)(op2)(ea1)(eas) Vg
op2n(ni) (0p2)(ea1)(eas) Vg
op3(ni){op31){op3s)(ea)(ri)(ra) | vq
Jup{mea) v,
30 (eor) () z |
call(n;)(ea vq[fps — cons(vg(esp) — 4, vq(fps))]
ret{n) 0q[£p5 -+ tail(vg(ps))

Essentially, the frame pointer is pushed on each procedure call, and popped for each
procedure return. Note that trusted procedures of the run-time system may change

5.6. MEMORY SAFETY 89

other aspects of the security-automaton state, but these changes are outside the
scope of the nextq function.

The relation safe_sp(v, n) holds exactly when n is a safe next-state stack pointer
with respect to current state v:

safe_sp((v,vq),n) iff v4(£ps) = (ngp, v') and ng, —n < page and (nf, —n) A3 =10

The stack pointer is allowed to be explicitly decremented to an aligned address
within a page of the current frame pointer. This guarantees that each page of
memory will be touched at least once as stack frames are allocated from the stack,
and thus that the stack grows contiguously downwards. This constraint ensures
that the runtime system can detect when the stack and heap are about to collide,®
and thus prevent the heap from being corrupted by the stack (see Section 5.6.4 for
further discussion of stack overflow).

safe rds(v,n) holds when n is a readable stack address with respect to current
state v:

safe_rds({(npc, nt, Vg, Vs, Un), Vq), 1) iff n — vg(esp) < page
and (n — vg(esp)) A3 =0

Similarly, safe wrs(v,n,n’) holds when n is a writable stack address with respect
to current state v:

safe wrs(((npc, s, Vg, Us, Un), vq), ,n') iff n —vg(esp) < page
and (n —vg(esp)) A3 =0

Thus, all stack accesses must be within the page above the current stack pointer.
Note that the interpretations of safe rds and safe wrs coincide in my implemen-
tation, but because it is reasonable to imagine systems where they do not, I treat
them as distinct functions in anticipation of such a possibility.

safe_rdm(v,n) holds when n is a readable memory address with respect to cur-
rent state v:

safe_rdm((v',vq),n) iff leqa(rd, sela(vq(acem),n,4)) and nA3 =0

Similarly, safe wrm(v, n,n’) holds when n is a writable memory address with respect
to current state v:

safe_wrm((v', vq),n,n') iff leqa(vr, sela(vg(acem),n,4)) and nA3 =0

Thus, any memory access must be aligned and explicitly “approved” by the current
access-mode map accm.

5For example, by mapping an “inaccessible” page between the stack and heap.

90 CHAPTER 5. SECURITY POLICIES

safe rdea(v, ea) holds when ea is a readable effective address with respect to
current state v:

true if ea = ea_i(n)

. true if ea = ea_r
safe rdea(v, ea) iff .
safe rds(v,ma_addr(vg, ma)) if ea =eas

safe_rdm(v,ma_addr(vg, ma)) if ea = eam(ma)

WheI‘e v = <<’n/pc7 nfj Ug’ IUS’ 'Um>7 Uq)

Similarly, safe wrea(v, ea,n) holds when ea is a writable effective address with
respect to current state v:

(false if ea = ea_i(n')
true if ea = ea r(r)
and r # esp

safe wrea(v, ea,n) iff <]
safe_sp(v,n) if ea = ea_r(esp)

safe wrs(v,ma_addr(vg, ma),n) if ea = ea_s{ma)

| safe_wrm(v, ma_addr(vg, ma),n) if ea = eam(ma)

where v = <<'nlpcanfa ’Ug,’Us,'Um>, "’q)

Thus, an access mode is safe to use in a state when the address to be accessed is
safe according to the appropriate stack or memory access relation.

safe_inst(v,), defined in Table 5.1, holds when I is a safe instruction with
respect to current state v. Essentially, instruction safety holds when all the effective
addresses of the instruction are safe to use in the current state.

5.6.2 Inference Rules

In this section, I provide a deductive system that encodes the formal semantics of
the memory-safety policy.

The following transition rule specifies how the security-automaton state changes
from state to state:

tq-_fetch
Tk Vz:ri.Vz;:ri. £ = sq D fetch(pm, q-pc(z),) D O(q = nextq(z,z)) ot nextq-Tete

It states that the next-time value of q is the function nextq applied to the
current-time value of of q and the current-time state and instruction.

The semantics of the function nextq is encoded by a set inference rules. I show
only a few representative cases here:

nextq-mov
' - nextq(mkp(e, eq)a fnov(€i; €eay s €eay)) = eqatl

; nextq_call

I' - nextq(q-mk(epc, es, €g, €s, €, €q); fea11(€i, €ea)) = eqot

’ dsf

where €q

upds(cq, T8, cons(addw(selg(cg, 85P), —4), sels(cq, £pS)))

5.6. MEMORY SAFETY

91

safe_inst(v,I),

where v = (v',vq) = ((Npc, £, Vg, Vs, Un), Vg)

mov(n;)(ea1){eas)

safe rdea(v, ea1)

xchg(n;)(ea)(r)

safe rdea(v, ea)
and safe wrea(v, ea r(r), (v')eq)
and safe_wrea(v, ea, vg(r))

safe rdea(

and safe wrea(v, eas, (v')eq,)
safe rdea(
safe wrea(

lea(n;)(ea)(r)

safe wrea(v, ea_r(r),ea_addr(v’, ea))

safe rdea(v, ea)

push(n;){ea)

safe_wrea(v, ea, vs(vg(esp)))

(

i){ea
pop(ni)(ea)
op1(ni)(op1)(ea)

safe rdea(v, ea)
and safe wrea(v, ea, appl(opl, (v')eq))

op2(ni){op2)(ea1){eaz)

safe rdea(v, eaq)
and safe rdea(v, eas)
and safe wrea(v, eas,n’)
where n' = app2(0p2, (v')eas, (V') eay)

op2n(n;){op2){ea1)(eas)

safe rdea(v, eaq)
and safe rdea(v, eas)

op3(ni){0p31){op3z)(ea)(r1)(ra)

safe rdea(v, ea)
and safe wrea(v,ea.r(ri),n
and safe wrea(v,ea r(ry),n
where nl - ap_p?>(0p31, 'Ug('rl)’lug()’ (,)ea)
and ny = app3(op3y, vg(r1),vg(r2); (v')ea)

1)
2)

jmp(n;){ea) safe _rdea(v, ea)
j{ni){cop)(n) true
call(n;)(ea) safe._rdea(v, ea)
ret(n;) true

Table 5.1: Instruction Safety

92 CHAPTER 5. SECURITY POLICIES

[+ subw(head(sels(q-q(e),fps)),en) =€, at
T'+ safe_sp(e,e,) = 1tuw(el,, page) A andw(el,3) = 0at

safe_sp

I+ subw(e,, selg(q g(e),esp)) = e, et

I'+ safe rds(e, e,) = 1tuw(el,, page) A andw(el,3) = 0at safe_rds

T+ subw(e,, selg(q.g(e),esp)) = el at

T F safe_wrs(e,en, e,) = 1tuw(e!, page) A andw(e/,3) = 0at safe_wrs

4 fe_
[I safe_rdm(e, e,) = leqa(rd, €acc) A andw(e,,3) = 0at safe_rdm

where e, def sela(q.accm(e), en,4)

fe_
Ik Safe_wrm(e’ €n, 6:1) = 1eqa(ﬁa eacc) A andW(en, 3) =0at sate-wrm

where €acc def sela(qg.accm(e), en,4)

[t safe_rdea(e, feai(en)) @t safe_rdea.i T F safe rdea(e, foas(er)) ot safe_rdea_r
[+ safe rdea(e, fea s(ena)) = safe_rds(e,ma_addr(q_g(e), ema)) ot safe_rdea_s
safe_rdea_m

T+ safe rdea(e, fean(€ma)) = safe_rdm(e,ma_addr(q-g(e),ema)) et

I'ke #eSpet
'+ safe wrea(e, fear(€r),en) @t

safe_wrea_r

fe_wrea_
T+ safe_wrea(e, fear(€5p),en) = safe_sp(e,en) safe_wrea_sp

[+ safe_wrea(e, feas(€ma), €n) = safe wrs(e,ma_addr(q-g(e), éma),en) at safe_wrea.s

I' - safe wrea(e, fean(€ma), €n) = safe_wrm(e,ma_addr(q-g(e), ena), en) @t safe_wrea_m

Figure 5.7: Inference Rules for Memory Safety

5.6. MEMORY SAFETY 93

: safe_inst_mov
'k safe_lnst(e, fmov(ei7 €eay 5 eea2)) ot

= safe rdea(e, €ea,)
A safe wrea(e, €ea,,ea_sel(left(e), €ea,))

safe_inst_xchg
' safe_inst(e, fxcng(€i; Ceaser)) et

= safe rdea(e,€ea)
A safe_wrea(e, fea r(er), ea_sel(left(e),eea))
N safe_wrea(e, eqq, selg(q._g(e), er))

safe_inst_lea
'k Safe_inst(e,flea(eiaeea7ef)) @

= safe_wrea(e, fear(er), ea_addr(left(e), €ca))

safe_inst_push
I' - safe_inst(e, fpusn(€i; €ea)) = safe_rdea(e, €ea) @ P

safe_inst_pop
' safe_inst(e, fpop(€i,€ea)) ot

= safe_wrea(e, eqa, selw(q_s(e), selg(q-g(e),€sp)))

Figure 5.8: Inference Rules for Instruction Safety (1)

— — nextq_ret
' - nextq(mkp(e, eq), fret (€i)) = upds(eq, fps, tail(sels(eq, fps))) ot

The inference rules in Figure 5.7 enable the safety of particular addresses and
addressing modes to be inferred. A stack pointer is safe as long as it is properly
aligned and within the first page below the current frame pointer. A stack access is
safe as long as it is properly aligned and within the first page above the current stack
pointer. The safety of an access through an effective address mode is determined
according to the value of the effective address in the current state. Rules for inferring
safety for individual memory accesses (safe_wrm, safe_rdm) are based on the type
system of Section 5.8.

The inference rules in Figure 5.8 and Figure 5.9 enable the safety of particular
instructions to be inferred according to the memory safety policy. Essentially, any
access to the stack must be in range, and any access to memory must have an explicit
proof of safety. When an instruction accesses the stack or memory is governed by
the semantics of the particular instruction and its embedded effective addresses.

5.6.3 Soundness

I can now establish meta-theoretic properties of the formal memory-safety policy.
First, the memory-safety policy ensures that control flow stays within the untrusted
program:

Proposition 5.6.1 (Control-Flow Safety) o;(pc) € dom J(pm) if 0,5 F7 safe

94 CHAPTER 5. SECURITY POLICIES

- safe_inst_opl
' safe_inst(e, fopi(€i, €opt;s Cea)) at

= safe rdea(e,€es)
N safe_wrea(e, €ea, appl(€sp1, ea-sel(left(e), €ea)))

- safe_inst_op2
't safe_inst(e, fop2(€i, €op2; €ear s Cea)) et

= safe_rdea(e, €ea,) N safe rdeale, €ea,)
A safe_wrea(e, €eay, €')

where ¢/ &f app2(eop2; ea_sel(left(e), €ea,), ea_sel(left(e), €ea,))

- safe_inst_op2n
' safe_inst(e, fopan(€is €op2; Ceay) Cear)) @t

= safe_rdea(e, €ea,) A safe_rdea(e, €ea,)

Tk ea sel(left(e), eea) = € at
't selg(q-g(e),er,) = e1ot T selg(qg(e) er,) =e€yat

: safe_inst_op3
[k safe_inst(e, fop3(€i, €op3, > Copa,s €eas €ry5 €ry)) at

= safe_rdea(e,e€eq)
A safe_wrea(e, fea_r(efl)7 app3(60p31) 6,17 6,27 6’))
A safe_wrea(e, fear(er,), app3(€ops,, €}, €5, €’))

safe_inst_j
I' - safe_inst(e, fimp(€i, €ea)) = safe_rdea(e, €ea) ot nstJme

safe_inst_j
I' - safe_inst(e, fj(€i, €cops€n)) @ !

I' - safe_inst(e, fca11(€i; Cea)) = safe_rdea(e, €ea) ot safe_inst_call

It safe_inst(e, fret(€i)) ot safe-inst ret

Figure 5.9: Inference Rules for Instruction Safety (2)

5.6. MEMORY SAFETY 95

PROOF:
o,j EJ safe Prem.
¢,nb— j] 7 safe for some ¢, 7, b such that ¢|ge; = o Def. F
¢,n[b +— 7] EY Jz;:fl. fetch(pm, pc, 7)) A safe_inst(sq, 7)) Def. safe
dlay — m],n[b — 5] £ fetch(pm,pc,a;) for some aj, m Def. E
a; ¢ Reg Prop. 3.2.14
let ¢ = ¢[a) —]
etch(] (pm) (), V] (bC) (), V3 (@) (1) Det. ~
feth(7(pm), ¢(pc) (7), m(1)) Det. VJ
#(pc)(j) € dom J (pm) Def. fetch
oj(pc) € dom J (pm) Def. ¢|Reg
O

Next, I will demonstrate that the formal memory-safety policy ensures that all
memory accesses will respect the access-mode map.

First, let MemRd(s) be the set of memory addresses that will be read by exe-
cuting one instruction from state s. MemRd(s) can be formalized as follows:

‘ J (pm)(s(pc)) ‘ MemRd(s) ‘
mov(n;){ea1)(eas) MemAcc(s, ear)
xchg(n;)(ea)(r) MemAcc(s, ea)
lea(n;)(ea)(r) 0
push(n;)(ea) MemAcc(s, ea)
pop(ni)(ea) 0
opl(n;i){op!){ea) MemAcc(s, ea)
op2(ni){op2){eai){eas) MemAcc(s, ear) U MemAce(s, eas)
op2n(n;){op2)(ea1)(eas) MemAcc(s, ear) U MemAcc(s, eas)
op3(ni){op31){op3s){ea)(ri)(rs) | MemAcc(s, ea)
jmp(n;){ea) MemAcc(s, ea)
j{ni){cop){n) 0
call(n;)(ea MemAcc(s, ea)
ret(n;) 0

And let MemRd(s) = 0 if s(pc) ¢ J(pm). MemAcc(s,ea) is the set of memory
addresses (zero or one) that are accessed by the effective address ea for in state s:

{ma_addr(s(g), ma)} if if ea = ea m(ma)

MemAcc(s, ea) = .
0 otherwise

96 CHAPTER 5. SECURITY POLICIES

Similarly, let Mem Wr(s) be the set of memory addresses that will be written by
executing one instruction from state s:

| J (pm)(s(pc)) | MemWr(s) |

mov(n;){ea1)(eas) MemAcc(s, eas)
xchg(n;)(ea)(r MemAcc(s, ea)
lea(n;)(ea)(r) 0

push(ni){ea) 0

pop(n;i)(ea) MemAcc(s, ea)
opl(n;i){opl){ea) MemAcc(s, ea)
op2(ni)(op2)(ea1)(eas) MemAcc(s, eas)
op2n(n;){op2){ea1){eas) 0
op3(ni)(op3,){op3s)(ea)(ri)(rs) | 0

jmp(ni)(ea) 0

j{ni){cop)(n) 0

call(n;)(ea 0

ret(n;) 0

Memory safety now follows essentially by definition:

Proposition 5.6.2 (Memory Safety)

1. rd < (s(q)(accm)), 4 for all n € MemRd(c;), and

2. wr < (s(q)(accm)), 4 for all n € MemWr(o;), and

3. nA3=0 for all n € MemRd(cj) U MemWr(c;)
if o,j EJ safe

PROOF: by the definition of , V7, and safe O
These are concrete examples of how it is possible to reason about a formal
security property in order to reach a particular informal conclusion.

5.6.4 Stack Overflow

The code consumer needs to ensure that the stack will not grow too large and
collide with the heap, thereby corrupting the data structures of the trusted run-
time system. There are a number of approaches that can ensure this. For example,
the code consumer can stipulate a procedure calling convention and check that the
untrusted code uses this convention (Necula [Nec98]) takes this approach), or the
code consumer can impose a stack resource bound and require the code producer
to provide a proof that the bound is satisfied. Implementing the latter approach is
likely to be quite difficult, so I will use a simpler technique for this dissertation that
combines elements of both approaches.

In order to prevent stack overflow, the code consumer places an “inaccessible”
boundary page above the heap (if the address space is flat) and (well) below the

5.7. JAVA TYPES 97

initial stack pointer.” The formal memory-safety policy ensures that the untrusted
program will allocate only small, contiguous frames from the stack, and that at
least one location in each frame (the return address slot) will be accessed before
the next frame is allocated. The stack-allocation policy is tied to the TA-32 call
instruction. The code producer must use this instruction for procedure calls if he
or she wishes to use the stack to allocate activation records, but the rest of the
standard calling convention need not be used. Note that if the code producer uses
heap-allocated activation records [AS94, App92] no restrictions are placed on the
procedure calling convention (other than for the initial entry point). Because the
stack grows contiguously downwards in small increments, it is guaranteed to access
the boundary page before the heap is corrupted. Accessing the boundary page
will result in a run-time exception, thus preventing the untrusted program from
corrupting the heap.

Note that because several approaches are possible for limiting stack growth, I
do not attempt to model the boundary page formally in Chapter 4. Additionally,
the code producer is provided with the following inference rule, which is justified
by the stack overflow check:

[+ fetch(pm, q-pc(sqQ), fea11(€i,€ea)) @t T+ gequu(gsp, page) ot
[' F gequw(gsp, addw(page, page)) ot + 1

sp_under

It asserts that whenever the stack pointer is above the first page and a call instruc-
tion is executed, the stack pointer will be above the second page in the next time
step.

5.7 Java Types

In this section, I encode a machine-level fragment of the Java [GJS96] type system
that is strong enough to establish memory safety for a useful set of programs.
Essentially, a machine-language Java type is inherited by a register or memory
location when a source-language variable or expression is compiled to that location.
The machine model obviously does not know what the source-level program code is,
so the code producer provides an explicit typing derivation for each memory location
that is accessed by the program. This approach was originated by Necula [Nec98]
for a safe variant of the C programming language, and has later been extended to
encompass the Java programming language [CLN100]. My type system is based on
this latter implementation.

I only address a subset of the Java type system in this dissertation—features
for long integers, floating point, subtyping, or interfaces are not included. Note,
however, that the current Special] [CLN'00] implementation does include these
features, so I do not anticipate any serious difficulty in extending my type system
to accommodate these additional types.

jty is the type of Java types, jta is the type of Java type assignments, and jts
is the type of Java type environments. A type assignment is a representation func-
tion (assigning sets of values to types), paired with a memory assignment function

"If the address space is segmented, the boundary page is simply the page at address zero.

98 CHAPTER 5. SECURITY POLICIES

Ity Java type

jey—ity
[§ array Java array type constructor
fwd—>jty

j_inst Java instance type constructor

j_sizeity—wd Size of type

taxjta—o

ja_leqj
ja ofjtandety—)O

Containment for type assignments
Type assignment for values

ja_ptr Type assignment for memory locations
ja_fielditaxwdxwdxjty=o Tyne assignment for field offsets

jtaxXxwdxjty—o

Table 5.2: Operations on Java Types

(assigning types to addresses), and a field assignment function (assigning types to
field offsets of classes). The type jta is only inhabited by type assignments that
are internally consistent; I define this condition formally in Section 5.7.1. A type
environment is a type assignment paired with a memory access mode map:

jts %ef pair(jta)(mapa)

I introduce the constants, functions, and relations in Table 5.2 to model Java types
formally. Essentially, mathematical values are “reflected” into the syntax of the
logic in much the same way as in Section 4. The underlying mathematical values
are introduced in Section 5.7.1.

I define the following abbreviations to compute the address of the length field
of an array, as well as the address of an arbitrary array element:

o addw(epa, 16)

. def L
j_elem(ena, €nis €jty) = addw(ena, addw(mulw(eni, j_size(ejry)),20))

j-len(ena)

The offsets in these definitions (16, 20) are determined by the run-time system. The
following abbreviations assert that a given type is of machine-word size, and that a
given machine-word pointer is aligned with respect to a given type, respectively:

. def . .
jwd(ejey) = j-size(ejry) =4

. . def R
j-align(enp, €jty) = andw(enp, subw(j_size(ejey), 1)) =0

5.7. JAVA TYPES 99

The following defined relations hold when a given machine word is a pointer to
an array length, array element, or object field, respectively:

def
ja_ptr_len(ejta;enp) = xna:fl. z gy o fl.
ja—Of(ejtaamnaafj_array(-mjty))
ANZna#0

A enp = j-len(zna)

ja_ptr_elem(ejta, €m, €np, €jty) déf Azna :fl. Jzg; fl.
ja—Of(ejtaa ZTna, fj_array(ejty))
A Zna #0
A 1tuw(zni, selw(ey, j-len(zna)))
A enp = j-elem(Zna, Tni, €jty)

ja_ptr_field(ejra enp: iey) = Iono:fl. rpe:fl. g :l.
ja—Of(ejtaa Zno, fj_inst (iL'nc))
A Tno #0
A ja_field(ejta, Znc, Tnf, €jty)
A enp = addw(Zno, ZTnf)

ja_validi®®7° is a defined relation that holds when a given a given type assign-

ment is internally consistent:

ja-valid(ejta) =4 Vinp fl. Ve fl.
(ja-ptr_len(ejta, Tnp) O ja-ptr(€jta, Tnp, j-int))
A (ja_ptr_field(ejta,Znp, Tity) O jaPtr(€jta; Tnps Lity))
A (ja-ptr(ejta, Tnp, Tity) D j-align(znp, Tjty))

This relation requires that the length location of an array be assigned the type
j_int, and that each field location of an object be assigned the corresponding type
of the field. Note that the type of an array element cannot be constrained at this
level (e.g., as in Necula [Nec98]), because the length of the array must be retrieved
from memory in order to bound the number of elements (refer to the definition of
ja mem, appearing next). Additionally, pointers must be aligned according to the
size of the value whose address is taken.

ja_memI®2XmaP¥=9 j5 5 defined relation that holds when a given memory value is
consistent with a given type assignment:

jamem(e;jta, €n)
def
= V.’Enp :fl. v.’L'jty :fl.

(ja_ptr_elem(€;jta, €n, Tnp; Tity) O jA-PET(€jta; Tnp, Tity))
A (japtr(ejta, Tnp, Tity) D j-Wd(Zjey) D ja-of(ejta, selw(en, Tnp); Tity))

This relation asserts that each element of an array be assigned the corresponding
type of the element and that the value in each memory location agrees with the
type assigned to that memory location.

100 CHAPTER 5. SECURITY POLICIES

Internal consistency is extended from type assignments to type environments by
requiring that array length and object fields be accessible according to the access
map in the environment:

def
js-valid(ejs) = Vnp fl. Vi ey - fl.
ja-valid(left(ejts))
(japtr_len(left(ejts), Tnp)

D sela(right(ejis), Tnp, j-size(j_int)) = rd

japtr_field(left(ejts), Tnp, Tity)
D sela(right(€jts), Tnp, j-size(Zjey)) = TW

Memory consistency is extended from type assignments to type environments
by requiring that array elements be accessible according to the access map in the
environment:

js-mem(ejts, €n) déf Vnp fl. Vi ey o fl.
ja-valid(ejts)
A jamem(left(ejis), en)
(japtr_elem(left(ejts), €m, Tnp, Tity) >
D sela(right(ejts), Tnp, j-size(zjty)) = TW
I now extend the standard typing relations from type assignments to type envi-
ronments:

Q.
=+

e

js-leq(ejts, €jts,) = jaleq(left(ejis,),left(ejts,))
A leqam(right(ejss,), right(ejts,))
. def | .
js-of(ejts, €np, €jty) = js_valid(ejts)
A jaof(left(ejes), €np; €jey)
. def | .
js-ptr(ejts,enp, €jtys €acc) = js-valid(ejts)

A ja_ptr(left(ejts), €nps €jty)
A sela(right(ejts), enp, j-size(ejey)) = €acc

. . def | .
js_field(ejis, €nc, €nf, €jry) = jafield(left(ejts), €nc, €nf, Eity)

Containment for type environments, js_1eqi***3*$=° holds when the component
type assignments and access maps are contained. The type assignment relation for
memory locations, js_ptritsxwdxjtyxacc=o jg extended to specify an access mode.
It holds when the specified address has the specified type and has at least the
specified access mode. Both type assignment relations for type environments imply
that the type environment is internally consistent. This approach is taken primarily
to reduce the number of inferences required to reconstruct a typing derivation.

5.7.1 Operational Semantics

I begin by providing a semantic model for types and type assignments:

Java types jty ::= j_bool | j_char | j_byte| j_short | j_int
| j.array(jty) | j-inst(n) | j_Class

5.7. JAVA TYPES 101

Classes are identified by distinct addresses. An instance of a class n is assigned the
type j_inst(n). The class n is itself assigned the type j_Class.

A type assignment is modeled by a triple consisting of a total representation
function that assigns a set of types to each machine word, a partial memory assign-
ment function that assigns a possible type to each memory address, and a set of
field assignments that associates a possible type with a field offset and class:

Val’™ = {jty} 1y _ _
Valitd = (Valwd N 2Vallty) % (Valwd N Valjty) x 2Val"d>< Val"d x Val3*y

The size function assigns the size 4 to each Java type:
j_size(jty) =4

This definition is an artifact of the SpecialJ implementation that I use: each “small”
type occupies 4 bytes. Note that distinct arithmetic types (j-byte, j_short, j_int)
are still useful for constraining procedure parameters even when the size of each
type is always 4 bytes.

The operation of the type assignment functions is defined as follows:

ja_leq((v1,vq,v3), (v}, vh,v5)) iff v1(n) C vi(n) for all n
and domve C dom v}
and va(n) = vh(n) for all n € dom vy
and vz C v}

ja—Of(<Ula V2, 'U3>7 ’)’L,]ty) iff Jty € v (n)
orn < 2 and jty = j_bool
orn < 2' and jty = j_char
or —27 < ™7 < 27 and jty = j_byte
or —2'% < ™n7 < 2% and jty = j_short
or jty = j_int
orn = 0 and jty = j_array(jty’)
orn =0 and jty = j_inst(n’)

japtr({vi,ve,vs),n,jty) iff n € domwsy and va(n) = jty
ja_field(<’l)1,’l)2,’l)3>,’n,l,’n,g,jty) iff <n1,n27jty> € v3

Containment for type assignments (ja_leq) holds when the representation functions
are point-wise contained, the memory assignment function vo assigns a subset of
the types assigned by vj, and the field offset functions are compatible. The type
assignment relation (ja-of) holds when the type is assigned by the representation
function, when the type is an atomic type and the value is in range, or when the value
is null and the type is a pointer type. Note that I only rely on the representation
function to assign types to non-null pointers. The pointer relation holds when
the memory assignment function assigns the value the appropriate type. Finally,
the field relation holds when field offset function assigns the class and offset the
appropriate type.

102 CHAPTER 5. SECURITY POLICIES

'k 1tuw(en,2) ot
I' - ja_of(€jta,en,j-bool)at

ja_ofij_bool

I+ 1tuw(en,65536) a t

ja_ofi;
I' - ja_of(ejta, €n, j-char) et] J-char

I+ geqw(en,4294967168)at I+ 1tw(en, 128)at
'+ 6jta,ja-0f(en,j_byte) at

ja_ofij_byte

[+ gequ(en,4294934528) et I+ 1tw(e,,32768) ot
I' - ja_of(€jta, €n, j-short) at

ja—Ofij_short

. — ja-ofij it
I' - ja_of(ejta,en, j-int) at

ja_ofij array0

'k ja_of(ejta, 0, fj_array(ejty)) at

ja_ofi; snst0
I'F ja_of(ejta, 0, fi_inst(enc)) @t . J-inst

Figure 5.10: Java Typing Rules for Constants

5.7.2 Inference Rules
The following inference rules encode the semantics of the j_size function:

j-sizelj array

T+ j_SiZG(fj_array(ejty)) =4at

j_sizei; ;
't j_size(fj.inst(€n)) =4at J J-inst
Note that the size of an atomic type can be inferred by using term rewriting rules
for constants.
The following inference rules assert that the array and instance type constructors
are injective:

inst_inj

array-inj

F |— inj (fj_array) at F |— inj (fj_inst) at

ja_leqorde
't order(ja_leq)at Ja-tedorder

The inference rules in Figure 5.10 enable types to be inferred for various machine-
word constants.

Finally, the following inference rules stipulate that the pointer and field assign-
ment relations behave as partial functions:

; ja_ptrfun ; ja_fieldfun

't fun(japtr)e 'k fun(ja field)e

5.8. JAVA TYPE SAFETY 103

5.8 Java Type Safety

At this point, the encoding of the Java type system is sufficient to satisfy the
memory-safety policy when all accesses to memory are performed through pointer
types. Thus, I see Java type safety as a means to establish memory safety. To make
this process more systematic, I introduce a set of derived rules in Section 5.8.1 and
Section 5.8.2 that resemble the typing rules used by the Special] PCC implemen-
tation. The ability to use Java types to satisfy memory safety depends critically on
the code consumer providing run-time procedures to allocate well-typed blocks of
memory, and providing appropriate types to arguments that are passed to the entry
point of the program. Currently, the soundness of these type assignments can only
be established informally.

A Java typing derivation is sufficient evidence to conclude safe rdm or safe_wrm
for a specific address expression. However, the formal system does not stipulate that
Java type safety is a necessary condition for memory safety, so the code consumer
is free to provide additional disjoint type systems to the code producer for this
purpose. For example, the code consumer could simultaneously support Java, ML,
and “Safe C” type systems with no particular complications.

The Java type system here is an essential part of the trusted computing base,
unlike other approaches to foundational PCC [MA00, HST*02]. Note that Propo-
sition 5.9.1 only establishes the soundness of the encoding used for type safety (i.e.,
that it corresponds to the mathematical model). It is the soundness of the allo-
cation procedure that provides the real evidence that type safety is an adequate
justification for memory safety.

The security register ta € SReg*® contains the current Java type assignment,
assigning a set of word-size values to each Java type. Types are effectively assigned
by a trusted allocation procedure of the run-time system for all non-null pointer
values.

5.8.1 Pointer Rules ja_ptr(ejta, €np, €jty)

The following rule asserts that the length field of an array is an integer:

I'F javalid(ejta) @t I'F ja_of(ejta,€nas fiarray(€jey)) ot
F l_ €na # O@t
I'F ja_ptr(eja, j-len(ena),j-int)at

ja—ptrilen
The following rule asserts that each element of an array has the appropriate
type:

I'+ jamem(eja,en) @t 'k ja_of(ejta; ena, fiarray(€ity)) @t
I'Fena #0et TI'F ltuw(eni,selw(ey, j-len(ena)))at

ja_ptri
'k ja—ptr(ejta7j—elem(enaaeniaejty),ejty) at Ja-p elem

The following rule asserts that each field of an instance has its assigned type:

104 CHAPTER 5. SECURITY POLICIES

' javalid(ejta) et T'F ja_of(ejta,e€nos fi inst(enc)) @t
I'ten #0at Tk jafield(eja,enc,enf,€jty) @t

ja_ptrig
'k ja_ptr(ejta, a_ddw(eno, enf), ejty) ot Ja-Ptrlfield

The following rule asserts that each pointer is aligned to its element size:
I'F javalid(ejta) @t I'F japtr(ejta;enp;ejey) et

ja_ptre,)
't j_align(enp, €jty) @t J8-PEEEalign

The following rule asserts that dereferencing a pointer results in a value of the
appropriate type:
I' - jamem(ejta, en) @t ' ja_ptr(ejta, np, €jty) at
' jwd(ejey) ot

ja_ptre
I' - ja_of(ejta, selw(en, €np), ejty) @t Ja-PETCsel

5.8.2 Memory Rule jamem(e;jta, €n)

The following rule asserts that writing to a pointer results preserves the validity of
memory:

I'+ jamem(ejta,en) @t I'F japtr(eja,enp,ejey)at
I' - ja_of(ejta, en, €jty) @t
I'FVanp:fl. japtr_len(ejta; Tnp) D Tnp 7 €np @t

ja_memupd
I' - jamem(ejta, updw(en, €np, €n)) at J P

5.9 Soundness

I now show that the inference rules in this chapter are sound (some rules are addi-
tionally derivable).
Let
reJJ
assert that J is derivable from I' using only inference rules from Chapter 3, Chap-
ter 4, Section 5.4, Section 5.5, Section 5.6, and Section 5.7. Additionally, let
N
assert that J is derivable from I' using only inference rules from Chapter 3, Chap-
ter 4, Section 5.4, Section 5.5, Section 5.6, Section 5.7, and Section 5.8.

Proposition 5.9.1 (Soundness) ¢,n 7 J
if ,nEI T and T I—;{, J and ¢|rey € ¥ 7(pm)

PROOF: by induction on the derivation of I' I—;{, J, using the proof of Proposi-
tion 4.5.2 O

Proposition 5.9.2 (Derivability) T I—;{, J if T I—j‘7ty J

PROOF: refer to the LF implementation O

Chapter 6

Program Logic

In this chapter, I develop a logic of programs [Flo67, Hoa69, LS82] for proving
invariance properties of machine-code programs. In general, a logic of programs (or
program logic) consists of a set of formal inference rules that can be used, together
with ordinary mathematical reasoning, to demonstrate the correctness (or safety) of
a given program. A program logic embodies the abstract properties of the machine
on which a program is be executed. For example, in Floyd-Hoare logic, a rule for
a conditional statement allows one to conclude that if both arms of the conditional
satisfy a certain property, then the conditional statement itself satisfies the property:

lpre# 0t a {p} {pAe=0}c {p}
{p} if e then c; else ¢y {p'} I

Program logics rely on mathematical reasoning to prove ordinary facts about math-
ematical objects that have no essential relation to programs. For example, when
applying a loop rule to the correctness of a factorial procedure, one might need
to show n! = n x (n — 1)!. Such premises are ordinarily discharged by informal
algebraic reasoning. See Dijkstra [Dij76] and Reynolds [Rey81, Rey98] for a more
in-depth treatment of standard program logics.

The program logic in this dissertation provides an important conceptual foun-
dation for my approach to proof construction, and for my approach to proof engi-
neering. The program logic additionally establishes the formal basis for the logic
program for proof reconstruction that I present in Chapter 8.

In one valid approach to PCC, the code consumer might provide the code pro-
ducer with a set of program-logic rules, and expect a proof of safety for each un-
trusted program that is made up of a tree of these rules. Such rules are ordinarily
proven sound with respect to an operational semantics, but the proofs are rarely
formalized to the same degree of rigor as a PCC safety proof. The code consumer
would have more confidence in the program logic if the soundness argument were
formalized to such a degree as to be verifiable by machine. This reduces the size of
the trusted computing base (TCB), and therefore reduces the vulnerability of the
code consumer, because the program logic need not be a trusted component.!

' A component must be trusted when it can only be verified informally. In this dissertation,

105

106 CHAPTER 6. PROGRAM LOGIC

b lesq/Ts 0
e q/w q]pgl@ ~

]
Psafe
F €sq ~ Dgl

J

['F [esq/Tsq| pgrat T'F [asq/%sq] Pei:lo (asq)
I'F 89 = €sq D [8Q/Tsq] (Psate U pg)) o

sq

pl_evalig

(pl-evaligp is derived formally)

Figure 6.1: Deriving an Inference Rule

In fact, the formal framework of Chapter 3 and Chapter 4 already provides the
code consumer with the tools needed to accomplish exactly this task—the soundness
of a program logic with respect to an operational semantics can be established
entirely within the framework of temporal-logic reasoning. However, this approach
can be taken a step further. Based on a suitable encoding, the rules of the program
logic are not only sound, but admissible, and actually derivable.? Now, because
the program logic can be synthesized from within the formalism, it need not even
be a component of the code consumer—an explicit derivation of the program logic
can be attached to the safety proof provided by the code producer (see Figure 6.1).
In fact, the code producer is free to “invent” any suitable program logic that can
be synthesized from within the formal system. This is the approach I take in this
dissertation: the program logic is a derived component that is used internally in the
proof reconstruction program supplied by the code producer.

6.1 Overview

The program logic is important enough conceptually that I will present it first in
Section 6.3 using a higher-level syntax that is outside my standard logical formalism.
I do not use this embodiment of the program logic directly—it is effectively an
organizational tool that clarifies how derived rules should be developed. Thus, I
will not attempt to show that the high-level view of the program logic is sound.
Note that most program logics are intended to demonstrate partial or total cor-
rectness properties. My program logic departs from this practice by demonstrating
safety properties,? although it can also be applied to partial correctness. Intuitively,

the temporal-logic inference rules, the formal machine model, and the proof checker are trusted
components. A key feature of PCC is that it requires only a small TCB, and thus enables a
trustworthy system to be deployed.

2An admissible inference rule does not enlarge the set of theorems that are provable in a given
formal system. For a derived inference rule, there is a single tree of inferences that establishes the
conclusion from the premises for any instantiation of the rule. Because derived rules have explicit
formal proofs, they need not be trusted.

3To be more precise, my program logic demonstrates invariance properties (see Section 5.4).

6.2. PROGRAM LOGICS IN PCC 107

correctness tells the code consumer what the program computes, but for PCC he
or she is really more interested in how it is computed. A novel feature of my
program logic is that the inference rules are explicitly instantiated with a formal
representation of the desired safety property during construction of a derivation.

After presenting the high-level view of the program logic, I show in Section 6.4
how an equivalent program logic can be derived entirely in terms of temporal-logic
syntax and inference rules. Refer to Gordon [Gor88] for a similar approach based
on higher-order logic. Thus, the program logic is an untrusted component of the
PCC infrastructure that enables the code producer to develop a coherent theory for
proving invariance properties.

In Section 6.5, I survey additional derived rules that are useful for establishing
memory-safety properties. Finally, in Section 6.6, I introduce the proof outline
representation that can be used to distill only the essential content out of a safety
proof based on the derived program logic.

Later, in Chapter 8, I outline how the core program logic is further special-
ized into a derived deterministic logic program for reconstructing safety proofs. By
specializing the program logic into a deterministic logic program, the SpecialJ sym-
bolic evaluator is effectively converted from a trusted component to an untrusted
component. Because the logic-program rules are more complex and idiosyncratic
(due to efficiency and decidability considerations), the program logic in this chapter
also serves as a useful starting point for understanding the operation of the proof
reconstruction logic program.

6.2 Program Logics in PCC

To date, little direct attention has been paid to program logics in PCC research.
Typically, the focus has been on developing a verification-condition (VC) generator
as a self-contained artifact without much regard to the implicit program logic upon
which it is based (see Necula [Nec98], for example).

A VC generator is a program that implicitly constructs a proof, using program-
logic rules, of some property of a program. For its a result, the VC generator
produces a list of premises that cannot be satisfied by applying some rule of the
program logic—these are the “VCs.” Each VC is typically a mathematical assertion
that must be verified by hand, or by a search that can be costly, in general. Current
theorem-proving technology is only capable of discovering relatively simple and/or
tightly-constrained VC proofs. Typical VC generators must be provided with an
explicit invariant for each loop in the program—Iloop invariants are also notoriously
difficult to discover automatically.

The PCC focus on VC generators is in keeping with some of the VC generator
literature. For example, in King’s [Kin71] original paper, the program logic is not
developed explicitly, though it can be inferred to be based on Floyd’s [Flo67] earlier
work. Significantly, Appel and Felty [AF00] originally argued in favor of a derived
Floyd-Hoare logic in their seminal paper on foundational PCC, though in later work
they have advocated a derived typed assembly language (TAL) instead [App01].

108 CHAPTER 6. PROGRAM LOGIC

Dy
+ [esq/xsq] Pgial

+

F [esq/%sq] Pgi @0
Z)safe

Dsafe
F €sq ™7 Pgl

J

Dy
Dsafe

Psafe
F €sq ™ Pgl

Figure 6.2: Completing a Program-Logic Derivation

The lack of attention to program logics in the PCC literature is perhaps un-
fortunate, because I believe that an explicit program logic does much to clarify
the reasoning principles upon which the VC generator is based.* In the context of
my work, a program logic provides an additional benefit, because it can be derived
entirely from within the framework of temporal logic, and thus becomes a useful
artifact in and of itself.

The program logic is a natural complement to the VC generator. Essentially,
any steps taken implicitly by the VC generator algorithm are assigned some explicit
program-logic rule. Conversely, proofs of VCs are relegated to less formal “mathe-
matical reasoning” by most program logics, but note that these are exactly the proof
terms that come out when one uses a certifying compiler based on a VC generator.
In a conventional PCC system, the VC proof is made up of explicit inferences that
must be be discovered by search (typically, by using an automatic theorem prover).
If one inserts the correct VC proof terms into a tree of program-logic inference rules,
then one obtains a “fully explicit” proof that accounts for both mathematical and
operational reasoning (see Figure 6.2). Furthermore, if the program logic itself can
be foundationally established within the same framework that accounts for general
mathematical reasoning, then one can reap the benefits of the program logic without
increasing the complexity of the trusted framework. Note that one can also view
the VC proofs as the “residue” that remains after program-logic rules are deleted
from a fully-explicit safety proof.

The program logic I use is based on symbolic evaluation [Nec98] as opposed to a
more standard Floyd-Hoare logic [Hoa69, Dij76]. In symbolic evaluation, substitu-
tions into propositions are postponed by maintaining an explicit representation of
the machine state. This is also known as deferred substitution. The deferred substi-

“For a potential practical benefit, one might simplify informal soundness proofs for VC genera-
tors by starting from a sound program logic.

6.3. A LOGIC OF PROGRAMS FOR INVARIANCE PROPERTIES 109

tution strategy has important practical consequences because it enables a compact
proof representation. The evolution of a specification over time can be described
as a sequence of individual state changes, as opposed to a sequence of instanti-
ated propositions. This makes “predicate factoring” as advocated by Appel and
Felty [AF00] unnecessary, because only one specification is ever stored in the proof
for a given loop or procedure.

6.3 A Logic of Programs for Invariance Properties

In the interest of a simple presentation, the program logic is formalized in natural
deduction style without internalized hypotheses. A judgment J is affirmed without
an accompanying context I':

FJ

A free hypothesis in a derivation is indicated by an italic label u. The hypothesis
is discharged (i.e., removed from the context) by the rule with the matching label.
For example, the implication-introduction rule

I, pretkFpret
I'Fpi Dpoat

is presented as follows without internalized hypotheses:

Fpiet “

I—p.Q@t 5
|—p1 Dprat

Strictly speaking, because of this change of notation, the program-logic rules
are not part of (or compatible with) the formal system of Chapter 3. However,
because the role of the high-level view of the program logic is solely illustrative, this
is not an important technical complication. I will include closed affirmations based
on the Chapter 3 system as premises in some program-logic inference rules. These
premises perform the same function as do “mathematical reasoning” premises in a
standard Floyd-Hoare system. For example, to require a proof that 3+4 =7 in a
program-logic rule, I would use the premise

F3+4="7e0

Essentially, I am treating temporal logic in this section as a first-order nonmodal
system to avoid the need for a distinct restricted formal system.

I refer to proof of a premise that is not based on one or more program-logic
rules as a residual proof later in this chapter. Residual proofs correspond to “math-
ematical reasoning” in an ordinary program logic, and to proofs of VCs when a VC
generator is employed. This distinction is crucial in Chapter 7, where I show how
a complete safety proof can be constructed from the right combination of program-
logic rules and residual proofs.

110 CHAPTER 6. PROGRAM LOGIC

This is a program logic for invariance properties. I must stipulate that loop
invariants, procedure specifications, and the target invariance property psase do
not contain temporal operators (i.e., the security-property psp is roughly [psase)-
Because many inference rules implicitly employ local reasoning, these rules are not
sound if the properties to be established are not themselves local. This stipulation is
developed into a formal locality requirement when the program logic is reconstructed
as a derived system in Section 6.4.

Note that in principle, the program logic can be used to establish arbitrary in-
variance properties, but in this dissertation I will only apply it to memory safety
and Java type safety. However, I expect that much of the existing implementation
can be applied directly to certify more general safety properties, such as resource
bounds and access control. Adapting a decidable type system would be particularly
straightforward, because no residual proofs would be needed, and practical tech-
niques have been developed [Nec98] for automatically synthesizing type-based loop
invariants.

In an attempt to be systematic, I characterize many of the program-logic rules
as either introduction or elimination rules. However, the program logic does not
seem to yield a coherent type theory, at least as I present it here. For example, local
soundness and local completeness (in the sense of Pfenning [Pfe99]) do not hold.

Symbolic states are represented as expressions of type gstate, normally in the
form qmk(cpc, es, €g, €5, €n, €q), where the subexpressions are the usual components
of an extended state tuple. The program counter is ordinarily a constant to ensure
that the current instruction can be identified. Each of the other components of the
state are zero or more “upd” functions applied to a parameter. A rigid, discharged
parameter (e.g., asq) represents the unpredictable/underdetermined value of the
state at the start of executing a procedure or loop body. The series of “upd”
functions reflects modifications made to the machine state by previously interpreted
code. For example, a state might be represented as follows at program counter 12
inside a loop:

qmk(12,q_f(asq), updg(q-g(asq), 88X, 5),q-8(asq), am(asq),9-9(asq))

In this example state, the register eax has been explicitly loaded by a machine-
language instruction inside the loop body with the value 5, but the remainder of
the machine state is undetermined. The undetermined state at the head of the loop
is named by the parameter agq.

By convention, loop invariants and procedure specifications have two free vari-
ables that are instantiated with either a symbolic state representation (e.g., esq) or
the machine-state parameter sq, depending on the context. The variable zsq refers
to the current-time value of the machine state, whereas the variable zsq, refers to
the value of the machine state at the start of the loop or procedure. For example,
the loop invariant

an(22q) = q1(Tq,)
stipulates that the memory does not change inside the body of the loop. Note that
these variables are always bound and/or instantiated when a specification appears
in a judgment. In Figure 6.3, I illustrate how specification variables are instantiated.

6.3. A LOGIC OF PROGRAMS FOR INVARIANCE PROPERTIES

Loop Invariant

Procedure Body

Procedure Call

Sq = €sq
- [esq/wsqo] [esq/xsq] Dinv,, @t
8qQ = Gsq
- [esq/wsqo] [qu/$sq] Dinv,, @ b
5q = €5,
- [eSQ/‘TSqo] [elsq/xSq] Dinv,, @ t'

Sq = Gsq
+ [a'sq/ivsqo] [asq/fﬂsq] DPpre,, ab

.ret(ni)

— ol
8q = €gq

- [asq/-quo] [e’sq/xsq] Ppost,, at!

Sq = esq
- [esq/l‘sqo] [esq/wsq] ppren et

call(n;)(ea_i(n))
5q = Ggq
F [esq/a:S%] [alsq/msq] Ppost,, @ b

Figure 6.3: Instantiating Specification Variables

111

112 CHAPTER 6. PROGRAM LOGIC

A loop invariant (procedure preconditions and postconditions are similar) is
normally in the form

PC = €pc A (pu /\pz)

where ep. is the program counter at which the loop invariant holds. p, is the
“unconstrained” part of the loop invariant—this proposition is a right-associative
conjunction of specification elements: p1 A (... A (px A T)), each of which is a
basic relation on expressions. Typically, the unconstrained part of a loop invariant
is made up of type ascriptions and nonzero assertions. During verification, each
specification element in the unconstrained part will be discharged individually by
a specific fragment of a residual proof. p, is the “automatic” part of the loop
invariant—this proposition is also a right-associative conjunction of specification
elements, but the specification elements are restricted to certain specific relations
that can be established automatically by term rewriting. The automatic part of the
loop invariant is normally made up of preservation elements (see Section 6.5.2) that
assert that some particular aspect of the machine state is unchanged throughout
the loop body.

Each specification is used symmetrically as either a hypothesis (premise) or an
obligation (conclusion) in a proof, depending on the context. A loop invariant is
an obligation when a loop is entered for the first time, and when the loop head is
reached for a second time—a loop invariant is used hypothetically within the body
of the loop. Similarly, a procedure precondition is an obligation when a procedure
is called, but it is used hypothetically within the body of a procedure being verified.
Finally, a procedure postcondition is used hypothetically in a continuation after a
procedure is called, but it is an obligation when it is reached from the body of a
procedure being verified. The following table summarizes how specifications are
used:

‘ Hypothetical Obligation
Loop Invariant | in loop body at loop head
Precondition in procedure body at procedure call

Postcondition | after procedure call at procedure return

Next, I explain each of the program-logic judgments in detail.

. NI
6.3.1 Transitions €sq — €5q

The transition judgment,
€sq —* €oq

asserts that a transition is possible between symbolic state esq and symbolic state

I . .
€sq Over a single time step.

Note that given esq — e'sq,
/
Sq = eSq

is the strongest possible postcondition relative to

$q = €gq

6.3. A LOGIC OF PROGRAMS FOR INVARIANCE PROPERTIES 113

in the sense of Floyd [Flo67]. Thus, the symbolic evaluator preserves maximal
information about the symbolic state until a loop invariant or postcondition is
reached. This is in contrast to type-based systems such as TAL [MWCG98] that
immediately replace a state with its approximation in terms of types—however,
TAL-style systems are potentially more efficient, because less state information
needs to be retained as the program is checked.

The rule — i introduces the transition judgment. The premises require that the
transition be derivable from the formal encoding of the machine semantics.

k- fetch(pm,q pc(esq),€1) @0 F qnext(esq; e1) = ejq @0

Fesq = €5q
6.3.2 Strict Evaluation esqpiif; Tpg
The strict evaluation judgment,
Psafe
€sq > +pgl

asserts that the invariance property psase holds from symbolic state esq until the goal
property pg holds, and that at least one transition is possible before pg holds. This
is a partial correctness judgment, so pg may never hold during an actual program
run, but in such a case pgase Will hold indefinitely.

Strict evaluation is needed for inductive arguments where standard evaluation
does not suffice. Standard evaluation is like strict evaluation, except that empty
steps are allowed (see Section 6.3.3). Strict evaluation ensures that some “progress”
is made during the induction step of an argument.

Strict evaluation is introduced by one of two rules (~>Ti; or ~Tiy), according
to whether or not a branch is possible for the current instruction. Each rule requires
that the invariance property be provable for the current symbolic state, and that
a transition is possible to a new symbolic state. From the new symbolic state, the
invariance property must hold until the goal goal property holds, but this may be an
empty step (see Section 6.3.3). The branch rule ~s Ty additionally performs a case
split on whether some arbitrary expression is nonzero. In practice, the expression
is instantiated to the condition of the branch instruction, and this enables one to
infer the appropriate program counter from the machine semantics.

Psafe

F lesq/Tsq] Psate @0 F €5q — e'sq - e;q A Dl "
psafe+ ~ 11
F €sq ™ ' Dgl
— U — U2
FaR YRR Fh F 2
: Dt Dot

) !) ! ! !
F [esq/Tsq) Psaze @0 F €59 = €aq, | €sq = ely ey ~Pg e Mpg

«»—>+i12‘1’“2
Dsate
= €sq Dgl

where J; dEefen #0a0

and o & e, =040

114 CHAPTER 6. PROGRAM LOGIC

Strict evaluation is eliminated by the rule W""e, which simply converts it to
standard evaluation.

Psafe
= €sq ™7 ' Dgl

Dsafe W_l_e
F €sq ™ Pgl
6.3.3 Evaluation 6qu,f;f; Pl
The standard evaluation judgment,
Psafe
€sq ™ Pgl

asserts that the invariance property psare holds from symbolic state esq until the
goal property pg holds. This judgment is satisfied if pg simply holds for egq. As for
strict evaluation, psaze will hold indefinitely if pg never holds.

Standard evaluation is introduced by ~~iy when the goal property is reached.

F lesq/Ts 0
esa/Tsel Py a0

DPsafe IO
F €sq ™ Dgl

The loop rule ~>loop enables the invariance property to be inferred throughout
a closed loop, at least until the goal property is satisfied. The first premise requires
that the loop invariant eventually hold from the current state, after traveling along
a safe path (unless the goal property is reached first). The second premise requires
that whenever the loop invariant holds for a state, it will eventually hold from that
state, after traveling along a safe path (again, unless the goal property is reached
first). The path inferred for the second premise must be nonempty to rule out the
case where the hypothesis is used to satisfy the premise with ~~ig. Thus, the loop
rule lets one travel from invariant to invariant along any safe path, even an infinite
one, but each interval between invariants must be finite.

F [esq/Tsqq) [@sq/Tsq] Pi @0 "

Dsafe Dsafe _I_ [

b €sq ™ [€sq/Tsqy] Pi V Pg | asq ¥ 7 [€sq/Tsq,] Pi V Dy

PUNY Qsq,U
Dsafe Ioop

F €sq ™ Dgl
6.3.4 Procedures Pp o5 *py
The procedure-call judgment,
Psafe
Pp ™ *pq

asserts that the invariance property psase holds from any symbolic state satisfying
the precondition p, until the postcondition pq is satisfied. The precondition typi-
cally identifies the address at which the code of the procedure is located. Thus, a

6.3. A LOGIC OF PROGRAMS FOR INVARIANCE PROPERTIES 115

precondition typically holds immediately after a call instruction is executed, whereas
a postcondition typically holds immediately after a return instruction is executed.
The procedure-call judgment only ensures partial correctness, so the postcondition
need never hold if the invariance property holds indefinitely.

The procedure-call judgment is introduced by the rule ~>*i, which requires
that from any symbolic state satisfying the precondition, the postcondition must
eventually be satisfied after tracing out a safe path.

