Postgres Pro Shardman
14.17.2 Documentation

Postgres Professional
The PostgreSQL Global Development Group

https.//postgrespro.com

https://postgrespro.com

Postgres Pro Shardman 14.17.2 Documentation

Postgres Professional

The PostgreSQL Global Development Group

Copyright © 2021-2025 Postgres Professional

Copyright © 1996-2025 The PostgreSQL Global Development Group

I Tc S =T <o IRV g TS 7= o 4T T 1

1.1 WHEE 1S SNAIAIMEN ...t et ettt e e e e et e e et ettt e e e et e e e e et n e e e et neeeateneeennnns 1
2T g T oI (T PR 2
R @ W o < = 10 o [N 2
0 35 @ T = @0 g T8 = o) P 3
T = = o - 1o o P 3
1.3.3. Deploy an etCd ONE-NOUE CIUSEESciieciiii e e e e e e e e e e e e e et e e et e e et a e e e eeanans 4
1.3.4. DePloy Shardman NOOESciuuiiiiie e e e e e e e e e e et e et e e et e e et s e et e ean e estneeennaaetnaes 5
1.3.5. Initialize the SNardmMan CIUSLENuuuiiiiiii e e et e e et r e e e et r e e e et e e e eannaeeeanen 6
1.3.6. Add Nodes to the Shardman ClIUSLENiiiiiiiiii e e e e et e e e e aa s 6
1.3.7. Check the Shardman ClUSIEr SEALUSuiiiiiiieei e e et e et e e et e e e et e e e eran e 7
1.3.8. Connect t0 the ShardmMan ClUSIENuiiiiiiii e e e e et e e e et e e e aett e e e eete e e e eereaeeee 9
1.3.9. Create Shardetd TaDIESiiieii it e e e e et e e e et e e e e aa s 9
1.3.10. Example: Deploy a Multi-NOde €CO CIUSLENovueiiiii i e e e e e e e e e e eaaees 10

A 1Y/ F= = o [PPN 13
P B O 1 1= S Yot PSP 13
A v | g To TR ST O 11 13
2.2.1. Adding and ReMOVING @ NOUEoiiiiiiiie et e e e e e e e e e e e e et e e et e e et s eeaaeeanaaees 13

I 2L o = 10 o o IR (L= DT v PPN 18
2.3.1. Automatically RebalanCing the Dalal.........ccuuiiiiiiiiii e 18
2.3.2. Manually RebalanCing the Dalal........ccuuuiiiiiiiii i e e e e e e e e e e e e e et e e an e e aaa s 19
A N VAT 0 IR o BV A= or U 10 11 o 23
S AN oo SR Y = aT= e = 0T o | PP RPN 24
2.5.1. Cluster Initialization Settings Related to ACCESS MaNAEMENTcvvvuiiiiiieiii e e e e e e e e e e e eens 24
2.5.2. Managing USars @nd ROIESccouuiiii e e e e e e e e e e e et e e et e e e e eanaeeaes 25
2.5.3. Managing Permissions on Sharded TablEScouuiiiiiiii e e aens 25

A I 2 T o (U a0 I L= w0 V= o 26
2.6.1. Cluster Backup With pg_hasehaCkupoiiiniiiii e e e e 27
2.6.2. Cluster Recovery from a Backup Using pg basebackupcouuviiiiiiiiici e 27
2.6.3. Cluster Backup With pg_probaCkUupceeuiiiii e e e e e e e e e e e e e et e e e e eaanas 28
2.6.4. Cluster Restore from a Backup with pg_probackupccueiiiiiiiiic e 29
2.6.5. Merging Backups With pg_probaCkUupceuniiiiiiiiii e e e e e e e e e e e e e e e e eaneees 30
2.6.6. Deleting Backups With pg_PprobaCkUupceueiiiii i e e e e e e e e e e e e et e e aneen 30

2.7. Configuring Secure CommUNICatioNS With €1COiiiiiiii e e e eaas 31
2.7.1. Generating SSL CartifiCalESuuiiiiiiii et e e e e e e e e e e e e et e e et e et e e e e aaaaa 31
2.7.2. Configuring etcd and shardmMand SENVICEScciuuiiiiieii e e e e e e e e e e e et e aaanaaes 32
2.7.3. USING Shardman TOOISciuuiiiiiei e e e e e e e e e e e et e e et e e et e et e et e e e e eaaas 33

A T Lo = o [0T - O 11 (= P 33
A B o 1= o (ST 0 G o L= 34
2.8.2. Restart Shardman Services and Datahase INSLANCEScvvvvuiiieiiiee e e e e e e e 34
2.8.3. UPGrade the EXLENSIONuuiiii e e e e e e e e e e e e e e e e e e et e et e e et e e e et e e et e e et e eean e eaneees 34

2.9. Fault Tolerance and High AVailabilitycoiiiiiiiii e e e e e e et e e e e eees 35
P2 IS T 1 1= o 11 £ PSP 35
2250 K T I o 1 o [36
A L0 I 0 (0| 1= @ I I o PRI 36
P28 O 2= 17 1 |04 o B oo P 36
2.10.3. Getting Information 0N Backend Crashesiiiiiiiii i e e e e 37

G I T Y o o P 39
3.1. Migration of @ Database SChEMA i e e 39
3.1.1. DAtabase SOUICE SCHEIMA ... eiiiii ettt e e et e e e e ettt e e e et r e e e ettneeeeatn s e e eestnaeeeestnnaeaes 40
3.1.2. Shardman ClUSLEr CONfIGUIALIONu.eieieii et e e e e e e e e e e e e et e e et e e et e e et s e e st e e st e eetn e eaneennss 41
3.1.3. Selecting the SNarding KEYcuuiiii e e e e e e e e e e e e e e e e e r s 41
G2 D T = 1Y, T (o o 51
G200 B N = TR0 A o o] (0 o P 51
G2 @00 11410 [QY o] o {0 o o [PN 52

TG T O 1 = 1= 53
T I o O = oSSR 53

G 2o DA @ 1= oSSR 53

Postgres Pro Shardman
14.17.2 Documentation

T G Ao 1 T O 1= o SPPP 55
G o B @ 1= oSSR 56

G ST o (ST O 1= oSSR 57
R G o [T @ = o SPP 59
R o 7 A O 1= o STPP 61
R S Ao 1 T O 1= oSSR 62
GRS X o [T O 1= oSSR 63
3.4. Connecting and Working with a Shardman CIUSEToiiuiiiiiiiii e e e e e e aanas 65
3 S | PRI 66
G o= o | 1 oo P 69
3 e R Y11 1o SR 69
N - (V- PSPPSR 69
13 T o L PSP 70

N (o] 1o = TP 71
4.1. AQO (Adaptive QUErY OPLIMIZAION)c.uueiiiieeiiie et e e e e e e e e e e e e e e et e e et e e et e e et e eaaeeaneeatnaeennaaees 71
4.2, CFS (CompPressed File SYSIEIM) ..u.iiiiiiii et e e e e e e e e e e et e e et e e et s e e e e e st s e eaaneesanaeeens 71
4.3. pgpro_stats (Planning and EXECULION SEAHISHICS) ...cvvuuiiiinieei et ie i e et e e e e e e e e s s e e e e et e e st e e st e et e e et e eenneeeenss 72
4.4, pgpro_pwr (Workload REPOMING)cvveniiiiieiiie e e e e e e e e e e e e e e e e e e et e e st e e et e e e et e e aneeennns 72
S oo o (U< V= (= PP PRPRPRR 72
I = o 7= 0o =T IV oo PP 73
LT I e 1011 1 o =T 73
B5.1.1 EXPLAL N PalaMELErS ..oeevuieeiiii i ee et e ettt e ettt e e e et e e ettt e e e et e e e e et e e e e e et e e e e et e e e e ebe e e e e eta e eeeetnnaaeas 78
5.2. DML OPtMIZBIIONSuuiiii et eee e e e e e e e e e e e e e e e et e e e e e e et e e et e e et e e et e e e aa e eaa e e et e estn e eanseeateeenneesnnns 78
5.2.1. DML Optimizations of Global TableSccuuiiiiii e 79
5.3, TIME SYNCIIONIZALIONuiiiiiii et e et e e e e e e e e e e e e e e et e e et e e et e e e ta e e et e e et e e et e eaneean e estnaesanaeenes 80
5.4. Distributed QUENY DIagNOSHICSuuiiiieiiiiee it et e e e et e e e e e e e e e e e e e st e e et e et et e e et e e et e e ean e ean e eateeennaaranaes 81
5.4.1. Displaying Plans from the REMOLE SEIVENiiiiiiii e e e e e e 81
5.4.2. NetWOrk MELHCS AN LaLENCY ...vvuiiiiiiiiiee e e e e e e e e e e e s e e e e et e e et e e et e e an e e aaneeeenns 81
5.4.3. Query Tracing for SHK TranSPOciueeiie i e e e e e e e e e e e e e e e et e e st e e e e e st e e aneeennas 82

(S = 0 P I s = = oo PP 84
30 I o o1 o) PSP 84
(S ol oo T = £l W o 1)1 86
6.3. AQVISOrY LOCK FUNCHIONSuuiitiicii et e e et e e et e e e e e e ta e e e st e e ean e e st e eanneeenaeeen 87
L Y= TSP 87
6.4.1. Shardman-SPECITIC VIBWS ... ouuiiiii et e e e e e e et e e e e e e et e e et e e et e e et e e e eeennns 87
6.4.2. MUILIPIEXOr DIiagNOSLICS VIBWSciiieiiiee e ettt e e e et e e e e e e e e e e e et e e et e e e at e e et e e et e e e ta e e aneeannns 90
L A oo = Y AT Y PP 96
LRI @ I 0] 1011 7= 110 103
LS I 44T = o) P 114
6.6.1. ALTER SYSTEMLIMITAIONS . .eeevtiieiiiiiiet ittt e ettt e et s e et s e e e et e e e e et e e e eaan e e e eeennaeeennns 114
6.6.2. ALTER TABLE LIMITAHONS .. .ciiitiiiiiiii ettt e et e et s e e et s e e et s e e e aaeneeennnns 114
6.6.3. CREATE TABLE LIMITAIONS ...ceevuiiiiitiiet it e et e et e et s e et s e e et s e e eat s s e e e et s e e eatn e e e eaennaeeennns 115
6.6.4. DROP TABLE LIMITAHONSciiittiesiiiiisee it e ettt e et e e et e e et s e e et s e e e eat e e e e esan s e eeeaen e eeennnns 115
6.6.5. CREATE | NDEX CONCURRENTLY LimitationSccuuiiiiiiiiiieiiiiiieeeeie e e e et e et e e e 115
6.6.6. UPDATE LIMIAHONS ... eiietiietiiiiise ettt e ettt e e et e et s e et s e e et s e e et e e e et e e e et e e e et e e e e ebe e eeeennnnes 116
6.6.7. | NSERT ON CONFLI CT DO UPDATE LimitatiONSuuieiieiiieiiiiiieieiiiise et seeeeis e e e eeaenn e aenees 116
6.6.8. Limitations of Managing Global ROIESocoiiiiii e e 116
6.6.9. Limitations Of USEr MaDPINgSuivvniiiieeiiiei e e et e e e e e e e e e et e e et s e et e e et e e et e e et e etn e eateesaneeenns 116
6.6.10. ALTER SCHEMA LimMitaliONSuuuieiiiiieiiiiis e e et e et s ettt s e e et e e e et s e e e eataeeaestn e eeeannnaeeennns 116
6.6.11. DROP SERVER LIMITAIONS ...ceevuiiiiiiiieteiiis ettt e et e et e et s e e e et s e e e et s e e e et s e e eebaneeeaeaaeeesnnns 116
6.6.12. Limitations of USiNg CUStOM Dat@haSESccuvuiiiiiiiiiiiiie e e e e e e e e e et e e et e e e e eaneees 116
6.6.13. CREATE COLLATI ON LIMITAHONS .. .ceivtiieeiiiiie ettt e e et s e e et e e e eat s e e e eatn s e e eeaennaeees 116
6.6.14. Logical Replication LIMItalionseiuuiiiiiiiie e e e e e e e e e e e et e e st e e e st e e st e e et e eaneeanas 116
(S ST ® 1 o= gl I 3T 7= o o PP 117
6.7. SNardman CLI REFEIENCE .. .cevuuieiiiiii ettt e ettt e e e et e e e e ettt e e e ettt e e eett e eeaettaeeeetaaeaeees 117
A 1= e 00 I 1= g = PP 200
50 T = o 1= 5/ o= 200
701 Sharded TablES ...covviieiii et a s 200

Postgres Pro Shardman
14.17.2 Documentation

8 B2 € oo 1= o =SSP 200
48 e R T 1] o0 1= N 3 | PP 201
A @ U = YA (00T] o P 201
7.2.1. PUSH-AOWN TECHNIGUE ... ceie it eie ettt et e e e e e e e e e e et e e et e e et e e et s e e et e eaa e eatnaeeanaaeanaes 201
7.2.2. ASYNCAIONOUS EXECULIONiiiiiii et e e e e e e e e e e e e et e e e et e e st e e et e eeaaaeeannaens 203
7.2.3. FELCN-all FaAllDECK ...eeviiiee e e 205
PSR (o0 10=s B I E= 1015 o (o g TR P 205
RS VA= T o1 11 Y=o s PP 205
7.3.2. 2PC and Prepared TransaCtion RESOIULIONociuuiiiiiiiii e e e e e e e e e e et e e e ean s 206

A TS 11 PSP 208
S T O] 01 o PRSPPI 208
R Y/ | G oo o T P 208
7.4.3. RoUtiNG @Nd MUITPIEXINGciiieei e e e e e e e e e e e e e e et e e et e e e st e ean e eatneeeanaeetnaes 208
7.4.4. Error Handling and ROULE INEEOIITYcvveniiiiiieii e et e e e e e e e e e e e e e et e e e e e e et e e et e esaneee 209
7.4.5. Data Transmitting/batching/splitting Oversized TUPIEScvvniiiiiiiii e e e 209

FA S (= S Lo Y e 1 (o) PN 209
A N a0 1= 4= 1 (o g T U= = T 209

7.5. Distributed DeatdlOCK DEIECHIONuuueeiiii et e e e et e e e et s e e e ett s e e e estaeeeestnaeeaesenaaaees 211
7.6. GlODEI SEOUENCES .. .ovuiiiii e e et e e e e e e e e e et e e et e e et e e et e e e ta e et e e et e e et e e et e e et e e aa e aanas 212
7.7. Syncpoints and CONSISEENT BACKUDvuuiiiteiiieeie et e e e e e e e e e e e e e e e et e e et e e st e e et s e et e sta e e et e eenneeeenss 212
7.8. Callecting Distributed Statement Statistics Using the pgpro_stats EXteNSioNc..ooevvviiiiiiiiiiiiccie e, 213
S Ao (V7 E o Y I o PN 213
F N B (= 1= = s N o] (== PRSPPI 214
AL POSIGreS Pro ShardMan 14.17.2couiii ettt e e e et e e et e e et e e e e et e e et e e et e e e et e e e aan s 214
F N I O - g ol e = = T S 214
ALL2. Management UGSo e e e e e e e e e e et e et e et e e et eeaa s 214
YN o o= (| (=3 e (0TS 1= 0| .07 o I 0 0 214
YN I O = - o ol A = = T S 214
A.2.2. Management ULHTTIESo e e e e e e e e e e e et e e e et e e et e eaa s 215
A.3. POSIOres Pro ShardMan 14.15.4couniiii it e e e e e e et e et e e e e et e et e e et e et e e e e e aaa s 215
YN B I O = - o ol A = = T S 215
A.3.2. Management ULHTTIESouuiiii e e e e e e e e e e e et e et e e e e e e aaa s 215
A4 POSIOres Pro ShardMan 14.15.3 ... ceuuiiiiiiei e e e e e e e e e e e e e e e e et e e et e e et e e et e e et e e et e et e et e e e aan s 215
F N I O = - g ol e = = T S 216
AL4.2. Management ULHTTIESo e e e e e e e e e e e e et e et e et e e et e eaa s 216
A.5. POSIOreS Pro ShardMan 14.15.2 ... couuiiii i et e et e e e e e e e e e et e e et e e et e et e e et e e et e e e et e e e e aan s 216
YT I O = - o o B e = = T S 216
A.5.2. Management ULHTTIES ... oo i e e e e e e e e e e et e et e e e e et e aaa s 217
A.6. POSIOres Pro ShardMan 14.15.1 ... ceuuiiii i e e e e e e e e et e e et e e e e et e et e e et e e e et e e aan s 217
F NI I O == o o B e = = T S 217
ALB.2. ManagemENt ULHTTIESouuiiii e e e e e e e e e e e e et e e e et e e et e eaa s 218
A.7. POSIGreS Pro ShardMan 14.13.4 ... couniiii ettt e e et e e e et e et e et e et e e et e et e e e e aan s 218
F N A R O - g ol A = = T S 218
AT7.2. Management UGSouuiiii e e e e e e e e e e e e et e e e et e e et e eaa s 218
A.8. POSIOres Pro ShardMan 14.13.3 ... couuiiiiiiii e et ee e e e et e e e e e e e e e et e e et e e et e e et e e et e e et e et e et e e e e aan s 219
F N B I O = - g ol e = = T S 219
ALB.2. ManagemENt ULHIITIESo e e e e e e e e e e e e e e e e 219
A.9. POSIOIreS Pro ShardMan 14.13.2 ... ceun it e et ee e e e e e et e e e e e e e et e e et e e et e et e e et e e et e et e et e aa e aan s 219
F N B I O = - o ol A = = T oSS 219
AL9.2. ManagemeENt ULHTTIESoue i e e e e e e e e e e e e e e e e e 220
A.10. Postgres Pro Shardman 14.13. 1ouu i e e e e e e e e e e e e e e et e e st e et e e et e e et e et e e e aa e aaa s 220
A.10.1. COre N EXLENSIONSiiiitiieieitii et e ettt e e e ettt r e e e et e e e e et e e e e et t et e et aeeeatn e e e eatn e eeesteaeaennnaeeesnnn 220
A.10.2. Management ULHITIESuiiii it e e e e e e e e e e et e e e et e e et e e et e e eaa e eanaes 220
A.11. PoStgres Pro Shardman 14.02.2iiui ettt e e e e e e e e et e e et e e e et e e et e e e e aaa s 221
A.LLL COre and EXLENSIONSiiiitiieiiiii et s et eete s e et s e e e et e e e e et e e e e et s et eateaeeeaen e e e eatn s aeeesteaeaeannaeeennnn 221
N B 2 /=g = 1= 1= o A] =S 221
A.12. PoStgres Pro Shardman 14.02.1uiiii it e e e e e e e e e et e e et e e e e et e e et e e et e e aa e aaaas 222
N I @0 (I o 4 = 01T oL PP 222

Postgres Pro Shardman
14.17.2 Documentation

A.12.2. Management ULHITIESiii e e e e e e e e e e e e e e e e e et e e et e e e e et 222
A.13. PoStOres Pro Shardman 14. 10,2c.uiiii i ettt e e e e e e e e e e e et e e et e e e e e et e e et e et e et e aaa s 222
N B @0 (I o I 4 =01 T oL PP 222
N e B V=g F= o 1= 1= o A] =S 222
A.14. Postgres Pro Shardman 14. 111uiii i e e e e e e e e e e et e e et e e e et e et e e et e et e e e e e aanas 223
I @0 (I 4 = 01T oL PP 223
A.14.2. Management ULHITIESiiii e e e e e e e e e et e e e e e et e e et e e e e et 223
A.15. Postgres Pro Shardman 14.00.3 i i et e e e e e e e e e e e e e e e e et e e et e e e e et e e et e e e et raa e e 224
A.16. PoStgres Pro Shardman 14.00.2ciuuieii e et e e e e e e e e e e e e e e e et e e et e e e et e e et e et e e e e e aaaas 224
] 01 Y/ 226
LT N O PP 227
(O B = 0 T= = 1 1= o] 1P 227
O3 I I V1V o R S 7= o 40 1 PSP 227
C.1.2. What does Shardman CONSISE Of 7euuuiiiii et e e e e e e et e e e et e e e e aen s 227
C.1.3. WhHEN 10 USE SNaITUMENT ...ueeeiiii ettt e e e et e e ettt e e et et e e e et e e e e e tt e e e e e st e eeeannes 227
C.1.4. When is Shardman NOt @pPrOPIiaie?ceuueiiiieii e e e e e e e e e e e e e et e e et e e e e et e e eaneeean s 227
C.1.5. How many nodes does it take to deploy Shardman?couviiiiiiiiii e e 227
C.1.6. Does Shardman support fault tOlEraNCE?uuiiii e e es 227
C.L7. HOW iS Sharding SITUCIUIEA? ... ceee it e e e e e e e e e e e e e e e e e et e et e e et e e st e e stn e eaneeannaens 227
C.1.8. Isit possible to change the number of PartitioNS?ccouiiiiiiiiii e 227
C.1.9. Does Shardman SUPPOIt FESNAITING?ueieiieiie et e e e e e e e e e et e e e e et e e et e e st eean e eanaeeees 227
C.1.10. Isit possible to convert an unsharded (local) tableto asharded ONE?ccovviiiiiiiiiii i 228
C.1.11. Does Shardman support adding and removing ShardS?couiiiiiiiiiiiie e e 228
C.1.12. What is the status of data BalanCing?oiiiiiiiiii e e e e e e e e aaa e 228
C.1.13. How is @ Shardman ClUSLEr @CCESSEA?euuuiiiiiiiii e it e et e ettt e et e e e et e e e et e e e e et e e e esan s 228
C.1.14. How is balancing between cluster nodes implemented?couviiiiieiin e 228
C.1.15. Is mass data loading supported in ShardMan?iiiiiiiiii e e eaa s 228
O BT = o= = =SS PP 228
C.2.1. Isit possible to create multiple databases in a Shardman ClUSLEr?couveiiii i 228
L3 T 1= o = PP 228
C.3.1. What kind of tables are there in Shardman?ooeiiiiiiiii e 228
C.3.2. What are global tahIES? it e e e e e e aa s 228
C.3.3. What are global tables Suitable fOr? ... 228
C.3.4. What are sharded tahIES? i e et e e e 228
C.3.5. Which partitioning parameters are optimal when creating a sharded table?ccoooviiiiiiiiiiinee, 229
C.3.6. What are COlOCAEd tADIES?uuiiiiii e r et e e et e e et r e 229
C.3.7. How to create a ColoCated tADIE?iiiiii et 229
C.3.8. What @are 10Cal taDIES?ieiiii e et e e e e 229
C.3.9. Are foreign keys supported in Shardman?oeiiiiiiiii e e e e e e e e e e 229
O S 11 (o =S PP PRP 229
C.4.1. Are global sequences supported in Shardman?ccooiiiiiiiiii e 229
C.4.2. How to create a global SEQUENCE?ciii it e et e e e e e e e e e e e e et e e et e e e tn e e et e aannees 230
OB LS = g 1V F= 170 (= 0 0 o PSP 230
C.5.1. Does Shardman support global USEr FOIES?uuiiii i e e e e e e e ees 230
C.5.2. How do | create aglobal user in Shardman?ooouiiiiiii e 230
C.5.3. How do | grant permissions to @ global USEr?c.ouiiiiiiiiii e e 230
C.6. Useful FUNCLIONS AN TADIES ... it e e e e ettt e e ettt s e e e eatneeeestnaeeeeaenaaeeees 230
C.6.1. How do | see which tables and sequences are distributed?ooiviiiiiii i, 230
C.6.2. How do | execute some SQL command on all nodes in the ClUSLEr?ccoviiiiiiiii e 231
C.6.3. How do | get Shardman configuration parameters on aselected NOdE?ccocevieviiiiiii i 231
C.6.4. How do | update Shardman configuration ParameELErS?oeiuiiiiiieeiii e e e e e e e e e e e 231
C.7. Disaster RecOVEry ClUStEr REQUITEMENLSuuiiiieiiieiii et e et e e s e et e e et e e e e et e e et e e et e e et e eaaeeat e eeaneeeennas 231
C.7.0. Terms and ABDIEVIGLHIONSuuiieiiii et e e e e et e e et e e e et n e e e e et e e e ertn s 231
C.7.2. High-level Description Of the DRCiiiiiiii e e e e e e e e e et e e e e aeas 232

(O ARSI == o [To= i o) T o oo oo 1Y 2R 232
C.7.4. Hardware and NetWOrk REQUITEIMENESueiuuiiiii et ee i e e e e e e e eet e e st e e st e e et e e aa e satneesaneestn e eaneeannaees 232
C.7.5. RePliCation MECNANISIMSiiiiiiii e e e e e e e e e e e e et e e et e e e at e e san e e et e e eanaeeanneens 232
C.7.6. MONItoring and IManagemENTiiiiieii e e e et e e e e e e et e e e e e et e et e e et s e eaa e etn e e aa e eaneeatnrertnernnnns 232

Vi

Postgres Pro Shardman
14.17.2 Documentation

O A A= o1 1 Y USSP 232
C.7.8. QA AN ROIDACKceiieeieii e e e e e e s e e e e e e et e r e e e e e e eaata e e e e e e e e e ae e aeees 233
C.7.9. Backup in Geografically Distributed SYSteMccovuiiiiiiiii e e e r e 233
C.7.10. Documentation and REGUIBEIONSccuuiiiiieii e e e e e e e e e e e e e e e e e et e e et s e e e e e aa e eetneeeananes 233
... 234

Vii

Chapter 1. Get Started with Shardman

Shardman isaPostgreSQL -based di stributed database management system (DBM$S) that implements sharding. Sharding isadatabase
design principle where rows of atable are held separately in different databases that are potentially managed by different DBMS
instances. The main purpose of Shardman is to make querying sharded distributed databases efficient and ease the complexity of
managing them.

This chapter provides an introduction to the Shardman distributed DBMS.

1.1. What is Shardman

The database size in modern enterprises and in highload web applications is constantly growing. The only working approach to
accommodate this growth is horizontal scaling. The Shardman distributed DBM S is intended to enable horizontal scaling of online
transaction processing (OL TP) databases while preserving the strong ACID semantics.

Shardman provides the following advantages, compatibility features to your applications:

» Strong ACID guarantees.

» Compeatibility with Postgres Pro Enterprise.

e Trust level 4 and security class 4 certificates.

e Severd clusters support.

» Transparent horizontal scaling without a need in adopting NoSQL DBMS.

» Built-in support of replication with no single point of failure, with any node being able to become coordinator that requires no
system shut down and prevents any data loss.

e Capacity of up to 100 cluster nodes.

« High availability with primary and stand-by modes, along with the synchronous solution for the failover scenarios, and asyn-
chronous solution that has aminimal performance impact.

» Support of planning and execution statistics of all SQL statements.

» Utility to discover most resource-intensive activitiesin your database.

» Toolsto support REPEATABLE READisolation level in adistributed system.

e Work with cluster aswith afully functional DBMS.

» Hot standby and backup and recovery tools that support full and incremental backup with logs.
* Point-in-time recovery (PITR).

* Streaming replication.

» High-availability cluster creation with multiple primary nodes with specia utilities.
* ANS standard.

e QL arrays.

» Sored procedures.

» Big data storing and processing.

* Full text search.

» Covering indexes.

» B-tree, hash, GiST, GIN, SP-GiST, BRIN indexes.

» Perl and Python procedural languages.

e Interfacesfor C++, Ruby, C, ODBC Perl, Python, Tcl, and Java.

» EUC, UTF-8, and Mule character set.

» Adaptive query optimization.

e Compressed file system.

e Accessdatastored in external PostgreSQL servers with postgres fdw, e.g. Microsoft Active Directory, Mysql server, Oracle,
and Postgres Pro Enterprise.

https://postgrespro.com/docs/enterprise/14/
https://postgrespro.com/docs/shardman/14/scaling-cluster
https://postgrespro.com/docs/shardman/14/fault-tolerance
https://postgrespro.com/docs/postgresql/17/high-availability
https://postgrespro.com/docs/shardman/14/pgpro-stats
https://postgrespro.com/docs/shardman/14/pgpro-pwr
https://postgrespro.com/docs/shardman/14/shardman-spec-config#CONFIG-EXAMPLE-ENABLE_CSN_SNAPSHOT
https://postgrespro.com/docs/shardman/14/cluster-services
https://postgrespro.com/docs/postgresql/17/hot-standby
https://postgrespro.com/docs/shardman/14/backup-and-recovery
https://postgrespro.com/docs/shardman/14/backup-and-recovery
https://postgrespro.com/docs/postgresql/17/warm-standby#STREAMING-REPLICATION
https://postgrespro.com/docs/shardman/14/app-shardmanctl
https://postgrespro.com/docs/postgresql/17/history#HISTORY-POSTGRES95
https://postgrespro.com/docs/postgresql/17/intarray
https://postgrespro.com/docs/postgresql/17/features-sql-standard
https://postgrespro.com/docs/shardman/14/develop
https://postgrespro.com/docs/postgresql/17/textsearch
https://postgrespro.com/docs/postgresql/17/indexes-index-only-scans
https://postgrespro.com/docs/postgresql/17/indexes
https://postgrespro.com/docs/postgresql/17/plperl
https://postgrespro.com/docs/postgresql/17/plpython
https://postgrespro.com/docs/postgresql/17/ecpg-cpp
https://postgrespro.com/docs/postgresql/17/xfunc-c
https://postgrespro.com/docs/postgresql/17/infoschema-sql-sizing
https://postgrespro.com/docs/postgresql/17/libpq
https://postgrespro.com/docs/shardman/14/develop-connect-and-work
https://postgrespro.com/docs/postgresql/17/multibyte
https://postgrespro.com/docs/shardman/14/aqo
https://postgrespro.com/docs/shardman/14/cfs
https://postgrespro.com/docs/postgresql/17/postgres-fdw
https://postgrespro.com/docs/postgresql/17/libpq-connect#LIBPQ-CONNECT-KRBSRVNAME
https://postgrespro.com/docs/postgresql/17/sql-select
https://postgrespro.com/docs/postgresql/17/ecpg-oracle-compat
https://postgrespro.com/docs/enterprise/17

Get Started with Shardman

» Long queries monitoring with the pg_query_state module.
e In-built monitoring agent.

* No limits for the number of records or indexes, with the maximum table size of 32 TB, maximum attribute size of 1 GB, and
maximum number of attributes of 1600.

» Detailed access management with different access levels and roles.
» Secure password storing.

» Detailed memory purge configuration.

1.2. When to use

Shardman provides horizontal scalability with aview and consistency of asingle database. Applications can use every nodeto access
the distributed database and operate mostly the same way as with a single PostgreSQL instance. Still internaly it is a distributed
system that imposes certain rules on designing schema and writing queries. The main direction of adoption is to localize the data
and the computations.

The following properties of a database or workload should be marks to consider a distributed system:
» Theworking set of data does not fit in RAM of one server. Sharded systems can have much bigger total size of RAM.

» Maintenance operations such as vacuum take too long. Shardman utilizes partitioned tables under the hood. Maintenance oper-
ations can be parallelized by nodes and partitions of tables.

* Number of read sessionsistoo large for one instance of PostgreSQL. Shardman allows to distribute read sessions across the
cluster and handle internal connections very efficiently with multiplexing transport.

» Intensive write operations. Sharded systems can have much bigger total number of disk 10PS.
* CPU intensive queries. Shardman allows to distribute calculations by nodes and reduce execution time for complex queries.

When Shardman is not appropriate:

» Vertica scaling is economically and technically possible.

» Datamodel and workload require alot of cross-shard transactions.

» Complex analytics, in particular joins of sharded tables when conditions don't include the sharding key.
e Multi-DC/Multi-region deployments.

1.3. Quickstart Guide

Shardman is composed of several software components:

* PostgreSQL 14 DBMS with a set of patches.
* Shardman extension.
* Management tools and services, including built-in stolon manager to provide high availability.

Postgres Pro Shardman and stolon store their configuration in an etcd cluster. Therefore, we can use an existing etcd cluster, or we
can deploy a simple one-node etcd cluster.

The shardmand daemon monitorsthe cluster configuration and manages stolon clusters, which are used to guarantee high avail ability
of al shards. The common Shardman configuration (shardmand, stolon) is stored in an etcd cluster.

Currently Shardman packages are available for
* Ubuntu 20.04/22.04

» Debian 10/11/12

* Red Hat Enterprise Linux 7/8/9

+ Red0S7.3/7.3.17.32

+ AIt9/10

e AgdtraLinux 1.7 (Smolensk)

https://postgrespro.com/docs/shardman/14/pg-query-state
https://postgrespro.com/docs/postgresql/17/monitoring
https://postgrespro.com/docs/postgresql/17/limits
https://postgrespro.com/docs/shardman/14/access-management
https://postgrespro.com/docs/postgresql/17/auth-password
https://postgrespro.com/docs/postgrespro/17/guc-memory-purge

Get Started with Shardman

1.3.1. Cluster Configuration

Assume that we have three nodes for deploying Postgres Pro Shardman. Let’s make the first one for the etcd one-node cluster and
the other two nodes for the Postgres Pro Shardman two-node cluster.

Let’s suppose that we have the following node names and | P addresses:

192.0.1.1 etcd - etcd one-node cl uster
192.0.1.20 sdnD1 - Shardnman nodel
192.0.1.21 sdnD2 - Shardnman node?2

Each node has 4Gb RAM, 20GB HDD, 2CPU and Ubuntu 22.04 installed.
1.3.2. Preparation
1.3.2.1. Add host names to / et ¢/ host s

This step must be performed on all nodes.

sudo /bin/sh -c 'cat << ECF >> /etc/hosts
192.0.1.1 etcd

192.0.1. 20 sdnD1

192.0.1. 21 sdnD2

ECF

1.3.2.2. Time Synchronization
This step must be performed on all nodes.
Deploy and start chrony daemon on al hosts.
sudo apt install -y chrony

By default, chrony gets the time from available servers on internet or the local time server. You can check available time servers
asfollows:

chronyc sources

M5 Name/ | P addr ess Stratum Pol | Reach LastRx Last sanple

A2 192.0.1.100 1 6 7 1 -98us[-98us] +/ - 11ms
A* time. cloudflare. com 3 6 7 1 +139us[+163us] +/- 11ns
A+ ts04. del t at el esystens. ru 1 6 7 1 -381us[-357us] +/- 17ms

Itisdesirableto synchronizetimewith your server or thelocal server for the cluster. To do this, make changessimilar to thefollowing
to chrony configuration:

cat /etc/chrony/chrony. conf

server 192.0.1.100 i burst

keyfile /etc/chrony. keys

driftfile /var/lib/chrony/chrony.drift
| og tracki ng neasurenents statistics

I ogdir /var/log/chrony

systenttl restart chrony
Check that chrony is connected to the appropriate server.

chronyc sources

MS Nane/ | P address Stratum Pol|l Reach LastRx Last sanple

A? 192.0.1.100 8 6 17 37 +14us[+70us] +/- 161lus
chronyc tracking

Reference ID : 0A80000C (ntp.local)

Get Started with Shardman

Stratum 9

Ref time (UTC) : Wed Nov 15 11:58:52 2023
Systemtine : 0.000000004 seconds slow of NTP tine
Last offset : -0.000056968 seconds

RMS of f set : 0.000056968 seconds

Fr equency : 10. 252 ppm f ast

Resi dual freq : -2.401 ppm

Skew : 364.419 ppm

Root del ay : 0.000455358 seconds

Root di spersion : 0.010503666 seconds
Update interval : 2.1 seconds

Leap status : Nor mal

1.3.3. Deploy an etcd One-Node Cluster
Note also a Deploy a Multi-Node etcd cluster section.

Install the following packages:

sudo apt install -y vimcurl

To connect a Postgres Pro Shardman repository:
* Run

curl -fsSL -u "<user>: <password>" https://repo. postgrespro.ru/sdnf sdm 14/ keys/ pgpr o-
repo- add. sh > pgpro-repo-add. sh
chnmod +x pgpro-repo-add. sh

e Openthefile pgpr o-r epo- add. sh and specify the repository password in the PASSWORD variable.
* Runsudo pgpro-repo-add. sh.
Install etcd-sdm packages:

sudo apt install -y etcd-sdm
In the file that lists environment variables, insert specific values for them:

sudo vim/etc/default/etcd-sdm

ETCD_NAME=et cd

ETCD LI STEN_CLI ENT_URLS=http://0.0.0.0: 2379
ETCD_ADVERTI SE_CLI ENT_URLS=http://192.0.1. 1: 2379
ETCD_MAX_SNAPSHOTS=5

ETCD_MAX_WALS=5

ETCD_AUTO COVPACTI ON_MODE=peri odi ¢
ETCD_AUTO_COVPACTI ON_RETENTI ON=5m
ETCD_QUOTA_BACKEND BYTES=6442450944

ETCD DATA DI R=/var/lib/etcd-sdm sdm 14

Thisfile will be loaded at etcd start.