U
F [asq/xsqo] [asq/xsq] ppel

Dsafe)
= asq ™ [asq/Tsq,) Pa

s Kjlisq,
psafa*
= Pp ™~ 7 pq

The procedure-call judgment is eliminated by the rule ~»*e, which resembles the
loop rule. The first premise requires that the current state satisfy the precondition of
the procedure. The second premise requires that whenever the postcondition holds
for a state, the goal property will eventually hold from that state, after traveling
along a safe path.

- [esq/wsqo] [asq/afsq] Pqe 0 “

Psafe bsafe
F pp ""')*Pq F [esq/Tsq,] [€sq/Tsq] Pp @0 k= asq ~ pgi

Psafe
F €sq ™~ Dgl

W*e”sq’“

The recursion rule ~>*rec enables a procedure to call itself recursively (recursion
would not be provably safe without this rule). The hypothetical inference rule u in
this rule enables the procedure to use its own specification during its safety proof,
provided that the recursive call is made with a smaller index expression (e.g., the
stack pointer). This latter condition enables an inductive argument that shows the
soundness of this rule. The notation u(¢n) in this rule indicates that el is schematic
(as opposed to parametric) with respect to u. Thus, the inference rule u may be
instantiated at various different values of €], as long as each is smaller than the
parameter a,. Note that this rule supports only simple forms of recursion where a
single procedure calls itself. The rule can be extended to support mutual recursion
by forming the conjunction of all procedures in each connected component of the
call graph, but I will not formalize such a rule here in order to keep the presentation
simple.

F 1tuw(el,an) a0

/
ulen)
psafe*

= [en/@n] pp~> "pq

Psafe
t [an /@] Pp W*pq

KpaOn U
v rec™™
psafe*

= [en/Zn] Pp ~> *pq

116 CHAPTER 6. PROGRAM LOGIC

6.3.5 Demonstration

At this point, I will demonstrate how a safety property of the factorial program
from Section 4.1 is derived using the program-logic. I will also build on this example
in subsequent chapters to illustrate the techniques for proof generation and proof
engineering. In the interest of brevity, I will restrict my attention to the body of
the factorial loop:

16 op2(3)(op2-imul)(ea_r(ebx))(ea r(eax))

19 op1(l){opl_inc)(ea r(ebx))

20 cmp(4)(ea_s(ma r(esp)(l)(ma_d(4))))(ea_r(ebx))
24 j(2)(copng)(2*? — 10)

26 ret(l)

and I will only show that the memory is valid throughout the loop, and that the
type environment is unchanged. Let @1 be the above program.
The specification elements p,,, for the loop invariant are thus

def |
Puis = Js—mem(q—ts(xsq)a q—m(xsq)) AT

and the preservation elements p,,, are

def
Pz1e = Q-t8(Tsq) = Q t8(Tsq,) A T

and the complete loop invariant is

def
Piyg = q—PC('TSq) =16 A (pUua /\pZm)

which is associated with program address 16.
The invariance property will be based on the standard instruction-level memory-
safety property safe from Section 5.6:

def
Deate = J7y:fl. fetch(pm,q-pc(zsq), z1) A safe_inst(zsq, 71)

The safety property will hold for an arbitrary initial state, so let asq, be a
parameter that stands for this state. I intend to show that the memory remains
valid and that the type environment is unchanged when program address 26 is
reached, so the goal property Dglys 18

def
Pgl,s = q—PC(xsq) =26 A [asqo/xsqo] (Puss A Pzss)

I presume that the memory is valid before entering the loop. The ultimate ob-
jective is to apply the loop rule at address 16, so the safety derivation proceeds as
follows:

5If ever—the program logic only ensures partial correctness.

6.3. A LOGIC OF PROGRAMS FOR INVARIANCE PROPERTIES 117

Psafe

Proposition 6.3.1 (Safety of Factorial Loop) F asq, ~ py,,
if = js mem(q ts(asq,),qm(asq,)) @0 and J(pm) = P16

PRrOOF:
F js mem(q ts(asq,),qm(asq,)) @0 Prem.
F [asqo/zsq] ([asqo /-'If'sqo] Dise \ pglzﬁ) el App Vll, /\I, etc.
psafa .
- Qsq, ~ [quo/ﬂisqo]p.lﬁ V Dglyg App. ~ig
for all asq
= [a’s% /xs%] [asq/wsq] Dig @0 Hyp.
let esq,, = q-mk(16,q-f(asq), 9-8(asq); 4-5(asq), 3-m(asq), 3-a(asq))
[€sq,s = Usq @0 Def. qmk, etc.
F [esq16 /xsq] Psate @0 App. safe_inst_op2, etc.

let €eax;, = se1g(q-g(asq), €ax)

let eebx,o = se1g(q-g(asq), €bx)

let e,y = updf2(op2_imul, q_f(asq), Ceaxig: Cobxig)

let eg,q = updg(q_g(asq),m, mulw(Ceaxyg) Cebxig))

let es‘hg = q-mk(lga €f19, 68197 q_s(asq), q—m(asq)7 q—q(asq))

F €sq,s 7 €sq;q App. — i, etc.
F [esqlg /xsq] Psate @0 App. safe_inst_opl, etc.
let ef,, = updfi(opi_inc,es,,, Cebx;o)

let eg,, = updg(eg,,, ebx, addw(€eepx;q; 1))

let esq,, = qmk(20, es,,, €gy, d-5(asq), qM(Asq),q-q(asq))

F €sq,9 7 €sqy App — i, etc.
F [esqyy/Tsq] Psate @0 App. safe_inst_op2n, etc.
let eg,, = updf2(op2_sub, es,,, addw(€epxo, 1), €a-sel(left(esq,),---))

let €sqy, — Q—mk(24aef24aegQOaQ—s(asq)aQ—m(asq)aQ—Q(asq))

F €sqyy = €sqyy App. — i, etc.
F [6sq24 /.’Esq] Dsage @0 App. safe_inst_j, etc.
F gequ(ea_sel(left(esq,,),- - -), addw(€ebx g, 1)) @0 Hyp.
let el - q—mk(16’ €f245 €gaos q—s(asq)a q—m(asq)’ q—q(asq))
= 65‘124 _> esql App. — 1, etc.
[sqlﬁ/xs] ([asqo/xsqo]plls vpgl26) 0 App. Vil, Ai, etc.
psafe .
- es [asqo/wsqo]l’ue V Dglyg App. ~ig
F1tw(ea_sel(left(esq,y);---), 2ddw(€ebxsq; 1)) @0 Hyp.
let eSqQG = q—mk(26’ ef24) eg20 ’ q—s(asq)a q—m(asq)’ q—q(asq))
F €sqy, 7 €sqy App. — i, etc.
F [€sqyq/Tsql ([@sqy/Tsqqe] Pire V Pglyg) @0 App. Vir, Aj,etc.
psafe .
F €sqy; [asq0/$sq0]p|16 V Pglye App. ~ip
psafe .
- €sqy, ™7 [asqo/msqo]plw Vpgl% App. 'V‘->+|2
psafe
F €sqyy ™7 [as%/xs%]p'w V Pglae App. ~~te

psafe

I_ esqzo [asqo/xsqo]pue \ pgl% APP W+i17 W+e

118 CHAPTER 6. PROGRAM LOGIC

Psafe .
F esqye ~ [Gsqy/Tsqy] Diss V Pglyg App. ~>Tip, ~Te
Psafe .
Fasq ~> +[asqo/37sqo]17i16 V Dglyg App. ~ti;
Psafe
F asqy ™ Dglys App. ~~loop
Od

Because the purpose of this demonstration is to show how the program-logic infer-
ence rules are applied, I omit the derivations of residual proofs in the interest of
brevity.

6.4 Deriving the Logic of Programs

As T argue in the introduction to this chapter, the enforcement mechanism is more
trustworthy if the program logic is derived by the code producer, as opposed to
being trusted by the code consumer. In this section, I show how the program logic
of Section 6.3 can be reconstructed in terms of derived temporal-logic constructs.

For each judgment I introduce in Section 6.3, I specify a proposition in temporal
logic that expresses the content of that judgment. Similarly, for each inference rule
I introduce in Section 6.3, I derive an inference rule that mimics the action of the
original rule.

There is a natural correspondence between temporal reasoning and program
logics. Essentially, any rule that involves reasoning at more than one instant prop-
erly belongs to the domain of the program logic. Similarly, any rule that involves
reasoning within a single time step can be assigned to a residual proof. This is the
discipline I follow in this chapter: temporal operators appear only where program-
logic rules are involved. This is also the rationale for segregating the “support”
rules into their own section (see Section 6.5), even though these rules are critical to
the foundation of the logic program for proof reconstruction.

Because the semantics of the abstract machine is presented in terms of state
changes over time, explicit times will also appear in the formal derivation of the
program logic. Essentially, whenever a single instruction is executed, the current
time step ¢ will be incremented by one (¢ + 1) in the conclusion of the rule. Ad-
ditionally, an abstract time parameter b is introduced whenever a property must
hold for all possible future times. For example, a loop invariant must hold for any
time at which the particular program counter is encountered, so a time parameter
is introduced when verifying the body of a loop.

6.4.1 Semantic Rigidity ri(e)

The premises of derived program-logic rules may be assigned different time instants.
In order to know that the component expressions of these premises denote the same
value at different times, one must know that the expressions are rigid. However,
because the usual rigidity judgment of Chapter 3 is a purely syntactic condition
that does not admit a substitution principle, I derive an equivalent conception of
rigidity that is encoded as an ordinary proposition. This latter encoding allows the
standard equality-based substitutions to be carried out on rigidity judgments.

6.4. DERIVING THE LOGIC OF PROGRAMS 119

ri(e) holds when e denotes a rigid value, and is defined as follows:

def .
ri(e) S Va:ri. O(e = 2) O Ofe =)
It asserts that whenever e is equal to a rigid variable z, it is always equal to z.
ri(e) is introduced by the derived rule rii:
lFe:ri rii
Fkri(e)eat
The premise requires that e is rigid in the standard, syntactic rigidity system.
ri(e) is eliminated by the derived rule rie:
Fkri(e)ety T'Fe'iri The=¢€ot THt <t Tkt <t
TFe=¢at

rie

Given a syntactically rigid expression €, it allows one to conclude that e is equal to
e’ at an arbitrary future time if e is equal to €' at some time.

Later in this section, I will use a semantic rigidity premise in a derived inference
rule whenever an expression is referred to at more than one time instant.

6.4.2 Transitions Pl.next(esq, €5q)

The transition judgment egq — e'sq is encoded by the proposition pl_next(esq, e'sq)
as follows:

def .
plnext(esq,e5q) = Iz;:ri. fetch(pm, g pc(esq), 71) A gnext(esq, T1) = €5q

It asserts that the instruction in the program memory at the program counter of
esq takes esq to e, according to the machine semantics.

plmext is introduced by the derived rule pl_nexti, which corresponds directly
to —i:

'+ fetch(pm, g.pc(esq),e1) ot T’ g next(esq, 1) = eqat

1 nexti
['F pl next(esq, €5q) o P

6.4.3 Strict Evaluation pl_eval+(psase, €sq, Pgl)

The proposition pl_eval+4(psate,€sq;Pgl) €ncodes the strict evaluation judgment

esqp:;? +pg| as follows:

def
pl—eval+(psafea esq,pgl) = 8Q = €5q) [Sq/.’l}sq] (psafe A O(psafe ngl))

It asserts that whenever esq is the current machine state, the invariance property
Psate Will hold for the machine state until the goal property pg holds for the machine
state. Evaluation is “strict” because this proposition is not implied immediately
by the goal proposition—at least one step must be taken before it is sufficient to
establish strict evaluation.

pl_eval+ can be introduced by the derived rule pl_eval+i;, which corresponds

to ’V">+I12

120 CHAPTER 6. PROGRAM LOGIC

I'Flesq/Tsq] Psate @t T [asq/Tsq] Psate 110 (asq)
I' - pl_next(esq, e’sq) et TF ri(elsq) a0
I+ pl_eval(psate, e;q,pg|) et+1

'+ pl_eval+(psate,; €sq, Pgl) @

pl_evalif™

pl_eval+i; has additional premises which ensure that psase is an invariance property
(i.e., it has no temporal operators), and that eg, is rigid. The rigidity of ey, ensures
that it has the same value at time ¢ and time ¢ + 1.

pl_eval+ can also be introduced by the derived rule pl_eval-+is, which corre-
sponds to ~s g

I'F [esq/Tsq| Psate @t ' [asq/Tsq| Psate :10 (asq)
T, en # 0at - plnext(esq,€yq,) ot
I, en = 0at - plnext(esq, €yq,) ot
. / . ! .
T+ri(e,)a0 TFri(e)a0 Tkri(e)al
I,en#0at+1F pl_eval(psafe,e'sql,pgﬂ et+1
I'yen=0et+1F pl_eval(psafe,e’sqz,ng et+1
' pl_eval+(psate; €sq, Pgl) @t

pl_eval-l—ig"q

pl_eval+is has additional premises, as for pl_eval+i;.
pl_eval+ is eliminated by the derived rule pl_eval+e, which corresponds di-
rectly to ~s e

'+ pl_eval-l-(psafe, esqapgl) at
'k pl_eval(psafea esqapgl) at

pl_eval+te

6.4.4 Evaluation pl-eval(psate, €sq; Pgl)

The proposition pl_eval(psate,€sq,Pgl) encodes the standard evaluation judgment

psafe
€sq ~ gl as follows:

def
Pl—eval(psafea esqapgl) = s8q = €gq D [Sq/wsq] (psafe ngl)

This encoding resembles pl_eval, except that it can be satisfied when the goal
proposition holds immediately.

pl-eval can be introduced by the derived rule pl_evalip, which corresponds to
~3 gt

I'F lesq/Tsqlpgi@t Tt [asq/Tsq] Paitlo (asq)
I' - pl_eval(psate, €sq: Pgl) @t

pl_evaligsq

The additional premise ensures that pg is an invariance property.
The loop rule pl_evalloop corresponds to the program-logic rule ~~loop:

6.4. DERIVING THE LOGIC OF PROGRAMS 121

I' b [asq/Tsq) Pi:l0 (asq) T F pl-eval(psate,€sq, P}V Pgi) @t

T, [asq/Zsq] Pl @b, asq:ri F pl_eval+(psate, @sq, P} V Pgi) @V '
pl_evalloop®®

T+ pl_eval(psafea esqapg|) at
def
where p! = [esq/xsqo]pi

The additional premise ensures that the loop invariant is an invariance property.
The body of the loop is evaluated for a time parameter b’ because the head of the
loop may be encountered at an arbitrary future time.

6.4.5 Procedures pl_proc(psate; Pp; Pq)

The proposition pl_proc(psate, Pp, Pq) encodes the procedure judgment ppp:f; *pq as
follows:

def .
pl_proc(pPsate; Pp, Pq) = D(Viﬂsqo r.8q = Tgq, O [8Q/%sq) (Pp D Psaze U pg))

It asserts that whenever the precondition p, holds, the invariance property psase will
hold for the machine state until the postcondition pq holds for the machine state.
The rigid variable zsq, can be used in the postcondition to refer to the machine
state at the time that the precondition held. For example, the postcondition can
specify that the program counter after a procedure call is the value that was on the
top of the stack when the procedure was called.

pl_proc is introduced by the derived rule pl_proci, which corresponds directly
to ~=Xi:

' [asq/®sq] pp:lo (agq)

T, [asq/Tsq] p;) abl, asq:ri F pl_eval(psase, asq,pa) ol ,

“sq,ahg b’
'k Pl—PIOC(Psafe,ppapq) a0 P1—Pr00| v

def
where p; = [asq/wsqo] Dp

ef
and pj =[asq/Tsq,] Pq

pl_proc is eliminated by the derived rule pl_proce, which corresponds to ~>*e:

I' - pl_proc(psate; Pp,Pq) @0 T'F [esq/Zsq] p; at

It [asq/Tsq] Pp:lo (asq) T'F [asq/@sq] Pg:lo (asq)

I'Fri(esq) «0

[, [asq/Tsq] Py @b'; asq:ri - pl eval(psate, dsq, Pgl) @b’
I' - pl_eval(psate; €sq, Pgl) @

bl

pl_proces

def
where p:) = [esq/zsqo] Dp

def
and pa = [esq/wsqo] Dq

122 CHAPTER 6. PROGRAM LOGIC

The additional premises ensure that the precondition and postcondition are invari-
ance properties, and that the value of the machine-state representation at the time
of the procedure call is consistent with its value at the time of the procedure return.

The recursion rule pl_procrec corresponds directly to the program-logic rule
~~»*rec:

', pproc @0, an:ri F pl_proc(psase, [@n/Zn] Pp, Pq) ¢ 0
'k pl_pIOC(Psafea [eﬂ/w"]pp’pq) o0

pl_procrec

def
where pproc = V& :fl. 1tuw(zn, an) D pl-proc(psase, Pp; Pq)

6.4.6 Derivability

Each of the inference rules in this section is derivable.
Let
reJ7Jg

assert that J is derivable from I' using only inference rules from Chapter 3, Chap-
ter 4, and Chapter 5. Let
N

assert that J is derivable from I' using only inference rules from Chapter 3, Chap-
ter 4, Chapter 5, and Section 6.4.

Proposition 6.4.1 (Derivability) T kg, J if T =7 J

PROOF: refer to the LF implementation O

6.5 Supporting the Logic of Programs

In this section, I introduce derived “support” rules for the program logic that involve
only local, nontemporal reasoning. These rules are not part of the program logic
per se, because, traditionally, such inferences are lumped together under the rubric
of “mathematical reasoning.” The derived rules shown here correspond to elements
of the high-level structure of a residual proof—other, purely internal, support rules
are not shown in the interest of brevity.

I classify the rules into three subsections. “Specification elements” are the basis
for verifying that a given procedure or loop invariant specification holds. “Preser-
vation elements” are the basis for verifying that a given machine register, memory
location, or group of memory locations is preserved unchanged through a given pro-
cedure or loop body. Finally, “residual proofs” are tailored to constructing residual
proofs of Java type-safety properties.

6.5.1 Specification Elements

These rules essentially walk down a list of specification elements and attach a resid-
ual proof to each one. The list is represented as a right-associative conjunction of

6.5. SUPPORTING THE LOGIC OF PROGRAMS 123

specification elements p1,...,pr. The specification elements are normally typing
assertions and nonzero assertions.
The rules in this section prove propositions in the following form:

PLA(APk AT))

It asserts that one can infer a given composite specification that is instantiated
with a rigid representation of the current machine state. See Section 5.6 for sample
specifications.

checku_z is the base case:

TFTet checku_z
The remaining rule in this section is an iteration step.

checku_u is the iteration step that takes a residual proof as its first premise and
conjoins it with a proof of the rest of the specifications (this is where the residual
proof is “attached”):

T'Fpyet THplet
C'FpuAp, et

checku_u

The second premise is the “recursive call” that establishes the conjunction for the
remaining specification elements.

6.5.2 Preservation Elements

These rules essentially walk down a list of preservation elements and prove each one
via a proof of equality. The equalities are normally established by rewriting before
the preservation elements are checked, so the logic program that is derived from
these rules is fully automatic (i.e., no residual proof is needed). Again, the list is
represented as a right-associative conjunction of specification elements p1, ..., pg.
The specification elements are normally equalities.

The rules in this section prove propositions in the following form:

PIA(-- AP AT))

It asserts that one can infer a given preservation element instantiated with a rigid
representation of the current state.
checkz_none is the base case:

TF Tet checkz_none

The remaining two rules in this section are iteration steps.

checkz_eq ensures that a given pair of values are equal:
Tkpl et

FTFe=eAp,at

checkz_eq

124 CHAPTER 6. PROGRAM LOGIC

e is normally the saved value of the register at the head of a loop or the beginning
of a procedure. The premise is the “recursive call” that establishes the specification
for the remaining specification elements.

checkz_leq_ts ensures that a given type environment is subsumed by the current
type environment:

T+ js_leq(ejis,,ejes,) ot [k plot

checkz_leq_ts
' jsleq(ejts,, €jts,) Apiat)

The first premise is established by a logic program for transitive closure. The second
premise is the “recursive call” that establishes the specification for the remaining
specification elements.

6.5.3 Residual Proofs

The derived rules in this section are “utility” rules for inferences that arise frequently
in residual proofs. Many of these rules are based on equivalent trusted rules in the
signature used by the SpecialJ compiler [CLN100].

arrElem is a slight generalization of ja_ptrieem (see Section 5.8):

I'+ js_of(ejts, €na, fiarray(€jty)) @t I'F jsmem(ejis,en) @t
['Fena#0at Tk jsize(ejry) =enseb T jlen(ens) =ep,ab
['F selw(en, €,,) = enab T'F ltuw(en,ep) et

I' - js_ptr(ejis, addw(ena, addw(mulw(eni, €ns),20)), €jey, TW) a t arrElem”
The additional premises enable the bounds check to be put into normal form
1tuw(en;, €)) by rewriting. This proposition matches the conclusion of the incoming
residual proof.
The rules in Figure 6.4 are used in SpecialJ safety proofs to extract properties
of numbers from the condition code register, based on standard TA32 idioms. For
example, in nullcandne, the state of the condition codes becomes

updf2(op2_and, es, €, €)

after executing the “test” instruction. If the zero flag is cleared in this state, then
one can infer that the tested value is nonzero. Similarly, executing the “compare”
instruction yields state

updf2(op2_sub, ez, €1, €3)

where e; and e are the values being compared.
Finally, ptrCong substitutes one pointer for another based on a proof of equality:
I' - js_ptr(ejts, €np, €jty, Cacc) @t I'Fenp =€) ot

P ptrCong

I' - js_ptr(ejts, e;p, €jty, €acc) @l

Perhaps surprisingly, this is the only rule needed by the Speciall] compiler for
equality-based substitutions.

6.5. SUPPORTING THE LOGIC OF PROGRAMS 125

I' - self(copmz,updf2(op2_and, es, e,e)) # 0at
TFeZOat nullcandne

I' - self(copnz,updf2(op2_sub,es,e,0)) #0at
TFeZ0al nullcsubne

I' - self(copmz,updf2(op2_and,es,0,0)) # 0ot
TF Lot candneqz

I+ self(cop_c,updf2(op2_sub,es,e1,e2)) #Oat
ultcsubb
'k ltuw(el, 62) at

I' I self(cop_a,updf2(op2_sub,es, ez,6e1)) # 0at
ultcsubnbe
'k ltuw(el, 62) et

I' - self(cop_a,updf2(op2_and, es,e,e)) # Oat |
'k 1tuw(0,e)at uitzero

['+ self(copnl,updf2(op2_and,es,e,e)) £ Oat
gecandnlt
I'+ gequ(e,0) ot

I' + self(copnl,updf2(op2_sub,es,e,0)) # Oat
gecsubnlt
I'F gequ(e,0) ot

Figure 6.4: Condition-Code Rules

126 CHAPTER 6. PROGRAM LOGIC

6.5.4 Derivability

Each of the inference rules in this section is derivable.
Let
J
kg J

assert that J is derivable from I' using only inference rules from Chapter 3, Chap-
ter 4, Chapter 5, and Section 6.5.

Proposition 6.5.1 (Derivability) '+ J if T -5 J

PROOF: refer to the LF implementation O

6.6 Proof Outlines for the Logic of Programs

In this section, I specify a proof outline representation for the logic of programs. A
proof outline is a data structure that contains just enough information to efficiently
construct a proof of safety in the logic of programs. Essentially, a proof outline shows
one how to put together derived rules to produce a proof of safety. Instantiations
of meta-variables are only included if they are not determined by other rules, or
by the conclusion of the inference tree—I assume that the target safety property is
known in advance.

The proof outline representation enables a reasonably compact proof representa-
tion, as I will demonstrate in Chapter 9. Note that based on my experience [BL02a),
most explicit proof representations (including binary LF and LFi [NL98b]) are not
dense enough to yield competitive results when the proof obligation is a formal
safety property and not an intermediate result like a VC. Rather, some form of
implicit proof representation is needed such as in Necula and Rahul [NRO1]. Keep
in mind that there are only a few bits available for each instruction if the proof
representation is to be smaller than the code itself. The IA32 architecture is partic-
ularly challenging in this respect, because some common instructions are only one
byte long.

Proof outlines play a key role in proof representation and proof reconstruction,
which is the subject of Chapter 8. Essentially, the proof outline becomes a search
constraint for a deterministic logic program. In Chapter 7, I show how a proof out-
line is automatically constructed from a VC proof emitted by the SpecialJ compiler.
However, I present the proof outline specification here because there is a structural
correspondence with the derived program logic that I have presented in this chapter,
and because I want it to serve as a common point of departure for the remainder of
the dissertation.

Note that in this chapter, I have generally only presented derived rules that
have corresponding proof outlines. There are many other derived rules, but they
are only used internally by the proof reconstruction logic program that is the subject
of Chapter 8.

6.6. PROOF OUTLINES FOR THE LOGIC OF PROGRAMS 127

Callee Outl.
Eval. Outl.

Checking Outl.
VC Outlines

oc := callee(oe)

oe = eval head(ej?)(piuz)(ehp)(0e1)(0e2) | eval tail(ock)
| eval_step(oeq)
| eval_unsafe(ovc)(oe1)
| eval unsafe mem({ovc)(es)(oe1)
| eval_split(oe;)(oea)
| eval_call and(efs)(ock)(oe) | eval_call false(ock)

ock = ck_z | ck_u{ovc)(ock)

ove ::= vc_hyp_cont(e?) | vc_hyp mem(e¥3)

| ve_hyp_pre | vc_hyp_cop | vc_hyp_1t_ts

| ve_and el(owvcy) | ve_and er(ove;) | ve_normE e
| ve_autoO | vc_autol(ovey)

| ve_auto2(ovey)(oves) | ve_auto3(over)(oves)(oves)
| ve_arrLen(ovcy){ovca)

| ve_arrElem(ovcy) (ovce)(oves)(ovea)(oves)

| ve_instF1d(ovcy) (oves){oves)

| venullcandne(ovcy) | ve nullcsubne(ovey)

| ve_candneqz(owvey)

| ve_ultcsubb(ove;) | ve_ultcsubnbe(over)

| ve_ultzero(ovey)

| ve_gecandnlt(ovc;) | ve_gecsubnlt(over)

| ve_ptrCong(ovcy)(ovea)

Figure 6.5: Abstract Syntax for Proof Outlines

128 CHAPTER 6. PROGRAM LOGIC

6.6.1 Syntax

The syntax of a proof outline is defined in Figure 6.5. Essentially, each proof-outline
constructor specifies that some mixture of program-logic rules from Section 6.3,
derived rules from Section 6.5, and standard inference rules should be applied.

A “callee” outline identifies a proof reconstruction strategy for a procedure based
on the point-of-view of the callee. Currently, there is only one strategy (symbolic
evaluation), based on an “evaluation” outline. Thus, the callee case specifies that
the program-logic procedure rules ~~>*i and ~>*rec should be applied (it is assumed
that all procedures are recursive).

An “evaluation” outline specifies a sequence of (possibly strict) evaluation rules
(from Section 6.3) that verify the safety of a procedure body. The eval head case
specifies that the loop rule ~~>loop should be applied. ep. is the address of the head
of the loop, pjyz is the loop invariant, and ey, is an index that precisely identifies the
(hypothetical) loop invariant when it is used in a VC proof.% oe; is an evaluation
outline that brings the current state to the head of the loop and establishes the
initial loop invariant, whereas oeq is an evaluation outline for the body of the loop.
Note that a loop “head” here need not be the first instruction in the loop—in practice,
a loop invariant can be assigned to any address in the loop body.

The eval_tail case specifies that the ~~ig rule should be applied—the goal
property (a loop invariant or postcondition) has been reached. ock is a “checking”
outline that can establish the goal property.

The eval _step, eval unsafe, and eval_unsafe mem cases each simulate a single
instruction by applying ~~»Ti in conjunction with — i. ~~Te is also applied if non-
strict evaluation is needed. The cases discriminate based on whether the safety of
the current instruction is evident (eval_step), and thus provable by rewriting, or
whether it requires an explicit proof of safety (eval unsafe and eval unsafe mem).
ovc is an outline of the explicit safety proof. eval unsafe mem is needed when the
memory is changed by the instruction—it provides an index that precisely identifies
the new memory state.”

The eval split case simulates a branch instruction by applying ~~TFiy in con-
junction with — i. ~~Te is also applied if non-strict evaluation is needed. Safety
is always evident for branch instructions on the TA32—another architecture might
also need an unsafe version of eval_split.

eval call_and and eval call false simulate procedure calls by applying the
program-logic rule ~>*e. eval_call_false is used only for procedures such as
exception generators that never return, and thus have a postcondition of “false.”
enh is an index that precisely identifies the (hypothetical) postcondition when it is
used in a VC proof. ock is a checking outline that can establish the precondition
for the current state, whereas oe is the evaluation outline for the code left to be
executed after the call (i.e., the “continuation”). Note that I assume that procedure

®Each active hypothesis is assigned a unique index during proof generation (see Section 7.2.1).
"This is an optimization provided by SpecialJ [CLNT00]: when the memory is changed, validity
(see Section 5) for the new memory value is proven immediately and this fact is noted under the
given index. Later, a proof can simply refer to the validity index to justify that the specific memory
state is valid. The logic program for proof reconstruction (see Chapter 8) simulates this mechanism.

6.6. PROOF OUTLINES FOR THE LOGIC OF PROGRAMS 129

specifications are stored separately and that the precondition and postcondition can
be recovered by indexing on the current program counter (see Chapter 8 for the
mechanism used during proof reconstruction).

A “checking” outline applies one of two supporting derived rules from Sec-
tion 6.5.1. The ck =z case applies check_z, then applies preservation rules from
Section 6.5.2 according to the current goal. Because the subgoals can be satisfied
by rewriting, ck_z requires no internal information. The ck_u case applies check_u.
ovc is an outline of a VC proof that can establish the third premise of this rule.
ocky is an outline of a proof that can establish the remaining components of the
current specification.

Note that there are no “preservation” outlines for the rules in Section 6.5.2,
because the premises of these rules can be established by rewriting, and thus do not
need outlines: the goal contains sufficient information to reconstruct a proof.

A “VC” outline specifies a tree of inference rules (any of hypothetical, derived,
and built-in) that establish the truth of some residual proof. The hypothetical
outlines vc_hyp_cont, vc_hyp.mem, vc_hyp_pre, and vc_hyp_cop identify judgments
in the current context that are sufficient to establish a given VC. Judgments are
inserted into the context by the hypothetical premises of the derived rules in Sec-
tion 6.4. For example, the procedure call rule inserts the postcondition of the
procedure into the context when verifying the “continuation” of the call.

vc_hyp_cont identifies a continuation hypothesis that is either the postcondi-
tion of a procedure (after it is called) or a loop invariant (within the body of the
loop). enn is the index assigned to the hypothesis during proof construction (see
Chapter 7). vc_hyp_mem identifies a memory-validity hypothesis that is established
whenever memory is changed. e,m is an index assigned by the SpecialJ compiler.
vc_hyp pre identifies a precondition hypothesis. This hypothesis is the precondition
of the procedure whose body is currently being certified. vc_hyp_cop identifies a
conditional hypothesis that is established after a branch is taken. It asserts that the
condition corresponding to the current arm of the branch is true. Note that the rest
of the proof contains sufficient contextual information to identify which hypothesis
is needed.

vc_and_el and vc_and_er apply the left and right elimination rules for the A
connective, respectively. vc_normE_e applies the elimination rule for expression
rewriting (4.e., an expression is rewritten to establish equality with its normal form).

vc_autoO, vc_autol, vc_auto2, vc_auto3 are place holders for cases where only
one derived rule is applicable (i.e., the current open premise directly determines
which rule should be applied). In each of these cases, the arity of the proof-outline
constructor corresponds to the number of premises in the derived rule.

vc_arrLen and vc_instF1ld apply Java typing rules from Section 5.8, whereas
vc_arrElem applies the array element rule arrElem from Section 6.5.3. Likewise,
vc_ptrCong applies the pointer congruence rule ptrCong from Section 6.5.3. Finally,
the remaining cases apply the various condition-code rules from Section 6.5.3. Note
that proof outlines are needed for Java typing derivations, because the machine-
level type system is not naturally syntax-directed. This is unlike other approaches
to machine-code certification such as TAL [MWCGY8] that rely on decidable type

130 CHAPTER 6. PROGRAM LOGIC

systems.

6.6.2 Demonstration

The proof outline for the demonstration derivation of Section 6.3.5 can be con-
structed as follows:

eval_head(16)(pu¢ A pzye)(1)(eval_tail({ck u(...)(ck_z))){oe1s)

where oeig def eval step(oeig)
oe1g def eval_step(oey)
oeag def eval_step(oeaq)
oeas & eval_split(oe)s)(oesq)
oe' s & eval tail(ck.u(...)(ck z))
oess & eval tail(cku(...)(ck z))

I elide the proof outlines for residual proofs. I also assume that there is a hypothesis
from an enclosing derivation that provides validity for the initial memory.

Chapter 7

Proof Construction

In this chapter, I present an algorithm for constructing a proof outline (see Sec-
tion 6.6) for a program that has been compiled by the SpecialJ compiler [CLN*00].
The proof outline representation enables a reasonably compact proof representa-
tion, which is difficult to obtain for formal safety properties using a explicit proof
representation such as LFi [NL98b].

SpecialJ is a PCC compiler for the Java programming language [GJS96] that
produces certified Intel [A-32 object code. A SpecialJ certificate is a first-order proof
of a verification condition (VC) that implies that the compiled program respects a
low-level encoding of the Java type system. The proofs of Java type safety are not
“discovered” by the compiler. In principle, all the information needed to construct
a type safety proof is already present is the Java source code. Thus, the compiler
need only translate typing derivations from the source code to the corresponding
object code. However, in practice, it is more expedient to only translate loop
invariants and procedure specifications in the compiler itself—the safety proofs are
then reconstructed from the typing specifications by a first-order theorem prover.

Note that typing information for Java type safety is inserted into the code by the
programmer, and is thus already present in the source code when compilation starts.
It is thus incorrect to view Special] as a verification tool in the usual sense, because
no new properties of the code are being synthesized. The use of a first-order theorem
prover to generate type safety proofs is an essentially an engineering detail—the
output of SpecialJ would be indistinguishable from its current incarnation if safety
proofs were instead propagated through each stage of the compiler.

I choose to use the SpecialJ compiler because it is a relatively mature compiler
that already produces certified code. Although it is possible to construct safety
proofs for machine-language programs “by hand” in my framework, this approach
is feasible only for small programs and/or simple safety properties. Thus, SpecialJ
provides me with a basis for experimentation with larger programs that would be
impractical to certify manually.

Unfortunately, the certificates produced by SpecialJ are incompatible with my
logical formal system because the certificates are first-order proofs of VCs rather
than being proofs of temporal-logic safety properties. Thus, I need to translate the
output of SpecialJ to use these certificates with my PCC infrastructure.

131

132 CHAPTER 7. PROOF CONSTRUCTION

7.1 Overview

Although it is probably feasible to construct a fully-explicit proof (e.g., as in Bernard
and Lee [BL02a]) and then extract a proof outline from the explicit proof, this
approach introduces an extra level of inefficiency that I wish to avoid. Instead,
the approach that I present in this chapter bypasses explicit proofs entirely and
generates a proof outline directly from the SpecialJ certificate. Note that although
this chapter is aimed at constructing a proof outline that demonstrates Java type
safety, I expect that the approach will generalize to any invariance property that
has suitable loop invariants and a valid residual proof, such as those produced by a
certifying compiler.

In order to construct a complete proof outline, a tree of program-logic inference
rules is constructed in which the VC proof provided by Special] is used to satisfy
premises that correspond to residual proofs (i.e., these premises cannot be satisfied
by other program-logic rules—see Figure 6.2). The VC proof is actually decon-
structed by my implementation as the tree of program-logic rules is simultaneously
constructed by a deterministic algorithm. Thus, the program-logic rules comprise
a “proof skeleton” to which the residual VC proofs are attached. Constructing
the “algorithmic” part of the proof relies on a simulation of the SpecialJ VC gen-
erator/symbolic evaluator (see Section 6.2). While it is relatively straightforward
to implement the proof construction algorithm as a logic program, an implemen-
tation of the symbolic evaluator frequently executes arithmetic and array-lookup
operations that are not well-suited to a logic interpreter.

To address this problem, I split the proof generation task into two phases: first, a
trace of the symbolic evaluator is generated using a functional program that embeds
the result of each arithmetic and array operation into an inductive data structure
that can be easily interpreted by a logic program. In the second phase, the trace
and VC proof is interpreted by a logic program that synthesizes a complete proof
outline. Thus, the program-logic proof is instantiated with the VC proof, as in
Figure 6.2. This two-phase approach also simplifies the presentation. The symbolic
evaluator is most naturally presented in an algorithmic style, whereas the proof-
outline constructor is most naturally presented as a deductive system. The choice
of implementation language (functional program or logic program) is essentially a
detail.

Note that this multi-phase strategy for proof-outline construction is not simply
an artifact of my decision to adapt the Speciall compiler. It is useful for any
proof-construction strategy to be able to systematically disentangle proofs that
can be constructed algorithmically (i.e., the skeleton of program-logic rules) from
proofs that are discovered by search (i.e., the VC proof), derived from source-
language properties, or even constructed by hand. Note also that this strategy is
also applicable even when no complete VC proof is “in hand” initially. A search
for each particular fragment of the VC proof could be initiated incrementally as the
proof skeleton is constructed.

Only a high-level approximation of the symbolic evaluator is needed to construct
a valid proof outline. Many details that are essential to constructing a fully-explicit

7.2. TRACING THE SYMBOLIC EVALUATOR 133

proof (e.g., instantiations of existential variables) are unimportant when the proof
is reduced to an outline, at least when the goal is Java type safety.! Thus, in
the interest of brevity, I do not give a detailed account of the SpecialJ symbolic
evaluator. Instead, I present a high-level simulation that only executes operations
that are relevant to a proof-outline.

In a previous work [BL02a], we were able to demonstrate relative completeness,
in the sense that any VC proof necessarily has a corresponding fully-explicit proof.
Unfortunately, the high-level treatment of the symbolic evaluator and the proof-
outline data structure given in this chapter makes it impossible to prove a similar
result for this system. However, I conjecture that it would be possible to prove such
a result given a complete formalization of the symbolic evaluator and fully-explicit
proof construction algorithm.

The purpose of this chapter is to provide a detailed account of my proof-
generation strategy for invariance properties. Because I have dramatically increased
the number of security policies that the code consumer can enforce, it is natural to
question whether anything has been lost in terms of which security policies the code
producer can automatically certify in the more expressive framework. This chapter,
along with the experimental results of Chapter 7, provide evidence that it is possi-
ble to adapt a current certifying compiler to the more general infrastructure, and
thus that nothing is lost in terms of which safety properties can be automatically
certified.

This chapter is organized as follows: in Section 7.2, I show how the SpecialJ sym-
bolic evaluator is simulated in order to provide a “blueprint” for the tree of program-
logic rules that comprise the algorithmic part of the safety proof. In Section 7.3, I
show how the blueprint is combined with a SpecialJ VC proof and translated into
a deductive system that corresponds to the target proof-outline representation. Fi-
nally, in Section 7.4, I show how proof outlines are extracted from the derivations
of the intermediate deductive system.

7.2 Tracing the Symbolic Evaluator

In this section, I present a high-level simulation of the operation of the Speciall]
symbolic evaluator. For my proof-generation algorithm, it is not necessary to sim-
ulate SpecialJ at a detailed level, but for a more comprehensive presentation, see
Necula [Nec98] and Colby, et al. [CLN00].

In Section 7.2.1, I explain the syntax for the trace encoding, whereas in Sec-
tion 7.2.2, I present the algorithm for generating traces.

1Tt is conceivable that more advanced security policies will require a correspondingly more
faithful simulation of the symbolic evaluator.

134 CHAPTER 7. PROOF CONSTRUCTION

7.2.1 Syntax

A symbolic-evaluator trace 0 is a data structure that enumerates the actions that
the symbolic evaluator takes at a high level:

Traces 6 ::= head(p}(e"’d)wl) | head_dorp<p)<e“d)(01)<92) | tail(g"d)
| step(ei®*)(0;) | unsafe(e™*)(6;) | unsafe mem(e™s*)(e¥)(0;)

| split(e=*)(01)(62) | call(pi)(p2)(e™){f1)

Each node of the trace corresponds to the execution of a single instruction or to
some other high-level operation such as instantiating a loop invariant.

As in Chapter 6, each loop invariant or procedure specification contains the free
variables Tsq and Tsq. Tsq, is instantiated to the symbolic machine state in effect at
the start of the loop or procedure call. z4q is instantiated to the symbolic machine
state in effect when the specification is used. See Section 6.3 for more details.

Each hypothetical loop invariant and procedure postcondition is assigned a
unique index when a trace is generated. The hypothetical index enables a free
assumption to be efficiently identified in a safety proof. Without an index, uni-
fication for specifications of free assumptions is a potentially costly part of proof
reconstruction (see Chapter 8), because unification may not immediately instanti-
ate a complete proposition. Hypothetical specifications are numbered sequentially
(instead of by address, for example) to yield compact proof encodings.

A loop invariant is hypothetical in the body of the loop, whereas a procedure
postcondition is hypothetical in the code following a call to the procedure (i.e.,
the “continuation”). I call these specifications hypothetical because a proof over
the loop body or continuation presumes that the specification to be true for the
purposes of proving safety—the hypothesis is then discharged by a higher-level rule
of the program logic. For example, a safety proof for a loop body presumes that
the loop invariant is true, then shows that the invariance property holds until the
loop invariant becomes true again. See Section 6.3 for a more detailed discussion of
hypothetical specifications.

Each abstract state of memory is also assigned an index so that proofs of validity
can be shared. Whenever the memory is changed, validity (see Section 5) for the new
memory state is proven immediately and this fact is noted (hypothetically) under
the assigned index. Later, a proof in the scope of the hypothesis can simply refer to
the validity index to justify that the specific memory state is valid. The hypothesis
is discharged by a derived rule at the instruction that changes the memory (see
Chapter 8).

In Table 7.1, I give an intuitive reading of each constructor of the trace data

type.

7.2.2 Construction

In this section, I formalize the algorithm for generating symbolic-evaluator traces.
Essentially, the algorithm is a high-level simulation of the SpecialJ symbolic evalua-
tor. I do not formalize the symbolic evaluator completely—interested readers should

7.2. TRACING THE SYMBOLIC EVALUATOR

head(p;)(enn)(0)

head dom(p;){enn)(61)(02)

tail(epc)

step(e)(6)

unsafe(e;)(0)

unsafe mem(e|)(enm)(0)

split(e))(61)(62)

call(pp)(pq){enn)(0)

Start a new loop at the current instruction, after
instantiating a given loop invariant p;; the hypo-
thetical invariant will be labeled e,y inside the loop
body; @ traces execution in the body of the loop.
Note that the loop “head” need not be the first
instruction in the loop—in practice, a compiler can
choose any address in the loop body to assign to
the invariant.

The current instruction dominates a loop: start this
new loop, after instantiating a given loop invariant
pi; share an explicit proof among all dominated in-
structions under hypothetical label e,,; 61 traces
execution up to the head of the loop, whereas 6,
traces execution in the body of the loop.

Complete a pending loop (i.e., the current instruc-
tion is the head of a loop with an active hypothesis),
or return from the current procedure, where ey is
the current program counter.

Execute the current instruction e|; safety is estab-
lished automatically by rewriting; 6 traces execu-
tion for the remaining instructions.

Execute the current instruction ej; safety must be
established by an explicit proof; @ traces execution
for the remaining instructions.

Execute the current instruction e, updating the
memory to an abstract state with label e,n; safety
is established by an explicit proof; 6 traces execu-
tion for the remaining instructions.

Execute the current conditional branch instruction
e; and perform a case split; safety is established by
rewriting; 61 and 65 trace execution for the remain-
ing instructions in each possible branch.

Call a procedure using a given precondition p, and
postcondition pq; the hypothetical postcondition
will be labeled e,y in the continuation; @ traces ex-
ecution in the continuation.

Table 7.1: Trace Constructors

135

136 CHAPTER 7. PROOF CONSTRUCTION

refer to Bernard and Lee [BLO2b] for a thorough treatment of a simpler algorithm
that does not encompass procedures.

Each algorithm function operates on some program ® to be certified. Addition-
ally, I assume that three functions are available to identify procedure specifications
and loop invariants. These functions can be constructed from annotations attached
to the code by the Special] compiler. 1p0c is a partial function mapping machine
words to pairs of propositions consisting of a precondition and a postcondition.
Only addresses that are procedure entry points are in the domain of this function.
Pinv 18 a partial function mapping machine words to propositions. Only addresses
that have loop invariants assigned are in the domain of this function, and the result
of applying the function is the corresponding loop invariant itself. ¥qom is a partial
function mapping machine words to machine words. This function identifies loop
dominator instructions at which VC proofs are shared. The result of applying this
function is the address of the corresponding loop head.?

Each trace-construction function is specialized to a tuple (®, ¥proc, Yinvs Ydom)
shown as a subscript in its definition. However, because these arguments are effec-
tively constant during trace construction, they are not instantiated explicitly where
functions are used—the reader should assume that the corresponding arguments are
inherited from the enclosing definition.

The result of the general trace construction algorithm is a triple, consisting
of a trace, a next unused hypothetical index, and a next unused memory index.
Only the first result is interesting at the top level, but the other results are used
at intermediate levels. In order to express the composition of trace-construction
functions succinctly, I use the following abbreviation in this section:

0 (0", ny) = ([6/9] 0, 1,)

This operation substitutes the trace §' for the “hole” o in . The hole is simply
a special token used to support this composition notation—the definition of sub-
stitution is absolutely straightforward, because there is no possibility of scope or
binding.

Additionally, it is often necessary to construct an expression for a given machine
instruction. I use the notation e; for the expression whose value is always I:

VY (er) = I for all ¢

Such an expression, comprised purely of constants and applications of constant
functions, exists for any instruction value.

Eval(npe, Ni,nh, nm) is the top-level trace-construction function. It returns a
trace, hypothetical index, and abstract memory index for a symbolic evaluation run
starting at address ny. of the program ®. NV is a set of machine words that identify
loop invariants that have already been encountered. ny, and n., are the current
hypothetical and abstract memory indices.

2Loop dominator annotations are used by SpecialJ to share VC proofs after a join point in the
control-flow graph.

7.2. TRACING THE SYMBOLIC EVALUATOR 137

Note that Eval and some of the other trace-construction functions are not de-
fined on some arguments. For example, if the program jumps outside the domain of
@, evaluation cannot proceed and the implementation will terminate with an error
message. Such cases are identified by a result value of L in the function definitions
and they trigger exceptions in the implementation. Additionally, Eval will fail to
terminate if some loop does not have at least one invariant in its body. Note, how-
ever, that SpecialJ will never generate code that is outside the domain of Fwal, so
its partiality is only a practical consideration when it is used with other compilers
or handwritten code.

I now define the trace construction functions in “bottom-up” order.

Step(EAyg, EAwy, I, npc, Ni,nh,nm) constructs a trace starting from an “ordi-
nary” instruction I. np is the address of the next instruction after I. Ordinary
instructions do not change the control flow in interesting ways, and additionally do
not require any reasoning in terms of abstract specifications. Such an instruction
uses one of the three “step” constructors, depending on the degree to which the
instruction accesses memory. EA.q is the set of effective addresses that are read by
I, whereas FEA,, is the set of effective addresses that are written by I. Nj, ny, and

nm are as for Fval.
Step is defined as follows:

Stepqwocﬂ/)inw%om (EAvg, EAwr, I, npc, Ni,1tn, 1)
unsafe mem(e;)(7im)(0) - Bval(npe, Ni,nn,nm +1) if eam(...) € FA,,

= { unsafe(er)(o) - Eval(npc, Ni, th, Tom) ifeam(...) € EAq \ EA,,
step(er)(o) - Eval(npe, Ni,nh, nm) otherwise

It essentially chooses a trace constructor according to whether I writes to memory,
reads from memory, or does not access memory. Additionally, if I writes to memory,
the current abstract memory index is incremented. The corresponding function in
an actual symbolic evaluator would simply update the symbolic state representation
and emit a formal proof obligation for instructions that access memory.

Cont(pq, npc, Ni,nh,nm) constructs a trace for the continuation of a procedure
call starting at address np.. pq is the postcondition of the procedure that was called,
and Nj, ny, and n., are as for Eval.

Cont is defined as follows:

Cont‘bﬂpproc;winva"pdom (pq’ nPC’ Ni’ Th, nm)
_ Ret(nn,nm) if pq is pc = epc A L
Eval(npe, Ni,nh +1,nm) otherwise

It evaluates the continuation normally after incrementing the hypothetical index,
unless the postcondition is 1. When a postcondition is L, it implies that the
procedure never returns normally (e.g., it uses some mechanism from the run-time
system that triggers a non-local exit). In such cases, the postcondition of the
procedure containing the call will be implied trivially by L, so it skips directly to
the “return” case. An exception generator is a typical example of a procedure with
a | postcondition.

138 CHAPTER 7. PROOF CONSTRUCTION

Call(npec, n;c, Ni,nh,nm) constructs a trace for a procedure call. nyc is the ad-
dress of the procedure to call, and n;c is the address of the continuation in the
current procedure. Nj, ny, and n, are as for Fuval.

Call is defined as follows:

Call@@proc#invﬂ/’dom (nPC’ n;m]Vi’ Th, nm)
call(py)(pq)(Tn){o) - Cont(pq, n;c, Ni,np,nm) if Npe € dom Pproc

= and Yproc (np(:) = <pp) pq)
1 otherwise

It simply applies the “call” trace constructor to the precondition and postcondition
of the procedure, and resumes evaluation in the continuation. The current hypo-
thetical index ny, (identifying the postcondition) is also saved for use during proof
construction.

Ret(nn,nm) constructs a trace that returns from the current procedure:

Ret¢,¢proc,¢inv,¢dom (7h, nm) = <tail<$pc),nh,nm)

It returns the current hypothetical and abstract memory indices n, and n, un-
changed. Ret is used when the current instruction is the first instruction of the
continuation in the “caller” (i.e., the instruction to be executed immediately af-
ter ret is executed by the “callee”). The variable zp. is a “placeholder” for the
return address. This variable will be instantiated with a parameter during proof
construction (see Section 7.3).

Neat(npc, Ni, nh, nm) constructs a trace starting at address nyc, but without
considering any loop invariants. np. is the address of the next instruction to execute,
and Nj, ny, and n., are as for Fval.

Next is defined in Table 7.2. It applies Step to continue ordinary evaluation for
most instructions, providing it with the appropriate set of effective addresses and
the address of the next instruction to execute. In the case of a conditional branch,
it first constructs a trace for each possible arm of the branch (considering the “true”
branch first), then combines the resulting traces under the split constructor. In
the case of a procedure call, it first takes a step to reach the first instruction of
the procedure, then applies Call to complete the call itself. Similarly, in the case
of a procedure return, it first takes a step to reach the nominal continuation of the
calling procedure (the instruction address is a parameter in this case), then applies
Ret to complete the return itself. If a jump or call is performed on a non-immediate
address, or if ny is not in the domain of ®, then the result of Nezt is undefined.

Finally, the top-level trace construction function Fwal is defined in Figure 7.1.
It is identical to Next, except that explicit consideration is given to loop invariants.
In the case of an already-seen invariant, evaluation stops at the current instruction
address. In the case of a new regular loop invariant, a trace is constructed for the
loop body from the current instruction (Nezt will ignore the current invariant) after
incrementing the current hypothetical index and adding the current address to the
“already-seen” set. The current loop invariant, hypothetical index, and loop-body
trace are stored under the head constructor. The loop dominator case is similar,

7.2. TRACING THE SYMBOLIC EVALUATOR

139

‘ @ (npc) ‘ Next® orocin tom (Mpes Vi h > Tom) ‘
mov(n;)(ea1)(eas) Step({ea1}, {eas}, ®(npc), npe + i, Ni, th, om)
xchg(n;)(ea)(r Step(D, {ea}, ®(npc), npc +ni, Ni, oh, o)
lea(n;)(ea)(r) Step(0,0, ®(npc), npc + ni, Ni, noh, nm)
push(n;){ea) Step({ea}, 0, ®(npc), npc + ni, Ni, nh, om)
pop(ni){ea) Step(0, {ea}, ®(npc), npc + ni, Niy, nh, om)
opi(n;){op1){ea) Step (D, {ea}, ®(npc), npc +ni, Niy eh, o)
op2(n;){op2){eai){eas) Step({ea1},{eas}, ®(npc), npc + ni, Niy Ny Tom)
op2n(n;){op2)(ea1)({eas) Step({ea1, eas}, 0, ®(npc), npc + ni, Ni, np, nm)
op3(ni)(op31)(op3y)(ea)(r1)(r2) | Step({ea},, ®(npc), npc +ni, Ni, neh, o)

Step (0, 0, (ﬁ(npc)a ;)ca N, ’th,’nm)

(split(ea(n,))(9')<9") ™ ")

where (@', nh, m) = Bval(n, N,,nh,nm)
and (0" np, n) = Eval(n Pc,N,,nh,)
and npc = Npc + N
and n, = n,. +n
a1 () {ea A () Step(eatmu)(°) - Call(oe e+ 1, N iy)

ret(n;)

Step<e<1>(npc)><°>) Ret(nha nm)

otherwise

L

Table 7.2:

Eval e i tgom (Mpcs Nis b,)
(tail(Tpe), Whs Tom)
(o2 re)
where (0',n,np,) =
and Ni = N; U {npc}
<head dom<"/’inv(4)><_
where (¢',nf,n)

and (0", ny, ngy) = Next(ny,,
and N/ = N; U {ny.}
and n;c = Pdom (Npc)

\Next(npca Ni, np, nm)

n)(0'); 7y om)

Nezt(npe, N{,nn +1,nm)
N/, ng,nl,)

Trace Next Instruction

if npe € dom 4ipy N N;

if npe € dom iny \ N
Next(npe, N/, nh+1,1m)
HO')(0"), gy,) if npe € domygom
~ dom i,y

and n € dom iy

otherwise

Figure 7.1: Trace Construction

140 CHAPTER 7. PROOF CONSTRUCTION

except that a separate trace is constructed to get from the current instruction to
the loop head. The two traces are combined under the head_dom constructor.

7.2.3 Demonstration
Let @14 be the factorial loop from Section 6.3.5, and let
dom ¢proc16 =0

dom ¥iny,, = {16} Pinv(16) = Pisg
d0m¢dom16 = @

The trace for @16 is the part of the result of Evala. ypoe, g ine;q btomys (1650515 1)
which, in turn, is

(head(piys)(1)(016),2, 1)

where 614 def step(P14(16))(019)

(16))(
019 déf step<<I>16(19))(920)
= (20))¢

920 = step<(§16 20 024)
Bo1 % split(®16(24))(85)(06)
1 2 £ai1(16)

def .
096 = step(®16(26))(tail(zpc))
Note the close correspondence with the safety proof outline for the same program in
Section 6.6.2. The two trees differ only in that the proof outline stops at address 26
before executing the return instruction, whereas the trace stops immediately after
the procedure returns.

7.3 Constructing Proof-Outline Derivations

The obtain a complete proof outline, an outline of the VC proof must be merged
with an outline of the program-logic proof. In this section, I present an algorithm
that constructs an outline of the program-logic proof while it simultaneously merges
in the important fragments of the VC proof.

The algorithm is not presented as a program that manipulates proofs. Rather,
I present a deductive system that has a natural implementation as a logic program.
The logic program does not itself manipulate proofs. Instead, a trace of a single
run of the logic program corresponds directly to the correct proof outline. After
obtaining a trace of the logic program, it is a simple transformation to extract a
proof outline from the derivation (see Section 7.4). A trace of a run of the logic
program is called a proof-outline derivation: a derivation in the deductive system
that I present in the remainder of this section.

In my experience, implementing a proof-construction algorithm in this fashion
is significantly more efficient than an equivalent logic program that explicitly ma-
nipulates proofs, as is advocated in Appel and Felty [AF03], and first explored by

7.3. CONSTRUCTING PROOF-OUTLINE DERIVATIONS 141

Felty [Fel93]. The performance advantage seems to stem from the fact that unifica-
tion steps can be avoided entirely for the result derivation. In a logic program that
manipulates proofs, the result derivation is part of the search goal, and thus must be
unified frequently with existential variables. Note that my observations are based
on my experience with the Twelf [PS99] logic interpreter, which has a relatively
simple compilation phase [Cer98]. It is possible that more advanced logic-program
compilation phase would negate the observed performance advantage by eliminating
unnecessary unification steps.

The top-level connective of a VC proof shows that some specification (e.g., a
postcondition) follows from another specification (e.g., a precondition) by means of
the implication introduction rule D i. The derived program-logic rules provide an
explicit (though typically hypothetical) derivation of the premise of the VC proof,
so this derivation can be substituted for the hypothetical derivation that is used
internally by the D i rule. This example illustrates the primary operation of the
process that “merges” a VC proof into a program-logic proof skeleton. The precise
structure of the VC proof is defined by the SpecialJ compiler, and this structure is
anticipated by the proof-outline rules.

Note that there are several details of the logic program implementation that are
not exposed by the presentation as a deductive system. First, the VC proofs are
mapped onto outlines themselves to avoid expensive unification steps. This is safe
to do, because precise information is only needed where it will affect the overall
structure of the resulting proof outline. In the case of VC proofs for Java type
safety, very little detailed information is relevant. This optimization provides a
tremendous performance improvement, although it may not be applicable to cases
where more detailed information is important.

Additionally, the order of specification elements is permuted by the implemen-
tation to obtain a more efficient ordering for proof reconstruction (see Chapter 8).
Putting frequently-used elements at the head of a long conjunction simplifies unifi-
cation, and thus results in improved proof-reconstruction times. These permutation
steps are not shown here in the interest of simplifying the presentation.

7.3.1 Syntax

The syntax of the language for proof-outline generation is defined in Figure 7.2. A
proof classifier © denotes an informal safety property for some fragment of code
(based on a trace @) or some informal local property. The proof classifier is ascribed
to zero or more VC proofs that are expected to formally establish the property
during proof reconstruction. The proof classifier implicitly uses program-logic rules
to establish the safety property. It is not incorrect to think of the proof classifier
as a tactical [GMWT9] for constructing a proof outline, except that the state of
the tactical is itself threaded through the judgments established by the derivation,
rather than being a distinct program that manipulates derivations.

Safety properties are only established informally in this chapter, because at this
point I am only interested in constructing an outline of a safety proof, as opposed
to a fully explicit proof in the sense of Bernard and Lee [BL02a]. Because only the

142 CHAPTER 7. PROOF CONSTRUCTION

Proof Classifiers © := callee(p)(f)
| eval(0)
| check(p) | Loop(ef?)(p)(e3)(0) | cont(p)(e*)(f)
| dis-uz(p) | dis(p)
| ve
| goal(e®) (p)
| hyp_cont(e*) | hyp_pre | hyp_cop

Search Goals wu=D1, ..., D=0 | (o

Search Contexts € :=-|Qy, (Myy,...,Y5wi,---,wp — W)
Figure 7.2: Abstract Syntax for Proof Generation

outline of the proof is stored in the certificate, there is nothing to be gained by
generating fully-explicit proofs at this stage. Although it is feasible to construct a
fully-explicit proof from a proof outline by tracing the logic program of Chapter 8,
I do not explore this approach further because fully-explicit proofs are simply too
costly to be of practical use in my infrastructure.

A search goal w is the target of either proof-outline generation (the subject of this
chapter), or proof reconstruction (the subject of Chapter 8). Search goals are most
naturally implemented as logic-program goals, although other implementations are
possible. A search context {2 contains a set of goals that are presumed to succeed.

The general search affirmation is

Q> w

which asserts that the goal w succeeds, under the assumption that all goals in Q2
succeed. Thus, the affirmation

Q> D1,..., Dy 2 0

asserts that the derivations D, ..., Dy are expected to establish the property de-
noted by the classifier ©, assuming that all goals in € succeed. The search goal
{(J)o is described in the next chapter.
A hypothesis
Oy, ..o Ypowiy .., Wy — W'

is a conditional search hypothesis: a hypothesis that is expected to establish w’ for
some instantiation of time variables y; through yj, given an explicit derivation of
w1 through wys with the same instantiation. A time variable y is like an expression
variable z, except that a time variable can only appear directly in a judgment with
an explicit time (i.e., y1 < Y2, pay, pa[y1,y2), and pay), and times ¢ are substituted
for time variables rather than expressions. I abbreviate such a hypothesis as

Wiyenn,WE =

7.3. CONSTRUCTING PROOF-OUTLINE DERIVATIONS 143

D :: callee(p)(0) The derivation D is expected to establish the safety
of a procedure with specification p, where 6 is a
trace of the procedure body.

D :: eval(h) The derivation D is expected to establish safety over
the trace 6.
D, D' :: check(p,z) Some parts of the derivation D are expected to es-

tablish the proposition p,,—the derivation D' con-
tains the “unused” parts of D.

D :: Loop(epc) (Piuz){€nn) () The derivation D is expected to establish safety over
a loop with trace 0, using e, as the address of the
loop invariant pj;.

D :: cont(pyz)(enn)(0) The derivation D is expected to establish safety over
a continuation trace 6 (i.e., a loop body or the con-
tinuation of a procedure call), where e, is the ad-
dress at which the specification p,, holds.

Duz, D, D' :: disuz(pyz) Use the derivation D, to discharge implications in
the derivation D, resulting in the derivation D’ (this
is a wrapper for dis(p,)).

Dy, D, D' :: dis(py) Use the derivation D, (a proof of the proposition
pu) to discharge implications in the derivation D,
resulting in the derivation D’.

D ::vc Deconstruct the derivation D into a VC proof out-
line.
:: goal(epc)(Puz) The goal specification p,; (i.e., a target loop invari-

ant or procedure postcondition) is tagged by the
address epc.

:: hyp_cont(enn) Use a continuation hypothesis with tag enp.
:: hyp_pre Use a precondition hypothesis.
:: hyp_cop Use a conditional branch hypothesis.

Table 7.3: Proof Classifiers

when £k is zero and simply as

when both k and k' are zero.

In Table 7.3, I give an intuitive reading of each of the proof classifiers.

In Section 7.3.2 through Section 7.3.11, I present the deductive system for proof-
outline construction. Because the search affirmations are “higher-order” judgments
on derivations, the notation becomes somewhat awkward when I must specify the
shape of a VC proof. The solution I use is to identify an existential derivation vari-
able (e.g., D) appearing in a search affirmation with an explicit VC proof derivation
as a side condition of the inference rule. For example,

144 CHAPTER 7. PROOF CONSTRUCTION

Q> D ::ve

On D ve vc_and_el
DI
where D - p1 Ap2e0
-Fp1e0

should be understood to mean that the derivation
DI
- p1 Ap2al

F pra0 Nel

is the subject D of the conclusion of vc_and el.

There is a direct correspondence between the proof-outline rules and the proof-
outline data structure I introduced in Section 6.6.1. In fact, each proof-outline
constructor has an associated proof-outline rule (this correspondence is formalized
in Section 7.4.2). Although one can read the proof-outline rules operationally as
“Given the execution trace 8, how do I construct a proof of safety?”, it is equally
valid to read them deductively as “Given a proof-outline o, in what case does this
outline apply?” The order of the rules follows this latter orientation, although the
rules are normally read operationally.

The deductive system has a natural implementation as a logic program. To see
the evaluation strategy, read the rules from conclusion to premises. The premises
are normally evaluated in left-to-right order. Essentially, the object is to imitate the
structure of a fully explicit proof, where important details of the proof are remem-
bered as indices on rule labels. For example, loop invariants cannot be reconstructed
automatically from the object code, so the loop invariant label eval_head is indexed
by the loop invariant p;,, that the rule is applied to. This notation greatly simplifies
the presentation of proof-outline extraction (see Section 7.4).

7.3.2 Hypothesis Rule

The conditional hypothesis rule hyp allows a conditional hypothesis to succeed if its
premises w; through wy can be established directly:

Ql>[t1/’y1] ...[tk/yk]wl QD[tl/yl] "'[tk/yk]wk’ h
Q> [tl/yl] - [tk/yk] w'
where Q% Qr, (My1, .. Y- Wiy - - wpr = @', Qo
The free time variables in the goals (y1,...,yx) must be instantiated consistently.
7.3.3 Callee Rule | D= callee(p)(0) |

callee is the “top-level” rule that constructs a proof outline demonstrating the safety
of a procedure at address e, with precondition p, and postcondition pq:

7.3. CONSTRUCTING PROOF-OUTLINE DERIVATIONS 145

Q> Dyy, D, D' i: dis uz([asq,/Tsq,] [asq/Tsq] Ppuz)
Q' > D :: eval([ey./Tpc] 0)
D

: calleg®sa0:®sa:
Vs :fl. [J (sz% iri. Vagg fl.

1> D :: callee((Sq = Tsq, O [1(sq = 2sq) D pp D safell p,) >><0)

def
where Q' € Q, :: goal(ey.){[asq,/Tsq,| Pquz), (:: hyp-pre — Dy, :: vc)
def
and pp = pc = €pc A gSP = Tsp A Ppuz
def /
and pq = pc = ep A Pquz
and ey, déf[asqo /Tsq,) €pe

This rule corresponds to the proof-outline constructor callee. It is the most
complex proof-outline rule. It introduces two parameters asq, and asq to repre-
sent an abstraction of the current state and instantiate the state variables in the
procedure specification. Additionally, it introduces a derivation parameter Dy, to
represent the hypothetical precondition of the procedure. This derivation parameter
replaces the hypothetical precondition in the VC proof D. Later, when an outline
for the parameter is to be constructed, the outline hyp_pre is used instead (this is
the effect of the second hypothetical goal in Q').

The first premise of this rule discharges the hypothetical use of the precon-
dition in the VC proof D by applying it to the derivation parameter D,,. The
second premise continues evaluation in the body of the procedure, replacing the
placeholder z,. with the correct return address in the body trace. The extended
context Q' identifies the postcondition as a successful goal when the return address
is reached, and additionally associates the derivation parameter Dy, with the hy-
pothetical precondition proof outline. Note that the rule label is not indexed by
the procedure specification, because procedure specifications are stored separately
under the address at which the procedure is located, and thus need not be stored
explicitly in the proof outline.

Note also that instead of substituting sq directly for zsq in the specifications,
I introduce an intermediate condition, [1(sq = zsq) to avoid a direct substitution.
This is a cosmetic change that simplifies higher-order unification when the proof-
outline rules are executed by a logic interpreter—avoiding a direct substitution keeps
the specifications within the so-called pattern fragment [Mil91].

7.3.4 Evaluation Rules D :: eval(f)

In this section, I present a proof-outline construction rule for each possible con-
structor of a symbolic evaluation trace. Essentially, the trace is used as a “guide”
for constructing the proof outline.

The ordinary loop-head rule eval_head evaluates loop invariant p;,, at address

€pc:
Q> D, D' :: check([asq,/Tsq,] Piuz)

Qp D 100p<6pc><[asq0/$sq0]piuz)(enh><0> a
eval_head,
Q> D :: eval(head(pc = epc A Piuz){enn)(0))

sqQ
pcsPiuz

146 CHAPTER 7. PROOF CONSTRUCTION

This rule corresponds to the proof-outline constructor eval head. It introduces a
fresh parameter asq, to abstract over the machine state. The rule label is indexed by
the program counter ep. and loop invariant p;,,. These indices are a notational de-
vice to simplify the presentation of the proof-outline extraction rules in Section 7.4.
The first premise uses part of the VC proof D to show that the loop invariant holds
for the current state. The remainder of the VC proof D' is then used in the evalu-
ation of the loop body, which is accomplished by the loop classifier in the second
premise.

eval_head_dom is a more complex version of the loop-head rule that enables a
VC proof to be shared among instructions dominated by the current instruction:

Q, :: goal{epc)([asq,/Tsq,] Pivz) B> D' i eval(f)

Q> Dy loop<e;>c><[a5‘io/$5qo]piuz><enh><92> eval_head_doma,sqo

Q> D :: eval{head dom(pc = epc A Piuz){€nh)(01)(02)) Cpe-Piuz
D,’l Dy
-Fpteld -Fpyel
def Dy 4! b2 .
WhereD—_}_pl@O -F P Ap2el _AI
|
-k p1 A (P} Ap2) a0
D, D}
andD’déf'l_Pl@O -Fpleld |
-FpiApiel A

This rule also corresponds to the proof-outline constructor eval_head. It only
succeeds if the VC proof D has the correct structure.®> The first premise uses
a restructured fragment of the VC proof D’ to continue evaluation until the loop
invariant is reached for the first time. Note that the loop invariant will be established
for the appropriate state by eval_tail if the loop-invariant goal is ever used. The
second premise evaluates the loop body with the remainder of the VC proof, as for
eval_head.
eval_tail establishes a search goal py;:

QD :: goal(epc)(puz) Q> D, D' :: check(py,)
Q> D ::eval(tail(epc))

eval_tail

This rule corresponds to the proof-outline constructor eval tail. The first premise
retrieves the goal proposition p,, from the search context where it is stored under
the current program counter ep.. The second premise uses the VC proof D to show
that this goal holds for the current state.

eval_step evaluates an ordinary instruction e;:

Q> D :eval(f)
Q> D :: eval(step(e)(0))

eval_step

3This particular structure is an artifact of how the Special] symbolic evaluator operates.

7.3. CONSTRUCTING PROOF-OUTLINE DERIVATIONS 147

The premise simply continues evaluation for the remainder of the trace. This rule
corresponds to the proof-outline constructor eval step.
eval_unsafe evaluates an unsafe instruction e;:

Q> Dy:ve Q> Dy eval(f)

Q> D :: eval(unsafe(e)(h)) eval_unsafe
Dl DQ
where D% - Fp1e0 -Fpral
‘Fp1 Ap2el

This rule corresponds to the proof-outline constructor eval_unsafe. It only suc-
ceeds if the VC proof D has the correct structure. The first premise constructs
a proof outline for the left-hand branch of the VC proof, which demonstrates the
safety of e for the current state. The second premise continues evaluation for the
remainder of the trace.

eval_unsafe_mem is a slight extension of eval_unsafe:

Q>Dyive QD> Dy eval(f)
Q> D :: eval(unsafe mem(e;)(enm)(d))

eval_unsafe_mem,,,

Dy Do
WhereDdéf'Fpl@O ‘Fp2al
-|—p1 Apaal

This rule corresponds to the proof-outline constructor eval unsafe mem. The rule
label is indexed by the new abstract-memory index e,m so that it can be easily
extracted into a proof outline.

eval_split evaluates a conditional branch by considering both possible outcomes
of the conditional:

Q, (= hyp_cop — Deop, :: vc) > D :: eval(f)
Q, (:: hyp-cop — Deop, :: vC) > Dy :: eval(fy)
Q> D::eval(split(e)(61)(62))

D, D,
def “y Peop, @0 p1el - Peop, @0 F p2al
where D= 0, S p1a0 ' “F peop, D pral
“F (Peop, D P1) A (Peop, D p2) @0

Deop,
- Peop, @0

/ /
a0 4

D,

eval_splitPeor1:Peor

Al

Deop,

and e Peap, a0

and

and

This rule corresponds to the proof-outline constructor eval_split. The VC proof is
structured as a pair of implications that are each hypothetical in the corresponding
outcome of the conditional. This structure arises because the VC proof is entitled
to presume that the conditional succeeded or failed during evaluation of the corre-
sponding arm of the branch. The hypothetical conditional outcomes are replaced

148 CHAPTER 7. PROOF CONSTRUCTION

by derivation parameters Dcqp) and Deqp , in the VC proof. When used in an outline
of the VC proof, these parameters are identified by the constructor hyp_cop. This
is the function of the additional hypotheses in the search contexts of the premises.
The derivations D] and D) do not exist as such in the VC proof, but their exis-
tence can be inferred by applying the substitution principle [Pfe99]. Operationally,
D} and D), can be constructed by replacing uses of the free hypotheses (p; e 0 and
p2@0) in Dy and Dy with Deop, and Dep, , respectively.

eval_call evaluates a call to a procedure with precondition p, and postcondition

Dq-
Q> D, D CheCk<[asqo/$sq0]ppuz

)
Q> D COIlt([aqu/xqu] pqu2><enh><0>
Q> D :: eval(call(pp)(pq)(enn)(6))

eval_call|%*sw0

def
where p, = pc = epc A gsp = esp A Ppuz
def f
and pq = pc = e A Pquz

This rule corresponds to one of the proof-outline constructors eval_call and or
eval call false, depending on the postcondition. The first premise uses the VC
proof to show that the precondition holds. The second premise resumes evaluation
in the continuation of the call. The postcondition will be accumulated into the set
of available hypotheses. Note that the rule label is not indexed by the procedure
specification, because procedure specifications are stored separately under the ad-
dress at which the procedure is located, and thus need not be stored explicitly in
the proof outline.

7.3.5 Checking Rules D, D' :: check(p,,)

This section contains proof-outline rules for establishing specifications with some
part of a VC proof. The specification is always a right-associative nested series of
conjunctions.

check_z is the base case, when the specification is empty:

Q> D, D:: check(T Ap,) check_z

This rule corresponds to the proof-outline constructor ck_z.
check_u establishes an individual specification element p, by extracting a frag-
ment of the VC proof D:

Q>D;ive Q> Dy, D' :: check(pl, Apy)

check_u
Q> D, D' :: check((py Apl) A\ pz) bo
Dy Do
whereDdéf'}_pl@O -Fp2al
-Fpi Aprel

This rule corresponds to the proof-outline constructor ck u. It only succeeds if the
VC proof D has the correct structure. This structure is an artifact of symbolic

7.3. CONSTRUCTING PROOF-OUTLINE DERIVATIONS 149

evaluation strategy used by SpecialJ. The first premise constructs a proof outline
for the left-hand branch of the VC proof, which establishes p, for the current state.
The second premise establishes the rest of the specification p{, with the rest of the
VC proof Ds.

7.3.6 Loop Rule D :: 1oop(epc) (Piuz) {€nh) (0)

loop evaluates a loop body starting at address e, with loop invariant pj,,:

Q, :: goal(epc) (Piuz) > D :: cont(piuz)(enn)(6)
Q> D :: loop(epc) (Piuz){enn)(6)
The premise resumes evaluation in the body of the loop with the loop invariant

as a valid goal. The invariant will also be accumulated into the set of available
hypotheses.

loop

7.3.7 Continuation Rules ‘D :: cont(Pyz){€nn)(6) ‘

The continuation rules discharge implications in the VC proof that are hypothetical
in a given specification—the term “continuation” here is generalized to include
loop bodies as well as procedure-call continuations. The VC proof is structured
as a series of implications for each individual component of the specification. This
structure arises because the VC proof is entitled to presume that the specification
(a postcondition or loop invariant) holds during evaluation of the continuation or
loop body.
cont_and discharges implications in the VC proof for a given specification py;:

Q> Dy, D, D' :: disuz([asq/Tsq] Puz)
Q, (:: hyp_cont{enn) — Dy i ve) > D' :: eval(h)
QD Cont<puz)<enh)<0>

Gsq,Du
€nh

cont_and

The hypothetical specification is replaced by a derivation parameter D, in the VC
proof. When used in an outline of the VC proof, this parameter is identified by the
constructor hyp_cont(eny,). This is the function of the additional hypothesis in the
search context of the second premise. e, is the index assigned to the specification
being discharged. Once the implications in the VC proof are discharged by the first
premise, the second premise uses the resulting VC proof D’ is used to certify the
continuation code.
cont_false is a special case when the continuation code is never reached:

Q> D = cont(L)(en) (@) OMt-False

This rule is used when a procedure is called whose postcondition is L (e.g., an
exception generator).

150 CHAPTER 7. PROOF CONSTRUCTION

7.3.8 UZ Discharge Rule Dy, D, D' :: dis_uz(py,)

dis_uz is a notational convenience rule that breaks down a conjunction specification
into its component specifications:
Q> Dy, D, D' :: dis(py)
Q> Dy, D, D' :: disuz{p, Ap,

dis_uz
)

7.3.9 Discharge Rules Dy, D, D' :: dis(py)

The discharge rules transform a VC proof by instantiating its internal implications
with explicit proofs. During proof reconstruction (see Section 8), the explicit proofs
are part of the proof skeleton that is constructed algorithmically from derived rules.

Each complete specification to be discharged is a right-associative conjunction of
component specifications, each of which is discharged individually. In a VC proof,
the component specification hypotheses are nested in a sequence of implication
introduction rules. Additionally, the VC proof may contain universal quantifiers
that can essentially be discarded because the proof outline does not depend on how
the bound variables are instantiated. For more expressive security policies and/or
proof outlines, it may be necessary to determine bound-variable instantiations via
unification.

dis_true is the base case for a conjunction of specification elements:

Qo> Dy, D, D::dis(T) dis_true

No implications are discharged.
dis_imp discharges a single specification element p, in a VC proof D:

Q> D], D}, D' ::dis(p))

dis.i
Q> Dy, D, D ::dis(p, Ap)) 1S-1mp
Dy
where ’Ddéf puelFprel
'|_pu D piel
D, o
and *F PuAD,e0 and 1
w Nel -Fp1el
D,
and D' % - Fpu Aplel
u — Ner
-Fplel

This rule fails if the VC proof D does not have the correct structure. The derivation

D] is obtained from D by substituting a derivation of p, for the open hypothesis in

D1. The premise of this rule continues to discharge hypotheses in the remainder of

the VC proof by constructing a proof of p{, from the current proof of p, A pl,.
dis_all instantiates a universal quantifier in a VC proof D:

7.3. CONSTRUCTING PROOF-OUTLINE DERIVATIONS 151

Q> Dy, D}, D' :: dis(p, Ap))

1 Dri
Q> Dy, D, D' :: dis(p, Ap)) dis_all
¢ [a/2] Dy

where Ddé a:rik[a/z]pre0 -a
. |‘V$:ri.p1 el
. D
r 1

and Fe:ri and - e/l pr a0

This rule fails if the VC proof D does not have the correct structure. In general,
the instantiating expression e must be found by unification, but in the case of Java
type safety, proof outlines do not depend on such instantiations, so the choice does
not matter. D is obtained by substituting e for z in D;: [e/z] D;.

7.3.10 VC Rules D ::vc

The VC rules are responsible for duplicating the structure of a VC proof in the
proof-outline derivation. I only show a few representative cases here, because the
rules follow the proof-outline data structure quite closely.

vc_and_el mimics the left conjunction elimination rule:

Q> D' ::ve
Qb Drve VeAndel

/

where D' - F p1Ap2a0
‘Fp1e0

This rule corresponds to the proof-outline constructor vc_and el. The premise
simply establishes the corresponding premise of the VC proof.
The right rule vc_and_er is similar:
Q> D :ve
Qb Dve VeAnder

!

where D% - p1 Ap2al
-Fprel

This rule corresponds to the proof-outline constructor vc_and er.
The expression normalization rule vc_normE_e is more interesting:

QD Do ye vVe-norm Ee

!
where ’Ddéf ‘Fe=*¢

:*
-Fe=¢€e0 Cexp

This rule corresponds to the proof-outline constructor vc_normE_e. The remainder
of the VC proof D’ is discarded here, because the derivation can be reconstructed
within the decidable rewriting system. Note that I also choose not to index the

152 CHAPTER 7. PROOF CONSTRUCTION

label of the inference rule by the expression to be rewritten e. For Java type safety,
e is always sufficiently constrained such that its value need not be stored explicitly
in a proof outline.

The rest of the VC proof rules follow a similar strategy—I do not present them
here in the interest of brevity.

7.3.11 Hypothetical Rules

The three “hypothetical” rules always succeed. Their function is to provide an
identifying label in the proof-outline derivation so that a suitable proof-outline con-
structor can be extracted (see Section 7.4.5). Note that these rules are only used
after a conditional hypothesis (e.g., (:: hyp_cont(e,n) — Dy :: vc)) has been used
by hyp, but because hyp does not contain sufficient information to show which hy-
pothesis was used, an explicit identifying rule is needed.

hyp_cont _—
Qr> :: hyp_cont(enn) P b QD :: hyp_pre

hyp_pre hyp_cop

QD :: hyp_cop
These rules correspond to the proof-outline constructors vc_hyp_cont, vc_hyp_pre,
and vc_hyp_cop.

7.4 Extracting Proof Outlines

I now show how proof outlines can be systematically extracted from proof-outline
derivations. The operator |-| maps a proof-outline derivation to a proof outline.
The defining equations are in the form

S| =0

where § is a proof-outline derivation and o is the corresponding proof outline.

In most cases, extracting a proof outline is straightforward. It is important to
note that discharge rules and goal rules are never extracted into proof outlines,
because these rules are used solely to administer the search (by transforming VC
proofs, for example), and have no proof “content” of their own.

Note that in my PCC system proof outline extraction is not implemented as a
distinct transformation, but is rather an implicit part of the encoding and decoding
rules (see Section 8.2.2).

7.4.1 Callee Rule

A callee outline is extracted by discarding the discharge derivation §; and extracting
an outline from the evaluation derivation Ss:

51 82
Q> (;; Q? D@2 Lllee | = callee(|Sa])
> w

7.4. EXTRACTING PROOF OUTLINES

153
S Ss
QII D wll QII D wII
2 ? ? 3 cont_and,,,
Sl QQ D w2 |oop =
0 >w Qs > wo
Q> w

eval_head,,, .,

eval head(epc)(Piuz){€nn)(eval_ tail(|S;]))(|Ss|)
Sa

Ss
QII D " QII [> n"
2 wf 3 w3 cont_and,,, ,
s 0oy = eval head () (pue)(ent) (1511} (3]
He Q /Qz P w2 eval_head_domg: ..
> w ¥
Si So
0> ;02} Q? D W valtail | = evaltail(|Sa])
> w
S
{2 Ew, eval_step | = evalstep(|S)
w
S1 So
0> (;2} Q? > W2 val unsafe | = €val-unsate(|Si[)(|Sa[)
> w
S1 Sz
h > ;} I>Q? P wa eval_unsafe_mem,_ | = eval unsafe mem(|S1|){enm)(|S2|)
w
S1 So
Ql > (;; Q? > wo eval_split = eval_split<|81|)<|82|)
D> w

Sy Ss3

! ! ! !
O > wp Qo > wy cont.and,,, | = eval_call and{enn)(|S1){|Ss])
Voo eval _call
S1 _
O >w B w cont_false

oo eval_call

= eval call false(|Si|)

Figure 7.3: Extracting Evaluation Outlines

154 CHAPTER 7. PROOF CONSTRUCTION

7.4.2 Evaluation Rules

Figure 7.3 shows how proof outlines are extracted from evaluation derivations.
eval_head and eval head_ dom are not distinguished at the level of proof outlines.
Their only important difference is in how the incoming VC proof is processed. Ob-
serve that indices on inference-rule labels are carried directly into the proof outline
(these details are essential to efficient proof reconstruction).

Discharge derivations (i.e., So in eval_head, eval_head_dom, and eval_call) are
discarded completely, because their only function is to transform the VC proof.
The goal derivation S; in eval_tail is similarly discarded.

7.4.3 Checking Rules

Extracting a proof outline from a “checking” derivation is absolutely straightfor-
ward, because the two are in direct correspondence:

check_z

Q> w =ckz
51 82
> g} D?}g D W teck u | = ckulSi){|Sa])

7.4.4 VC Rules

Extracting a proof outline from a VC derivation is also straightforward:

S

S?’ E Y yc.and.el | = ve-andel{|S|)
w

S

3 E Z, vc.and.er | = ve-and_er(|S|)

Qb o Ve-normEe | — yc normE e

I only show a representative sample of these rules.

7.4.5 Hypothetical Rules

Extracting a proof outline for the use of a hypothesis is driven by the artificial
hypothetical rule that identifies which hypothesis was used:

—~—— hyp_cont,
(2 E z’ hyp = vc_hyp_cont(enn)
hyp_pre
g’ '; o hyp = vc_hyp_pre

7.4. EXTRACTING PROOF OUTLINES 155

= vc_hyp_cop

156 CHAPTER 7. PROOF CONSTRUCTION

Chapter 8

Proof Engineering

In this chapter, I describe my approach to proof engineering for my PCC imple-
mentation. In Section 8.1, I illustrate how proofs are reconstructed from minimal
outlines, whereas in Section 8.2, T briefly survey how proofs are encoded in certifi-
cates.

8.1 Proof Reconstruction

The proof reconstruction problem is to establish a particular judgment, given a
possible outline of a proof of that judgment. I approach this problem by localizing
the search for the judgment to a particular reconstruction scope that is determined
by the proof outline. Intuitively, the reconstruction scope is a restriction of the total
set of inference rules that makes it possible to derive the judgment efficiently. A
reconstruction scope can also be thought of as a name for a particular set of inference
rules. In some cases, the reconstruction scope will only allow one particular rule to
be applied; in other cases, some small number of rules will be available, and one
will be selected according to the shape of the particular judgment. The core idea
behind this approach can be traced to Pfenning [Pfe01], in which a formal system
for proof irrelevance is proposed as a possible foundation for a generalization of an
oracle-based proof encoding [NRO1].

This approach is reminiscent of the use of tactics and tacticals [GMWT79, Fel93]
in logic programming, except that here the implementation of the search procedure
is “threaded” through the formal system itself, rather than being coded as a sep-
arate procedure that manipulates an explicit derivation (i.e., a trace of a run of
the reconstruction “function” contains the desired derivation). To adopt a logic-
programming viewpoint, a clause of a logic program corresponds to a tactic, and the
state of a tactical is embedded into the logic program by specializing the relevant
clauses. This orientation enables me to use a relatively simple logic interpreter to
carry out the reconstruction strategy from within the formal system—mno additional
language implementation is needed. Additionally, because proof reconstruction is
part of the formal system, it can be derived formally if it is specified correctly. Thus,
the entire content of this section is an untrusted, derived system that is supplied

157

158 CHAPTER 8. PROOF ENGINEERING

by the code producer and checked for correctness by the code consumer. I describe
how the formal system is actually encoded in Section 8.2. The formal system in
this section is essentially a “blueprint” for this implementation.

One can imagine the proof outline and its attendant reconstruction scope as
a constraint on the search for a type safety proof that essentially “directs” the
interpreter to apply a given rule at a given point. The reconstruction scope and
proof outline are necessary because the inference rules of the program logic and
type system are not naturally syntax directed. This is unlike other approaches to
object-code certification such as TAL [MWCGY8] that enable typing derivations to
be reconstructed automatically.

By viewing the reconstruction scope as constraints on proof search, one is led to
see many inference rules in this section as a specializations of the derived program-
logic rules from Chapter 6. In fact, the program-logic rules are specialized to the
point where they comprise a deterministic logic program, given a valid proof outline
to interpret. In the following sections, I will note where a given proof-reconstruction
judgment or rule is related to one or more program-logic judgments or rules.

8.1.1 Syntax

The proof reconstruction scopes are partitioned as follows:

Reconstruction Scopes O ::= callee(oc)
| eval next(oe) | eval(oe)
| check(ock) | checku(ock) | vc({ovc)
| caller | checkz | initz
| andel mem | andel ts | ande4_ts | ori
| leq-ts | 1t_ts | next | fetch
| subO | sub | subOu | subu | subOz | subz
| subOul | subul | sub0z1 | subz1
| normE1
| hyp_cont(e*?) | hyp_mem(e
| hyp_pre | hyp_cop | hyp_1t_ts
| goal(e™)(p)
| pf

wd>

The reconstruction scope pf is special in that is has the effect of “lifting” the
judgment back into the standard formal system.
The affirmation

Qe (o

indicates that a proof of the judgment J can be reconstructed automatically from
information provided by the reconstruction scope O, assuming that all goals in Q2
succeed.

I now give an intuitive reading of each of the reconstruction scopes.
The callee reconstruction scope is a specialization of the procedure introduction
rule of the program logic (see Section 6.3.4). The callee scope indicates that the

8.1. PROOF RECONSTRUCTION 159

proof outline oc contains sufficient information to reconstruct a safety proof for a
procedure with the given specification:
(Vosp:ri. O(Vosq, :Mi. Vaaq:fl. sq = 2o, D [(sq = Zsq) D pp D safeld pq) @ 0))car1ee(oc)
def
where p, = PC = €pc A gSP = Tsp A Dpuz

def /
and pq = pc = €pc A Pquz

eval next(oe) indicates that the proof outline oe contains sufficient information
to reconstruct a proof that shows safety until the goal pg, after starting in state
€sq, and taking at least one step:

{(sqa= esq O safe A O(saer/{pg|) @t»eval_next(oe)

This reconstruction scope is a specialization of the strict evaluation judgment of the
program logic (see Section 6.3.2).

eval(oe) indicates that the proof outline oe contains sufficient information to
reconstruct a proof that shows safety until the goal pg, after starting in state egq:

<<Sq = €5q D Saer/{pgl @ t»eval(oe)

This reconstruction scope is a specialization of the standard evaluation judgment
of the program logic (see Section 6.3.3).

check(ock) indicates that the proof outline ock contains sufficient information
to reconstruct a proof of the instantiated specification py;:

«puz Q@ t» check({ock)

checku(ock) indicates that the proof outline ock contains sufficient information
to reconstruct a proof of the instantiated specification p,:

<<pu @ t» checku(ock)

vc(ovc) indicates that the proof outline ove contains sufficient information to
reconstruct a proof of the proposition py.:

«pVC @ t»vc(ovc)

caller indicates that a safety proof for a procedure with a given specification
has been established:

(O(Vsq, :ri. Vosq:fl. sq = 5, D [(8q = Zsq) D pp D safell pq) @0))calner
def
where py, = pc = epc A gsp = esp A Ppuz

def /
and pq = pc = epc A Pquz

This reconstruction scope is a specialization of procedure elimination rule of the
program logic (see Section 6.3.4). Note that there are no general rules for this

160 CHAPTER 8. PROOF ENGINEERING

reconstruction scope. The safety of each procedure is established individually by
the code producer.
checkz indicates that a proof of the preservation specification p, can be con-
structed automatically:
«pz @ t» checkz

initz indicates that a proof that the current state is egq

automatically from the proposition p,, given that the current state is also e

can be constructed
<<esq = elsq Apz D €sq = elslq @t»initz
I, . . . I
€sq 18 a syntactic transformation of ey, that contains explicit assignments for each
location that is preserved by the specification p,. By transforming the symbolic state
representation, I remove the need to reason about the preservation specification
directly. All relevant properties are internalized in the state representation. For

example, given the instantiated preservation elements
q ta(e,) = qta(esq) AT
the state e'sq is transformed into the state

esq = upds(q-q(elq), ta,q ta(esq,))

Although e, and ey, have identical valuations, the syntactic form of eg, enables
an expression such as q_ta(el,) to be transformed into q.ta(esq,) by an automatic
rewriting strategy based on the McCarthy rules.

The following reconstruction scopes imply that a proof of the proposition p’ can
be constructed automatically from the proposition p via and elimination:

«p D p, Q t» andel_mem

«p D pl Q t»andei_ts
«p D) pl Q t»ande4_ts

The three distinct scopes identify various special cases of this strategy.
ori indicates that a proof of the proposition p' can be constructed automatically
from the proposition p via or introduction:

<<p o pl Q t»ori

leq ts indicates that a proof that type environment ejys, is contained in type
environment €jts , can be constructed automatically:

(&l s_leq(ejts1) 6jts2) @t)1eq ts

1t_ts indicates that a proof that type environment e;s, is strictly contained in
type environment ejss, can be constructed automatically:

{(7s-Lleq(ejts,,€jts,) @)1t ts

8.1. PROOF RECONSTRUCTION 161

next indicates that executing the instruction e in the symbolic state esq results
in symbolic state egy:
{(qnext(esq,€1) = e;q @t)next

This reconstruction scope is a specialization of the transition judgment of the pro-
gram logic (see Section 6.3.1).
fetch indicates that the instruction at the program counter of state egq is e

<<fetCh(pma Q—Pc(esq), 6|) @ t»fetch

This is primarily a “wrapper” judgment that avoids the need to explicitly decon-
struct the current state to retrieve the program counter.

The various substitution scopes indicate that substituting e'sq for esq in the
proposition p results in the proposition p':

<<esq e,sq D ([esq/msq] D= p,) Q@ t»subo
{(esq = 6Isq D ([esq/Tsqlp = p') et sun
<<6sq = 6;q) ([esq/xsq]p = pl) @t»subOu
«esq = elsq D ([esq/msq]p = p,) @t»subu
«esq = e,sq 2 ([esq/xsq]p = p') @ 1) suvoz
«esq = e,sq D ([esq/msq]p = p,) @t»subz
<<esq = e,sq o ([esq/wsq]p = p,) @t»subOul
{(esq = elsq D ([esq/Tsq) P = P') @ 1)) subut
{(esq e,sq D ([esq/Tsq) P = P') @ 1) subozt
«eSq = 6;q o ([esq/xsq]p = pl) @t»subzl

The individual cases discriminate on whether p has the shape of a list of specification
elements or preservation elements, etc.!

The next reconstruction scope implements a form of “shallow” normalization.
normE1 indicates that a proof that expression e is equal to expression €' can be
constructed automatically via rewriting:

«6 =ee t»normEl

Unlike full normalization, normE1 only normalizes the outermost function applica-
tion of an expression—the rest of the expression is presumed to be in normal form
already.

hyp_cont(ey,) indicates that a proof of the specification p,, is available as a
continuation hypothesis tagged by index epp:

<<puz @ t» hyp_cont (enh)

The tag enn is essential to discriminate between many possible hypotheses in the
current search context.

!Note that substitution operations are performed indirectly in these cases to simplify unification
steps when the proof-reconstruction logic program is run. The proposition [el,/Zsq] p in particular
tends to be so large that it causes a measurable slowdown when it is instantiated directly.

162 CHAPTER 8. PROOF ENGINEERING

hyp-mem(e,n) indicates that a proof that ey is a valid memory in type environ-
ment ejys is available as a memory hypothesis tagged by index enm:

(3 S_mem(ejtsa en) © t»hyp,mem(enm)

hyp_pre indicates that a proof of the specification pp,, is available as a precon-
dition hypothesis:

<<pPUZ @ t»hyp_pre

hyp_cop indicates that a proof that the conditional operator ec.p holds is avail-
able as a conditional-branch hypothesis:

«Self(ecopa ef) # 0o t»hyp_cop

hyp 1t ts indicates that a proof that type environment ejss, is contained in
type environment ejss, is available as a hypothesis:

{(is-Lleq(ejts,, €jts,) @t)nyp_1t_ts

goal(epc)(puz) indicates that the goal specification for address epc is py.:

«T @ O»goal(epc)(Puz)

pf indicates that the judgment J is decidable in the current context:

(T)pe

Note that some care must be exercised when using this reconstruction space. If J is
not in fact decidable (or hypothetical in the current context), nontermination will
result.

8.1.2 Hypothesis Rule

The conditional hypothesis rule hyp allows a conditional hypothesis to succeed if its
premises w; through wjy can be established directly:

Q> [tl/yl] ... [tk/yk] wi ... Qp [tl/yl] ... [tk/yk] Wy hyp
Q> [t /ya] - [tr/yp] &'
def
where Q= Qy, (TMyy,..., Ye-wi,...,wp — w'), o
The free variables in the goals (y1,...,yx) must be instantiated consistently. This

rule was first introduced in Section 7.3.2.

8.1.3 Callee Rules

The callee rule incrementally refines the proof goal by introducing parameters for
variables in a procedure specification. This rule is a complex specialization of the
procedure introduction rule—refer to the LF implementation for its precise con-
struction.

8.1. PROOF RECONSTRUCTION 163

8.1.4 Evaluation Rules {(sq = esq D safell pg at)eyai(oe)

The evaluation rules show that safety property holds from some current state until
some goal proposition holds. These rules are based on the derived program-logic
rules in Section 6.4.3 and Section 6.4.4. T only sample three rules here to illustrate
how the program logic is refined into a logic program—the other cases follow a
similar pattern. Additionally, I only show rules in the eval scope—the rules in the
eval_next scope are very similar.

In each, case the proof outline indicates which rule should be applied. For
example, eval tail(ock) is associated with eval_tail. The logic-program rules are
encoded in such a way as to make only one rule applicable for a given proof outline
(see Section 8.2.1.

eval_tail establishes the goal proposition pg immediately by showing that some
component specification p,, holds for the current state:

{(a-pc(esq) = €pc @t1) nornEt

(T @ 0) goat (epe) (pus)

Qv <<asq = €sq O ([asq/-qu] Puz = p:JZ) at1))sub
{(Puz @) check(ock)

{(pgi:lo (asq))ps

Q> ((pc = epe A [8Q/Tsq] Puz D Pgi@tors

Q> ((sq = esq D safell pgi at))eval(eval_tail(ock))

eval_tail%sa:f1

The second premise locates the component specification that is associated with the
current program counter. Goal hypotheses in this form are introduced into the
current context by the loop and “callee” rules. The fourth premise verifies that the
specification does indeed hold for this state, whereas the last premise verifies that
the specification is one element of the disjunctive goal proposition.

eval_unsafe establishes safety over an interval of time by incrementally showing
that a single potentially unsafe instruction is safe to execute:

Q> (fetch(pm, g_pc(esq), €1) @t setcn
Q> ((safe_inst(esq, €1) =" Puc))ps
Q> ((qnext(esq, €1) = €5q @11 Ynext
Q5 (erstipr Q5 (ri(es) 2Oy
Q> (pye @t»vc(ovc)

Q, <<ri(elsq) @O»pf > ((sq = eIsq 2 Saer’{pg| at + 1»eval(oe)
eval_unsafe”!

Qr «Sq = €sq O Safez’{pg| @t»eval(eval_unsafe(ovc)(oe))

The first premise retrieves the current instruction e from the program according
to the program counter of the current state esq. The second premise rewrites the
instruction-level safety condition to a single proof obligation p,.. This is the proof
obligation that would be emitted by a symbolic evaluator for e;. The third premise
constructs a symbolic representation of the next state el, from the current state

164 CHAPTER 8. PROOF ENGINEERING

and instruction. The fourth and fifth premises establish the rigidity of the current
state and instruction. These premises together with the third premise imply that
€5q 18 rigid, which is needed to continue evaluation. The sixth premise reconstructs
a proof of the safety obligation p,c from the proof outline ovc. Finally, the last
premise continues evaluation at the next time instant from the new state el, using
the rest of the proof outline oe.
eval_split establishes safety over an interval of time by incrementally showing
that a single branch instruction is safe to execute:

sq

> ((fetch(pm, ey, f;(ei, €cop, » en)) @t)ps
> (safe_inst(esq, f;(€i) €cop,»€n)) =" T)pt
> (addw(epc, &) ="" epc, Npe 21> ((addw(epc,, en) =" €pc, Dpe
> {(not (ecom) =" ecom»pf
«fJ (ei, €copy s €n): ri»pf Qv «ri(esq) @ O»pf
9'1 > ((sq = esq D safeld pgrat + 1)evai(oe;)

">

_

(sq = €5q, D safell pgat + 1)) evai(oes)

eval_split
Qr «Sq = €sq O Saer’ng| @t»eval(eval_split(ae1)(aeg))

where) efQ, (ITy1.{(self(ecop,, e£) # 00 Y1 nyp cop): (Tilelq,) @ 0)pe
def

and Q) = = Q, (Tly.((self(ecop,,es) # 0@ y1Dnyp cop), (Tile sqz)@O»Pf

and eSq def q-mk(epc, £, g, €5, €n, €q)

and e's q_mk(€he, , €z, €g, s, €n, €q)

and e'sq2 def q-mk(ep, , €s, €g; €s, €n, €q)
This rule follows an approach that resembles eval_unsafe, except that the rule is
specialized to the jump instruction (the only branch instruction in the instruction
set), and the rule must consider the two possible outcomes of the branch. Because
branch instructions are always safe, the instruction-level safety condition is rewrit-
ten to “true.” Other premises compute the next symbolic state according to the
semantics of the jump instruction. The last two premises continue evaluation at the
next time instant according to the two possible outcomes of the branch. Along each
possible outcome, the result of the conditional governing the branch is accumulated
into the hypothetical context.

8.1.5 Checking Rule {(Puz @ 1)) check(ack)

The checking rule establishes a pair consisting of a list of specification elements and
a list of preservation elements:

Q> <<pu @t»checku(ock) Qr «pz @t»checkz
Q> <<pu Apza t»check(ock)

check

8.1. PROOF RECONSTRUCTION 165

8.1.6 Specification Rules {(Pu @) checku(ock)

The specification rules show that some list of specification elements holds. The
list p, is represented as a right-associative conjunction of specification elements
Piy---3Pk: PLA (- A(peg A T)). The rules in this section are specializations of
program-logic support rules in Section 6.5.1.

checku_z is the base case:

checku_
Q> «T @t»checku(ck_z) u-z

checku_u establishes a single element of the specification list:

Qr «pu @t»vc(ackl) Qv <<p{1 @t»checku(ockg)
Q> «pu A p:_] @t»checku(ck-u(ockl)(ockz))

checku_u

The first premise reconstructs the VC proof from the proof outline ock;. The second
premise checks the remainder of the specification p{, by passing in the remainder of
the proof outline ocks.

8.1.7 VC Rules «pvc Q@ t>>vc(o’l)c)

The VC rules reconstruct a proof of a VC using a proof outline. These rules are
straightforward adaptations of derived inference rules from Section 6.5.3, so I will
only show three examples—the other cases follow a similar approach.

and_el and and_er eliminate a conjunction on the left and right, respectively:

Q> (Pve; A Pves @t»vc(ovc) del Q> {(Puc; A Ducy @t»vc(avc)
and_e
Qr <<pVC1 @t»vc(vc_and_el(avc)) Qv <<pVC2 @t»vc(vc_and_er(ovc))

and_er

The premise uses the remainder of the proof outline ovc to reconstruct a proof of
the conjunction itself.
normE_e normalizes an expression in the rewriting system:

QD> (e =" €)ps
Qv «6 =¢ @t»VC(Vc_normE_e>

normE_e

e is the expression to normalize, and €’ is its normal form. The expression e is
constrained sufficiently in this system so that its value need not be stored in the
proof outline. €' is derived directly from e, so it also need not be stored in the
proof outline. The premise of this rule searches for a rewriting derivation using
the standard rewriting judgment. Because this system is decidable, the proof is
reconstructed automatically.

8.1.8 Preservation Rules {(pz @) checkz

The preservation rules show that some list of preservation specifications p1,...,px
holds. The list p, is represented as a right-associative conjunction: p; A (... A (px A
T)). Each preservation specification is an equality that asserts that some location

166 CHAPTER 8. PROOF ENGINEERING

is unchanged throughout a procedure or loop body. The rules in this section are
specializations of program-logic support rules in Section 6.5.2.
checkz_none is the base case:

Q5 (T o) encers checkz_none

checkz_eq establishes a single equality specification at the head of the specifica-
tion list:

Q> () o 1)) checkz
Q> <<€ =eA plz @t»checkz

checkz_eq

The premise establishes the rest of the preservation specification pl.
checkz_leq_ts establishes a single type-environment containment at the head of
the specification list:
Q> «J S—leQ(ejtsl ’ ej‘csz) @ t»leq_ts Q> «p,z @t»checkz
Q > <<J S—leq(ejtsla ejtsz) A plz @ t» checkz

checkz_leq_ts

The first premise establishes the containment. The second premise establishes the
rest of the preservation specification p.

8.1.9 Initialization Rules {esq = e'Sq Ap; Desq = e'S’q @t))initz

The purpose of the initialization rules is to use a list of preservation specifications
p1A(...A(pgAT)) to transform a symbolic state representation so that the equalities
are internal properties of the symbolic state. This representation makes it possible to
later establish many properties by rewriting rather than by applying a substitution
rule (Section 8.1.1 contains an example of how a state is initialized). I only show
two sample initialization rules here—the remaining cases are similar to the second
example.
initz_none is the base case:

initz_none
Q> ((esq = eiq A T D €sq = €55 0t))initz
No specifications are left to process, so the symbolic state is not transformed.
initz_selg initializes a single machine register e,:
Q> ((esq = qmk(epc, €5, €gs €5, s €q) APy D €sq = €5q 01 initz

Qv «esq = q—mk(egca elfa elga elsa exlna 6{1) APz D esq = 6;Iq @ t» initz

initz_selg

def
where p, = selg(q-g(esq),er) = en A D,
def

and eg = updg(eg, er, €n)
The register file of the transformed state has an explicit assignment for the value of
ey updg(e'g, ér, €n). The premise initializes the rest of the state using the remainder
of the preservation specification pl,.

8.1. PROOF RECONSTRUCTION 167

8.1.10 Or-Introduction Rules {p D p @thors

The or introduction reconstruction scope uses a given proposition p; to establish
one case of a disjunctive list of propositions. By establishing one case p;, the entire
list p1 V(... V(pk V1)) is also established. The strategy of the or-introduction rules
is to simply try each case in order:

Q> <<p 2 p” Q@ t>>ori
Qe (p> p' V' ot)ori

ori_left ori_right

Qv <<p) pvpl@t»ori

The and elimination reconstruction scopes similarly show that some target

proposition p; follows from a conjunctive list of propositions pi A (... A (px A T)).

The and elimination rules follow a more ad-hoc strategy based on specialized cases,

so I do not show them here. An ad-hoc strategy is more efficient here, because the
general case of and elimination is not needed by my implementation.

8.1.11 Type-State Rules {(is-1leq(ejts,, €jts,) @) 1eq.ts

The type environment rules automatically show containment for type environments.
Because the type environment changes during storage allocation, some concept of
containment is need to show that typing ascriptions that were in effect before the
allocation are still valid in the new type environment. FEach storage allocation
procedure provided by the run-time system has a postcondition that asserts that
the type environment in effect at the time of the call is contained in the type
environment in effect after the call. Each of these specifications becomes part of
the search context when the procedure-call rule is applied. The role of the type-
environment rules in this section is to incrementally compose these hypothetical
specifications to show that some arbitrarily old type environment is contained in
the current type environment by transitive closure.

There are two distinct reconstruction scopes for containment: the non-strict
scope leq_ts admits reflexivity, whereas the strict scope 1t_ts does not. Reflexivity
is needed because in many cases there has been no storage allocation since a typing
ascription was established, and thus the type environment has not changed.