Clear the etcd data directory:

sudo rm-rf /var/lib/etcd-sdnm sdm 14/*

Restart the etcd-sdm service:

sudo systenctt!l restart etcd-sdm

For your user, add / opt / pgpr o/ sdm 14/ bi n to the PATH environment variable:

echo "export PATH=$PATH:/opt/ pgpro/ sdm 14/ bi n" >> . bashrc
source . bashrc

Check that etcd is properly configured:

Get Started with Shardman

etcdct!l endpoint --endpoints=http://192.0.1.1:2379 status health -w table

o e e o - - S [TS —— [TS ——

T —— o m e o - - T —— o m e o - - o e oo -

oo e e e e e e a oo +

| ENDPO NT | I D | VERSION| DB SIZE| IS LEADER | IS
LEARNER | RAFT TERM | RAFT INDEX | RAFT APPLI ED | NDEX | ERRORS

+|- ----------------------- S [TS —— [TS ——

T —— o m e o - - T —— o m e o - - o e oo -

oo e e e e e e a oo +

| http://192.0.1.1:2379 | 9324a99282752a09 | 3.5.9 | 2.1 &B| true | fal se
| 14 | 91459207 | 91459207 | nmenber| D: 10602785869456026121 |

| | | | | |

| | | | al ar m NOSPACE |

o e e o - - S [TS —— [TS ——

T —— o m e o - - T —— o m e o - - o e oo -

oo e e e e e e a oo +

etcd one-node cluster is properly configured and ready to serve requests.

To prevent bloat when etcd is intensively used, add a defragmentation command to cron:

sudo sh -c
{ crontab -1; echo "@ourly /opt/pgpro/sdm 14/ bin/etcdct|l defrag"; }
| crontab’

1.3.4. Deploy Shardman Nodes
Let's add a Postgres Pro Shardman repository on each node;

» Set auser and password asin Section 1.3.3.

e Run

curl -fsSL -u "<user>:<password>" https://repo. postgrespro.ru/sdm sdm 14/ keys/ pgpr o-
repo- add. sh > pgpro-repo-add. sh | bash
chnmod +x pgpro-repo-add. sh

» Openthefile pgpr o- r epo- add. sh and specify the repository password in the PASSWORD variable.
* Runpgpro-repo-add. sh.
Next step isinstallation of packages (on each node):

sudo apt update

sudo apt install -y postgrespro-sdm 14-server postgrespro-sdm 14-client postgrespro-
sdm 14-contri b postgrespro-sdm 14-1ibs pg-probackup-sdm 14 shardman-servi ces shardman-
tool s

Suppose we have chosen adefault cluster name of cl ust er 0. The next step isto put Shardman environment varsinto the/ et c/
shar drman directory (on each node):

sudo sh -c 'cat << EOF > /etc/shardnman/ shardmand-cl uster0. env
SDM CLUSTER NAME=cl ust er 0

SDM LOG _LEVEL=i nf o

SDM STORE_ENDPQO NTS=http://etcd: 2379

ECF'

The file and directory are created with sudo, but later shar dmanct | does not use sudo, thus cannot access the file with the
environment variables. To access it, either add the variables to the system with export , or grant user with access rights to the
file and the directory.

For your user, add / opt / pgpr o/ sdm 14/ bi n to the PATH environment variable;

Get Started with Shardman

echo "export PATH=$PATH:/opt/ pgpro/ sdm 14/ bin" >> . bashrc
source . bashrc

Let’s generate a sample configuration with the Shardman utilities (only on one node).
shardmanct| config generate > spec.json

In this step, you can make some changes to the cluster specification (configuration), i.e., change the password or PostgreSQL
shar ed_buf f er s parameter and so on.

1.3.5. Initialize the Shardman Cluster

Now we have some final steps. First, let's initialize the cluster configuration in etcd (only on one [any] node).
shardmanct!| init -f spec.json
The expected output is:

2023-04-18T12: 30: 03. 043Z DEBUG cnd/ common. go: 100 Waiting for netadata | ock...
2023-04-18T12: 30: 03. 048Z DEBUG cl uster/cluster.go: 365 DataDir is not specified,
setting to default /var/lib/pgpro/sdm 14/ data

Enable and start the shardmand service (on each node):

sudo systenctt!l enable --now shardmand@l usterO
sudo systenct!l status shardnmand@l usterO

shardmand@l ust er 0. servi ce - depl oynent daenon for shardnan
Loaded: | oaded (/1ib/systend/systenl shardnand@ servi ce; enabl ed; vendor preset:
enabl ed)
Active: active (running) since Tue 2023-04-18 12:28:18 UIC, 2min 13s ago
Docs: https://github. com postgrespro/ shardnan
Main PID: 618 (shardnand)
Tasks: 10 (limt: 4571)

Menmory: 32.0M

CPU:. 42218
CG oup: /systemslicel/system shardnmand. slice/ shardmand@l ust er 0. servi ce

##618 [/ opt/ pgpro/ sdm 14/ bi n/ shardmand --cl uster-nane cluster0Q --system
bus --user postgres

1.3.6. Add Nodes to the Shardman Cluster

In this step we assume that all previous steps were executed successfully: etcd cluster is working properly, the time on all hostsis
synchronized, and the daemonislaunched on sdn01 and sdnD2. Thefinal step should be executed withshar dmanct | command
asfollows:

shardmanct| nodes add -n sdnD1, sdnD2 \
--cluster-nane cluster0 \
--log-1evel debug \
--store-endpoi nts=http://etcd: 2379

The expected output should be:

2023-04-18T12: 43: 11. 300Z DEBUG cnd/ common. go: 100 Waiting for netadata | ock..
2023-04-18T12: 43: 11. 306Z I NFO cl uster/store. go: 277 Checking if shardmand on all nodes
have applied current cluster configuration

Waiting for shardmand on node sdnDl1 to apply current configuration: success 0.000s
Waiting for shardmand on node sdnD2 to apply current configuration: success 0.000s
2023-04-18T12: 43: 11. 307Z | NFO add/ case. go: 112 Initting Stol on instances..
2023-04-18T12: 43: 11. 312Z | NFO add/ case. go: 170 Waiting for Stol on daenons to start..
make sure shardmand daenons are running on the nodes

Waiting for Stol on daenbns of rg clover-1-sdnDl: success 31.012s

Get Started with Shardman

Waiting for Stol on daenobns of rg clover-1-sdnD2: success 0.012s
2023-04-18T12: 43: 42. 336Z | NFO add/ case. go: 187 Addi ng repgroups. .

waiting rg 1 config apply: done 7.014s

2023-04-18T12: 43: 49. 4447 DEBUG br oadcast er/ wor ker. go: 33 start broadcaster worker for
repgroup id=1

2023-04-18T12: 43: 49. 453Z DEBUG br oadcast er/ wor ker. go: 51 repgroup 1 connect
establ i shed

2023-04-18T12: 43: 49. 453Z DEBUG conmands/ addr epgr oup. go: 575 waiting for extension
| ock. ..

2023-04-18T12: 43: 49. 453Z DEBUG conmands/ addr epgr oup. go: 137 Loadi ng schema into
replication group rg 1

2023-04-18T12: 44: 25. 665Z DEBUG r ebal ance/ servi ce. go: 528 wait all tasks finish
2023-04-18T12: 44: 25. 666Z DEBUG br oadcast er/ wor ker. go: 75 fini sh broadcaster worker for
repgroup id=1

2023-04-18T12: 44: 25. 666Z DEBUG br oadcast er/ wor ker. go: 75 fini sh broadcaster worker for
repgroup id=2

2023-04-18T12: 44: 25. 666Z | NFO add/ case. go: 221 Successfully added nodes sdnD1, sdnD2
to the cluster

The “ Successfully added nodes sdm01, sdm02 to the cluster” message means that everything isfine and nodessdnD1 and sdn02
are working properly.

1.3.7. Check the Shardman Cluster Status
Let's check the status of the cluster nodes
shardmanct| status
HHBHHH B R T H SRR HHH R TR R A R T R R R T R R T R R R R R R R
== STORE STATUS ==
#

BHBHBHBHEHHHH B HBHBHBH B H B H R R BB H B H B H R R R R B H B R R R B A AR

STATUS # MESSAGE # REPLI CATI ON GROUP
NODE #
HHBHHH B R T H SRR HHH R TR R R R R T R R R R R T R R R R R R R R R R
Warning # Store has only one nenber, consider #
#
depl oyi ng store cluster #
#

BHBHBHBHEHHHH B HBHBHBHBH B R R B B H B H B H R R R R B H R R R R R B A AR
BHBHBHBHEHHHH B HBHBHBH B H B R R BB H B H B H R R R R B H R R R R R B A AR
== TOPOLOGY STATUS ==
#

BHBHBHBHEHHHH B HBHBHBH BB R R BB H B H B R R R B H A H B R R R B A R

STATUS # MESSAGE # REPLI CATI ON GROUP
NODE #
HHBHHH B R HHH SRR HHH R TR R R T R R R R T R R T R R R R R R R
CROSS # Topol ogy placenment policy is CROSS #
#

BHBHBHBHEHHHH B HBHBHBH B H B H R R BB H B H B H R R R R B H B H B R R R R B A AR

Get Started with Shardman

BHABHBHABH B HHBH AR H BB H B R R R R R R R R H B R R R R R R
== METADATA STATUS ==
#

BHABHBHABH BB H AR H BB B R R R R R B R R R R R

STATUS # MESSAGE # REPLI CATI ON GROUP
NCDE #
HHHH R RS R
(014 # Metadata is OK #
#

BHABHBHABH B HHBH AR H BB R R R R R R R B R R R R R R
BHABHBHABH B HHBH AR H BB R R R R R R R R H B R R R R R
== SHARDVAND STATUS ==

#

BHABHBHABH BB H AR H BB R R R R R R R B R R R R R

STATUS # MESSAGE # REPLI CATI ON GROUP

NCDE #

B L L L L e e S e S e R G E Ty
(014 # shardmand on node sdnDl is OK #

sdnD1 #

HHHH R RS R
(014 # shardmand on node sdnD2 is OK #

sdnD2 #

BHABHBHABH B HBH AR H BB B R R R R R R H B R R R R R R

BHABHBHABH B HHBH AR H BB B R R R R R R R H B R R R R R
== REPLI CATI ON GROUP STATUS ==
#

BHABHBHABH B HHBH AR H BB B R R R R R B R R R R R
STATUS # MESSAGE # REPLI CATION GROUP
NCDE #

HERHHHHH TR H T H R H R H R H R
X # Replication group clover-1-sdnDl1 is OK # cl over - 1-sdnD1
#

HERHHHHH TR H T H T H T H R H R H R
X # Replication group clover-1-sdnD2 is OK # cl over - 1- sdnD2
#

BHABHBHABH B HHBH AR H BB B R R R R R R B R R R R R

BHABHBHABH B HHBH AR H BB B R R R R R R R R R R R R R R
== MASTER STATUS ==
#

BHABHBHABH B HHBH AR H BB R R R R R R R R R H B R R R R R R
STATUS # MESSAGE # REPLI CATION GROUP
NCDE #

Get Started with Shardman

BHABHBHABH B HHBH AR H BB H B R R R R R R R R H B R R R R R R

X # Replication group clover-1-sdnD1 master # cl over - 1-sdnD1
sdnD1: 5432 #
1s running on sdnD1: 5432 #
#
HERHHHHH TR H T H T H R H R H R H
X # Replication group clover-1-sdnD2 master # cl over - 1-sdnD2
sdnD2: 5432 #
1s running on sdnD2: 5432 #
#

BHABHBHABH B HHBH AR H BB R R R R R R R B R R R R R R
BHABHBHABH B HHBH AR H BB R R R R R R R R H B R R R R R
== DI CTI ONARY STATUS ==

#

BHABHBHABH BB H AR H BB R R R R R R R B R R R R R

STATUS # MESSAGE # REPLI CATI ON GROUP
NODE #
HERHHHHH TR H T H T H R H R H R H R
X # Replication group clover-1-sdnDl1 # cl over - 1-sdnD1
#
dictionary is K #
#
HERHHHHH TR H T H R H R R H R H R
X # Replication group clover-1-sdnD2 # cl over - 1-sdnD2
#
dictionary is K #
#

HHHBHH R
1.3.8. Connect to the Shardman Cluster
To connect to the cluster we should get the cluster connection string on any cluster node (sdnD1 or sdnD2):

shardmanct| getconnstr

dbnane=post gres host =sdnD1, sdn02 password=!!! CHANGE ME!'!! port=5432, 5432
user =post gres

And then let’ s try to connect:

psql -d 'dbnane=post gres host=sdnD1, sdnD2 password=!!! CHANGE ME!!! port=5432, 5432
user =post gres'

psql (14.7)
Type "hel p" for help.

post gr es=#

1.3.9. Create Sharded Tables
Let'stry to create a sharded table and check if everything is working properly.

Get Started with Shardman

postgres=# create table x(id int primary key, t text) with
(distributed_by="id ,numparts=2);
CREATE TABLE

post gres=# \d
Li st of relations

Schema | Nane | Type | Omner
-------- Ty e
public | x | partitioned table | postgres
public | x_0 | table | postgres
public | x_1 fdw | foreign table | postgres
(3 rows)

postgres=# \d x_0O
Tabl e "public.x_0"

Colum | Type | Collation | Nullable | Default
-------- T iUy

id | integer | | not null

t | text | | |
Partition of: x FOR VALUES W TH (nodul us 2, remai nder 0)
| ndexes:

"x_0_pkey" PRI MARY KEY, btree (id)

postgres=# \d x_1 fdw
Foreign table "public.x_1 fdw'

Colum | Type | Collation | Nullable | Default | FDWoptions
-------- T Ty
id | integer | | not null |

t | text | | | |

Partition of: x FOR VALUES W TH (nodul us 2, remai nder 1)
Server: shardman_rg_2
FDW opti ons: (table_name 'x_1")

postgres=# insert into x values (1,"t"),(2,'t"),(3,'t");
I NSERT 0 3

post gres=# select * from x_O;
id]| t

T
1]t
2]t

(2 rows)

postgres=# select * fromx_1_fdw
id]| t

T
3]t

(1 row

Everything works as expected.

1.3.10. Example: Deploy a Multi-Node etcd Cluster
The processis described for the following servers:

192.0.1.1 etcdl
192.0.1.2 etcd2
192.0.1.3 etcd3

Install the needed packages on each server:

10

Get Started with Shardman

sudo apt install -y vimcurl

To connect the repository, on each server, run:

sudo curl -fsSL https://repo. postgrespro.ru/sdnl sdm 14/ keys/ pgpr o-repo-add. sh | bash
Install etcd-sdm packages on each server:

sudo apt install -y etcd-sdm

For each server, edit the file that lists environment variables, replacing placeholders in angle brackets with specific values:

sudo vim/etc/default/etcd-sdm

ETCD_NAME=<host nane>

ETCD_LI STEN_PEER URLS=http://0.0.0.0: 2380

ETCD_LI STEN_CLI ENT_URLS=http://0.0.0.0: 2379

ETCD_ADVERTI SE_CLI ENT_URLS=http://<host ip address>: 2379

ETCD_| NI TI AL_ADVERTI SE_PEER URLS=htt p://<host ip address>: 2380

ETCD | NI TI AL_CLUSTER _TOKEN=et cd-cl uster-1

ETCD_| NI TI AL_CLUSTER_STATE=new

ETCD_MAX_SNAPSHOTS=5

ETCD_MAX_WALS=5

ETCD_AUTO_COVPACTI ON_MODE=peri odi c

ETCD_AUTO_COVPACTI ON_RETENTI ON=5m

ETCD_QUOTA_BACKEND BYTES=6442450944

ETCD DATA DI R=/var/lib/etcd-sdm sdm 14

ETCD I NI TI AL_CLUSTER=et cdl=http://<ip etcdl>: 2380, etcd2=http://<ip
et cd2>: 2380, et cd3=http://<ip etcd3>:2380

Thisfilewill be loaded at etcd start with its own start settings on each server.

Clear the etcd data directory:

sudo rm-rf /var/lib/etcd-sdnm sdm 14/*

Restart the etcd-sdm service on each server:

sudo systenctt!l restart etcd-sdm

For your user, add / opt / pgpr o/ sdm 14/ bi n to the PATH environment variable;

echo "export PATH=$PATH./opt/ pgpro/sdm 14/ bin" >> .bashrc
source . bashrc

Check that etcd is properly configured:

etcdct! nenber list -w table

T E SR tom e T

T SR +

| ID | STATUS | NAME | PEER ADDRS CLI ENT ADDRS

| |'S LEARNER |

T E SR tom e T

T SR +

| 318be6342e6d9ac | started | etcdl | http://192.0.1.1:2380 |
http://192.0.1.1: 2379 | fal se |

| 9e49480544aedb89 | started | etcd2 | http://192.0.1.2:2380 |
http://192.0.1.2: 2379 | fal se |

| bb3772bfa22482d7 | started | etcd3 | http://192.0.1.3:2380 |
http://192.0.1.3.4:2379 | fal se |

T E SR tom e T

T SR +

11

Get Started with Shardman

$ etcdct!l --endpoints=http://192.0.1.1:2380,http://192.0.1.2:2380, http://192.0. 1. 3:2380
endpoi nt status health -wtable

U oo - - e

oo e oo U R +

| ENDPOI NT | | D | VERSION | DB SIZE | IS LEADER | IS
LEARNER | RAFT TERM | RAFT INDEX | RAFT APPLIED | NDEX | ERRORS

U oo - - e

oo e oo U R +

| http://192.0.1.1: 2380 | 318be6342e6d%9ac | 3.5.9 | 5.7 MB | true
fal se | 13 | 425686 | 425686 | |

| http://192.0.1.2: 2380 | 9e49480544aedb89 | 3.5.9 | 5.7 MB | fal se
fal se | 13 | 425686 | 425686 | |

| http://192.0.1.3:2380 | bb3772bfa22482d7 | 3.5.9 | 5.7 MB | fal se
fal se | 13 | 425686 | 425686 | |

U oo - - e

oo e oo U R +

------- +

The etcd cluster is properly configured and ready to serve requests.

To prevent bloat when etcd is intensively used, add a defragmentation command to cron:

sudo { crontab -1; echo "@wourly /opt/pgpro/sdm 14/ bin/etcdctl defrag"; } | crontab
The final endpoints string of the etcd cluster:

etcdl=http://<ip etcdl>: 2380, etcd2=http://<ip etcd2>:2380,etcd3=http://<ip etcd3>:2380

It should be specifiedin/ et ¢/ shar dnman configuration fileand asa- - st or e- endpoi nt s parameter of shardmanctl.

12

Chapter 2. Manage

2.1. Cluster Services

The Shardman cluster configuration is stored in etcd. Shardman cluster services are organized as systemd services. The Shardman
configuration daemon shardmand monitors the cluster configuration and manages PostgreSQL instances through integrated stolon.
Each node has one shardmand service, whose typical nameisshar dmand @LUSTER_NAME. ser vi ce. Here CLUSTER_NAME
is the Shardman cluster name, cl ust er 0 by default.

Each shardmand includes several integrated stolon keeper and stolonsent i nel threads.

Each registered DBMS instance has an associated stolon keeper thread that directly manages this PostgreSQL instance. The
keeper starts, stops, initializes and resyncs PostgreSQL instances according to the desired stolon cluster state.

Each registered DBM S instance has an associated stolon sent i nel thread. For each replication group, stolon sent i nel s elect
the leader among existing sent i nel s. Thisleader makes decisions about the desired cluster state (for example, which keeper
should become a new master when the existing one fails). When the new master in areplication group is selected, the leader selects
thekeeper with theminimal lag. When all replicas are synchronous, the keeper with the maximal priority is selected to become
anew master even when the master in the replication group is alive. Shardman only uses synchronous replicas (otherwise, there is
a chance to lose data when a node fails).

shardmand isasystemd unit, itslogs are written to journald. You can usej our nal ct | to examineit. For example, to get all logs
since 2023- 05- 09 10: 00 for the shardmand service of thecl ust er O cluster, you can use the following command:

$ journalctl -u shardmand@l usterO --since '2023-05-09 10: 00

To control the log verbosity for all Shardman services, set SDM LOG_LEVEL in the shardmand configuration file.

2.2. Scaling the Cluster

The Shardman architecture alows you to scale out your cluster without any downtime. This section describes how you can add
more hodes to your Shardman cluster in order to improve query performance/scalability. If a Shardman cluster does not meet your
performance expectations or storage capacity, you can add new nodes to the cluster.

2.2.1. Adding and Removing a Node

How nodesare added to acluster and wherereplicaswill belocated depends on the type of ahighly available configuration. Shardman
supports two types of configurations. cross-replication mode and manual-topology mode. The Pl acerent Pol i cy parameter in
sdnspec.] son alowsyou to select the cluster behavior. The parameter supports two vaues: cr oss and nanual . The default
iscross. For example:

"Pl acenment Policy": "cross",
"Repfactor": 1,

}
2.2.1.1. Cross Replication

Theshardmanct| nodes add command isused to add new nodes to a Shardman cluster. With cross placement policy, nodes
are added to a cluster by clovers. Each node in a clover runs the primary DBMS instance and replicas of other nodes in the clover.
The number of replicas is determined by the Repfactor configuration parameter. So, each clover consists of Repf actor + 1
nodes and can stand loss of Repf act or nodes. An example of creating a cluster of four nodes with Repf act or =1 and cross
replication is shown below:

$ shardmanct| --store-endpoints http://etcdl: 2379, http://
etcd2: 2379, http://etcd3:2379 init -f sdnspec.json

13

Manage

$ shardmanct| --store-endpoints http://etcdl: 2379, http://
et cd2: 2379, http://etcd3: 2379 nodes add -n nl, n2,n3, n4

View the topology of acluster:

$ shardmanct| --store-endpoints http://etcdl: 2379, http://
etcd2: 2379, http://etcd3: 2379 cluster topol ogy

The command output is as follows:

BHABHBHHBHHHHBHHBH BB R BB B R B R R R R R R R H
== REPLI CATI ON GROUP cl over-1-nl, RAD - ==
#

BHABHBHHBHHHHBHHBH BB R BB B R B R R R R R R R H
HCST # PORT # STATUS
#

BHABHBHHBHHHHBHHBH BB R BB B R B R R B B R H
nl # 5432 # PRI MARY
#

BHABHBHHBHHHHBHHBH BB R BB B R B R R B B R H
n2 # 5433 # STANDBY
#

BHABHBHHBHHHHBHHBH BB R BB B R B R R B B R H

BHABHBHHBHHHHBHHBH BB R BB B R B R R B B R H
== REPLI CATI ON GROUP cl over-1-n2, RAD - ==
#

BHABHBHHBHHHHBHHBH BB R BB B R B R R B B R H
HCST # PORT # STATUS
#

BHABHBHHBHHHHBHHBH BB R BB B B R R R R R R R H
nl # 5433 # STANDBY
#

BHABHBHHBHHHHBHHBH BB R BB B R R R R BB R R H
n2 # 5432 # PRI MARY
#

BHABHBHHBHHHHBHHBH BB R BB B R R R R BB R R H

BHABHBHHBHHHHBHHBH BB H R BB R B R R R R R R H
== REPLI CATI ON GROUP cl over-2-n3, RAD - ==
#

BHABHBHHBHHHHBHHBH BB H R BB R B R R R R R R H
HCST # PORT # STATUS
#

BHABHBHHBHHHHBHHBH BB H R BB R B R R R R R R H
n3 # 5432 # PRI MARY
#

BHABHBHHBHHHHBHHBH BB H R BB R B R R R R R R H

14

Manage

n4 # 5433 # STANDBY
#

BHABHBHHBHHHHBH AR H BB B B B R R R R

BHABHBHHBHHHHBH AR H BB H B B B R R R R R
== REPLI CATI ON GROUP cl over-2-n4, RED - ==
#

BHABHBHHBHHHHBH AR H BB B R B R R R R R
HCST # PORT # STATUS
#

BHABHBHHBHHHHBH AR H BB B B B R R R R R H
n3 # 5433 # STANDBY
#

RHABHBHABHHHHBH AR H BB B B B R R R R R H
n4 # 5432 # PRI MARY
#

BHABHBHHBHHHHBH AR H BB H B R B R R R R R H

The shardmanct| nodes r mcommand is used to remove nodes from a Shardman cluster. This command removes clovers
containing the specified nodes from the cluster. The last clover in the cluster cannot be removed. Any data (such as partitions
of sharded relations) on removed replication groups is migrated to the remaining replication groups using logical replication, and
all references to the removed replication groups (including definitions of foreign servers) are removed from the metadata of the
remaining replication groups. Finally, the metadata in etcd is updated.

$ shardmanct| --store-endpoints http://etcdl: 2379, http://
et cd2: 2379, http://etcd3: 2379 nodes rm-n n3

View the topology of acluster:

$ shardmanct| --store-endpoints http://etcdl: 2379, http://
et cd2: 2379, http://etcd3: 2379 cl uster topol ogy

The command output is as follows:

BHABHBHABHHHHBHHBH BB R BB B B R B R R R H
== REPLI CATI ON GROUP cl over-1-nl, RAD - ==
#

RHABHBHHBHHHHBHHBH BB R BB B R B R B R R H
HCST # PORT # STATUS
#

BHABHBHABHHHHBHHBH BB R BB B B R R R B R R H
nl # 5432 # PRI MARY
#

BHABHBHABHHHHBHHBH BB R BB B B R R R B R R H
n2 # 5433 # STANDBY
#

BHABHBHABHHHHBHHBH BB R BB B B R R R B R R H
BHABHBHABHHHHBHHBH BB R BB B B R R R B R R H

== REPLI CATI ON GROUP cl over-1-n2, RAD - ==
#

15

Manage

BHABHBHHBHHHHBH AR H BB B B B R R R R
HCST # PORT # STATUS
#

BHABHBHHBHHHHBH AR H BB H B B B R R R R R
nl # 5433 # STANDBY
#

BHABHBHHBHHHHBH AR H BB B R B R R R R R
n2 # 5432 # PRI MARY
#

BHABHBHHBHHHHBH AR H BB B B B R R R R R H

2.2.1.2. Manual Topology

In the manual-topology mode, to add a primar# to a cluster, use the shar dnmanct| nodes add command, which adds the list
of nodesto the cluster as primaries with a separate replication group for each primary. Create a cluster with three primary nodes and
manual topology (Pl acenent Pol i cy=manual insdnspec. | son):

$ shardmanct| --store-endpoints http://etcdl: 2379, http://
etcd2: 2379, http://etcd3:2379 init -f sdnspec.json

$ shardmanct| --store-endpoints http://etcdl: 2379, http://
et cd2: 2379, http://etcd3: 2379 nodes add -n nl, n2,n3

To view the topology of acluster, usetheshar dmanct | cl uster topol ogy command:

$ shardmanct| --store-endpoints http://etcdl: 2379, http://
et cd2: 2379, http://etcd3: 2379 cl uster topol ogy

The command output is as follows:

BHABHBHHBH B HBH R H BB B R BB R R R R R R R
== REPLI CATI ON GROUP cl over-1-nl, RAD - ==
#

BHABHBHHBH B HBH R H BB B R BB R R R R R R R
HCST # PORT # STATUS
#

BHABHBHHBH B HBH R H BB B R BB R R R R R R R
nl # 5432
PRI MARY #

BHABHBHHBH B HBH R H BB B R BB R R R R R R R

BHABHBHHBH B HBH R H BB B R BB R R R R R R R
== REPLI CATI ON GROUP cl over-2-n2, RAD - ==
#

BHABHBHHBH B HBH R H BB B R BB R R R R R R R
HCST # PORT # STATUS
#

BHABHBHHBH B HBH R H BB B R BB R R R R R R R
n2 # 5432
PRI MARY #

BHABHBHHBH B HBH R H BB B R BB R R R R R R R

16

Manage

BHABHBHABH BB H A H BB B B R R R R R R R R
== REPLI CATI ON GROUP cl over-3-n3, RE@D - ==
#

BHARHBHABH BB H A H BB H B B R R R R R R R R

HCST # PORT # STATUS
#

BHARHBHABH BB H A H BB H BB R R R R R R R
n3 # 5432
PRI MARY #

BHARHBHABHBHHBH A H BB H BB B R R R R B R R R

Add n4, n5, n6 nodes asreplicasusing theshar dmanct | shard add command:

$ shardmanct| --store-endpoints http://etcdl: 2379, http://
et cd2: 2379, http://etcd3: 2379 shard --shard clover-1-nl1 add -n n4

$ shardmanct| --store-endpoints http://etcdl: 2379, http://
et cd2: 2379, http://etcd3: 2379 shard --shard clover-2-n2 add -n n5

$ shardmanct| --store-endpoints http://etcdl: 2379, http://
et cd2: 2379, http://etcd3: 2379 shard --shard clover-3-n3 add -n n6

In manual-topology maode, one node can be added to more than one replication group.

Asaresult, we get the following cluster configuration:

BHABHBHHBHHHHBHHBH BB R BB B R B R R R R R R H
== REPLI CATI ON GROUP cl over-1-nl, RAD - ==
#

BHABHBHHBHHHHBHHBH BB R BB B R R R B R R R H

HCST # PORT # STATUS
#

BHABHBHABHHHHBHHBH BB H R BB B R B R R R R R H

nl # 5432 # PRI MARY
#

BHABHBHHBHHHHBHHBH BB R BB B B R R R R R R H

n4 # 5432 # STANDBY
#

BHABHBHABHHHHBHHBH BB R BB R B R R R R R H

BHABHBHABHHHH B HBH BB R BB R B R R R R R R H
== REPLI CATI ON GROUP cl over-2-n2, RAD - ==
#

BHABHBHABHHHH B HBH BB R BB R B R R R R R R H

HCST # PORT # STATUS
#

BHABHBHHBHHHHBHHBH BB R BB B B R R R R R R R H
n2 # 5432 # PRI MARY
#

BHABHBHHBHHHHBHHBH BB R BB R B R R B R R R H

17

Manage

n5 # 5432 # STANDBY
#

BHABHBHHBHHHHBH AR H BB B B B R R R R

BHABHBHHBHHHHBH AR H BB H B B B R R R R R
== REPLI CATI ON GROUP cl over-3-n3, RE@D - ==
#

BHABHBHHBHHHHBH AR H BB B R B R R R R R
HCST # PORT # STATUS

#

BHABHBHHBHHHHBH AR H BB B B B R R R R R H
n3 # 5432 # PRI MARY

#

RHABHBHABHHHHBH AR H BB B B B R R R R R H
n6 # 5432 # STANDBY

#

BHABHBHHBHHHHBH AR H BB H B R B R R R R R H

Toremoveareplica, just runtheshar dmanct| shard r mcommand. For example:

$ shardmanct!l --store-endpoints http://etcdl: 2379, http://
et cd2: 2379, http://etcd3: 2379 shard --shard clover-1-nl1 rm-n n4

To remove the master, first run the shar dmanct| shard sw t ch command to switch the master to the replica; then delete
the old master.

$ shardmanct| --store-endpoints http://etcdl: 2379, http://
et cd2: 2379, http://etcd3: 2379 shard --shard clover-1-nl1 switch --newprimary n4

2.3. Rebalancing the Data

2.3.1. Automatically Rebalancing the Data

Automatic rebalancing is used asthe default mode. A rebalance process starts automatically after adding nodes (by default if - - no-
r ebal ance isnot set) or before deleting a node. Rebalance can aso be started manually. The essence of the rebalancing process
isto evenly distribute partitions for each sharded table between replication groups.

Therebalancing processfor each sharded tableiteratively determinesthe replication group with the maximum and minimum number
of partitions and creates atask to move one partition to the replication group with the minimum number of partitions. This processis
repeated whilemax - min > 1. Tomove partitions, we use logical replication. Partitions of colocated tables are moved together
with partitions of the sharded tablesto which they refer.

It is important to remember that max_| ogi cal _repl i cati on_wor ker s should be rather high since the rebalance process
usesuptormax(max_replication_slots, max_| ogical replication_workers, max_worker_processes,

max_wal _sender s)/ 3 concurrent threads. In practice, you can use max_| ogi cal _replicati on_workers = Rep-

factor + 3 * task_num(t ask_numisthe number of parallel rebalance tasks).

Torebalance sharded tablesinthecl ust er O cluster manually, runthe command (where etcdl, etcd2, etcd3 are etcd cluster nodes):

$ shardmanct| --store-endpoints http://etcdl: 2379, http://
et cd2: 2379, http://etcd3: 2379 rebal ance

If the process ends with an error, then you need to call theshar dmanct | ¢l eanup command withthe- - af t er - r ebal ance
option.

18

Manage

2.3.2. Manually Rebalancing the Data

There are times when you need to place partitions of sharded tablesin a specific way acrossthe cluster nodes. To solve this problem,
Shardman supports the manual data rebalancing mode.