The rules for non-strict containment have a case for reflexivity:

; leq_ts_ref
Q > «J s—leq(ejtsa ejts) Q t»leq_ts

Otherwise, strict containment must be established:

Q> ((j S—:I-eq.(t?j'cs1 ; ejtsg) at)1e ts
Qe <<J S—leq(ejtsl) ejts2) Q t»leq_ts

leq_ts_It

Strict containment can be shown by one of two cases. Either the containment
was established directly by a procedure postcondition, and the containment is now
a hypothesis:

Q> «J S—leq(ejt31 s ejtsz) @ t»hyp_lt_ts
Q> (js-leq(ejts,s €jts,) @)1t s

lt_ts_hyp

168 CHAPTER 8. PROOF ENGINEERING

Or there is some direct containment hypothesis available that is one step closer to
the goal environment, and transitivity is used to get the rest of the way:

Qv <<J s—leq(ejtsla e{]’tsl) @ t»hyp_lt_ts
Q> (j S—leq(egtsla ejtsz) at)1t ts
Qo (3 S—leq(ejtsla ejts2) eth1t ts

It_ts_trans

Note that some care must be taken here to avoid infinite loops when the rules are
interpreted as a search strategy.

8.1.12 Next-State Rule {(anext(esq; €1) = €4q @) next

next is a composition of six individual rewriting rules:

Q> ((nextpc(ess,e)) =" e, ps QD ((nextf(ess,e)) =" €f))ps
Q> (nextg(ess,e1) =" ep)lpr QD> ((nexts(ess,er) =" eg))pr
!

Q> (nextm(ess, e1) =" ep)ps 2 > ((nextq(mkp(ess, eq), €1) =" €))pt

next

Q> (qnext(mkp(ess, €q), €1) = qmk(ec, €, €, €5, €y, €g) @ EPmext

It computes a symbolic representation of the next machine state given a symbolic
representation of the current machine state.

8.1.13 Fetch Rule {(fetch(pm,g-pc(esq); €1) @t))setcn

fetch is essentially a “wrapper” that retrieves the program counter from the current
state and fetches the current instruction in one judgment:

Q> (fetch(pm, epc, €1) o t))ps
Q > «fetCh(Pm’ q—pc(q—mk(epca €f, 6g, €s; €m, eq)), el) Q@ t»fetch

fetch

8.1.14 Proof-Embedding Rule (T Npe

The proof-embedding rule is used to trigger a search for a decidable (or hypothet-
ical) judgment, independent of a particular reconstruction scope. To make any pf
hypotheses of the search context available to the search, I define an operation | - |
that maps a search context €2 to an ordinary context I':

| . | =.
|Q wl — |Q|7 J Hw= «J»Pf
’ 19] otherwise

Any non-pf hypotheses are not relevant and are thus discarded.
Given this definition, the realization of the proof-embedding rule is straightfor-
ward:

|2 FJ

Ao (e et embed

8.2. PROOF ENCODING 169

8.2 Proof Encoding

In this section, I give an overview of how proofs are encoded. In Section 8.2.1,
I show how reconstruction scopes and proof outlines are derived in the standard
formal system. In Section 8.2.2, I show how proof outlines are encoded as binary
certificates.

8.2.1 Reconstruction-Scope Encoding

The general strategy for deriving reconstruction scopes is based on leveraging the
restricted formal system that governs the judgment

I'Fpat

This judgment is defined by the following inference rules (from Section 3.3):

I'Fpeat i I‘l—p@t@
Thpet - Trpet

which enable the code producer to determine precisely when the judgment holds
using derived rules. It is crucial to note that the introduction rule ei is given special
treatment by the logic interpreter. This rule is ignored during proof search, and
only the rules derived from this rule are considered. If not given this treatment,
the e judgment would be exactly equivalent to e, and would thus be much more
difficult to search over.?

The reconstruction-scope formal system of Section 8.1 can now be encoded in
terms of ordinary propositions under the e judgment. As long as each reconstruction
scope is isolated in a distinct “partition” of the total set of propositions, then
the partition can be treated just like a new judgment for the purpose of logic
programming. Any such partition of the propositions will work, but in my derived
system, I select an arbitrary number to tag each reconstruction scope. For example,
the judgment

«p D pl @t»ori

is encoded as
6=6>pDpat

whereas
«6 = el Q t»normEl

is encoded as
32=32De=¢at

The trivial equalities 6 = 6 and 32 = 32 only serve to distinguish the reconstruction
scopes in which the judgments are derived. Any such tokens are suitable for distin-
guishing reconstruction scopes, but the tokens themselves must also be derivable if
they are to be used in derived rules. For example, the inference rule

2Some sort of general-purpose theorem-proving approach would be needed to develop an effective
search strategy.

170 CHAPTER 8. PROOF ENGINEERING

Qv «p 2 p” @t»ori
Qe (p> p' VvV et)ori

ori_right

is derived as
F'6=6>p>p"at
Fr6=6>p>p Vvp'at

ori_right’

In deriving this rule, one wants to be able to easily discharge the left-hand side of the
implication (6 = 6) in the premise to get at the real content of the judgment—the
reconstruction scopes are just superficial tags.

Because judgments are distinguished internally, an ordinary context I' can rep-
resent the search context 2. Also, in my implementation, the pf reconstruction
scope can be given a trivial encoding (e.g., J is encoded as J), because the spe-
cific uses of pf never intersect the encodings of other reconstruction scopes. Thus,
the context-conversion operation | - | from Section 8.1.14 is the identity under this
encoding.

Proof outlines can also be encoded as (trivially true) propositions. For example,
the proof outline

eval_tail(ck.z)

becomes
2=2AT

An encoding for proof outlines is needed because they are part of several recon-
struction scopes, and same criteria apply to the selection of a “good” encoding.

I do not present the complete encoding here, because it is a rather superficial
detail (many equivalent encodings will work), but see the LF implementation for
details.

8.2.2 Binary Encoding

The code producer attaches a fixed prelude to the front of each safety proof. The
bulk of the prelude is made up of definitions and derived rules, but it also contains
a binary decoding that specifies how binary strings in the certificate are decoded
into proof outlines. This decoding is developed by the code producer, and can be
tuned to the particular proof outline representation that is derived in the rest of
the prelude. Thus, the decoding yields many of the information-density benefits of
an “oracle string” [NRO1], but the oracle string interpreter need not be built into
the logic-program interpreter.

Note that because the decoding operation can be performed in a separate step
before the logic-program interpreter is run, the decoder need not be correct in
order to preserve the integrity of the checker. The decoder can be treated as an
untrusted component that “usually” produces a valid proof outline. If the proof
outline happens to be invalid because of a bug in the decoder, then the logic-
program interpreter will reject it just as if the code producer supplied an invalid
proof. The decoder must still be safe in the sense that it must not compromise the
integrity of the proof checker. This is one reason not to allow the code producer to

8.2. PROOF ENCODING 171

supply an arbitrary decoding program, but see Necula and Schneck [NS03] for an
exploration of such an approach.

The proof decoding is specified as a series of grammatical rules that determine
how a binary string is decoded into an LF term. Because the proof decoder is
essentially an untrusted component, and because the decoding language operates
at the level of LF terms, I do not develop the decoding language formally here.

172 CHAPTER 8. PROOF ENGINEERING

Chapter 9

Experimental Results

In this chapter, I present the results of my experiments with compiling and checking
various small Java programs with a prototype PCC implementation. The bench-
mark results show that proof sizes and proof checking times are both in linear
proportion to the size of the corresponding program.

The benchmarks are small because the proof checking overhead is still substan-
tial enough to make it impractical for larger programs. Additionally, because I
only implement a core “C-like” subset of the Java language, 1 generally cannot use
publicly available Java code for my experiments. For example, my implementation
does not currently support jump tables (i.e., switch statements), subtyping, virtual
methods, exception handlers, or floating-point numbers.

However, the benchmarks do provide sufficient information for me to set a rea-
sonable expectation as to the proof sizes and proof checking times for some larger
programs. The benchmarks contain a mix of Java methods that implement stan-
dard computer science algorithms in an attempt to profile the code in an “ordinary”
application. Because the proof of each method is checked independently, the bench-
mark results for a larger program that is made up of largely similar methods will
be a simple multiple of the results presented here. Thus, it is reasonable to expect
continued linear growth for “ordinary” larger programs—more precisely, those ap-
plications that are composed of additional methods that are not too different from
the methods examined here.

9.1 Performance Analysis

In this section, I analyze the cost of my implementation in terms of proof size and
proof checking overhead. These costs do not include the size of a fixed prelude that
contains definitions, derived rules, and the binary encoding (see Chapter 8). Because
the prelude is fixed by the compiler and the certification strategy, it is identical for
all programs that are certified by the same implementation. Thus, there is some
additional engineering flexibility in terms of how the prelude is transmitted to the
code consumer. For example, it could be downloaded “on demand” over the Internet
by the code consumer, cached locally, and only checked once, even though many

173

174 CHAPTER 9. EXPERIMENTAL RESULTS

Program Procedures Source Lines Object Size
Alloc 1 8 44
Binary Search 1 29 124
Bubble Sort 1 32 140
Checksum 1 13 64
Clone 1 14 104
Dec 1 13 16
Fact 1 13 28
Fib 1 22 56
Filter 1 8 24
Heap Sort 6 99 768
Huffman 5 102 1168
Loop 2 13 12
Matrix 10 91 1488
Matrix Multiply 2 21 292
Matrix Transpose 1 12 140
Merge Sort 3 76 648
Min 1 8 40
Negative Abs 1 8 40
Nop 1 7 8
Not 1 8 24
N Queens 2 52 604
Packet 1 8 64
Quicksort 1 53 328
Reverse 1 11 88
Swap 1 11 76

Table 9.1: Benchmark Programs

programs may depend on it. Because the prelude is a fixed overhead, I do not include
it in the cost measurements of the benchmark programs. The measurements here
only reflect costs that are proportional to the size of the program being certified.

I summarize the benchmark programs I used for my experiments in Table 9.1.
See Appendix C for the complete source code for these programs.

In Figure 9.1, I plot proof size (in bytes) against code size (also in bytes). As
is evident from the graph, proof size is roughly in linear proportion to code size. 1
expect this trend to continue for larger program sizes with a similar mix of methods.
Because each method is verified independently, increasing the program size simply
adds the size of the additional safety proofs to the total proof size. The effect of
adding large and /or atypical methods to a program is less predictable. My approach
to certification is based on the Special] [CLNT00] symbolic evaluator, which has
an exponential worst case. However, exponential proof sizes or checking times are
rarely seen in practice, and techniques have been developed to mitigate this potential
liability [FS01].

9.1. PERFORMANCE ANALYSIS 175

2500

2000

I
|

I
|

1500

1000

Proof Size (bytes)
I
(o
|

500 =

N ! ! ! ! ! !
0 200 400 600 800 1000 1200 1400 1600

Object-Code Size (bytes)

Figure 9.1: Proof Size

25

20 o -

15 - -

10 + ° -

Proof-Checking Time (seconds)

<><>

0 e | x x x x x x
0 200 400 600 800 1000 1200 1400 1600

Object-Code Size (bytes)

Figure 9.2: Proof-Checking Time

176 CHAPTER 9. EXPERIMENTAL RESULTS

120000 I
<o

100000 — —
&) 80000 + —
g
<
5 60000 +— © —
8 o
a, <&
S 40000 —
a0
Q
= <o

20000 +— © —

¢
0 M | | | | | | |

0 200 400 600 800 1000 1200 1400 1600
Object-Code Size (bytes)

Figure 9.3: Logic-Program Goals

In Figure 9.2, I plot proof checking time (in seconds) against code size (in bytes).
Proof checking times were measured on a 1.66 gigagertz AMD Athlon XP 2000+
PC with 512 megabytes of RAM! running under Debian GNU/Linux 3.0r2 with
kernel 2.4.18. T implemented my own LF logic interpreter (see Section 9.2) for proof
checking. The logic interpreter was compiled by The Objective Caml System release
3.04.

Proof-checking time appears to be linear in the size of the object code. Although
this is a promising indicator, the total cost of proof checking is much higher than
for a conventional PCC implementation. For example, SpecialJ takes at most 130
milliseconds to check any of the programs in my sample set. Currently, this is the
most serious barrier to general practicality for my implementation.

In Figure 9.3, I plot the number of logic-program goals required to check a
program against the code size of the program (in bytes). As is apparent from the
graph, the number of goals is also a linear function of code size.

Finally, in Figure 9.4, I plot the time required to translate a SpecialJ safety
proof into a fully-explicit safety proof.2 The times here are relatively small when
compared with proof-checking time—this suggests that my implementation would
benefit by shifting additional work from the code consumer to the code producer.
However, it is not presently clear how this can be accomplished without making
the proof checker unacceptably complex or without making proofs unacceptably
large. The apparent 2 second “start up” time is the time required to load the proof-

'Note that the logic interpreter itself never uses more than 100 megabytes of RAM.

2These times do not include the Special] compilation or certification time—certifying compi-
lation typically takes slightly less than 1 second, irrespective of which particular benchmark is
compiled.

9.1. PERFORMANCE ANALYSIS 177

14 :
)
s 12 o
5
%
& 10 - -
& o
£ 8- o ° -
g
5 or ¢ 1
g
5 4 °¢ .
&) S
kS
o) 2]
fad}
(ol

0 | | | | | | |

0 200 400 600 800 1000 1200 1400 1600
Object-Code Size (bytes)

Figure 9.4: Proof-Construction Time

generation logic program into Twelf. I used Twelf [PS99] version 1.3 to generate
proof outlines, and as a development environment for the LF representation and
derived rules. Twelf is an implementation of the LF logical framework that also
contains an interpreter for the Elf constraint logic programming language.

In Figure 9.5, I compare the proof sizes obtained by my implementation with
each of two possible proof encodings supported by SpecialJ. The graph labelled
“LFi” shows the proof sizes obtained for my benchmarks by the original implicit
LF proof representation [NL98b]. The implicit LF representation condenses an ex-
plicit proof of a VC by removing redundant type information from the LF encoding
of the proof. The graph labelled “Oracle” shows the proof sizes obtained for my
benchmarks by the newer “oracle-based” proof representation [NRO1]. The oracle-
based proof representation operates by encoding a certificate as the set of choices
that a nondeterministic logic interpreter makes in reconstructing an explicit VC
proof. Note that neither of the Special] proof representations supports founda-
tional proofs, so the code producer in my PCC infrastructure has a significantly
more substantial proof obligation. As is apparent from the graph, the certificates
produced by my implementation are significantly smaller than those produced by
the implicit-LF representation, and are usually within a factor of two of oracle-based
proofs.

Note that I include the cost of “code annotations” in the proof sizes for the LFi
and oracle-based representations. These code annotations contain procedure spec-
ifications and loop invariants that are needed by the SpecialJ symbolic evaluator.
Because these annotations take up space in the certificate, and because my certifi-
cates need no such annotations, it is reasonable to include them in the proof-size

178 CHAPTER 9. EXPERIMENTAL RESULTS

5000 ‘
4500
4000 / 4
3500 / 4
3000 / :
2500 / 4
2000
1500)
1000
500 - o :

Proof Size (bytes)

Oracle

et x x x x x x

0 200 400 600 800 1000 1200 1400 1600 1800
Object-Code Size (bytes)

Figure 9.5: Proof-Size Comparison
measurements for the two SpecialJ representations.

9.2 The Logic Interpreter

As T explain in Section 8.1, a logic interpreter reconstructs proofs of safety from min-
imal outlines. The logic interpreter is thus a key component of the proof-checking
implementation. Any derivation that is omitted by the code producer triggers a
search for the necessary judgment using the bottom-up proof-search strategy of the
logic interpreter. If the search succeeds, then type checking succeeds for the omit-
ted derivation, otherwise the (partial) proof is rejected. Thus, the code consumer
expects to see an explicit safety proof with some derivations omitted—in practice,
the code producer will omit almost the entire proof, but my approach gives the
code producer the flexibility to choose any agreeable balance between explicit and
omitted proofs.

Note that there is a natural tension between the sophistication of the logic
interpreter and the trustworthiness of the proof checker. One would like the fastest
possible logic interpreter to minimize proof checking time, but faster interpreters
tend to be more complex than their slower, but simpler counterparts. Thus, the
system designer must choose an appropriate tradeoff between speed and complexity
for the proof checking infrastructure. For my implementation, I have chosen a
particularly conservative point on the complexity-speed scale. The logic interpreter
adds less than two thousand lines of ML source code to my LF type checker, but
the resulting implementation is several hundred times slower than the Speciall]
proof checker. It remains to be seen whether there is a better engineering “sweet

9.2. THE LOGIC INTERPRETER 179

spot” on the scale that brings proof checking times closer to SpecialJ, yet without
compromising the trustworthiness of the proof checker.

The logical syntax and inference rules are themselves encoded in the LF logical
framework [HHP93] in order to preserve a certain amount of flexibility in the im-
plementation. The LF signature is the formal specification for the logical syntax
and inference rules, and is also specified in terms of LF language elements. The
LF signature must be trusted by the code consumer in my implementation—see
Appendix B for a complete listing of the trusted LF signature.

The untrusted logic program is constructed from derived rules to ensure that
the trace of any logic-program run has a derivation in the original trusted signature.
Thus, the code producer effectively extends the original signature by defining new
rules in terms of old ones. My proof checker supports two kinds of definitions to
extend the signature: abbreviations and derived rules. Abbreviations are simply
a notational device that are expanded immediately when they are encountered.
Derived rules, in contrast, are never expanded. In LF terminology, they only attest
to the inhabitation of a given type, and the identity of the original term is lost and
replaced by a fresh constant. It is also possible to treat all definitions uniformly
as fresh constants, and only expand these constants when the precise identity of
a particular constant is relevant [PS98b]. However, this approach to definitions
requires an additional strictness check when the constant is defined, which adds
some complexity to the proof checker, in addition to the additional logic required to
implement equality testing correctly. Because I want to simplify my implementation
as much as is practical, I use a simpler, but less general approach.

The logic-program interpreter embedded in my proof checker is based on a
deterministic search over LF constant declarations. The semantics is based on
Cervesato [Cer98], except that clauses are tried in an unspecified order, and the
logic interpreter never considers an alternative once a given goal succeeds (i.e., it
never backtracks). A deterministic semantics enables me to aggressively index the
signature as in Necula and Rahul [NRO1]. Additionally, I can avoid a significant
source of overhead in standard logic interpreters, because my interpreter need not
keep track of where existential variables are instantiated to support backtracking.
Unification is based on Pfenning [Pfe91], and is thus decidable for higher-order pat-
terns [Mil91]. A higher order pattern is a higher-order term in which each function
variable is applied to distinct bound variables (only). Because unification is sup-
ported only for a decidable fragment, no additional certificate information is needed
to guide unification (e.g., as in Necula and Rahul [NRO1]).

Note that, in general, it is not sound to search for an arbitrary LF term using a
logic program semantics unless the missing term is in an irrelevant position. A term
is used irrelevantly when no other type can depend on the precise identity of the
missing term [Pfe01]. I take a simple approach to proof irrelevance by only enabling
logic program searches for a distinguished type of “proofs,” on which no other terms
can depend.? This is effectively the same restriction that Necula and Rahul [NRO1]
use in their oracle-based logic interpreter. Pfenning [Pfe01] has developed a more

3The signature is constructed in such a way that a term of type “proof” can never appear in a
normal-form type.

180 CHAPTER 9. EXPERIMENTAL RESULTS

500

I I
_-Unopt.
Z 450 P
g 400 .
3 L
Z 350 - il
] s
£ 300 _
E‘ ///
X 250 - .
2 200 / |
8 .
-q 150 — /// —
Q
«k 100 |- |
2 50
£ - _
0 Ll T 9P}

0 200 400 600 800 1000 1200 1400 1600 1800
Object-Code Size (bytes)

Figure 9.6: Signature Indexing

general framework for treating proof irrelevance in which irrelevant terms are given
distinct LF types from relevant ones. Although this is clearly a more systematic
approach to the proof irrelevance problem, it also requires a significantly more
complex proof checker, and the effect of the new type system on the implementation
of unification is still the subject of active research [Ree03].

The effect of indexing the signature is quite dramatic, as I illustrate in Fig-
ure 9.6 (the proof-checking times reported in Figure 9.2 include the effect of this
optimization). In this figure, the “Opt.” graph plots proof-checking time against
code size for an indexed signature, whereas “Unopt.” plots the same variables for
an unindexed signature. I use an indexing strategy that is very similar to Necula
and Rahul [NRO1]—although this strategy is unsound in the sense that it requires
a second, full unification pass to filter out clauses that do not match, it appears
to be quite effective in quickly reducing the number of clauses that must be con-
sidered by the general unification algorithm. Note that the vast majority of my
logic-program goals fall into the so-called “first-order” fragment (i.e., unification
is not actually performed on terms with a function type). A notable weakness of
the Necula and Rahul strategy is that it does not effectively filter functional terms,
so my interpreter may not perform as well for a more complex signature. Note
that a more comprehensive approach to signature indexing has been developed re-
cently [Pie03a, Pie03b], so it would be instructive to implement this approach in
my system to determine whether proof-checking times can be improved.

A less substantial, but still significant, optimization is obtained by hash cons-
ing [AdRG93] the application of an LF constant to another constant (again, the
proof-checking times reported in Figure 9.2 include the effect of this optimization).

9.2. THE LOGIC INTERPRETER 181

30 I_-"Unopt.
) -~
=) e .
g 25+ Ve Opt —
o) -
Q -
[} -
=z -
o 20 - = —
£
& e
a0 15 — /// —
-S //
g 10 e -
@) s
ol 7
o _ -
<} 5 - 7
— -
ol e
0l=—"_1 x x x x x x x

0 200 400 600 800 1000 1200 1400 1600 1800
Object-Code Size (bytes)

Figure 9.7: Hash-Consed Applications

This optimization operates by keeping a table of all constant applications that have
been seen by the proof checker. Whenever a new LF term (¢ ¢2) is to be created, the
table is first checked for an existing copy of (cic2). If such an application is found,
then the existing term is used instead of creating a fresh term. If this approach is
followed systematically, then any two constant applications (cicp) and (¢fch) can
be compared for equality in constant time by checking the physical (i.e. address)
equality of the terms (cjc2) and (¢ ch). This approach generalizes naturally, so that
arbitrarily large terms can be compared in constant time if they are composed solely
of LF constants and LF applications. The effect of this optimization is summarized
in Figure 9.7: “Opt.” plots proof-checking time against code size when hash-consing
is used for constant applications, whereas “Unopt.” plots the same variables for an
unoptimized interpreter.

The hash-consing optimization results in an average percentage gain of 13.6%
(geometric mean) on proof-checking time for my benchmarks. This gain can be
partially attributed to the fact that my LF signature contains a large number of
constant applications. For example, the temporal-logic expression

addw(3,4)
is represented internally as the LF term
fun/app2 wd wd wd wd/#add (con/‘ wd (wd/# 3)) (con/‘ wd (wd/# 4))

which is collapsed down to a single constant by the hash-consing optimization.
Constants, parameters, functions, and relations are “stratified” in my LF encoding
to facilitate syntactic checks such as rigidity and locality.

182 CHAPTER 9. EXPERIMENTAL RESULTS

Chapter 10

Conclusion

I have developed a PCC system in which the software infrastructure is based on
checking a security proof against an explicit temporal-logic security-policy specifi-
cation.

The contributions of this research are as follows:

Enforcement for Reactivity Properties My enforcement mechanism enables
the code consumer to specify an arbitrary temporal-logic security property
as a proof obligation. These properties are known as the reactivity prop-
erties [MP90] and include all safety properties as well as the most familiar
liveness properties. Additionally, I have developed a thorough formalization
of memory safety and the core of the Java type system that can be used
directly by my implementation.

A Program Logic for Invariance Properties My program logic is suitable for
proving arbitrary invariance properties of machine language programs. The
inference rules of the logic are themselves derived rules in my temporal-logic
framework, so their soundness can be established without an appeal to an
informal argument. Additionally, I have developed an automatic proof con-
struction algorithm that can be applied to any invariance property for which
appropriate loop invariants and residual proofs can be found. Thus, my proof
construction algorithm addresses the domain independent part of the proof-
construction problem—once a suitable type system or verification tool is avail-
able for a particular domain of security properties, the code producer need
only adapt this tool to the generic program logic. Rules for loop invariants,
conditional branches, and procedure calling conventions are provided by the
program logic. I have demonstrated that this approach is practical by ap-
plying the certification algorithm to Java type-safety proofs emitted by the
SpecialJ compiler [CLN*00].

Proof Engineering for End-to-End Proofs I have developed an approach to
proof engineering that enables a PCC system that is based on foundational
principles' to yield proof sizes that are competitive with conventional PCC

!Such systems [App01] are characterized by their reliance only on a generic set of logical inference

183

184 CHAPTER 10. CONCLUSION

systems. My enforcement mechanism obliges the code producer to construct
an end-to-end security proof, in which a specific security property is derived
from a generic set of logical inference rules and a formal encoding of a machine
semantics. Although proof checking is significantly more time consuming,
compact proofs require very little in terms of additional trusted code—in
fact, my PCC system requires significantly less trusted executable code than
a conventional PCC system such as SpecialJ, because there is no trusted VC
generator.

A Temporal-Logic Framework for PCC I have developed an extensive frame-
work for temporal logic (including a model-theoretic semantics and an in-
formal proof of soundness) that is suitable for use in PCC applications. The
temporal-logic framework includes an implementation in the LF logical frame-
work [HHP93] that supports machine-checkable proofs. Additionally, I have
developed a formal machine model within this framework that supports a
useful fragment of the IA-32 instruction set [Int01].

A Foundation for SpecialJ A significant part of the development effort has gone
into deconstructing the logical formalization of the Speciall infrastructure
such that it can be justified on more foundational grounds. For example, the
encoding of type safety in my implementation (see Chapter 5) exposes an
explicit security register for the type assignment that is left implicit in the
Special] implementation as well as in Touchstone [Nec98]—this treatment
makes the argument for type safety more transparent, and makes it less likely
that the code consumer will be compromised due to an incorrect informal
argument. As an additional example, the well-formedness condition on the
memory is now a derived concept that clarifies which heap-structure invariants
must be preserved by the trusted run-time procedures. Finally, many trusted
inference rules in the Special] implementation (e.g., conditional operators)
have formal derivations in my implementation that are based directly on the
TA-32 machine semantics, and thus need no longer be justified informally.

I view the current implementation as a platform for expressive security policies in
PCC. The temporal-logic framework and the derived program logic are implemented
in such a way that they will be stable under various extensions such as new security
policies, type systems, machine instructions, and source-language features. This
modularity means that existing derivations and meta-theoretic results will not need
to be reproved as new features are added. The motivation for this approach to
modularity is well articulated in Wright and Felleisen [WF94] in the context of a
syntactic programming-language type soundness argument.

rules and a formal encoding of a machine semantics, as opposed to a program analysis tool that
derives an intermediate property, such as a VC generator.

10.1. RELATED WORK 185

10.1 Related Work

There has been a great deal of interest in certifying object code for particular safety
properties. In this section, I review the work to date in this area and show where
my approach fits into the current spectrum of technologies.

For the purpose of this review, I categorize the current research as either proof-
carrying code (PCC) or typed assembly language (TAL). In PCC, the code producer
provides the code consumer with an explicit derivation of safety in an undecidable
formal system. In TAL, the code producer supplies type information that is suf-
ficient for the code consumer to reconstruct a derivation of safety in a decidable
formal system. Both approaches normally rely on type systems to establish safety
properties. However, in a typical PCC type system, types are assigned only to data,
not to both code and data.

Either PCC or TAL can be foundational in the sense that the code consumer
is equipped with only a minimal standard formal system (e.g., higher-order logic)
that is not specifically engineered to enable efficient safety checking. Foundational
systems provide a flexibility benefit because safety proofs can be developed in a more
general framework, and a trustworthiness benefit because the trusted computing
base (T'CB) is smaller and more standard. I do not consider the original PCC [NL96]
and TAL [MWCGY8] research to be foundational in this sense.

10.1.1 PCC

Necula and Lee [NL96, Nec97] developed the first PCC system, capable of certify-
ing object code for memory safety. They later extended this approach to enforce
resource bounds [NL98c|, and Necula developed the first certifying compiler as part
of his dissertation research [Nec98]. The development of the conventional PCC ar-
chitecture culminated in the work of Necula and Rahul [NRO1], in which proof sizes
were dramatically reduced through the use of an “oracle-based” theorem prover.
Recently, Necula and Schneck [NS03] have proposed a new architecture for PCC in
which most of the VC generator component is supplied by the code producer. This
design promises to provide many of the benefits of the foundational approach to
conventional PCC.

Appel and Felty [AF00] were the first to argue that the VC generator is a signifi-
cant liability in a conventional PCC system—their alternative is foundational proof-
carrying code (F-PCC). They proposed instead to derive a formal proof obligation
in higher-order logic based only on the program text and a fixed safety policy. The
type system is an untrusted, derived component in this framework, and the proof
checker is the only trusted component. The soundness of the type system is estab-
lished by a formal argument. The original such proofs were semantic, but Hamid, et
al. [HST*02] developed a simpler syntactic argument. Chen, et al. [CWAF03] have
recently developed an improved type system for F-PCC that may lead to a practical
implementation. Current F-PCC type systems resemble TAL type systems. The
key departure from foundational TAL (see below) is that the underlying trusted
formal system is higher-order logic, rather than another TAL.

186 CHAPTER 10. CONCLUSION

10.1.2 TAL

The original TAL was developed by Morrisett, et al. [MWCG98, MCGW98] for an
abstract assembly language; soundness was established by an informal syntactic ar-
gument. TAL was later adapted to a more realistic machine architecture [MCG™99],
and extended to cover more “expressive” safety policies. Walker [Wal00] developed
a TAL based on security automata. This version of TAL is novel because, like my
system, the safety policy is a parameter of the enforcement mechanism. Security
automata were introduced by Schneider [Sch99] as a formal representation for safety
properties. Crary and Weirich [CWO00] developed a TAL that to enforce resource
bounds. Crary, et al. [CWM99] developed a TAL to enforce safety policies based
on a capability calculus which can ensure the safety of explicit deallocation.

The foundational approach to PCC has been recently applied to TAL. In such a
system, the TAL that is used for type checking is derived formally from a simpler,
undecidable TAL. Crary [Cra03] was the first to pursue this line of research, and it
may soon result in a practical implementation [CS03].

10.1.3 TL-PCC

I see TL-PCC as an intermediate point between F-PCC and conventional PCC—the
key departures from F-PCC are in motivation. For TL-PCC, I am more interested in
additional flexibility, rather than additional trustworthiness. Additionally, practi-
cality and scalability are more important than absolute trustworthiness. Essentially,
I am adapting conventional PCC tools to a more foundational infrastructure.

A key distinction between F-PCC and current TL-PCC is that the type system
in F-PCC is derived, as opposed to being trusted. However, a trusted type system
is not an necessary attribute of a TL-PCC system. Essentially, I view the foun-
dational justification of the type system as a separate problem from developing an
infrastructure for end-to-end safety proofs that does not require a VC generator. A
TL-PCC system could also be based on a derived type system, given a sufficiently
expressive logic such as higher-order logic. Note, however, that a trusted type sys-
tem is needed if the untrusted program is to use a run-time system with a typed
interface, as is the case for SpecialJ.

Appel, et al. [AMSV02] originally suggested that a simple Prolog interpreter
might be suitable for reconstructing derived typing derivations in F-PCC; each such
rule infers the type of an instruction, as in TAL. This approach was implemented
for F-PCC recently [CWAF03] using a commercial Prolog compiler. Proof-checking
times for this implementation are promising, but the size and complexity of the
Prolog compiler makes it unsuitable for deployment in an actual PCC system.

I expect that the proof outline technique could also be applied to TAL typing
derivations, and that my proof-checking times would improve as a result. One should
expect better checking times because TAL typing rules carry less state information
than does a symbolic evaluator. However, instruction-based typing rules must be
tailored to a specific safety policy to obtain their efficiency advantages, and therefore
some of the flexibility benefits of TL-PCC would be lost by using this approach.

10.1. RELATED WORK 187

Necula and Rahul [NRO1] first experimented with using a logic-program inter-
preter for PCC. My work takes this approach a step further by interpreting an
external, untrusted logic program, rather than an internal, trusted logic program.
Proof outlines resemble oracle strings, except that in the case of proof outlines, the
interpretation of the oracle string is performed by untrusted derived rules, rather
than by the logic interpreter itself. Aside from reducing the complexity of the logic
interpreter, I also obtain an important flexibility advantage, because one can cus-
tomize the constraint representation according to the proof generation strategy, and
because one has direct control over how many bits are “spent” for any given choice.
An unconstrained search can also be invoked on a judgment that is known to be
decidable, and thus ensure that no bits are needed to reconstruct the derivation.

10.1.4 Other Related Work

In Section 2.1.1, Section 2.1.2, and Section 2.1.3, I introduced Schneider’s security
policy formalism and surveyed approaches to security-policy specification, including
PCC, TAL, SFI, and safe interpreters. In this section, I discuss additional related
work.

Efficient code certification (ECC) [Ko0z98] is primarily concerned with minimiz-
ing the overhead of an enforcement mechanism for self-certified code. The ECC
enforcement mechanism relies on annotations to the object code that provide basic
type information and describe calling conventions. These annotations are inserted
by a compiler for a type-safe language. The ECC safety property is designed to be
as simple as possible, and is essentially defined by the implementation. It provides
a basic level of control-flow safety, memory safety, and stack safety.

The SwitchWare active network architecture [AAH198] stratifies the enforce-
ment mechanism into two levels. At the top level, agents carried by SwitchWare
packets are written in the PLAN programming language [HKM™98, HK99] and
are checked against a type system that ensures basic type safety and termination.
PLAN programs are also permitted to invoke more general service routines that
are written in a dialect of Objective Caml. Service routines are checked against a
type system, and the visibility of sensitive services is controlled through name-space
management. Additionally, access control and other security policy constraints may
entail run-time checks. Run-time checks are based on a cryptographic certification
system that verifies the principal on whose behalf the service routine is invoked.
This two-level implementation processes many kinds of network packets efficiently,
because they do not invoke the relatively expensive authentication mechanisms.

Many services in the SPIN operating system [BSPT96] are implemented by
extensions that dynamically link with the kernel. Such extensions are compiled
from the type-safe Modula-3 programming language and thus satisfy a basic type-
safety property. Service constraints are imposed by controlling the visibility of
sensitive entry points through an explicit representation of interfaces [SFPB95].
Grimm and Bershad [GB99, GB97] developed an access control system for SPIN
that enforces relatively fine-grained security policies. Their access control system
is based on distinct protection domains and features a strong separation of policy

188 CHAPTER 10. CONCLUSION

from enforcement. The enforcement mechanism is based on run-time checking.

The J-Kernel [HCC'97] extends the Java security model with multiple protec-
tion domains within a single virtual machine. The J-Kernel implements a capability
system in which system classes are replaced by dynamically-generated stub classes.
The J-Kernel automatically instruments the byte code of the agent. Unfortunately,
the J-Kernel imposes significant run-time overhead on cross-domain calls. This
overhead comes in part from object argument duplication.

Czajkowski and von Eicken [CvE98] developed a class library called JRes that
monitors the resource consumption (e.g. heap allocation, processor time) of Java
programs. JRes can also control the resource consumption of database exten-
sions [CMSvE98]. JRes employs byte-code instrumentation and run-time checks,
and can terminate a thread once its resource limit is exceeded. The resource bound
parameters of JRes are specified by Java code that calls the JRes API. This code
configures the run-time environment and determines the corrective action to take
when a resource limit is exceeded. JRes employs a limited form of abstract security
policy specification, because the parameters (although not the overall character)
of the security policy can be changed without re-implementing the enforcement
mechanism.

Naccio [ET99] is an enforcement mechanism for Java and Win32 programs that
is based on a concrete safety-property language. The language interpreted by Nac-
cio resembles Java and is similar in intention to the language proposed in this
document—it is limited, however, to safety properties that can be expressed as con-
straints on system calls. Safety properties are stratified into platform-independent
resource descriptions and safety policies, in addition to platform-dependent platform
descriptions, which map system procedures onto resource descriptions. Naccio is
implemented by code instrumentation: all protected system procedures are replaced
by procedures that contain the necessary run-time checks. The agent is addition-
ally rewritten to call the wrapper libraries and to prevent it from subverting the
enforcement mechanism.

Myers and Liskov [ML97, ML98] developed a type system for statically verify-
ing information flow constraints. This research augments a basic type system with
features (e.g., declassification) to make it a practical extension of a programming
language—Myers [Mye99] implemented such an extension (JFlow) to the Java pro-
gramming language. Information flow constraints are statically verified, so JFlow
requires little run-time overhead, and can enforce security policies that cannot be
enforced by run-time checks. Volpano, Smith, and Irvine [VSI96] formalized the lat-
tice model of Denning [Den76, DD77] as a type system for an imperative language.
Smith and Volpano [SV98] generalized this type system to concurrent systems.

The SLam calculus [HR98] is an extension of the lambda calculus that tracks
security information as well as type information. The security information allows
information flow and access control security properties to be checked by the type
system. Abadi, Banerjee, Heintze, and Riecke [ABHR99] developed a calculus of
dependency that generalizes many information flow calculi, including the SLam
calculus. The spi calculus [AG97, Aba97] is an extension of Milner’s 7 calculus
that has cryptographic language primitives—a type system verifies cryptographic

10.2. FUTURE WORK 189

protocols for secure information flow.

10.2 Future Work

There are currently eight judgments in the trusted signature to support term rewrit-
ing. It is plausible that these could be converted into derived forms based on the
single o judgment, as for proof outlines. However, there may be a noticeable per-
formance cost to adopting this approach because rewriting is used so heavily by my
implementation.

In order to enable a simple logic program to search for an omitted term of a
given LF type, one must know in advance that any term of the desired type is
acceptable. In the terminology of Pfenning [Pfe01], the particular identity of the
omitted term is irrelevant, and one is only interested in whether or not the type is
inhabited. It is possible to extend the LF type system to track proof irrelevance
explicitly [Pfe01], and thus ensure that a search is never triggered for a “relevant”
term. Currently, search is restricted to a built-in proof type, and I must manually
inspect the trusted signature to ensure that it is not possible for a proof to appear
in a relevant position of the normal form of any type. A type system with a built-in
notion of proof irrelevance would enable me to automate this check and to generalize
searches, but at the cost of some complexity.

10.2.1 Certification

In this section, I suggest possible future approaches to certifying security properties
in my PCC infrastructure.

Instrumentation techniques for security automata [Sch99] are applicable to the
proof-generation problem. Security automata can specify all safety properties, and
program transformations exist [ES00, Wal00] that will guarantee in many cases
that such properties hold. A security automaton that has been threaded through a
program by instrumentation is known is an inline reference monitor (IRM). Adding
an IRM transformation to a certifying compiler would considerably broaden the
class of safety policies that can be automatically certified, because the run-time
checks inserted by instrumentation make it relatively straightforward to satisfy proof
obligations. In this architecture, the IRM tool becomes an untrusted component
that the code producer uses to adapt the program to the safety policy—the code
consumer need only verify that sufficient run-time checks were inserted.

An alternative approach to certification might rely on a type and effect sys-
tem [MWHO03, FD02, FA99, LG88] at the source-code level. In such a system, the
certifying compiler only accepts programs that are first checked by the type and
effect system. The type and effect information is propagated through the compiler
such that a well-typed source program produces a well-typed object program. In
such a system, the programmer effectively constructs the proof of safety by ex-
hibiting a well-formed program in a decidable formal system. The code consumer
can either adopt the object-level type and effect system as a new trusted formal

190 CHAPTER 10. CONCLUSION

system, or, alternatively, the type and effect system might be derived (as in foun-
dational PCC [App01]) such that the desired safety properties are a consequence of
the encoding of the derived system (e.g, see Section 6.4).

A third approach to certification might rely on existing automatic or interac-
tive program-verification tools (e.g., SLAM [BR02, BMMRO1]). This is a well-
established field of study, so it is appealing to leverage the successful research in
this area, rather than develop a new tool that largely repeats existing work. In
order to use an automatic verification tool to certify a program for PCC, the tool
must be able to generate a formal proof or “witness” that the desired security
property is satisfied. A witness provides a verification tool with sufficient informa-
tion to efficiently check that a property holds. Researchers have been successful
in adding witness-generation capabilities to existing model-checking tools [SD99],
but engineering a compact representation for the proof remains a challenge in some
cases.

10.2.2 Flat Address Spaces

In the interest of simplicity, the abstract IA-32 machine model of Chapter 4 is based
on a “segmented” address space in which a write to the stack cannot overwrite a
location in the heap, and wice versa. However, many processors and operating
systems employ a “flat” address space in which the stack and heap share a common
segment (or no segmentation is possible). My formalization of the abstract machine
model will also be sound for such systems if the code producer can ensure in advance
that stack accesses will be disjoint from heap accesses, and that the stack will not
“overflow” into the heap.? The memory-safety policy from Chapter 5 will in fact
ensure that the stack will not overflow into the heap (given an appropriate boundary
page, as in Section 5.6.4), and that all stack accesses are within one page of the top
of the stack. As long as the stack has not overflowed into the heap, all such accesses
will not touch locations in the heap.

Therefore, the memory-safety policy does in fact ensure that the necessary run-
time properties will hold for the abstract machine formalization to be sound for
a flat address space. It would be attractive to use the proof of memory safety
to justify the soundness of the abstract machine formalization. However, because
the memory-safety proof itself is based on the abstract machine formalization, this
argument employs circular reasoning as stated.

One possible solution to this dilemma might be to index the memory-safety
proof by some parameter such as a maximum execution length or a maximum stack
depth, perhaps following the informal indexed recursion soundness argument in
Necula [Nec98]. To accommodate such an argument, the inference rules for state
transitions could include an additional premise that the heap has not yet collided
with the stack. To take a single step, the code producer would need to show that
no collision has yet occurred. This could be added to each procedure precondition
to certify the first instruction, and then proved by induction for subsequent instruc-

2] presume a conventional address-space layout in which the stack grows downwards and the
heap grows upwards.

10.2. FUTURE WORK 191

tions. This argument might also be made on a meta-theoretic level, perhaps at the
expense of some trustworthiness.

Another possible solution would require the code producer to attach a separate
proof that each memory access respects the aliasing constraints. Such a proof would
be constructed in a simpler, special-purpose formalism that does not encompass the
general-purpose machine model. Once the absence of aliasing is established, then
the more general proof of memory safety could be checked against the segmented
machine semantics of Chapter 4.

192 CHAPTER 10. CONCLUSION

Bibliography

[AAHT98]

[Aba97]

[ABHR9Y]

[ABLPY3]

[AdRG93]

[AF00]

[AF03]

[AG9T]

D. Scott Alexander, William A. Arbaugh, Michael W. Hicks, Pankaj
Kakkar, Angelos D. Keromytis, Jonathan T. Moore, Carl A. Gunter,
Scott M. Nettles, and Jonathan M. Smith. The SwitchWare active
network architecture. IEEE Network Special Issue: Active and Pro-
grammable Networks, 12(3):29-36, 1998.

Martin Abadi. Secrecy by typing in security protocols. In Theoret-
ical Aspects of Computer Software: Third International Symposium,
Proceedings, volume 1281 of Lecture Notes in Computer Science, pages
611-638, September 1997.

Martin Abadi, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke.
A core calculus of dependency. In Proceedings of the 26th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 147-160, San Antonio, TX, January 1999.

Martin Abadi, Michael Burrows, Butler Lampson, and Gordon Plotkin.
A calculus for access control in distributed systems. A CM Transactions
on Programming Languages and Systems, 15(4):706-734, September
1993.

Andrew W. Appel and Marcelo Jose de Rezende Goncalves. Hash-
consing garbage collection. Technical Report TR-412-93, Princeton
University, Computer Science Department, February 1993.

Andrew W. Appel and Amy P. Felty. A semantic model of types and
machine instructions for proof-carrying code. In Proceedings of the 27th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 243-253, Boston, MA, January 2000.

Andrew W. Appel and Amy P. Felty. Dependent types ensure partial
correctness of theorem provers. Journal of Functional Programming,
2003. To appear.

Martin Abadi and Andrew D. Gordon. A calculus for cryptographic
protocols: The Spi calculus. In Proceedings of the Jth ACM confer-
ence on Computer and communications security, pages 3647, Zurich
Switzerland, April 1997.

193

194

[ALLW96]

[AMSV02]

[And86]

[App92]

[App01]

[AS85]

[AS86]

[AS94]

[BLO1]

[BL02a]

[BLO2b)]

[BMMRO1]

BIBLIOGRAPHY

Ali-Reza Adl-Tabatabai, Geoff Langdale, Steven Lucco, and Robert
Wahbe. Efficient and language-independent mobile programs. In Pro-
ceedings of the ACM SIGPLAN ’96 Conference on Programming Lan-
guage Design and Implementation, pages 127-136, Philadelphia, PA,
May 1996.

Andrew W. Appel, Neophytos G. Michael, Aaron Stump, and Roberto
Virga. A trustworthy proof checker. In Serve Autexier and Heiko Man-
tel, editors, Verification Workshop, volume 02-07 of DIKU technical
reports, pages 41-52, July 25-26 2002.

Peter B. Andrews. An Introduction to Mathematical Logic and Type
Theory: To Truth Through Proof. Computer Science and Applied
Mathematics. Academic Press, Orlando, FL, 1986.

Andrew W. Appel. Compiling with Continuations. Cambridge Univer-
sity Press, 1992.

Andrew W. Appel. Foundational proof-carrying code. In Proceedings,
16th Annual IEEE Symposium on Logic in Computer Science (LICS
’01), June 2001.

Bowen Alpern and Fred B. Schneider. Defining liveness. Information
Processing Letters, 21(4):181-185, October 1985.

Bowen Alpern and Fred B. Schneider. Recognizing safety and liveness.
Technical Report TR86-727, Cornell University, Computer Science De-
partment, January 1986.

Andrew W. Appel and Zang Shao. Empirical and analytic study of
stack vs. heap cost for languages with closures. Technical Report CS-
TR-450-94, Princeton University, March 1994.

Andrew Bernard and Peter Lee. Enforcing formal security properties.
Technical Report CMU-CS-01-121, Carnegie Mellon University, School
of Computer Science, April 2001.

Andrew Bernard and Peter Lee. Temporal logic for proof-carrying code.
In Proceedings of the 18th International Conference on Automated De-
duction (CADE-18), volume 2392 of Lecture Notes in Artificial Intel-
ligence, pages 31-46, Copenhagen, Denmark, July 2002.

Andrew Bernard and Peter Lee. Temporal logic for proof-carrying code.
Technical Report CMU-CS-02-130, Carnegie Mellon University, School
of Computer Science, August 2002.

Thomas Ball, Rupak Majumdar, Todd Millstein, and Sriram Raja-
mani. Automatic predicate abstraction of C programs. In Cindy Norris
and Jr. James B. Fenwick, editors, Proceedings of the ACM SIGPLAN

BIBLIOGRAPHY 195

[BN9S]

[BPW02]

[BRO2]

[BSP96]

[Cer98]

[CGP*97]

[CGPYY]

[Cla84]

[CLN*00]

[CMY9]

01 Conference on Programming Language Design and Implementation
(PLDI-01), volume 36.5 of ACM SIGPLAN Notices, pages 203-213,
N.Y., June 20-22 2001. ACMPress.

Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cam-
bridge University Press, New York, 1998.

Andrew Bernard, Frank Pfenning, and M. Angela Weiss. Natural de-
duction for temporal logic. Unpublished manuscript, 2002.

Thomas Ball and Sriram K. Rajamani. The SLAM project: debugging
system software via static analysis. ACM SIGPLAN Notices, 37(1):1-3,
January 2002.

B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. Fiuczynski,
D. Becker, C. Chambers, and S. Eggers. Extensibility, safety and per-
formance in the SPIN operating system. In Proceedings of the Fif-
teenth ACM Symposium on Operating Systems Principles, pages 267—
283, Copper Mountain Resort, CO, December 1996.

Iliano Cervesato. Proof-theoretic foundation of compilation in logic
programming languages. In J. Jaffar, editor, Proceedings of the 1998
Joint International Conference and Symposium on Logic Programming

(JICSLP’98), pages 115-129, Manchester, UK, June 1998. MIT Press.

A. Cimatti, F. Giunchiglia, P. Pecchiari, B. Pietra, J. Profeta, D. Ro-
mano, P. Traverso, and B. Yu. A provably correct embedded verifier
for the certification of safety critical software. In Computer Aided Ver-
ification: 9th International Conference, Proceedings, volume 1254 of
Lecture Notes in Computer Science, Haifa, Israel, June 1997.

Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model
Checking. The MIT Press, Cambridge, Massachusetts, 1999.

Allan Clark. Elements of Abstract Algebra. Dover Publications, Inc.,
New York, NY, 1984.

Christopher Colby, Peter Lee, George C. Necula, Fred Blau, Mark
Plesko, and Kenneth Cline. A certifying compiler for Java. In Proceed-
ings of the ACM SIGPLAN 00 conference on programming language

design and implementation, pages 95-107, Vancouver, BC Canada,
June 2000.

Karl Crary and Greg Morrisett. Type structure for low-level program-
ming languages. In Automata, Languages and Programming: 26th In-
ternational Colloguium, Proceedings, volume 1644 of Lecture Notes in
Computer Science, Prague, Czech Republic, July 1999.

196

BIBLIOGRAPHY

[CMSVEY8] Grzegorz Czajkowski, Tobias Mayr, Praveen Seshadri, and Thorsten

[Com02]

[Cra03]

[CS03]

[CvE9S]

[CWO00]

[CWAF03]

[CWM99)

[Dav96]

[DD77]

[Den76]

von Eicken. Resource control for database extensions. Technical Re-
port TR98-1718, Cornell University, Computer Science Department,
November 1998.

ComputerWire. Really critical hole in microsoft web software. The
Register, November 2002.

Karl Crary. Toward a foundational typed assembly language. In Pro-
ceedings of the 2003 ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, pages 198-211, New Orleans, LA,
January 2003.

Karl Crary and Susmit Sarkar. A metalogical approach to foundational
certified code. In Proceedings of the 19th International Conference on
Automated Deduction (CADE-19), Miami Beach, FL, July 2003. To

appear.

Grzegorz Czajkowski and Thorsten von Eicken. JRes: A resource ac-
counting interface for Java. In Proceedings of the Conference on Object-
oriented Programming, Systems, Languages, and Applications, pages
21-35, Vancouver, Canada, October 1998.

Karl Crary and Stephnie Weirich. Resource bound certification. In Pro-
ceedings of the 27th ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, pages 184-198, Boston, MA, January
2000.

Juan Chen, Dinghao Wu, Andrew W. Appel, and Hai Fang. A provably
sound tal for back-end optimization. In Proceedings of the 2003 ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, pages 208-219, San Diego, CA, May 2003.

Karl Crary, David Walker, and Greg Morrisett. Typed memory man-
agement in a calculus of capabilities. In Proceedings of the 26th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 262-275, San Antonio, TX, January 1999.

Rowan Davies. A temporal-logic approach to binding-time analysis.
In Proceedings, 11" Annual IEEE Symposium on Logic in Computer
Science, pages 184-195, New Brunswick, New Jersey, 27-30 July 1996.
IEEE Computer Society Press.

Dorothy E. Denning and Peter J. Denning. Certification of programs
for secure information flow. Communications of the ACM, 20(7):504—
513, July 1977.

Dorothy E. Denning. A lattice model of secure information flow. Com-
munications of the ACM, 19(5):236-243, May 1976. Papers from the

BIBLIOGRAPHY 197

[Dij76]
[DLNS98]

[DP90)

[DvH66]

[Eme90]

[ES99]

[ES00]

[ET99]

[FA99]

[FD02]

[Fel93]

Fifth ACM Symposium on Operating Systems Principles, November
19-21, 1975.

Edsger W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

David Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe.
Extended static checking. SRC Research Report 159, Compaq Systems
Research Center, December 1998.

B.A. Davey and H.A. Priestley. Introduction to Lattices and Or-
der. Cambridge Mathematical Textbooks. Cambridge University Press,
Cambridge, UK, 1990.

Jack B. Dennis and Earl C. van Horn. Programming semantics for mul-
tiprogrammed computations. Communications of the ACM, 9(3):143—
155, March 1966. Presented at an ACM Programming Language and
Pragmatics Conference, August, 1965, San Dinas, CA.

E. Allen Emerson. Temporal and modal logic. In Handbook of The-
oretical Computer Science, Volume B: Formal Models and Semantics,
pages 995-1072. Elsevier Science Publishers, 1990.

Ulfar Erlingsson and Fred B. Schneider. SASI enforcement of secu-
rity policies: A retrospective. In Proceedings of the 1999 New Secu-
rity Paradigms Workshop, Caledon Hills, Ontario, Canada, September
1999.

Ulfar Erlingsson and Fred B. Schneider. IRM enforcement of Java
stack inspection. In RSP: 21th IEEE Computer Society Symposium on
Research in Security and Privacy, 2000.

David Evans and Andrew Twyman. Flexible policy-directed code
safety. In Proceedings of the IEEE Symposium on Research in Security
and Privacy, Research in Security and Privacy, pages 32-45, Oakland,
CA, May 1999.

Cormac Flanagan and Martin Abadi. Types for safe locking. Lecture
Notes in Computer Science, 1576:91-108, March 1999.

Manuel Fahndrich and Robert DeLine. Adoption and focus: prac-
tical linear types for imperative programming. In Cindy Norris and
Jr. James B. Fenwick, editors, Proceedings of the ACM SIGPLAN
2002 Conference on Programming Language Design and Implementa-
tion (PLDI-02), volume 37, 5 of ACM SIGPLAN Notices, pages 13-24,
New York, June 17-19 2002. ACM Press.

Amy Felty. Implementing tactics and tacticals in a higher-order logic
programming language. Journal of Automated Reasoning, 11(1):43-81,
August 1993.