How it works:

1. Get alist of sharded tables using the shar dmanct| tabl es sharded |i st command. Asaresult, we get an answer
similar to the following:

$ shardmanct!| shardnmanct| tables sharded |i st
Shar ded t abl es:
publ i c. doc

public.resol ution
public. users

2. Request information about the selected sharded tables. Example:

$ shardmanct| shardmanctl tables sharded info -t public.users
Tabl e public.users

Partitions:

Partition Rgl D Shard Mast er

0 1 cl over-1-shrnl shrnl: 5432
1 2 cl over-2-shrn2 shrn2: 5432
2 3 cl over-3-shrn3 shrn3: 5432
3 1 cl over-1-shrnl shrnl: 5432
4 2 cl over-2-shrn2 shrn2: 5432
5 3 cl over-3-shrn3 shrn3: 5432
6 1 cl over-1-shrnl shrnl: 5432
7 2 cl over-2-shrn2 shrn2: 5432
8 3 cl over-3-shrn3 shrn3: 5432
9 1 cl over-1-shrnl shrnl: 5432
10 2 cl over-2-shrn2 shrn2: 5432
11 3 cl over-3-shrn3 shrn3: 5432
12 1 cl over-1-shrnl shrnl: 5432
13 2 cl over-2-shrn2 shrn2: 5432
14 3 cl over-3-shrn3 shrn3: 5432
15 1 cl over-1-shrnl shrnl: 5432
16 2 cl over-2-shrn2 shrn2: 5432
17 3 cl over-3-shrn3 shrn3: 5432
18 1 cl over-1-shrnl shrnl: 5432
19 2 cl over-2-shrn2 shrn2: 5432
20 3 cl over-3-shrn3 shrn3: 5432
21 1 cl over-1-shrnl shrnl: 5432
22 2 cl over-2-shrn2 shrn2: 5432
23 3 cl over-3-shrn3 shrn3: 5432

3. Moveapartition to anew shard, as shown below:

$ shardmanct| --1o0g-level debug tables sharded partnove -t public.users --partnum1
--shard cl over-1-shrnl

19

Manage

2023-07-26T06: 00: 36
| ock. ..
2023-07-26T06: 00: 36
ext ensi on | ock
2023-07-26T06: 00: 36
br oadcast er worker
2023-07-26T06: 00: 36
br oadcast er worker
2023-07-26T06: 00: 36
br oadcast er worker
2023-07-26T06: 00: 36
connect established
2023-07-26T06: 00: 36
connect established
2023-07-26T06: 00: 36
connect established
2023-07-26T06: 00: 36
ext ensi on | ock. .
2023-07-26T06: 00: 36
nmove partition..
2023-07-26T06: 00: 36
br oadcast er worker
2023-07-26T06: 00: 36
br oadcast er worker
2023-07-26T06: 00: 36
br oadcast er worker
2023-07-26T06: 00: 36
connect established
2023-07-26T06: 00: 36
connect established
2023-07-26T06: 00: 36
connect established
2023-07-26T06: 00: 36

after possible rebal ance operation fai

900z DEBUG
9362 DEBUG
938z DEBUG
for repgroup id=3
938z DEBUG
for repgroup id=2
938z DEBUG
for repgroup id=1
9517 DEBUG
9517 DEBUG
9527 DEBUG
9527 DEBUG
9762 I NFO

9772 DEBUG
for repgroup id=3
9782 DEBUG
for repgroup id=2
9782 DEBUG
for repgroup id=1
9872 DEBUG
9897 DEBUG
9927 DEBUG
9927 DEBUG

cnd/ conmon. go: 105 Waiting for netadata

r ebal ance/ servi ce. go: 256 t ake

br oadcast er/ wor ker . go: 33 start

br oadcast er/ wor ker . go: 33 start

br oadcast er/ wor ker . go: 33 start

br oadcast er/ wor ker. go: 51 repgroup 3
br oadcast er/ wor ker. go: 51 repgroup 2
br oadcast er/ wor ker. go: 51 repgroup 1
ext ensi on/ | ock. go: 35 Waiting for

r ebal ance/ servi ce. go: 276 Per f or m ng

br oadcast er/ wor ker . go: 33 start
br oadcast er/ wor ker . go: 33 start
br oadcast er/ wor ker . go: 33 start
br oadcast er/ wor ker. go: 51 repgroup 1
br oadcast er/ wor ker. go: 51 repgroup 2
br oadcast er/ wor ker. go: 51 repgroup 3

r ebal ance/ servi ce. go: 71 Perform
ure

ng cl eanup

2023-07-26T06: 00: 37. 0772 DEBUG broadcast er/worker. go: 75 finish
br oadcast er worker for repgroup id=3
2023-07-26T06: 00: 37. 0772 DEBUG broadcast er/worker. go: 75 finish
broadcaster worker for repgroup id=1
2023-07-26T06: 00: 37. 0772 DEBUG broadcast er/worker. go: 75 finish
br oadcast er worker for repgroup id=2
2023-07-26T06: 00: 37. 082z DEBUG rebal ance/ servi ce. go: 422 Rebal ance
will run 1 tasks
2023-07-26T06: 00: 37. 0957 DEBUG rebal ance/ servi ce. go: 452 Quessi ng
that rebal ance() can use 3 workers
2023-07-26T06: 00: 37. 096Z DEBUG rebal ance/j ob. go: 352 state: ldle
{"worker_id": 1, "table": "users", "partition nunf: 1, "source rgid": 2, "dest
rgid': 1, "kind": "nove"}
2023-07-26T06: 00: 37. 1117 DEBUG rebal ance/j ob. go: 352 state
ConnsEst abl i shed {"worker_id": 1, "table": "users", "partition nunf: 1, "source
rgid': 2, "dest rgid': 1, "kind": "nove"}
2023-07-26T06: 00: 37. 1717 DEBUG rebal ance/j ob. go: 352 state: WaitlnitCopy
{"worker_id": 1, "table": "users", "partition nunf: 1, "source rgid": 2, "dest
rgid': 1, "kind": "nove"}
2023-07-26T06: 00: 38. 073Z DEBUG rebal ance/j ob. go: 347 current state
{"worker_id": 1, "table": "users", "partition nunf: 1, "source rgid": 2, "dest
rgid': 1, "kind": "nove", "state": "Waitlnitial Catchup"}

20

Manage

2023-07-26T06: 00: 38. 073z DEBUG rebal ance/j ob. go: 352 state

Waitlnitial Cat chup {"worker_id": 1, "table": "users", "partition nuni: 1,
"source rgid": 2, "dest rgid': 1, "kind": "nove"}

2023-07-26T06: 00: 38. 084z DEBUG rebal ance/j ob. go: 347 current state
{"worker_id": 1, "table": "users", "partition nunf: 1, "source rgid": 2, "dest
rgid': 1, "kind": "nove", "state": "WaitFull Sync"}

2023-07-26T06: 00: 38. 084z DEBUG rebal ance/j ob. go: 352 state: WaitFull Sync

{"worker_id": 1, "table": "users", "partition nunf: 1, "source rgid": 2, "dest

rgid': 1, "kind": "nove"}

2023-07-26T06: 00: 38. 108z DEBUG rebal ance/j ob. go: 347 current state
{"worker_id": 1, "table": "users", "partition nunf: 1, "source rgid": 2, "dest
rgid': 1, "kind": "nove", "state": "Conmtting"}

2023-07-26T06: 00: 38. 108z DEBUG rebal ance/j ob. go: 352 state: Conmitting

{"worker_id": 1, "table": "users", "partition nunf: 1, "source rgid": 2, "dest

rgid': 1, "kind": "nove"}

2023-07-26T06: 00: 38. 2547 DEBUG rebal ance/j ob. go: 352 state: Conplete
{"worker_id": 1, "table": "users", "partition nunf: 1, "source rgid": 2, "dest
rgid': 1, "kind": "nove"}

2023-07-26T06: 00: 38. 2587 DEBUG rebal ance/ servi ce. go: 583 Pr oduce and
process tasks on destination replication groups..

2023-07-26T06: 00: 38. 2587 DEBUG rebal ance/ servi ce. go: 594 Pr oduce and
process tasks on source replication groups..

2023-07-26T06: 00: 38. 2587 DEBUG rebal ance/ servi ce. go: 606 wait all
tasks finish

2023-07-26T06: 00: 38. 2587 DEBUG rebal ance/ servi ce. go: 531 Anal yzi ng
table public.users inrg 1 {"table": "public.users", "rgid"': 1, "action"

"anal yze"}

2023-07-26T06: 00: 38.573Z DEBUG rebal ance/ service. go: 531 Anal yzi ng
table public.users inrg 2 {"table": "public.users", "rgid"': 2, "action"

"anal yze"}

2023-07-26T06: 00: 38. 833z DEBUG broadcast er/worker. go: 75 finish
broadcaster worker for repgroup id=1

2023-07-26T06: 00: 38. 833z DEBUG broadcast er/worker. go: 75 finish

br oadcast er worker for repgroup id=2

2023-07-26T06: 00: 38. 833z DEBUG broadcast er/worker. go: 75 finish

br oadcast er worker for repgroup id=3

In this example, partition number 1 of thepubl i c. user s tablewill be movedtothecl over - 1- shrnl shard.

After manually moving a partition of a sharded table and for al tables collocated with it, automatic data rebalancing for these
tables will be disabled

To get the list of tables with disabled automatic rebalancing, call the shar dmanct| tabl es sharded norebal ance
command. Example:

$ shardmanct| tabl es sharded norebal ance

public. users

To enable automatic data rebalancing for a selected sharded table, call the shar dnanct| tabl es sharded rebal ance
command, as shown in the example below:

$ shardmanct| tables sharded rebal ance -t public. users

2023-07-26T07: 07: 00. 657Z DEBUG cnd/ conmon. go: 105 Waiting for netadata
| ock. ..

21

Manage

2023-07-26T07: 07: 00.

br oadcast er wor ker

2023-07-26T07: 07: 00.

br oadcast er wor ker

2023-07-26T07: 07: 00.

br oadcast er wor ker

2023-07-26T07: 07: 00.
connect established
2023-07-26T07: 07: 00.
connect established
2023-07-26T07: 07: 00.
connect established
2023-07-26T07: 07: 00.

| ock. ..

2023-07-26T07: 07: 00.
pnum 21 for table users
2023-07-26T07: 07: 00.

r ebal ance. .

2023-07-26T07: 07: 00.

br oadcast er wor ker

2023-07-26T07: 07: 00.

br oadcast er wor ker

2023-07-26T07: 07: 00.

br oadcast er wor ker

2023-07-26T07: 07: 00.
connect established
2023-07-26T07: 07: 00.
connect established
2023-07-26T07: 07: 00.
connect established
2023-07-26T07: 07: 00.
possi bl e rebal ance operation fai
2023-07-26T07: 07: 00.

after

br oadcast er wor ker

2023-07-26T07: 07: 00.

br oadcast er wor ker

2023-07-26T07: 07: 00.

br oadcast er wor ker

2023-07-26T07: 07: 00.

run 1 tasks

2023-07-26T07: 07: 00.

687Z DEBUG
for repgroup id=1
687Z DEBUG
for repgroup id=2
687Z DEBUG
for repgroup id=3
69727 DEBUG
69827 DEBUG
69827 DEBUG
69827 DEBUG
7197 DEBUG

fromrg 1 to
7197 | NFO
720Z DEBUG
for repgroup id=1
720Z DEBUG
for repgroup id=2
720Z DEBUG
for repgroup id=3
7327 DEBUG
7327 DEBUG
73427 DEBUG
73427 DEBUG

rebal ance() can use 3 workers

2023-07-26T07: 07: 00.

{"worker _id":
2, "kind":

11
"move"}

2023-07-26T07: 07: 00.

{"worker _id":
2, "kind":

11
"move"}

2023-07-26T07: 07: 00.

{"worker _id":
2, "kind":

11
"move"}

2023-07-26T07: 07: 01.

{"worker _id":
2, "kind":

11
n m)ve" ,

2023-07-26T07: 07: 01.

Wait | nitial Cat chup
"source rgid": 1,

79172 DEBUG
for repgroup id=1
79172 DEBUG
for repgroup id=2
79172 DEBUG
for repgroup id=3
7957 DEBUG
8097 DEBUG
8097 DEBUG
"table": "users"
8237 DEBUG
"table": "users"
8802 DEBUG
"table": "users"
8862 DEBUG
"table": "users"
"state":
886Z DEBUG

{"worker _id":
“kind":

dest rgid": 2,

"partition nunt:

"partition nunt:

"partition nunt:

"partition nunt:
"Waitlnitial Catchup"}

br oadcast er/ wor ker .

br oadcast er / wor ker

br oadcast er/ wor ker .

br oadcast er/ wor ker .

br oadcast er / wor ker

br oadcast er/ wor ker .

go:

. go:

go:

go:

. go:

go:

ext ensi on/ | ock. go: 35

33

33

33

51

51

51

r ebal ance/ servi ce. go: 381

rg 2

rebal ance/ servi ce. go: 244

br oadcast er/ wor ker .

br oadcast er / wor ker

br oadcast er/ wor ker .

br oadcast er/ wor ker .

br oadcast er / wor ker

br oadcast er/ wor ker .

rebal ance/ service. go: 71 Perform

ure

go:

. go:

go:

go:

. go:

go:

33

33

33

51

51

51

br oadcast er/ wor ker . go: 75

br oadcast er/ wor ker. go: 75

br oadcast er/ wor ker. go: 75

rebal ance/ servi ce. go: 422

rebal ance/ servi ce. go: 452

r ebal ance/j ob. go:
21,

r ebal ance/j ob. go:
21,

r ebal ance/j ob. go:
21,

r ebal ance/j ob. go:
21,

352
"source rgid":

352
"source rgid":

352
"source rgid":

347
"source rgid":

rebal ance/ j ob. go: 352

"tabl e":
n rmve" }

11

"users"

Waiting

state:

state:

state:

start
start
start
repgroup 1
repgroup 2
repgroup 3
for extension
Pl anned novi ng
Per f or m ng
start

start

start

repgroup 3
repgroup 1
repgroup 2

ng cl eanup
finish

finish

finish

Rebal ance wil |
Guessi ng that

I dl e

1, "dest rgid":
ConnsEst abl i shed
1, "dest rgid":

Wi t | ni t Copy
1, "dest rgid":

current state

state:

"partition nunt:

1, "dest rgid":

21,

22

Manage

2023-07-26T07: 07: 01. 904z DEBUG rebal ance/j ob. go: 347 current state
{"worker_id": 1, "table": "users", "partition nunf: 21, "source rgid": 1, "dest rgid":
2, "kind": "nove", "state": "WitFull Sync"}

2023-07-26T07: 07: 01. 905z DEBUG rebal ance/j ob. go: 352 state: WitFull Sync
{"worker_id": 1, "table": "users", "partition nuni: 21, "source rgid": 1, "dest rgid":
2, "kind": "move"}

2023-07-26T07: 07: 01. 9327 DEBUG rebal ance/j ob. go: 347 current state
{"worker_id": 1, "table": "users", "partition nuni: 21, "source rgid": 1, "dest rgid":
2, "kind": "nove", "state": "Committing"}

2023-07-26T07: 07: 01. 9327 DEBUG rebal ance/j ob. go: 352 state: Conmitting
{"worker_id": 1, "table": "users", "partition nunf: 21, "source rgid": 1, "dest rgid":
2, "kind": "move"}

2023-07-26T07: 07: 02. 057z DEBUG rebal ance/j ob. go: 352 state: Conplete
{"worker_id": 1, "table": "users", "partition nuni: 21, "source rgid": 1, "dest rgid":
2, "kind": "move"}

2023-07-26T07: 07: 02. 060Z DEBUG rebal ance/ servi ce. go: 583 Pr oduce and
process tasks on destination replication groups..

2023-07-26T07: 07: 02. 060Z DEBUG rebal ance/ servi ce. go: 594 Pr oduce and
process tasks on source replication groups..

2023-07-26T07: 07: 02. 060Z DEBUG rebal ance/ servi ce. go: 531 Anal yzi ng table
public.users inrg 2 {"table": "public.users", "rgid"': 2, "action": "anal yze"}
2023-07-26T07: 07: 02. 060Z DEBUG rebal ance/ servi ce. go: 606 wait all tasks
finish

2023-07-26T07: 07: 02. 3217 DEBUG rebal ance/ servi ce. go: 531 Anal yzi ng table
public.users inrg 1 {"table": "public.users", "rgid"': 1, "action": "anal yze"}
2023-07-26T07: 07: 02. 587z DEBUG broadcast er/worker. go: 75 finish

br oadcast er worker for repgroup id=3

2023-07-26T07: 07: 02. 587z DEBUG broadcast er/worker. go: 75 finish

br oadcast er worker for repgroup id=2

2023-07-26T07: 07: 02. 587z DEBUG broadcast er/worker. go: 75 finish

br oadcast er worker for repgroup id=1

To enable automatic data rebalancing for al sharded tables, run the shar dmanct | rebal ance command with the- - f or ce
option.

$ shardnmanct!| rebal ance --force

2.4. Analyzing and Vacuuming

Shardman databases require periodic maintenance, known as vacuuming. For many installations, it is sufficient to let vacuuming
be performed by the autovacuum daemon. As in PostgreSQL installation, autovacuum daemon will automatically issue ANALYZE
commands whenever the content of atable has changed sufficiently. When ANALYZE isrun by the autovacuum daemon or manually
on the whole database, statistics from foreign partitionsis transferred from remote nodes.

Rebalance process can move or copy data between cluster nodes. After this operation, all transferred objects are automatically
analyzed. Asusual, local statistics is gathered, and remote statistics is fetched from foreign servers.

Note

Database-wide ANAL YZE relies on statisticsbeing available on remote shards. But statistics on remote shards may bemissing,
and it is not enough to just broadcast ANALYZE for cluster-wide update of statistics. Instead, shardman.global_analyze()
function can be used. It performs gathering of statistics for sharded and global tables.

Database-wide VACUUMcommand can be broadcast to perform cluster-wide vacuuming. It can be done when the shar d-
man. br oadcast _ddl configuration parameter ison.

23

Manage

Note

When ANALYZE isrun on aglobal table, only statistics on corresponding local table is updated. When ANALYZE is run on
a sharded table, statistics on local partitions is updated, statistics for foreign partitions is transferred from remote nodes, if
remote nodes have it. When ANAL YZE is run on aforeign table directly and remote node doesn't have any statistics for the
corresponding local table, local table is analyzed remotely. Then statistics is transferred from the remote node.

When VACUUMis run on a sharded or global table, the statement is broadcast. For a sharded table, it is efficiently run on
all table partitions.

2.5. Access Management

A Shardman cluster emulates a usual PostgreSQL security model, which, however, has features inherent to a distributed DBMS.
This section describes these features and aims to give you an idea of access management in a Shardman cluster.

2.5.1. Cluster Initialization Settings Related to Access Management

When a Shardman cluster isinitialized, security-related settings are taken from the initialization file. Y ou can change them later, but
do thiswith care and remember that in most cases, the change will require aDBMS restart.

A Shardman cluster hastwo special users. administrative and replication. stolon and Shardman manage controlled DBM S instances
with administrative users. stolon needs replication users for replications between controlled DBMS instances.

Security-related settings from the initialization file specify:

Authentication methods for administrative and replication users— PgSuAut hMet hod, PgRepl Aut hivet hod
Usernames for administrative and replication users— PgSuUser name, PgRepl User nane
Passwords for administrative and replication users— PgSuPasswor d, PgRepl Passwor d

pg_hba. conf rulesused by DBMSinstances— St ol onSpec. pgHBA

See sdmspec.json for detailed descriptions of these settings.

To change security-related user settings, perform these steps:

1

Check that the user that you want to specify in PgRepl User name /PgSuUser nane exists with REPLI CATI ON/ SUPE-
RUSER privileges on all replication groupsin the cluster and his password matches the new PgRepl Passwor d/PgSuPass-
wor d setting.

If thisistrue, create dump of theshar dman/ cl ust er 0/ dat a/ cl ust er etcd key (here and further the name of the Shard-
man cluster is assumed to be cl ust er 0). For example:

$ etcdctl --endpoints etcdserver:2379 get --print-value-only shardman/cl uster0/
data/cluster |jg . > clusterdata.json

This example creates the dump of the dat a/ cl ust er key for the Shardman cluster with the cl ust er O name from the etcd
server et cdser ver listening on port 2379, formats the dump with jg and savestothecl ust er dat a. j son file.

Edit the dump as necessary and store it back in etcd:

$ cat clusterdata.json | etcdctl --endpoints etcdserver:2379 put shardman/cl uster0/
dat a/ cl uster

Modifying these settings will lead to a DBMS restart.

Unlike the above settings, the St ol onSpec. pgHBA setting can be changed online. To do this, perform these steps:

1

Extract the St ol onSpec definitionfrom shar dman/ cl ust er 0/ dat a/ cl ust er , saveto somefile, modify as necessary
and update cluster settings with theshar dmanct| confi g updat e command:

24

Manage

$ etcdctl --endpoints etcdserver: 2379 get --print-value-only shardnan/cluster0/
data/cluster | jq .Spec. StolonSpec . > stol onspec.json

2. Editst ol onspec. j son andreplacethe St ol onSpec. pgHBA definition with the appropriate one, for example:

"pgHBA": [
"host all postgres 0.0.0.0/0 scram sha- 256",
"host replication postgres 0.0.0.0/0 scram sha- 256",
"host replication postgres ::0/0 scram sha- 256",
"host all sonmeuser 0.0.0.0/0 scram sha- 256"

] il
3. Apply theedited st ol onspec. j son file

$ shardmanct| --store-endpoints etcdserver: 2379 --cluster-nane cluster0 config
update -f stol onspec.json

2.5.2. Managing Users and Roles

Users and roles in a Shardman cluster are usual PostgreSQL users and roles. Y ou can manage them separately on each server or
globally, using broadcast DDL. Shardman also uses concepts of global users and global roles. And only the global users (or roles)
can create and own other Shardman cluster-wide objects, such as sharded or global tables. Operations on such users are always
performed on all replication groups simultaneously. For example, when you include a global role in some other role or drop it, this
operation will be performed on all replication groups.

Y ou can create aglobal user withaCREATE USER ... I N ROLE gl obal statement, for example:
CREATE USER soneuser ENCRYPTED PASSWORD ' sonepass' | N ROLE gl obal ;

When a global user is created, Shardman automatically creates user mappings on all replication groups and grants this user with
access to al foreign servers corresponding to existing replication groups. Therefore, when you create a globa user, you need to
specify either a cleartext password, so that it can be saved in a user mapping, or no password at all. A passwordless global user or
role is unable to access foreign servers, but you can use such arole to accumulate some permissions and grant it to different users.
Y ou can also set a password for a passwordless global user later.

Global users can be created only by user with CREATERCLE permission on al cluster nodes.

ALTER and DROP statements for global users are broadcasted to al replication groups. When arole is granted to a global user, this
operation is also broadcasted. Renaming a global user is not supported since this invalidates md5/scram-sha-256 passwords stored
in user mappings.

The list of global usersis stored inthe shar drman. user s table.

The role specified in PgSuUser nane (usualy, post gr es) is aso created as global user during cluster initialization. However,
the role specified in PgRepl User nane iscreated aslocal user on each replication group.

Therole gl obal isreserved and cannot be used directly in a Shardman cluster. Note that 'global’ is not a really defined role but
just areserved word.

2.5.3. Managing Permissions on Sharded Tables

In Shardman, a sharded table is basically a partitioned table where partitions are either local shards or foreign tables referencing
shardsin other replication groups.

Permissions granted on a sharded table are broadcasted to all replication groups and to al partitions of the table.

When a new replication group is added to a cluster, shardmanctl copies the schema from a random existing replication group to
the new one. It also creates a foreign server for the new replication group on all existing replication groups and recreates foreign
servers on new replication groups. Permissions for the created foreign servers and user mappings are copied from arandom foreign
server in an existing replication group. In the new replication group, for each partition of the sharded table shardmanct! creates a
foreign table referencing the existing shard and replaces the partition with this foreign table. Later some of these foreign tables can
be replaced by real tables. This happensduring theshar dmanct | nodes add rebalance stage when rebalance is enabled. Data

25

Manage

for these partitionsis transferred from existing nodes using logical replication. When shardmanctl creates tables (or foreign tables),
it copies permissions from the parent table. The parent table must already have correct permissions since they were copied from
an existing replication group.

2.5.3.1. Examples

These examples assume administrator privileges.

If you want to create a sharded table and aglobal user, aswell as grant him read-only access to the table, you can use the following
statements:

CREATE USER soneuser ENCRYPTED PASSWORD ' sonepass' | N ROLE gl obal ;
CREATE TABLE pgbench_branches (
bi d i nteger NOT NULL PRI MARY KEY,
bbal ance i nt eger,
filler character(88)
)
WTH (distributed_by = '"bid , numparts = 8);
GRANT SELECT ON pgbench_branches TO soneuser;

To dlow soneuser to access a Shardman cluster, you should also provide proper settings in pg_hba. conf (as thisis done
earlier).

Now assume that anew clover is added to the cluster with the shar dnmanct| nodes add command, like this:

$ shardmanct| --store-endpoints http://etcdserver: 2379 --cluster-nane cluster0 nodes
add -n newnodel, newnode2

Inthisexample, someshardsof thepgbench_br anches tablearetransferred to new replication groupsand soneuser isgranted
the SELECT privilege on thistable. Later you can drop soneuser from al replication groupsin the cluster in one command:

DROP USER soneuser;

2.6. Backup and Recovery

This section describes basics of backup and recovery in Shardman.

You can use the backup command of the shardmanctl tool to perform afull binary consistent backup of a Shardman cluster to a
shared directory or local directory (if - - use- ssh isspecified) andther ecover command to perform arecovery from thisbackup.

Also you can use the pr obackup backup command of the shardmanctl tool to perform a full binary consistent backup of a
Shardman cluster to the backup repository on the local host or S3-compatible object storage and the pr obackup restore
command to perform arecovery from any backup from the repository.

The PostgreSQL pg_probackup utility for creating consistent full and incremental backupswasintegrated into shardman-utils. shard-
man-utils uses the pg_probackup approach to store backups in a pre-created repository. In addition, the pg_probackup commands
ar chi ve- get andar chi ve- push are used to deliver WAL logs into the backup repository. Backup and restore modes use a
passwordless ssh connection between the cluster nodes and the backup node.

Shardman cluster configuration parameter enable_csn_snapshot must be set to on. This parameter is necessary for the cluster backup
to be consistent. If this option is disabled, a consistent backup is not possible.

For consistent visibility of distributed transactions, the technique of global snapshots based on physical clocksis used. Similarly, it
ispossibleto get a consistent snapshot for backups, only the time corresponding to the global snapshot must be mapped to the set of
LSNsfor each node. Such a set of consistent LSNsin a cluster is called a syncpoint. By getting the syncpoint and taking the LSN
for each node in the cluster from it, we can make a backup of each node, which must necessarily contain that LSN. We can aso
recover to this LSN using the point in time recovery (PITR) mechanism.

The backup and pr obackup commands use different mechanisms to create backups. The backup command is based on the
standard utilities pg_basebackup and pg_receivewal. The pr obackup command uses the pg_probackup utility and its options
to create a cluster backup. In any case of using backup or pr obackup commands for restoration, the node names, defined by
hostname or I1P-address, must correspond to those that were in place at the time of the backup.

26

Manage

2.6.1. Cluster Backup with pg_basebackup

This section describes basics of backup and recovery in Shardman with the basebackup command.

2.6.1.1. Requirements

To backup and restore a Shardman cluster viathe basebackup command, the following requirements must be met:

Shardman cluster configuration parameter enable csn_snapshot must be on. This parameter is necessary for the cluster back-
up to be consistent. If this parameter is disabled, a consistent backup is not possible.

On each Shardman cluster node, Shardman utilities must be installed into / opt / pgpr o/ sdm 14/ bi n.

On each Shardman cluster node, pg_basebackup must be installed into / opt / pgpr o/ sdm 14/ bi n.

On each Shardman cluster node, post gr es Linux user and group must be created.

Passwordless SSH connection between Shardman cluster nodes for the post gr es Linux user must be configured.

If the- - use- ssh flagisn't specified, all Shardman cluster nodes must be connected to a shared network storage and backup
folder must be created on that shared network storage.

If the- - use- ssh flag is specified, the backup directory can be created on the local storage on the node wherer ecover
will be called.

Accessfor the post gr es Linux user to the backup folder must be granted.

shardmanct! utility must be run aspost gr es Linux user.

2.6.1.2. basebackup Backup Process

shardmanctl conducts a backup task in several steps. The tool:

1
2.

o g > W

7.

Takes necessary locksin etcd to prevent concurrent cluster-wide operations.

Connects to a random replication group and locks Shardman metadata tables to prevent modification of foreign servers during
the backup.

Creates replication slots on each replication group to ensure that WAL records are not |ost.
Dumps Shardman metadata stored in etcd to a JSON file in the backup directory.
To get backups from each replication group, concurrently runs pg_basebackup using replication dots created.

Creates the syncpoint and uses pg_receivewal to fetch WAL logs generated after finishing each basebackup until L SNs extracted
from syncpoint are reached.

Fixes partial WAL files generated by pg_receivewal and creates the backup description file.

2.6.2. Cluster Recovery from a Backup Using pg_basebackup

Y ou can restore a backup on the same or compatible cluster. By compatible clusters, those that use the same Shardman version and
have the same number of replication groups are meant.

shardmanctl can perform either full restore, metadata-only or schema-only restore. Metadata-only restore is useful if issues are
encountered with the etcd instance, but DBM S data is not corrupted.

During metadata-only restore, shardmanctl restores etcd data from the dump created during the backup.

| mportant

Restoring metadata to an incompatible cluster can lead to catastrophic consequences, including data loss, since the metadata
state can differ from the actual configuration layout. Do not perform metadata-only restore if there were cluster reconfigu-
rations after the backup, such as addition or deletion of nodes, even if the same nodes were added back again.

27

Manage

Schema-only recovery restore only schemainformation without data. It can be useful if the scale of the dataislarge and the schema
is needed for testing or checking.

During a full restore, shardmanctl checks whether the number of replication groups in the target cluster matches the number of
replication groups in the backup. This meansthat you cannot restore on an empty cluster, but need to add as many replication groups
as necessary for the total number of them to match that of the cluster from which the backup was taken.

shardmanct| probackup restore canrestoreaworking or partially working cluster from a backup that was created on
aworking or partialy working cluster.

Also you can perform restoring only on asingle shard using - - shar d parameter.

shardmanctl conducts full restore in several steps. Thetool:

1.

Takes the necessary locks in etcd to prevent concurrent cluster-wide operations and tries to assign replication groups in the
backup to existing replication groups. If it cannot do this (for example, due to cluster incompatibility), the recovery fails.

Restores part of the etcd metadata: the cluster specification and parts of replication group definitions.

3. When the correct metadataisin place, runsstoloni ni t in PITR initialization mode with Recover yTar get Nane set to the

4,

value of the syncpoint LSN from the backup info file. Dat aRest or eConmand and Rest or eCommand are also taken from
the backup info file.

Waits for each replication group to recover.

2.6.3. Cluster Backup with pg_probackup

This section describes basics of backup and recovery in Shardman with the pr obackup command.

Youcanusethepr obackup backup command of the shardmanctl tool to perform binary backups of a Shardman cluster into the
backup repository on the local (backup) host and the pr obackup rest or e command to perform a recovery from the selected
backup. Full and partial (delta) backups are supported.

2.6.3.1. Requirements

To backup and restore a Shardman cluster viathe pr obackup command, the following requirements must be met:

Shardman cluster configuration parameter enable csn_snapshot must be on. This parameter is necessary for the cluster back-
up to be consistent. If this parameter is disabled, a consistent backup is not possible.

On the backup host, Shardman utilities must be installed into / opt / pgpr o/ sdm 14/ bi n.
On the backup host and on each cluster node, pg_probackup must beinstalled into / opt / pgpr o/ sdm 14/ bi n.
On the backup host, post gr es Linux user and group must be created.

Passwordless SSH connection between the backup host and each Shardman cluster node for the post gr es Linux user must
be configured. To do this, on each node:

* Thepost gr es user must createthe. ssh subdirectory inthe/ var /1 i b/ post gr esql directory and place there the
keys required for the passwordless SSH connection.

« To perform a backup/restore in a pretty large number of threads, such as 50 (- j =50, see the section called “ backup ” for
details), MaxSessi ons and Max St ar t ups must be set to 100 for the backup host inthe/ et ¢/ ssh/ sshd_confi g
file.

Note

Setting the number of threads (- j option) to avalue greater than 10 for shar dnmanct| pr obackup may result
in the actual number of SSH connections exceeding the maximum allowed number of simultaneous SSH connec-
tions on the backup host and consequently lead to an “ERROR: Agent error: kex_exchange_identification: Connec-
tion closed by remote host” error. To correct the error, either reduce the number of pr obackup threads or adjust
the value of Max St ar t ups configuration parameter of the backup host. If SSH is set up as axinetd service on the
backup host, adjust the value of the xinetd per _sour ce configuration parameter rather than MaxSt ar t ups.

28

Manage

Y ou can disable SSH for data copying by setting the - - st or age- t ype option to the mount or S3 value (but SSH will be
required to execute remote commands). Also this value will be automatically used in the restore process.

* A backup folder or bucket in the S3-compatible object storage must be created.

* Accessforthepost gr es Linux user to the backup folder must be granted.

e shardmanctl utility must berun aspost gr es Linux user.

e init subcommand for the backup repository initialization must be successfully executed on the backup host.

e archi ve-comrand add subcommand for enabling ar chi ve_conmmand for each replication group to stream WALSs into
the initialized repository must be successfully executed on the backup host.

2.6.3.2. pg_probackup Backup Process
shardmanctl conducts a backup task in several steps. Thetool:

1. Takesnecessary locksin etcd to prevent concurrent cluster-wide operations.

2. Connects to arandom replication group and locks Shardman metadata tables to prevent modification of foreign servers during
the backup.

3. Dumps Shardman metadata, stored in etcd, to a JSON filein the backup directory or bucket in the S3-compatible object storage.
4. To get backups from each replication group, concurrently runs pg_probackup using the configured ar chi ve_conmand.

5. Createsthe syncpoint and getsL SNsfor each replication group from the syncpoint datastructure. Then usesthepg_pr obackup
ar chi ve- push command to push WAL logs generated after finishing backup and the WAL file where syncpoint LSNs are
present for each replication group.

2.6.4. Cluster Restore from a Backup with pg_probackup

Y ou can restore a backup on the same or compatible cluster. By compatible clusters, those that use the same Shardman version and
have the same number of replication groups are meant here.

Also, you can restore other clusters from the same backup if these clusters have the same topology.

shardmanctl can perform either full restore, metadata-only or schema-only restore. Metadata-only restore is useful if issues are
encountered with the etcd instance, but DBMS data is not corrupted.

During metadata-only restore, shardmanctl restores etcd data from the dump created during the backup.

| mportant

Restoring metadata to an incompatible cluster can lead to catastrophic consequences, including data loss, since the metadata
state can differ from the actual configuration layout. Do not perform metadata-only restore if there were cluster reconfigu-
rations after the backup, such as addition or deletion of nodes, even if the same nodes were added back again.

Schema-only recovery restore only schemainformation without data. It can be useful if the scale of the datais large and the schema
is needed for testing or checking.

During a full restore, shardmanctl checks whether the number of replication groups in the target cluster matches the number of
replication groups in the backup. This means that you cannot restore on an empty cluster, but need to add as many replication groups
as necessary for the total number of them to match that of the cluster from which the backup was taken.

Also you can perform restoring only on the single shard using - - shar d parameter.
Alsoyou can perform Point-in-Time Recovery using - - r ecover y-t ar get - t i me parameter. Inthiscase Shardman findsclosest

syncpoint to specified timestamp and suggests to restore on found LSN. Y ou can also specify a- - wal - | i mi t option to limit the
number of WAL segments to be processed.

29

Manage

shardmanctl conducts full restore in several steps. The tool:

1. Takes the necessary locks in etcd to prevent concurrent cluster-wide operations and tries to assign replication groups in the
backup to existing replication groups. If it cannot do this (for example, due to cluster incompatibility), the recovery fails.

2. Restores part of the etcd metadata: the cluster specification and parts of replication group definitions.

3. When the correct metadataisin place, runsstoloni ni t in PITR initialization mode with Recover yTar get Name set to the
value of the syncpoint LSN from the backup info file. Dat aRest or eCommand and Rest or eConmand are also taken from
the backup info file. These commands are generated automatically during the backup phase, it is not recommended to make any
corrections to the file containing the Shardman cluster backup description. When restoring a cluster for each replication group,
the WAL files containing the final LSN to restore will be requested automatically from the backup repository from the remote
backup node viathe pg_probackup ar chi ve- get command.

4. Waits for each replication group to recover.
5. Finally we need to enable ar chi ve_conmand back.

When performing a sequential restoration in PostgreSQL, be cautious of potential timeline conflicts within WAL (Write-Ahead
Logging) segments. Thisissue commonly arises when restoring a database from a backup that was created at a certain point in time.
If the database continues to operate and generate WAL segments after this backup, these new WAL segments are associated with
a different timeline. During restoration, if the system tries to replay WAL segments from a different timeline - one that diverged
from the point of backup - it can lead to inconsistencies and conflicts. Additionally, after completing a restoration in PostgreSQL,
it is strongly advised not to restore the database onto the same timeline or onto any timeline that precedes the one from which the
backup was made.

2.6.5. Merging Backups with pg_probackup

The moreincremental backups are created, the bigger the total size of the backup catalog grows. To save the disk space, it ispossible
to merge the incremental backups to their parent full backup by running the merge command, specifying the backup 1D of the most
recent incremental backup to merge:

$ shardmanct| --store-endpoints http://etcdl: 2379, http://etcd2: 2379, http://etcd3: 2379
pr obackup nerge --backup-path backup_dir --backup-id backup_ id

This command merges the backups that belong to acommon incremental backup chain. If afull backup is specified, itis merged with
itsfirst incremental backup. If anincremental backup is specified, it ismerged toits parent full backup, along with all theincremental
backups between them. Once the merge is complete, the full backup covers all the merged data, and the incremental backups are
removed as redundant. Thus, the merge operation virtually equals to removing all the outdated backups from afull backup, but alot
faster, especially for the large data volumes. It also saves I/0 and network traffic when using pg_probackup in the remote mode.

Before merging, pg_probackup validates all the affected backups to ensure that they are valid. The current backup status can be
seen by running the s how command:

$ shardmanct| --store-endpoints http://etcdl: 2379, http://etcd2: 2379, http://etcd3: 2379
pr obackup show --backup-path backup dir

For more information, see reference.

2.6.6. Deleting Backups with pg_probackup
To delete a backup that is no longer needed, run the following command:

$ shardmanct| --store-endpoints http://etcdl: 2379, http://etcd2: 2379, http://etcd3: 2379
pr obackup del ete --backup-path backup_dir --backup-id backup_id

This command deletes a backup with a specified backup_i d, aong with al the incremental backups that descend from this
backup_i d, if any. It alows to delete some of the recent incremental backups, without affecting the underlying full backup and
other incremental backups that follow it.

To delete the obsolete WAL files that are not needed for recovery, usethe - - del et e- wal flag:

$ shardmanct| --store-endpoints http://etcdl: 2379, http://etcd2: 2379, http://etcd3: 2379
pr obackup del ete --backup-path backup_dir --backup-id backup_id --del ete-wal

30

Manage

For more information, see reference.

2.7. Configuring Secure Communications with etcd

This section describes how to configure secure communications between the etcd store and Shardman services and tools.

etcd is acritical component for a Shardman cluster. If an intruder gets access to the etcd store, it gains full control over the whole
cluster, including DBMSS access with DBA privileges. To protect your cluster, it is recommended that you configure TL S authenti-
cation between etcd daemons and Shardman services.

Tothisend, you can use HTTPS transport with certificates signed by your local certification authority (CA) to encrypt traffic between
the etcd cluster and Shardman services and restrict etcd access. To do this, perform the steps described in the next sections.

2.7.1. Generating SSL Certificates
To generate SSL certificates, perform the following steps:

1.

If the CA does not exist, generate a self-signed root certificate. Generate al certificates on one trusted host. Here certificates that
expire in 10000 days are generated (you can choose a more suitable interval):

openssl genrsa -out root CA key 4096
openssl req -x509 -new -key root CA key -days 10000 -out rootCA crt

Prepare the following openssl configuration file for each etcd host:

[req]

default _bits = 4096
di stingui shed_nanme = req_di stingui shed_namne
req_ext ensi ons = req_ext

[req_distingui shed nane]
count r yNanme

st at eOr Provi nceNane

| ocal i t yNane

organi zat i onNane

commonNanme

[req_ext]

subj ect Alt Nanme = @l t_nanes
[alt_nanes]

Country Nane (2 letter code)

State or Province Nane (full nanme)
Locality Name (eg, city)

Organi zati on Nanme (eg, conpany)

Conmon Nane (e.g. server FQN or YOUR nane)

DNS. 1 =nl
IP. 1 = 192.168.1.1
I P.2 = 127.0.0.1

Under [al t _names] , specify alternative subject namesfor the etcd host. These names must include the etcd server hostname,
IP address and local IP. Including the local 1P is convenient rather than required.

Save the file. For example, the names of configuration filesfor nodes n1 —n3 canbenl. san. conf —n3. san. conf.
Using the configuration files prepared, generate private keys and certificate requests for etcd hosts:

openssl genrsa -out nl.etcd. key 4096
openssl req -config nl.san.conf -new -key nl.etcd. key -out nl.etcd.csr -subj "/
C=RU/ ST=Moscow Regi on/ L=Moscow O=Test / CN=n1"

Here“ / C=RU ST=Mbscow Regi on/ L=Mbscow O=Test / CN=nl1 " means that the certificate request is generated with
the country name RU, state Moscow Regi on, locality Moscow, organization Test and common name nl. The common
name must match the DNS name of your etcd server.

Sign the certification request:

openssl x509 -extfile nl.san.conf -extensions req_ext -req -in nl.etcd.csr -CA
root CA . crt -CAkey root CA key -CAcreateserial -out nl.etcd.crt -days 10000

Check the certificatesto ensure they contain correct X509v3 Subj ect Al t er nati ve Nane fields. Thefields must contain
thelist of DNS names and | P addresses that you added to the openssl configuration file:

31

Manage

openssl x509 -in nl.etcd.crt -noout -text

6. Generate client certificates for Shardman services and client tools. These certificates do not need to contain the subj ec-
t Al t Nane header, and CN is not important in the example below. It generates one common certificate-key pair for services
and one — for tools:

openssl x509 genrsa -out shardnan_services. key 4096

openssl req -new -key shardman_servi ces. key -out shardnman_services.csr -subj "/
C=RU/ ST=Moscow Regi on/ L=Moscow O=Test / CN=shar dman_ser vi ces"

openssl x509 -req -in shardman_services.csr -CA rootCA crt -CAkey root CA key -
CAcreateserial -out shardman_services.crt -days 10000

openssl x509 genrsa -out shardman_t ool s. key 4096

openssl req -new -key shardman_t ool s. key -out shardnman_tools.csr -subj "/ C=RU
ST=Moscow Regi on/ L=Mbscow O=Test / CN=shar dnman_t ool s"

openssl x509 -req -in shardman_tools.csr -CA rootCA crt -CAkey root CA key -
CAcreateserial -out shardman_tools.crt -days 10000

2.7.2. Configuring etcd and shardmand Services

Now configure services (etcd and shardmand) to use the generated certificates. To do this, perform the following steps:

1. Oneachetcd node, put r oot CA. crt,nX. etcd. crt andnX. et cd. key inthelocation accessible to the etcd daemon (for
example, create / et ¢/ et cd directory and put files there). Ensure that the nX. et cd. key fileisonly accessible to the etcd
daemon user.

2. Specify the following configuration for etcd daemonsin/ et ¢/ def aul t / et cd:

unqualified first name

ETCD_NAME=N1

where we actually listen for peers

ETCD_LI STEN_PEER _URLS=https://0.0.0.0: 2380

where we actually listen for clients

ETCD LI STEN_CLI ENT_URLS=https://0.0.0.0: 2379

advertise where this machine is listening for clients
ETCD_ADVERTI SE_CLI ENT_URLS=htt ps://nl: 2379

--initial flags are used during bootstrapping and ignored afterwards, so it is
ok to specify them al ways

advertise where this machine is |listening for peer

ETCD_| NI TI AL_ADVERTI SE_PEER URLS=https://nl: 2380

ETCD I NI TI AL_CLUSTER TOKEN=et cd- cl ust er

ansi bl e_nodenane is fqdn

ETCD I NI TI AL_CLUSTER=n1=ht t ps:// nl: 2380, n2=htt ps: // n2: 2380, n3=htt ps: // n3: 2380
ETCD | NI TI AL_CLUSTER_STATE=new

ETCD DATA DI R=/var/li b/ et cd/ def aul t/ nenber
ETCD_AUTO_COVPACTI ON_RETENTI ON=1

ETCD KEY_FI LE=/ et ¢/ et cd/ nl. et cd. key

ETCD CERT _Fl LE=/etc/etcd/nl.etcd.crt

ETCD TRUSTED CA FI LE=/etc/etcd/rootCA crt
ETCD_CLI ENT_CERT_AUTH=t r ue

ETCD PEER CERT _FI LE=/etc/etcd/nl.etcd.crt

ETCD PEER KEY_FI LE=/ et c/ etcd/ nl. et cd. key

ETCD PEER TRUSTED CA FI LE=/etc/etcd/rootCA crt
ETCD_PEER CLI ENT_CERT_AUTH=t r ue

Replace n1 here with the appropriate node name.

3. Restart etcd services on all eted cluster nodes:

32

Manage

systenct!l restart etcd
4. To check the new configuration, use the following command:

etcdctl --endpoints=https://nl:2379, https://n2:2379, https://n3:2379 --cacert /
etc/etcd/rootCA.crt --cert /etc/etcd/nl.etcd.crt --key /etc/etcd/ nl. etcd. key nenber
list -wtable

S TS Hom e e - T T
TS +

| ID | STATUS | NAME | PEER ADDRS | CLI ENT ADDRS | |S LEARNER
I

S TS Hom e e - T T
TS +

| 66ebe06d7302c3f0 | started | n2 | https://n2:2380 | https://n2:2379 | fal se
I

| bl080bf 5ff 059980 | started | nl | https://nl:2380 | https://nl:2379 | fal se
I

| d98323257249fefb | started | n3 | https://n3:2380 | https://n3:2379 | fal se
I

S TS Hom e e - T T
TS +

5. On each Shardman cluster node, put r oot CA. crt, shardman_servi ces. crt and shar dnan_servi ces. key ina
location accessible to the post gr es user (for example, create the/ et ¢/ shar dman directory and put files there). Ensure
that theshar dman_ser vi ces. key fileisonly accessible to the post gr es user.

6. Edit the shardmand configuration file/ et ¢/ shar dman/ shar dmand- cl ust er 0. env asfollows:

SDM STORE_ENDPQO NTS=https:// nl: 2379, https://n2: 2379, https://n3: 2379
SDM STORE_CA FI LE=/ et ¢/ shar dman/ r oot CA. crt

SDM STORE_CERT_FI LE=/ et ¢/ shar dman/ shar dman_ser vi ces. crt

SDM STORE_KEY=/ et ¢/ shar dman/ shar dnman_ser vi ces. key

7. Restart shar dmand@ ! ust er O services on al Shardman nodes:

systenctl restart shardnand@l usterO

2.7.3. Using Shardman Tools

Before using Shardman tools, copy r oot CA. crt, shardman_t ool s. crt and shar dman_t ool s. key to some location on
the Shardman management node where they are accessible to the management user. Here, any node with installed Shardman utilities
that is used to manage the Shardman cluster is meant by management node. This can aso be one of the Shardman cluster nodes
(or al of them). By management user, a user is meant who runs shardmanctl tool. It is assumed that the certificates and key are
located inthe/ et ¢/ shar dnan directory.

When using Shardman tools, be sureto add --store-ca-file,--store-cert-file and--store-key options to
shar drmanct | command. For example, the following command gets the cluster status:

shardmanct| --store-ca-file /etc/shardman/rootCA.crt --store-cert-file /etc/shardman/
shardman_t ool s.crt --store-key /etc/shardman/ shardman_t ool s. key --store-endpoints
https://nl: 2379, https://n2: 2379, https://n3: 2379 status

2.8. Upgrading a Cluster

This section discusses how to upgrade your database from one Shardman release to a newer one. It is best to review the Release
Notes before an upgrade and look for any changes that may cause issues for your application. Y ou can proceed to upgrade if there
are no potential issues.

The process of updating a Shardman consists of several steps that must be performed sequentialy:

1. Upgrade Shardman packages.

33

Manage

2. Restart all Shardman services and database instances.

3. Upgrade database shardman extension.
2.8.1. Upgrade Packages

2.8.1.1. APT-based Systems
To upgrade packages, typically run the following command:

$ apt update && apt --only-upgrade install shardman-tools shardman-services
post grespro-sdm 14-contri b postgrespro-sdm 14-server

or upgrade all packages:
$ apt update && apt upgrade

Check that all packages have been updated on each node:
$ dpkg -1 | grep -E '(postgrespro|shardman)’

2.8.1.2. RPM-based systems
To upgrade packages, typically run the following command:

$ yum updat e shardman-tool s shardman-servi ces postgrespro-sdm 14-contrib postgrespro-
sdm 14-server

or upgrade all packages:
$ yum update

Check that all packages have been updated on each node:

$ yumlist --installed | grep -E ' (postgrespro|shardnman)’

2.8.2. Restart Shardman Services and Database Instances

After updating the packages, you need to restart all cluster services. It can be done with a single shar dmanct| restart
command:

$ shardmanct!| --cluster-nane clusterO --store-endpoints http://etcdl: 2379, http://
et cd2: 2379, http://etcd3: 2379 restart

You can skip the - - ¢l ust er - nanme and - - st or e- endpoi nt s options by setting the SDM_CLUSTER_NAME and SDM_S-
TORE_ENDPO NTS environment variables as in the example below:

export SDM STORE ENDPO NTS=http://etcdl: 2379, http://
et cd2: 2379, http://etcd3: 2379
export SDM CLUSTER NAME=cl usterQ

2.8.3. Upgrade the Extension

After restarting services of the cluster, you should update the server extensions by running the following command:

$ shardmanct!l --cluster-nane clusterQ --store-endpoints http://etcdl: 2379, http://
et cd2: 2379, http://etcd3: 2379 upgrade

In the case when the shardman extension version and server library version are different, distributed queries and Shardman DDL
will not work.

Shardman extensions try to ensure that they do not communicate with incompatible software. Incompatibilities can arise for severa
reasons. the shardman shared library version does not match the extension version or the remote server version does not match the
local server version. In case when the extension and library versions mismatch, Shardman cannot modify its metadataand will refuse
to perform operations on global objects until the extension is updated. In case when the remote server version does not match the
local server version or when they belong to different clusters, Shardman will refuse to communicate with the server.

34

Manage

2.9. Fault Tolerance and High Availability

Shardman provides out-of-the-box fault tolerance. The shardmand daemon monitors the cluster configuration and manages stolon
clusters, which are used to guarantee high availability of all shardsand fault tolerance. The common Shardman configuration (shard-
mand, stolon clusters) is stored in an etcd cluster.

To ensure fault tolerance for each stolon cluster, you must set Repf act or > 0 inthe cross-replication mode (Pl acenent Pol -
i cy=cr oss) or add at least one replica in the manual-topology mode (Pl acenent Pol i cy=manual).

stolon sent i nel s have the responsibility of observing the keeper s and carrying out elections to choose one of the keeper s
asthe master. Sent i nel s hold elections when the cluster starts and every time the current master keeper goes down.

One of the keeper s is elected as the master. All write operations take place at the master, and the other instances are used as
follower instances.

In the case of automatic failover, stolon will take care of automatically changing slave to master and failed master to standby. Only
one additional thing you need is etcd to store the master/dlave instant information by stolon.

If necessary, you can switch to a new master manually by running theshar dnmanct| shard swi t ch command.

#utomatic failover is based on the use of timeouts, which can be overriddenin sdnspec. j son, asin the example:

{

" Shar dSpec": {
"faillnterval": "20s",
"sleeplnterval": "5s",
"convergenceTi neout”: "30s",
"deadKeeper Renoval I nterval ": "48h",
"request Ti meout": "10s",

}l

}l

Y ou can specify some high-availability options to define cluster behavior in a fault state: masterDemotionEnabled, masterDemo-
tionTimeout, minSyncM onitorEnabled and minSyncM onitorUnhealthy Timeout.

2.9.1. Timeouts

conver genceTi meout

Interval to wait for a database to be converged to the required state when no long operations are expected.
Default: 30s.

deadKeeper Renpval | nt er val

Interval after which adead keeper will be removed from the cluster data.
Default: 48h.

faillnterval

Interval after the first failureto declare akeeper or adatabase as not healthy.
Default: 20s.

request Ti meout

Time after which any request (keeper checksfromsent i nel etc...) will fail.

35

Manage

Default: 10s.

sl eepl nt erval

Interval to wait before the next check.

Default: 5s.

2.10. Logging

Shardman is acritical point in your infrastructure asit stores all of your data. This makes|ogging mandatory. So you should under-
stand how logging worksin Shardman. Due to the complexity of Shardman, it supportslogging from several components: logs from
the shardmand daemon that manages the cluster configuration and logs from PostgreSQL database instances.

2.10.1. PostgreSQL Logs

Shardman uses standard PostgreSQL logging settings, described here. Logging settings should be placedto sdnspec. j soninthe
pgPar amet er s section, as shown in the example below:

{
"Shar dSpec": {
"pgParaneters": {
"log_line prefix": "%n|[%][%]",
"l og_m n_nessages": "I NFO',
"l og_statenment": "none",
"l og_destination": "stderr",
"log_filenanme": "pg.log",
"l oggi ng _col lector": "on",
"l og_checkpoints": "fal se",
}1
}1
}

By default, logs are placed in the directory like this: / var /| i b/ pgpr o/ sdm 14/ dat a/ keeper - cl ust er 0- cl over - 1-
shrnl- 0/ post gres/ | og. Inthisexample, cl ust er O isthe current cluster, cl over - 1- shr nl is the name of the current
shard, O istheidentifier of the integrated keeper process. To change the log directory, set thel og_di r ect or y parameter.

2.10.2. shardmand Logs

shardmand is asystemd unit, itslogs are written to journald. You can usej our nal ct | to examineit. For example, you can use
the following command:

$ journalctl -u shardmand@l usterO. service

Y ou can filter logs by arbitrary time limitsusing the - - si nce and - - unt i | options, which restrict the entries displayed to those
after or before the given time, respectively. The time values can comein avariety of formats. For absolute time values, you should
use YYYY- M DD HH: MM SS. For instance, we can see al of the entries since January 10th, 2023 at 5:15 PM by typing:

$ journalctl -u shardmand@! usterO. service --since "2023-01-10
17: 15: 00"

If components of the above format are left off, some defaults will be applied. For instance, if the date is omitted, the current date
will be assumed. If the time component is missing, “00:00:00" (midnight) will be substituted. The seconds field can be left off as
well to default to “00”:

$ journalctl -u shardmand@l! usterO. service --since "2023-01-10" --
until "2023-01-11 03: 00"

36

https://www.postgresql.org/docs/14/runtime-config-logging.html

Manage

To control the log verbosity for all Shardman services, set SDM _LOG_LEVEL in the shardmand configuration file.

2.10.3. Getting Information on Backend Crashes

Some crashes are caused by the hardware failure or the DBM Sissues. To understand the root causes of the crash, usecr ash_i nf o.
To set it up, follow these steps:

» Create adirectory on each cluster node that the Shardman operating system user has accessto (usualy, itispost gr es). Er-
ror reports will be sent to this directory.

install -d -o postgres -g postgres -m 700 /var/lib/postgresql/crashinfo

» Setthecrash_info_l ocationvaue

Note
Thiswill cause the DBMS to restart.

shardmanct!| --store-endpoints http://etcdserver: 2379 set -y crash_info_|location=/
var/|i b/ postgresql/crashinfo

» To make sure the changes are applied, send asignal that will cause the backend failure and a core dump creation, along with
the instance restart.

Note

Do it in your test environment only.

Connect to your DBMS and find out PID of the backend associated with the current session:

post gres=# sel ect pg_backend pid();
pg_backend_pid

Then send the SIGSEGV signal to the process with the received PID:
kill -11 23770

This will result in this backend crash, and alog file with the time, backtrace and cause of an error will be writtento/ var/1i b/
post gresql / crashi nf o:

Si gnal
Program recei ved signal: 11 (SI GSEGV)
Si gnal UTC date time: 25.10.2024 08:37:02
Program
pid: 23770
ppi d: 17506

program.i nvocati on_nane: postgres: postgres postgres 10.42.42.10(34202) idle
program.i nvocation_short_name: tgres 10.42.42.10(34202) idle
exe_path: /opt/pgpro/sdm 14/ bi n/ post gres
exe: postgres

Backtrace
1 postgres + 0x5b55c0 0x55c5ba8459b7 0x00007f f cbef 19070
bt crash_handl er + Ox3f7

37

Manage

2 [ibc.so.6 + 0x4251f
0x50

unknown ./signal/../sysdeps/unix/sysv/linux/x86_64/1ibc_sigaction.c:0
3 libc.so.6 + 0x125f80 0x7f 01lc2d8df 9a 0x00007ffchef 195b8
Ox1la

epol | _wait ../sysdeps/unix/sysv/linux/epoll_wait.c:30

4 postgres + 0x433870 0x55c5ba6c39bb 0x00007f f cbef 195¢c0
Wai t Event Set Wait + 0x14b

Ox7f01c2caa520 0x00007ffcbef 19140

5 post gres + 0x320deO 0x55c5ba5b0e74 0x00007ff cbef 19650
0x94

6 postgres + 0x327d20 0x55c5ba5b7dae 0x00007ff cbef 196a0
Ox8e

7 post gres + 0x328980 0x55c5ba5b8995 0x00007ff cbef 196c0
0x15

8 post gres + 0x457da0 0x55c5ba6e909c 0x00007ff cbef 196d0
Ox12fc

9 postgres + 0x3ce210 0x55c5ba65ef 86 0x00007f f cbef 19a60
0xd76

10 postgres + 0x3cf240 0x55c5ba65f e1l8 0x00007ff cbef 1a040
+ Oxbd8

11 postgres + Oxl4eccO 0x55c5ba3df 182 0x00007ff cbef 1a0c0

12 libc.so.6 + 0x29d10
_libc_init_first + 0x90
__libc_start_call_min ../sysdeps/nptl/libc_start_call_main.h:58

13 Ilibc.so.6 + 0x29dcO 0x7f01c2c91e40 0x00007ffcbef1al90
__libc_start_nain + 0x80

call init ../csu/libc-start.c:128

_libc_start_main_inmpl ../csu/libc-start.c:379

14 postgres + 0x14f200 0x55c5ba3df 225 0x00007ff cbef 1ale0

0x7f01c2c91d90 0x00007ff cbef 1a0f 0

__sigaction +

epol |l _wait +

secure_read +

pg_r ecvbuf +

pg_get byte +

Post gresMain +

ServerLoop +

Post mast er Mai n

mai n + 0x4c2

_start + 0x25

38

Chapter 3. Develop

A Shardman cluster uses two main ways to store data: sharded tables is the main way, designed for big data, and global tables,
designed for small dictionaries. A sharded table contains different parts of the data in each shard, while a global table contains the
same datain al shards. Efficient query execution on a Shardman cluster requires that the data is properly distributed across cluster
shards and primarily, a sharding key is properly selected.

First of al, when transitioning from aregular database schemato the distributed one, it makes sense to start the design with deciding
how the datawill be distributed in the Shardman cluster. Shardman distributes table rows across shards according to the hash value
of the column to use for the table partitioning. In other words, the desired distribution must be even, and it aims to distribute equal
parts of the data across cluster nodes and evenly distribute the workload.

When a database architect chooses the column to use for the table partitioning, the mgjority of typical queries executed must be
taken into account to ensure the maximum performance.

In general, for most queries, especially, for those that use joins, the sharding key must be included in the query text. Otherwise,
Shardman will not push down queriesto cluster nodesfor execution, which will cause essential performance degradation as compared
to usage of asingle instance.

Secondly, when choosing a sharding key, it is important that it does not change. A resharding operation, that is, a change of the
sharding key, is pretty time-consuming and resource-intensive. At present, Shardman lacks techniques that automate this procedure.
In general, if resharding is required, the data in all the sharded tables should be either moved to local tables or to sharded tables
with another sharding key. Then you will have to create new sharded tables with a new sharding key and move the data back. This
operation is very expensive and resource-intensive. Such operations often cannot be performed without the system outage during
the migration.

Another point isthat distributed transactions, that is, those that update data on several cluster shards at the same point in time, cannot
be performed for free. So the better dataislocated and computations are performed inside one shard, the faster queries are executed.
In general, the proportion of distributed and non-distributed transactions must be shifted towards non-distributed ones. Only apply
distributed transactions if you have a compelling need to do it.

And finaly, Shardman is a distributed system, which has both advantages and disadvantages inherent to such systems. Besides,
Shardman is primarily designed for OLTP load. OLAP queries to Shardman are also possible, but only pretty simple of them (for
details, see limitations). If you want to load an OLTP system with OLAP functionality, bear in mind that the lists of analytic and
aggregate SQL functions to be sent to other shards for execution are highly limited.

Also special attention should be paid to type casts in queries because inclusion of atype casting function in a query condition can
make it impossible to be pushed down to aremote server.

Taking into account the above features and limitations of the RDBMS, we will provide two simple examples of the transition from
aregular to a distributed database schema.

3.1. Migration of a Database Schema

Let'susethe demo database “ Airlines’ asan examplefor devel opment. The detailed description of the database schemaisavailable at
https://postgrespro.ru/education/demodb. This schemais used as ademo in training courses of Postgres Professional, for example,
in“QPT. Query Optimization”.

The schema authors characterized it like this: “We tried to make the database schema as simple as possible, without overloading it
with unnecessary details, but not too simple to allow writing interesting and meaningful queries.”

The database schema contains several tables with meaningful contents. For example, let's take the demo database version of
13.10.2016. You can find a link to downloading the database and schema dump (in Russian) following the link https://postgre-
spro.ru/education/courses/QPT. In addition to query examples provided below, you can find more examples from the above course
and in the “ Postgres. The First Experience” book.

This section shows two examples of schema modification and query adaptation:

» Naive approach. It issimple, with minimal transformations to the schema, and it aims to add clarity to how querieswork in a
distributed schema.

39

https://postgrespro.com/education/demodb
https://postgrespro.com/community/courses
https://postgrespro.ru/education/courses/QPT
https://postgrespro.ru/education/courses/QPT
https://edu.postgrespro.ru/introbook_v9_en.pdf

Develop

e Complex approach It is more complex, provided for better understanding of problems and processes that a developer may con-
front when migrating to a distributed schema and adapting applications to such a schema.

3.1.1. Database Source Schema

Figure 3.1. Database Sour ce Schema

Bookings Airports
HAHHH HiHHH R
book_ref # airport_code
* book_date * airport_name
* total_amount * city
* longitude
* latitude
* timezone
Tickets Ticket_flights Flights Aircrafts
HiHHHH? HEHHHTHH HiHHIH HHERR
ticket_no # ticket_no \ # flight_id # aircraft_code
* book_ref # flight_id i * flight_no * model
* passenger_id * fare_conditions * scheduled_departure * range
* passenger_name * amount * scheduled_arrival
° contact_data * departure_airport
* arrival_airport
* status
* aircraft_code
° actual_departure
° actual_arrival
Boarding_passes Seats
B HiHHHH
ticket_no # aircraft_code
flight_id # seat_no
* boarding_no * fare_conditions
* seat_no

The authors describe the “ Airlines’ database as follows:
The main entity is abooking (booki ngs).

One booking can include several passengers, with aseparateticket (t i cket s) issued to each passenger. A ticket
has a unique number and includes information about the passenger. As such, the passenger is not a separate entity.
Both the passenger's name and identity document number can change over time, so it isimpossible to uniquely
identify all the tickets of a particular person; for simplicity, we can assume that all passengers are unique.

The ticket includes one or more flight segments (t i cket _f I i ght s). Several flight segments can be included
into a single ticket if there are no non-stop flights between the points of departure and destination (connecting
flights), or if it is a round-trip ticket. Although there is no constraint in the schema, it is assumed that all tickets
in the booking have the same flight segments.

Eachflight (f | i ght s) goesfrom oneairport (ai r por t s) to another. Flights with the same flight number have
the same points of departure and destination, but differ in departure date.

At flight check-in, the passenger is issued a boarding pass (boar di ng_passes), where the seat number is
specified. The passenger can check in for the flight only if this flight is included into the ticket. The flight-seat
combination must be unique to avoid issuing two boarding passes for the same seat.

40

Develop

The number of seats (seat s) intheaircraft and their distribution between different travel classes depends on the
model of the aircraft (ai r cr af t s) performing the flight. It is assumed that every aircraft model has only one
cabin configuration. Database schemadoes not check that seat numbersin boarding passes have the corresponding
seats in the aircraft (such verification can be done using table triggers, or at the application level).

Let'slook at the common entities and sizes of tablesintheabove schema. Itisclearthatti cket fli ght s,boardi ng_passes
andti cket s tablesarelinked by thet i cket _no field. Additionally, the data size in these tables is 95% the total DB size.

Let'slook at the booki ngs table. Although it seemsto have a pretty compact structure, it can reach a considerable size over time.

Migration examples are provided for a Shardman cluster that contains four shards. Sharded tables are divided into four parts, so that
one part of a sharded tableisonly located in one shard. Thisis done on purpose, to more clearly display query plans. Inreal life, the
number of partitions should be determined by the maximum number of cluster nodes.

When migrating a real-life DB schema, you should think over in advance the number of partitions to partition data in distributed
tables. Also bear in mind that the best migration approach isto use SQL transformations that impose minimal limitations on database
objects.

3.1.2. Shardman Cluster Configuration

The Shardman cluster consists of four nodes— nodel, node2, node3 and node4. Each cluster nodeis a shard.

The examples assume that the tables are divided into four partitions by the sharding key (hum part s = 4) and distributed across
cluster nodes. Each table part with the datais |ocated in the corresponding shard:

* shard- 1 islocated on the cluster node nodel
* shard- 2 islocated on the cluster node node2
* shard- 3 islocated on the cluster node node3
» shar d- 4 islocated on the cluster node node4

The cluster isintentionally presented in asimplified configuration. Cluster nodes have no replicas, and the configuration is not fault-
tolerant.

3.1.3. Selecting the Sharding Key

3.1.3.1. Naive® Approach —ti cket _no Sharding Key

With this approach, the choice of the sharding key is pretty evident. It is the ticket number t i cket _no. The ticket number is the
primary key of thet i cket s table, and itisaforeign key of thet i cket _fli ght s andboar di ng_passes tables.

Theprimary key of thet i cket _f I i ght s andboar di ng_passes tablesiscomposite. It isauniqueindex composed of t i ck-
et_noandflight_id.

Soifti cket _no ischosen to be asharding key, the data of the three tables is distributed across cluster shards and partitions that
contain linked data are located in the same shards.

Therest of thetables—ai r ports,fli ghts,aircraftsandseat s aresmall enough and rarely change. Thisallows making
them global tables, or dictionary tables.

41

Develop

Figure 3.2. Naive Approach Schema

Airports 56Kb
airport_code
Bookings 105Mb * airport_name
* city

* coordinates
book_ref * timezone
* book_date
* total_amount

Flights
516Mb

Tickets . . # flight_id
Ticket_flights * flight_no Aircrafts
* scheduled_departure

ticket_no # ticket no * scheduled_arrival

* book_ref # flight P * departure_airport "1 # aircraft_code
passenger_id . fare_gonditions X arrival_airport i model

* passenger_name status range

"
amount .
* contact_data * aircraft_code

° actual_departure
° actual_arrival 16Kb
381Mb

Boarding_passes
19Mb
Seats

ticket_no

flight_id

* boarding_no # aircraft_code
*seat_no # seat_no

88Kb fare_conditions

The main advantage of this approach from the point of view of creating the schema and queries to the DB is that no changes are
needed except those that are inherent to working with distributed systems, that is, explicitly declaring tables, sequences etc. as
distributed when creating them.

Once the sharding key is selected, we can proceed to creation of the distributed schema.
1

3.1.3.1.1. Creating the Schema Distributed by ti cket _no
First, turn on broadcasting DDL statementsto all cluster shards:
SET shar dman. broadcast _ddl TO on;

Let'screatethe booki ngs schemaon all shards:
CREATE SCHEMA booki ngs;

Astablesin the schemaare linked with one another by aforeign key, the order of creating them, aswell as auxiliary objects, matters.

The demo database contains “snapshots’ of data, similar to a backup copy of area system captured at some point in time. For
example, if aflight has the Depar t ed status, it means that the aircraft had already departed and was airborne at the time of the
backup copy. The“snapshot” timeissaved inthebooki ngs. now() function. Y ou can usethisfunctionin demo queriesfor cases
where you would use the now() function in areal database. In addition, the return value of this function determines the version of
the demo database. The latest version availableis of 13.10.2016:

SELECT booki ngs. nowm() as now,
now

1 In the context of computer science, the expression “naive approach” (verbatim: naive method, naive approach) means something very similar to “brute-force approach” and means the first basic idea that
occursin one's mind and often takes no account of the complexity, corner cases and of some requirements. On one hand, thisis a coarse and direct method that only aims to get aworking solution. On the other
hand, such solutions are easy to understand and implement, but system resources may be used inefficiently.

42

Develop

2016- 10- 13 17: 00: 00+03
In relation to this moment, all flights are classified as past and future flights.

Let's create the utility function booki ngs. now() :

CREATE FUNCTI ON booki ngs. now() RETURNS tinestanp with tine zone

LANGUAGE sql | MMUTABLE COST 0. 00999999978

AS

$sqgl $

SELECT $0q$2016- 10-13 17: 00: 00qq: : TI MESTAMP AT TI ME ZONE
zzEur ope/ Moscowzz;

$sql $;

In addition to tables, a global sequence is needed for generating I1Ds for datainsertion inthef | i ght s table. In this example, we
create the sequence explicitly and link it with a column of this table by assigning the generated values by default.

Let's create the sequence using the following DDL statement:

CREATE SEQUENCE booki ngs.flights flight id seq
| NCREMENT BY 1
NO M NVALUE
NO MAXVALUE
CACHE 1 with(global);

wi t h(gl obal) creates a single distributed sequence available on al cluster nodes, which assigns values in a certain range for
each shard, and the ranges for different shards do not intersect. See Section 7.6 and Section 6.5 for more details of global sequences.

Under the hood of global sequences, there are regular sequences on each shard, and they are allocated by sequential blocks (of 65536
numbers by default). When al the numbersin a block are over, the next block is allocated to the local sequence of the shard. |I.e.,
numbers from the global sequences are unique, but there is no strict monotony, and there may be "holes' in the values given by
the sequencer?.

The sequencescan havethebi gseri al ,snal | seri al ,orseri al type. Sequences are applicable both for sharded and global
tables.

Y ou should not create local sequences in each shard as their values may be duplicated.
2

Now, we create global tables. As explained above, they are small-size, their data changes rarely, so they are actually dictionary
tables, which must contain the same datain all cluster shards. It isrequired that each global table has a primary key.

Let's create global tables using the following DDL statements:

CREATE TABLE bookings.aircrafts (
aircraft _code character(3) NOT NULL prinmary key,
nodel text NOT NULL,
range i nteger NOT NULL,
CONSTRAI NT aircrafts_range _check CHECK ((range > 0))
) with (global);

CREATE TABLE booki ngs. seats (

aircraft _code character(3) references bookings.aircrafts(aircraft_code),

seat _no character varying(4) NOT NULL,

fare_conditions character varying(10) NOT NULL,

CONSTRAI NT seats fare_conditions_check CHECK (((fare_conditions)::text = ANY
(ARRAY[(' Econony' : :character varying)::text, ('Confort'::character varying)::text,
(' Business'::character varying)::text]))),

PRI MARY KEY (aircraft_code, seat_no)

) with (global);

2 Asvalues from different ranges can be assigned, the value can leap. For example, the value of 5 may be assigned in the first shard, the value of 140003 — in the second one, 70003 — in the third one etc.

43

Develop

CREATE TABLE booki ngs. ai rports (
ai rport_code character(3) NOT NULL prinmary key,
ai rport_name text NOT NULL,
city text NOT NULL,
| ongi t ude doubl e precision NOT NULL,
| ati tude doubl e precision NOT NULL,
ti mezone text NOT NULL
) with (global);

CREATE TABLE booki ngs. booki ngs (
book_ref character(6) NOT NULL,
book_date timestanp with time zone NOT NULL,
total _amount numeric(10,2) NOT NULL,
PRI MARY KEY (book_ref)
) with (gl obal);

CREATE TABLE bookings.flights (
flight_id bigint NOT NULL PRI MARY KEY, -- <= a sequence will be assigned
flight_no character(6) NOT NULL,
schedul ed_departure tinestanp with time zone NOT NULL,
schedul ed_arrival timestanp with tine zone NOT NULL,
departure_airport character(3) REFERENCES booki ngs. ai rports(airport_code),
arrival _airport character(3) REFERENCES booki ngs. ai rports(airport_code),
status character varying(20) NOT NULL,
aircraft_code character(3) references bookings.aircrafts(aircraft_code),
actual _departure tinmestanp with time zone,
actual _arrival tinmestanp with tinme zone,
CONSTRAI NT flights_check CHECK ((schedul ed_arrival > schedul ed_departure)),
CONSTRAI NT flights _checkl CHECK (((actual _arrival IS NULL) OR ((actual departure IS
NOT NULL) AND (actual _arrival IS NOT NULL) AND (actual _arrival > actual _departure)))),
CONSTRAI NT flights_status_check CHECK (((status)::text = ANY (ARRAY[(' On
Time'::character varying)::text, ('Delayed ::character varying)::text,
(' Departed' ::character varying)::text, ('Arrived ::character varying)::text,
(' Schedul ed' : : character varying)::text, ('Cancelled ::character varying)::text])))
) with (gl obal);

-- associate the sequence with table colum
ALTER SEQUENCE booki ngs.flights_flight _id _seq OANED BY bookings.flights.flight_id;

-- assign the default value to the col um
ALTER TABLE booki ngs.flights ALTER COLUW flight_id SET DEFAULT
next val (' booki ngs.flights_flight_id _seq');

ALTER TABLE booki ngs. flights ADD CONSTRAINT flights flight_no_schedul ed_departure_key
UNI QUE (flight_no, schedul ed_departure);

Next, we create sharded tablest i cket s, ti cket _fli ghts andboar di ng_passes inthebooki ngs schema:

CREATE TABLE booki ngs.tickets (
ticket _no character(13) PRI MARY KEY,
book ref character(6) REFERENCES booki ngs. booki ngs(book_ref),
passenger _id character varying(20) NOT NULL,
passenger _nanme text NOT NULL,
contact _data jsonb
) with (distributed by="ticket _no', numparts=4);

CREATE TABLE booki ngs.ticket flights (

Develop

ticket_no character(13) NOT NULL,

flight_id bigint references bookings.flights(flight_id),

fare_conditions character varying(10) NOT NULL,

amount nuneric(10,2) NOT NULL,

CONSTRAI NT ticket_flights_amunt_check CHECK ((amunt >= (0)::nuneric)),

CONSTRAI NT ticket _flights_fare_conditions_check CHECK (((fare_conditions)::text =
ANY (ARRAY[(' Econony' ::character varying)::text, ('Confort'::character varying)::text,
(' Business'::character varying)::text]))),

PRI MARY KEY (ticket_no, flight_id)

) with (distributed_by="ticket_no', col ocate_wi t h="bookings.tickets');

CREATE TABLE booki ngs. boar di ng_passes (
ticket_no character(13) NOT NULL,
flight_id bigint NOT NULL,
boardi ng_no integer NOT NULL,
seat _no character varying(4) NOT NULL,
FOREI GN KEY (ticket_no, flight_id) REFERENCES bookings.ticket flights(ticket_no,
flight_id),
PRI MARY KEY (ticket_no, flight_id)
) with (distributed_by="ticket_no', col ocate_wi t h="bookings.tickets');

-- constraints nust contain sharding key
ALTER TABLE booki ngs. boar di ng_passes ADD CONSTRAI NT
boar di ng_passes_flight i d_boardi ng_no_key UNIQUE (ticket_no, flight_id, boarding_no);

ALTER TABLE booki ngs. boar di ng_passes ADD CONSTRAI NT
boar di ng_passes_flight _id_seat_no_key UNIQUE (ticket_no, flight_id, seat_no);

Additionally, when creating sharded tables, thenum par t s parameter can be specified, which defines the number of sharded table
partitions. Inthisexample, it equals4 to minimize the output of query plans. Thedefault valueis 20. This parameter may beimportant
if in future you are going to add shards to a cluster and scale horizontally.