198

[Flo67]

[FM98]

[FS01]

[GBY7]

[GBYY]

[Gen69]

[GerT8]

[GIS96]

[GMPS97]

[GMWT79]

[G6d31]

BIBLIOGRAPHY

Robert W. Floyd. Assigning meanings to programs. In J. T. Schwartz,
editor, Mathematical Aspects of Computer Science, volume 19 of Sym-
posia in Applied Mathematics, pages 19-32. American Mathematical
Society, Providence, RI, 1967.

Stephen N. Freund and John C. Mitchell. A type system for object
initialization in the Java bytecode language. Technical Note CS-TN-
98-62, Stanford University, Department of Computer Science, April
1998.

Cormac Flanagan and James B. Saxe. Avoiding exponential explosion:
generating compact verification conditions. ACM SIGPLAN Notices,
36(3):193-205, March 2001.

Robert Grimm and Brian N. Bershad. Access control in extensible
systems. Technical Report TR-97-11-01, University of Washington,
Department of Computer Science and Engineering, November 1997.

Robert Grimm and Brian N. Bershad. Providing policy-neutral and
transparent access control in extensible systems. In Secure Internet
Programming: Security Issues for Mobile and Distributed Objects, vol-
ume 1603 of Lecture Notes in Computer Science. Springer Verlag, 1999.

Gerhard Gentzen. Investigations into logical deduction. In M. E. Szabo,
editor, The Collected Papers of Gerhard Gentzen. North-Holland, 1969.

Steven M. German. Automating proofs of the absence of common run-
time errors. In Conference Record of the Fifth Annual ACM Symposium
on Principles of Programming Languages, pages 105—118, Tucson, Ari-
zona, January 1978. ACM SIGACT-SIGPLAN.

James Gosling, Bill Joy, and Guy Steele. The Java Language Specifi-
cation. The Java Series. Addison Wesley, 1996.

Li Gong, Marianne Mueller, Hemma Prafullchandra, and Roland
Schemers. Going beyond the sandbox: An overview of the new security
architecture in the Java Development Kit 1.2. In USENIX Symposium
on Internet Technologies and Systems, Monterey, California, December
1997.

Michael J. Gordon, Arthur J. Milner, and Christopher P. Wadsworth.
Edinburgh LCF: A Mechanised Logic of Computation, volume 78 of
Lecture Notes in Computer Science. Springer-Verlag, 1979.

Kurt Godel. Uber formal unentscheidbare Sitze der Principia
Mathematica und verwandter Systeme I. Monatsh. Math. Phys.,
38(1931):173-198, 1931.

BIBLIOGRAPHY 199

[Gor88|

[Gre97]

[HCC*97)

[HHPY3]

[HK99]

[HKM 98]

[Hoa69]

[HR9S]

[HST+02]

[Int01]

[Kin71]

Michael J. C. Gordon. Mechanizing programming logics in higher order
logic. Technical Report UCAM-CL-TR-145, University of Cambridge,
Computer Laboratory, 15 JJ Thomson Avenue, Cambridge CB3 0FD,
United Kingdom, phone +44 1223 763500, September 1988.

John Greiner. Semantics-based Parallel Cost Models and Their Use
in Provably Efficient Implementations. PhD thesis, Carnegie Mellon
University, April 1997. Available as Technical Report CMU-CS-97-113.

Chris Hawblitzel, Chi-Chao Chang, Grzegorz Czajkowski, Deyu Hu,
and Thorsten von Eicken. Implementing multiple protection domains
in Java. Technical Report TR97-1660, Cornell University, Computer
Science Department, December 1997.

Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for
defining logics. Journal of the ACM, 40(1):143-184, January 1993.
Preliminary version appeared in Proc. 2nd IEEE Symposium on Logic
in Computer Science, 1987, 194-204.

Michael Hicks and Angelos D. Keromytis. A secure PLAN. In Ac-
tive Networks: First International Working Conference, Proceedings,
volume 1653 of Lecture Notes in Computer Science, Berlin, Germany,
June 1999.

Michael Hicks, Pankaj Kakkar, Jonathan T. Moore, Carl A. Gunter,
and Scott Nettles. PLAN: A packet language for active networks.
In Proceedings of the Third ACM SIGPLAN International Conference
on Functional Programming, pages 86—93, Baltimore, MD, September
1998.

C. A. R. Hoare. An axiomatic basis for computer programming. Com-
munications of the ACM, 12(10):576-580, October 1969.

Nevin Heintze and Jon G. Riecke. The SLam calculus: Programming
with secrecy and integrity. In Proceedings of the 25th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages
365-377, San Diego, CA, January 1998.

Nadeem A. Hamid, Zhong Shao, Valery Trifonov, Stefan Monnier, and
Zhaozhong Ni. A syntactic approach to foundational proof-carrying
code. In Logic in Computer Science, pages 89-100, Los Alamitos, CA,
USA, July 22-25 2002. IEEE Computer Society.

Intel. [IA-32 Intel Architecture Software Developer’s Manual. Intel
Corporation, Mt. Prospect, IL, 2001.

J. C. King. Proving programs to be correct. IEEE Transactions on
Computers, 20(11):1331-1336, November 1971.

200

[Koz98]

[Koz99]

[Lam71]

[Lam80]

[LCC*75)

[LG8S]

[LS82]

[LY99]

[MAOO]

[MCG+99]

[MCGW98]

BIBLIOGRAPHY

Dexter Kozen. Efficient code certification. Technical Report TR98-
1661, Cornell University, Computer Science Department, January 1998.

Dexter Kozen. Language-based security. Technical Report TR99-1751,
Cornell University, Computer Science Department, June 1999.

B. W. Lampson. Protection. In Proceedings of the 5th Princeton Sym-
posium on Information Sciences and Systems,. Princeton University,
March 1971. Reprinted in Operating Systems Review 8,1 January 74.

Leslie Lamport. “Sometime” is sometimes “not never”: On the tem-
poral logic of programs. In Proceedings of the Seventh Annual ACM
Symposium on Principles of Programming Languages, pages 174-185,
Las Vegas, Nevada, January 1980.

R. Levin, E. Cohen, W. Corwin, Pollack F., and W. Wulf. Pol-
icy /mechanism separation in hydra. In Proceedings of the Fifth ACM
Symposium on Operating System Principles, pages 132-140, Austin,
Texas, November 1975.

J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In
Conference Record of the Conference on Principles of Programming
Languages, pages 47-57. ACM SIGACT and SIGPLAN, ACM Press,
1988.

Leslie Lamport and Fred B. Schneider. The “hoare logic” of CSP, and
all that. Technical Report TR82-490, Cornell University, Computer
Science Department, May 1982.

Tim Lindholm and Frank Yellin. The Java Virtual Machine Specifica-
tion. Addison Wesley, second edition, 1999.

Neophytos G. Michael and Andrew W. Appel. Machine instruction
syntax and semantics in higher order logic. In Proceedings of the 17th
International Conference on Automated Deduction (CADE-17), June
2000.

Greg Morrisett, Karl Crary, Neal Glew, Dan Grossman, Richard
Samuels, Frederick Smith, David Walker, Stephanie Weirich, and Steve
Zdancewic. TALx86: A realistic typed assembly language. In 1999
ACM SIGPLAN Workshop on Compiler Support for System Software,
pages 25-35, Atlanta, GA, May 1999.

Greg Morrisett, Karl Crary, Neal Glew, and David Walker. Stack-
based typed assembly language. In Types in Compilation: Second In-
ternational Workshop, Proceedings, volume 1473 of Lecture Notes in
Computer Science, Kyoto, Japan, March 1998.

BIBLIOGRAPHY 201

[Mil91]

[ML85]

[ML97]

[ML98]

[MP67]

[MP90]

[MP91]

[MPY5]

[MWCG9S]

[MWHO3]

[Mye99)]

Dale Miller. A logic programming language with lambda-abstraction,
function variables, and simple unification. Journal of Logic and Com-
putation, 1(4):497-536, September 1991.

Per Martin-Lof. On the meanings of the logical constants and the jus-
tifications of the logical laws. Technical Report 2, Scuola di Specializ-
zazione in Logica Matematica, Dipartimento di Matematica, Universita
di Siena, 1985.

Andrew C. Myers and Barbara Liskov. A decentralized model for infor-
mation flow control. In Proceedings of the Sizteenth ACM Symposium
on Operating Systems Principles, pages 129-142, Saint-Malo, France,
October 1997.

Andrew C. Myers and Barbara Liskov. Complete, safe information
flow with decentralized labels. In Proceedings of the 1998 IEEE Sym-
posium on Security and Privacy, pages 186-197, Oakland, California,
May 1998.

J. McCarthy and J. Painter. Correctness of a compiler for arithmetic
expressions. In Proceedings of Symposium in Applied Mathematics, vol
19, Mathematical Aspects of Computer Science, pages 33—41. American
Mathematical Society, 1967.

Zohar Manna and Amir Pnueli. A hierarchy of temporal properties. In
Cynthia Dwork, editor, Proceedings of the 9th Annual ACM Symposium
on Principles of Distribted Computing, pages 377-408, Québec City,
Québec, Canada, August 1990. ACM Press.

Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and
Concurrent Systems: Specification. Springer Verlag, 1991.

Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems:
Safety. Springer-Verlag, New York, 1995.

Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From sys-
tem F to typed assembly language. In Proceedings of the 25th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 85-97, San Diego, CA, January 1998.

Yitzhak Mandelbaum, David Walker, and Robert Harper. An effective
theory of type refinements. In Cindy Norris and Jr. James B. Fenwick,
editors, Proceedings of the Eighth ACM SIGPLAN International Con-
ference on Functional Programming (ICFP-03), volume 38, 9 of ACM
SIGPLAN Notices, pages 213225, New York, August 25-29 2003.
ACM Press.

Andrew C. Myers. JFlow: Practical mostly-static information flow con-
trol. In Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium

202

[Nec97]

[Nec98]

[NL96]

[NL98a)

[NL98D]

[NL98c]

[NROL]

[NS03]

[0°C99]

[ORS92

BIBLIOGRAPHY

on Principles of Programming Languages, pages 228-241, San Antonio,
TX, January 1999.

George C. Necula. Proof-carrying code. In Proceedings of the 24th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 106-119, Paris, France, January 1997.

George Ciprian Necula. Compiling with Proofs. PhD thesis, Carnegie
Mellon University, September 1998. Available as Technical Report
CMU-CS-98-154.

George C. Necula and Peter Lee. Safe kernel extensions without run-
time checking. In USENIX 2nd Symposium on OS Design and Imple-
mentation, Seattle, Washington, October 1996.

George C. Necula and Peter Lee. The design and implementation of
a certifying compiler. In Proceedings of the ACM SIGPLAN 98 Con-
ference on Programming Language Design and Implementation, pages
333-344, Montreal, Canada, June 1998.

George C. Necula and Peter Lee. Efficient representation and validation
of logical proofs. In Proceedings of the 13th Annual Symposium on Logic
in Computer Science (LICS’98), pages 93-104, Indianapolis, Indiana,
June 1998. IEEE Computer Society Press.

George C. Necula and Peter Lee. Safe, untrusted agents using proof-
carrying code. In Mobile Agents and Security, volume 1419 of Lecture
Notes in Computer Science. Springer Verlag, 1998.

George C. Necula and S. P. Rahul. Oracle-based checking of untrusted
software. In Proceedings of the 28th ACM SIGPLAN-SIGACT Sympo-

sium on Principles of Programming Languages, pages 142-154, London,
UK, January 2001.

George C. Necula and Robert R. Schneck. A sound framework for un-
trustred verification-condition generators. In Proceedings, 18th Annual
IEEE Symposium on Logic in Computer Science (LICS ’03), July 2003.

Robert O’Callahan. A simple, comprehensive type system for Java
bytecode subroutines. In Proceedings of the 26th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages
70-78, San Antonio, TX, January 1999.

S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verifica-
tion system. In Automated Deduction: 11th International Conference
on Automated Deduction, Proceedings, volume 607 of Lecture Notes
in Artificial Intelligence, pages 748-752, Saratoga Springs, NY, June
1992.

BIBLIOGRAPHY 203

[Pfe91]

[Pfe97]

[Pfe99]

[Pfe01]

[Pie03a]

[Pie03b)]

[PS98a]

[PS98b)

[PS99]

[Ree03]

[Rey81]
[Rey98]

Frank Pfenning. Unification and anti-unification in the Calculus of
Constructions. In Sizth Annual IEEE Symposium on Logic in Com-
puter Science, pages 74-85, Amsterdam, The Netherlands, July 1991.

Frank Pfenning. Computation and deduction. Draft notes for a course
on the theory of programming languages using Twelf, 1997.

Frank Pfenning. Logical frameworks. In Handbook of Automated Rea-
soning, pages 1-82. Elsevier Science Publishers, 1999.

F. Pfenning. Intensionality, extensionality, and proof irrelevance in
modal type theory. In 16th Annual IEEE Symposium on Logic in
Computer Science (LICS ’01), pages 221-230, Washington - Brussels -
Tokyo, June 2001. IEEE.

Brigitte Pientka. Higher-order substitution tree indexing. In Pro-
ceedings of the 19th International Conference on Logic Programming
(ICLP), Mumbai, India, December 2003.

Brigitte Pientka. Tabled higher-order logic programming. PhD thesis,
Carnegie Mellon University, December 2003. Available as Technical
Report CMU-CS-03-185.

Frank Pfenning and Carsten Schuermann. Twelf user’s guide. Technical
Report CMU-CS-98-173, Department of Computer Science, Carnegie
Mellon University, November 1998.

Frank Pfenning and Carsten Schiirmann. Algorithms for equality and
unification in the presence of notational definitions. In T. Altenkirch,
W. Naraschewski, and B. Reus, editors, Types for Proofs and Programs,
pages 179-193, Kloster Irsee, Germany, March 1998. Springer-Verlag
LNCS 1657.

Frank Pfenning and Carsten Schiirmann. System description: Twelf —
A meta-logical framework for deductive systems. In H. Ganzinger, edi-
tor, Proceedings of the 16th International Conference on Automated De-
duction (CADE-16), pages 202-206, Trento, Italy, July 1999. Springer-
Verlag LNAT 1632.

Jason Reed. Extending higher-order unification to support proof ir-
relevance. In Proceedings, 16th International Conference on Theorem
Proving in Higher Order Logics, Roma, Italy, September 2003.

John C. Reynolds. The Craft of Programming. Prentice Hall, 1981.

John C. Reynolds. Theories of Programming Languages. Cambridge
University Press, 1998.

204

[SA99]

[San90]

[Sch87]

[Sch99]

[SD9Y]

[SFPBY5)]

[SGY8]

[Sim94]

[Sta77]

[SV98]

[VSI96]

[Wal00]

BIBLIOGRAPHY

Raymie Stata and Martin Abadi. A type system for Java bytecode sub-
routines. ACM Transactions on Programming Languages and Systems,

21(1):90-137, January 1999.

David Sands. Calculi for Time Analysis of Functional Programs. PhD
thesis, University of London, September 1990.

Fred B. Schneider. Decomposing properties into safety and liveness.
Technical Report TR87-874, Cornell University, Computer Science De-
partment, October 1987.

Fred B. Schneider. Enforceable security policies. Technical Report
TRY99-1759, Cornell University, Computer Science Department, July
1999.

Aaron Stump and David L. Dill. Generating proofs from a decision
procedure. In A. Pnueli and P. Traverso, editors, Proceedings of the
FLoC Workshop on Run-Time Result Verification, Trento, Italy, July
1999.

G. Sirer, M. Fiuczynski, P. Pardyak, and B. N. Bershad. Safe dynamic
linking in an extensible operating system. Technical Report TR-95-11-
01, University of Washington, Department of Computer Science and
Engineering, November 1995.

Abraham Silberschatz and Peter Baer Galvin. Operating System Con-
cepts. Addison Wesley, fifth edition, 1998.

Alex K. Simpson. The Proof Theory and Semantics of Intuitionistic
Modal Logic. PhD thesis, University of Edinburgh, 1994.

Richard Statman. The typed A-calculus is not elementary recursive. In
18th Annual Symposium on Foundations of Computer Science, pages
90-94, Providence, Rhode Island, 31 October—2 November 1977. IEEE.

Geoffrey Smith and Dennis Volpano. Secure information flow in a
multi-threaded imperative language. In Proceedings of the 25th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 355—-364, San Diego, CA, January 1998.

Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A sound type sys-
tem for secure flow analysis. Journal of Computer Security, 4(3):167—
187, December 1996.

David Walker. A type system for expressive security policies. In Pro-
ceedings of the 27th ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, pages 254-267, Boston, MA, January
2000.

BIBLIOGRAPHY 205

[WBDF97] Dan S. Wallach, Dirk Balfanz, Drew Dean, and Edward W. Felten.

[WCCH74]

[WF94]

[WLAGY3]

Extensible security architecture for Java. In Proceedings of the Siz-
teenth ACM Symposium on Operating Systems Principles, pages 116—
128, Saint-Malo, France, October 1997.

W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and
F. Pollack. HYDRA: The kernel of a multiprocessor operating system.
Communications of the ACM, 17(6):337-345, June 1974.

Andrew K. Wright and Matthias Felleisen. A syntactic approach
to type soundumess. Information and Computation, 115(1):38-94,
15 November 1994.

Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Gra-
ham. Efficient software-based fault isolation. In Proceedings of the

Fourteenth ACM Symposium on Operating Systems Principles, pages
203-216, Asheville, NC, December 1993.

206 BIBLIOGRAPHY

Appendix A

Glossary of Notation

A.1 Variables

Lower-case italic characters:

a” € Par” Parameter (always free)
€ TPar Time parameter

4 € Con” Constant

cop € Val®°P Conditional operator

e’ Expression

ea € Val®® Effective address

fTXenXTe2T e Pyp™ X X7 T - Function constant

j €N Natural number

Jty € Vali%y Java type

k €Z Integer

ma € Val™ Memory address

n € Val™ Machine word

oc Callee Proof Outline

oe Evaluation Proof Outline

ock Checking Proof Outline

ove VC Proof Outline

opl € Val°P? Unary operator

op2 € Val°P? Binary operator

op3 € Val°P3 Ternary operator

p Proposition

r € Val&ee General-purpose register

s € State State

t Time expression

" € Val” Value

z” € Var™ Variable (usually bound)

Y Time Variable

207

Section 3.1
Section 3.1
Section 3.1
Section 4.1
Section 3.1
Section 4.1
Section 3.1

Section 5.8

Section 4.1
Section 4.1
Section 6.6.1
Section 6.6.1
Section 6.6.1
Section 6.6.1
Section 4.1
Section 4.1
Section 4.1
Section 3.1
Section 4.1
Section 4.3
Section 3.1
Section 3.2
Section 3.1
Section 7.3.1

APPENDIX A. GLOSSARY OF NOTATION

Upper-case italic characters:

R’Tl X XTp—0

Greek characters:

3 Q
\1

DWHMODERLCSI A AR

C Val®® Set of effective addresses Section 7.2.2
€ Valins® Instruction Section 4.1
Judgment Section 3.1
C Val™ Set of machine words Section 7.2.2
Reconstruction space Section 8.1
€ Rel™* >k Relation constant Section 3.1
Parameter list Section 3.1
€ Seq” Sequence Section 3.2
Trace Section 7.2.1
Rigidity Section 3.1
€ FEzec Execution Section 4.3
€ Type Type Section 3.1
€ TEnv Time environment Section 3.2
€ Env Environment Section 3.2
Miscellaneous function
Search Goal Section 7.3.1
Proof Classifier Section 7.3.1
C Ezec Execution set Section 4.3
Context Section 3.1
€ ValP*™& Program Section 4.1

Script characters:

AWV RN

Search Context

Proof Derivation
Interpretation function
Search Derivation
Valuation function

Section 7.3.1

Chapter 7
Section 3.2.1
Chapter 7
Section 3.2.2

A.2. SETS 209
A.2 Sets
Semantic domains:
Con™ = Fun =77 Constants of type 7
Con = U,emype Con™ Constants
Env = Par — Seq Environments
Exec = N — State Executions
Fyn™ > >Te—2T Function constants from types 1q,...,7; to T
Par™ Parameters of type 7
Par = Uremype Par™ Parameters
Rel™ > XTk—0 Relation constants on types 71,..., 7
Reg = {pc,f,g,s,m} Registers
Seq” =N— Val” Sequences of type 7
Seq = Uremype 564" Sequences
SReg” Security registers of type 7
SReg = UTEType SReg” Security registers
State = Reg — Val States
TEnv = TPar -+ N Time environments
TPar Time parameters
Val™ Values of type 7
Val =Uremype Val™ Values
Var™ Variables of type 7
Var = Ureqype Var™ Variables
Type Types

Value domains for particular types:

Val<°P = {cop}cop Conditional operators
Vale? = {ea}es Effective address
ValB*e8 ={r}, Register tokens
Valirst ={I}; Instruction
Valtist(r) = (Val™)* Lists
Val™2Pg = Val88 — Vgl¥d Register maps
Val®ap¥ = Val"? — Val*™ Machine-word maps
Val™ = {ma}m Memory address
Val°P? = {op1}op1 Unary operators
Val°P2 = {op2} 0p2 Binary operators
Val°P3 = {0p3}ops Ternary operators
ValPiz(m)(m2) — val™ x Val™ Pairs
ValPro8 = Val" — Valinst Programs
Valdstate = Vals*3*® x Vals? Extended states
Val®® = SReg — Val Security-automaton states
Valszes(m) = SReq” Security registers of type 7
Val®*2*® = Val*® x Val™ State tuples
X Val™@P8 x Val™@P¥ x Val™®P¥
Val#d ={neN|n<2%} Machine words

210 APPENDIX A. GLOSSARY OF NOTATION

Appendix B

LF Representation

In this appendix, I reproduce the temporal-logic deductive system, machine model,
and safety policy as they are represented in the LF Logical Framework [HHP93].
These three encodings comprise the trusted signature that is used for proof checking
by the code consumer and together account for all LF code in the trusted comput-
ing base (TCB). Note that the code consumer provides a certain number of derived
rules as a convenience to the code producer. I do not show these rules here in the in-
terest of brevity—because they have explicit formal derivations, they are essentially
outside the TCB.

I assume a reasonable familiarity with LF in this appendix. The concrete syntax
is based on Twelf, which is fully specified in the Twelf User’s Guide [PS98a).

The concrete notation is intended to correspond closely to the notation used
in rest of this thesis. Although neither LF nor Twelf have built-in conception of
modularity, I attempt to avoid “name space pollution” by prefixing most identifiers
by a module name that collects together a set of related identifiers. Thus, the
identifier id in module module is written module/id. Additionally, identifiers for
inference rules are normally written type|id where id is the name of an inference
rule for LF type type.

Variables are rendered into ASCII text as follows:

ii I

I i~ 1

T i& 1&

¢ phi Phi
® phi~ Phi"

The second column is used when the variable is bound (explicit), and the third
column is used when the variable is free (implicit). Implicit variables are a Twelf

feature that do not appear in the trusted part of the signature.
Note that a constant whose name ends with a tilde (~) character is not used by
my logic interpreter to construct a derivation during a search.

211

212 APPENDIX B.

B.1 Temporal Logic

B.1.1 Abstract Syntax

B.1.1.1 Syntactic Types
Wt

% A type constructor.
Yh
ty: type. Y%name ty Tau tau.

Wl

% An expression of a particular type.
% Tau - the type of the expression
Y

exp: ty -> type. Yname exp E e.

il

% A parameter of a particular type.
% Tau - the type of the parameter
Yh

par: ty -> type. Y%name par A a.

%l

% A constant of a particular type.
% Tau - the type of the constant
Yh

con: ty -> type. Y%name con C c.

Wt

% A rigidity flag.

Yh
ri: type. Y%name ri Rho rho.

Wt

% A proposition.

Yh
prp: type. Y%name prp P p.

Wt

% Asserts that a particular statement holds.

Yh

jdg: type. Y%name jdg J~ j~.

it

% A time expression.

Yh

ti: type. Yname ti T t.

Wt

% A function constant with a particular arity.

% Taul ... - the types of the function’s parameters
% Tau - the type of the function’s result

Yh

% fun/0 = con

fun/1: ty -> ty -> type. %name fun/1 F f.
fun/2: ty -> ty -> ty -> type. %name fun/2 F f.

fun/3: ty -> ty -> ty -> ty -> type. Yname fun/3 F f.

Wl

% A relation constant with a particular arity.

% Taul ... - the types of the relation’s parameters
Yh

rel/0: type. %name rel/0 R~ r~.

LF REPRESENTATION

B.1. TEMPORAL LOGIC 213

rel/1: ty -> type. %name rel/1 R~ r~.
rel/2: ty -> ty -> type. Y%name rel/2 R~ r~.

B.1.1.2 Parameters

par/‘: {tau: ty} par tau -> exp tau.

B.1.1.3 Constants

con/‘: {tau: ty} con tau -> exp tau.

B.1.1.4 Propositions

ri/+: ri.
ri/-: ri.

prp/and: prp -> prp -> prp.
prp/or: prp -> prp -> prp.
prp/imp: prp -> prp -> prp.

prp/all: {tau: ty} ri -> (exp tau -> prp) -> prp.
prp/some: {tau: ty} ri -> (exp tau -> prp) -> prp.

prp/nextT: pPrp -> prp.
prp/allT: prp -> prp.
prp/someT: Prp -> PpIP.
prp/untilT: prp -> prp -> prp.
prp/unlessT: prp -> prp -> prp.

% - exports -

and = prp/and. %infix left 113 and.
or = prp/or. %infix left 112 or.

imp = prp/imp. %infix right 111 imp.
all = prp/all.

some = prp/some.

nextT = prp/mextT.

allT = prp/allT.

someT = prp/someT.

untilT = prp/untilT. %infix left 120 untilT.
unlessT = prp/unlessT. %infix left 120 unlessT.

B.1.1.5 Times

ti/0: ti.
ti/+1: ti -> ti.

% - exports -

+1t = ti/+1. Ypostfix 211 +1t.

B.1.1.6 Functions

fun/appl: {taul: ty} {tau: ty}
fun/1 taul tau
-> exp taul -> exp tau.
fun/app2: {taul: ty} {tau2: ty} {tau: ty}
fun/2 taul tau2 tau
-> exp taul -> exp tau2 -> exp tau.
fun/app3: {taul: ty} {tau2: ty} {tau3: ty} {tau: tyl}
fun/3 taul tau2 tau3 tau
-> exp taul -> exp tau2 -> exp tau3 -> exp tau.

214 APPENDIX B. LF REPRESENTATION

B.1.1.7 Relations

% - relations -

rel/not0: rel/0 -> rel/0.

rel/motl: {taul: ty} rel/1 taul -> rel/1 taul.

rel/not2: {taul: ty} {tau2: ty} rel/2 taul tau2 -> rel/2 taul tau2.
rel/#true: rel/0.

rel/#false = rel/not0 rel/#true.

% - propositions -

rel/app0: rel/0 -> prp.

rel/appl: {taul: ty} rel/1 taul -> exp taul -> prp.
rel/app2: {taul: ty} {tau2: ty} rel/2 taul tau2 -> exp taul -> exp tau2 -> prp.

rel/true rel/app0 rel/#true.
rel/false = rel/app0 rel/#false.

% - exports -

true rel/true.
false = rel/false.

B.1.1.8 Equality

eq/#eq: {tau: ty} rel/2 tau tau.
eq/#neq = [tau: ty] rel/not2 tau tau (eq/#eq tau).

eq/eq = [tau: ty] rel/app2 tau tau (eq/#eq tau).
eq/neq = [tau: ty] rel/app2 tau tau (eq/#neq tau).

B.1.1.9 Equivalence
eqv/eqv: prp -> prp -> prp.
% - exports -

eqv = eqv/eqv. %infix left 110 eqv.

B.1.1.10 Function Properties

fun/inj1l = [taul: ty] [tau: ty]
[f: fun/1 taul taul
all taul ri/- ([x1l: exp taul] all taul ri/- ([x1’: exp taull
eq/eq tau
(fun/appl taul tau f x1)
(fun/appl taul tau f x1’)
imp eq/eq taul x1 x1’
).
fun/inj2 = [taul: ty] [tau2: ty] [tau: ty]
[f: fun/2 taul tau2 taul
all taul ri/- ([x1: exp taul] all taul ri/- ([x1’: exp taull]
all tau2 ri/- ([x2: exp tau2] all tau2 ri/- ([x2’: exp tau2]
eq/eq tau
(fun/app2 taul tau2 tau f x1 x2)
(fun/app2 taul tau2 tau f x1’ x2’)
imp eq/eq taul x1 x1’ and eq/eq tau2 x2 x2’
NN
fun/inj3 = [taul: ty] [tau2: ty] [tau3: ty] [tau: ty]
[f: fun/3 taul tau2 tau3 taul

B.1. TEMPORAL LOGIC 215

all taul ri/- ([x1: exp taul] all taul ri/- ([x1’: exp taull
all tau2 ri/- ([x2: exp tau2] all tau2 ri/- ([x2’: exp tau2]
all tau3 ri/- ([x3: exp tau3] all tau3 ri/- ([x3’: exp tau3]
eq/eq tau
(fun/app3 taul tau2 tau3 tau f x1 x2 x3)
(fun/app3 taul tau2 tau3 tau f x1’ x2’ x3’)
imp eq/eq taul x1 x1’ and eq/eq tau2 x2 x2’ and eq/eq tau3 x3 x3’
NN .

fun/assoc = [tau: ty]

fun/idl =

[f: fun/2 tau tau tau]
all tau ri/- ([x1l: exp tau] all tau ri/- ([x2: exp tau]
all tau ri/- ([x3: exp tau]
eq/eq tau
(fun/app2 tau tau tau f x1 (fun/app2 tau tau tau f x2 x3))
(fun/app2 tau tau tau f (fun/app2 tau tau tau f x1 x2) x3)
).

[taul: ty] [tau: ty]
[f: fun/2 taul tau taul [cl: con taull

all tau ri/- ([x2: exp taul
eq/eq tau (fun/app2 taul tau tau f (con/‘ taul cl) x2) x2
).

fun/idr =

[tau2: ty] [tau: ty]
[f: fun/2 tau tau2 tau] [c2: con tau2]

all tau ri/- ([x1: exp tau]
eq/eq tau (fun/app2 tau tau2 tau f x1 (con/‘ tau2 c2)) x1

).

fun/id = [tau: ty]
[f: fun/2 tau tau tau] [c: con tau]
fun/idl tau tau f ¢ and fun/idr tau tau f c.

fun/invl =

fun/invr =

fun/inv =

fun/comm =

fun/distl

[tau: ty]
[f: fun/2 tau tau tau] [c: con tau] [f1: fun/1 tau tau]
all tau ri/- ([x: exp taul
eq/eq tau
(fun/app2 tau tau tau f (fun/appl tau tau f1 x) x)
(con/* tau c)

).

[tau: tyl
[f: fun/2 tau tau tau] [c: con tau] [f2: fun/1 tau tau]
all tau ri/- ([x: exp tau]
eq/eq tau
(fun/app2 tau tau tau f x (fun/appl tau tau £2 x))
(con/* tau c)

).

[tau: ty]
[f: fun/2 tau tau taul] [c: con tau] [f’: fun/1 tau tau]
fun/invl tau f ¢ f’ and fun/invr tau f c f’.

[taul: ty] [tau: tyl
[f: fun/2 taul taul taul
all taul ri/- ([x1: exp taul] all taul ri/- ([x2: exp taul]
eq/eq tau
(fun/app2 taul taul tau f x1 x2)
(fun/app2 taul taul tau f x2 x1)
).

= [tau: ty]
[f1: fun/2 tau tau tau] [£f2: fun/2 tau tau tau]

216 APPENDIX B. LF REPRESENTATION

all tau ri/- ([x1: exp tau] all tau ri/- ([x2: exp taul
all tau ri/- ([x3: exp tau]
eq/eq
tau
(fun/app2 tau tau tau f2 (fun/app2 tau tau tau f1 x1 x2) x3)
(fun/app2 tau tau tau
f1
(fun/app2 tau tau tau f2 x1 x3)
(fun/app2 tau tau tau f2 x2 x3))
))).

fun/distr = [tau: ty]
[f1: fun/2 tau tau tau] [f2: fun/2 tau tau tau]
all tau ri/- ([x1: exp tau] all tau ri/- ([x2: exp taul
all tau ri/- ([x3: exp tau]
eq/eq
tau
(fun/app2 tau tau tau f2 x1 (fun/app2 tau tau tau f1 x2 x3))
(fun/app2 tau tau tau
f1
(fun/app2 tau tau tau f2 x1 x2)
(fun/app2 tau tau tau f2 x1 x3))
))).

fun/dist = [tau: ty]
[f1: fun/2 tau tau tau] [f2: fun/2 tau tau tau]
fun/distl tau f1 f2 and fun/distr tau f1 f2.

fun/monoid = [tau: ty]
[f: fun/2 tau tau taul] [c: con taul
fun/assoc tau f and fun/id tau f c.

fun/group = [tau: ty]
[f: fun/2 tau tau taul] [c: con tau] [f’: fun/1 tau taul
fun/monoid tau f ¢ and fun/inv tau f c f°’.

fun/comm_group = [tau: ty]
[f: fun/2 tau tau taul [c: con tau] [f’: fun/1 tau tau]
fun/group tau f ¢ £’ and fun/comm tau tau f.

fun/ring = [tau: ty]
[f1: fun/2 tau tau tau] [cl: con tau] [f1’: fun/1 tau tau]
[£f2: fun/2 tau tau taul
fun/comm_group tau f1 ci f1°
and fun/dist tau f1 f2
and fun/assoc tau f2.

fun/comm_ring = [tau: ty]
[f1: fun/2 tau tau taul [cl: con taul [f1’: fun/1 tau tau]
[£f2: fun/2 tau tau tau] [c2: con tau]
fun/ring tau f1 cl f1’ f£2
and fun/comm tau tau f2
and fun/id tau f2 c2.

fun/idem = [tau: ty]
[f: fun/2 tau tau tau]
all tau ri/- ([x: exp taul
eq/eq tau (fun/app2 tau tau tau f x x) x
).

fun/absorb = [tau: ty]
[f1: fun/2 tau tau tau] [f2: fun/2 tau tau tau]
all tau ri/- ([x1: exp taul] all tau ri/- ([x2: exp tau]

eq/eq

B.1. TEMPORAL LOGIC 217

tau
(fun/app2 tau tau tau f1 x1 (fun/app2 tau tau tau f2 x1 x2))
x1

N.

B.1.1.11 Relation Properties

rel/fun2 = [taul: ty] [tau: ty]
[r”: rel/2 taul taul
all taul ri/- ([x1l: exp taul]
all tau ri/- ([x: exp tau] all tau ri/- ([x’: exp tau]
rel/app2 taul tau r”~ x1 x and rel/app2 taul tau r~ x1 x’
imp eq/eq tau x x’

).

rel/ref = [tau: ty]
[r~: rel/2 tau tau]
all tau ri/- ([x: exp taul
rel/app2 tau tau r” x x

).

rel/irref = [tau: ty]
[r~: rel/2 tau tau]
all tau ri/- ([x: exp taul
rel/app2 tau tau (rel/not2 tau tau r”) x x

rel/sym = [tau: tyl]
[r~: rel/2 tau taul
all tau ri/- ([x1: exp taul] all tau ri/- ([x2: exp taul
rel/app2 tau tau r~ x1 x2 imp rel/app2 tau tau r~ x2 x1
)).

rel/antisym = [tau: ty]
[r~: rel/2 tau tau]
all tau ri/- ([x1: exp tau] all tau ri/- ([x2: exp tau]
rel/app2 tau tau r~ x1 x2 and rel/app2 tau tau r~ x2 x1
imp eq/eq tau x1 x2
.

rel/trans = [tau: ty]
[r™: rel/2 tau taul
all tau ri/- ([x1l: exp tau] all tau ri/- ([x2: exp tau]
all tau ri/- ([x3: exp tau]
rel/app2 tau tau r~ xl1 x2 and rel/app2 tau tau r~ x2 x3
imp rel/app2 tau tau r~ x1 x3
).

rel/total = [tau: ty]
[r~: rel/2 tau taul
all tau ri/- ([xl: exp taul] all tau ri/- ([x2: exp tau]
eq/eq tau x1 x2
or rel/app2 tau tau r~ x1 x2
or rel/app2 tau tau r~ x2 x1

).

rel/bot = [tau: ty]
[r~: rel/2 tau tau]
[c: con taul
all tau ri/- ([x: exp taul
eq/eq tau (con/‘ tau c) x or rel/app2 tau tau r~ (con/‘ tau c) x

).

rel/top = [tau: ty]

218 APPENDIX B. LF REPRESENTATION

[r™: rel/2 tau taul

[c: con taul

all tau ri/- ([x: exp taul

eq/eq tau (con/‘ tau c) x or rel/app2 tau tau r”~ x (con/‘ tau c)

).

rel/preorder = [tau: ty]
[r~: rel/2 tau tau]
rel/ref tau r~ and rel/trans tau r~.

rel/equiv = [tau: ty]
[r~: rel/2 tau tau]
rel/preorder tau r~ and rel/sym tau r~.

rel/order = [tau: ty]
[r~: rel/2 tau taul
rel/preorder tau r~ and rel/antisym tau r~.

rel/tot_order = [tau: ty]
[r~: rel/2 tau tau]
rel/order tau r~ and rel/total tau r~.

rel/str_order = [tau: ty]
[r~: rel/2 tau tau]
rel/irref tau r~ and rel/trans tau r-~.

rel/str_tot_order = [tau: ty]
[r~: rel/2 tau taul
rel/str_order tau r~ and rel/total tau r-.

rel/1b2 = [tau: ty]
[r~: rel/2 tau tau]
[e: exp taul [el: exp taul [e2: exp taul
rel/app2 tau tau r~ e el and rel/app2 tau tau r~ e e2.

rel/ub2 = [tau: ty]
[r~: rel/2 tau tau]
[e: exp tau] [el: exp tau] [e2: exp taul
rel/app2 tau tau r~ el e and rel/app2 tau tau r~ e2 e.

rel/inf2 = [tau: ty]
[r~: rel/2 tau taul
[e: exp tau] [el: exp taul] [e2: exp tau]
rel/1b2 tau r~ e el e2
and all tau ri/- ([x: exp taul
rel/1b2 tau r~ x el e2 imp rel/app2 tau tau r~ x e
).

rel/sup2 = [tau: ty]
[r~: rel/2 tau tau]
[e: exp tau] [el: exp tau] [e2: exp tau]
rel/ub2 tau r~ e el e2
and all tau ri/- ([x: exp tau]
rel/ub2 tau r~ x el e2 imp rel/app2 tau tau r~ e x

).

rel/meet = [tau: ty]
[r": rel/2 tau tau] [f: fun/2 tau tau tau]
all tau ri/- ([x1: exp tau] all tau ri/- ([x2: exp tau]
rel/inf2 tau r~ (fun/app2 tau tau tau f x1 x2) x1 x2
N.

rel/join = [tau: ty]
[r™: rel/2 tau tau] [f: fun/2 tau tau tau]

B.1. TEMPORAL LOGIC 219

all tau ri/- ([x1: exp tau] all tau ri/- ([x2: exp taul
rel/sup2 tau r~ (fun/app2 tau tau tau f x1 x2) xl1 x2
).

rel/latt = [tau: ty]
[r~: rel/2 tau tau]
[f1: fun/2 tau tau taul] [f2: fun/2 tau tau tau]
rel/order tau r~ and rel/meet tau r~ f1 and rel/join tau r~ f2.

rel/dist_latt = [tau: ty]
[r~: rel/2 tau taul
[f1: fun/2 tau tau tau] [f2: fun/2 tau tau tau]
rel/latt tau r~ f1 f2 and fun/dist tau f2 f1.

rel/cmp = [tau: ty]
[f1: fun/2 tau tau taul [f2: fun/2 tau tau tau]
[c0O: con tau] [cl: con tau]
[e: exp tau] [e’: exp tau]
eq/eq tau (fun/app2 tau tau tau f1 e e’) (con/‘ tau cO)
and eq/eq tau (fun/app2 tau tau tau f2 e e’) (con/‘ tau cl).

rel/comp = [tau: ty]
[f1: fun/2 tau tau tau] [f2: fun/2 tau tau tau]
[c0: con tau] [cl: con tau]
[£f’: fun/1 tau taul
all tau ri/- ([x: exp tau]
rel/cmp tau f1 f2 cO c1 x (fun/appl tau tau f’ x)
).

rel/bool_latt = [tau: ty]
[r~: rel/2 tau taul
[f1: fun/2 tau tau tau] [f2: fun/2 tau tau tau]
[c0: con tau] [cl: con taul
[£f’: fun/1 tau taul
all tau ri/- ([x: exp tau]
rel/dist_latt tau r~ f1 f2 and rel/comp tau f1 f2 c0 ci f’
).

B.1.1.12 Pairs

% - types -

pair: ty -> ty -> ty.

% - functions -

pair/#make: <{taul: ty} {tau2: ty} fun/2 taul tau2 (pair taul tau2).

pair/#left: A{taul: ty} {tau2: ty} fun/1 (pair taul tau2) taul.
pair/#right: {taul: ty} {tau2: ty} fun/1 (pair taul tau2) tau2.

pair/make = [taul: ty] [tau2: ty]
fun/app2 taul tau2 (pair taul tau2) (pair/#make taul tau2).
pair/left = [taul: ty] [tau2: ty]

fun/appl (pair taul tau2) taul (pair/#left taul tau2).
pair/right = [taul: ty] [tau2: ty]
fun/appl (pair taul tau2) tau2 (pair/#right taul tau2).

B.1.1.13 Triples
% - types -

trip = [taul: ty] [tau2: ty]
pair (pair taul tau2).

220

APPENDIX B. LF REPRESENTATION

% - functions -

trip/#make:
trip/#left:
trip/#mid:

trip/#right

trip/make

trip/left
trip/mid

trip/right

{taul: ty} {tau2: ty} {tau3: ty}
fun/3 taul tau2 tau3 (trip taul tau2 tau3).
{taul: ty} {tau2: ty} {tau3: ty}
fun/1 (trip taul tau2 tau3) taul.
{taul: ty} {tau2: ty} {tau3: ty}
fun/1 (trip taul tau2 tau3) tau2.
{taul: ty} {tau2: ty} {tau3: ty}
fun/1 (trip taul tau2 tau3) tau3.

[taul: ty] [tau2: ty] [tau3: ty]
fun/app3 taul tau2 tau3 (trip taul tau2 tau3)
(trip/#make taul tau2 tau3).
[taul: ty] [tau2: ty] [tau3: ty]
fun/appl (trip taul tau2 tau3) taul (trip/#left taul tau2 tau3).
[taul: ty] [tau2: ty] [tau3: ty]
fun/appl (trip taul tau2 tau3) tau2 (trip/#mid taul tau2 tau3).
[taul: ty] [tau2: ty] [tau3: ty]
fun/appl (trip taul tau2 tau3) tau3 (trip/#right taul tau2 tau3).

B.1.1.14 Lists

% - types -

list: ty -> ty.

% - constants -

list/empty: {tau: ty} con (list tau).

% - functions -

list/#cons:

{tau: ty} fun/2 tau (list tau) (list tau).

list/#head: {tau: ty} fun/1 (list tau) tau.
list/#tail: {tau: ty} fun/1 (list tau) (list tau).

list/cons =
list/head
list/tail

[tau: ty] fun/app2 tau (list tau) (list tam) (list/#cons tau).
[tau: ty] fun/appl (list tau) tau (list/#head tau).
[tau: ty] fun/appl (list tau) (list tau) (list/#tail tau).

B.1.2 Semantics

B.1.2.1 Derivation Types

I3t

% Perform a given arithmetic operation on a given pair of integers.

% N1 N2 -
% N? <-
Yh

>

integer/add:
integer/sub:
integer/mul:
integer/div:
integer/mod:

Wt

% Holds if

% Ni N2 -
Yh
integer/eq:
integer/neq
integer/leq
integer/gt:

>

the integers to perform the operation on
the result of the operation

integer -> integer -> integer -> type.
integer -> integer -> integer -> type.
integer -> integer -> integer -> type.
integer -> integer -> integer -> type.
integer -> integer -> integer -> type.

a given pair of integers are related by a given inequality.
the integers

integer -> integer -> type.
integer -> integer -> type.
integer -> integer -> type.
integer -> integer -> type.

B.1. TEMPORAL LOGIC

13t

% Perform a given 32-bit arithmetic operation on a given pair of integers.
% N1 N2 -> the integers to perform the operation on
% N <- the result of the operation

Yh

integer32/add: integer -> integer -> integer -> type.
integer32/sub: integer -> integer -> integer -> type.
integer32/mul: integer -> integer -> integer -> type.
integer32/mulu: integer -> integer -> integer -> type.
integer32/div: integer -> integer -> integer -> type.
integer32/divu: integer -> integer -> integer -> type.
integer32/mod: integer -> integer -> integer -> type.
integer32/modu: integer -> integer -> integer -> type.

13t

% Perform a given 32-bit bitwise operation on a given pair of nonnegative
% integers.

% N1 N2 -> the integers to perform the operation on;

% must be nonnegative

% N? <- the result of the operation;
% will be nonnegative

Y

integer32/and: integer -> integer -> integer -> type.
integer32/or: integer -> integer -> integer -> type.
integer32/xor: integer -> integer -> integer -> type.

W

% Holds if a given pair of integers are related by a given 32-bit relation.
% N1 N2 -> the integers

Yh

integer32/eq: integer -> integer -> type.

integer32/neq: integer -> integer -> type.

integer32/leq: integer -> integer -> type.

integer32/lequ: integer -> integer -> type.

integer32/gt: integer -> integer -> type.

integer32/gtu: integer -> integer -> type.

13t

% Convert a given integer to a 32-bit signed or unsigned representation.
% N -> the integer to convert

% N’ <= the result of the conversion

Yh

integer32/unsign: integer -> integer -> type.

integer32/sign: integer -> integer -> type.

integer32/wrap: integer -> integer -> type.

13t

% Asserts that a given pair of constants are distinct.
% Rules for this are untrusted.

% C1 C2 -> the constants to compare for inequality

Yh

con/neq: {tau: ty} con tau -> con tau -> type.

B.1.2.2 Integers

integer/sub|: {nl: integer} {n2: integer} {n’: integer}
integer/add n’ n2 nil
-> integer/sub nl n2 n’.

integer/eq|: {n: integer}
integer/eq n n.

integer/neql|gt: {nl: integer} {n2: integer}

221

222

=>
integer/neq|1t:

->
integer/leqleq:

integer/leqlgt:

->
B.1.2.3 32-
integer32/sub]| :
->
integer32/mul| :
->
->
->
integer32/mulu] :
->
=>
->
integer32/div|:
=>
->
->
integer32/divul| :
->
->
->
integer32/mod| :
=>
->
->
integer32/modul| :
->
->
->
integer32/or| :
->
->
->
->
integer32/xor| :

APPENDIX B. LF REPRESENTATION

integer/gt nl n2
integer/meq nl1 n2.
{n1: integer} {n2:
integer/gt n2 ni
integer/neq nl n2.

integer}

{n: integer}
integer/leq n n.
{n1: integer} {n2:
integer/gt n2 ni
integer/leq nl n2.

integer}

Bit Integers

{n1: integer} {n2: integer} {n’: integer}
integer32/add n’ n2 nil

integer32/sub ni n2 n’.

{n1: integer} {n2: integer} {nl1’: integer} {n2’:
{n’: integer} {n’’: integer}

integer32/unsign n’ n’’

integer/mul ni’ n2’ n’

integer32/sign nl nl1’ -> integer32/sign n2 n2’
integer32/mul ni n2 n’’.

{n1: integer} {n2: integer} {nl1’: integer} {n2’:
{n’: integer} {n’’: integer}

integer32/unsign n’ n’’

integer/mul ni’ n2’ n’

integer32/unsign ni nl1’ -> integer32/unsign n2 n2’
integer32/mulu ni n2 n’’.

{n1: integer} {n2: integer} {nl1’: integer} {n2’: integer}
{n’: integer} {n’’: integer}

integer32/unsign n’ n’’

integer/div ni’ n2’ n’

integer32/sign nil ni’ -> integer32/sign n2 n2’
integer32/div n1 n2 n’’.

{n1: integer} {n2: integer} {nl1’: integer} {n2’: integer}
{n’: integer} {n’’: integer}

integer32/unsign n’ n’’

integer/div ni’ n2’ n’

integer32/unsign ni nl1’ -> integer32/unsign n2 n2’
integer32/divu ni n2 n’’.

{n1: integer} {n2: integer} {nl1’: integer} {n2’: integer}
{n’: integer} {n’’: integer}

integer32/unsign n’ n’’

integer/mod ni’ n2’ n’

integer32/sign nl nl1’ -> integer32/sign n2 n2’
integer32/mod ni n2 n’’.

{n1: integer} {n2: integer} {nl1’: integer} {n2’: integer}
{n’: integer} {n’’: integer}

integer32/unsign n’ n’’

integer/mod ni’ n2’ n’

integer32/unsign nl nl’ -> integer32/unsign n2 n2’
integer32/modu ni n2 n’’.

integer}

integer}

{n1: integer}
{n’: integer}
integer32/sub
integer32/and
integer32/sub integer32/maxu n2 n2’

integer32/sub integer32/maxu ni nl’

integer32/or nl n2 n’’.

{n1: integer} {n2: integer} {nl1’: integer} {n2’: integer}
{n’: integer} {n’’: integer} {n’’’: integer} {n’’’’: integer}
{n’’?°’: integer}

{n2: integer} {n1’: integer} {n2’: integer}
{n’’: integer}

integer32/maxu n’ n’’

ni’ n2’ n’

B.1. TEMPORAL LOGIC

integer32/and
-> integer32/sub
-> integer32/sub
-> integer32/and
-> integer32/and
-> integer32/sub
-> integer32/sub
-> integer32/xor

n’?’? n’?’??? prrr

integer32/maxu
integer32/maxu
nl’ n2’ n”’

nl n2 n’
integer32/maxu
integer32/maxu
nl n2 n’’?’’,

integer32/neqlgt: {ni: integer}

->
integer32/neq|lt:

->
integer32/leqleq:

->
integer32/leqlgt:

->
integer32/lequleq:

->
integer32/lequ|gt:

=>

integer32/unsign|0
integer32/unsign|1

integer32/unsign|maxu:

integer32/gtu
integer32/neq
{n1: integer}
integer32/gtu
integer32/neq

{n1: integer}

{n2: integer}
nl n2
nl n2.
{n2: integer}
n2 nl
nl n2.

{n2: integer}

integer32/eq nl n2

integer32/leq
{n1: integer}

nl n2.
{n2: integer}

integer32/gt n2 ni

integer32/leq

nl n2.

n’? n’’??
n’ n’?’’

nl nl’
n2 n2’

{n1: integer} {n2: integer}

integer32/eq

nl n2

integer32/lequ ni n2.

{n1: integer} {n2: integer}
integer32/gtu n2 ni
integer32/lequ nl n2.

: integer32/unsign 0 0.
: integer32/unsign 1 1.

integer32/unsign|ok: {n: integer}
integer/gt n 1
-> integer/gt integer32/maxu n
-> integer32/unsign n n.
integer32/unsign|under: {n: integer} {n’: integer}

integer32/sign|0:
integer32/sign|1i:
integer32/sign|“1:
integer32/sign|neg

integer32/sign|pos

integer32/sign|under:

integer32/sign|over:

integer/mod n integer32/numu n’

-> integer/gt O n
-> integer32/unsign n n’.
integer32/unsign|over: {n: integer} {n’: integer}

integer/mod n integer32/numu n’

-> integer/gt n integer32/maxu
-> integer32/unsign n n’.

integer32/sign 0 0.
integer32/sign 1 1.
integer32/sign ~1 “1.
: {n: integer}
integer/leq n "2
-> integer/leq integer32/min n
-> integer32/sign n n.
: {n: integer}
integer/leq n integer32/max
-> integer/leq 2 n
-> integer32/sign n n.

integer32/wrap n’ n’’
-> integer32/unsign n n’
-> integer/gt integer32/min n
-> integer32/sign n n’’.

integer32/wrap n’ n’’

{n: integer} {n’: integer} {n’’:

{n: integer} {n’: integer} {n’’:

integer32/unsign integer32/maxu integer32/maxu.

integer}

integer}

223

224 APPENDIX B. LF REPRESENTATION

-> integer32/unsign n n’
-> integer/gt n integer32/max
-> integer32/sign n n’’.

integer32/wraplpos: {n: integer}
integer/leq n integer32/max
-> integer32/wrap n n.
integer32/wrap|neg: {n: integer} {n’: integer}
integer/sub n integer32/numu n’
-> integer/gt n integer32/max
-> integer32/wrap n n’.

B.1.3 Inference Rules

B.1.3.1 Derivation Types
w{

% Asserts that a given parameter can be shifted in time.
% Tau - the type of the parameter

% A - the parameter

Yh

ri/par: {tau: ty} par tau -> type. Y%name ri/par D& d&.

13t

% Shows that a given judgment holds.

% This type should only be used for proof-irrelevent arguments.
% J° - the judgment

Yh

pf/: jdg -> type. Yname pf/ D& d&.

% - exports -

pf = pf/. Yprefix 10 pf.

B.1.3.2 Judgments
WL

% Asserts that a given proposition is local in a given parameter.
% Tau - the type of the parameter

% P - the proposition

Yh

lo/of+: {tau: ty} (exp tau -> prp) -> jdg.

il
% Asserts that a given expression has a given rigidity.
% Tau - the type of the expression

% E - the expression

% Rho - the rigidity

Yh

ri/ofE: {tau: ty} exp tau -> ri -> jdg.