Based on the assumed future load and data size, num_par t s should be sufficient for data rebalancing when new shards are added
(num_part s must be greater than or equal to the number of cluster nodes). On the other hand, too many partitions cause a con-
siderable increase of the query planning time. Therefore, an optimal balance should be achieved between the number of partitions
and number of cluster nodes.

Thelast thing to do isto create a view that is needed to execute some queries:

CREATE VI EW booki ngs. flights v AS

SELECT f.flight_id,
f.flight_no,
f.schedul ed_departure,
ti mezone(dep.tinezone, f.schedul ed departure) AS schedul ed_departure_| ocal
f.schedul ed_arrival,
ti mezone(arr.tinmezone, f.scheduled arrival) AS schedul ed arrival | ocal
(f.scheduled arrival - f.schedul ed departure) AS schedul ed duration
f.departure_airport,
dep. ai rport _nane AS departure_airport_nane,
dep.city AS departure_city,
f.arrival _airport,
arr.airport_nane AS arrival _airport_nane,
arr.city AS arrival _city,
f.status,
f.aircraft_code,
f.actual departure,
ti mezone(dep.tinmezone, f.actual departure) AS actual departure_| ocal
f.actual _arrival,
ti mezone(arr.tinmezone, f.actual arrival) AS actual arrival | ocal

45

Develop

(f.actual _arrival - f.actual __departure) AS actual _duration
FROM booki ngs. flights f,
booki ngs. ai rports dep,
booki ngs. ai rports arr
WHERE ((f.departure_airport = dep.airport_code) AND (f.arrival _airport =
arr.airport_code));

Now creation of the distributed schemais complete. Let's turn off broadcasting of DDL statements:

SET shar dnman. broadcast _ddl TO off;

3.1.3.2. Complex Approach — book_r ef Sharding Key

A more complex approach to the sharding key choice involves the source schema modification, inclusion of new parameters in
gueries and other important changes.

What if an airline isin the market for over 10 years and the booki ngs table reaches the size that does not alow you to continue
having it global anymore? But distributing its datais impossible either as it does not contain fields contained in other tables that it
can be distributed among (as in variant 1).

When modifying the source schema, another field can be appropriate for use as a sharding key.
Looking at the booki ngs table, we can notice that values of the book_r ef field are unique and this field is a primary key.
book_r ef isasoaforeignkeytothet i cket s table. Sothisfield seemssuitablefor being the sharding key. However, book _r ef

ismissing fromthet i cket fli ghts andboar di ng_passes tables.

If weaddbook_r ef totheti cket fli ghtsandboar di ng_passes tables, distributing of all thetablesbooki ngs,ti ck-
ets,ticket _flightsandboardi ng_passes withthebook_r ef sharding key becomes possible.

book_ref should beaddedtoti cket fli ghts and boardi ng_passes in the source schema, and book_r ef must be
filled with datafrom the booki ngs table.

46

Develop

Figure 3.3. Sour ce Schema M odification

Airports 56Kb
airport_code
Bookings 105Mb * airport_name
* city

* coordinates

book_ref * timezone
* book_date .

* total_amount

Flights
516Mb
Tickets . . # flight_id
Ticket_flights * flight_no Aircrafts
* scheduled_departure
ticket_no ! * scheduled_arrival
* book_ref i::i(;k:tt_igo * departure_airport "1 # aircraft_code
X passenger_id * fare_Eonditions X arrival_airport X model
passenger_name . status range
M amount .
contact_data * book ref aircraft_code
= ° actual_departure 16Kb
H ° actual_arrival
381Mb

Boarding_ppasses
19Mb
Seats

ticket_no

flight_id
* boarding_no # aircraft_code
seat_no

* seat_no . .
427Mb || * book_ref 88Kb fare_conditions

3.1.3.2.1. Modifying the Source Schema
To properly transfer data from the source schema to the distributed one, the schema should be modified as follows:
1. Addthebook_ref fieldtotheti cket flights andboardi ng_passes tables:

ALTER TABLE ticket flights
ADD COLUMWN book _ref char(6);

ALTER TABLE boardi ng_passes
ADD COLUMWN book _ref char(6);

2. Inthesetables, fill the added book_r ef field with data:

W TH batch AS (SELECT book_ref,
ticket _no
FROM ti ckets)
UPDATE ticket _flights
SET book_ref = batch. book_ref
FROM bat ch
WHERE ticket _flights.ticket_no = batch.ticket_no
AND ticket flights.book ref I'S NULL;

W TH batch AS (SELECT book_ref,
ticket _no
FROM ti cket s)
UPDATE boar di ng_passes
SET book_ref = batch. book_ref

47

Develop

FROM bat ch
WHERE boar di ng_passes.ticket _no = batch.ticket_no
AND boar di ng_passes. book_ref IS NULL;

Avoid using this example in aloaded production system as this approach blocks entire tables, that is, al rowsin the tables. In
production systems, data should be transferred incrementally, by parts.

Now the database schemais ready for data transferring.

3.1.3.2.2. Creating a Schema Distributed by book_r ef

Here the Shardman shardman.broadcast_all_sgl() function is used to broadcast DDL statements on al cluster nodes. Let's create
thebooki ngs schemaon al shards:

SELECT shar dnman. br oadcast _al | _sql (' CREATE SCHEMA booki ngs');
Astablesin the schema are linked with an external key, the order of creating tables matters.

First we create a utility function booki ngs. now() :

SELECT shardman. br oadcast _al | _sql (
$sqgl $
CREATE FUNCTI ON booki ngs. now() RETURNS tinestanp with tine zone
LANGUAGE sql | MMUTABLE COST 0. 00999999978
AS
$q%
SELECT gg2016-10-13 17: 00: 00qqg: : TI MESTAMP
AT TIME ZONE zzEur ope/ Moscowszz$;
$q3;
$sqgl $
);

Tables, users and sequences are created with the regular SQL. This function is not needed for that.

In this example, the global sequence is not explicitly created as for the bi gseri al type, Shardman creates a global sequence
automatically.

Now let's create global tables using the following DDL statements:

CREATE TABLE bookings.aircrafts (
aircraft_code character(3) NOT NULL PRI MARY KEY,
nodel text NOT NULL,
range i nteger NOT NULL,
CONSTRAI NT aircrafts_range_check CHECK ((range > 0))
) WTH (gl obal);

CREATE TABLE booki ngs. seats (
aircraft_code character(3) REFERENCES booki ngs. aircrafts(aircraft_code),
seat _no character varying(4) NOT NULL,
fare_conditi ons character varying(10) NOT NULL,
CONSTRAI NT seats_fare_conditions_check CHECK ((
(fare_conditions)::text = ANY (ARRAY[
(' Econony' ::character varying)::text,
("Confort'::character varying)::text,
(" Business'::character varying)::text])
),
PRI MARY KEY (aircraft_code, seat_no)
) WTH (gl obal);

CREATE TABLE booki ngs. ai rports (
ai rport_code character(3) NOT NULL PRI MARY KEY,
ai rport_name text NOT NULL,
city text NOT NULL,

48

Develop

| ongi t ude doubl e precision NOT NULL,
| ati tude doubl e precision NOT NULL,
ti mezone text NOT NULL

) WTH (gl obal);

CREATE TABLE bookings.flights (
-- the gl obal sequence will be created automatically
-- the default value will be assigned
flight_id bigserial NOT NULL PRI MARY KEY,
flight_no character(6) NOT NULL,
schedul ed_departure tinestanp with time zone NOT NULL,
schedul ed_arrival timestanp with tine zone NOT NULL,
departure_airport character(3) REFERENCES booki ngs. ai rports(airport_code),
arrival _airport character(3) REFERENCES booki ngs. ai rports(airport_code),
status character varying(20) NOT NULL,
aircraft_code character(3) REFERENCES booki ngs.aircrafts(aircraft_code),
actual _departure tinmestanp with time zone,
actual _arrival tinmestanp with tinme zone,
CONSTRAI NT flights_check CHECK ((schedul ed_arrival > schedul ed_departure)),
CONSTRAI NT flights_checkl CHECK ((
(actual _arrival 1S NULL)
OR ((actual _departure I'S NOT NULL)
AND (actual _arrival 1S NOT NULL)
AND (actual _arrival > actual _departure)))),
CONSTRAI NT flights_status_check CHECK (
((status)::text = ANY (
ARRAY[(' On Tine'::character varying)::text,
(' Del ayed' : : character varying)::text,
(' Departed' ::character varying)::text,
("Arrived' ::character varying)::text,
(' Schedul ed' : : character varying)::text,
(' Cancel l ed'::character varying)::text])))
) WTH (gl obal);

ALTER TABLE booki ngs. flights
ADD CONSTRAINT flights flight_no_schedul ed_departure_key
UNI QUE (flight_no, schedul ed_departure);

Now let's create sharded tablesbooki ngs,ti cket s,ti cket flights andboardi ng_passes inthebooki ngs schema,
asin the previous example:

-- no nodifications to these tables are done except distributing them
CREATE TABLE booki ngs. booki ngs (

book ref character(6) NOT NULL PRI MARY KEY,

book date timestamp with tinme zone NOT NULL,

total amount nuneric(10,2) NOT NULL
) WTH (distributed _by='book ref', num parts=4);

CREATE TABLE booki ngs.tickets (
ticket_no character(13) NOT NULL,
book ref character(6) REFERENCES booki ngs. booki ngs(book_ref),
passenger _id character varying(20) NOT NULL,
passenger _nanme text NOT NULL,
contact _data j sonb,
PRI MARY KEY (book ref, ticket_no)
) WTH (distributed _by="book ref', col ocate_ w th="booki ngs. booki ngs');

-- adding the book ref foreign key to these tables

49

Develop

CREATE TABLE bookings.ticket _flights (
ticket_no character(13) NOT NULL,
flight_id bigint NOT NULL,
fare_conditions character varying(10) NOT NULL
amount nuneric(10,2) NOT NULL,
book_ref character(6) NOT NULL, -- <= added book_ref
CONSTRAI NT ticket flights_amunt _check
CHECK ((amount >= (0)::numeric)),
CONSTRAI NT ticket _flights _fare_conditions_check
CHECK (((fare_conditions)::text = ANY (
ARRAY[(' Econony' :: character varying)::text,
("Confort'::character varying)::text,
(' Business'::character varying)::text])))
FOREI GN KEY (book_ref, ticket_no)

REFERENCES booki ngs. ti cket s(book_ref, ticket_no),
PRI MARY KEY (book_ref, ticket_no, flight_id) -- <= changed the primary key

) with (distributed_by="book ref', colocate_w th="book

CREATE TABLE booki ngs. boar di ng_passes (

ticket_no character(13) NOT NULL,

flight_id bigint NOT NULL,

boar di ng_no i nteger NOT NULL

seat _no character varying(4) NOT NULL

book_ref character(6) NOT NULL, — <= added book_ref
FOREI GN KEY (book_ref, ticket_no, flight_id)
REFERENCES booki ngs. ticket flights(book_ref, ticket_no,
PRI MARY KEY (book_ref, ticket_no, flight_id)
) WTH (distributed_by="book ref', col ocate_w th="book

-- constraints nust contain the shardi ng key
ALTER TABLE booki ngs. boar di ng_passes

ADD CONSTRAI NT boardi ng_passes_flight_id_boardi ng_no_

UNI QUE (book_ref, ticket_no, flight_id, boarding_no);

ALTER TABLE booki ngs. boar di ng_passes
ADD CONSTRAI NT boardi ng_passes_flight_id_seat_no_key
UNI QUE (book_ref, ticket_no, flight_id, seat_no);

Let'screatethebooki ngs. f i ght s view:

SELECT shar dman. broadcast _al | _sql ($$
CREATE VI EW booki ngs. flights v AS
SELECT f.flight_id,
f.flight_no,
f.schedul ed_departure,
ti mezone(dep.ti mezone, f.schedul ed departure) AS
f.schedul ed_arrival,
ti mezone(arr.tinmezone, f.scheduled arrival) AS

(f.scheduled arrival - f.schedul ed departure) AS
f.departure_airport,

dep. ai rport_nane AS
dep.city AS
f.arrival _airport,

arr.airport_nane AS
arr.city AS
f.status,

f.aircraft_code,
f.actual departure,

ngs. booki ngs') ;

flight_id),

ngs. booki ngs') ;

key

schedul ed_departure_| ocal

schedul ed_arrival _| ocal
schedul ed_dur ati on,

departure_airport_nane,
departure_city,

arrival _airport_nane,
arrival _city,

50

Develop

ti mezone(dep.timezone, f.actual _departure) AS actual _departure_|l ocal,
f.actual _arrival,

ti mezone(arr.timezone, f.actual _arrival) AS actual _arrival _|ocal,
(f.actual _arrival - f.actual _departure) AS actual _duration

FROM booki ngs. flights f,
booki ngs. ai rports dep,
booki ngs. ai rports arr
WHERE ((f.departure_airport = dep.airport_code) AND (f.arrival _airport =
arr.airport_code));
$9) ;

The schema creation is now complete. Let's proceed to data migration.

3.2. Data Migration

When migrating data, the order of fields in the source and target schema is important. The order and types of fields in the non-
distributed and distributed databases must be the same.

Themigration utility does exactly what isrequested by the user, who does not interfere with data migration processes except, maybe,
distributing the data directly to the shard where it must be stored.

Shardman provides convenient migration tools. Once the distributed schemais created and the sharding key chosen, it is now needed
to define the data migration rules. The data source can be either export CSV datafiles or asingle DBMS server.

It is not always convenient to use CSV files as they can reach a pretty large size and require additional resources for storage and
transfer.

Migrating data directly from DB to DB without an intermediate storage phase is much more convenient.

The order of loading data during migration must be taken into account. Tables can be linked with aforeign key, so the dataiin tables
that other tables will reference must be loaded first. To follow such an order, in the migration file, you should establish the priority
that defines tables whose data must be loaded first. The higher the value of the pri ori t y parameter, the higher the priority. For
example, if the priorities 1, 2 and 3 are defined, tables with the priority 3 will be loaded first, then those with the priority 2, and
last with the priority 1.

The shardmanct| | oad command lets you define the order of migrating tables, which can be specified in the configuration
YML file.

3.2.1. Naive Approach
Thefollowing isan example of them grat e. ymi file:

version: "1.0"
m grate:
connstr: "dbnanme=denp host =si ngl e- pg-i nstance port=5432 user=post gres password=*x**x=*x*"
jobs: 8
bat ch: 2000
options:
schenas:
- nane: bookings
the all parameter set to false turns off automatic creation of pages
tables are already created, at the Schema M gration phase
all: false
t abl es:
- nane: airports
defining a gl obal table
type: gl obal
as tables are linked, data nmigration priority nust be defined
setting highest priority to tables whose data
must be copied first

51

Develop

priority: 3

- name: aircrafts
type: gl obal
priority: 3

- nanme: seats
type: gl obal
priority: 3

- nane: booki ngs
type: gl obal
priority: 3

- nane: flights
type: gl obal
priority: 3

- name: tickets
type: sharded
defining a sharded table
specifying the shardi ng key
di stributedby: ticket_no
partitions: 4
priority: 2
- nane: ticket_flights
type: sharded
di stributedby: ticket_no
defining a sharded and col ocated table
specifying the nanme of the table that ticket flights table will be col ocated

col ocatewi th: tickets
partitions: 4
priority: 2

- nane: boardi ng_passes
type: sharded
di stributedby: ticket_no
col ocatewi th: tickets
partitions: 4
priority: 1

Thisfile definesthe data source, that is, the si ngl e- pg- i nst ance node, its connection port, user name and password, and data
source DB name. Some parameters of the migration utility operation are also defined (there can be quite afew of them, as explained
in the section called “ Loading Data with a Schema from PostgreSQL"). Thefile also defines the number of threads — 8, batch size,
that is, the number of rows organized into batches for processing during migration, as well as table processing priorities. The data
for the global tablesis migrated first, then the data for the sharded tablest i cket s andti cket _f i ght s, and migration of the
boar di ng_passes table completes the migration. The value of pri ori t y definesthe priority of dataloading, data for tables
with higher value will be loaded earlier than with the lower value. The following command performs the migration:

shardmanct!| | oad --schema nigrate.ymn

If the utility completes with the message “data |oading completed successfully”, it means that the migration was a success.

3.2.2. Complex Approach

With this approach, the launch and operation of the shardmanctl utility in the | oad mode is the same as with the naive approach.
However, the file that defines the order of loading tables will slightly differ as the sharding key has changed:

version: "1.0"

m grate:

connstr: "dbnanme=denop host =si ngl e- pg-i nstance port=5432 user =post gres
passwor d=post gr es"

jobs: 8

bat ch: 2000

52

Develop

options:
schemas:
- nane: booki ngs
all: false
t abl es:

- nane: airports
type: gl obal
priority: 5

- name: aircrafts
type: gl obal
priority: 5

- nanme: seats
type: gl obal
priority: 5

- nane: flights
type: gl obal
priority: 5

- nane: booki ngs
type: sharded
priority: 4
partitions: 4
di stri butedby: book_ref
- name: tickets
type: sharded
di stri butedby: book_ref
col ocatew t h: booki ngs
partitions: 4
priority: 3
- nane: ticket_flights
type: sharded
di stri butedby: book_ref
col ocatew t h: booki ngs
partitions: 4
priority: 2
- nane: boardi ng_passes
type: sharded
di stri butedby: book_ref
col ocatew t h: booki ngs
partitions: 4
priority: 1

3.3. Queries

When all the migration operationswere performed successfully, it'stimeto check how queries are executed in the distributed schema.

3.3.1. q1 Query
Theql query is pretty simple, it selects the booking with the specified number:

SELECT *
FROM booki ngs. booki ngs b
WHERE b. book ref = '0824C5';

For the regular PostgreSQL and for thet i cket _no sharding key, this query runs comparably fast. How fast the query is for the
book_r ef sharding key, depends on the shard where it is executed. If it is executed in a shard where there is physically no data,
Shardman sends the query to another shard, which causes atime delay due to network communication.

3.3.2. g2 Query
This g2 query selects al the tickets from the specified booking:

53

Develop

SELECT t.*
FROM booki ngs. booki ngs b
JA N booki ngs.tickets t
ON t. book _ref = b.book_ref
WHERE b. book _ref = '0824C5';

Withthebook _r ef shardingkey, the query ispushed down to shards and the global tableisjoined with partitions of asharded table:

Foreign Scan (actual rows=2 | oops=1)
Rel ati ons: (bookings_2 fdw b) INNER JON (tickets 2 fdwt)
Net wor k: FDW byt es sent =433 recei ved=237

Let'slook at the query plan for thet i cket _no sharding key:

Append (actual rows=2 | oops=1)
Net wor k: FDW byt es sent=1263 recei ved=205
-> Nested Loop (actual rows=1 | oops=1)
-> Seq Scan on tickets 0t _1 (actual rows=1 | oops=1)
Filter: (book ref = '0824C5'::bpchar)
Rows Renoved by Filter: 207092
-> Index Only Scan using booki ngs_pkey on bookings b (actual rows=1 | oops=1)
I ndex Cond: (book ref = '0824C5':: bpchar)
Heap Fetches: 0
-> Async Foreign Scan (actual rows=1 | oops=1)
Rel ations: (tickets 1 fdwt _2) INNER JO N (booki ngs b)
Net wor k: FDW byt es sent =421 recei ved=205
-> Async Foreign Scan (actual rows=0 | oops=1)
Rel ations: (tickets 2 fdwt_3) INNER JO N (booki ngs b)
Net wor k: FDW byt es sent =421
-> Async Foreign Scan (actual rows=0 | oops=1)
Rel ations: (tickets 3 fdwt_4) INNER JO N (booki ngs b)
Net wor k: FDW byt es sent =421

The plan contains Async For ei gn Scan nodes, which mean network data exchange between the query source node and shards,
that is, datais received from shards and final processing is done on the query source node.

Look at the Net wor k line. A good criterion of whether query execution on shardsis optimal isthe value of r ecei ved. The lower
its value, the better shards execute distributed queries. Most processing is done remotely, and the query source node gets the result
that is ready for further processing.

The case where the sharding key isbook_r ef looks much better as the table with ticket numbers already containsbook _r ef .

The plan of the query to be executed on an arbitrary node is as follows:

Foreign Scan (actual rows=2 | oops=1)
Rel ati ons: (bookings_2 fdw b) INNER JON (tickets_2 fdwt)
Net wor k: FDW byt es sent =433 recei ved=237

The network data exchange is only done with one shard, in which the query is executed. It isshard- 3, andtheti ckets_2
partition of thet i cket s tableis on the fourth node.
If this query is executed in the shard where the datais physically located, the query will be executed yet faster.

Let'slook at the plan:

Nested Loop (actual rows=2 | oops=1)
-> Index Only Scan using bookings 2 pkey on bookings 2
-> Bitnap Heap Scan on tickets 2
-> Bitnmap Index Scan on tickets 2 book ref idx

Network data exchange is not needed here as the requested datais located within the shard in which the query is executed.

In some cases, the choice of the shard for query execution matters. Being aware of the distribution logic, you can implement it at the
application level and send some queries immediately to the shard where the needed datais |ocated based on the sharding key.

54

Develop

3.3.3. 3 Query

The q3 query finds all the flights for one of the tickets in the booking selected earlier:

SELECT tf.*, t.*

FROM booki ngs. tickets t

JA N bookings.ticket_flights tf
ONtf.ticket_no = t.ticket_no

WHERE t.ticket no ' 0005435126781" ;

To choose a specific shard for query execution, asdiscussed in Section 3.3.2, notethat withthet i cket _no sharding key, the query
execution will be more optimal in the shard that contains the partition with the data. The planner knows that the shard contains all
the data needed for joining tables, so no network communication between shards will occur.

For the book _r ef sharding key, note that from the booking number you can compute the ticket number and request it right from
the “proper” shard.

So the query is asfollows:

SELECT tf.*, t.*
FROM booki ngs. tickets t
JO N booki ngs.ticket flights tf
ON tf.ticket_no =t.ticket_no
AND t. book ref = tf.book ref
WHERE t.ticket_no = '0005435126781"
AND tf.book ref = '0824C5';

The query is executed more slowly in the shard that does not contain the partition with the data sought:

Foreign Scan (actual rows=6 | oops=1)
Rel ations: (tickets 1 fdwt) INNER JON (ticket flights 1 fdw tf)
Net wor k: FDW byt es sent =434 recei ved=369

Network communication between shardsis present in the plan, as it contains the For ei gn Scan node.

Theimportance of including the sharding key in aquery can beillustrated with the following query for thebook _r ef sharding key:

SELECT tf.*, t.*
FROM booki ngs. tickets t
JO N booki ngs.ticket _flights tf

ON tf.ticket_no =t.ticket_no
WHERE t.ticket_no = '0005435126781"
AND tf.book ref = '0824C5';

Here the sharding key isnot included inj oi n on purpose. Let'slook at the plan:

Nested Loop (actual rows=6 | oops=1)
Net wor k: FDW byt es sent=1419 recei ved=600
-> Foreign Scan on ticket flights 2 fdwtf (actual rows=6 |oops=1)
Net wor k: FDW byt es sent =381 recei ved=395
-> Append (actual rows=1 | oops=6)
Net wor k: FDW byt es sent=1038 recei ved=205
-> Seq Scan on tickets 0t _1 (actual rows=0 | oops=6)
Filter: (ticket_no = '0005435126781':: bpchar)
Rows Renoved by Filter: 207273
-> Async Foreign Scan on tickets 1 fdwt_ 2 (actual rows=0 | oops=6)
Net wor k: FDW byt es sent =346 recei ved=205
-> Async Foreign Scan on tickets 2 fdwt_ 3 (actual rows=1 | oops=6)
Net wor k: FDW byt es sent =346
-> Async Foreign Scan on tickets 3 fdwt_4 (actual rows=0 | oops=6)
Net wor k: FDW byt es sent =346

We can notice differences from previous examples. Here the query was executed on all nodes and index was not used, so to return
as few as 6 rows, Shardman had to sequentially scan whole partitions of thet i cket s table, return the result to the query source

55

Develop

node and after that perform j oi n withtheti cket fli ghts table. Async Forei gn Scan nodes indicate the sequential
scan of thet i cket s table on shards.

3.3.4. g4 Query

This query returns all the flights for all the tickets included in a booking. There are several ways to do this: include a subquery in
a VWHERE clause with the booking number, in the | N clause, explicitly list ticket numbers or use the WHERE. . . OR clause. Let's
check execution of the query for al these variants.

SELECT tf.*, t.*
FROM booki ngs. tickets t
JA N bookings.ticket _flights tf
ON tf.ticket_no = t.ticket_no
WHERE t.ticket_no IN (
SELECT t.ticket_no
FROM booki ngs. booki ngs b
JA N bookings.tickets t
ON t. book _ref = b.book_ref
WHERE b. book ref = '0824C5'

);
Thisisjust the query from the non-distributed database that we tried to execute. But its execution is equally poor for both sharding
keys.

The query planislikethis:

Hash Join (actual rows=12 | oops=1)
Hash Cond: (tf.ticket_no = t.ticket_no)
-> Append (actual rows=2360335 | oops=1)
-> Async Foreign Scan on ticket flights O fdw tf_1 (actual rows=589983
| oops=1)
-> Async Foreign Scan on ticket flights_ 1 fdw tf_2 (actual rows=590175
| oops=1)
-> Seq Scan on ticket _flights_2 tf_3 (actual rows=590174 | oops=1)
-> Async Foreign Scan on ticket flights_3 fdw tf_4 (actual rows=590003
| oops=1)
-> Hash (actual rows=2 | oops=1)
Buckets: 1024 Batches: 1 Menory Usage: 9kB
-> Hash Sem Join (actual rows=2 | oops=1)
Hash Cond: (t.ticket_no =1t _b.ticket_no)
-> Append (actual rows=829071 | oops=1)
-> Async Foreign Scan on tickets O fdwt_1 (actual rows=207273

| oops=1)
-> Async Foreign Scan on tickets_ 1 fdwt_2 (actual rows=207058
| oops=1)
-> Seq Scan on tickets 2 t_3 (actual rows=207431 | oops=1)
-> Async Foreign Scan on tickets 3 fdwt_4 (actual rows=207309
| oops=1)
-> Hash (actual rows=2 | oops=1)
Buckets: 1024 Batches: 1 Menory Usage: 9kB
-> Nested Loop (actual rows=2 | oops=1)
-> Index Only Scan using tickets_ 2 pkey on tickets_ 2 t_5
-> Materialize (actual rows=1 | oops=2)
-> Index Only Scan using bookings_ 2 pkey on booki ngs_2
b

This plan shows that Shardman coped with the WHERE subquery, then had to request all the rows of theti cket s andti ck-
et fli ghts tablesand then process them on the query source node. Thisisareally poor performance. Let'stry other variants:

For thet i cket _no sharding key, the query is:

56

Develop

SELECT tf.*, t.*
FROM booki ngs. tickets t
JA N bookings.ticket _flights tf
ONtf.ticket_no = t.ticket_no
VWHERE t.ticket_no IN ('0005435126781',"' 0005435126782") ;

and the planiis:

Append (actual rows=12 | oops=1)

Net wor k: FDW byt es sent=1098 recei ved=1656

-> Async Foreign Scan (actual rows=6 |oops=1)
Rel ations: (tickets_O_fdw t_1) INNER JON (ticket_flights_0O_fdw tf_1)
Net wor k: FDW byt es sent =549 recei ved=1656

-> Async Foreign Scan (actual rows=6 |oops=1)
Rel ations: (tickets_1 fdwt_2) INNER JON (ticket_flights_1_fdw tf_2)
Net wor k: FDW byt es sent =549

Everything ispretty good here: the query was executed on two shards of four, and Append of theresultsreceived only had to be done.

Let'srecall that book_r ef iscontained in bothti ckets andti cket _fl i ghts tables. Sofor thebook_r ef sharding key,
thequery is:

SELECT tf.*, t.*

FROM booki ngs. tickets t

JO N booki ngs.ticket flights tf
ON tf.ticket_no =t.ticket_no
AND tf.book ref = t.book ref
WHERE t. book ref = '0824C5';

and theplanis:

Forei gn Scan (actual rows=12 | oops=1)
Rel ations: (tickets 2 fdwt) INNER JON (ticket flights 2 fdw tf)
Net wor k: FDW byt es sent =547 recei ved=1717

Thisis an excellent result — the query was modified to execute well in the distributed schema

3.3.5. g5 Query

Thisisasmall analytical query, which returns the names and ticket numbers of the passengers who got registered first.

SELECT t. passenger _nane, t.ticket_no
FROM booki ngs. tickets t
JA N booki ngs. boar di ng_passes bp

ON bp.ticket _no =t.ticket_no
GROUP BY t.passenger_nane, t.ticket_no
HAVI NG max(bp. boardi ng_no) =1
AND count (*) > 1;

This query is executed pretty slowly for both sharding keys. Below isthe plan for book _r ef :

HashAggregate (actual rows=424 | oops=1)
Group Key: t.ticket_no
Filter: ((max(bp.boarding no) = 1) AND (count(*) > 1))
Bat ches: 85 Menory Usage: 4265kB Di sk Usage: 112008kB
Rows Renoved by Filter: 700748
Net wor k: FDW byt es sent=1215 recei ved=77111136
-> Append (actual rows=1894295 | oops=1)
Net wor k: FDW byt es sent=1215 recei ved=77111136
-> Async Foreign Scan (actual rows=473327 | oops=1)
Rel ations: (tickets O fdwt_ 1) INNER JO N (boardi ng_passes 0 fdw bp_1)
Net wor k: FDW byt es sent =404 recei ved=813128

57

Develop

-> Async Foreign Scan (actual rows=472632 | oops=1)
Rel ations: (tickets_1 fdwt_2) INNER JO N (boardi ng_passes_1 fdw bp_2)
Net wor k: FDW byt es sent =404
-> Async Foreign Scan (actual rows=475755 | oops=1)
Rel ations: (tickets 2 fdwt_3) INNER JO N (boardi ng_passes_2_ fdw bp_3)
Net wor k: FDW byt es sent =407
-> Hash Join (actual rows=472581 | oops=1)
Hash Cond: (bp_4.ticket_no =t_4.ticket_no)
Net wor k: FDW byt es recei ved=28841344
-> Seq Scan on boardi ng_passes_3 bp_4 (actual rows=472581 | oops=1)
-> Hash (actual rows=207118 | oops=1)
Buckets: 65536 Batches: 4 Menory Usage: 3654kB
Net wor k: FDW byt es recei ved=9176680
-> Seq Scan on tickets 3 t_4 (actual rows=207118 | oops=1)
Net wor k: FDW byt es recei ved=9176680

Note a pretty large amount of network data transfer between shards. Let's improve the query by adding book _r ef as one more
condition for joining tables:

SELECT t. passenger_nane, t.ticket_no
FROM booki ngs. tickets t
JO N booki ngs. boar di ng_passes bp
ON bp.ticket_no = t.ticket_no
AND bp. book_ref=t.book ref -- <= added book_ref
CGROUP BY t.passenger_nanme, t.ticket_no
HAVI NG max(bp. boarding _no) =1
AND count (*) > 1;

Let'slook at the query plan:

GroupAggregat e (actual rows=424 | oops=1)
Group Key: t.passenger_nane, t.ticket _no
Filter: ((max(bp.boarding no) = 1) AND (count(*) > 1))
Rows Renoved by Filter: 700748
Net wor k: FDW byt es sent=1424 recei ved=77092816

->

Merge Append (actual rows=1894295 | oops=1)

Sort Key: t.passenger nane, t.ticket_no
Net wor k: FDW byt es sent=1424 recei ved=77092816
-> Foreign Scan (actual rows=472757 | oops=1)
Rel ations: (tickets O fdwt_ 1) INNER JO N (boardi ng_passes 0 fdw bp_1)
Net wor k: FDW byt es sent =472 recei ved=2884064
-> Sort (actual rows=472843 | oops=1)
Sort Key: t_2.passenger_nane, t_2.ticket_no
Sort Method: external nerge Disk: 21152kB
Net wor k: FDW byt es recei ved=22753536
-> Hash Join (actual rows=472843 | oops=1)
Hash Cond: ((bp_2.ticket _no =t _2.ticket_no) AND (bp_2.book ref =

t _2.book ref))

Net wor k: FDW byt es recei ved=22753536
-> Seq Scan on boardi ng _passes_1 bp_2 (actual rows=472843 | oops=1)
-> Hash (actual rows=207058 | oops=1)
Buckets: 65536 Batches: 8 Menory Usage: 2264kB
Net wor k: FDW byt es recei ved=22753536
-> Seq Scan on tickets 1t 2 (actual rows=207058 | oops=1)
Net wor k: FDW byt es recei ved=22753536
-> Foreign Scan (actual rows=474715 | oops=1)
Rel ations: (tickets 2 fdwt _3) INNER JO N (boardi ng_passes 2 fdw bp_3)
Net wor k: FDW byt es sent=476 recei ved=2884120
-> Foreign Scan (actual rows=473980 | oops=1)
Rel ations: (tickets 3 fdwt _4) INNER JO N (boardi ng_passes_3 fdw bp_4)

58

Develop

Net wor k: FDW byt es sent =476 recei ved=25745384

The situation considerably improved, the result was received on the query source node, and then final filtering, grouping and joining
data were done.

For thet i cket _no sharding key, the source query plan looks like this:

HashAggregate (actual rows=424 | oops=1)
Group Key: t.ticket_no
Filter: ((max(bp.boarding no) = 1) AND (count(*) > 1))
Batches: 85 Menory Usage: 4265kB Di sk Usage: 111824kB
Rows Renoved by Filter: 700748
Net wor k: FDW byt es sent=1188 recei ved=77103620
-> Append (actual rows=1894295 | oops=1)
Net wor k: FDW byt es sent=1188 recei ved=77103620
-> Async Foreign Scan (actual rows=473327 | oops=1)
Rel ations: (tickets O fdwt_ 1) INNER JO N (boardi ng_passes 0 fdw bp_1)
Net wor k: FDW byt es sent =394
-> Hash Join (actual rows=472632 | oops=1)
Hash Cond: (bp_2.ticket _no =t_2.ticket_no)
Net wor k: FDW byt es recei ved=77103620
-> Seq Scan on boardi ng _passes_1 bp_2 (actual rows=472632 | oops=1)
-> Hash (actual rows=206712 | oops=1)
Buckets: 65536 Batches: 4 Menory Usage: 3654kB
Net wor k: FDW byt es recei ved=23859576
-> Seq Scan on tickets 1t 2 (actual rows=206712 | oops=1)
Net wor k: FDW byt es recei ved=23859576
-> Async Foreign Scan (actual rows=475755 | oops=1)
Rel ations: (tickets 2 fdwt_3) INNER JO N (boardi ng_passes 2 fdw bp_3)
Net wor k: FDW byt es sent =397
-> Async Foreign Scan (actual rows=472581 | oops=1)
Rel ations: (tickets 3 fdwt_4) INNER JO N (boardi ng_passes_3 fdw bp_4)
Net wor k: FDW byt es sent =397

We can see that table joining is done on shards, while data filtering, grouping and aggregation are done on the query source node.
The source query does not need to be modified in this case.

3.3.6. 6 Query

For each ticket booked aweek ago from now, this query displays al the included flight segments, together with connection time.

SELECT tf.ticket_no, f.departure_airport,
f.arrival _airport,f.schedul ed_arrival,
| ead(f.schedul ed_departure) OVER w AS next _departure,
| ead(f.schedul ed_departure) OVER w - f.schedul ed_arrival AS gap
FROM booki ngs. booki ngs b
JO N booki ngs.tickets t
ON t. book _ref = b.book ref
JO N bookings.ticket _flights tf
ONtf.ticket_no = t.ticket_no
JA N booki ngs.flights f
ONtf.flight_id = f.flight_id
WHERE b. book _date = booki ngs. now()::date - | NTERVAL '7 day'

W NDOW w AS (
PARTI TION BY tf.ticket_no
ORDER BY f.schedul ed_departure);

For thisquery, thetypeof thebook _dat e column must becast fromthet i mest anpt z todat e. When casting types, PostgreSQL
casts the column data type to the data type specified in the filtering condition, but not vice versa. Therefore, Shardman must first get
all the data from other shards, cast the type and apply filtering only after that. The query plan looks like this:

59

Develop

W ndowAgg (actual rows=26 | oops=1)
Net wor k: FDW byt es sent=1750 recei ved=113339240
-> Sort (actual rows=26 | oops=1)
Sort Key: tf.ticket_no, f.schedul ed_departure
Sort Method: quicksort Menory: 27kB
Net wor k: FDW byt es sent=1750 recei ved=113339240
-> Append (actual rows=26 | oops=1)
Net wor k: FDW byt es sent=1750 recei ved=113339240
-> Hash Join (actual rows=10 | oops=1)
Hash Cond: (t_1.book_ref = b.book_ref)
Net wor k: FDW byt es sent =582 recei ved=37717376
-> Hash Join (actual rows=6 | oops=1)
Hash Cond: (t_2.book_ref = b.book_ref)
Net wor k: FDW byt es sent =582 recei ved=37700608
-> Hash Join (actual rows=2 | oops=1)
Hash Cond: (t_3.book_ref = b.book_ref)
Net wor k: FDW byt es sent =586 recei ved=37921256
-> Nested Loop (actual rows=8 | oops=1)
-> Nested Loop (actual rows=8 | oops=1)
-> Hash Join (actual rows=2 | oops=1)
Hash Cond: (t_4.book_ref = b.book_ref)
-> Seq Scan on tickets 3 t_4 (actual rows=207118
| oops=1)
-> Index Scan using flights_pkey on flights f (actual rows=1
| oops=8)
I ndex Cond: (flight_id = tf_4.flight_id)

Pay attention to the number of bytes received from other cluster shards and to the sequential scan of thet i cket s table. Let'stry
to rewrite the query to avoid the type cast.

Theideais pretty simple: the interval will be computed at the application level rather than at the database level, and the data of the
ti mest anpt z type will be readily passed to the query. Besides, creation of an additional index can help:

CREATE I NDEX if not exists bookings_date_ i dx ON booki ngs. booki ngs(book_dat e);
For the book_r ef sharding key, the query looks like this:

SELECT tf.ticket _no, f.departure_airport,
f.arrival _airport,f.schedul ed_arrival,
| ead(f.schedul ed departure) OVER w AS next departure
| ead(f.schedul ed departure) OVER w - f.schedul ed _arrival AS gap
FROM booki ngs. booki ngs b
JO N booki ngs.tickets t
ON t. book_ref = b. book_ref
JA N bookings.ticket_flights tf
ON tf.ticket_ no =t.ticket_no
AND tf.book ref = t.book ref -- <= added book ref
JA N bookings. flights f
ONtf.flight id =f.flight_id
WHERE b. book _date = '2016-10-06 14:00: 00+00
W NDOW w AS (
PARTI TION BY tf.ticket no
ORDER BY f.schedul ed_departure);

This query has a different plan:

W ndowAgg (actual rows=18 | oops=1)
Net wor k: FDW byt es sent=2268 recei ved=892
-> Sort (actual rows=18 | oops=1)
Sort Key: tf.ticket_no, f.schedul ed departure
Sort Met hod: quicksort Menory: 26kB
Net wor k: FDW byt es sent=2268 recei ved=892

60

Develop

-> Append (actual rows=18 | oops=1)
Net wor k: FDW byt es sent=2268 recei ved=892
-> Nested Loop (actual rows=4 | oops=1)
-> Nested Loop (actual rows=4 | oops=1)
-> Nested Loop (actual rows=1 | oops=1)
-> Bitmap Heap Scan on bookings 0 b_1
Heap Bl ocks: exact=1
-> Bitmap I ndex Scan on booki ngs_0_book_date_ i dx
-> Index Only Scan using tickets_0 pkey on tickets_0O

I ndex Cond: (book_ref = b_1.book_ref)
Heap Fetches: 0
-> Index Only Scan using ticket flights_0_pkey on
ticket _flights_ 0 tf_1
Heap Fetches: 0
-> Index Scan using flights_pkey on flights f (actual rows=1
| oops=4)
I ndex Cond: (flight_id = tf_1.flight_id)
-> Async Foreign Scan (actual rows=14 | oops=1)
Net wor k: FDW byt es sent =754 recei ved=892
-> Async Foreign Scan (actual rows=0 | oops=1)
Net wor k: FDW byt es sent =757 -- received=0!
-> Async Foreign Scan (actual rows=0 | oops=1)
Net wor k: FDW byt es sent =757 -- received=0!

Thisis much better. First, the whole table is not scanned, | ndex Only Scan isonly included. Second, it is clear how much the
amount of network data transfer between nodes is reduced.

3.3.7.q7 Query

Assumethat statisticsis needed showing how many passengers there are per booking. To find thisout, let's first compute the number
of passengersin each booking and then the number of bookings with each number of passengers.

SELECT tt.cnt, count(*)
FROM (
SELECT count (*) cnt
FROM booki ngs. tickets t
GROUP BY t. book_ref
) tt
GROUP BY tt.cnt
ORDER BY tt.cnt;

Thisquery processesall thedatainthet i cket s and booki ngs tables. So intensive network data exchange between shards cannot
be avoided. Also note that the value of the wor k_nemparameter must be pretty high to avoid the use of disk when joining tables.
So let's change the value of wor k_nmemin the cluster:

shardmanct| set work_mens' 256MB' ;

The query planfor thet i cket _no sharding key is asfollows:

GroupAggregat e (actual rows=5 | oops=1)
Group Key: tt.cnt
Net wor k: FDW byt es sent =798 recei ved=18338112
-> Sort (actual rows=593433 | oops=1)
Sort Key: tt.cnt
Sort Met hod: quicksort Menory: 57030kB
Net wor k: FDW byt es sent =798 recei ved=18338112
-> Subquery Scan on tt (actual rows=593433 | oops=1)
Net wor k: FDW byt es sent =798 recei ved=18338112
-> Finalize HashAggregate (actual rows=593433 | oops=1)
Group Key: t.book ref

61

Develop

Batches: 1 Menory Usage: 81953kB
Net wor k: FDW bytes sent =798 recei ved=18338112
-> Append (actual rows=763806 | oops=1)
Net wor k: FDW bytes sent =798 recei ved=18338112
-> Async Foreign Scan (actual rows=190886 | oops=1)
Rel ations: Aggregate on (tickets O _fdwt)
Net wor k: FDW byt es sent =266 recei ved=1558336
-> Async Foreign Scan (actual rows=190501 | oops=1)
Rel ations: Aggregate on (tickets 1 fdwt_1)
Net wor k: FDW byt es sent =266
-> Async Foreign Scan (actual rows=191589 | oops=1)
Rel ations: Aggregate on (tickets 2 fdwt_2)
Net wor k: FDW byt es sent =266
-> Partial HashAggregate (actual rows=190830 | oops=1)
Group Key: t_3.book_ref
Batches: 1 Menory Usage: 36881kB
Net wor k: FDW byt es recei ved=4981496
-> Seq Scan on tickets 3 t_3 (actual rows=207118
| oops=1)
Net wor k: FDW byt es recei ved=4981496

The query plan for the book_r ef sharding key isasfollows:

Sort (actual rows=5 | oops=1)
Sort Key: (count(*))
Sort Method: quicksort Menory: 25kB
Net wor k: FDW byt es sent=798 recei ved=14239951
-> HashAggregate (actual rows=5 | oops=1)
Group Key: (count(*))
Batches: 1 Menory Usage: 40kB
Net wor k: FDW byt es sent=798 recei ved=14239951
-> Append (actual rows=593433 | oops=1)
Net wor k: FDW byt es sent=798 recei ved=14239951
-> G oupAggregate (actual rows=148504 | oops=1)
G oup Key: t.book ref
-> |ndex Only Scan using tickets 0 book ref _idx on tickets Ot
(rows=207273)
Heap Fetches: 0
-> Async Foreign Scan (actual rows=148256 | oops=1)
Rel ati ons: Aggregate on (tickets_ 1 fdwt_1)
Net wor k: FDW byt es sent =266 recei ved=1917350
-> Async Foreign Scan (actual rows=148270 | oops=1)
Rel ati ons: Aggregate on (tickets 2 fdwt_2)
Net wor k: FDW byt es sent =266
-> Async Foreign Scan (actual rows=148403 | oops=1)
Rel ati ons: Aggregate on (tickets_ 3 fdw t_3)
Net wor k: FDW byt es sent =266

The query plans differ first by the order of joining tables and by the computation of aggregates.

For thet i cket _no sharding key, al the partially aggregated data of the joined tables is received (17 Mb), and al the rest of
processing is performed on the query source node.

For the book_r ef sharding key, asit isincluded in the query, most of the computation of aggregates is performed on the nodes
and only the result (13 Mb) is returned to the query source node, which is then finalized.

3.3.8. 8 Query

This query answers the question: which are the most frequent combinations of first and last names in bookings and what isthe ratio
of the passengers with such names to the total number of passengers. A window function is used to get the result:

62

Develop

SELECT passenger _nane,
round(100.0 * cnt / sunm(cnt) OVER (), 2)
AS percent
FROM (
SELECT passenger _nane,
count (*) cnt
FROM booki ngs. tickets
CGROUP BY passenger _nane
)t
CORDER BY percent DESC,

For both sharding keys, the query plan looks like this:

Sort (actual rows=27909 | oops=1)
Sort Key: (round(((100.0 * ((count(*)))::nuneric) / sun((count(*))) OVER (?)), 2))
DESC
Sort Met hod: quicksort Menory: 3076kB
Net wor k: FDW byt es sent =816 recei ved=2376448
-> W ndowAgg (actual rows=27909 | oops=1)
Net wor k: FDW byt es sent =816 recei ved=2376448
-> Finalize HashAggregate (actual rows=27909 | oops=1)
Group Key: tickets. passenger_nane
Batches: 1 Menory Usage: 5649kB
Net wor k: FDW byt es sent =816 recei ved=2376448
-> Append (actual rows=74104 | oops=1)
Net wor k: FDW byt es sent =816 recei ved=2376448
-> Partial HashAggregate (actual rows=18589 | oops=1)
Group Key: tickets. passenger_nane
Batches: 1 Menory Usage: 2833kB
-> Seq Scan on tickets 0 tickets (actual rows=207273
| oops=1)
-> Async Foreign Scan (actual rows=18435 | oops=1)
Rel ations: Aggregate on (tickets 1 fdw tickets 1)
Net wor k: FDW byt es sent =272 recei ved=2376448
-> Async Foreign Scan (actual rows=18567 | oops=1)
Rel ations: Aggregate on (tickets 2 fdw tickets 2)
Net wor k: FDW byt es sent =272
-> Async Foreign Scan (actual rows=18513 | oops=1)
Rel ations: Aggregate on (tickets 3 fdw tickets_ 3)
Net wor k: FDW byt es sent =272

The plan shows that the data preprocessing, table joins and partial aggregation are performed on shards, while the final processing
is performed on the query source node.

3.3.9. 9 Query

This query answers the question: who traveled from Moscow (SV O) to Novosibirsk (OVB) on seat 1A the day before yesterday, and
when was the ticket booked. The day before yesterday is computed from the function booki ng. now rather than from the current
date. The query in the non-distributed schemais as follows:

SELECT

t . passenger _nane,

b. book _date v
FROM booki ngs b
JONtickets t ON

t.book _ref = b.book ref
JA N boardi ng_passes bp

ON bp.ticket _no =t.ticket _no
JONflights f ON

f.flight_id = bp.flight_id
WHERE f. departure_airport = "'SVO

63

Develop

AND f.arrival _airport = "'OVB
AND f.schedul ed_departure::date = bookings.now()::date - |INTERVAL '2 day’
AND bp. seat _no 1A

Asexplained for the g6 Query, | NTERVAL causesthetype cast. Let'sget rid of it and rewrite the query for thebook_r ef sharding
key asfollows:

SELECT
t . passenger _nane,
b. book _date v
FROM booki ngs b
JON tickets t ON
t.book ref = b.book ref
JA N boardi ng_passes bp
ON bp.ticket _no =t.ticket _no
AND bp. book_ref = b.book ref -- <= added book ref
JONflights f ON
f.flight_id = bp.flight_id
WHERE f. departure_airport = 'SVO
AND f.arrival _airport = 'OVB
AND f . schedul ed_departure
BETWEEN ' 2016- 10- 11 14: 00: 00+00" AND ' 2016-10-13 14: 00: 00+00
AND bp.seat _no = "'1A';

Let's also create a couple of additional indexes:

CREATE | NDEX i dx_boar di ng_passes_seat s
ON boardi ng_passes((seat_no::text));
CREATE | NDEX i dx_flights_sched_dep
ON flights(departure_airport,arrival _airport, schedul ed_departure);

As aresult, the query plan appears pretty good:

Append (actual rows=1 | oops=1)
Net wor k: FDW byt es sent=2484 recei ved=102
-> Nested Loop (actual rows=1 | oops=1)
Join Filter: (bp_l.ticket no =t _1.ticket_no)
Rows Renoved by Join Filter: 1
-> Nested Loop (actual rows=1 | oops=1)
-> Hash Join (actual rows=1 | oops=1)
Hash Cond: (bp_1.flight_id = f.flight_id)
-> Bitnap Heap Scan on boardi ng _passes 0 bp_1 (actual rows=4919
| oops=1)
Recheck Cond: ((seat_no)::text = '1A ::text)
Heap Bl ocks: exact=2632
-> Bitnmap I ndex Scan on boardi ng_passes_0 seat no_idx
(actual rows=4919)
I ndex Cond: ((seat_no)::text = '1A ::text)
-> Hash (actual rows=2 | oops=1)
Buckets: 1024 Batches: 1 Menory Usage: 9kB
-> Bitnap Heap Scan on flights f (actual rows=2 | oops=1)
Recheck Cond:
((departure_airport = 'SVO ::bpchar) AND (arrival _airport =
'OVB' ::bpchar) AND
(schedul ed_departure >= '2016-10-11 14: 00: 00+00'::tinestanp with
time zone) AND
(schedul ed_departure < '2016-10-13 14:00: 00+00' ::timestanp with
tinme zone))
Heap Bl ocks: exact=2
-> Bitnmap Index Scan on idx_flights sched dep (actua
rows=2 | oops=1)

Develop

I ndex Cond:
((departure_airport = 'SVO ::bpchar) AND
(arrival _airport = "'OVB ::bpchar) AND
(schedul ed_departure >= '2016-10-11 14: 00: 00+00' : :tinestanp with
time zone) AND
(schedul ed_departure <= '2016-10-13 14: 00: 00+00' : :tinestanp with
time zone))
-> Index Scan using bookings_0_pkey on bookings_0 b_1 (actual rows=1
| oops=1)
I ndex Cond: (book_ref = bp_1.book ref)
-> Index Scan using tickets_0_book_ref _idx on tickets 0 t_1 (actual rows=2
| oops=1)
I ndex Cond: (book_ref = b_1.book_ref)
-> Async Foreign Scan (actual rows=0 | oops=1)
Rel ations: (((boarding_passes_1 fdw bp_2) INNER JON (flights f)) INNER JON
(tickets_1 fdwt_2)) INNER JO N (bookings_1 fdw b_2)
Net wor k: FDW byt es sent =826 recei ved=68
-> Async Foreign Scan (actual rows=0 | oops=1)
Rel ations: (((boarding_passes_2 fdw bp_3) INNER JON (flights f)) INNER JON
(tickets_2 fdw t_3)) INNER JO N (bookings_2 fdw b_3)
Net wor k: FDW byt es sent =829 recei ved=34
-> Async Foreign Scan (actual rows=0 | oops=1)
Rel ations: (((boarding_passes_3 fdw bp_4) INNER JON (flights f)) INNER JON
(tickets_3 fdwt_4)) INNER JO N (bookings_3 fdw b_4)
Net wor k: FDW byt es sent =829

It is clear from this plan that al the table joining was done on shards and the query source node received the result that did not
contain rows as the data was located on one shard where the query was executed.

If this query were executed on a different shard, the plan would be the same, but the data for finalization would be received from
the shard with the data.

3.4. Connecting and Working with a Shardman Cluster

As explained in Section 3.1.2, the cluster considered consists of four shards. This is how the data partitions of the main sharded
table are distributed across shards.

For thet i cket _no sharding key:

 tickets_0—shard-1 (cluster nodenodel)
» tickets_1— shard-2 (cluster node node?)
» tickets_ 2 — shard-3 (cluster node node3)
» tickets_ 3 — shard-4 (cluster nodenode4)

For the book_r ef sharding key:

* booki ngs_0 — shard-1 (cluster node nodel)
* booki ngs_1 — shard-2 (cluster node node?2)
* booki ngs_2 — shard-3 (cluster node node3)
* booki ngs_3 — shard-4 (cluster node node4)

The examples below are provided for thebook_r ef sharding key, but the code in the subsectionsis suitable for thet i cket _no
sharding key.

Do not treat this code as optimal or use it in a production environment. It only shows how to implement creation of a connection
pull to work with a Shardman cluster.

What iscommon for all the examplesisthe cluster connection string, which must contain node names, TCP port numbers, user name
and password, database name for connection and a set of session parameters.

65

Develop

Y ou can get this string using the shardmanct! utility. In the simplest case, the string looks like this:

$ shardmanct!| getconnstr

dbnane=post gr es host =nodel, node2, node3, node4 port=5432, 5432, 5432, 5432

Y ou can get this string to connect to cluster nodes or to create the connection pool in applications.

3.4.1. SQL

A few convenient functions and views are implemented in Shardman that add cluster observability by:
» Listing global tables

e Listing sharded tables

» Listing global sequences

* Finding the shard number from the value of the sharding key

* Perfroming ANALYZE for all the global and sharded tablesin the cluster

3.4.1.1. Listing Global Tables
To display al global tablesin the cluster, usethe shar drman. gl obal _t abl es view:

post gres=# sel ect
rel nane as tabl e nane,
nspnane as schena

from shardman. gl obal _t abl es;

table_name | schema

+
aircrafts | bookings

|

|

|

seats booki ngs
airports booki ngs
flights booki ngs
(4 rows)

3.4.1.2. Listing Sharded Tables
To display information on all the sharded tablesin the cluster, query the shar drman. shar ded_t abl es view asfollows:

post gres=# sel ect
rel nane as tabl e _nane,
nparts as partitions,
colocated_with::oid::regclass::text as col ocated_with,
nspnane as schenma

from shar dnan. sharded_t abl es;

t abl e_nane | partitions | colocated_ with | schema
----------------- T Ty,
booki ngs | 4 | | booki ngs
ticket _flights | 4 | bookings | booki ngs
tickets | 4 | bookings | booki ngs
boar di ng_passes | 4 | bookings | booki ngs
(4 rows)

3.4.1.3. Listing Global Sequences
To display all the global sequencesin the cluster, usethe shar dman. sequence view:

post gres=# sel ect
seqns as schena,
seqnane as sequence_nane,
segmin as mn_val ue,

66

Develop

segmax as max_val ue,
segbl k as bul k_si ze
from shar dman. sequence;

schema | seguence_nane | mn_value | max_val ue | bul k_size
---------- Ty
bookings | flights_flight_id_seq | 262145 | 9223372036854775807 | 65536
(1 rows)

3.4.1.4. Finding the Shard Number from the Sharding Key Value

To display the name of the partition that contains data and the replication group name, call the shar dman. get _parti -
tion_for_val ue() function. For example, for book ref = 0369ES5:

post gres=# select * from shardman. get _partition_for_val ue(
" booki ngs' :: regcl ass,
" 0369E5' : : character(6));

rgid | local _nspnane | local _relnane | renote_nspname | renote_rel nane

1 | bookings | bookings_0 | booki ngs | bookings_0

This output shows that the data is in the booki ngs_0 partition of the booki ngs table and is located on the node where the
guery was executed.

Let'screate aquery to display the name of the server where the partition with dataislocated. If we connect to the server that contains
the partition, the server name is displayed as “ current server”. If the datais on a different server, the hostname of the shard master
is displayed:
SELECT p. rgid,

| ocal _rel name AS partition_nane,

CASE
WHEN r.srvid IS NULL THEN 'current server'
ELSE (SELECT (SELECT split_part(kv, "=, 2)
FROM (SELECT unnest (fs. srvoptions) as kv) x
VWHERE split_part(kv, '=', 1) = '"host')

FROM shar drman. r epgroups rg
JO N pg_catal og. pg foreign_server AS fs ONfs.oid = rg.srvid
WHERE rg.id = p.rgid)
END AS server _nane
FROM shar dnman. get _partition_for_val ue(' bookings'::regclass, '0369E5'::character(6)) p
JA N shardnman. repgroups AS r ON
r.id = p.rgid,;

rgid | partition_nane | server_name
______ e
1 | bookings_ 0 | current server
(1 row)

Execution of this query with another value of the sharding key, 0369E6, produces the outpuit:
rgid | partition_name | server_nane

4 | bookings_3_fdw | noded
(1 row

Itisclear that the partition is on the node4 node.

Also note that the shar drman. r gi d parameter allows you to find the number of the node with the connection session. To do this,
execute the query:

SELECT pg_catal og. current_setting(' shardman.rgid');

67

Develop

Y ou can use this value to determine the location of connection sessions for queries like discussed in this section.

Theshar dman. get _partition_for_val ue() ismainly designed for administration purposes, to better understand the data
topology.

Asarule, do not use administration functions when writing SQL code for data access.

3.4.1.5. Understanding How Partitions of Sharded Tables Are Distributed Across Shards

You can get the list of al sharded tables in the booki ngs schema, together with the number of partitions and their distribution
across servers (shards) from Shardman metadata on any cluster node.

Consider the following query:

SELECT p.rel::regclass::text AS table_nane,
p. pnum
p.rgid,
r.srvid,
fs.srvnanme

FROM shar dnan. parts p

JOA N shardman. r epgroups r

ON p.rgid =r.id
LEFT OQUTER JO N pg_foreign_server fs
ONr.srvid = fs.oid;

To learn how the dataiis distributed, let's combine this query with a subquery from Section 3.4.1.4:

SELECT p.rel::regclass AS tabl e_nane,
st.nparts AS total parts,
p. pnum AS num part,

CASE
WHEN r.srvid IS NULL THEN ' connected server'
ELSE
(SELECT split_part(kv, '=, 2)
FROM (SELECT unnest (fs. srvoptions) AS kv) x
WHERE split_part(kv, "=, 1) = '"host')

END AS server_nane
FROM shar dnman. parts p
JA N shardman. r epgroups r
N p.rgid =r.id
LEFT JO N shardnan. sharded_t abl es st
ON p.rel = st.rel
LEFT JO N pg_foreign_server fs
N r.srvid = fs.oid
WHERE st . nspname = ' booki ngs’
ORDER BY tabl e_nane, num part, server_nane;

The output format is the table name, number of table partitions, partition number and server name:

t abl e_nane | total _parts | numpart | server_nane

-------------------------- T

booki ngs. booki ngs | 4 | 0 | connected server

booki ngs. booki ngs | 4 | 1| node2

booki ngs. booki ngs | 4 | 2 | node3

booki ngs. booki ngs | 4 | 3 | node4

booki ngs.ticket _flights | 4 | 0 | connected server

booki ngs.ticket _flights | 4 | 1| node2

booki ngs.ticket _flights | 4 | 2 | node3

booki ngs.ticket _flights | 4 | 3 | node4

booki ngs.tickets | 4 | 0 | connected server

booki ngs.tickets | 4 | 1| node2

booki ngs.tickets | 4 | 2 | node3

68

Develop

booki ngs. ti ckets | 4 | 3 | node4
booki ngs. boar di ng_passes | 4 | 0 | connected server
booki ngs. boar di ng_passes | 4 | 1 | node2
booki ngs. boar di ng_passes | 4 | 2 | node3
booki ngs. boar di ng_passes | 4 | 3 | node4

3.4.1.6. Collecting Statistics

To collect statistics for sharded and global tables, call theshar drman. gl obal _anal yze() function. Thisfunction first collects
statistics for al local partitions of sharded tables on each node and then broadcasts this statistics to other nodes. For a global table,
the function first collects statistics on a certain node and then the statistics is broadcast to all the other nodes.

3.4.2. psql/libpq

To connect to a Shardman cluster and successfully work with it, it is sufficient to connect to one cluster node. To do this, first get
the connection string.

The PostgreSQL documentation contains the description of the cluster connection string. The string can be specified using two
formats. a keyword/value string and URI. Any of them can be used to connect to a Shardman cluster.

Some parameters must also be specified. Thelist of parametersis also available in the PostgreSQL documentation.

Thevalueof t ar get _sessi on_attrs must besettoread-wite. Only connections that allow read/write transactions are
acceptable. If the connection to a cluster node is a success, the request “SHOW transaction_read only;” issent. If it returns on, the
connection is closed. If several servers are specified in the connection string, other servers will be iterated through, the same way
aswith the failed connection attempt. Thet ar get _sessi on_at t r s parameter allows you to specify both masters and replicas
of the Shardman cluster.

The following examplesillustrate the connection:

psql -d "dbnanme=postgres host=node3, node4, node2, nodel port=5432, 5432, 5432, 5432
user =user nanme password=password target_session_attrs=read-wite"

psql postgres://usernane: password@odel: 5432, node2: 5432, node3: 5432, node4: 5432/ post gr es?
target _session_attrs=read-wite

3.4.3. Python

Connection to a Shardman cluster using the psycopg?2 library looks like this:

i mport psycopg2
from psycopg2 inmport pool

pool = psycopg?2. pool . Si npl eConnecti onPool (
mn_size=1,
max_si ze=5,
user =" pguser",
passwor d="*****"
host =" nodel, node2, node3, node4",
port="5432, 5432, 5432, 5432",
dat abase="post gres",
target _session_attrs="read-wite")

connection = pool.getconn()

A connection pool with the following parametersis created: the minimum and maximum number of connectionsm n_si ze=1and
max_si ze=5. Then a specific connection to the cluster is selected, the user login and password are specified, as well asthelist of
nodes and TCP ports, database and connection parameters (see Section 3.4.2 for more information).

3.4.4. Java

Connection to a Shardman cluster using JDBC looks like this:

69

https://postgrespro.com/docs/postgresql/14/libpq-connect#LIBPQ-CONNSTRING
https://postgrespro.com/docs/postgresql/14/libpq-connect#LIBPQ-PARAMKEYWORDS

Develop

String url = "jdbc: postgresql://nodel: 5432, node2: 5432, node3: 5432, node4: 5432/ post gres?
| oadBal anceHost s=t r ue&t ar get Ser ver Type=pri mary";
Properties props = new Properties();

props. set Property("user"”, "postgres");
props. set Property("password", "*****x*xx*xu).
Connection conn = DriverManager. get Connection(url, props);

ur | contains the connection string, where all the available shard masters are listed. If no additional connection parameters of the
JDBC driver are specified, connection to the cluster is performed through the first node available for connection. Thisis not always
convenient. Therefore, connection string settings are added that allow using different cluster shards for different connections.

| oadBal anceHost s=t r ue alows iterating through nodes connecting to one of them, andt ar get Ser ver Type=pri mary
indicates a need to only choose masters, then replicas can be added to the connection string.

3.4.5. Go

Ways to connect to a Shardman cluster for Go are pretty much the same as those accepted in Java or Python. Y ou need to specify
lists of nodes, their TCP ports, as well as connection parameters and choose a suitable driver.

One of these driversfor Go ispgx version 4 or 5.

The following is an example of a connection string and creation of a pool for connecting to a cluster:

dbURL : = "postgres://usernane: passwor d@odel: 5432, node2: 5432, node3: 5432, node4: 5432/
postgres?target _session_attrs=read-wite")
dbPool , err := pgxpool . New(cont ext.Background(), dbURL)

Also pay attention to the description of thet ar get _sessi on_at t r s parameter.

70

https://github.com/jackc/pgx

Chapter 4. Additional Features

Shardman includes some additional features and modules imported from Postgres Pro Enterprise, namely AQO (Adaptive Query
Optimization), CFS (Compressed File System) support, aswell as pgpro_stats, pgpro_pwr, and pg_query_state modules.

4.1. AQO (Adaptive Query Optimization)

AQO isaShardman extension that uses query execution statisticsfor improving cardinality estimation, which can optimize execution
plans and, consequently, speed up query execution.

To turn on AQO:
1. Addagototheshared_prel oad_I| i brari es parameter in sdmspec.json.
2. Create extension agqo on all nodes.

SET shardnan. broadcast _ddl TO ON;
CREATE EXTENSI ON aqo;
RESET shar dman. br oadcast _ddl ;

3. Setaqo. node for | ear n and run queriesthat you want to optimize with EXPLAI N ANAL YZE until the plan stops changing.

BEG N;

SET aqo.node = 'learn';
EXPLAI N ANALYZE <query>
RESET aqo. node;

COW T;

Note that ago statistics is collected separately on all nodes in a Shardman cluster. So you need to repeat this process on each
node in the cluster. Alternatively, you can set aqo. node to | ear n and run your application for some time and later turn it
back to the default mode (cont r ol | ed).

Note
AQO will not be activated if you join lessthan aqo. j oi n_t hr eshol d relations (3 by default).

Complete ago documentation can be found here.

4.2. CFS (Compressed File System)

CFS enables page-level compression in Shardman. Compression can only be enabled for separate tablespaces. To compress atable-
space, you need to enable the compression option when creating this tablespace. For example:

CREATE TABLESPACE data LOCATION '/mt/data-{rgid}' WTH (gl obal, conpression="zlib');
Now you can create tables and indexes in this tablespace or move existing table or index to it.

CREATE TABLE pgbench_branches (
bid i nteger NOT NULL PRI MARY KEY USI NG | NDEX TABLESPACE dat a,
bbal ance i nteger,
filler character(88)

)
WTH (distributed_by = 'bid) TABLESPACE dat a;

Note

The cfs_conpression_ratio() function returns the actual compression ratio for all segments of the compressed
relation. However, it returns NaN for partitioned and foreign tables, so it works only for local partitions of a sharded table.

Complete CFS documentation can be found here.

71

https://postgrespro.com/docs/enterprise/14/aqo
https://postgrespro.com/docs/enterprise/14/cfs

Additional Features

4.3. pgpro_stats (Planning and Execution Statistics)

The pgpro_stats extension provides a means for tracking planning and execution statistics of all SQL statements executed by a
server. In addition to tracking local statements, the pgpro_stats extension collects the aggregated statistics for distributed queries
that involve multiple nodes in a cluster. This alows users to get a better understanding of how system resources are being used
for distributed queries.

The architecture of Shardman additions to thepgpro_stats extension is described in Section 7.8.

Complete pgpro_stats documentation can be found here.

4.4. pgpro_pwr (Workload Reporting)

pgpro_pwr is designed to discover most resource-intensive activities in your database. This extension is based on Postgres Pro's
Satistics Collector views and the pgpro_stats or pg_stat_statements extension.

To build workload reports using pgpro_pwr on a Shardman cluster, perform the following installation:
* Ingtall the dblink module and the pgpro_stats extension on each Shardman cluster node.
* Ingtall pgpro_pwr compatible with Shardman on each Shardman cluster node as follows:

sudo apt install pgpro-pw-sdm 14

Complete pgpro_pwr documentation can be found here.

4.5. pg_query_state

Thepg_query_st at e module providesfacility to know the current state of query execution onworking backend and si | kwor m
multiplexer workers.

Complete pg_query_state documentation can be found here.

72

https://postgrespro.com/docs/postgrespro/14/pgpro-stats
https://postgrespro.com/docs/postgrespro/14/monitoring-stats
https://postgrespro.com/docs/postgrespro/14/monitoring-stats
https://postgrespro.com/docs/postgrespro/14/pgpro-stats
https://postgrespro.com/docs/postgrespro/14/pgstatstatements
https://postgrespro.com/docs/postgresql/14/dblink
https://postgrespro.com/docs/postgrespro/14/pgpro-stats
https://postgrespro.com/docs/postgrespro/14/pgpro-pwr
https://postgrespro.com/docs/postgrespro/14/pg-query-state

Chapter 5. Performance Tuning

Performan#e tuning should be done during application development and include an accurate choice of hardware (for example,
estimating the number of CPUs and memory per Shardman cluster node or tuning your storage), OS tuning (for example, tuning
the swappi ness parameter or network-related behavior) and DBM S tuning (choosing efficient configuration). But first of all, an
application should be tested and tuned for distributed DBM S. Thisincludes designing adistributed schema (or converting an existing
schema to a distributed one), tuning queries, using connection poolers, caching and even checking performance issues related to
possible serialization errors or Shardman node outage. The design of the schema should include accurate selection of asharding key
and a decision which tables should become global. Usually you select a sharding key so that:

1. Most of the queriesfilter out most of sharded table partitions.
2. Sharded tables are colocated and all joins of sharded tables are equi-joins on the sharding key.

These rules alow Shardman to efficiently exclude unused shards from queries and to push down joins to shards where the required
dataresides.

Each Shardman node operates asausual DBMS server, so all standard recommendations for tuning PostgreSQL for production load
remain in place. You should select shar ed_buf f ers,work_nmemef fecti ve_cache_si ze depending on resources avail-
ableto DBMS. Keep in mind that if the cluster topology isset to cr oss, Repf act or instances run on a single node w. When all
cluster nodes are online, replicas should not utilize alot of CPUs. However, in case of node failure, mastersfor Repf act or repli-
cation groups can become running on one server, which can create significant load on it. While tuning themax_connect i ons pa-
rameter, note that each transaction can initiate n-1 connections, where n isthe number of replication groupsin the cluster. When Silk
isenabled, itisstill truefor transactions containing DML operations. When Silk is disabled, it isalso true for read-only transactions.

Other parameters, which you perhaps would like to tune, are foreign server options. They can be set in FDWOpt i ons section of
Shardman configuration file. Parameters that significantly affect Shardman performance are f et ch_si ze, bat ch_si ze and
async_capabl e. When Silk transport is not enabled, f et ch_si ze determines the number of records that are fetched from
a remote server at once. When Silk transport is enabled, f et ch_si ze currently does not have significant impact on the query
execution. bat ch_si ze specifies how many rows can be combined in a single remote | NSERT operation for a sharded table.
async_capabl e alows asynchronous execution and should always be turned on (which is the default).

The shardman.gt_batch_size configuration parameter allows you to optimize the size of an intermediate buffer for | NSERT and
DELETE operations on global tables.

5.1. Examining Plans

Tuning query execution is better on a subset of production data that represents actual data distribution. Let's look at some sample
plans.