Wt

% Asserts that a given proposition has a given rigidity.
% P - the proposition

% Rho - the rigidity

Y

ri/of: prp -> ri -> jdg.

il

% Asserts that a given expression reduces (in one step) to another

% expression, given that all subterms of the expression are already normal.
% Tau - the type of the expression

% E - the expression to reduce; all subterms are presumed normal

% E’ - the single-step reduction of E

B.1. TEMPORAL LOGIC 225

Y
rew/stepOE: {tau: ty} exp tau -> exp tau -> jdg.
rew/stepE: {tau: ty} exp tau -> exp tau -> jdg.

13t

% Asserts that a given expression reduces to a given normal form, given that
% all subterms of the expression are already normal.
% Tau - the type of the expression

% E - the expression to reduce; all subterms are presumed normal
% E’ - the normal form of E
Y

rew/tailE: {tau: ty} exp tau -> exp tau -> jdg.

w{
% Asserts that a given expression reduces to a given normal form.
% Tau - the type of the expression

% E - the expression to reduce
% E’ - the normal form of E
Y

rew/normE: {tau: ty} exp tau -> exp tau -> jdg.

w{

% Asserts that a given proposition reduces (in one step) to another

% proposition, given that all subterms of the proposition are already
% mnormal.

% P - the proposition to reduce; all subterms are presumed normal
% P’ - the single-step reduction of P
Y

rew/step0: prp -> prp -> jdg.
rew/step: prp -> prp -> jdg.

’
A

% Asserts that a given proposition reduces to a given normal form, given
% that all subterms of the proposition are already normal.

% P - the proposition to reduce; all subterms are presumed normal
% P’ - the normal form of P

Yh

rew/tail: prp -> prp -> jdg.

13t

% Asserts that a given proposition reduces to a given normal form.
% P - the proposition to reduce

% P’ - the normal form of P

Y

rew/norm: prp -> prp -> jdg.

13t

% Asserts that a given time is the same as or earlier than another time.
% T1 - the earlier time

% T2 - the later time

Yh

ti/<=: ti -> ti -> jdg.

% - exports -
<=t = ti/<=. Y%infix none 20 <=t.

i

% Asserts that a given proposition is true at a given time.
% P - the proposition

% T - the time

Y

at/@: prp -> ti -> jdg.

226 APPENDIX B. LF REPRESENTATION

Wl

% Asserts that a given proposition is true over a given finite interval.
% P - the proposition

% T1 - the start time

% T2 - the stop time

Yh

at/Qov: prp -> ti -> ti -> jdg.

wl

% Asserts that a given proposition is true from a given time.
% P - the proposition

% T - the time

Yh

at/@fr = [p: prp] [t: ti] allT p @ t.

% - exports -
@ = at/@. Y%infix none 20 @.

Wt

% Asserts that a given proposition is true at a given time in a restricted
% formal system.

% P - the proposition

% T - the time

Yh

uat/@: prp -> ti -> jdg.

% - exports -

@_ = uat/@. %infix none 20 @_.

Wl

% Asserts that the application of a given function constant to a given set of

% argument constants is a given result constant.
% F -> the function to apply

% -> the constants to apply the function to
% C? <= the result of applying F to the argument constants
Yh

fun/appl#: {taul: ty} {tau: ty}
fun/1 taul tau
-> con taul -> con tau
-> jdg.
fun/app2#: {taul: ty} {tau2: ty} {tau: ty}
fun/2 taul tau2 tau
-> con taul -> con tau2 -> con tau
-> jdg.
fun/app3#: {taul: ty} {tau2: ty} {tau3: ty} {tau: ty}
fun/3 taul tau2 tau3 tau
-> con taul -> con tau2 -> con tau3d -> con tau
-> jdg.

il
% Asserts that a given relation constant holds for a given set of argument
% constants is a given result constant.
% R~ -> the relation to apply
% -> the constants to apply the relation to
Yh
% no rel/appO#
rel/appl#: {taul: ty}
rel/1 taul -> con taul -> jdg.
rel/app2#: {taul: ty} {tau2: ty}
rel/2 taul tau2 -> con taul -> con tau2 -> jdg.

B.1. TEMPORAL LOGIC

B.1.3.3 Locality

lo/of+|i_and:

lo/of+|i_or:

lo/of+|i_imp:

lo/of+|i_all:

lo/of+|i_some:

->

=->

{tau: ty}
pf lo/of+
pf lo/of+
{tau: ty}
pf lo/of+
pf lo/of+
{tau: ty}
pf lo/of+
pf lo/of+
{tau: ty}

{pl: exp tau -> prp} {p2: exp tau -> prp}
tau pl -> pf lo/of+ tau p2

tau ([a: exp taul (pl a) and (p2 a)).
{pl: exp tau -> prp} {p2: exp tau -> prp}
tau pl -> pf lo/of+ tau p2

tau ([a: exp taul (pl a) or (p2 a)).

{pl: exp tau -> prp} {p2: exp tau -> prp}
tau pl -> pf lo/of+ tau p2

tau ([a: exp taul (pl a) imp (p2 a)).
{tau’: ty} {rho: ri}

{p: exp tau’ -> exp tau -> prp}

({a’: exp
pf lo/of+
tau
([a:
{tau: ty}

tau’} pf lo/of+ tau (p a’))

exp tau] all tau’ rho ([a’: exp tau’] p a’ a)).
{tau’: ty} {rho: ri}

{p: exp tau’ -> exp tau -> prp}

({a’: exp
-> pf lo/of+
tau
([a:
lo/of+|i_nextT: {tau: ty}
pf lo/of+
lo/of+|i_allT: {tau: ty}
pf lo/of+
lo/of+|i_someT: {tau: ty}
pf lo/of+
lo/of+|i_untilT: {tau: ty}
pf lo/of+
lo/of+|i_unlessT: {tau: ty}
pf lo/of+

B.1.3.4 Rigidity

% - rigidity -

ri/ofE|i-: {tau: ty} {e:
pf ri/ofE tau
ri/ofE|i_par: {tau: ty} {a:
ri/par tau a
-> pf ri/ofE tau

ri/ofE|i_con:

ri/of|i_and:

ri/of|i_or:

ri/of|i_imp:

ri/of|i_all:

ri/of|i_some:

ri/of|i_nextT:

ri/of|i_allT:

{tau: ty} {c:

pf

->

->

->

ri/ofE tau

tau’} pf lo/of+ tau (p a’))

exp tau] some tau’ rho ([a’: exp tau’] p a’ a)).

{p: prp}
tau ([a: exp taul nextT p).
{p: prp}
tau ([a: exp tau] allT p).
{p: prp}

tau ([a: exp tau] someT p).

{p1: prp} {p2: prp}

tau ([a: exp tau] pl untilT p2).
{pt: prp} {p2: prp}

tau ([a: exp tau] pl unlessT p2).

exp tau}
e ri/-.
par tau}

(par/‘ tau a) ri/+.
con tau}
(con/¢ tau c¢) ri/+.

{p1: prp} {p2: prp} {rho: ri}

pf ri/of pl rho -> pf ri/of p2 rho

pf ri/of (pl and p2) rho.

{p1: prp} {p2: prp} {rho: ri}

pf ri/of pl rho -> pf ri/of p2 rho

pf ri/of (pl or p2) rho.

{p1: prp} {p2: prp} {rho: ri}

pf ri/of pl rho -> pf ri/of p2 rho

pf ri/of (pl imp p2) rho.

{tau: ty} {rho’: ri} {p: exp tau -> prp} {rho: ri}

({a: par tau} ri/par tau a -> pf ri/of (p (par/‘ tau a)) rho)
pf ri/of (all tau rho’ p) rho.

{tau: ty} {rho’: ri} {p: exp tau -> prp} {rho: ri}

({a: par tau} ri/par tau a -> pf ri/of (p (par/‘ tau a)) rho)
pf ri/of (some tau rho’ p) rho.

{p: prp} {rho: ri}

pf ri/of p

rho

pf ri/of (nextT p) rho.
{p: prp} {rho: ri}

227

228
pf
-> pf
ri/of|i_someT: {p:
pf
-> pf
ri/of[i_untilT: {p1
pf
=> pf
ri/of|i_unlessT: {pl
pf
-> pf
% - truth -

ri/of|e: {p: prp} {t
pf ri/of p
->pfpet’.

APPENDIX B. LF REPRESENTATION

ri/of p rho

ri/of (allT p) rho.

prp} {rho: ri}

ri/of p rho

ri/of (someT p) rho.

: prp} {p2: prp} {rho: ri}
ri/of pl rho -> pf ri/of p2 rho
ri/of (pl untilT p2) rho.

: prp} {p2: prp} {rho: ri}
ri/of pl rho -> pf ri/of p2 rho
ri/of (pl unlessT p2) rho.

:ti} {t’: ti}
ri/+ ->pf pQ@t

B.1.3.5 Rewriting

rew/stepOE[i~: {tau:
{e: e

({t:
-> pf re
rew/stepE|i”: {tau:
{e: e

({t:
-> pf re

rew/tailE|i_step0: {

ty}

xp tau} {e’: exp tau}

ti} pf eq/eq tau e e’ @ t)
w/stepOE tau e e’.

ty}

xp tau} {e’: exp tau}

ti} pf eq/eq tau e e’ @ t)
w/stepE tau e e’.

tau: ty} {e: exp tau} {e’: exp tau}

pf rew/stepOE tau e e’
-> pf rew/tailE tau e e’.
rew/tailE|i_step: {tau: ty} {e: exp tau} {e’: exp tau} {e’’: exp tau}
pf rew/normE tau e’ e’’ -> pf rew/stepE tau e e’
-> pf rew/tailE tau e e’’.

rew/normE|i_par: {ta
pf

rew/normE|i_con: {ta
pf

rew/step0|i~: {p: pr
({t: t

-> pf rew
rew/stepli”: {p: pr
({t: t

-> pf rew

rew/taill|i_stepO: {p:

pf
-> pf

rew/tailli_step: {p:

pf
-> pf

rew/norm|i_and:

rew/norm|i_or:

rew/norm|i_imp:

u: ty} {a: par taul}
rew/normE tau (par/‘ tau a) (par/‘ tau a).
u: ty} {c: con tau}
rew/normE tau (con/‘ tau c) (con/‘ tau c).

p} {p’: prp}

i} pf p eqv p’ @ t)
/step0 p p’.

p} {p’: prp}

i} pf p eqv p’ @ t)
/step p p’.

prp} {p’: prp}

rew/step0 p p’

rew/tail p p’.

prp} {p’: prp} {p’’: prp}
rew/norm p’ p’’ -> pf rew/step p p’
rew/tail p p’’.

{p1: prp} {p2: prp} {p1’: prp} {p2’: prp} {p’’:

pf rew/tail (pl’ and p2’) p’’
pf rew/norm pl pl’ -> pf rew/morm p2 p2’
pf rew/norm (pl and p2) p’’.

{p1: prp} {p2: prp} {p1’: prp} {p2’: prp} {p’’:

pf rew/tail (pil’ or p2’) p’’
pf rew/norm pl pl’ -> pf rew/norm p2 p2’
pf rew/norm (pl or p2) p’’.

{p1: prp} {p2: prp} {pi1’: prp} {p2’: prp} {p’’:

prp’}

prp’}

prp}

B.1. TEMPORAL LOGIC

=->
rew/norm|i_all:

=->

rew/norm|i_some:

rew/norm|i_nextT:

rew/norm|i_allT:

->
rew/norm|i_someT:

->
rew/norm|i_untilT:

->

->
rew/norm|i_unlessT:

=->
->

B.1.3.6 Time

% Peano rules
<=t|i0: {t: ti}

pf rew/tail (p1l’ imp p2’) p’’

pf rew/norm p1 pl’ -> pf rew/morm p2 p2’

pf rew/norm (pl imp p2) p’°’.

{tau: ty} {rho: ri}

{p: exp tau -> prp} {p’: exp tau -> prp} {p’’:
pf rew/tail (all tau rho p’) p’’

({a: par tau}

pf rew/norm (p (par/‘ tau a)) (p’ (par/‘ tau
pf rew/nmorm (all tau rho p) p’’.

{tau: ty} {rho: ri}

{p: exp tau -> prp} {p’: exp tau -> prp} {p’’:
pf rew/tail (some tau rho p’) p’’

({a: par tau}

pf rew/norm (p (par/‘ tau a)) (p’ (par/‘ tau
pf rew/norm (some tau rho p) p’’.

{p: prp} {p’: prp} {p’’: prp}

pf rew/tail (nextT p’) p’’ -> pf rew/morm p p’
pf rew/norm (nextT p) p’’.

{p: prp} {p’: prp} {p’’: prp}

pf rew/tail (allT p’) p’’ -> pf rew/norm p p’
pf rew/norm (allT p) p’’.

{p: prp} {p’: prp} {p’’: prp}

pf rew/tail (someT p’) p’’ -> pf rew/morm p p’
pf rew/norm (someT p) p’’.

{pil: prp} {p2: prp} {pl1’: prp} {p2’: prp} {p’’:

pf rew/tail (pil’ untilT p2’) p’’
pf rew/norm pl pl’ -> pf rew/morm p2 p2’
pf rew/norm (pl untilT p2) p’’.

{p1: prp} {p2: prp} {p1’: prp} {p2’: prp} {p’’:

pf rew/tail (p1’ unlessT p2’) p’’
pf rew/norm pl pl’ -> pf rew/norm p2 p2’
pf rew/norm (pl unlessT p2) p’’.

pf ti/0 <=t t.

<=t|i+1l: {t: ti}
pf t <=t

t +1t.

<=t|e+1l: {t: ti} {p’: prp} {t’: ti}

pf t +1t

<=t t

-> pf p’ @ t’.
<=t|e_ind2: {t0: ti} {pl: prp} {p2: prp} {p’: prp} {t’: ti}

pf pl @

t0

=> ({t: ti} {p’: prp} {t’: ti}
pf tO<=tt ->pfpl et

-> (pf p1 @ t +1t -> pf p’> @ t’) -> (pf p2 @ t +1t -> pf p’ @ t’)

-> pf p’> @ t’)
=> (({t1: ti} pf t0 <=t t1 -> pf pl @ t1)
> pf p’ Q@ t’)
=> ({t2: ti}
pf t0 <=t t2 -> pf at/Qov pl t0 t2 -> pf p2 @ t2
-> pf p’ @ t?)

-> pf p’ @

t’.

% partial order rules

<=t |i_ref: {t: ti}

pf t <=t t.
<=t|e_asym: {t1: ti} {t2: ti} {p: prp}
pf tl <=t t2 -> pf t2 <=t t1 -> pf p @ t1

->pfpe

t2.

<=t|e_trans: {t1: ti} {t2: ti} {t3: ti}
pf t1 <=t t2 -> pf t2 <=t t3

prpl}

a)))

prp}

a)))

prp}

prp}

229

230 APPENDIX B. LF REPRESENTATION

-> pf t1 <=t t3.

% linearity rules
<=t|e_linp: {t0: ti} {t1: ti} {t2: ti} {p: prp} {t: ti}
pf t1 <=t t0 -> pf t2 <=t t0
=> (pf t2 <=t t1 -> pf p @ t) -> (pf tl +1t <=t t2 -> pf p @ t)
-=>pfpaet.
<=t|e_linf: {t0: ti} {t1: ti} {t2: ti} {p: prp} {t: ti}
pf t0 <=t t1 -> pf t0 <=t t2
=> (pf t2 <=t t1 => pf p @ t) -> (pf t1 +1t <=t t2 -> pf p @ t)
->pfpa@t.

B.1.3.7 Propositions

% - truth: connectives -

and|i: A{pl: prp} {p2: prp} {t: ti}
pfpl@t ->pfp2aet
-> pf pl and p2 @ t.
and|el: {pl: prp} {p2: prp} {t: til}
pf pl and p2 @ ¢t
-> pf pl @ t.
and|er: {pi: prp} {p2: prp} {t: ti}
pf pl and p2 @ ¢t
-> pf p2 @ t.

or|il: {pl: prp} {p2: prp} {t: ti}
pf pl @t
-> pf pl or p2 @ t.
or|ir: {pl: prp} {p2: prp} {t: ti}
pf p2 @ t
-> pf pl or p2 @ t.
orle: A{pl: prp} {p2: prp} {p’: prp} {t: ti} {t’: ti}
pf pl or p2 @ t
-> (pf pt @t ->pf p’> @t’) -> (pf p2 @t -> pf p’> @ t’)
-> pf p’ @ t’.

impli: {pl: prp} {p2: prp} {t: ti}
(pf p1 @ t -> pf p2 @ t)
-> pf pl imp p2 @ t.
imple: {pl: prp} {p2: prp} {t: ti}
pf pl impp2 @t -> pf pl @ ¢t
->pf p2 @ t.

% - truth: quantifiers -

all|i: {tau: ty} {rho: ri} {p: exp tau -> prp} {t: til}
({a: par tau} pf ri/ofE tau (par/‘ tau a) rho -> pf p (par/‘ tau a) @ t)
-> pf all tau rho p @ t.
allle: {tau: ty} {rho: ri} {e: exp tau} {p: exp tau -> prp} {t: ti}
pf all tau rho p @ t -> pf ri/ofE tau e rho
->pfpe@t.

some|i: {tau: ty} {rho: ri} {e: exp tau} {p: exp tau -> prp} {t: ti}
pf ri/ofE tau e rho -> pf pe @ t
-> pf some tau rho p @ t.
some|e: {tau: ty} {rho: ri} {p: exp tau -> prp} {p’: prp} {t: ti} {t’: ti}
pf some tau rho p @ t
-> ({a: par tau}
pf ri/ofE tau (par/‘ tau a) rho -> pf p (par/‘ tau a) @ t
-> pf p’> @ t’)
-> pf p’ Q@ t’.

% - truth: temporal operators -

B.1. TEMPORAL LOGIC 231

nextT|i: {p: prp} {t: ti}
pf p @t +1t
-> pf nextT p @ t.
nextT|e: {p: prp} {t: ti}
pf nextT p @ t
-> pf p @t +1t.

allT|i: {pil: prp} {t: ti}
({t1: ti} pf t <=t t1 -> pf pl @ t1)
-> pf allT pl @ t.
allTle: {pil: prp} {t: ti} {t1: ti}
pf allT p1 @ t -> pf t <=t t1
-> pf pl @ t1.

untilT|i: {pl: prp} {p2: prp} {t: ti} {t2: ti}
pf t <=t t2 -> pf at/@ov pl t t2 -> pf p2 @ t2
-> pf pl untilT p2 @ t.
untilTl|e: {pl: prp} {p2: prp} {p’: prp} {t: ti} {t’: ti}
pf pl untilT p2 @ t

=> ({t2: ti}
pf t <=t t2 -> pf at/Qov pl t t2 -> pf p2 @ t2 -> pf p’ @ t’)
->pf p’ @ t’.
someT| : {p: prp} {t: ti}

pf someT p eqv true untilT p @ t.
unlessT|: {pl: prp} {p2: prp} {t: ti}
pf pl unlessT p2 eqv allT pl or pl untilT p2 @ t.

% = truth: finite intervals -

Qov|i: {p: prp} {t1: ti} {t2: ti}
({t: ti} pf t1 <=t t => pf t +1t <=t t2 -> pf p @ t)
-> pf at/Qov p t1 t2.
Qov|e: {p: prp} {t: ti} {t1: ti} {t2: ti}
pf at/@ov p t1 t2 -> pf t1 <=t t -> pf t +1t <=t t2
-> pfpa@t.

B.1.3.8 Restricted Truth

nat/@|i~: {p: prp} {t: ti}
pfp@t
->pf pe_t.
uat/@le: {p: prp} {t: ti}
pfpe_t
->pfpat.

B.1.3.9 Functions

% - semantics -

fun/appl#|i~: {taul: ty} {tau: ty}
{f: fun/1 taul tau}
{cl: con taul} {c: con tau}
({t: ti}
pf eq/eq tau
(fun/appl taul tau f (con/‘ taul cl))
(con/¢ tau c) @ t)
-> pf fun/appl# taul tau f cl c.
fun/app2#|i~: {taul: ty} {tau2: ty} {tau: ty}
{f: fun/2 taul tau2 tau}
{c1: con taul} {c2: con tau2} {c: con tau}
({t: ti}
pf eq/eq tau

232 APPENDIX B. LF REPRESENTATION

(fun/app2 taul tau2 tau
f (con/¢ taul c1) (con/‘ tau2 c2))
(con/¢ tau c) @ t)
-> pf fun/app2# taul tau2 tau f cl c2 c.
fun/app3#|i~: {taul: ty} {tau2: ty} {tau3: ty} {tau: ty}
{f: fun/3 taul tau2 tau3 tau}
{c1: con taull} {c2: con tau2} {c3: con tau3} {c: con tau}
({t: ti}
pf eq/eq tau
(fun/app3
taul tau2 tau3 tau
f (con/¢ taul cl1) (con/‘ tau2 c2) (con/‘ tau3 c3))
(con/¢ tau c) @ t)
-> pf fun/app3# taul tau2 tau3 tau f c1 c2 c3 c.

% - rigidity -

ri/ofE|fun/appl: {taul: ty} {tau: ty}
{f: fun/1 taul tau} {el: exp taul}
pf ri/ofE taul el ri/+
-> pf ri/ofE tau (fun/appl taul tau f el) ri/+.
ri/ofE|fun/app2: {taul: ty} {tau2: ty} {tau: ty}
{f: fun/2 taul tau2 tau} {el: exp taul} {e2: exp tau2}
pf ri/ofE taul el ri/+ -> pf ri/ofE tau2 e2 ri/+
-> pf ri/ofE tau (fun/app2 taul tau2 tau f el e2) ri/+.
ri/ofE|fun/app3: {taul: ty} {tau2: ty} {tau3: ty} {tau: ty}
{f: fun/3 taul tau2 tau3 tau}
{el: exp taull} {e2: exp tau2} {e3: exp tau3}
pf ri/ofE taul el ri/+ -> pf ri/ofE tau2 e2 ri/+
-> pf ri/ofE tau3 e3 ri/+
-> pf ri/ofE tau (fun/app3 taul tau2 tau3 tau f el e2 e3) ri/+.

% - rewriting -

rew/stepOE|fun/appl: {taul: ty} {tau: ty}
{f: fun/1 taul tau}
{c1: con taull} {c’: con tau}
pf fun/appl# taul tau f cl c’
-> pf rew/stepOE tau
(fun/appl taul tau f (con/‘ taul cl))
(con/¢ tau c’).
rew/stepOE|fun/app2: {taul: ty} {tau2: ty} {tau: tyl}
{f: fun/2 taul tau2 tau}
{c1: con taul} {c2: con tau2} {c’: con tau}
pf fun/app2# taul tau2 tau f cl c2 ¢’
-> pf rew/stepOE tau
(fun/app2 taul tau2 tau
£
(con/¢ taul cl1)
(con/¢ tau2 c2))
(con/* tau c?).
rew/stepOE|fun/app3: {taul: ty} {tau2: ty} {tau3: ty} {tau: ty}
{f: fun/3 taul tau2 tau3 tau}
{c1: con taull} {c2: con tau2} {c3: con tau3} {c’: con tau}
pf fun/app3# taul tau2 tau3 tau f cl c2 c3 ¢’
-> pf rew/stepOE tau
(fun/app3 taul tau2 tau3 tau
£
(con/¢ taul ci)
(con/¢ tau2 c2)
(con/‘ tau3 c3))
(con/¢ tau c’).

rew/normE|fun/appl: {tau: ty} {taul: ty}

B.1. TEMPORAL LOGIC

{f: fun/1 taul tau}
{el: exp taul}
{e1l’: exp taul} {e’’: exp tau}
pf rew/tailE tau (fun/appl taul tau f el’) e’’
-> pf rew/normE taul el el’
-> pf rew/normE tau (fun/appl taul tau f el) e’’.
rew/normE|fun/app2: {tau: ty} {taul: ty} {tau2: ty}
{f: fun/2 taul tau2 tau}
{el: exp taull} {e2: exp tau2}
{el’: exp taul} {e2’: exp tau2} {e’’: exp tau}
pf rew/tailE tau (fun/app2 taul tau2 tau f el’ e2’) e’’
-> pf rew/normE taul el el’ -> pf rew/normE tau2 e2 e2’
-> pf rew/normE tau (fun/app2 taul tau2 tau f el e2) e’’.
rew/normE|fun/app3: {tau: ty} {taul: ty} {tau2: ty} {tau3: ty}
{f: fun/3 taul tau2 tau3 tau}
{el: exp taull} {e2: exp tau2} {e3: exp tau3}
{el’: exp taul} {e2’: exp tau2} {e3’: exp tau3}
{e’’: exp tau}
pf rew/tailE tau
(fun/app3 taul tau2 tau3 tau f el’ e2’ e3’)
e,)
-> pf rew/normE taul el el’ -> pf rew/normE tau2 e2 e2’
-> pf rew/normE tau3 e3 e3’
-> pf rew/normE tau
(fun/app3 taul tau2 tau3 tau f el e2 e3)
e’’.

B.1.3.10 Relations

% - semantics -

rel/appl#|i~: {taul: ty}
{r~: rel/1 taul} {cl: con taul}
({t: ti}
pf rel/appl taul r~ (con/‘ taul cl) @ t)
-> pf rel/appl# taul r~ ci.
rel/app2#|i~: {taul: ty} {tau2: ty}
{r~: rel/2 taul tau2} {cl: con taull} {c2: con tau2}
({t: ti}
pf rel/app2 taul tau2 r~ (con/‘ taul c1) (con/‘ tau2 c2) @ t)
-> pf rel/app2# taul tau2 r~ cl c2.

% these may be derivable
% no rel/appO#|not_not
rel/appl#|not_not: {taul: tyl}
{r~: rel/1 taul} {cl: con taul}
pf rel/appl# taul r~ ci
-> pf rel/appl# taul (rel/notl taul (rel/motl taul r~)) cl.
rel/app2#|not_not: {taul: ty} {tau2: ty}
{r~: rel/2 taul tau2} {cil: con taull} {c2: con tau2}
pf rel/app2# taul tau2 r~ cl c2
-> pf rel/app2# taul tau2
(rel/not2 taul tau2 (rel/not2 taul tau2 r~))
cl
c2.

% - locality -

lo/of+|i_rel/app0O: {tau: ty}

{r~: rel/0}

pf lo/of+ tau ([x: exp tau] rel/app0 r~).
lo/of+|i_rel/appl: {tau: ty} {taul: ty}

{r": rel/1 taull} {el: exp tau -> exp taul}

pf lo/of+ tau ([x: exp tau] rel/appl taul r~ (el x)).

233

234 APPENDIX B. LF REPRESENTATION

lo/of+|i_rel/app2: {tau: ty} {taul: ty} {tau2: ty}
{r": rel/2 taul tau2}
{el: exp tau -> exp taull} {e2: exp tau -> exp tau2}
pf lo/of+
tau
([x: exp tau] rel/app2 taul tau2 r~ (el x) (e2 x)).

% - rigidity -

ri/of|rel/app0: {r": rel/0} {rho: ri}
pf ri/of (rel/app0 r~) rho.
ri/of|rel/appl: {taul: ty}
{r": rel/1 taul} {el: exp taul} {rho: ri}
pf ri/ofE taul el rho
-> pf ri/of (rel/appl taul r~ el) rho.
ri/of |rel/app2: {taul: ty} {tau2: ty}
{r": rel/2 taul tau2} {el: exp taul} {e2: exp tau2} {rho: ri}
pf ri/ofE taul el rho -> pf ri/ofE tau2 e2 rho
-> pf ri/of (rel/app2 taul tau2 r~ el e2) rho.

% - rewriting -

rew/stepO|rel/appl_true: {taul: ty}
{r~: rel/1 taul} {cl: con taul}
pf rel/appl# taul r~ cil
-> pf rew/step0 (rel/appl taul r~ (con/¢ taul c1))
true.
rew/step0|rel/appl_false: {taul: ty}
{r~: rel/1 taul} {cl: con taul}
pf rel/appl# taul (rel/motl taul r”) ci
-> pf rew/step0 (rel/appl taul r~ (con/‘ taul c1))
false.
rew/stepOlrel/app2_true: {taul: ty} {tau2: ty}
{r~: rel/2 taul tau2} {cl: con taull} {c2: con tau2}
pf rel/app2# taul tau2 r~ cl c2
-> pf rew/step0 (rel/app2 taul tau2
-
(con/¢ taul cl)
(con/¢ tau2 c2))
true.
rew/step0O|rel/app2_false: {taul: ty} {tau2: ty}
{r~: rel/2 taul tau2} {cl: con taull} {c2: con tau2}
pf rel/app2# taul tau2 (rel/not2 taul tau2 r~) cl c2
-> pf rew/step0 (rel/app2 taul tau2
r
(con/¢ taul cl)
(con/¢ tau2 c2))
false.

rew/norm|rel/app0: {r~: rel/0}
pf rew/norm (rel/app0 r~) (rel/app0 r~).
rew/norm|rel/appl: {taul: ty}
{r": rel/1 taull} {el: exp taul}
{el’: exp taul}
{p’’: prp}
pf rew/tail (rel/appl taul r~ el’) p’’
-> pf rew/normE taul el el’
-> pf rew/norm (rel/appl taul r~ el) p’’.
rew/norm|rel/app2: {taul: ty} {tau2: ty}
{r": rel/2 taul tau2} {el: exp taul} {e2: exp tau2}
{el’: exp taul} {e2’: exp tau2}
{p’’: prp}
pf rew/tail (rel/app2 taul tau2 r~ el’ e2’) p’’
-> pf rew/normE taul el el’ -> pf rew/mormE tau2 e2 e2’

B.1. TEMPORAL LOGIC

% = truth -

trueli: {t:
pf

rel/case0:
->

->
rel/casel:

->
->
rel/case2:

->

->
rel/contrQ:
->

->
rel/contrl:

->
->
rel/contr2:

->

B.1.3.11

% - localit

-> pf rew/norm (rel/app2 taul tau2 r~ el e2) p’’.

ti}
true Q t.

{r~: rel/0} {t1: ti}

{p: prp} {t: ti}

(pf rel/app0 r~ @ t1 -> pf p @ t)

(pf rel/app0 (rel/motO r~) @ ti1 -> pf p @ t)

pf pa@t.

{taul: ty}

{r": rel/1 taull} {el: exp taul} {t1l: ti}

{p: prp} {t: ti}

(pf rel/appl taul r~ el @ t1 -> pf p @ t)

(pf rel/appl taul (rel/motl taul r~) el @ t1 -> pf p @ t)

pf pa@t.

{taul: ty} {tau2: ty}

{r": rel/2 taul tau2} {el: exp taul} {e2: exp tau2} {ti: ti}
{p: prp} {t: ti}

(pf rel/app2 taul tau2 r~ el e2 @ ti1

-> pf p @t)

(pf rel/app2 taul tau2 (rel/not2 taul tau2 r~) el e2 @ t1
->pf p@t)

pfpa@t.

{r": rel/0} {t1: ti}

{p: prp} {t: ti}

pf rel/app0 r~ @ ti

pf rel/app0 (rel/mot0 r~) @ ti

pf p@t.

{taul: ty}

{r": rel/1 taull} {el: exp taull} {tl: ti}

{p: prp} {t: ti}

pf rel/appl taul r~ el @ ti

pf rel/appl taul (rel/notl taul r~) el @ ti

pf p@t.

{taul: ty} {tau2: ty}

{r": rel/2 taul tau2} {el: exp taul} {e2: exp tau2} {til: ti}
{p: prp} {t: ti}

pf rel/app2 taul tau2 r~ el e2 @ ti

pf rel/app2 taul tau2 (rel/not2 taul tau2 r~) el e2 @ ti1
pfp@t.

Equality

y -

lo/of+|e: {tau: ty}
{e: exp tau} {e’: exp tau} {p: exp tau -> prp} {t: ti}
pf lo/of+ tau p -> pf eq/eq tau e e’ @t -> pf pe @ t
->pfpe’Q@t.

% - rewriti

% this one
rew/tailE|e

ng -

may be derivable when the top-level structure of e is known
: {tau: ty}

{e: exp tau} {e’: exp tau} {t: til}

pf rew/tailE tau e e’

-> pf eq/eq tau e e’ @ t.

rew/normE|e

: {tau: ty}
{e: exp tau} {e’: exp tau} {t: ti}
pf rew/normE tau e e’

235

236 APPENDIX B. LF REPRESENTATION

-> pf eq/eq tau e e’ @ t.
% = truth -

eqli_ref: {tau: ty}
{e: exp tau} {t: ti}
pf eq/eq tau e e @ t.
eq|i_some: {tau: ty}
{e: exp tau} {rho: ri} {p’: prp} {t’: ti} {t: ti}
({a: par tau}
pf ri/ofE tau (par/‘ tau a) rho
-> pf eq/eq tau (par/‘ tau a) e @ t
> pf p’ @ t’)
- pf p’ Qt.
eqle_cong: {tau: ty}
{e: exp tau} {e’: exp tau} {p: exp tau -> prp} {t: ti}
({t1l: ti} pf eq/eq tau e e’ @ t1) -> pf pe @ t
->pfpe’ Q@¢t.

B.1.3.12 Equivalence
% - locality -

lo/of+|i_eqv: {tau: ty} {pl: exp tau -> prp} {p2: exp tau -> prp}
pf lo/of+ tau pl -> pf lo/of+ tau p2
-> pf lo/of+ tau ([a: exp tau] pl a eqv p2 a).

% - rigidity -

ri/of|i_eqv: {pl: prp} {p2: prp} {rho: ri}
pf ri/of pl rho -> pf ri/of p2 rho
-> pf ri/of (pl eqv p2) rho.

% - rewriting -

rew/norm|i_eqv: {pl: prp} {p2: prp} {p1’: prp} {p2’: prp} {p’’: prp}
pf rew/tail (pl’ eqv p2’) p’’
-> pf rew/norm p1 pl’ -> pf rew/morm p2 p2’
-> pf rew/norm (pl eqv p2) p’’.

% these two may be derivable when the top-level structure of p is known
rew/taille: {p: prp} {p’: prp} {t: ti}
pf rew/tail p p’
-> pf peqv p’ @ t.
rew/normle: {p: prp} {p’: prp} {t: ti}
pf rew/norm p p’
-> pf peqv p’ @ t.

% - truth -

eqv|i: {pl: prp} {p2: prp} {t: ti}
(pf pl @t -> pf p2 @ t) -> (pf p2 @ t -> pf pl @ t)
-> pf pl eqv p2 @ t.

eqvlel: {pl: prp} {p2: prp} {t: til}

pf pl eqv p2 @ t -> pf pl @ t
-> pf p2 @ t.

eqvler: {pl: prp} {p2: prp} {t: ti}
pf pl eqv p2 @t -> pf p2 @ ¢t
-> pf pl @ t.

B.1.3.13 Pairs

pair/make|inj:

B.1. TEMPORAL LOGIC

{taul: ty} {tau2: ty} {t: ti}
pf fun/inj2 taul tau2 (pair taul tau2) (pair/#make taul tau2) @ t.

pair/left|make: <{taul: ty} {tau2: ty}
{el: exp taull} {e2: exp tau2} {t: ti}
pf eq/eq taul
(pair/left taul tau2 (pair/make taul tau2 el e2))
el @ t.
pair/right|make: {taul: ty} {tau2: ty}
{el: exp taull} {e2: exp tau2} {t: ti}
pf eq/eq tau2
(pair/right taul tau2 (pair/make taul tau2 el e2))
e2 Q@ t.

B.1.3.14 Triples

trip/make]| :
{taul: ty} {tau2: ty} {tau3: ty}
{el: exp taull} {e2: exp tau2} {e3: exp tau3}
{t: ti}
pf eq/eq
(trip taul tau2 tau3)
(trip/make taul tau2 tau3 el e2 e3)
(pair/make (pair taul tau2) tau3 (pair/make taul tau2 el e2) e3) Q@ t.
trip/left]:
{taul: ty} {tau2: ty} {tau3: ty}
{e: exp (trip taul tau2 tau3)}
{t: ti}
pf eq/eq
taul
(trip/left taul tau2 tau3 e)
(pair/left taul tau2 (pair/left (pair taul tau2) tau3 e)) @ t.
trip/mid]:
{taul: ty} {tau2: ty} {tau3: ty}
{e: exp (trip taul tau2 tau3)}
{t: ti}
pf eq/eq
tau2
(trip/mid taul tau2 tau3 e)
(pair/right taul tau2 (pair/left (pair taul tau2) tau3 e)) @ t.
trip/right]:
{taul: ty} {tau2: ty} {tau3: ty}
{e: exp (trip taul tau2 tau3)}
{t: ti}
pf eq/eq
taud
(trip/right taul tau2 tau3 e)
(pair/right (pair taul tau2) tau3 e) @ t.

B.1.3.15 Lists

% - semantics -
% no fun/app2#|list
rel/app2#|eq_list:

{tau: ty}

pf rel/app2# (list tau) (list tau)

(eq/#eq (list tau)) (list/empty tau) (list/empty tau).

% no rel/app2#|neq_list
% - truth -

list/cons|inj:

237

238 APPENDIX B. LF REPRESENTATION

{tau: ty} {t: ti}
pf fun/inj2 tau (list tau) (list tau) (list/#cons tau) Q t.

list/head|cons:

{tau: ty}

{el: exp tau} {e2: exp (list tau)} {t: ti}

pf eq/eq tau (list/head tau (list/cons tau el e2)) el @ t.
list/tail|cons:

{tau: ty}

{el: exp tau} {e2: exp (list tau)} {t: til}

pf eq/eq (list tau) (list/tail tau (list/cons tau el e2)) e2 @ t.

B.2 Machine Model

B.2.1 Abstract Syntax

B.2.1.1 Machine Words
% - types -

wd: ty.
% - constants -

3t
A word constant is represented by a member of its equivalence class
modulo 2732. Word operations normalize results between zero and 2°31-1, so
many pattern matchings assume that word values and constants are normalized
within this range. This constructor should only be applied to normalized
values, but this is not enforced.

Yh

wd/#: integer -> con wd.

wd/0 = wd/# 0.
wd/1 = wd/# 1.
wd/2 = wd/# 2.
wd/3 = wd/# 3.
wd/4 = wd/# 4.
wd/5 = wd/# 5.
wd/6 = wd/# 6.
wd/7 = wd/# 7.
wd/8 = wd/# 8.
wd/9 = wd/# 9.

wd/"1 = wd/# 4294967295.
wd/"2 = wd/# 4294967294.
wd/"3 = wd/# 4294967293.
wd/"4 = wd/# 4294967292.

wd/‘ = con/‘ wd.
wd/‘# = [n: integer] wd/¢ (wd/# n).

wd/‘0 = wd/¢ wd/O0.
wd/‘1 = wd/¢ wd/l.
wd/‘"1 = wd/‘ wd/"1.

% - functions -

wd/#zf: fun/1 wd wd.
wd/#sf: fun/1 wd wd.

wd/#neg: fun/1 wd wd.

wd/#add: fun/2 wd wd wd.

B.2. MACHINE MODEL

wd/#sub:
wd/#mul:

wd/#div:
wd/#rem:

wd/#and:

wd/#or:

wd/#xor:

wd/#not:

wd/zf =
wd/sf

wd/neg

wd/add =

wd/sub
wd/mul

wd/div
wd/rem

fun/2 wd
fun/2 wd

fun/3 wd
fun/3 wd

fun/2 wd
fun/2 wd
fun/2 wd

fun/1 wd

wd
wd

wd
wd

wd
wd
wd

wd.

wd.
wd.

wd wd.
wd wd.

wd.
wd.
wd.

fun/appl wd wd wd/#zf.
fun/appl wd wd wd/#sf.

fun/appl wd wd wd/#neg.

fun/app2
fun/app2
fun/app2

= fun/app3

wd/and =

wd/or
wd/xor

wd/not

fun/app3
fun/app2
fun/app2
fun/app2

fun/appl

% - relations -

wd/#1t:
wd/#1ltu
wd/#inc

wd/#geq

wd/#gequ

wd/#nin

wd/eq
wd/neq
wd/1lt
wd/geq
wd/ltu
wd/gequ
wd/inc
wd/ninc

C

rel/2 wd
rel/2 wd
rel/2 wd

wd
wd
wd

wd
wd

wd
wd
wd

wd

wd.
wd.
wd.

wd
wd
wd

wd
wd

wd
wd
wd

wd

wd
wd
wd

wd
wd

wd
wd
wd

wd/#add.
wd/#sub.
wd/#mul.

wd wd/#div.
wd wd/#rem.

wd/#and.
wd/#or.
wd/#xor.

wd/#not.

= rel/not2 wd wd wd/#lt.
= rel/not2 wd wd wd/#ltu.

= rel/not2 wd wd wd/#inc.

= rel/app2
= rel/app2
= rel/app2
= rel/app2
= rel/app2
= rel/app2
= rel/app2
= rel/app2

% - exports -

Ow = wd/O.
1w = wd/1.
“lw = wd/"1.
‘Ow = wd/‘0.
‘Aw = wd/‘1.
‘1w = wd/‘"1.

B.2.1.2 Arithmetic Operators

% - types -

op/1: ty.

wd
wd
wd
wd
wd
wd
wd
wd

wd
wd
wd
wd
wd
wd
wd
wd

(eq/#eq wd).
(eq/#neq wd).
wd/#1t.
wd/#geq.
wd/#1tu.
wd/#gequ.
wd/#inc.
wd/#ninc.

239

240 APPENDIX B. LF REPRESENTATION

op/2: ty.
op/3: ty.

% - constants -

op/add: con op/2.
op/sub: con op/2.
op/imul: con op/2.
op/inc: con op/1.
op/dec: con op/1.
op/neg: con op/1.

op/idiv: con op/3.
op/irem: con op/3.

op/and: con op/2.
op/or: con op/2.
op/xor: con op/2.
op/not: con op/1.

op/sf2: con op/2.

op/‘add = con/¢ op/2 op/add.
op/‘sub = con/‘ op/2 op/sub.
op/‘imul = con/‘ op/2 op/imul.
op/‘inc = con/¢ op/1 op/inc.
op/‘dec = con/¢ op/1 op/dec.
op/‘neg = con/‘ op/1 op/neg.

op/‘idiv = con/‘ op/3 op/idiv.
op/‘irem = con/‘ op/3 op/irem.

op/‘and = con/‘ op/2 op/and.
op/‘or = con/‘ op/2 op/or.
op/ ‘xor = con/‘ op/2 op/xor.
op/‘not = con/‘ op/1 op/not.

op/ ‘sf2

con/‘ op/2 op/sf2.
% - functions -

op/#appl: fun/2 op/1 wd wd.
op/#app2: fun/3 op/2 wd wd wd.
op/#app3: fun/3 op/3 (pair wd wd) wd wd.

op/#ofl: fun/2 op/1 wd wd.

op/#0f2: fun/3 op/2 wd wd wd.

op/#0f3: fun/3 op/3 (pair wd wd) wd wd.
op/#cfl: fun/2 op/1 wd wd.

op/#cf2: fun/3 op/2 wd wd wd.

op/#cf3: fun/3 op/3 (pair wd wd) wd wd.

op/#selzf: fun/1 wd wd.
op/#selsf: fun/1 wd wd.
op/#selof: fun/1 wd wd.
op/#selcf: fun/1 wd wd.

op/#updfi: fun/3 op/1 wd wd wd.
op/#updf2: fun/3 op/2 wd (pair wd wd) wd.
op/#updf3: fun/3 op/3 wd (pair (pair wd wd) wd) wd.

op/appl = fun/app2 op/1 wd wd op/#appl.
op/app2 = fun/app3 op/2 wd wd wd op/#app2.
op/app3 [eop: exp op/3] [el: exp wd] [e2: exp wd]

B.2. MACHINE MODEL

op/ofl
op/of2 =
op/of3 =

op/cfl
op/cf2 =
op/cf3 =

op/selzf
op/selsf
op/selof
op/selcf

op/updfl

op/updf3

fun/app3 op/3 (pair wd wd) wd wd op/#app3
eop (pair/make wd wd el e2).

fun/app3 op/2 wd wd

[eop: exp op/3] [el:

fun/app3 op/3 (pair

= fun/app2 op/1 wd wd

fun/app3 op/2 wd wd

[eop: exp op/3] [el:

fun/app3 op/3 (pair

= fun/app2 op/1 wd wd op/#ofl.

wd op/#o0f2.
exp wd] [e2: exp wd]
wd wd) wd wd op/#0f3 eop (pair/make wd wd el e2).
op/#cfl.
wd op/#cf2.
exp wd] [e2: exp wd]
wd wd) wd wd op/#cf3 eop (pair/make wd wd el e2).

= fun/appl wd wd op/#selzf.
= fun/appl wd wd op/#selsf.
= fun/appl wd wd op/#selof.
= fun/appl wd wd op/#selcf.

= fun/app3 op/1 wd wd wd op/#updfi.
op/updf2 =

[eop: exp op/2] [ef: exp wd] [el: exp wd] [e2: exp wd]

fun/app3 op/2 wd (pair wd wd) wd

op/#updf2 eop ef (pair/make wd wd el e2).

[eop: exp op/3] [ef: exp wd] [el: exp wd] [e2: exp wd] [e3: exp wd]
fun/app3 op/3 wd (pair (pair wd wd) wd) wd

op/#updf3 eop ef (pair/make (pair wd wd) wd

(pair/make wd wd el e2) e3).

B.2.1.3 Conditional Operators

% - type

cop: ty.

s -

% - constants -

cop/z:
cop/s:
cop/o:
cop/c:
cop/na:
cop/1:
cop/ng:

cop/‘z
cop/‘s
cop/ ‘o
cop/‘c
cop/ ‘na
cop/‘1
cop/‘ng

con
con
con
con
con
con
con

=cC
=c
=c
=cC
=cC
=cC
=c

cop.
cop.
cop.
cop.
cop.
cop.
cop.

on/*
on/*
on/ ¢
on/*
on/*
on/*
on/*

% - functions -

cop cop/z.
cop cop/s.
cop cop/o.
cop cop/c.
cop cop/na.
cop cop/1.
cop cop/ng.

cop/#self: fun/2 cop wd wd.
fun/1 cop cop.

cop/#not

cop/self
cop/not

fun/app2 cop wd wd cop/#self.
fun/appl cop cop cop/#not.

% - constants -

cop/‘nz =

cop/ ‘ns
cop/ ‘no
cop/‘nc

cop/not cop/‘z.

= cop/not cop/‘s.
= cop/not cop/‘o.
= cop/not cop/‘c.

241

242 APPENDIX B.

cop/‘a = cop/not cop/‘na.
cop/‘nl = cop/not cop/‘l.
cop/‘g = cop/not cop/‘ng.

B.2.1.4 Register Tokens
% - types -

greg: ty.
% - constants -

greg/eax: con greg.
greg/ebx: con greg.
greg/ecx: con greg.
greg/edx: con greg.
greg/esi: con greg.
greg/edi: con greg.
greg/ebp: con greg.
greg/esp: con greg.

greg/‘ = con/‘ greg.

greg/‘eax = greg/‘ greg/eax.
greg/‘ebx = greg/‘ greg/ebx.
greg/‘ecx = greg/‘ greg/ecx.
greg/‘edx = greg/‘ greg/edx.
greg/‘esi = greg/‘ greg/esi.
greg/‘edi = greg/‘ greg/edi.
greg/‘ebp = greg/‘ greg/ebp.
greg/‘esp = greg/‘ greg/esp.

% - exports -

‘eax = greg/‘eax.
ebx = greg/‘ebx.
‘ecx = greg/‘ecx.
edx = greg/‘edx.
‘esi = greg/‘esi.
edi = greg/‘edi.
‘ebp = greg/‘ebp.
esp = greg/‘esp.

B.2.1.5 Register Maps
% - types -

mapg: ty.

% - functions -

mapg/#sel: fun/2 mapg greg wd.
mapg/#upd: fun/3 mapg greg wd mapg.

mapg/sel = fun/app2 mapg greg wd mapg/#sel.
mapg/upd = fun/app3 mapg greg wd mapg mapg/#upd.

% - relations -

mapg/eq = rel/app2 mapg mapg (eq/#eq mapg).
mapg/neq = rel/app2 mapg mapg (eq/#neq mapg) .

B.2.1.6 'Word Maps
% - types -

LF REPRESENTATION

B.2. MACHINE MODEL 243

mapw: ty.

% - functions -

mapw/#sel: fun/2 mapw wd wd.

mapw/#upd: fun/3 mapw wd wd mapw.

mapw/#join: fun/3 mapw wd mapw mapw.

mapw/sel = fun/app2 mapw wd wd mapw/#sel.
mapw/upd = fun/app3 mapw wd wd mapw mapw/#upd.
mapw/join = fun/app3 mapw wd mapw mapw mapw/#join.

% - relations -

mapw/eq = rel/app2 mapw mapw (eq/#eq mapw).
mapw/neq = rel/app2 mapw mapw (eq/#neq mapw) .

B.2.1.7 Registers

% - parameters -

reg/pc: par wd. % EIP

reg/f: par wd. % EFLAGS

reg/g: par mapg. % EAX EBX ECX EDX ESI EDI EBP ESP
reg/s: par mapw.

reg/m: par mapw.

reg/‘pc = par/‘ wd reg/pc.
reg/‘f = par/‘ wd reg/f.

reg/‘g = par/‘ mapg reg/g.
reg/‘s = par/‘ mapw reg/s.
reg/‘m = par/‘ mapw reg/m.

3

reg/‘g_sp = mapg/sel reg/‘g ‘esp.

% - exports -

‘pc = reg/‘pc.
‘f = reg/‘f.
‘g = reg/‘g.
‘s = reg/‘s.
‘m = reg/‘m.

‘g_sp = reg/‘g_sp.
B.2.1.8 States
% - types -

state/fsm = trip wd mapw mapw.
state = trip wd mapg state/fsm.

% - functions -

state/make
= [epc: exp wd] [ef: exp wd] [eg: exp mapg] [es: exp mapw] [em: exp mapw]
trip/make wd mapg state/fsm epc eg (trip/make wd mapw mapw ef es em).

state/pc = trip/left wd mapg state/fsm.
state/f = [e: exp state]
trip/left wd mapw mapw (trip/right wd mapg state/fsm e).
state/g = trip/mid wd mapg state/fsm.
state/s = [e: exp state]

244

state/m

= [e: exp state]

state/eax
state/ebp
state/esp

APPENDIX B. LF REPRESENTATION

trip/mid wd mapw mapw (trip/right wd mapg state/fsm e).

trip/right wd mapw mapw (trip/right wd mapg state/fsm e).

= [e: exp state] mapg/sel

% - relations -

state/eq = eq/eq state.

% - expressions -

state/‘s

s

[e: exp state] mapg/sel
[e: exp state] mapg/sel

= state/make ‘pc ‘f ‘g ‘s

% - exports -

‘ss = state/‘ss.

(state/g e) ‘eax.
(state/g e) ‘ebp.
(state/g e) ‘esp.

B.2.1.9 Memory Addresses
% - types -

ma: ty.

% - functions -

ma/#d: fun/1 wd ma.
ma/#r: fun/3 greg wd ma ma.

ma/#addr: fun/2 mapg ma wd.

ma/d = fun/appl wd ma ma/#d.

ma/r

fun/app3 greg wd ma ma ma/#r.

ma/addr = fun/app2 mapg ma wd ma/#addr.

B.2.1.10 Effective Addresses
% - types -

ea: ty.

% - functions -

ea/#i: fun/1 wd

ea/#r: fun/1
ea/#s: fun/1
ea/#m: fun/1

ea/#addr:

ea/#sel:

ea/#updg:
ea/#upds:
ea/#updm:

fun/2
fun/2
fun/3
fun/3
fun/3

ea/i = fun/appl

ea/r
ea/s

fun/appl
fun/appl

ea/m = fun/appl

ea/addr
ea/sel

ea.

greg ea.
ma ea.
ma ea.

state
state
state
state
state

ea
ea
ea
ea
ea

wd.
wd.
wd mapg.
wd mapw.
wd mapw.

wd ea ea/#i.
greg ea ea/#r.
ma ea ea/#s.
ma ea ea/#m.

fun/app2 state ea wd ea/#addr.
fun/app2 state ea wd ea/#sel.

B.2. MACHINE MODEL 245

ea/updg = fun/app3 state ea wd mapg ea/#updg.
ea/upds = fun/app3 state ea wd mapw ea/#upds.
ea/updm = fun/app3 state ea wd mapw ea/#updm.

B.2.1.11 Instructions

% - types -

inst: ty.

% = functions -

% byte instructions will be mov8, etc.

inst/#mov: fun/3 wd ea ea inst.

inst/#xchg: fun/3 wd ea greg inst.
inst/#lea: fun/3 wd ea greg inst.
inst/#push: fun/2 wd ea inst.

inst/#pop: fun/2 wd ea inst.

inst/#opl: fun/3 wd op/1 ea inst.
inst/#op2: fun/3 wd op/2 (pair ea ea) inmst.
inst/#op2n: fun/3 wd op/2 (pair ea ea) inst.
inst/#op3: fun/3 wd (pair op/3 op/3) (pair ea (pair greg greg)) inst.
inst/#jmp: fun/2 wd ea inst.

inst/#j: fun/3 wd cop wd inst.
inst/#call: fun/2 wd ea inst.

inst/#ret: fun/1 wd inst.