EXPLAI N VERBCSE
SELECT bi d, avg(abal ance) FROM pgbench_accounts
WHERE bid IN (10, 20, 30, 40)
GROUP BY bi d;
QUERY PLAN

Append (cost=0.29..21.98 rows=4 wi dt h=36)
-> G oupAggregate (cost=0.29..18.98 rows=1 wi dt h=36)
Qut put: pgbench_accounts. bi d, avg(pgbench_accounts. abal ance)
Group Key: pgbench_accounts. bid
-> Index Scan using pgbench_accounts_ 15 pkey on public. pgbench_accounts_ 15
pgbench_accounts (cost=0.29..18.96 rows=1 wi dt h=8)
Qut put: pgbench_accounts. bi d, pgbench_accounts. abal ance
I ndex Cond: (pgbench_accounts.bid = ANY (' {10, 20, 30,40}'::integer[]))
-> Async Foreign Scan (cost=0.99..0.99 rows=1 wi dt h=36)
Qut put: pgbench_accounts_1.bid, (avg(pgbench _accounts_ 1. abal ance))
Rel ati ons: Aggregate on (public. pgbench_accounts 16 fdw pgbench_accounts_1)
Renote SQ.: SELECT bid, avg(abal ance) FROM public. pgbench_accounts 16 WHERE
((bid = ANY ('{10,20,30,40}'::integer[]))) GROUP BY 1

73

Performance Tuning

Transport: Silk
-> Async Foreign Scan (cost=0.99..0.99 rows=1 wi dt h=36)
Qut put: pgbench_accounts_2. bid, (avg(pgbench_accounts_2. abal ance))
Rel ati ons: Aggregate on (public. pgbench_accounts_17 fdw pgbench_accounts_2)
Renote SQ.: SELECT bid, avg(abal ance) FROM public. pgbench_accounts_17 WHERE
((bid = ANY ('{10,20,30,40}'::integer[]))) GROUP BY 1
Transport: Silk
-> Async Foreign Scan (cost=1.00..1.00 rows=1 wi dt h=36)
Qut put: pgbench_accounts_3. bid, (avg(pgbench_accounts_3. abal ance))
Rel ati ons: Aggregate on (public. pgbench_accounts_19 fdw pgbench_accounts_3)
Renote SQ.: SELECT bid, avg(abal ance) FROM public. pgbench_accounts_19 WHERE
((bid = ANY ('{10,20,30,40}'::integer[]))) GROUP BY 1
Transport: Silk
Query ldentifier: -1714706980364121548

We see here that queries scanning three partitions are going to be sent to other nodes, coordinator data is also going to be scanned
using | ndex Scan. We do not know what plan will be used on the remote side, but we see which queries will be sent (marked
with Renpt e SQL). Note that Transport: Sil k section is present in the foreign scan description. This indicates that Silk
transport will be used to transfer results. We seethat Async foreign scanisgoing to be used, whichisfine. To discover which servers
are used in the query, we should look at foreign tables definitions. For example, we can find out that publ i c. pgbench_ac-

counts_19 fdwislocated ontheshar dman_rg_ 2 server listeningon 127. 0. 0. 2: 65432:

SELECT srvnane, srvopti ons FROM pg_foreign_server s JON pg_foreign_table ON ftserver =
s.oid
WHERE ftrelid = 'public.pgbench_accounts_19 fdw ::regcl ass;
-[RECORD
R e e e
Srvnarme | shardman_rg_2
srvoptions |
{async_capabl e=on, bat ch_si ze=100, bi nary_f or mat =on, connect _t i meout =5, dbnane=post gr es, ext ende

Now we can connect to shar dnman_r g 2 server and find out which plan is used for the local query which was shown by the
above EXPLAI N:

EXPLAI N SELECT bi d, avg(abal ance)
FROM publ i c. pgbench_accounts_19
VWHERE ((bid = ANY ('{10,20,30,40}'::integer[]))) GROUP BY 1;

QUERY PLAN
HashAggregate (cost=3641.00..3641.01 rows=1 w dt h=36)
Group Key: bid
-> Seq Scan on pgbench_accounts_19 (cost=0.00..3141. 00 rows=100000 wi dt h=8)
Filter: (bid = ANY ('{10, 20,30,40}'::integer[]))

While looking at distributed query plans, we can see that sometimes aggregates are not pushed down:

EXPLAI N VERBCSE
SELECT avg(abal ance) FROM pgbench_accounts;

QUERY PLAN

Finalize Aggregate (cost=156209. 38..156209.39 rows=1 wi dt h=32) (actua
ti me=590. 359..590. 371 rows=1 | oops=1)

Qut put: avg(pgbench_accounts. abal ance)

-> Append (cost=2891.00..156209.33 rows=20 wi dt h=32) (actual tinme=56.815..590.341
rows=20 | oops=1)

-> Partial Aggregate (cost=2891.00..2891.01 rows=1 wi dth=32) (actua
ti me=56.812..56.813 rows=1 | oops=1)
Qut put: PARTI AL avg(pgbench_accounts. abal ance)

74

Performance Tuning

-> Seq Scan on public.pgbench_accounts_0 pgbench_accounts
(cost=0.00..2641. 00 rows=100000 wi dt h=4) (actual time=0.018..38.478 rows=100000
| oops=1)
Qut put: pgbench_accounts. abal ance
-> Partial Aggregate (cost=23991.00..23991.01 rows=1 w dth=32) (actua
ti me=75.133..75.134 rows=1 | oops=1)
Qut put: PARTI AL avg(pgbench_accounts_1. abal ance)
-> Foreign Scan on public. pghench_accounts_1 fdw pgbench_accounts_1
(cost =100. 00. .23741. 00 rows=100000 wi dt h=4) (actual tinme=41.281..67.293 rows=100000
| oops=1)
Qut put: pgbench_accounts_1. abal ance
Renote SQ.: SELECT abal ance FROM publi c. pgbench_accounts_1
Transport: Silk

Hereavg() iscaculated on the coordinator side. This can lead to a significant growth of data transfer between nodes. The actual
data transfer can be monitored with the NETWORK parameter of EXPLAI N ANALYZE (look at the Net wor k recei ved field
of the topmost plan node):

EXPLAI N (ANALYZE, VERBOSE, NETWORK)
SELECT avg(abal ance) FROM pgbench_accounts

QUERY PLAN

Finalize Aggregate (cost=156209.38..156209.39 rows=1 w dt h=32) (actua
ti me=589. 014..589. 027 rows=1 | oops=1)
CQut put: avg(pgbench_account s. abal ance)
Net wor k: FDW byt es sent=3218 recei ved=14402396
-> Append (cost=2891.00..156209.33 rows=20 wi dt h=32) (actual tinme=52.111..588.999
rows=20 | oops=1)
Net wor k: FDW byt es sent=3218 recei ved=14402396
-> Partial Aggregate (cost=2891.00..2891.01 rows=1 wi dth=32) (actua
ti me=52.109..52. 109 rows=1 | oops=1)
Qut put: PARTI AL avg(pgbench_account s. abal ance)
-> Seq Scan on public. pgbench_accounts_0 pgbench_accounts
(cost=0.00..2641. 00 rows=100000 wi dt h=4) (actual tinme=0.020..34.472 rows=100000
| oops=1)
CQut put: pgbench_account s. abal ance
-> Partial Aggregate (cost=23991.00..23991.01 rows=1 wi dth=32) (actua
ti me=78.616..78.617 rows=1 | oops=1)
Qut put: PARTI AL avg(pgbench_accounts_1. abal ance)
Net wor k: FDW byt es sent =247 recei ved=2400360
-> Foreign Scan on public. pgbench_accounts_1 fdw pgbench_accounts_1
(cost=100. 00..23741. 00 rows=100000 wi dt h=4) (actual tinme=42.359..69.984 rows=100000
| oops=1)
Qut put: pgbench_accounts_1. abal ance
Renmpt e SQL: SELECT abal ance FROM public. pgbench_accounts_1
Transport: Silk
Net wor k: FDW byt es sent =247 recei ved=2400360

In such cases, we sometimes can rewrite the query:

EXPLAI N (ANALYZE, NETWORK, VERBOSE)
SELECT sun{ abal ance) :: fl oat/ count (abal ance) FROM pgbench_accounts where abal ance i s not
nul |

QUERY PLAN

75

Performance Tuning

Finalize Aggregate (cost=12577.20..12577.22 rows=1 wi dth=8) (actua
ti me=151. 632..151. 639 rows=1 | oops=1)
Qut put: ((sum(pgbench_accounts. abal ance)) :: doubl e precision /
(count (pghench_account s. abal ance)) : : doubl e preci si on)
Net wor k: FDW byt es sent =3907 recei ved=872
-> Append (cost=3141.00..12577.10 rows=20 w dt h=16) (actual tine=55.589..151.621
rows=20 | oops=1)
Net wor k: FDW byt es sent =3907 recei ved=872
-> Partial Aggregate (cost=3141.00..3141.01 rows=1 wi dth=16) (actua
ti me=55.423..55.424 rows=1 | oops=1)

Qut put: PARTI AL sum(pgbench_account s. abal ance), PARTI AL
count (pgbench_account s. abal ance)

-> Seq Scan on public.pgbench_accounts_0 pgbench_accounts
(cost=0.00..2641. 00 rows=100000 wi dt h=4) (actual time=0.023..37.212 rows=100000
| oops=1)

Qut put: pgbench_accounts. abal ance
Filter: (pgbench_accounts. abal ance 1'S NOT NULL)
-> Async Foreign Scan (cost=1.00..1.00 rows=1 wi dth=16) (actua
ti me=0. 055..0.089 rows=1 | oops=1)

Qut put: (PARTI AL sum(pgbench_accounts_1. abal ance)), (PARTIAL
count (pgbench_account s_1. abal ance))

Rel ati ons: Aggregate on (public.pgbench_accounts_1 fdw
pgbench_accounts_1)

Renote SQ.: SELECT sun{abal ance), count (abal ance) FROM
public. pgbench_accounts_1 WHERE ((abal ance 1S NOT NULL))

Transport: Silk

Net wor k: FDW byt es sent =300 recei ved=800

Rewriting the query here, we could decrease incoming network traffic generated by the query from 13 MB to 872 bytes.

Now let'slook at two nearly identical joins.

EXPLAI N ANALYZE SELECT count (*) FROM pgbench_branches b
JO N pgbench_history h ON b.bid = h.bid
WHERE ntinme > '2023-03-14 10:00:00'::tinestanptz AND b. bbal ance > 0;

QUERY PLAN

Finalize Aggregate (cost=8125.68..8125.69 rows=1 wi dth=8) (actual tinme=27.464..27.543
rows=1 | oops=1)
-> Append (cost=3.85..8125.63 rows=20 wi dth=8) (actual tine=0.036..27.475 rows=20
| oops=1)
-> Partial Aggregate (cost=3.85..3.86 rows=1 w dth=8) (actua
ti me=0.033..0.036 rows=1 | oops=1)
-> Nested Loop (cost=0.00..3.69 rows=67 wi dth=0) (actua
ti me=0.025..0.027 rows=0 | oops=1)
Join Filter: (b.bid = h.bid)
-> Seq Scan on pgbench_branches 0 b (cost=0.00..1.01 rows=1
wi dt h=4) (actual tinme=0.023..0.024 rows=0 | oops=1)
Filter: (bbalance > 0)
Rows Renoved by Filter: 1
-> Seq Scan on pgbench_history 0 h (cost=0.00..1.84 rows=67
wi dt h=4) (never execut ed)
Filter: (mime > '2023-03-14 10:00:00+03"'::tinmestanp with
time zone)

76

Performance Tuning

-> Partial Aggregate (cost=222.65..222.66 rows=1 w dth=8) (actual
time=3.969..3.973 rows=1 | oops=1)
-> Nested Loop (cost=200.00..222.43 rows=86 wi dt h=0) (actual
time=3.736..3.920 rows=86 | oops=1)
Join Filter: (b_1.bid = h_1. bid)
-> Foreign Scan on pgbench_branches_ 1 fdw b_1
(cost=100. 00..101. 22 rows=1 wi dth=4) (actual tinme=1.929..1.932 rows=1 | oops=1)
-> Foreign Scan on pgbench_history 1 fdw h_1
(cost=100. 00..120. 14 rows=86 w dth=4) (actual tinme=1.795..1.916 rows=86 | oops=1)
Filter: (ntime > '2023-03-14 10: 00: 00+03'::timestanmp with
time zone)
-> Partial Aggregate (cost=864.54..864.55 rows=1 wi dth=8) (actual
time=1.780..1.786 rows=1 | oops=1)
-> Hash Join (cost=200.01..864.53 rows=5 w dt h=0) (actual
time=1.769..1.773 rows=0 | oops=1)
Hash Cond: (h_2.bid = b_2. bid)
-> Foreign Scan on pgbench_history 2 fdw h_2
(cost=100. 00. . 760. 81 rows=975 wi dt h=4) (never executed)
Filter: (ntime > '2023-03-14 10: 00: 00+03'::timestanmp with
time zone)
-> Hash (cost=100.00..100.00 rows=1 w dt h=4) (actual
time=1.740..1.742 rows=0 | oops=1)
Buckets: 1024 Batches: 1 Menory Usage: 8kB
-> Foreign Scan on pgbench_branches 2 fdw b_2
(cost=100. 00..100. 00 rows=1 wi dth=4) (actual tinme=1.738..1.738 rows=0 | oops=1)

Pl anning Time: 6.066 ns
Execution Tinme: 33.851 ns

An interesting thing to note is that joining of pgbench_br anches and pgbench_hi st ory partitions happens locally. It is
afetch-all plan — you can discover this by joins being located above foreign scans. It is not always evident why join pushdown
does not happen. But if we look at the pgbench_hi st or y definition, we can seethat nt i ne hastheti nestanp wi t hout
time zone type

\'d pgbench_history
Partitioned table "public.pgbench_history"

timestanp without tinme zone
filler | character(22)

Partition key: HASH (bid)

Number of partitions: 20 (Use \d+ to list them)

Col um | Type | Collation | Nullable | Default

-------- T T
tid | integer | | |
bi d | integer | | |
aid | integer | | |
delta | integer | | |
i | | | |
| | |

And in the above query, the string describing timeis convertedtot i mestanp wi th ti mezone. Thisrequires comparison of
nt i me column (of t i mest anp type) andt i nest anpt z value. The comparison isimplicitly performed using the stable function
ti mestanp_gt _tinmestanpt z. A filter containing a non-immutable function cannot be pushed down to the foreign server, so
join is executed locally. If we rewrite the query, converting the string to a timestamp, we can see not only that joins are pushed
down, but also that remote queries can be executed asynchronously because foreign scans in a plan tree are located immediately
below Append:

EXPLAI N ANALYZE SELECT count (*) FROM pgbench_branches b
JO N pgbench_history h ON b.bid = h.bid
WHERE ntinme > '2023-03-14 10:00:00'::tinestanp AND b. bbal ance > 0;
QUERY PLAN

77

Performance Tuning

Finalize Aggregate (cost=84.30..84.31 rows=1 wi dth=8) (actual tine=22.962..22.990
rows=1 | oops=1)
-> Append (cost=3.85..84.25 rows=20 wi dt h=8) (actual tinme=0.196..22.927 rows=20
| oops=1)
-> Partial Aggregate (cost=3.85..3.86 rows=1 w dth=8) (actua
ti me=0.032..0.034 rows=1 | oops=1)
-> Nested Loop (cost=0.00..3.69 rows=67 w dth=0) (actua
ti me=0.024..0.026 rows=0 | oops=1)
Join Filter: (b.bid = h.bid)
-> Seq Scan on pgbench_branches_0 b (cost=0.00..1.01 rows=1
wi dt h=4) (actual tinme=0.023..0.023 rows=0 | oops=1)
Filter: (bbalance > 0)
Rows Renmoved by Filter: 1
-> Seq Scan on pgbench_history_ 0 h (cost=0.00..1.84 rows=67
wi dt h=4) (never execut ed)
Filter: (mime > '2023-03-14 10:00:00'::timestanp w t hout
time zone)
-> Async Foreign Scan (cost=0.99..0.99 rows=1 wi dth=8) (actua
ti me=10. 870..10. 871 rows=1 | oops=1)
Rel ati ons: Aggregate on ((pgbench_branches 1 fdw b_1) INNER JO N
(pgbench_history 1 fdw h_1))
-> Async Foreign Scan (cost=0.99..0.99 rows=1 wi dth=8) (actua
ti me=0.016..0.017 rows=1 | oops=1)
Rel ati ons: Aggregate on ((pgbench_branches 2 fdw b_2) INNER JO N
(pgbench_history_ 2 fdw h_2))

Planning Time: 7.729 ns
Execution Tinme: 14.603 ns

Note that foreign scans here include a list of joined relations. The expected cost of a foreign join is below 1.0. This is due to
an optimistic technique of foreign join cost estimation, turned on by the post gr es_f dw. enf or ce_f or ei gn_j oi n setting.
Compare the total execution time (planning time + execution time) of the original and modified query — we could decrease it from
about 40 to 22 ms.

Overall, while examining query plans, pay attention to what queries are actually pushed down. Some of the common reasons why
joins cannot be pushed down is the absence of equi-joins on the sharding key and filters that contain non-immutable functions
(possibly implicitly). If dataiis fetched from multiple replication groups, check that execution is mostly asynchronous.

5.1.1. EXPLAI N Parameters
This section lists Shardman-specific EXPLAI N parameters.

NETWORK (bool ean)

Include the actual data transfer between nodes in the EXPLAI N ANALYZE output. If this parameter is not specified, of f is
assumed. If the parameter is specified without avalue, on is assumed.

REMOTE (bool ean)

Include plans for queries executed on foreign servers. If this parameter or its value is not specified, on is assumed.

5.2. DML Optimizations

While evaluating performance of DML statements, it isimportant to understand how they are processed in Shardman.

First of all, the execution of | NSERT significantly differs from the execution of UPDATE and DEL ETE statements. The behavior of
| NSERT for sharded tablesis controlled by the bat ch_si ze foreign server option, which can be set in FDWOpt i ons section of
Shardman configuration file. If bat ch_si ze is greater than 0, an | NSERT in the same statement of several values that fall into
the same foreign partition leads to the values being grouped together in batches of the specified size. Remote | NSERT statements
are prepared with the necessary number of parameters and then are executed with the given values. If the number of values does not
match the number of prepared arguments, the modified statement with the necessary number of parametersis prepared again. A batch

78

Performance Tuning

insert optimization can fail if atransaction inserts records one by one or records routed to different foreign tables are intermixed in
onel NSERT statement. A batch isformed for asingle foreign modify operation. It is sent to the remote server when the batch isfilled
or when the modify operation is over. The modify operation is over when we start routing tuples to ancother sharded table partition.
So, for bulk load, inserting multiple values in a single | NSERT command or using COPY is recommended (as COPY is optimized
in asimilar way). Large bat ch_si ze values alow issuing less | NSERT statements on remote side and so significantly reduce
communication costs. However, during construction of parameters for prepared | NSERT statements, all inserted values should be
copied to libpg-allocated memory. This can lead to unrestricted memory usage on the query coordinator side when several large
t ext or byt ea objects are loaded.

UPDATE and DELETE statements can be executed in a direct or indirect mode. A direct mode is used when a statement can be
directly sent to aforeign server. In this mode, to modify atable on aremote server, anew statement is created based on the origina
Modi f yTabl e plan node. Using adirect update is not always possible. In particular, it isimpossible when some conditions should
be evaluated locally. In this case, a much less efficient indirect modification is used. An indirect modification includes several
statements. Thefirst oneis SELECT FOR UPDATE to lock remote rows. The second oneis an actual UPDATE or DELETE, which
is prepared once and then executed with different parameters for each row of the SELECT FOR UPDATE statement result after
local filters are applied to the result. Evidently, direct modifications are much more efficient.

You can easily identify whether a DML statement is going to be executed in a direct or indirect mode looking at the query plan.
A typical example of an indirect modificationis:

EXPLAI N VERBOSE DELETE FROM pgbench_hi story
WHERE bid = 20 AND ntinme > '2023-03-14 10:00: 00'::tinmestanptz;
QUERY PLAN

Del ete on public. pgbench_history (cost=100.00..142.66 rows=0 wi dt h=0)
Foreign Del ete on public. pgbench_history_17_fdw pgbench_history_1
Rempt e SQL: DELETE FROM public. pgbench_history_17 WHERE ctid = $1
-> Foreign Scan on public. pgbench_history_17_fdw pgbench_history_1
(cost =100. 00. . 142. 66 rows=4 w dt h=10)
Qut put: pgbench_history_1.tabl eoid, pgbench_history 1.ctid
Filter: (pgbench_history 1.nminme > '2023-03-14 10:00:00+03" ::tinestanp with
time zone)
Renote SQ.: SELECT ntinme, ctid FROM public. pgbench_history_17 WHERE ((bid =
20)) FOR UPDATE

If we had chosen another type for the string constant, this would become a direct update.

EXPLAI N VERBOSE DELETE FROM pgbench_hi story
WHERE bid = 20 AND ntinme > '2023-03-14 10:00:00'::tinestanp;
expl ai n verbose del ete from pgbench_history where bid = 20 and mine > '2023-03-14
10: 00: 00" : : ti nmest anp;
QUERY PLAN

Del ete on public. pgbench _history (cost=100.00..146.97 rows=0 wi dt h=0)
Foreign Del ete on public. pgbench history 17 fdw pgbench_history 1
-> Foreign Delete on public.pgbench_history 17 fdw pgbench_history 1
(cost=100. 00..146.97 rows=4 wi dt h=10)
Renote SQ.: DELETE FROM public. pgbench_history 17 WHERE ((ntine > '2023-03-14
10: 00: 00" : :timestanp without tine zone)) AND ((bid = 20))

We see that in adirect update mode, only one statement is executed on the remote server.

5.2.1. DML Optimizations of Global Tables

The shardman.gt_batch_size configuration parameter, which you can tune, defines the size of an intermediate buffer used before
sending datato aremote server.

| NSERT uses the binary protocol and creates batches of the shar dman. gt _bat ch_si ze size. Large values of the buffer size
enable sending fewer network requests on the remote side and thus substantially reduce the connection costs. On the other hand,

79

Performance Tuning

large values of this parameter can increase memory consumption on the query coordinator side. Therefore, when specifying the
buffer size, it isimportant to achieve a compromise between the connection costs and the allocated memory size.

For UPDATE, a query for each column and each row is created on the coordinator and sent to remote nodes.

For DELETE, aquery for abatch of dataof theshar dmman. gt _bat ch_si ze sizeiscreated on the coordinator and sent to remote
nodes.

5.3. Time Synchronization

The algorithm that provides data consistency on all the cluster nodes uses the system clock installed on the hosts. Therefore, the
transaction commit latency dependson clock drift on different hosts, asthe coordinator alwayswaitsfor themost lagging host to catch
up. Thismakesit crucial that the time on all the connected nodes of a Shardman cluster are synchronized, aslack of synchronization
may have a negative impact on Shardman performance by increasing the query latency.

First, to ensure time synchronization on all cluster nodes, install chrony daemon when deploying a new cluster.

sudo apt update

sudo apt install -y chrony

sudo systenttl enable --now chrony
Check that chrony isworking properly.

chronyc tracking

Expected output:
Ref erence I D . C0248F82 (Ti mel00. Stupi. SE)
Stratum : 2
Ref time (UTC) : Tue Apr 18 11:50: 44 2023
Systemtine : 0.000019457 seconds slow of NTP tine
Last of fset : -0.000005579 seconds
RMS of f set : 0.000089375 seconds
Frequency : 30.777 ppm f ast
Resi dual freq : -0.000 ppm
Skew : 0.003 ppm
Root del ay : 0.018349268 seconds

Root di spersion : 0.000334640 seconds
Update interval : 1039.1 seconds
Leap status : Nor mal

Note that managing the clock drift should be performed using the OS tools. Shardman diagnostic tools cannot be considered as the
only and defining measurement utility.

To see if any major drift already exists, use the shardman.pg_stat_csn view that shows statistics on delays that take place during
import of CSN snapshots. Its values are calculated when any related action is performed, or if any of the shar dman. trim c-
snxi d_map() orshardman. pg_ol dest _csn_snapshot () functions are called. These functions are called from thecsn
tri mrer routine worker, therefore disabling thisworker will result in these statistics not being collected.

The csn_max_shi ft field of the shar dman. pg_st at _csn view shows the maximum registered snapshot CSN shift that
caused a delay. This value defines the clock drift between the nodes in the cluster. A consecutive increase of this value means at
least one's cluster system clock is out of sync. If this value exceeds 1000 (microseconds), it is recommended to check the time
synchronization settings.

The same can be discovered if thecsn_t ot al _i nport del ay valueincreaseswhilecsn_max_shi ft remains unchanged.
However, one-time increase may be due to single failures, non-related to the time issues.

Also, if the difference between CSNXi dMap_head_csn and shar dman. ol dest _csn exceeds the csn_snapshot _de-
fer _ti me parameter value and stays the same for along time, it means that the CSNSnhapshot Xi dMap map isfull. It can result
in aglobal transaction failure.

80

Performance Tuning

There are two main reasons for thisissue.

» Thereisatransaction that runsfor morethan csn_snapshot _def er _ti me seconds and holds the entire cluster, holding
the VACUUMprocess. In this case, xi d field of theshar dman. ol dest _csn view is used to determine the transaction ID of
thistransaction, and ther gi d field is used to determine the cluster node where this transaction is located.

* The CSNSnapshot Xi dMap map lacks capacity. During the normal operation the system might have transactions that exceed
thecsn_snapshot _def er _ti me value. Tofix it, increasethe csn_snapshot _def er _ti me time so that these trans-
actions stay below thisvalue.

If theshar dman. si | k_t racepoi nt s configuration parameter is enabled, executing the EXPLAI N command for the distrib-
uted queries outputs the rows with information about how much time was spent on the query execution and what result it ended with,
depending on the system components. These rows show metric values for the time spent on each component. The net (qgry),
net (1st tup),net (last tup) metricscaculate the difference between timestamps on different servers. This difference
includes both time spent on a message transfer and the clock drift (positive or negative) between these servers. Therefore, these
metrics can also help to determine whether thereis any clock drift.

5.4. Distributed Query Diagnostics

Shardman enhances the EXPLAI N command so that it can provide additional information about aquery if it isdistributed. The work
with the distributed tablesis based on the plan nodeswith the For ei gnScan type. A query to each remote partition is determined by
asingle plan node of thistype, with Shardman submitting additional information to the EXPLAI N blocks with the node description.

When executing a distributed query, the part of the plan (a subtree) that relates to a specific remote partition is serialized into an
SQL statement. This process is known as deparsing. Then, this statement is sent to a remote server. The result of this query isthe
output of aFor ei gnScan node. It is used to gather the final results of the distributed query execution.

When the VERBOSE option of the EXPLAI N command is set to on, the Renot e SQL field of the For ei gnScan node block
shows the statement sent to the remote server. Also, the Ser ver field indicates the name of the server asit was specified during the
cluster configuration and asit isdisplayedinpg_f or ei gn_ser ver , along with the transport method used to send this statement.
Thet ransport field cantaketwo values: si | k for the the enhanced interconnect Shardman mechanism, or | i bpq for sending
viathe standard PostgreSQL protocol.

5.4.1. Displaying Plans from the Remote Server

To see the execution plan that will be used on the remote server under the EXPLAI N block of the For ei gnScan node, use the
post gres_f dw. f orei gn_expl ai n configuration parameter. The possible values are: none to exclude the EXPLAI N output
from the remote servers, f ul | to include the EXPLAI N output from the remote servers, col | apsed to include the EXPLAI N
output only for the first For ei gnScan node under its Append/Mer geAppend.

In production, it isrecommended to disable this parameter (setittonone) or setittocol | apsed, because obtaining any EXPLAI N
information resultsin an additional implicit request to the server. Moreover, thisrequest is executed in asynchronous mode, meaning
the overall EXPLAI N output is built only once all the servers are sequentially queried. It can be a costly operationin case of atable
with alarge number of partitions.

Notethat in case of theinternal request for obtaining the EXPLAI Nblocksfor aremote plan, certain parametersareforcibly disabled,
regardless of the parameters specified by a user when requesting EXPLAI N from the coordinator: ANALYZE OFF, TI M NG OFF,
SUMVARY CFF, SETTI NGS OFF, NETWORK OFF. Inthis case, the EXPLAI N block of aremote plan will lack the corresponding
metrics. Other EXPLAI N parameters (FORMAT, VERBOSE, COSTS, BUFFERS, WAL) are inherited from the coordinator.

If the subplan deparsing forms a statement that includes parameters (in the statement using symbols $1, $2, etc.), such a statement
generally cannot be sent to the remote server to obtain EXPLAI Nresults. Therefore, the For ei gnExpl ai n blocks are not formed
for the SQL statements with parameters.

5.4.2. Network Metrics and Latency

Setting the NETWORK option of the EXPLAI N command to on shows the network operation metrics for the plan nodes, including
individual For ei gnScan nodes and general nodes Append or Mer geAppend.

For each plan node, the FDW byt es, sent , andr ecei ved parameters are displayed for the outgoing and incoming traffic when
the node is executed (regardless of the transport type). Note that these metrics are only output when the ANAL YZE option of the
EXPLAI N command is set to on.

81

Performance Tuning

Whenthetrack fdw wait _ti m ng configuration parameter is enabled, thewai t _t i nme metric is also output. This metric
summarizes all stages of the plan node execution, starting from the time the request is sent to the remote server, including the time
spent on the execution itself and all the time until the complete set of results for that plan node is received.

Note that the For ei gnScan node can operate in both synchronous and asynchronous modes. For the asynchronous execution,
the node's execution function sends a request to the remote server and completes its execution without waiting for the result. The
result is considered and processed later, upon receipt. In this scenario, thewai t _t i me metric may not accurately reflect the actual
execution time.

5.4.3. Query Tracing for Silk Transport

For the Silk transport, there is an option to output the extended debug information about tracing of a query passing from the coordi-
nator to the remote server and back, including the results from the remote server. Thisinformation isonly availableif the ANALYZE
option of the EXPLAI N command is set to on, and theshar dman. si | k_t racepoi nt s configuration parameter is enabled.

When these parameters are enabled, each message transferred through the Silk transport (sending the SQL query, delivering it to the
recipient, executing the query, and returning the execution result) is accompanied by an array of the timestamps measured at certain
points in the pipeline. Once the query is executed, this information is displayed in the EXPLAI N block as rows starting with the
word Tr ace. Each metric represents the difference between the timestamps at different points, in milliseconds:

Table5.1. Query Tracing for Silk Transport Metrics

Interval Description

bk shm->mp1 (gry) The time taken to transfer an SQL query from the coordinator
to its multiplexer via the shared memory.

mpl shm->net (gry) The time between receiving a query within the multiplexer from
the shared memory and transferring it over the network.

net (qry) The time spent by an SQL query to transfer over the network
between the multiplexers.

mp2 recv->shm (qry) The time between receiving an SQL query from the network
and placing it in the queue in the shared memory on aremote
multiplexer.

wk exec (1st tup) The time spent to execute aquery in Si | kwor muntil the first
row of the result is received.

wk exec (al tups) The time spent to execute aquery on Si | kwor muntil the com-
plete result is received.

wk->shm (1st tup) The time taken to place the first row of the result into the
Si | kwor mqueue.

wk->shm (last tup) The time taken to place the last row of the result into the
Si | kwor mqueue.

mp2 shm->net (1st tup) The time between reading the first row of the result from the
queue by the remote multiplexer and transferring it over the net-
work.

net (1st tup) The time spent to transfer the first row of the result over the
network between the multiplexers.

mpl recv->shm (1st tup) The time between receiving the first row of the result from the
network and placing it in the queue by the local multiplexer.

mpl shm->bk (1st tup) The time spent to retrieve the first row of the result from the
queue by the coordinator.

mp2 shm->net (last tup) The time between reading of the last row of the result from the
queue by the remote multiplexer and transferring it over the net-
work.

net (last tup) The time spent to transfer the last row of the result over the net-

work between the multiplexers.

82

Performance Tuning

Interval

Description

mpl recv->shm (last tup)

The time between receiving the last row of the result from the
network and placing it in the queue by the local multiplexer.

mpl shm->bk (last tup)

The time taken by the coordinator to retrieve the last row o the
result from the queue.

END-TO-END

The total time from sending the query to receiving the last row
of the result. This approximately corresponds to thewai t
time.

Forthemetricsnet (qgry),net (1st tup),andnet (Il ast tup),theinterval valueiscalculated asthe difference between
timestamps on different servers. Therefore, negative values may appear in these lines. This difference includes both time spent on
amessage transfer and the clock drift (positive or negative) between these servers. Thus, even with a dlight drift, the values will be
negative if its absolute value exceeds the duration of network transfer. Although it is not a bug, you should pay close attention to
whether the cluster clocks are synchronized. For more information, see Section 5.3.

83

Chapter 6. Shardman Reference

The entries in this Reference are meant to provide in reasonable length an authoritative, complete, and formal summary about their
respective subjects. More information about the use of Shardman, in narrative, tutorial, or example form, can befound in other parts
of this book. See the cross-references listed on each reference page.

6.1. Functions

shar dman. br oadcast _al | _sql (statenent text)

Executes st at enent on every replication group.

Warning

The shar dman. br oadcast _al | _sql function cannot be executed recursively. An attempt to do so resultsin an
error “Command execution must be initiated by coordinator”.

shar dman. br oadcast _query(statenment text)

Functions as shardman.broadcast_all _sgl and returns an executed SQL st at enent results.

Youmay optionally seti ncl ude_r gi dtot r ue, then the resulting tuples will have anumber of the node the tuple originated
from.

Examplewithi ncl ude_rgi dsettof al se:

sel ect shardman. br oadcast _query(' SELECT rel nane from pg_cl ass where relkind=""f""");
br oadcast _query

(t_1_fdw
(t_2_fdw
(t_0_fdw
(t_2_fdw
(t_0_fdw
(t_1_fdw

(6 rows)
Examplewithi ncl ude_rgi d settot r ue:

sel ect shardman. br oadcast _query(' SELECT rel nane from pg_cl ass where relkind=""f"'"",
include rgid => true);
br oadcast _query

shar dman. br oadcast _sql (statenment text)

Executes st at ement on every replication group but the current one.

Warning

The shar dman. br oadcast _sql function cannot be executed recursively. An attempt to do so results in an error
“Command execution must be initiated by coordinator”.

Shardman Reference

shardman. get _partition_for_value(relid oid, val variadic "any") - shardnan.get_parti-

tion for_value type (rgid int, local _nspname text, local _relnane text, renpte_nspnane
text, renote_rel name text)

Finds out which partition of a sharded table with oid r el i d theval belongs to. Returns NULL if the sharded table with oid
rel i d doesnot exist. Returns the local schema name and relation names. If the value belongs to a partition stored in another
replication group, also returns the remote schema and relation name. Returns only rgid if second-level partitioning is used.

Example:
select * from shardman. get_partition_for_val ue(' pgbench_branches'::regclass, 20);
rgid | |ocal _nspnane | | ocal _rel name | renote_nspname | renot e_rel nane
------ T
Femmcccmm e e e e e e —---

3| public | pgbench_branches_17 fdw | public

pgbench_branches_17

shar dman. gl obal _anal yze()

Performs cluster-wide analysis of sharded and global tables. First, this function executes ANALYZE on all local partitions of
sharded tables on each node, then sendsthis statisticsto other nodes. Next, it sel ects one node per global table and runs ANALYZE
of thistable on the selected node. Gathered statistics is broadcast to all other nodes in the cluster.

Example:

sel ect shardman. gl obal _anal yze();

shardman. att ach_subpart(relid regclass, snumint, partition_bound text[])

Attaches a previously detached subpartition number snumto a locally-partitioned table r el i d as a partition for the values
within partiti on_bound. All subpartition tables and foreign tables should already exist. The partiti on_bound pa
rameter is a pair of lower and upper bounds for the partition. If lower and upper bounds are both NULL, the subpartition is
attached as the default one.

The operation is performed cluster-wide.

Example:

sel ect shardman. attach_subpart (' pgbench_history'::regclass, 1,$${'2021-01-01 00: 00',
' 2022-01-01 00: 00' } $9%);

shardman. create_subpart(relid regclass, snumint, partition_bound text[])

Creates a subpartition number snum for a locally-partitioned table r el i d as a partition for the values within parti -
tion_bound. Thepartition_bound parameter isapair of lower and upper bounds for the partition. If lower and upper
bounds are both NULL, the subpartition is created as the default one. If the subpartition number is not specified, it will be
selected as the next available partition number.

The operation is performed cluster-wide.

Examples:

sel ect shardman. create_subpart (' pgbench_history'::regclass, 1, $${'2021-01-01
00: 00", '2022-01-01 00:00'}%$%);

sel ect shardman. creat e_subpart (' pgbench_history'::regclass, partition_bound: =$

${' 2022-01-01 00: 00', '2023-01-01 00:00'}%$%);

shardman. det ach_subpart (relid regclass, snumint)

Detaches a subpartition number snumfrom a locally-partitioned table r el i d. The partition number can be determined from
theshar dman. subpart s view.

85

Shardman Reference

The operation is performed cluster-wide.

Example:

sel ect shardman. det ach_subpart (' pgbench_hi story'::regcl ass, 1);

shardman. drop_subpart(relid regclass, snhumint)

Drops subpartition number snumfrom locally-partitioned tabler el i d. Partition number can be determined from theshar d-
man. subpart s view.

The operation is performed cluster-wide.

Example:

sel ect shardman. drop_subpart (' pgbench_history'::regclass, 1);

shar dman. am coor di nat or ()

Returns whether the current session is the query coordinator. This check allows avoiding cases where global and sharded table
triggers fire twice, first on the query coordinator, then on the remote nodes when data is modified.

SELECT shar dnman. am coor di nator () ;
am coor di nat or

Example of the trigger function checking the query coordinator:

CREATE OR REPLACE FUNCTION trg_func() RETURNS TRI GGER

AS $$

BEG N

| F NOT shardnman. am coordi nator () THEN
-- exit on non coordinator
RETURN NEW

END | F;

-- execute only by coordi nat or

RAI SE WARNI NG ' Trigger fired!';

END

$$ LANGUAGE pl pgsql ;

shardman. sil k_statinfo_reset ()

Resets the values of the metrics with prefix transferred_ and timebased metrics (with prefixes read_efd_,
wite efd ,andsort _tine_)intheshardman.silk_statinfo view.

shardman. si |l k_routing

Retrieves the results of the multiplexer si | k_connect s, si | k_backends, andsi | k_r out es functions.

shardman. sil k_rbc_snap

Retrieves a consistent snapshot of all the connects, backends and routesthat can beused by si | k_connect s, si | k_back-
ends, andsi | k_r out es functions.