% inst/#adc

% inst/#sbb

inst/#nextpc: fun/2 state inst wd.
inst/#nextf: fun/2 state inst wd.
inst/#nextg: fun/2 state inst mapg.
inst/#nexts: fun/2 state inst mapw.
inst/#nextm: fun/2 state inst mapw.

inst/mov = fun/app3 wd ea ea inst inst/#mov.
inst/xchg = fun/app3 wd ea greg inst inst/#xchg.
inst/lea = fun/app3 wd ea greg inst inst/#lea.
inst/push = fun/app2 wd ea inst inst/#push.
inst/pop = fun/app2 wd ea inst inst/#pop.
inst/opl = fun/app3 wd op/l ea inst inst/#opl.
inst/op2 = [eni: exp wd] [eop: exp op/2] [eeal: exp ea] [eea2: exp ea]
fun/app3 wd op/2 (pair ea ea) inst
inst/#op2
eni
eop
(pair/make ea ea eeal eea2).
inst/op2n = [eni: exp wd] [eop: exp op/2] [eeal: exp ea] [eea2: exp ea]
fun/app3 wd op/2 (pair ea ea) inst
inst/#op2n
eni
eop
(pair/make ea ea eeal eea2).
inst/op3 = [eni: exp wd] [eopl: exp op/3] [eop2: exp op/3]
[eea: exp ea] [erl: exp gregl [er2: exp greg]
fun/app3 wd (pair op/3 op/3) (pair ea (pair greg greg)) inst
inst/#op3
eni
(pair/make op/3 op/3 eopl eop2)
(pair/make ea (pair greg greg)
eea (pair/make greg greg erl er2)).
inst/jmp = fun/app2 wd ea inst inst/#jmp.
inst/j = fun/app3 wd cop wd inst inst/#j.

246

inst/call =
inst/ret =

inst/cmp
inst/nop =
inst/test =

inst/nextpc
inst/nextf
inst/nextg

inst/nexts
inst/nextm

inst/next
= [ess: exp

B.2.1.12
% - types -

prog: ty.

APPENDIX B.

fun/app2 wd ea inst inst/#call.
fun/appl wd inst inst/#ret.

= [eni: exp wd] inst/op2n eni op/‘sub.
[eni: exp wd] inst/mov eni (ea/r ‘edi) (ea/r ‘edi).

[eni: exp wd] inst/op2n eni op/‘and.

= fun/app2 state
fun/app2 state
fun/app2 state
fun/app2 state
fun/app2 state

state] [ei”: exp inst]
state/make (inst/nextpc ess ei”) (inst/nextf ess ei”)

inst
inst
inst
inst
inst

wd inst/#nextpc.
wd inst/#nextf.

mapg inst/#nextg.
mapw inst/#nexts.
mapw inst/#nextm.

LF REPRESENTATION

(inst/nextg ess ei”) (inst/nexts ess ei”) (inst/nextm ess ei”).

Programs

% - constants -

prog/pm: con prog.

prog/‘pm =

% - relations -

con/‘ prog prog/pm.

prog/#fetch: rel/2 (pair prog wd) inst.

prog/fetch

= [ephi”: exp progl] [en: exp wd]
rel/app2 (pair prog wd) inst prog/#fetch (pair/make prog wd ephi” em).

% - exports

‘pm = prog/¢

pm.

B.2.2 Inference Rules
Machine Words

% - semantics -

B.2.2.1

rel/app2#|eq_wd: {nl: integer} {n2: integer}
integer32/eq nl n2
-> pf rel/app2# wd wd (eq/#eq wd) (wd/# ni1) (wd/# n2).

rel/app2#|neq_wd:

{n1: integer} {n2: integer}

integer32/neq ni1 n2
-> pf rel/app2# wd wd (eq/#neq wd) (wd/# nl) (wd/# n2).

fun/appl#|wd/neg: {n: integer} {n’: integer}
integer32/sub 0 n n’

fun/app2#|wd/add: {nl: integer} {n2: integer} {n’: integer}

fun/app2#|wd/sub:

-> pf fun/appl# wd wd wd/#neg (wd/# n) (wd/# n’).

integer32/add ni n2 n’
-> pf fun/app2# wd wd wd wd/#add (wd/# n1) (wd/# n2) (wd/# n’).

{n1: integer} {n2: integer} {n’: integer}

integer32/sub nl n2 n’

B.2. MACHINE MODEL 247

-> pf fun/app2# wd wd wd wd/#sub (wd/# nl1) (wd/# n2) (wd/# n’).
fun/app2#|wd/mul: {nl: integer} {n2: integer} {n’: integer}
integer32/mul nl n2 n’
-> pf fun/app2# wd wd wd wd/#mul (wd/# nl) (wd/# n2) (wd/# n’).

fun/app2#|wd/and: {nl: integer} {n2: integer} {n’: integer}
integer32/and nl n2 n’
-> pf fun/app2# wd wd wd wd/#and (wd/# n1) (wd/# n2) (wd/# n’).
fun/app2#|wd/or: {nl: integer} {n2: integer} {n’: integer}
integer32/or ni n2 n’
-> pf fun/app2# wd wd wd wd/#or (wd/# ni) (wd/# n2) (wd/# n’).
fun/app2#|wd/xor: {nl: integer} {n2: integer} {n’: integer}
integer32/xor nl n2 n’
-> pf fun/app2# wd wd wd wd/#xor (wd/# nl1) (wd/# n2) (wd/# n’).

fun/appl#|wd/not: {n: integer} {n’: integer}
integer32/xor n 4294967295 n’
-> pf fun/appl# wd wd wd/#not (wd/# n) (wd/# n’).

rel/app2#|wd/1t: {n1: integer} {n2: integer}
integer32/gt n2 ni
-> pf rel/app2# wd wd wd/#1t (wd/# nl) (wd/# n2).
rel/app2#|wd/geq: {nl: integer} {n2: integer}
integer32/leq n2 ni
-> pf rel/app2# wd wd wd/#geq (wd/# nl1) (wd/# n2).
rel/app2#|wd/1tu: {nl: integer} {n2: integer}
integer32/gtu n2 ni
-> pf rel/app2# wd wd wd/#ltu (wd/# n1) (wd/# n2).
rel/app2#|wd/gequ: {nl: integer} {n2: integer}
integer32/lequ n2 ni
-> pf rel/app2# wd wd wd/#gequ (wd/# ni) (wd/# n2).

% = truth -

wd|ind:
{p: exp wd -> prp} {e: exp wd} {t: ti}
({a: par wd}
pf ri/ofE wd (par/‘ wd a) ri/+
-> ({el: exp wd}
pf ri/ofE wd el ri/+ -> pf wd/ltu el (par/‘ wd a) @ t -> pf p el @ t)
-> pf p (par/‘ wd a) @ t)
-=>pfpea@t.

wd/zf|il: {t: ti}
pf wd/eq (wd/zf ‘Ow) ‘1w @ t.
wd/zf|i0: {e: exp wd} {t: ti}
pf wd/neq e ‘Ow @ t
-> pf wd/eq (wd/zf e) ‘Ow Q t.
wd/zf|el: {e: exp wd} {t: ti}
pf wd/eq (wd/zf e) ‘1w @ t
-> pf wd/eq e ‘Ow @ t.
wd/zf|e0: {e: exp wd} {t: ti}
pf wd/eq (wd/zf e) ‘Ow Q@ t
-> pf wd/neq e ‘Ow @ t.
wd/sf|il: {e: exp wd} {t: ti}
pf wd/lt e ‘Ow @ t
-> pf wd/eq (wd/sf e) ‘1w @ t.
wd/sf|i0: {e: exp wd} {t: ti}
pf wd/geq e ‘Ow @ t
-> pf wd/eq (wd/sf e) ‘Ow @ t.
wd/sflel: {e: exp wd} {t: ti}
pf wd/eq (wd/sf e) ‘1w Q@ t
-> pf wd/1lt e ‘Ow @ t.
wd/sf|e0: {e: exp wd} {t: ti}

248 APPENDIX B. LF REPRESENTATION

pf wd/eq (wd/sf e) ‘Ow @ t
-> pf wd/geq e ‘Ow @ t.

wd/add|mul_comm_ring:
{t: ti}
pf fun/comm_ring wd wd/#add Ow wd/#neg wd/#mul 1w @ t.

wd/mul|id_0:
{e: exp wd} {t: ti}
pf wd/eq (wd/mul e ‘Ow) ‘Ow @ t.

wd/inc|bool_latt:
{t: ti}
pf rel/bool_latt wd wd/#inc wd/#and wd/#or wd/0 wd/~1 wd/#not @ t.

wd/sub] :
{el: exp wd} {e2: exp wd} {t: ti}
pf wd/eq (wd/sub el e2) (wd/add el (wd/neg e2)) @ t.
wd/xor]| :
{el: exp wd} {e2: exp wd} {t: til}
pf wd/eq (wd/xor el e2)
(wd/and (wd/or el e2) (wd/or (wd/not el) (wd/not e2))) @ t.

wd/1lt|str_tot_order: {t: ti} pf rel/str_tot_order wd wd/#lt @ t.
wd/1lt|bot: {t: ti} pf rel/bot wd wd/#1lt (wd/# 2147483648) Q@ t.
wd/1t|top: {t: ti} pf rel/top wd wd/#1t (wd/# 2147483647) Q@ t.

wd/ltulstr_tot_order: {t: ti} pf rel/str_tot_order wd wd/#ltu @ t.
wd/ltulbot: {t: ti} pf rel/bot wd wd/#ltu Ow @ t.
wd/1ltu|top: {t: ti} pf rel/top wd wd/#ltu "1w @ t.

% implied by bool_latt

% wd/inc|order: {t: ti} pf rel/order wd wd/#inc Q@ t.
wd/inc|bot: {t: ti} pf rel/bot wd wd/#inc Ow Q@ t.
wd/inc|top: {t: ti} pf rel/top wd wd/#inc 1w @ t.

B.2.2.2 Arithmetic Operators

% - semantics -

fun/appl#|op/selzf_1: {c: con wd} {c’: con wd}
pf rel/app2# wd wd (eq/#neq wd) c’ wd/0
-> pf fun/app2# wd wd wd wd/#and c (wd/# 64) c’
-> pf fun/appl# wd wd op/#selzf c wd/1.
fun/appl#|op/selzf_0: {c: con wd}
pf fun/app2# wd wd wd wd/#and c (wd/# 64) wd/0
-> pf fun/appl# wd wd op/#selzf c wd/0.
fun/appl#|op/selsf_1: {c: con wd} {c’: con wd}
pf rel/app2# wd wd (eq/#neq wd) c’ wd/0
-> pf fun/app2# wd wd wd wd/#and c (wd/# 128) c’
-> pf fun/appl# wd wd op/#selsf c wd/1.
fun/appl#|op/selsf_0: {c: con wd}
pf fun/app2# wd wd wd wd/#and c (wd/# 128) wd/0
-> pf fun/appl# wd wd op/#selsf c wd/O.
fun/appl#|op/selof_1: {c: con wd} {c’: con wd}
pf rel/app2# wd wd (eq/#neq wd) c’ wd/0
-> pf fun/app2# wd wd wd wd/#and c (wd/# 2048) c’
-> pf fun/appl# wd wd op/#selof c wd/1.
fun/appi#|op/selof_0: {c: con wd}
pf fun/app2# wd wd wd wd/#and c (wd/# 2048) wd/O0
-> pf fun/appl# wd wd op/#selof c wd/0.
fun/appl#|op/selcf_1: {c: con wd} {c’: con wd}
pf rel/app2# wd wd (eq/#neq wd) c’ wd/0
-> pf fun/app2# wd wd wd wd/#and c (wd/# 1) c’

B.2. MACHINE MODEL 249

-> pf fun/appl# wd wd op/#selcf c wd/1.
fun/appl#|op/selcf_0: {c: con wd}
pf fun/app2# wd wd wd wd/#and c (wd/# 1) wd/0
-> pf fun/appl# wd wd op/#selcf c wd/0.

% don’t need updfl/updf2/updf3, since ef is never constant

rel/app2#|eq_op/1: {c: con op/1}
pf rel/app2# op/1 op/1 (eq/#eq op/1) c c.
rel/app2#|neq_op/1: {cl: con op/1} {c2: con op/1}
con/neq op/1 cl c2
-> pf rel/app2# op/1 op/1 (eq/#neq op/1) cl c2.

rel/app2#|eq_op/2: {c: con op/2}
pf rel/app2# op/2 op/2 (eq/#eq op/2) c c.
rel/app2#|neq_op/2: {cl: con op/2} {c2: con op/2}
con/neq op/2 cl c2
-> pf rel/app2# op/2 op/2 (eq/#neq op/2) cl c2.

rel/app2#|eq_op/3: {c: con op/3}
pf rel/app2# op/3 op/3 (eq/#eq op/3) c c.
rel/app2#|neq_op/3: {cl: con op/3} {c2: con op/3}
con/neq op/3 cl c2
-> pf rel/app2# op/3 op/3 (eq/#neq op/3) cl c2.

% = truth -

op/app2|op/add: {el: exp wd} {e2: exp wd} {t: ti}

pf wd/eq (op/app2 op/‘add el e2) (wd/add el e2) @ t.
op/app2|op/sub: {el: exp wd} {e2: exp wd} {t: ti}

pf wd/eq (op/app2 op/‘sub el e2) (wd/sub el e2) @ t.
op/app2|op/imul: {el: exp wd} {e2: exp wd} {t: ti}

pf wd/eq (op/app2 op/‘imul el e2) (wd/mul el e2) @ t.
op/appllop/inc: {e: exp wd} {t: ti}

pf wd/eq (op/appl op/‘inc e) (wd/add e ‘1w) @ t.
op/appllop/dec: de: exp wd} {t: ti}

pf wd/eq (op/appl op/‘dec e) (wd/sub e ‘1w) @ t.
op/appllop/neg: d{e: exp wd} {t: ti}

pf wd/eq (op/appl op/‘neg e) (wd/sub ‘Ow e) @ t.

op/app3lop/idiv: {el: exp wd} {e2: exp wd} {e3: exp wd} {t: ti}

pf wd/eq (op/app3 op/‘idiv el e2 e3) (wd/div el e2 e3) @ t.
op/app3lop/irem: {el: exp wd} {e2: exp wd} {e3: exp wd} {t: til}

pf wd/eq (op/app3 op/‘irem el e2 e3) (wd/rem el e2 e3) @ t.

op/app2|op/and: {el: exp wd} {e2: exp wd} {t: ti}

pf wd/eq (op/app2 op/‘and el e2) (wd/and el e2) Q@ t.
op/app2|op/or: {el: exp wd} {e2: exp wd} {t: ti}

pf wd/eq (op/app2 op/‘or el e2) (wd/or el e2) Q@ t.
op/app2|op/xor: {el: exp wd} {e2: exp wd} {t: ti}

pf wd/eq (op/app2 op/‘xor el e2) (wd/xor el e2) @ t.
op/appllop/not: {e: exp wd} {t: ti}

pf wd/eq (op/appl op/‘not e) (wd/xor e ‘“1w) @ t.

op/app2|op/sf2: {el: exp wd} {e2: exp wd} {t: ti}
pf wd/eq (op/app2 op/‘sf2 el e2)
(wd/mul (wd/sf e2) wd/‘"1) @ t.

% (sf (el xor e2) xor 1) and sf ((el addw e2) xor el)
op/of2|op/add: {el: exp wd} {e2: exp wd} {t: ti}
pf wd/eq (op/of2 op/‘add el e2)
(wd/and (wd/xor (wd/sf (wd/xor el e2)) ‘1w)
(wd/sf (wd/xor (wd/add el e2) el))) @ t.
% sf (el xor e2) and sf ((el subw e2) xor el)

250 APPENDIX B. LF REPRESENTATION

op/of2|lop/sub: {el: exp wd} {e2: exp wd} {t: til}

pf wd/eq (op/of2 op/‘sub el e2)

(wd/and (wd/sf (wd/xor el e2))
(wd/sf (wd/xor (wd/sub el e2) el))) @ t.

op/ofllop/inc: {e: exp wd} {t: ti}

pf wd/eq (op/ofl op/‘inc e) (op/of2 op/‘add e ‘1lw) @ t.
op/ofilop/dec: {e: exp wd} {t: til}

pf wd/eq (op/ofl op/‘dec e) (op/of2 op/‘sub e ‘1w) @ t.
op/ofl|op/neg: {e: exp wd} {t: ti}

pf wd/eq (op/ofl op/‘neg e) (op/of2 op/‘sub ‘Ow e) @ t.

% op/of3|op/idiv is undefined
% op/of3|op/irem is undefined

op/of2|op/and: {el: exp wd} {e2: exp wd} {t: ti}

pf wd/eq (op/of2 op/‘and el e2) ‘Ow Q@ t.
op/of2|op/or: {el: exp wd} {e2: exp wd} {t: til}

pf wd/eq (op/of2 op/‘or el e2) ‘Ow @ t.
op/of2|op/xor: {el: exp wd} {e2: exp wd} {t: ti}

pf wd/eq (op/of2 op/‘xor el e2) ‘Ow Q@ t.
op/ofi|op/not: {e: exp wd} {t: til}

pf wd/eq (op/ofl op/‘mot e) “Ow @ t.

op/of2|op/sf2: {el: exp wd} {e2: exp wd} {t: til}
pf wd/eq (op/of2 op/‘sf2 el e2) ‘Ow Q@ t.

op/cf2|op/add_gequ: {el: exp wd} {e2: exp wd} {t: ti}
pf wd/eq (op/cf2 op/‘add el e2) ‘Ow
eqv wd/gequ (wd/add el e2) el @ t.
op/cf2|op/add_ltu: {el: exp wd} {e2: exp wd} {t: til}
pf wd/eq (op/cf2 op/‘add el e2) ‘1w
eqv wd/ltu (wd/add el e2) el @ t.
op/cf2|op/sub_gequ: {el: exp wd} {e2: exp wd} {t: ti}
pf wd/eq (op/cf2 op/‘sub el e2) ‘Ow
eqv wd/gequ el e2 @ t.
op/cf2|op/sub_ltu: {el: exp wd} {e2: exp wd} {t: ti}

pf wd/eq (op/cf2 op/‘sub el e2) ‘1w
eqv wd/ltu el e2 Q@ t.
op/cf2|op/imul: {el: exp wd} {e2: exp wd} {t: ti}

pf wd/eq (op/cf2 op/‘imul el e2)
(op/of2 op/‘imul el e2) @ t.

op/cfllop/inc: {e: exp wd} {t: ti}

pf wd/eq (op/cfl op/‘inc e) (op/cf2 op/‘add e ‘1lw) @ t.
op/cfllop/dec: {e: exp wd} {t: ti}

pf wd/eq (op/cfl op/‘dec e) (op/cf2 op/‘sub e ‘1w) @ t.
op/cfllop/neg: {e: exp wd} {t: ti}

pf wd/eq (op/cfl op/‘neg e) (op/cf2 op/‘sub ‘Ow e) @ t.

% op/cf3|op/idiv is undefined
% op/cf3|op/irem is undefined

op/cf2lop/and: {el: exp wd} {e2: exp wd} {t: ti}

pf wd/eq (op/cf2 op/‘and el e2) ‘Ow @ t.
op/cf2lop/or: {el: exp wd} {e2: exp wd} {t: ti}

pf wd/eq (op/cf2 op/‘or el e2) ‘Ow @ t.
op/cf2|op/xor: {el: exp wd} {e2: exp wd} {t: til}

pf wd/eq (op/cf2 op/‘xor el e2) ‘Ow Q t.
op/cfllop/not: {e: exp wd} {t: ti}

pf wd/eq (op/cfl op/‘not e) ‘Ow @ t.

op/cf2lop/sf2: {el: exp wd} {e2: exp wd} {t: ti}
pf wd/eq (op/cf2 op/‘sf2 el e2) ‘Ow @ t.

op/selzf|op/updfl_inc:

B.2. MACHINE MODEL

{ef: exp wd} {e: exp wd} {t:

pf wd/eq (op/selzf (op/updfl
op/selzf|op/updfl_dec:

{ef: exp wd} {e: exp wd} {t:

pf wd/eq (op/selzf (op/updfl
op/selzf|op/updfi_neg:

{ef: exp wd} {e: exp wd} {t:

pf wd/eq (op/selzf (op/updfl
op/selzf|op/updfl_not:

{ef: exp wd} {e: exp wd} {t:

pf wd/eq (op/selzf (op/updfl

op/selsf|op/updfl_inc:
{ef: exp wd} {e: exp wd} {t:
pf wd/eq (op/selsf (op/updfil
op/selsf|op/updfl_dec:
{ef: exp wd} {e: exp wd} {t:
pf wd/eq (op/selsf (op/updfl
op/selsf|op/updfl_neg:
{ef: exp wd} {e: exp wd} {t:
pf wd/eq (op/selsf (op/updfil
op/selsf|op/updfl_not:
{ef: exp wd} {e: exp wd} {t:
pf wd/eq (op/selsf (op/updfl

op/selof|op/updfl_inc:
{ef: exp wd} {e: exp wd} {t:
pf wd/eq (op/selof (op/updfl
op/selof|op/updfl_dec:
{ef: exp wd} {e: exp wd} {t:
pf wd/eq (op/selof (op/updfl
op/selof|op/updfl_neg:
{ef: exp wd} {e: exp wd} {t:
pf wd/eq (op/selof (op/updfl
op/selof|op/updfl_not:
{ef: exp wd} {e: exp wd} {t:
pf wd/eq (op/selof (op/updfl

op/selcf|op/updfl_inc:
{ef: exp wd} {e: exp wd} {t:
pf wd/eq (op/selcf (op/updfil
op/selcf|op/updfl_dec:
{ef: exp wd} {e: exp wd} {t:
pf wd/eq (op/selcf (op/updfil
op/selcf|op/updfl_neg:
{ef: exp wd} {e: exp wd} {t:
pf wd/eq (op/selcf (op/updfil
op/selcf|op/updfl_not:
{ef: exp wd} {e: exp wd} {t:
pf wd/eq (op/selcf (op/updfil

op/selzf|op/updf2:
{eop: exp op/2} {ef: exp wd}
pf wd/eq (op/selzf (op/updf2
op/selsf|op/updf2:
{eop: exp op/2} {ef: exp wd}
pf wd/eq (op/selsf (op/updf2
op/selof|op/updf2:
{eop: exp op/2} {ef: exp wd}
pf wd/eq (op/selof (op/updf2
op/selcf|op/updf2:
{eop: exp op/2} {ef: exp wd}
pf wd/eq (op/selcf (op/updf2

ti}
op/‘inc
ti}
op/ ‘dec
ti}
op/ ‘neg
ti}
op/ ‘not

ti}
op/‘inc
ti}
op/ ‘dec
ti}
op/ ‘neg
ti}
op/ ‘not

ti}
op/ ‘inc
ti}
op/ ‘dec
ti}
op/ ‘neg
ti}
op/ ‘not

ti}
op/‘inc
ti}
op/ ‘dec
ti}
op/ ‘neg
ti}
op/ ‘not

ef

ef

ef

ef

ef

ef

ef

ef

ef

ef

ef

ef

ef

ef

ef

ef

e))

e))

e))

e))

e))

e))

e))

e))

e))

e))

e))

e))

e))

(wd/zf (op/appl op/‘inc

(wd/zf (op/appl op/‘dec

(wd/zf (op/appl op/‘neg

(op/selzf ef) @ t.

(wd/sf (op/appl op/‘inc

(wd/sf (op/appl op/‘dec

(wd/sf (op/appl op/‘neg

(op/selsf ef) @ t.

(op/ofl op/‘inc e) @ t.

(op/ofl op/‘dec e) @ t.

(op/ofl op/‘neg e) Q@ t.

(op/selof ef) @ t.

(op/selcf ef) @ t.

(op/selcf ef) @ t.

(op/cfl op/‘neg e) @ t.

(op/selcf ef) @ t.

{el: exp wd} {e2: exp wd} {t: ti}

eop ef el e2)) (wd/zf (op/app2 eop el e2)) @ t.

{el: exp wd} {e2: exp wd} {t: ti}

eop ef el e2)) (wd/sf (op/app2 eop el e2)) @ t.

{el: exp wd} {e2: exp wd} {t: ti}
eop ef el e2)) (op/of2 eop el e2) @ t.

{el: exp wd} {e2: exp wd} {t: ti}
eop ef el e2)) (op/cf2 eop el e2) @ t.

e))

e))

e))

e))

e))

e))

251

252

% op/selzf|op/updf3 is undefined
% op/selsf|op/updf3 is undefined
% op/selof|op/updf3 is undefined
% op/selcf|op/updf3 is undefined

op/ofl|neq0: {eop: exp op/1} {el: exp wd} {t: ti}

APPENDIX B. LF REPRESENTATION

pf wd/neq (op/ofl eop el) ‘Ow @ t

-> pf wd/eq (op/ofl eop el) ‘1w @ t.

op/of2|neq0: {eop: exp op/2} {el: exp wd} {e2: exp wd} {t: ti}
pf wd/neq (op/of2 eop el e2) ‘Ow Q@ t
-> pf wd/eq (op/of2 eop el e2) ‘1w Q@ t.

op/of3|neq0: {eop: exp op/3} {el: exp wd} {e2: exp wd} {e3:
pf wd/neq (op/of3 eop el e2 e3) ‘Ow @ t
-> pf wd/eq (op/of3 eop el e2 e3) ‘1w @ t.
op/cfl|neq0: {eop: exp op/1} {el: exp wd} {t: ti}

pf wd/neq (op/cfl eop el) ‘Ow Q@ t

-> pf wd/eq (op/cfl eop el) ‘1w @ t.

exp wd} {t: ti}

op/cf2|neq0: {eop: exp op/2} {el: exp wd} {e2: exp wd} {t: ti}
pf wd/neq (op/cf2 eop el e2) ‘Ow Q@ t

-> pf wd/eq (op/cf2 eop el e2) ‘1w @ t.
op/cf3|neq0: {eop: exp op/3} {el: exp wd} {e2: exp wd} {e3: exp wd} {t: til}

pf wd/neq (op/cf3 eop el e2 e3) ‘Ow @ t
-> pf wd/eq (op/cf3 eop el e2 e3) ‘1w @ t.

B.2.2.3 Conditional Operators

% - semantics -

rel/app2#|eq_cop: {c: con cop}

pf rel/app2# cop cop (eq/#eq cop) c c.

rel/app2#|neq_cop: {cil: con cop} {c2: con cop}
con/neq cop cl c2

-> pf rel/app2# cop cop (eq/#neq cop) cl c2.

% - truth -

cop/self|neq0:
{ecop: exp cop} {ef: exp
pf wd/neq (cop/self ecop

wd} {t: ti}
ef) ‘Ow @ t

-> pf wd/eq (cop/self ecop ef) ‘1w @ t.

cop/self|not:

{ecop: exp cop} {ef: exp wd} {t: ti}
pf wd/eq (cop/self (cop/not ecop) ef) (wd/xor (cop/self ecop ef) ‘lw) @ t.

cop/not|not:
{ecop: exp cop} {t: ti}

pf eq/eq cop (cop/not (cop/not ecop)) ecop @ t.

cop/self|z:

{ef: exp wd} {t: ti}

pf wd/eq (cop/self cop/‘z
cop/self|s:

{ef: exp wd} {t: ti}

pf wd/eq (cop/self cop/‘s
cop/self|o:

{ef: exp wd} {t: ti}

pf wd/eq (cop/self cop/‘o
cop/self|c:

{ef: exp wd} {t: ti}

pf wd/eq (cop/self cop/‘c
cop/self|na:

{ef: exp wd} {t: ti}

ef) (op/selzf

ef) (op/selsf

ef) (op/selof

ef) (op/selct

ef)

ef)

ef)

ef)

Qt.

Qt.

Qt.

Qt.

pf wd/eq (cop/self cop/‘na ef) (wd/or (op/selzf ef) (op/selcf ef)) @ t.

B.2. MACHINE MODEL 253

cop/self|1l:
{ef: exp wd} {t: ti}
pf wd/eq (cop/self cop/‘l ef) (wd/xor (op/selsf ef) (op/selof ef)) @ t.
cop/self|ng:
{ef: exp wd} {t: ti}
pf wd/eq (cop/self cop/‘ng ef)
(wd/or (op/selzf ef) (cop/self cop/‘l ef)) @ t.

B.2.2.4 Register Tokens

% - semantics -

rel/app2#|eq_greg: {c: con greg}
pf rel/app2# greg greg (eq/#eq greg) c c.
rel/app2#|neq_greg: {cl: con greg} {c2: con greg}
con/neq greg cl c2
-> pf rel/app2# greg greg (eq/#neq greg) cil c2.

B.2.2.5 Register Maps

mapg/sel|mcO: {em: exp mapg} {er: exp greg} {en: exp wd} {t: ti}
pf wd/eq (mapg/sel (mapg/upd em er en) er) en @ t.
mapg/sellmcl: {em: exp mapg} {er: exp greg} {en: exp wd} {er’: exp greg}
{t: ti}
pf eq/neq greg er’ er @ t
-> pf wd/eq (mapg/sel (mapg/upd em er en) er’)
(mapg/sel em er’) Q@ t.
mapg/sellext: {em: exp mapg} {em’: exp mapg} {t: til}
({ar: par greg}
pf wd/eq (mapg/sel em (par/‘ greg ar))
(mapg/sel em’ (par/‘ greg ar)) @ t)
-> pf mapg/eq em em’ Q t.

B.2.2.6 'Word Maps

mapw/sel|mcO: d{em: exp mapw} {enl: exp wd} {en2: exp wd} {t: ti}
pf wd/eq (mapw/sel (mapw/upd em enl en2) enl) en2 Q@ t.
mapw/sel|mcl: {em: exp mapw} {enl: exp wd} {en2: exp wd} {enl’: exp wd}
{t: ti}
pf wd/neq enl’ enl @ t
-> pf wd/eq (mapw/sel (mapw/upd em enl en2) enl’)
(mapw/sel em enl’) @ t.
mapw/sel|ltu: d{eml: exp mapw} {em2: exp mapw}
{en: exp wd} {en’: exp wd} {t: ti}
pf wd/ltu en’ en Q@ t
-> pf wd/eq (mapw/sel (mapw/join eml en em2) en’)
(mapw/sel eml en’) @ t.
mapw/sel|gequ: {eml: exp mapw} {em2: exp mapw}
{en: exp wd} {en’: exp wd} {t: ti}
pf wd/gequ en’ en @ t
-> pf wd/eq (mapw/sel (mapw/join eml en em2) en’)
(mapw/sel em2 en’) @ t.
mapw/sellext: {em: exp mapw} {em’: exp mapw} {t: ti}
({an: par wd}
pf wd/eq (mapw/sel em (par/‘ wd an))
(mapw/sel em’ (par/‘ wd an)) @ t)
-> pf mapw/eq em em’ @ t.

B.2.2.7 Memory Addresses

ma/dlinj: {t: ti} pf fun/injl wd ma ma/#d @ t.
ma/rlinj: {t: ti} pf fun/inj3 greg wd ma ma ma/#r Q t.

254 APPENDIX B. LF REPRESENTATION

ma/addr |ma/d:
{eg: exp mapg} {end: exp wd} {t: ti}
pf wd/eq (ma/addr eg (ma/d end)) end @ t.
ma/addr |ma/r:
{eg: exp mapg} {eri: exp greg} {ens: exp wd} {ema’: exp ma} {t: ti}
pf wd/eq (ma/addr eg (ma/r eri ens ema’))
(wd/add (wd/mul (mapg/sel eg eri) ens) (ma/addr eg ema’)) @ t.

B.2.2.8 Effective Addresses

ea/ilinj: {t: ti} pf fun/injl wd ea ea/#i @ t.
ea/rlinj: {t: ti} pf fun/injl greg ea ea/#r Q t.
ea/slinj: {t: ti} pf fun/injl ma ea ea/#s Q@ t.
ea/mlinj: {t: ti} pf fun/injl ma ea ea/#m @ t.

% no ea/addr|ea/i
% no ea/addr|ea/r
ea/addr|ea/s:
{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}
{ema: exp mal}
{t: ti}
pf wd/eq (ea/addr (state/make epc ef eg es em) (ea/s ema))
(ma/addr eg ema) @ t.
ea/addr|ea/m:
{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}
{ema: exp ma}
{t: ti}
pf wd/eq (ea/addr (state/make epc ef eg es em) (ea/m ema))
(ma/addr eg ema) @ t.

ea/sellea/i:
{e: exp state} {en: exp wd}
{t: ti}
pf wd/eq (ea/sel e (ea/i en)) en @ t.
ea/sellea/r:
{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}
{er: exp greg}
{t: ti}
pf wd/eq (ea/sel (state/make epc ef eg es em) (ea/r er))
(mapg/sel eg er) @ t.
ea/sellea/s:
{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}
{ema: exp ma}
{t: ti}
pf wd/eq (ea/sel (state/make epc ef eg es em) (ea/s ema))
(mapw/sel es (ma/addr eg ema)) @ t.
ea/sellea/m:
{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}
{ema: exp ma}
{t: ti}
pf wd/eq (ea/sel (state/make epc ef eg es em) (ea/m ema))
(mapw/sel em (ma/addr eg ema)) @ t.

% no ea/updglea/i
ea/updglea/r:
{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}
{er: exp greg} {en: exp wd}
{t: ti}
pf mapg/eq (ea/updg (state/make epc ef eg es em) (ea/r er) en)
(mapg/upd eg er en) Q@ t.
ea/updg|ea/s:
{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}
{ema: exp ma} {en: exp wd}
{t: ti}

B.2. MACHINE MODEL

pf mapg/eq (ea/updg (state/make epc
ea/updglea/m:

{epc: exp wd} {ef: exp wd} {eg: exp

{ema: exp ma} {en: exp wd}

{t: ti}

pf mapg/eq (ea/updg (state/make epc

% no ea/upds|ea/i
ea/upds|ea/r:
{epc: exp wd} {ef: exp wd} {eg: exp
{er: exp greg} {en: exp wd}
{t: ti}
pf mapw/eq (ea/upds (state/make epc
ea/upds|ea/s:
{epc: exp wd} {ef: exp wd} {eg: exp
{ema: exp ma} {en: exp wd}
{t: ti}
pf mapw/eq (ea/upds (state/make epc
(mapw/upd es (ma/addr eg
ea/upds|ea/m:
{epc: exp wd} {ef: exp wd} {eg: exp
{ema: exp ma} {en: exp wd}
{t: ti}
pf mapw/eq (ea/upds (state/make epc

% no ea/updm|ea/i
ea/updm|ea/r:
{epc: exp wd} {ef: exp wd} {eg: exp
{er: exp greg} {en: exp wd}
{t: ti}
pf mapw/eq (ea/updm (state/make epc
ea/updm|ea/s:
{epc: exp wd} {ef: exp wd} {eg: exp
{ema: exp ma} {en: exp wd}
{t: ti}
pf mapw/eq (ea/updm (state/make epc
ea/updm|ea/m:
{epc: exp wd} {ef: exp wd} {eg: exp
{ema: exp ma} {en: exp wd}
{t: ti}
pf mapw/eq (ea/updm (state/make epc
(mapw/upd em (ma/addr eg

B.2.2.9 Instructions

inst/movlinj: {t: ti} pf fun/inj3 wd
inst/xchglinj: {t: ti} pf fun/inj3 wd
inst/lealinj: {t: ti} pf fun/inj3 wd
inst/push|inj: {t: ti} pf fun/inj2 wd
inst/poplinj: {t: ti} pf fun/inj2 wd
inst/opllinj: {t: ti} pf fun/inj3 wd
inst/op2|inj: {t: ti} pf fun/inj3 wd
inst/op2n|inj: {t: ti} pf fun/inj3 wd
inst/op3linj: {t: ti}

pf fun/inj3 wd (pair op/3 op/3) (pair ea (pair greg greg)) inst

ef eg es em) (ea/s ema) en) eg Q@ t.

mapg} {es: exp mapw} {em: exp mapw}

ef eg es em) (ea/m ema) en) eg Q@ t.

mapg} {es: exp mapw} {em: exp mapw}

ef eg es em) (ea/r er) en) es Q t.
mapg} {es: exp mapw} {em: exp mapw}
ef eg es em) (ea/s ema) en)

ema) en) Q@ t.

mapg} {es: exp mapw} {em: exp mapw}

ef eg es em) (ea/m ema) en) es @ t.

mapg} {es: exp mapw} {em: exp mapw}

ef eg es em) (ea/r er) en) em Q t.

mapg} {es: exp mapw} {em: exp mapw}

ef eg es em) (ea/s ema) en) em @ t.

mapg} {es: exp mapw} {em: exp mapw}

ef eg es em) (ea/m ema) en)
ema) en) Q@ t.

ea ea inst inst/#mov @ t.

ea greg inst inst/#xchg @ t.

ea greg inst inst/#lea Q@ t.

ea inst inst/#push @ t.

ea inst inst/#pop @ t.

op/1 ea inst inst/#opl @ t.

op/2 (pair ea ea) inst inst/#op2 @ t.
op/2 (pair ea ea) inst inst/#op2n @ t.

inst/#o0p3 @ t.

inst/jmplinj: {t: ti} pf fun/inj2 wd
inst/jlinj: {t: ti} pf fun/inj3 wd
inst/calllinj: {t: ti} pf fun/inj2 wd
inst/ret|inj: {t: ti} pf fun/injl wd

inst/nextpc|inst/mov:
{epc: exp wd} {ef: exp wd} {eg: exp
{eni: exp wd} {eeal: exp ea} {eea2:

ea inst inst/#jmp Q@ t.
cop wd inst inst/#j @ t.
ea inst inst/#call @ t.
inst inst/#ret Q@ t.

mapg} {es: exp mapw} {em: exp mapw}
exp ea}

255

256 APPENDIX B. LF REPRESENTATION

{t: ti}
pf wd/eq (inst/nextpc (state/make epc ef eg es em) (inst/mov eni eeal eea2))
(wd/add epc eni) @ t.
inst/nextf|inst/mov:
{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}
{eni: exp wd} {eeal: exp ea} {eea2: exp ea}
{t: ti}
pf wd/eq (inst/nextf (state/make epc ef eg es em) (inst/mov eni eeal eea2))
ef @ t.
inst/nextglinst/mov:
{e: exp state} {eni: exp wd} {eeal: exp ea} {eea2: exp ea}
{t: ti}
pf mapg/eq (inst/nextg e (inst/mov eni eeal eea2))
(ea/updg e eea2 (ea/sel e eeal)) Q@ t.
inst/nexts|inst/mov:
{e: exp state} {eni: exp wd} {eeal: exp ea} {eea2: exp ea}
{t: ti}
pf mapw/eq (inst/nexts e (inst/mov eni eeal eea2))
(ea/upds e eea2 (ea/sel e eeal)) @ t.
inst/nextm|inst/mov:
{e: exp state} {eni: exp wd} {eeal: exp ea} {eea2: exp eal}
{t: ti}
pf mapw/eq (inst/nextm e (inst/mov eni eeal eea2))
(ea/updm e eea2 (ea/sel e eeal)) @ t.

inst/nextpc|inst/xchg:
{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}
{eni: exp wd} {eea: exp ea} {er: exp greg}
{t: ti}
pf wd/eq (inst/nextpc (state/make epc ef eg es em) (inst/xchg eni eea er))
(wd/add epc eni) @ t.
inst/nextf|inst/xchg:
{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}
{eni: exp wd} {eea: exp ea} {er: exp greg}
{t: ti}
pf wd/eq (inst/nextf (state/make epc ef eg es em) (inst/xchg eni eea er))
ef @ t.
inst/nextglinst/xchg:
{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}
{eni: exp wd} {eea: exp eal} {er: exp greg}

{t: ti}
pf mapg/eq
(inst/nextg (state/make epc ef eg es em) (inst/xchg eni eea er))
(mapg/upd
(ea/updg (state/make epc ef eg es em) eea (mapg/sel eg er))
er

(ea/sel (state/make epc ef eg es em) eea)) @ t.
inst/nexts|inst/xchg:
{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}
{eni: exp wd} {eea: exp ea} {er: exp greg}
{t: ti}
pf mapw/eq
(inst/nexts (state/make epc ef eg es em) (inst/xchg eni eea er))
(ea/upds (state/make epc ef eg es em) eea (mapg/sel eg er)) @ t.
inst/nextm|inst/xchg:
{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}
{eni: exp wd} {eea: exp ea} {er: exp greg}
{t: ti}
pf mapw/eq
(inst/nextm (state/make epc ef eg es em) (inst/xchg eni eea er))
(ea/updm (state/make epc ef eg es em) eea (mapg/sel eg er)) Q t.

inst/nextpc|inst/lea:
{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}

B.2. MACHINE MODEL 257

{eni: exp wd} {eea: exp eal} {er: exp greg}
{t: ti}
pf wd/eq (inst/nextpc (state/make epc ef eg es em) (inst/lea eni eea er))
(wd/add epc eni) @ t.
inst/nextf|inst/lea:
{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}
{eni: exp wd} {eea: exp eal} {er: exp greg}
{t: ti}
pf wd/eq (inst/nextf (state/make epc ef eg es em) (inst/lea eni eea er))
ef @ t.
inst/nextglinst/lea:
{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}
{eni: exp wd} {eea: exp eal} {er: exp greg}
{t: ti}
pf mapg/eq (inst/nextg (state/make epc ef eg es em) (inst/lea eni eea er))
(mapg/upd eg er (ea/addr (state/make epc ef eg es em) eea)) Q@ t.
inst/nexts|inst/lea:
{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}
{eni: exp wd} {eea: exp eal} {er: exp greg}
{t: ti}
pf mapw/eq (inst/nexts (state/make epc ef eg es em) (inst/lea eni eea er))
es @ t.
inst/nextm|inst/lea:
{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}
{eni: exp wd} {eea: exp eal} {er: exp greg}
{t: ti}
pf mapw/eq (inst/nextm (state/make epc ef eg es em) (inst/lea eni eea er))
em @ t.

inst/nextpc|inst/push:
{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}
{eni: exp wd} {eea: exp ea}
{t: ti}
pf wd/eq (inst/nextpc (state/make epc ef eg es em) (inst/push eni eea))
(wd/add epc eni) @ t.
inst/nextf|inst/push:
{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}
{eni: exp wd} {eea: exp ea}
{t: ti}
pf wd/eq (inst/nextf (state/make epc ef eg es em) (inst/push eni eea))
ef @ t.
inst/nextg|inst/push:
{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}
{eni: exp wd} {eea: exp ea}
{t: ti}
pf mapg/eq (inst/nextg (state/make epc ef eg es em) (inst/push eni eea))
(mapg/upd eg ‘esp (wd/add (mapg/sel eg ‘esp) (wd/‘ wd/"4))) @ t.
inst/nexts|inst/push:
{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}
{eni: exp wd} {eea: exp ea}
{t: ti}
pf mapw/eq (inst/nexts (state/make epc ef eg es em) (inst/push eni eea))
(mapw/upd es
(wd/add (mapg/sel eg ‘esp) (wd/‘ wd/"4))
(ea/sel (state/make epc ef eg es em) eea)) Q@ t.
inst/nextm|inst/push:
{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}
{eni: exp wd} {eea: exp ea}
{t: ti}
pf mapw/eq (inst/nextm (state/make epc ef eg es em) (inst/push eni eea))
em Q@ t.

inst/nextpc|inst/pop:
{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}

258 APPENDIX B. LF REPRESENTATION

{eni: exp wd} {eea: exp ea}
{t: ti}
pf wd/eq (inst/nextpc (state/make epc ef eg es em) (inst/pop eni eea))
(wd/add epc eni) @ t.
inst/nextf|inst/pop:
{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}
{eni: exp wd} {eea: exp eal}
{t: ti}
pf wd/eq (inst/nextf (state/make epc ef eg es em) (inst/pop eni eea)) ef @ t.
inst/nextglinst/pop:
{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}
{eni: exp wd} {eea: exp eal}
{t: ti}
pf mapg/eq (inst/nextg (state/make epc ef eg es em) (inst/pop eni eea))
(mapg/upd (ea/updg (state/make epc ef eg es em)
eea
(mapw/sel es (mapg/sel eg ‘esp)))
‘esp
(wd/add (mapg/sel eg ‘esp) (wd/‘ wd/4))) @ t.
inst/nexts|inst/pop:
{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}
{eni: exp wd} {eea: exp eal}
{t: ti}
pf mapw/eq (inst/nexts (state/make epc ef eg es em) (inst/pop eni eea))
(ea/upds (state/make epc ef eg es em)
eea
(mapw/sel es (mapg/sel eg ‘esp))) @ t.
inst/nextm|inst/pop:
{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}
{eni: exp wd} {eea: exp eal}
{t: ti}
pf mapw/eq (inst/nextm (state/make epc ef eg es em) (inst/pop eni eea))
(ea/updm (state/make epc ef eg es em)
eea
(mapw/sel es (mapg/sel eg ‘esp))) @ t.

inst/nextpc|inst/opl:
{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}
{eni: exp wd} {eop: exp op/1} {eea: exp ea}
{t: ti}
pf wd/eq (inst/nextpc (state/make epc ef eg es em) (inst/opl eni eop eea))
(wd/add epc eni) @ t.
inst/nextf|inst/opl:
{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}
{eni: exp wd} {eop: exp op/1} {eea: exp ea}
{t: ti}
pf wd/eq (inst/nextf (state/make epc ef eg es em) (inst/opl eni eop eea))
(op/updfl eop ef (ea/sel (state/make epc ef eg es em) eea)) Q@ t.
inst/nextglinst/opl:
{e: exp state} {eni: exp wd} {eop: exp op/1} {eea: exp ea}
{t: ti}
pf mapg/eq (inst/nextg e (inst/opl eni eop eea))
(ea/updg e eea (op/appl eop (ea/sel e eea))) @ t.
inst/nexts|inst/opil:
{e: exp state} {eni: exp wd} {eop: exp op/1} {eea: exp ea}
{t: ti}
pf mapw/eq (inst/nexts e (inst/opl eni eop eea))
(ea/upds e eea (op/appl eop (ea/sel e eea))) @ t.
inst/nextm|inst/opi:
{e: exp state} {eni: exp wd} {eop: exp op/1} {eea: exp eal}
{t: ti}
pf mapw/eq (inst/nextm e (inst/opl eni eop eea))
(ea/updm e eea (op/appl eop (ea/sel e eea))) @ t.

B.2. MACHINE MODEL 259

inst/nextpc|inst/op2:
{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}
{eni: exp wd} {eop: exp op/2} {eeal: exp ea} {eea2: exp ea}
{t: ti}
pf wd/eq (inst/nextpc (state/make epc ef eg es em)
(inst/op2 eni eop eeal eea2))
(wd/add epc eni) @ t.
inst/nextf|inst/op2:
{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}
{eni: exp wd} {eop: exp op/2} {eeal: exp ea} {eea2: exp ea}
{t: ti}
pf wd/eq (inst/nextf (state/make epc ef eg es em)
(inst/op2 eni eop eeal eeal))
(op/updf2 eop
ef
(ea/sel (state/make epc ef eg es em) eeal)
(ea/sel (state/make epc ef eg es em) eeal)) @ t.
inst/nextg|inst/op2:
{e: exp state} {eni: exp wd} {eop: exp op/2} {eeal: exp ea} {eea2: exp ea}
{t: ti}
pf mapg/eq
(inst/nextg e (inst/op2 eni eop eeal eea2))
(ea/updg e eea2 (op/app2 eop (ea/sel e eea2) (ea/sel e eeal))) @ t.
inst/nexts|inst/op2:
{e: exp state} {eni: exp wd} {eop: exp op/2} {eeal: exp ea} {eea2: exp ea}
{t: ti}
pf mapw/eq
(inst/nexts e (inst/op2 eni eop eeal eea2))
(ea/upds e eea2 (op/app2 eop (ea/sel e eeal2) (ea/sel e eeal))) Q@ t.
inst/nextm|inst/op2:
{e: exp state} {eni: exp wd} {eop: exp op/2} {eeal: exp ea} {eea2: exp ea}
{t: ti}
pf mapw/eq
(inst/nextm e (inst/op2 eni eop eeal eea2))
(ea/updm e eea2 (op/app2 eop (ea/sel e eea2) (ea/sel e eeal))) Q@ t.

inst/nextpc|inst/op2n:
{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}
{eni: exp wd} {eop: exp op/2} {eeal: exp ea} {eea2: exp ea}
{t: ti}
pf wd/eq (inst/nextpc (state/make epc ef eg es em)
(inst/op2n eni eop eeal eea2))
(wd/add epc eni) @ t.
inst/nextf|inst/op2n:
{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}
{eni: exp wd} {eop: exp op/2} {eeal: exp ea} {eea2: exp ea}
{t: ti}
pf wd/eq (inst/nextf (state/make epc ef eg es em)
(inst/op2n eni eop eeal eea2))
(op/updf2 eop
ef
(ea/sel (state/make epc ef eg es em) eeal)
(ea/sel (state/make epc ef eg es em) eeal)) @ t.
inst/nextglinst/op2n:
{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}
{eni: exp wd} {eop: exp op/2} {eeal: exp ea} {eea2: exp ea}
{t: ti}
pf mapg/eq (inst/nextg (state/make epc ef eg es em)
(inst/op2n eni eop eeal eea2))
eg @ t.
inst/nexts|inst/op2n:
{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}
{eni: exp wd} {eop: exp op/2} {eeal: exp ea} {eea2: exp ea}
{t: ti}

260 APPENDIX B. LF REPRESENTATION

pf mapw/eq (inst/nexts (state/make epc ef eg es em)
(inst/op2n eni eop eeal eea2))
es @ t.
inst/nextm|inst/op2n:
{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}
{eni: exp wd} {eop: exp op/2} {eeal: exp ea} {eea2: exp eal}
{t: ti}
pf mapw/eq (inst/nextm (state/make epc ef eg es em)
(inst/op2n eni eop eeal eea2))
em @ t.

inst/nextpc|inst/op3:
{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}
{eni: exp wd} {eopl: exp op/3} {eop2: exp op/3}
{eea: exp ea} {erl: exp greg} {er2: exp greg}
{t: ti}
pf wd/eq (inst/nextpc (state/make epc ef eg es em)
(inst/op3 eni eopl eop2 eea erl er2))
(wd/add epc eni) @ t.
inst/nextf|inst/op3:
{epc: exp wd} {ef: exp wd} {eg: exp mapgl} {es: exp mapw} {em: exp mapw}
{eni: exp wd} {eopl: exp op/3} {eop2: exp op/3}
{eea: exp ea} {erl: exp greg} {er2: exp greg}
{t: ti}
pf wd/eq (inst/nextf (state/make epc ef eg es em)
(inst/op3 eni eopl eop2 eea erl er2))
(op/updf3 eopl
ef
(mapg/sel eg erl)
(mapg/sel eg er2)
(ea/sel (state/make epc ef eg es em) eea)) @ t.
inst/nextg|inst/op3:
{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}
{eni: exp wd} {eopl: exp op/3} {eop2: exp op/3}
{eea: exp ea} {erl: exp greg} {er2: exp greg}
{t: ti}
pf mapg/eq
(inst/nextg (state/make epc ef eg es em)
(inst/op3 eni eopl eop2 eea erl er2))

(mapg/upd
(mapg/upd eg
erl
(op/app3 eopl
(mapg/sel eg erl)
(mapg/sel eg er2)
(ea/sel (state/make epc ef eg es em) eea)))
er2

(op/app3 eop2
(mapg/sel eg erl)
(mapg/sel eg er2)
(ea/sel (state/make epc ef eg es em) eea))) Q@ t.
inst/nexts|inst/op3:
{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}
{eni: exp wd} {eopl: exp op/3} {eop2: exp op/3}
{eea: exp ea} {erl: exp greg} {er2: exp greg}
{t: ti}
pf mapw/eq (inst/nexts (state/make epc ef eg es em)
(inst/op3 eni eopl eop2 eea erl er2))
es Q@ t.
inst/nextm|inst/op3:
{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}
{eni: exp wd} {eopl: exp op/3} {eop2: exp op/3}
{eea: exp ea} {erl: exp greg} {er2: exp greg}
{t: ti}

B.2. MACHINE MODEL

pf mapw/eq (inst/nextm (state/make epc ef eg es em)
(inst/op3 eni eopl eop2 eea erl er2))
em @ t.

inst/nextpc|inst/jmp:
{e: exp state} {eni: exp wd} {eea: exp ea}
{t: ti}

pf wd/eq (inst/nextpc e (inst/jmp eni eea)) (ea/sel e eea) @ t.

inst/nextf|inst/jmp:

{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}

{eni: exp wd} {eea: exp ea}
{t: ti}

pf wd/eq (inst/nextf (state/make epc ef eg es em) (inst/jmp eni eea)) ef @ t.

inst/nextglinst/jmp:

{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}

{eni: exp wd} {eea: exp ea}
{t: ti}
pf mapg/eq (inst/nextg (state/make epc ef eg es em) (inst/jmp
eg @ t.
inst/nexts|inst/jmp:
{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em:
{eni: exp wd} {eea: exp ea}
{t: ti}
pf mapw/eq (inst/nexts (state/make epc ef eg es em) (inst/jmp
es @ t.
inst/nextm|inst/jmp:
{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em:
{eni: exp wd} {eea: exp ea}
{t: ti}
pf mapw/eq (inst/nextm (state/make epc ef eg es em) (inst/jmp
em @ t.

inst/nextpc|inst/j:
{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em:
{eni: exp wd} {ecop: exp cop} {en: exp wd}
{t: ti}

pf wd/eq (inst/nextpc (state/make epc ef eg es em) (inst/j eni ecop en))

eni

exp

eni

exp

eni

exp

eea))

mapw}

eea))

mapw}

eea))

mapw}

(wd/add (wd/add epc eni) (wd/mul en (cop/self ecop ef))) @ t.

inst/nextf|inst/j:

{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}

{eni: exp wd} {ecop: exp cop} {en: exp wd}
{t: ti}

pf wd/eq (inst/nextf (state/make epc ef eg es em) (inst/j eni ecop en))

ef @ t.
inst/nextg|inst/j:

{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}

{eni: exp wd} {ecop: exp cop} {en: exp wd}
{t: ti}

pf mapg/eq (inst/nextg (state/make epc ef eg es em) (inst/j eni ecop en))

eg @ t.
inst/nexts|inst/j:

{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}

{eni: exp wd} {ecop: exp cop} {en: exp wd}
{t: ti}

pf mapw/eq (inst/nexts (state/make epc ef eg es em) (inst/j eni ecop en))

es @ t.
inst/nextm|inst/j:

{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}

{eni: exp wd} {ecop: exp cop} {en: exp wd}
{t: ti}

pf mapw/eq (inst/nextm (state/make epc ef eg es em) (inst/j eni ecop en))

em Q@ t.

inst/nextpc|inst/call:

261

262 APPENDIX B. LF REPRESENTATION

{e: exp state} {eni: exp wd} {eea: exp ea}
{t: ti}
pf wd/eq (inst/nextpc e (inst/call eni eea)) (ea/sel e eea) @ t.
inst/nextf|inst/call:
{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}
{eni: exp wd} {eea: exp ea}
{t: ti}
pf wd/eq (inst/nextf (state/make epc ef eg es em) (inst/call eni eea))
ef @ t.
inst/nextglinst/call:
{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}
{eni: exp wd} {eea: exp eal}
{t: ti}
pf mapg/eq (inst/nextg (state/make epc ef eg es em) (inst/call eni eea))
(mapg/upd eg ‘esp (wd/add (mapg/sel eg ‘esp) (wd/‘ wd/"4))) @ t.
inst/nexts|inst/call:
{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}
{eni: exp wd} {eea: exp ea}
{t: ti}
pf mapw/eq (inst/nexts (state/make epc ef eg es em) (inst/call eni eea))
(mapw/upd es
(wd/add (mapg/sel eg ‘esp) (wd/‘ wd/~4))
(wd/add epc eni)) @ t.
inst/nextm|inst/call:
{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}
{eni: exp wd} {eea: exp ea}
{t: ti}
pf mapw/eq (inst/nextm (state/make epc ef eg es em) (inst/call eni eea))
em @ t.

inst/nextpc|inst/ret:

{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}

{eni: exp wd}

{t: ti}

pf wd/eq (inst/nextpc (state/make epc ef eg es em) (inst/ret eni))

(mapw/sel es (mapg/sel eg ‘esp)) @ t.

inst/nextf|inst/ret:

{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}

{eni: exp wd}

{t: ti}

pf wd/eq (inst/nextf (state/make epc ef eg es em) (inst/ret eni)) ef Q t.
inst/nextglinst/ret:

{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}

{eni: exp wd}

{t: ti}

pf mapg/eq (inst/nextg (state/make epc ef eg es em) (inst/ret eni))

(mapg/upd eg ‘esp (wd/add (mapg/sel eg ‘esp) (wd/‘ wd/4))) @ t.

inst/nexts|inst/ret:

{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}

{eni: exp wd}

{t: ti}

pf mapw/eq (inst/nexts (state/make epc ef eg es em) (inst/ret eni)) es Q@ t.
inst/nextm|inst/ret:

{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}

{eni: exp wd}

{t: ti}

pf mapw/eq (inst/nextm (state/make epc ef eg es em) (inst/ret eni)) em Q@ t.

B.2.2.10 Programs
% - semantics -

rel/app2#|eq_prog: pf rel/app2# prog prog (eq/#eq prog) prog/pm prog/pm.
% no rel/app2#|neq_prog

B.3. SECURITY POLICY 263

% - truth -
prog/fetch|fun: {t: ti} pf rel/fun2 (pair prog wd) inst prog/#fetch @ t.

inst/nextpc|prog/fetch:
{t: ti}
pf all state ri/+ ([x: exp state] all inst ri/+ ([xi”: exp inst]
state/eq x ‘ss
imp prog/fetch ‘pm (state/pc x) xi~
imp nextT (wd/eq ‘pc (inst/mextpc x xi”))
)) e t.
inst/nextf|prog/fetch:
{t: ti}
pf all state ri/+ ([x: exp state] all inst ri/+ ([xi": exp inst]
state/eq x ‘ss
imp prog/fetch ‘pm (state/pc x) xi~
imp nextT (wd/eq ‘f (inst/nextf x xi~))
)) e t.
inst/nextg|prog/fetch:
{t: ti}
pf all state ri/+ ([x: exp state] all inst ri/+ ([xi": exp inst]
state/eq x ‘ss
imp prog/fetch ‘pm (state/pc x) xi~
imp nextT (mapg/eq ‘g (inst/nextg x xi~))
)) e t.
inst/nexts|prog/fetch:
{t: ti}
pf all state ri/+ ([x: exp state] all inst ri/+ ([xi": exp inst]
state/eq x ‘ss
imp prog/fetch ‘pm (state/pc x) xi~
imp nextT (mapw/eq ‘s (inst/nexts x xi7))
)) e t.
inst/nextm|prog/fetch:
{t: ti}
pf all state ri/+ ([x: exp state] all inst ri/+ ([xi~: exp inst]
state/eq x ‘ss
imp prog/fetch ‘pm (state/pc x) xi~
imp nextT (mapw/eq ‘m (inst/nextm x xi”))
)) et.

B.3 Security Policy

B.3.1 Abstract Syntax

B.3.1.1 Security Registers
% - types -

sreg: ty -> ty.
% - constants -

sreg/‘ = [tau: ty] con/‘ (sreg tau).

B.3.1.2 Security Automata
% - types -
sa: ty.

% = functions -

264

APPENDIX B. LF REPRESENTATION

sa/#sel: {tau: ty} fun/2 sa (sreg tau) tau.
sa/#upd: {tau: ty} fun/3 sa (sreg tau) tau sa.

sa/sel = [tau: ty]

fun/app2 sa (sreg tau) tau (sa/#sel tau).
sa/upd = [tau: ty]

fun/app3 sa (sreg tau) tau sa (sa/#upd tau).

% - relations -

sa/eq = rel/app2 sa sa (eq/#eq sa).
sa/neq = rel/app2 sa sa (eq/#neq sa).

% - expressions -

sa/q: par sa.

sa/‘q = par/‘ sa sa/q.

% - exports -

q = sa/q.

‘q = sa/‘q

B.3.1.3 Extended States

% - types

gstate = pair state sa.

% - functions -

gstate/#pc
gstate/#f:
gstate/#g:
gstate/#s:
gstate/#m:

gstate/pc
gstate/f
gstate/g
gstate/s
gstate/m

gstate/ss
gstate/q

gstate/make2
= pair/make state sa.

gstate/mak

e

fun/1 gstate wd.
fun/1 gstate wd.
fun/1 gstate mapg.
fun/1 gstate mapw.
fun/1 gstate mapw.

= fun/appl gstate wd gstate/#pc.

fun/appl gqstate wd gstate/#f.

fun/appl qstate mapg qstate/#g.
fun/appl gstate mapw gstate/#s.
fun/appl gstate mapw gstate/#m.

= pair/left state sa.

pair/right state sa.

= [epc: exp wd] [ef: exp wd] [eg: exp mapg] [es: exp mapw] [em: exp mapw]
gstate/make2 (state/make epc ef eg es em).

gstate/eax
gstate/ebp
gstate/esp

«

[e: exp gstate] mapg/sel (qstate/g e) ‘eax.
[e: exp gstate] mapg/sel (gstate/g e) ‘ebp.
[e: exp gstate] mapg/sel (gqstate/g e) ‘esp.

% - relations -

gstate/eq = eq/eq gstate.

% - expressions -

B.3. SECURITY POLICY

¢ ¢ ¢

gstate/‘sq = gstate/make ‘pc ‘f ‘g ‘s ‘m ‘q.
% - exports -

‘sq = gstate/‘sq.

B.3.1.4 Access Modes

% - types -

acc: ty.

% - constants -

acc/none: con acc.

acc/rd: con acc.
acc/wr: con acc.
acc/rw: con acc.

acc/‘none = con/‘ acc acc/none.

acc/‘rd = con/‘ acc acc/rd.
acc/‘wr = con/‘ acc acc/wr.
acc/‘rw = con/‘ acc acc/rw.

% - relations -

acc/#leq: rel/2 acc acc.

acc/#nleq = rel/not2 acc acc acc/#leq.
acc/eq = rel/app2 acc acc (eq/#eq acc).
acc/neq = rel/app2 acc acc (eq/#neq acc).

acc/leq = rel/app2 acc acc acc/#leq.
acc/nleq = rel/app2 acc acc acc/#nleq.

B.3.1.5 Access Maps

% - types -

mapa: ty.

% - functions -

mapa/#sel: fun/3 mapa wd wd acc.

mapa/sel = fun/app3 mapa wd wd acc mapa/#sel.
% - relations -

mapa/#leq: rel/2 mapa mapa.

mapa/eq = rel/app2 mapa mapa (eq/#eq mapa).

mapa/neq = rel/app2 mapa mapa (eq/#neq mapa).
mapa/leq = rel/app2 mapa mapa mapa/#leq.

B.3.1.6 Java Types
% - types -

jty: ty.
% - constants -

jty/bool: com jty.

265

266

jty/char:
jty/byte:
jty/short:
jty/int:
jty/Class:

jty/‘bool
jty/¢char
jty/ ‘byte
jty/“short
jty/‘int

jty/‘Class

con jty.
con jty.
con jty.
con jty.
con jty.

= con/¢
= con/¢
= con/°¢
= con/¢
= con/°¢
con/¢

% - functions -

jty
jty
jty
jty
jty
jty

APPENDIX B. LF REPRESENTATION

jty/bool.
jty/char.
jty/byte.
jty/short.
jty/int.
jty/Class.

jty/#array: fun/1 jty jty.
fun/1 wd jty.

jty/#inst:

jty/#size: fun/1 jty wd.

jty/array =
jty/inst =

fun/appl jty jty jty/#array.
fun/appl wd jty jty/#inst.

jty/size = fun/appl jty wd jty/#size.

% - express
jty/len =

jty/elem =

% - proposi

jty/wd =

jty/align =

B.3.1.7
% - types -

jta: ty.

ions -

[ena: exp wdl

wd/add ena (wd/‘# 16).

[ena: exp wd] [eni: exp wd] [ety: exp jtyl

wd/add ena (wd/add (wd/mul eni (jty/size ety)) (wd/‘# 20)).

tions -

[ety: exp jtyl

wd/eq (jty/size ety) (wd/‘# 4).

[enp: exp wd] [ety: exp jtyl

wd/eq (wd/and enp (wd/sub (jty/size ety) ‘1w)) ‘Ow.

Java Type Assignments

% - relations -

jta/#leq:
jta/#of:
jta/#ptr:
jta/#field:

jta/leq =
jta/of =

jta/ptr =

jta/field =

rel/2 jta jta.

rel/2 jta (pair wd jty).
rel/2 (pair jta wd) jty.
rel/2 (trip jta wd wd) jty.

rel/app2 jta jta jta/#leq.

[eta: exp jtal [en: exp wd] [ety: exp jtyl

rel/app2 jta (pair wd jty) jta/#of eta (pair/make wd jty en ety).
[eta: exp jtal [enp: exp wd]

rel/app2 (pair jta wd) jty jta/#ptr (pair/make jta wd eta enp).
[eta: exp jtal] [enc: exp wd] [enf: exp wd]

rel/app2 (trip jta wd wd) jty

jta/#field

(trip/make jta wd wd eta enc enf).

% - propositions -

B.3. SECURITY POLICY 267

jta/ptr_len
= [eta: exp jtal [enp: exp wd]
some wd ri/- ([xna: exp wd] some jty ri/- ([xty: exp jtyl
jta/of eta xna (jty/array xty)
and wd/neq xna ‘Ow
and wd/eq enp (jty/len xna)
»N.

jta/ptr_elem
= [eta: exp jtal [em: exp mapw] [enp: exp wd] [ety: exp jtyl
some wd ri/- ([xna: exp wd] some wd ri/- ([xni: exp wd]
jta/of eta xna (jty/array ety)
and wd/neq xna ‘Ow
and wd/ltu xni (mapw/sel em (jty/len xna))
and wd/eq enp (jty/elem xna xni ety)
»N.

jta/ptr_field
= [eta: exp jtal [enp: exp wd] [ety: exp jtyl
some wd ri/- ([xno: exp wd]
some wd ri/- ([xnc: exp wd] some wd ri/- ([xnf: exp wd]
jta/of eta xno (jty/inst xnc)
and wd/neq xno ‘Ow
and jta/field eta xnc xnf ety
and wd/eq enp (wd/add xno xnf)
.

jta/valid
= [eta: exp jtal
all wd ri/- ([xnp: exp wd] all jty ri/- ([xty: exp jtyl
(jta/ptr_len eta xnp imp jta/ptr eta xnp jty/‘int)
and (jta/ptr_field eta xnp xty imp jta/ptr eta xnp xty)
and (jta/ptr eta xnp xty imp jty/align xnp xty)
»N.

jta/mem
= [eta: exp jtal [em: exp mapw]
all wd ri/- ([xnp: exp wd] all jty ri/- ([xty: exp jtyl
(jta/ptr_elem eta em xnp xty imp jta/ptr eta xnp xty)
and (jta/ptr eta xnp xty imp jty/wd xty imp jta/of eta (mapw/sel em xnp) xty)
).

B.3.1.8 Java Type Environments
% - types -
jts = pair jta mapa.

% - functions -

jts/make = pair/make jta mapa.
jts/ta pair/left jta mapa.
jts/am = pair/right jta mapa.

% - relations -

jts/#leq: rel/2 jts jts.

jts/#of: rel/2 jts (pair wd jty).

jts/#ptr: rel/2 (pair jts wd) (pair jty acc).
jts/#field: rel/2 (trip jts wd wd) jty.
jts/#mem: rel/2 jts mapw.

jts/leq = rel/app2 jts jts jts/#leq.

268 APPENDIX B. LF REPRESENTATION

jts/of = [ets: exp jts] [en: exp wd] [ety: exp jtyl
rel/app2 jts (pair wd jty) jts/#of ets (pair/make wd jty en ety).
jts/ptr = [ets: exp jts] [enp: exp wd] [ety: exp jty] [ea: exp acc]
rel/app2 (pair jts wd) (pair jty acc)
jts/#ptr

(pair/make jts wd ets enp) (pair/make jty acc ety ea).
jts/field = [ets: exp jts] [enc: exp wd] [enf: exp wdl]
rel/app2 (trip jts wd wd) jty
jts/#field
(trip/make jts wd wd ets enc enf).

jts/mem = rel/app2 jts mapw jts/#mem.
% - propositions -

jts/valid
= [ets: exp jts]
all wd ri/- ([xnp: exp wd] all jty ri/- ([xty: exp jty]
jta/valid (jts/ta ets)
and (jta/ptr_len (jts/ta ets) xnp
imp acc/eq (mapa/sel (jts/am ets) xnp (jty/size jty/‘int)) acc/‘rd)
and (jta/ptr_field (jts/ta ets) xnp xty
imp acc/eq (mapa/sel (jts/am ets) xnp (jty/size xty)) acc/‘rw)
N.

B.3.1.9 Safety

% - constants -

safe/page = 4096.
safe/2page = 8192.
safe/npage = 4294963200.

safe/fps: con (sreg (list wd)).
safe/accm: con (sreg mapa).

safe/‘page = wd/‘# safe/page.
% - functions -

safe/#nextq: fun/2 gstate inst sa.
safe/#next: fun/2 gstate inst gstate.

safe/nextq = fun/app2 gstate inst sa safe/#nextq.
safe/next = fun/app2 gstate inst gstate safe/#next.

safe/sel_fps = [eq: exp sal] sa/sel (list wd) eq (sreg/‘ (list wd) safe/fps).
safe/upd_fps = [eq: exp sal] sa/upd (list wd) eq (sreg/‘ (list wd) safe/fps).
gstate/fps = [e: exp gstate] safe/sel_fps (gstate/q e).

safe/sel_accm = [eq: exp sal sa/sel mapa eq (sreg/‘ mapa safe/accm).
safe/upd_accm = [eq: exp sal] sa/upd mapa eq (sreg/‘ mapa safe/accm).
gstate/accm = [e: exp gstate] safe/sel_accm (gqstate/q e).

% - relations -

safe/#sp: rel/2 gstate wd.
safe/#rd_s: rel/2 gstate wd.
safe/#wr_s: rel/2 (pair gqstate wd) wd.
safe/#rd_m: rel/2 gstate wd.
safe/#ur_m: rel/2 (pair gstate wd) wd.
safe/#rd_ea: rel/2 gstate ea.
safe/#ur_ea: rel/2 (pair gstate ea) wd.
safe/#inst: rel/2 gstate inst.

B.3. SECURITY POLICY 269

safe/sp = rel/app2 qstate wd safe/#sp.
safe/rd_s = rel/app2 qstate wd safe/#rd_s.
safe/wr_s = [esq: exp gstate] [en: exp wd]

rel/app2 (pair gstate wd) wd
safe/#ur_s
(pair/make gstate wd esq en).
safe/rd_m = rel/app2 gstate wd safe/#rd_m.
safe/wr_m = [esq: exp gqstate] [en: exp wd]
rel/app2 (pair gstate wd) wd
safe/#wr_m
(pair/make gstate wd esq en).
safe/rd_ea = rel/app2 gstate ea safe/#rd_ea.
safe/wr_ea = [esq: exp gstate] [eea: exp ea]
rel/app2 (pair gstate ea) wd
safe/#wr_ea
(pair/make gstate ea esq eea).
safe/inst = rel/app2 gstate inst safe/#inst.

% - propositions -
safe/make = [esq: exp gstatel

some inst ri/- ([xi”: exp inst]
prog/fetch ‘pm (gstate/pc esq) xi” and safe/inst esq xi~

).
safe = safe/make ‘sq.
safe/pre = [ppuz: exp gstate -> exp gstate -> prpl

[epcO: exp wd] [espO: exp wdl]

[esq0: exp gstate] [esq: exp gstatel

wd/eq ‘pc epcO and wd/eq ‘g_sp esp0 and ppuz esq0 esq.
safe/post = [pquz: exp gstate -> exp gstate -> prp]

[epc’: exp gstate -> exp wd]

[esq0: exp gstate] [esq: exp gstatel

wd/eq ‘pc (epc’ esq0) and pquz esq0 esq.

safe/body = [psafe: exp gstate -> prp]
[ppre: exp gstate -> exp gstate -> prpl
[ppost: exp gstate -> exp gstate -> prp]
[esq0: exp gstate]
gstate/eq ‘sq esq0
imp ppre esq0 ‘sq
imp psafe ‘sq unlessT ppost esq0 ‘sq.

safe/proc = [psafe: exp gstate -> prp]
[ppre: exp gstate -> exp gstate -> prpl
[ppost: exp gstate -> exp gstate -> prp]
allT (
all gstate ri/+ ([xsq0: exp gstate]
safe/body psafe ppre ppost xsq0
).

B.3.2 Inference Rules
B.3.2.1 Security Registers

% - semantics -

rel/app2#|eq_sreg:

{tau: ty}

{c: con (sreg tau)}

pf rel/app2# (sreg tau) (sreg tau) (eq/#eq (sreg tau)) c c.
rel/app2#|neq_sreg:

{tau: ty}

270 APPENDIX B. LF REPRESENTATION

{c1: con (sreg tau)} {c2: con (sreg tau)}
con/neq (sreg tau) cl c2
-> pf rel/app2# (sreg tau) (sreg tau) (eq/#neq (sreg tau)) cl c2.

B.3.2.2 Security Automata

sa/sel|mcO: {tau: ty}
{eq: exp sa} {er: exp (sreg tau)} {e: exp tau} {t: ti}
pf eq/eq tau (sa/sel tau (sa/upd tau eq er e) er) e Q@ t.
sa/sel|mcl: {tau: ty}
{eq: exp sa} {er: exp (sreg tau)} {e: exp taul}
{er’: exp (sreg tau)}
{t: ti}
pf eq/neq (sreg tau) er’ er @ t
-> pf eq/eq tau
(sa/sel tau (sa/upd tau eq er e) er’)
(sa/sel tau eq er’) @ t.
sa/sellext: d{eq: exp sa} {eq’: exp sa} {t: ti}
({tau: ty} {ar: par (sreg tau)}
pf eq/eq tau (sa/sel tau eq (par/‘ (sreg tau) ar))
(sa/sel tau eq’ (par/‘ (sreg tau) ar)) @ t)
-> pf sa/eq eq eq’ Q@ t.

B.3.2.3 Extended States

gstate/pcl|: {e: exp gstate} {t: ti}

pf wd/eq (qgstate/pc e) (state/pc (gstate/ss e)) @ t.
gstate/f|: {e: exp gstate} {t: ti}

pf wd/eq (qgstate/f e) (state/f (gstate/ss e)) @ t.
gstate/g|: {e: exp gstate} {t: ti}

pf mapg/eq (gqstate/g e) (state/g (qstate/ss e)) @ t.
gstate/s|: d{e: exp gstate} {t: ti}

pf mapw/eq (gstate/s e) (state/s (gstate/ss e)) @ t.
gstate/m|: {e: exp gstate} {t: ti}

pf mapw/eq (gstate/m e) (state/m (gstate/ss e)) @ t.

B.3.2.4 Access Modes

% - semantics -

rel/app2#|eq_acc: {c: con accl}
pf rel/app2# acc acc (eq/#eq acc) c c.
rel/app2#|neq_acc: {cil: con acc} {c2: con acc}
con/neq acc cl c2
-> pf rel/app2# acc acc (eq/#neq acc) cl c2.

rel/app2#|acc/leq_ref: {c: con acc}

pf rel/app2# acc acc acc/#leq ¢ c.
rel/app2#|acc/leq_none: {c: con acc}

pf rel/app2# acc acc acc/#leq acc/none c.
rel/app2#|acc/leq_rw: {c: con acc}

pf rel/app2# acc acc acc/#leq c acc/rw.

rel/app2#|acc/nleq_rd_none: pf rel/app2# acc acc acc/#nleq acc/rd acc/none.
rel/app2#|acc/nleq_wr_none: pf rel/app2# acc acc acc/#nleq acc/wr acc/mnone.
rel/app2#|acc/nleq_rw_none: pf rel/app2# acc acc acc/#nleq acc/rw acc/mnone.
rel/app2#|acc/nleq_wr_rd: pf rel/app2# acc acc acc/#nleq acc/wr acc/rd.
rel/app2#|acc/nleq_rw_rd: pf rel/app2# acc acc acc/#nleq acc/rw acc/rd.
rel/app2#|acc/nleq_rd_wr: pf rel/app2# acc acc acc/#nleq acc/rd acc/wr.
rel/app2#|acc/nleq_rw_wr: pf rel/app2# acc acc acc/#nleq acc/rw acc/wr.

% = truth -

acc/leq|order: {t: ti} pf rel/order acc acc/#leq @ t.

B.3. SECURITY POLICY 271

acc/leq|bot: {t: ti} pf rel/bot acc acc/#leq acc/none Q@ t.
acc/leq|top: {t: ti} pf rel/top acc acc/#leq acc/rw Q@ t.

B.3.2.5 Access Maps

mapa/leq|: {eml: exp mapa} {em2: exp mapa} {t: ti}
pf mapa/leq eml em2
eqv all wd ri/- ([xnl: exp wd] all wd ri/- ([xn2: exp wdl
acc/leq (mapa/sel eml xnl xn2) (mapa/sel em2 xnl xn2)
)) e t.

B.3.2.6 Java Types

% - semantics -

rel/app2#|eq_jty: {c: con jtyl}
pf rel/app2# jty jty (eq/#eq jty) c c.
rel/app2#|neq_jty: {cl: con jty} {c2: con jty}
con/neq jty cl c2
-> pf rel/app2# jty jty (eq/#neq jty) cil c2.

fun/appl#|jty/size_bool:

pf fun/appl# jty wd jty/#size jty/bool (wd/# 4).
fun/appl#|jty/size_char:

pf fun/appl# jty wd jty/#size jty/char (wd/# 4).
fun/appl#|jty/size_byte:

pf fun/appl# jty wd jty/#size jty/byte (wd/# 4).
fun/appl#|jty/size_short:

pf fun/appl# jty wd jty/#size jty/short (wd/# 4).
fun/appl#|jty/size_int:

pf fun/appl# jty wd jty/#size jty/int (wd/# 4).

% = truth -

jty/arraylinj: {t: ti} pf fun/injl jty jty jty/#array @ t.
jty/inst|inj: {t: ti} pf fun/injl wd jty jty/#inst @ t.

jty/size|i_array: {ety: exp jty} {t: ti}

pf wd/eq (jty/size (jty/array ety)) (wd/‘# 4) @ t.
jty/sizel|i_inst: {enc: exp wd} {t: ti}

pf wd/eq (jty/size (jty/inst enc)) (wd/‘# 4) Q@ t.

B.3.2.7 Java Type Assignments
jta/leqlorder: {t: ti} pf rel/order jta jta/#leq @ t.

jta/of|i_bool: {eta: exp jta} {en: exp wd} {t: ti}
pf wd/ltu en (wd/‘# 2) @ t
-> pf jta/of eta en jty/‘bool @ t.
jta/of|i_char: {eta: exp jta} {en: exp wd} {t: ti}
pf wd/ltu en (wd/‘# 65536) € t
-> pf jta/of eta en jty/‘char @ t.
jta/of|i_byte: {eta: exp jta} {en: exp wd} {t: ti}
pf wd/geq en (wd/‘# 4294967168) @ t
-> pf wd/1lt en (wd/‘# 128) @ t
-> pf jta/of eta en jty/‘byte @ t.
jta/of|i_short: {eta: exp jta} {en: exp wd} {t: ti}
pf wd/geq en (wd/‘# 4294934528) @ t
-> pf wd/1lt en (wd/‘# 32768) @ t
-> pf jta/of eta en jty/‘short @ t.
jta/of|i_int: {eta: exp jta} {en: exp wd} {t: ti}
pf jta/of eta en jty/‘int @ t.
jta/of|i_array0: {eta: exp jta} {ety: exp jty} {t: ti}
pf jta/of eta ‘Ow (jty/array ety) @ t.

272 APPENDIX B. LF REPRESENTATION

jta/ofli_inst0: d{eta: exp jta} {enc: exp wd} {t: ti}
pf jta/of eta ‘Ow (jty/inst enc) @ t.

jta/ptr|fun: {t: ti} pf rel/fun2 (pair jta wd) jty jta/#ptr @ t.
jta/field|fun: {t: ti} pf rel/fun2 (trip jta wd wd) jty jta/#field @ t.

B.3.2.8 Java Type Environments

jts/leql:
{etsl: exp jts} {ets2: exp jts} {t: ti}
pf jts/leq etsl ets2
eqv jta/leq (jts/ta etsl) (jts/ta ets2)
and mapa/leq (jts/am etsl) (jts/am ets2) @ t.
jts/of|:
{ets: exp jts} {en: exp wd} {ety: exp jty} {t: ti}
pf jts/of ets en ety
eqv jts/valid ets
and jta/of (jts/ta ets) en ety @ t.
jts/ptrl:
{ets: exp jts} {enp: exp wd} {ety: exp jty} {ea: exp acc} {t: ti}
pf jts/ptr ets enp ety ea
eqv jts/valid ets
and jta/ptr (jts/ta ets) enp ety
and acc/eq (mapa/sel (jts/am ets) enp (jty/size ety)) ea @ t.
jts/field|:
{ets: exp jts} {enc: exp wd} {enf: exp wd} {ety: exp jty} {t: ti}
pf jts/field ets enc enf ety

eqv jta/field (jts/ta ets) enc enf ety @ t.

jts/mem| :
{ets: exp jts} {em: exp mapw} {t: ti}
pf jts/mem ets em
eqv
all wd ri/- ([xnp: exp wd] all jty ri/- ([xty: exp jtyl
jts/valid ets
and jta/mem (jts/ta ets) em
and (jta/ptr_elem (jts/ta ets) em xnp xty
imp acc/eq (mapa/sel (jts/am ets) xnp (jty/size xty)) acc/‘rw)
)) @ t.

B.3.2.9 Safety

prog/fetch|safe/nextq:
{t: ti}
pf all gstate ri/+ ([x: exp gstate] all inst ri/+ ([xi”: exp inst]
gstate/eq x ‘sq
imp prog/fetch ‘pm (gstate/pc x) xi~
imp nextT (eq/eq sa ‘q (safe/nextq x xi~))
)) et.

safe|esp_under:
{t: ti}
pf wd/gequ (wd/add ‘g_sp safe/‘page) ‘g_sp @ t.

safe/nextqlinst/mov:
{e: exp state} {eq: exp sa} {eni: exp wd} {eeal: exp ea} {eea2: exp ea}
{t: ti}
pf sa/eq (safe/nextq (gstate/make2 e eq) (inst/mov eni eeal eea2)) eq @ t.
safe/nextqlinst/xchg:
{e: exp state} {eq: exp sa} {eni: exp wd} {eea: exp ea} {er: exp greg}
{t: ti}

B.3. SECURITY POLICY 273

pf sa/eq (safe/nextq (qstate/make2 e eq) (inst/xchg eni eea er)) eq @ t.
safe/nextq|inst/lea:
{e: exp state} {eq: exp sal} {eni: exp wd} {eea: exp eal} {er: exp greg}
{t: ti}
pf sa/eq (safe/nextq (gstate/make2 e eq) (inst/lea eni eea er)) eq Q@ t.
safe/nextq|inst/push:
{e: exp state} {eq: exp sal} {eni: exp wd} {eea: exp ea}
{t: ti}
pf sa/eq (safe/nextq (qstate/make2 e eq) (inst/push eni eea)) eq @ t.
safe/nextq|inst/pop:
{e: exp state} {eq: exp sa} {eni: exp wd} {eea: exp ea}
{t: ti}
pf sa/eq (safe/nextq (gstate/make2 e eq) (inst/pop eni eea)) eq @ t.
safe/nextq|inst/opl:
{e: exp state} {eq: exp sa} {eni: exp wd} {eop: exp op/1} {eea: exp ea}
{t: ti}
pf sa/eq (safe/nextq (qstate/make2 e eq) (inst/opl eni eop eea)) eq @ t.
safe/nextq|inst/op2:
{e: exp state} {eq: exp sa}
{eni: exp wd} {eop: exp op/2} {eeal: exp ea} {eea2: exp ea}
{t: ti}
pf sa/eq (safe/nextq (gstate/make2 e eq) (inst/op2 eni eop eeal eea2))
eq @ t.
safe/nextqlinst/op2n:
{e: exp state} {eq: exp sa}
{eni: exp wd} {eop: exp op/2} {eeal: exp ea} {eea2: exp ea}
{t: ti}
pf sa/eq (safe/nextq (gstate/make2 e eq) (inst/op2n eni eop eeal eea2))
eq @ t.
safe/nextqlinst/op3:
{e: exp state} {eq: exp sa}
{eni: exp wd} {eopl: exp op/3} {eop2: exp op/3}
{eea: exp eal} {erl: exp greg} {er2: exp greg}
{t: ti}
pf sa/eq (safe/nextq (qstate/make2 e eq)
(inst/op3 eni eopl eop2 eea erl er2))
eq @ t.
safe/nextq|inst/jmp:
{e: exp state} {eq: exp sa} {eni: exp wd} {eea: exp ea}
{t: ti}
pf sa/eq (safe/nextq (gstate/make2 e eq) (inst/jmp eni eea)) eq Q@ t.
safe/nextqlinst/j:
{e: exp state} {eq: exp sa} {eni: exp wd} {ecop: exp cop} {en: exp wd}
{t: ti}
pf sa/eq (safe/nextq (qstate/make2 e eq) (inst/j eni ecop en)) eq @ t.
safe/nextqlinst/call:
{epc: exp wd} {ef: exp wd} {eg: exp mapg} {es: exp mapw} {em: exp mapw}

{eq: exp sa}
{eni: exp wd} {eea: exp ea}
{t: ti}

pf sa/eq (safe/nextq (qstate/make epc ef eg es em eq) (inst/call eni eea))
(safe/upd_£fps
eq
(list/cons wd
(wd/add (mapg/sel eg ‘esp) (wd/‘# "4))
(safe/sel_fps eq))) @ t.
safe/nextq|inst/ret:
{e: exp state} {eq: exp sa} {eni: exp wd}
{t: ti}
pf sa/eq (safe/nextq (qstate/make2 e eq) (inst/ret eni))
(safe/upd_fps eq (list/tail wd (safe/sel_fps eq))) @ t.

safe/next|:
{esq: exp gstate} {ei”: exp inst} {t: ti}

274 APPENDIX B. LF REPRESENTATION

pf gstate/eq
(safe/next esq ei”)
(gstate/make2 (inst/next (pair/left state sa esq) ei”)
(safe/nextq esq ei”)) @ t.

safe/sp|:
{e: exp gstate} {en: exp wd} {en’: exp wd} {t: ti}
pf wd/eq (wd/sub (list/head wd (gstate/fps e)) en) en’ @ t
-> pf safe/sp e en
eqv wd/ltu en’ safe/‘page and wd/eq (wd/and en’ (wd/‘# 3)) ‘Ow @ t.

safe/rd_s|:
{e: exp gstate} {en: exp wd} {en’: exp wd} {t: ti}
pf wd/eq (wd/sub en (gqstate/esp e€)) en’ @ t
-> pf safe/rd_s e en
eqv wd/ltu en’ safe/‘page and wd/eq (wd/and en’ (wd/‘# 3)) ‘Ow @ t.

safe/wr_s|:
{e: exp gstate} {en: exp wd} {en’: exp wd} {en’’: exp wd} {t: til}
pf wd/eq (wd/sub en (gstate/esp e€)) en’’ Q@ t
-> pf safe/wr_s e en en’
eqv wd/ltu en’’ safe/‘page and wd/eq (wd/and en’’ (wd/‘# 3)) ‘Ow @ t.

safe/rd_m| :
{e: exp gstate} {en: exp wd} {t: ti}
pf safe/rd_m e en
eqv acc/leq acc/‘rd (mapa/sel (qstate/accm e) en (wd/‘# 4))
and wd/eq (wd/and en (wd/‘# 3)) ‘Ow @ t.

% don’t check en’ here: type of en’ is only needed to show that memory is
% still well-formed
safe/wr_m]| :
{e: exp gqstate} {en: exp wd} {en’: exp wd} {t: ti}
pf safe/wr_m e en en’
eqv acc/leq acc/‘wr (mapa/sel (qstate/accm e) en (wd/‘# 4))
and wd/eq (wd/and en (wd/‘# 3)) ‘Ow @ t.

safe/rd_ealea/i:
{e: exp gstate} {en: exp wd} {t: ti}
pf safe/rd_ea e (ea/i en) @ t.
safe/rd_ealea/r:
{e: exp gstate} {er: exp greg} {t: ti}
pf safe/rd_ea e (ea/r er) @ t.
safe/rd_ealea/s:
{e: exp gstate} {ema: exp ma} {t: ti}
pf safe/rd_ea e (ea/s ema) eqv safe/rd_s e (ma/addr (gstate/g e) ema) @ t.
safe/rd_ealea/m:
{e: exp gstate} {ema: exp ma} {t: ti}
pf safe/rd_ea e (ea/m ema) eqv safe/rd_m e (ma/addr (qstate/g e) ema) @ t.

% no safe/wr_ealea/i
safe/wr_ealea/r:
{e: exp gstate} {er: exp greg} {en: exp wd} {t: ti}
pf eq/neq greg er ‘esp @ t
-> pf safe/wr_ea e (ea/r er) en Q@ t.
safe/wr_ealea/sp:
{e: exp gstate} {en: exp wd} {t: ti}
pf safe/wr_ea e (ea/r ‘esp) en eqv safe/sp e en Q@ t.
safe/wr_ealea/s:
{e: exp gqstate} {ema: exp ma} {en: exp wd} {t: ti}
pf safe/wr_ea e (ea/s ema) en
eqv safe/wr_s e (ma/addr (qstate/g e) ema) en @ t.
safe/wr_ealea/m:
{e: exp gstate} {ema: exp ma} {en: exp wd} {t: ti}

B.3. SECURITY POLICY 275

pf safe/wr_ea e (ea/m ema) en
eqv safe/wr_m e (ma/addr (gstate/g e) ema) en @ t.

safe/inst|inst/mov:
{e: exp gstate} {eni: exp wd} {eeal: exp ea} {eea2: exp eal} {t: ti}
pf safe/inst e (inst/mov eni eeal eea2)
eqv safe/rd_ea e eeal
and safe/wr_ea e eea2 (ea/sel (gqstate/ss e) eeal) @ t.
safe/inst|inst/xchg:
{e: exp gstate} {eni: exp wd} {eea: exp eal} {er: exp gregl} {t: ti}
pf safe/inst e (inst/xchg eni eea er)
eqv safe/rd_ea e eea
and safe/wr_ea e (ea/r er) (ea/sel (gstate/ss e) eea)
and safe/wr_ea e eea (mapg/sel (gqstate/g e) er) Q@ t.
safe/inst|inst/lea:
{e: exp gstate} {eni: exp wd} {eea: exp eal} {er: exp greg} {t: ti}
pf safe/inst e (inst/lea eni eea er)
eqv safe/wr_ea e (ea/r er) (ea/addr (gstate/ss e) eea) @ t.
safe/inst|inst/push:
{e: exp gstate} {eni: exp wd} {eea: exp ea} {t: ti}
pf safe/inst e (inst/push eni eea) eqv safe/rd_ea e eea Q@ t.
safe/inst|inst/pop:
{e: exp gstate} {eni: exp wd} {eea: exp ea} {t: ti}
pf safe/inst e (inst/pop eni eea)
eqv safe/wr_ea e
eea
(mapw/sel (qstate/s e) (mapg/sel (qstate/g e) ‘esp)) @ t.
safe/inst|inst/opl:
{e: exp gstate} {eni: exp wd} {eop: exp op/1} {eea: exp eal} {t: ti}
pf safe/inst e (inst/opl eni eop eea)
eqv safe/rd_ea e eea
and safe/wr_ea e eea (op/appl eop (ea/sel (gstate/ss e) eea)) Q@ t.
safe/inst|inst/op2:
{e: exp gstate}
{eni: exp wd} {eop: exp op/2} {eeal: exp ea} {eea2: exp ea}

{t: ti}
pf safe/inst e (inst/op2 eni eop eeal eea2)
eqv safe/rd_ea e eeal and safe/rd_ea e eea2

and safe/wr_ea e eea2 (op/app2 eop
(ea/sel (gstate/ss e) eea2)
(ea/sel (gstate/ss e) eeal)) Q@ t.

safe/inst|inst/op2n:

{e: exp gstate}

{eni: exp wd} {eop: exp op/2} {eeal: exp ea} {eea2: exp ea}

{t: ti}

pf safe/inst e (inst/op2n eni eop eeal eea2)

eqv safe/rd_ea e eeal and safe/rd_ea e eea2 Q t.

safe/inst|inst/op3:

{e: exp gstate}

{eni: exp wd} {eopl: exp op/3} {eop2: exp op/3}

{eea: exp ea} {erl: exp greg} {er2: exp gregl}

{en’: exp wd} {enl’: exp wd} {en2’: exp wd}

{t: ti}

pf wd/eq (ea/sel (gstate/ss e) eea) en’ @ t
-> pf wd/eq (mapg/sel (gstate/g e) erl) enl’ @ t
-> pf wd/eq (mapg/sel (qgstate/g e) er2) en2’ @ t
-> pf safe/inst e (inst/op3 eni eopl eop2 eea erl er2)

eqv safe/rd_ea e eea
and safe/wr_ea e (ea/r erl) (op/app3 eopl enl’ en2’ en’)
and safe/wr_ea e (ea/r er2) (op/app3 eop2 enl’ en2’ en’) @ t.

safe/inst|inst/jmp:

{e: exp gstate} {eni: exp wd} {eea: exp ea} {t: ti}

pf safe/inst e (inst/jmp eni eea) eqv safe/rd_ea e eea Q@ t.
safe/inst|inst/j:

276 APPENDIX B. LF REPRESENTATION

{e: exp gstate} {eni: exp wd} {ecop: exp cop} {en: exp wd} {t: ti}

pf safe/inst e (inst/j eni ecop en) @ t.
safe/inst|inst/call:

{e: exp gstate} {eni: exp wd} {eea: exp ea} {t: ti}

pf safe/inst e (inst/call eni eea) eqv safe/rd_ea e eea Q@ t.
safe/inst|inst/ret:

{e: exp gqstate} {eni: exp wd} {t: ti}

pf safe/inst e (inst/ret eni) @ t.

Appendix C

Benchmark Programs

C.1 Java Source Code
C.1.1 Alloc

public class Alloc

{
public static int[] alloc()
{
return new int[10];
}
}

C.1.2 Binary Search

public class BinarySearch

{

public static int search(final int[] a, final int n)

{

int index = 0, count = a.length;

while (count>0)
{

final int i = index+count/2;

if (n<alil)
{
count = i-index;
}
else if (m>ali])
{
count = index+count-(i+1);
index = i+1;
}
else
{
return ij;
}
}

return -1;
}
}

277

278

C.1.3 Bubble Sort

public class BubbleSort

{
public static void sort(int[] a)
{

final int count = a.length;

if (count<2)
return;

for (;;)
{

boolean done = true;

for (int i = 1; i<count; i++)

{

final int nl = a[i-1];
final int n2 = a[il;
if (ni>n2)
{
a[i-1] = n2;
ali] = ni;
done = false;
}
}
if (done)
break;
}
}
}

C.1.4 Checksum

public class Checksum

{
public static int checksum(int a[])
{

int i, n = 0;

for (i = 0; i<=a.length; i++)
n += al[i];

return n;
}
}

C.1.5 Clone

public class Clone

{
public static int[] clone(int al])
{

int i = 0, count = a.length;
int a2[] = new int[count];

for (i = 0; i<count; i++)
a2[i] = a[il;

return a2;

APPENDIX C. BENCHMARK PROGRAMS

C.1. JAVA SOURCE CODE 279

C.1.6 Dec

public class Dec

{

public static int dec(int n)

{

int i = n;

while (--i>0)

return i;
}
}

C.1.7 Fact

public class Fact

{
public static int fact(int n)
{
int i, result = 1;
for (i = 1; i<=n; i++)
result *= i;
return result;
}
}

C.1.8 Fib

public class Fib

{
public static int fib(int n)
{
if (n<=0)
return 0;
{
int i, prev2 = 0, prevl = 1, result = 1;
for (i = 2; i<=n; i++)
{
result = prevli+prev2;
prev2 = previ;
prevl = result;
}
return result;
}
}
}

C.1.9 Filter

public class Filter

{
public static int filter(int n)
{
return n>=0 7 1 : 0;
}

}

280 APPENDIX C. BENCHMARK PROGRAMS

C.1.10 Heap Sort

public class Heap
{
/* active size of heap is in a[0]
elements are in a[1] ... al[a[0]]
a[0]<a.length */

static void heapify(final int[] a, final int index)
{

final int count al[0];

final int left = index*2;

final int right = index*2+1;

int next = index;

if (left<=count && a[left]>al[next])
next = left;

if (right<=count && al[right]>a[next])
next = right;

if (next!=index)

{
final int nl = a[index];
final int n2 a[next];

a[index]
a[next]

n2;
nl;

heapify(a, next);
}
¥

static void make(final int[] a)
{

final int count = a[0];

for (int i = count/2; i>=1; i--)
heapify(a, i);
T

static int top(final int[] a)
{
return a[1];

}

static int pop(final int[] a)
{

final int count = a[0];
final int n = a[1];
a[0] = count-1;
a[1] = a[count];

heapify(a, 1);

return n;

}

static void add(final int[] a, final int n)
{

final int count = a[0];

C.1. JAVA SOURCE CODE

}

a[0] = count+1;
int i = count+1;
while (i>1 && al[i/2]<n)
{
ali]l = a[i/2];

i /= 2;
T

a[i] = n;

static void sort(final int[] a)

{

final int count = a.length-1;
a[0] = count;

make(a);

for (int i = count; i>=2; i--)
{

final int nl all];
final int n2 = alil;

al[1] = n2;
al[i] = ni;
a[0]--;

heapify(a, 1);

C.1.11 Huffman

public class Huffman

{

/* active size of heap is in a[0]
elements are in a[1] ... a[a[0]]

static void

{

a[0]<a.length */

final int count = a[0];
final int left = indexx*2;
final int right = index*2+1;

int next = index;

if (left<=count && freql[a[left]]<freqla[next]])

next = left;

if (right<=count && freql[a[right]]<freq[a[next]])

next = right;

if (next!=index)
{
final int nil
final int n2

a[index];
a[next];

heapify(final int[] a, final int index, final int[] freq)

281

282 APPENDIX C. BENCHMARK PROGRAMS

a[index]
a[next]

n2;
nl;

heapify(a, next, freq);
}
T

static void make(final int[] a, final int[] freq)
{

final int count = a[0];

for (int i = count/2; i>=1; i--)
heapify(a, i, freq);
T

static int pop(final int[] a, final int[] freq)
{

final int count = a[0];
final int n = a[1];
al[0] = count-1;
al[1] = a[count];

heapify(a, 1, freq);

return n;

}
static void add(final int[] a, final int n, final int[] freq)
{

final int count = al[0];

al[0] = count+1;

int i = count+1;

while (i>1 && freq[al[i/2]]<freq[n])

{
alil] = ali/2];
i /= 2;

}

a[i] = n;

}

static int huffman(final int[] freq, final int count,
final int[] left, final int[] right)
{

final int[] a = new int[count*2+1];
a[0] = count;

for (int i = 1; i<=count; i++)
ali] = i;
make(a, freq);

int next = count+1;

for (int i = 1; i<=count-1; i++)
{
final int x = pop(a, freq);
final int y = pop(a, freq);

C.1. JAVA SOURCE CODE

final int z =

left[z] = x;
right[z] = y;
freq[z] =

next++;

freq[x]+freqly];

add(a, z, freq);

}

return pop(a, freq);

}
}

C.1.12 Loop

public class Loop
{
public static voi
{
for (53)
H

}

public static voi
{
}

}

d loop()

d nop() /* Speciall needs this */

C.1.13 Matrix

public class Matrix
{
public static voi
{

for (int i = 0;

public static boolean equal(final int[J[] al, final int[]J[] a2)

for (int j =
alil[j] =i
}
{
for (int i = 0;

for (int j =

d id(final int[J[] a)

ica.length; i++)
0; j<al0].length; j++)
==j 7 1:0;

i<al.length; i++)
0; j<al[0].length; j++)

if (a1[il[j1'=a2[i]1[jD)
return false;

return true;

}

public static void copy(final int[J[] a, final int[]J[] b)

i<a.length; i++)
0; j<al0].length; j++)

{
for (int i = 0;
for (int j =
bl[il[j]1 = alil[j];
}

public static int
{
int n = 2147483

for (int i = 0;
for (int j =
if (ali][j]

min(final int[J[] a)
647 ;
i<a.length; i++)

0; j<al0].length; j++)
<n)

n = alil[j];

283

284 APPENDIX C. BENCHMARK PROGRAMS

return n;

}

public static int max(final int[][] a)
{
int n = -2147483648;

for (int i = 0; i<a.length; i++)
for (int j = 0; j<a[O0].length; j++)
if (alil[jI>n)
n = alil[j]1;

return n;

}

public static void add(final int[]J[] al, final int[]J[] a2,
{
for (int i = 0; i<al.length; i++)
for (int j = 0; j<ail[O].length; j++)
b[i]1[j] = a1l[il[jl+a2[i]1[j];
T

public static void sub(final int[][] al, final int[][] a2,
{
for (int i = 0; i<al.length; i++)
for (int j = 0; j<al[0].length; j++)
b[il[j] = a1lil[jl-a2[i1[j];
T

public static int muli(final int[J[] al, final int[]1[] a2,
{

int n = 0;

for (int k = 0; k<al[i].length; k++)
n += al[i] [k]*a2[k][j];

return n;

}

public static void mul(final int[]J[] al, final int[]J[] a2,
{
for (int i = 0; i<al.length; i++)
for (int j = 0; j<a2[0].length; j++)
b[i][j] = muli(al, a2, i, j);
}

public static void transp(final int[J[] a, final int[1[] b)
{
for (int i = 0; i<a.length; i++)
for (int j = 0; j<al[il.length; j++)
{
b[jI10i] = alil(j];
}

C.1.14 Matrix Multiply

public class MatrixMultiply

{
public static int multiplyi(final int[J[] al, final int[][]
{

int n = 0;

final int[J[] b)

final int[1[]1 b)

int i, int j)

final int[J[] b)

a2, int i, int j)

C.1. JAVA SOURCE CODE 285

for (int k = 0; k<al[i].length; k++)
n += ail[i] [k]1*a2[k][j];

return n;

3

public static void multiply(final int[]J[] al, final int[][] a2,
final int[J[] b)
{
for (int i = 0; i<al.length; i++)
for (int j = 0; j<a2[0].length; j++)
b[il[j] = multiplyl(al, a2, i, j);

C.1.15 Matrix Transpose

public class MatrixTranspose

{
public static void transpose(final int[J[] a, final int[]J[] b)
{
for (int i = 0; i<a.length; i++)
for (int j = 0; j<al[i].length; j++)
{
b[j1[i] = al[il[j];
}
}
}

C.1.16 Merge Sort

public class MergeSort

{
private static int[] sub(final int[] a, final int index, final int count)
{

final int[] al = new int[count];

for (int i = 0; i<count; i++)
all[i] = a[index+i];

return al;

}

private static void merge(final int[] al, final int[] a2, final int[] a)
{

final int countl = al.length;

final int count2 = a2.length;

int i1 = 0;
int i2 = 0;
int i = 0;

while (il<countl && i2<count2)
{

final int n1 = ail[il];

final int n2 = a2[i2];

if (n1<n2)

{
ali++] = ni;
il++;

}

else

286 APPENDIX C. BENCHMARK PROGRAMS

{
ali++] = n2;
12++;
}
}

while (il<countl)
ali++] = ail[il++];

while (i2<count2)
ali++] = a2[i2++];

}
public static void sort(final int[] a)
{
final int count = a.length;
if (count>2)
{
final int countl = count/2;
final int count2 = count-countil;
final int[] al = sub(a, 0, countl);
final int[] a2 = sub(a, countl, count2);
sort(al);
sort(a2);
merge(al, a2, a);
}
else if (count>1)
{
final int n0 = a[0];
final int nl = a[1];
if (n0>n1l)
{
al[0] = ni;
a[1] = n0;
}
}
}
}
C.1.17 Min
public class Min
{
public static int min(int ni, int n2)
{
return Math.min(nl, n2);
}
}
C.1.18 NAbs
public class NAbs
{
public static int nabs(int n)
{
return -Math.abs(n);
¥

3

C.1.

JAVA SOURCE CODE

C.1.19 Nop

public class Nop

{

public static void nop()

{
}
}

C.1.20 Not

public class Not

{

public static boolean not(boolean flag)

{

}
}

return !flag;

C.1.21 N Queens

/%

* This is an adaptation of Tom Murphy’s code at
* http://www.andrew.cmu.edu/~twm/queens/nqueens.c

*/

public class NQueens

{

private static void set

{

}

(final int[] rows, final int[] diagu, final int[] diagd,
final int z, final int r, final int flag)

rows [r]
diagu[z+r]

flag;
flag;

diagd[rows.length-1-r+z] = flag;

public static int[] queens(final int n)

{

final int[] rows = new int[n];

final int[] diagu
final int[] diagd

new int[n*2];
new int[n*2];

final int[] board = new int[n];

int z = 0;

for (;;)

{

final int r = board[z];

if (Y(rows[r]!=0 || diagulz+r]!=0 || diagd[n-1-r+z]!=0))

{
set(rows, diagu, diagd, z, r, 1);
Z++;
if (z==n)
return board;
board[z] = 0;
}
else
{

board[z] ++;

while (board[z]==n)

287

288 APPENDIX C. BENCHMARK PROGRAMS

z--;
set(rows, diagu, diagd, z, board[z], 0);
board[z]++;

C.1.22 Packet

public class Packet

{
public static boolean packet(int a[])
{
return a[0]==1234567;
T
}

C.1.23 Quicksort

public class QuickSort
{
public static void sort(int[] a, int indexO, int index1)
{
if (index1<=index0+1)
{
if (index1>index0)
{
final int n0 = a[index0];
final int nl = a[index1];

if (n0>n1)
{
al[index0] = ni;
a[index1] = n0;
}
}
return;
}
{

final int n0 = a[index0];
int i = index0-1;
int j = indexl+1;

for (53)
{
while (a[++i]<n0)

while (a[--j]>n0)
if (i>=j)

break;
{

final int ni = al[il;
final int nj = aljl;

C.1. JAVA SOURCE CODE 289

a[i]
alj]
}
T

nj;
ni;

sort(a, index0O, j);
sort(a, j+1, index1);
}
}
}

C.1.24 Reverse

public class Reverse

{
public static void reverse(int al[])
{
int i = 0, count = a.length/2, last = a.length-1;
for (i = 0; i<count; i++)
ali] = a[last-i];
}
}

C.1.25 Swap

public class Swap
{
public static void swap(int al])

{
int n = a[0];

a[0]
al[1]
}

al1]l;
n;

3

290 APPENDIX C. BENCHMARK PROGRAMS