6.2. pgpro_stats Functions
pgpro_stats sdm_stats updated
returns a number of statistics entries received from each shard node and the timestamp of the last received statistics.
pgpro_stats sdm_stats updated reset
resets the information specified above.

86

Shardman Reference

6.3. Advisory Lock Functions

Advisory locks are cluster-wide locks with no enforced use. Hereis alist of functions to work with these locks.

Table6.1. Advisory Lock Functions

Function Returns

shar dman. advi sory_xact _| ock(key64 BI G NT); |void

shar dman. advi sory_xact _| ock_shar ed(key64 void

Bl G NT) ;
shardman. try_advi sory_xact _| ock(key64 bool
Bl G NT) ;
shardman. try_advi sory_xact | ock_shar ed(bool

key64 Bl G NT);

shar dman. advi sory_xact _| ock(keyl | NT, key2 |void
I NT);

shar dman. advi sory_xact _| ock_shar ed(keyl void
I NT, key2 INT);

shardman. try_advi sory_xact | ock(keyl I NT, bool

key2 I NT);
shardman. try_advi sory_xact | ock_shar ed(bool
keyl I NT, key2 INT);

6.4. Views

6.4.1. Shardman-specific Views

6.4.1.1. shar dman. pg_stat _csn

Theshar dnan. pg_st at _csn view has one row showing statistics on delays that take place during import of CSN snapshots.
These delays occur because system clocks on Shardman cluster nodes may be out of sync. The delays negatively impact the perfor-
mance by increasing the query latency. Theshar dnman. pg_st at _csn view allowstracking these delays. Theview datais based
on The Satistics Collector. The columns of the view are shown in Table 6.2.

Table6.2. shar dman. pg_st at _csn Columns

Name Type Description

csn_snapshot s_i nport ed bi gi nt Total number of imported CSN snapshots

csn_total _inport_del ay i nterval Total duration of all delaysinimporting
CSN snapshots, in microseconds

csn_nax_shift bi gi nt Maximum registered snapshot CSN shift
that caused adelay

| ocal _ol dest_csn bi gi nt CSN of the oldest transaction on the cur-
rent node

| ocal ol dest _xid Xi d XID of the oldest transaction on the cur-
rent node

i ndoubt _threshol d_incidents |bigint Total number of transactions that exceed-
ed the 10 seconds limit in thei nDoubt
State.

CSNXi dvap_head_csn bi gi nt Most recent CSN in the CSNShap-
shot Xi dMap

CSNXi dvap_head_xi d xid XID corresponding to the most recent
CSN inthe CSNSnapshot Xi dMap

87

https://www.postgresql.org/docs/14/monitoring-stats.html

Shardman Reference

Name Type Description

CSNXi dvap_tail _csn bi gi nt Oldest CSN in the CSNSnapshot X-
i dvap

CSNXi dvap_tail _xid xid XID corresponding to the oldest CSN in
the CSNSnapshot Xi dvap

stats_reset timestanp with tinme zone Time at which these statistics were last re-
set

CSNXi dMap_l ast _trim timestanp with tinme zone Shows the last time when the shar d-
man. trimcsnxi d_map() function
was called.

To reset CSN-related statistics, call thepg_st at _r eset _shar ed function with the only text argument equal to csn.

Note

Shardman functionality related to CSN snapshots is work in progress. So anticipate changes to the corresponding views in
future releases.

6.4.1.2. shar dman. pg_i ndoubt _xacts

Theview shar dman. pg_i ndoubt _xact s displaysinformation about transactionsthat are currently inthel nDoubt state. An
entry is removed when the transaction state changes.

Table6.3. shar dman. pg_i ndoubt _xact s Columns

Name Type Description

xi d xid Transaction ID of atransactioninthel n-
Doubt state

durati on_nsec bi gi nt Time the transaction was in the | nDoubt
state, in milliseconds

When the shar dman. pg_i ndoubt _xact s view is accessed, the internal transaction manager data structures are momentarily
locked, and a copy is made for the view to display. This ensures that the view produces a consistent set of results, while not blocking
normal operations longer than necessary. Nonetheless there could be some impact on database performanceif thisview isfrequently
accessed.

6.4.1.3. shar dman. pg_stat _xact _tine

Theshar dman. pg_st at _xact _ti me view shows statistics for the time spent on a transaction. The columns of the view are
shown in Table 6.4.

Table6.4. shar dman. pg_st at _xact _ti me Columns

Name Type Description

overal | _conmitted_xact_tine |bigint Overall time spent for the committed
transactions

overall aborted xact tine bi gi nt Overall time spent for the aborted transac-
tions

overall _commit _tine bi gi nt Overall time spent for the committing
transactions

| ocal _commit _tine bi gi nt Overall time spent for writing to WAL for
all the committed transactions

gl obal _commit_tine bi gi nt Overall time spent for the distributed
queries sending messages about transac-
tion statuses for all the committed transac-
tions

88

Shardman Reference

Name Type Description

overal | _abort _tine bi gi nt Overall time spent for aborting transac-
tions

| ocal _abort tine bi gi nt Overall time spent for writing to WAL for
all the aborted transactions

gl obal _abort _tine bi gi nt Overall time spent for the distributed

queries sending messages about transac-
tion statuses for all the aborted transac-
tions

stats_reset timestamp with time zone Time at which these statistics were last re-
set

6.4.1.4. shar dman. ol dest _csn

The shar drman. ol dest _csn view has one row showing tuple csn, xi d, and r gi d containing CSN and XID of the oldest
transaction in the cluster along with transaction's replication group number.

6.4.1.5. shar dman. pg_stat_noni t or

Theshar dman. pg_stat_noni t or view has one row showing metrics of the Shardman monitor. The view datais based on the
Satistics Collector. The columns of the view are shown in Table 6.5.

Table6.5. shar dman. pg_st at _noni t or Columns

Name Type Description

resol ved_deadl ocks bi gi nt Number of resolved distributed deadlocks

aborted xacts bi gi nt Number of aborted outdated prepared
transactions

committed xacts bi gi nt Number of committed outdated prepared
transactions

errors bi gi nt Number of Shardman monitor errors

stats_reset timestanp with tinme zone Time at which these statistics were last re-
Set

6.4.1.6. shardman. pg_stat _net usage

The shar dman. pg_st at _net usage view has one row showing the cumulative network traffic between Shardman cluster
nodes. The view datais based on the Statistics Collector. The columns of the view are shown in Table 6.6.

Table6.6. shar dman. pg_st at _net usage Columns

Name Type Description

net usage_recv_bytes nuneric Total number of bytes received from other
nodes through the network by each Shard-
man cluster node

net usage_sent _bytes numneric Total number of bytes sent to other nodes
through the network by each Shardman
cluster node

stats_reset tinmestanp with tinme zone Time at which these statistics were last re-
set

6.4.1.7. shardman. pg_stat _foreign_stat bytes

Theshar dnan. pg_stat _forei gn_stat byt es view showsthe amount of statistics for foreign relations transferred over
the network between Shardman cluster nodes. The view data is based on The Satistics Collector. The columns of the view are
shownin Table 6.7.

89

https://www.postgresql.org/docs/14/monitoring-stats.html
https://www.postgresql.org/docs/14/monitoring-stats.html
https://www.postgresql.org/docs/14/monitoring-stats.html
https://www.postgresql.org/docs/14/monitoring-stats.html

Shardman Reference

Table6.7. shardman. pg_stat _forei gn_stat_bytes Columns

Name Type Description

foreign_stat _recv_bytes bi gi nt Total number of bytes of the statistics for
the foreign relations received from other
nodes through the network by this node

stats_reset timestanp with tinme zone Time at which these statistics were last re-
set

6.4.1.8. Shardman-specific Global Views

6.4.1.8.1. shar dnman. gv_shar ded_t abl es
Thisview displaysinformation on all the sharded tables in the cluster.

6.4.1.8.2. shar dman. gv_gl obal _t abl es
This view displaysinformation on all the global tablesin the cluster.

6.4.2. Multiplexor Diagnhostics Views

Viewsin thissection provide variousinformation related to Silk multiplexing. See Section 7.4 for detailsof si | kr oad multiplexing
process.

6.4.2.1. shardman. si | k_routes

Theshar dman. si | k_r out es view displaysthe current snapshot of the multiplexer routing table. The columns of the view are
shown in Table 6.8.

Table6.8. shar dman. si | k_r out es Columns

Name Type Description

hashval ue i nt eger Internal unique routeidentifier. Can be
used to join with other Silk diagnostics
views.

origin_ip i net IP address of the source node, which gen-
erated this route

ori gin_port int2 External TCP connection port of the

source node, which generated this route

channel _id i nt eger Route sequential number within the node
that generated this route. channel _

i disuniquefortheparorigin_ip
+origin_port.Thispair isaunique
node identifier within the Shardman clus-
ter and hencetheorigin_ip+ori -
gi n_port +channel _idtupleisa
unique route identifier within the Shard-
man cluster.

fromcn i nt eger Connect index intheshar dman. si | k_
connect s view for incoming routes,
that is, not generated by this node, and -1
for routes generated by this node.

backend_i d i nt eger ID of thelocal processthat is current-

ly using this route: either the ID of the
backend that generated this route or the
ID of thesi | kwor mworker assigned to
this route. Equals -1 for queued incom-
ing routes that have not been assigned a
worker yet.

90

Shardman Reference

Name

Type

Description

pendi ng_queue_byt es

bi gi nt

Size of the queue of delayed messages (
awaiting a free worker) for thisroute, in
bytes. Thisvalueisonly meaningful for
incoming routes of each node that are not
assigned to aworker yet.

pendi ng_queue_nessages

bi gi nt

Number of messagesin the queue of de-
layed messages (awaiting a free worker)
for thisroute. Thisvalueis only meaning-
ful for incoming routes of each node that
are not assigned to aworker yet.

connects

i nteger[]

List of indexes of connects that are cur-
rently using this route.

6.4.2.2. shardman. si | k_connects

The shar dman. si | k_connect s view displays the current list of multiplexer connects. The columns of the view are shown

in Table 6.9.

Table6.9. shar dnman. si | k_connect s Columns

Name

Type

Description

cn_i ndex

i nt eger

Unique connect index

reg ip

i net

“Registration” |P address of the node with
which the connection is established. See
Notes for details.

reg_port

int?2

“Registration” TCP port of the node with
which the connection is established. See
Notes for details.

read_ev_active

bool ean

t r ue if the multiplexer isready to re-
ceive datato the incoming queue. See
Notes for details.

wite ev_active

bool ean

t r ue if the multiplexer filled the queue
of non-sent messages and is waiting for it
to get free. See Notes for details.

i s_out goi ng

bool ean

t r ue if the connection is outgoing, that
is, created by connect ,andf al se for
incoming connects, that is, created by
accept . Only used during the handshak-

ing.

state

t ext

Current state of the connect: connect -
ed — if the connection is established, i n
pr ogr ess — if the client has already
connected, but handshaking has not hap-
pened yet, f r ee — if the client has al-
ready disconnected, but the connect struc-
ture for the disconnected client has not
been destroyed yet.

pendi ng_queue_bytes

bi gi nt

Size of the queue of non-sent messages
for this connect, in bytes

pendi ng_queue_nessages

bi gi nt

Number of messagesin the queue of non-
sent messages for this connect

bl ocked_by backend

i nt eger

ID of the backend that blocked this con-
nect

91

Shardman Reference

Name Type Description

bl ocks_backends i nteger[] List of IDs of backends that are blocked
by this connect

routes i nteger[] List of unique IDs of routes that use this
connect

el apsed_tine_wite bi gi nt Time from the last writing event of a con-
nect

el apsed_time_read bi gi nt Time from the last reading event of a con-
nect

6.4.2.3. shardman. si | k_backends

Theshar dman. si | k_backends view displaysthe current list of processes of two kinds: backends that serve client connections
and si | kwor mmultiplexer workers, which interact with the multiplexer. The columns of the view are shown in Table 6.10.

Table 6.10. shar drman. si | k_backends Columns

Name Type Description

backend_i d i nt eger Unique backend/worker identifier
pid i nt eger OS process ID

attached bool ean Vaueistrueif backend is attached to

multiplexer, false otherwis

read_ev_active bool ean t r ue if the backend/worker isready to
receive datato the incoming queue. See
Notes for details.

wite ev_active bool ean t r ue if the backend/worker filled the
gueue of non-sent messages and is wait-
ing for it to get free. See Notes for details.

i s_wor ker bool ean t r ue if thisprocessisasi | kwor mmul-
tiplexer worker and f al se otherwise

pendi ng_queue_bytes bi gi nt Size of the queue of messages being sent
to this backend/worker, in bytes

pendi ng_queue_nessages bi gi nt Number of messagesin the queue of mes-
sages being sent to this backend/worker

bl ocked_by_connect i nt eger Index of the connect that blocks this back-
end/worker

bl ocks_connect s i nteger[] List of indexes of connects that are
blocked by this backend/worker

routes i nteger[] List of unique IDs of routes that are used
by this backend/worker

i n_queue_used bi gi nt Number of queued data bytesin thein-

coming queue in the shared memory be-
tween the backend and multiplexer

out _queue_used bi gi nt Number of queued data bytesin the out-
going queue in the shared memory be-
tween the backend and multiplexer

el apsed_time_wite bi gi nt Time from the last writing event of a
backend

el apsed_tinme_read bi gi nt Time from the last reading event of back-
end

6.4.2.4. shardman. si | k_routing

92

Shardman Reference

Theshar dman. si | k_routi ng view displays the results of the shar dman. si | k_r out i ng function. Table 6.11.

Table6.11. shar drman. si | k_r out i ng Columns

Name Type Description

hashval ue i nt eger Internal unique route identifier

origin_ip i net IP address of the node that generated this
route

origin_port int2 External TCP connection port of the
source hode that generated this route

channel _id i nt eger Route sequential number within the node
that generated this route

is_reply bool Index of the connect from which a mes-
sage was received that caused generation
of thisroute

pendi ng_queue_bytes bi gi nt Pending queue size, in bytes

pendi ng_queue_nessages bi gi nt Number of pending queue messages

backend_i d i nt eger ID of thelocal processthat is current-
ly using this route: either the ID of the
backend that generated this route or the
ID of thesi | kwor mworker assigned to
this route. Equals -1 for queued incom-
ing routes that have not been assigned a
worker yet.

backend_pi d i nt eger Returns the process ID of the server
process attached to the current session

attached bool ean Vaueistrueif backend is attached to
multiplexer, false otherwis

backend_rd_active bool ean t r ue if the backend/worker isready to
receive datato the incoming queue. See
Notes for details.

backend_wr_active bool ean t r ue if the backend/worker filled the
queue of non-sent messages and is wait-
ing for it to get free. See Notes for details.

i s_wor ker bool ean t r ue if thisprocessisasi | kwor mmul-
tiplexer worker and f al se otherwise

backend_bl ocked_by cn i nteger Index of the connect that blocks this back-
end/worker

bl ocks_connect s i nteger[] List of indexes of connects that are
blocked by this backend/worker

i n_queue_used bi gi nt Number of queued data bytesin thein-
coming queue in the shared memory be-
tween the backend and multiplexer

out _queue_used bi gi nt Number of queued data bytesin the out-
going gqueue in the shared memory be-
tween the backend and multiplexer

connect _id i nteger Unique connect index

reg ip i net “Registration” |P address of the node with
which the connection is established

reg_port int2 “Registration” TCP port of the node with

which the connection is established

93

Shardman Reference

Name Type Description

connect _rd_active bool ean t r ue if the multiplexer isready to re-
ceive datato the incoming queue

connect _w _active bool ean t r ue if the multiplexer filled the queue
of non-sent messages and iswaiting for it
to get free

connect i s_outgoing bool ean t r ue if the connection is outgoing, that
is, created by connect ,andf al se for
incoming connects, that is, created by
accept . Only used during the handshak-
ing.

connect _state t ext Current state of the connect: connect -
ed — if the connection is established, i n
pr ogr ess — if the client has already
connected, but handshaking has not hap-
pened yet, f r ee — if the client has al-
ready disconnected, but the connect struc-
ture for the disconnected client has not
been destroyed yet

connect _out goi ng_queue_byt es |bi gi nt Size of the queue of non-sent messages
for this connect, in bytes

connect _out goi ng_queue_nes- |bi gint Number of messagesin the queue of non-

sages sent messages for this connect

connect bl ocked by bk i nt eger ID of the backend that blocked this con-
nect

bl ocks_backends i nteger[] List of IDs of backends that are blocked
by this connect

connect _el apsed_time_wite bi gi nt Time from the last writing event of a con-
nect

connect el apsed_tinme_read bi gi nt Time from the last reading event of a con-
nect

backend_el apsed tine wite bi gi nt Time from the last writing event of a
backend

backend_el apsed_tine_read bi gi nt Time from the last reading event of a

backend

6.4.2.5. shar dman. si | k_pendi ng_j obs

Theshar dman. si | k_pendi ng_j obs view displaysthe current list of routes in the queue of delayed multiplexer jobs, that is,
jobs that are not assigned to workers yet. The columns of the view are shown in Table 6.12.

Table6.12. shar dnman. si | k_pendi ng_j obs Columns

Name Type Description

hashval ue i nt eger Internal unique route identifier

origin_ip i net IP address of the node that generated this
route

origin_port int2 TCP connection port of the node that gen-
erated this route

channel _id i nt eger Route sequential number within the node
that generated this route

query t ext The first queued message

94

Shardman Reference

Name Type Description
pendi ng_queue_byt es bi gi nt Pending queue size, in bytes
pendi ng_queue_nessages bi gi nt Number of pending queue messages

6.4.2.6. shardman. si l k_statinfo

The shar dman. si | k_st at i nf o view displays the current multiplexer state information. The columns of the view are shown
in Table 6.13.

Table6.13. shardman. si | k_st at i nf o Columns

Name Type Description

pid i nt eger si | kr oad process|D

started_at tinmestanp with tinme zone Timewhen thesi | kr oad backend was
started.

transferred_bytes json JSON aobject of key value pairs, where the

key isthe name of the message type, and
the value istotal number of bytes sent for
the message types with at least one mes-
sage sent

transferred_pkts j son JSON object of key value pairs, where the
key isthe name of the message type, and
the value isthe total number of sent mes-
sages for the message types with at least
one message sent

transferred_nax j son JSON object of key value pairs, where the
key isthe name of the message type, and
the value is the maximum size of a mes-
sage for the message types with at least

one message sent

mentxt _dpg_al | ocat ed bi gi nt Thenem al | ocat ed value of the
processin DPGvenor yCont ext

mentxt _top_all ocated bi gi nt Thenem al | ocat ed value of the
processin TopMenor yCont ext

read_ef d_max bi gi nt Maximum reading time of theevent f d
since reset

write efd max bi gi nt Maximum writing time of theevent f d
since reset

read_efd total bi gi nt Total reading time of theevent f d since
reset

wite_efd_total bi gi nt Total writing time of theevent f d since
reset

read_efd_count bi gi nt Total number of reading events of the

event f d since reset

write efd count bi gi nt Total number of writing events of the
event f d since reset

sort _time_max bi gi nt Maximum time of sorting operations with
thesi | k_fl ow control enabled (
any value other than none)

sort _time_total bi gi nt Tota time of sorting operations with the
sil k_fl ow_control enabled (any
value other than none)

95

Shardman Reference

Name Type Description

sort_time_count bi gi nt Total number of the sorting operations
withthesi | k_fl ow _control en-
abled (any value other than none)

Note that read efd max, wite efd max, read efd total, wite efd total, read _efd count,
wite efd count,sort time_nmex,sort _tinme total, and sort _tinme_count are only caculated if the shard-
man.silk_track time configuration parameter is enabled.

6.4.2.7. shardman. si | k_state

The shardman. si | k_st at e view displays the current si | kr oad process state. The columns of the view are shown in Ta-
ble 6.14.

Table6.14. shar drman. si | k_st at e Columns

Name Type Description
state t ext State of the si | kr oad process
6.4.2.8. Notes

reg_i p andreg_port vauesare not actual network addresses, but the addresses by which the multiplexer accesses the node.
They are determined during a handshake between multiplexer nodes and are equal to the corresponding parameters of an appropriate
serverinthepg_f orei gn_server table.

All theread_ev_acti ve valuesaretrue and all thewrite_ev_acti ve valuesaref al se when the multiplexer isin the
i dl e state.

6.4.3. Global Views

Shardman has alist of global views based on the PostgeSQL local views. The definition of global view columnsis the same asin
its corresponding local view. Fetching from aglobal view returns a union of rows from the corresponding local views. Therows are
fetched from each of their cluster nodes. Another difference isthat the global views have an added columnr gi d. Ther gi d value
shows the replication group 1D of the cluster node from which arow is fetched.

6.4.3.1. Global Views for Statistics
Below isthelist of the statistics-related global views with links to their corresponding local views:

Table 6.15. Statistics-related global and local views

Global view Local view Description

shardman. gv_stats pg_stats One row per planner statistics.

shardman. gv_stats_ext pg_stats ext Provides access to information about each
extended statistics object in the database.

shardnman. gv_stats_ext_exprs |pg_stats ext exprs Provides access to information about all
expressionsincluded in extended statistics
objects.

shardman. gv_stat _activity pg_stat activity One row per server process, showing in-
formation related to he current activity of
that process.

shardman. gv_stat _replication |pg_stat replication One row per WAL sender process, show-

ing statistics about replication to that
sender's connected standby server.

shardman. gv_stat _replica- pg_stat_replication_slots One row per replication slot, showing sta-
tion_slots tistics about the replication slot's usage.

shardnman. gv_stat_subscri p- pg_stat subscription One row per subscription for main work-
tion er (with null PID if the worker is not run-

ning), and additional rows for workers

96

https://postgrespro.com/docs/postgrespro/14/catalog-pg-foreign-server
https://postgrespro.com/docs/postgresql/17/view-pg-stats.html
https://postgrespro.com/docs/postgresql/17/view-pg-stats-ext.html
https://postgrespro.com/docs/postgresql/17/view-pg-stats-ext-exprs.html
https://postgrespro.com/docs/postgresql/14/monitoring-stats#MONITORING-PG-STAT-ACTIVITY-VIEW
https://postgrespro.com/docs/postgresql/14/monitoring-stats#MONITORING-PG-STAT-REPLICATION-VIEW
https://postgrespro.com/docs/postgresql/14/monitoring-stats#MONITORING-PG-STAT-REPLICATION-SLOTS-VIEW
https://postgrespro.com/docs/postgresql/14/monitoring-stats#MONITORING-PG-STAT-SUBSCRIPTION

Shardman Reference

Global view L ocal view Description
handling theinitia data copy of the sub-
scribed tables.

shar dman. gv_st at _ssl pg_stat_ssl One row per backend or WAL sender
process, showing statistics about SSL us-
age on this connection.

shardman. gv_st at _gssapi pg_stat_gssapi Onerow per backend, showing informa-

tion about GSSAPI usage on this connec-
tion.

shardman. gv_stat _archi ver

pg_stat_archiver

One row only, showing statistics about
the WAL archiver process's activity.

shardman. gv_stat _bgwiter

pg_stat bgwriter

Onerow only, showing statistics about
the background writer process's activity.

shardman. gv_stat_progress_
anal yze

pg_stat_progress analyze

Onerow for each backend (including au-
tovacuum worker processes) running AN-
ALY ZE, showing current progress.

shardman. gv_stat _progress_
basebackup

pg_stat_progress basebackup

Onerow for each WAL sender process
streaming a base backup, showing current
progress.

shardnman. gv_stat _progress_
cl uster

pg_stat_progress cluster

One row for each backend running
CLUSTER or VACUUM FULL, showing
current progress.

shardnman. gv_stat _checkpoi nt -
er

pg_stat_checkpointer

Onerow only, containing data about the
checkpointer process of the cluster.

shardman. gv_statistic_ext

pg_statistic_ext

Extended planner statistics (definition)

shardman. gv_stat_progress_
creat e_i ndex

pg_stat_progress create index

One row for each backend running CRE-
ATE | NDEX or REl NDEX, showing cur-
rent progress.

shardnman. gv_stat _progress_
vacuum

pg_stat_progress_vacuum

One row for each backend (including au-
tovacuum worker processes) that is cur-
rently vacuuming

shardnman. gv_stat_progress_
copy

pg_stat_progress_copy

Onerow for each backend running
COPY, showing current progress.

shardman. gv_stat_wal

pg_stat wal

One row only, showing statistics about
WAL activity.

shardman. gv_st at _dat abase

pg_stat_database

Onerow per database, showing data-
base-wide statistics about query cancels
due to conflict with recovery on standby
servers.

shardnman. gv_st at _dat abase_
conflicts

pg_stat_database conflicts

Onerow per database, showing data-
base-wide statistics about query cancels
occurring due to conflicts with recovery
on standby servers. Thisview will only
contain information on standby servers,
since conflicts do not occur on primary
servers.

shardman. gv_stat _all tables

pg_stat all tables

Onerow for each table in the current data-
base, showing statistics about accesses to
that specific table.

shardman. gv_stat _sys_tabl es

pg_stat sys tables

Sameaspg_stat _all _tabl es, ex-
cept that only system tables are shown.

97

https://postgrespro.com/docs/postgrespro/16/monitoring-stats#MONITORING-PG-STAT-SSL-VIEW
https://postgrespro.com/docs/postgresql/14/monitoring-stats#MONITORING-PG-STAT-GSSAPI-VIEW
https://postgrespro.com/docs/postgresql/14/monitoring-stats#MONITORING-PG-STAT-ARCHIVER-VIEW
https://postgrespro.com/docs/postgresql/14/monitoring-stats#MONITORING-PG-STAT-BGWRITER-VIEW
https://postgrespro.com/docs/postgrespro/17/progress-reporting#ANALYZE-PROGRESS-REPORTING
https://postgrespro.com/docs/postgrespro/17/progress-reporting#BASEBACKUP-PROGRESS-REPORTING
https://postgrespro.com/docs/postgrespro/17/progress-reporting#CLUSTER-PROGRESS-REPORTING
https://postgrespro.com/docs/postgrespro/17/monitoring-stats#MONITORING-PG-STAT-CHECKPOINTER-VIEW
https://postgrespro.com/docs/postgrespro/17/catalog-pg-statistic-ext.html
https://postgrespro.com/docs/postgrespro/17/progress-reporting#COPY-PROGRESS-REPORTING
https://postgrespro.com/docs/enterprise/17/progress-reporting#VACUUM-PROGRESS-REPORTING
https://postgrespro.com/docs/postgrespro/17/progress-reporting#COPY-PROGRESS-REPORTING
https://postgrespro.com/docs/postgresql/14/monitoring-stats#MONITORING-PG-STAT-WAL-VIEW
https://postgrespro.com/docs/postgresql/14/monitoring-stats#MONITORING-PG-STAT-DATABASE-VIEW
https://postgrespro.com/docs/postgresql/14/monitoring-stats#MONITORING-PG-STAT-DATABASE-CONFLICTS-VIEW
https://postgrespro.com/docs/postgresql/14/monitoring-stats#MONITORING-PG-STAT-ALL-TABLES-VIEW
https://postgrespro.com/docs/postgrespro/17/monitoring-stats#MONITORING-PG-STAT-SUBSCRIPTION-STATS

Shardman Reference

Global view

Local view

Description

shar dman.

gv_stat _user_tables

pg_stat_user_tables

Sameaspg_stat _al |l _tabl es, ex-
cept that only user tables are shown.

shardnman. gv_stat _al | i ndexes |pg_stat all indexes Onerow for each index in the current
database, showing statistics about access-
esto that specific index.

shardman. gv_stat _user _i ndex- |pg_stat user_indexes Sameaspg_stat_all _indexes, ex-

es cept that only indexes on user tables are
shown.

shardman. gv_stat _sys_i ndexes |pg_stat sys indexes Sameaspg_stat _al |l _i ndexes, ex-
cept that only indexes on system tables
are shown.

shardman. gv_st at _user _i ndex- |pg_stat user_indexes Sameaspg_stat _al | _i ndexes, ex-

es cept that only indexes on user tables are
shown.

shardnman. gv_statio_user _in- |pg_statio user indexes Sameaspg_statio_all i ndexes,

dexes except that only indexes on user tables are
shown.

shardman. gv_statio_all _ta- pg_statio_all_tables One row for each table in the current data-

bl es base, showing statistics about I/O on that
specific table.

shardman. gv_statio_all _in- pg_statio_all_indexes Onerow for each index in the current

dexes database, showing statistics about 1/0O on
that specific index.

shardman. gv_stati o_sys_in- pg_statio_sys indexes Sameaspg_stati o_al |l _i ndexes,

dexes except that only indexes on system tables
are shown.

shardman. gv_statio_all _se- pg_statio_all_sequences Onerow for each sequencein the current

guences database, showing statistics about I/0 on
that specific sequence.

shardman. gv_stati o_user_se- |pg statio user sequences Sameaspg_statio_all _se-

guences quences, except that only user se-
guences are shown.

shardman. gv_stati o_sys_se- pg_statio_sys sequences Sameaspg_statio_all _se-

guences guences, except that only system se-
guences are shown.

shardman. gv_stati o_sys_t a- pg_statio_sys tables Sameaspg_statio_all _tables,

bl es except that only system tables are shown.

shardman. gv_stati o_user _ta- |pg statio user tables Sameaspg_statio_all _tables,

bl es except that only user tables are shown.

shardman. gv_stat _user func- |pg stat user functions Onerow for each tracked function, show-

tions ing statistics about executions of that
function.

shardman. gv_stat_slru pg_stat slru Onerow per SLRU, showing statistics of
operations.

shardman. gv_stat _csn shardman.pg_stat_csn One row showing statistics on delays that
take place during import of CSN snap-
shots.

shardnman. gv_stat_noni tor shardman.pg_stat_monitor One row showing metrics of the Shard-

man monitor.

98

https://postgrespro.com/docs/postgrespro/17/monitoring-stats#MONITORING-PG-STAT-SUBSCRIPTION-STATS
https://postgrespro.com/docs/postgresql/14/monitoring-stats#MONITORING-PG-STAT-ALL-INDEXES-VIEW
https://postgrespro.com/docs/postgresql/14/monitoring-stats#MONITORING-PG-STAT-ALL-INDEXES-VIEW
https://postgrespro.com/docs/postgrespro/17/monitoring-stats
https://postgrespro.com/docs/postgrespro/17/monitoring-stats
https://postgrespro.com/docs/postgrespro/17/monitoring-stats
https://postgrespro.com/docs/postgresql/14/monitoring-stats#MONITORING-PG-STATIO-ALL-TABLES-VIEW
https://postgrespro.com/docs/postgresql/14/monitoring-stats#MONITORING-PG-STATIO-ALL-INDEXES-VIEW
https://postgrespro.com/docs/postgresql/14/monitoring-stats#MONITORING-PG-STATIO-ALL-INDEXES-VIEW
https://postgrespro.com/docs/postgresql/14/monitoring-stats#MONITORING-PG-STATIO-ALL-SEQUENCES-VIEW
https://postgrespro.com/docs/postgresql/14/monitoring-stats#MONITORING-PG-STATIO-ALL-SEQUENCES-VIEW
https://postgrespro.com/docs/postgresql/14/monitoring-stats#MONITORING-PG-STATIO-ALL-SEQUENCES-VIEW
https://postgrespro.com/docs/postgrespro/17/monitoring-stats#MONITORING-PG-STATIO-ALL-TABLES-VIEW
https://postgrespro.com/docs/postgrespro/17/monitoring-stats#MONITORING-PG-STATIO-ALL-TABLES-VIEW
https://postgrespro.com/docs/postgresql/14/monitoring-stats#MONITORING-PG-STAT-USER-FUNCTIONS-VIEW
https://postgrespro.com/docs/postgresql/14/monitoring-stats#MONITORING-PG-STAT-SLRU-VIEW

Shardman Reference

Global view

Local view

Description

shar dman.

gv_st at _net usage

shardman.pg_stat_net_usage

One row showing the cumulative network
traffic between Shardman cluster nodes.

shar dman.

gv_stat _xact _tinme

shardman.pg_stat_xact_time

One row showing statistics for the time
spent on atransaction.

shar dman.

gv_silk_routes

shardman.silk_routes

One row showing the current snapshot of
the multiplexer routing table.

shar dman.

gv_sil k_connects

shardman.silk_connects

One row showing the current list of multi-
plexer connects.

shar dman

.gv_sil k_backends

shardman.silk_backends

One row showing the current list of
processes of two kinds: backends that
serve client connectionsand si | kwor m
multiplexer workers, which interact with
the multiplexer.

shardnman. gv_si | k_pendi ng_ shardman.silk_pending_jobs One row showing the current list of routes

j obs in the queue of multiplexer jobs that are
not assigned to workers yet.

shardman. gv_si | k_routing shardman.silk_routing One row showing the results of the
shardman. si | k_rout i ng function.

shardman. gv_stats_sdm st at e- |pgpro_stats sdm_statements Thisview allows accessing the aggregat-

ment s ed statistics for the distributed queries.
Thisview can only be created if Shard-
man isinstalled for the database that has
pgpro_stats. The pgpro_stats must be cre-
ated on all the cluster nodes for the global
view to work.

shardman. gv_I ock_gr aph shardman. | ock_graph One row showing a graph of locks be-
tween processes on Shardman cluster
nodes including external locks. This view
isbased onthepg_I| ocks and pg_
pr epar ed_xact s systemviews and on
thepg_stat activity view of the
Statistics Collector.

shardnman. gv_stat _foreign_ shardman.pg_stat_foreign_stat_bytes One row showing the amount of statistics

byt es for foreign relations transferred over the
network between Shardman cluster nodes.

shardman. gv_stat _wal _recei v- |pg_stat_wal_receiver One row, showing statistics about the

er WAL receiver from that receiver's con-
nected server.

shardman. gv_stat_xact _all _ pg_stat xact all_tables Similartopg_stat _al | _tabl es, but

t abl es counts actions taken so far within the cur-
rent transaction (which are not yet includ-
edinpg_stat_all _tabl es andre
lated views). The columns for numbers of
live and dead rows and vacuum and ana-
lyze actions are not present in this view.

shardman. gv_stat _xact _sys_ pg_stat_xact sys tables Sameaspg_stat_xact_all _ta-

tabl es bl es, except that only system tables are
shown.

shardman. gv_stat _xact _user__ |pg stat xact user_functions Similartopg_stat _user_func-

functions ti ons, but counts only calls during the

current transaction (which are not yet

99

https://postgrespro.com/docs/postgrespro/14/views-overview
https://postgrespro.com/docs/postgrespro/14/monitoring-stats#MONITORING-PG-STAT-ACTIVITY-VIEW
https://postgrespro.com/docs/postgrespro/17/monitoring-stats#MONITORING-PG-STAT-WAL-RECEIVER-VIEW
https://postgrespro.com/docs/postgrespro/17/monitoring-stats#MONITORING-STATS-VIEWS
https://postgrespro.com/docs/postgrespro/17/monitoring-stats#MONITORING-STATS-VIEWS
https://postgrespro.com/docs/postgrespro/17/monitoring-stats#MONITORING-STATS-VIEWS

Shardman Reference

Global view L ocal view Description
includedinpg_stat _user_func-
tions).

shardman. gv_stat _xact _user__ |pg_stat xact user tables Sameaspg_stat_xact_all ta-

t abl es

bl es, except that only user tables are
shown.

6.4.3.2. Global Views for System Calalog

Below isthelist of the global views that relate to the system catalog, and links to their corresponding local views:

Table 6.16. Global and local views for system catalog

Global view

L ocal view

Description

shar dman.

gv_aggr egat e

pg_aggregate

Stores information about aggregate func-
tions

shardman. gv_am pg_am Relation access methods

shar dman. gv_anop pg_amop Access method operators

shar dman. gv_anpr oc pg_amproc Access method support functions
shardman. gv_at tr def pg_attrdef Column default values
shardman. gv_attribute pg_attribute Table columns (“ attributes”)

shar dman.

gv_aut h_menbers

pg_auth_members

Authorization identifier membership rela-
tionships

shar dman.

gv_avai l abl e_ext en-

sion_versi ons

pg_available extension versions

Specific extension versions that are avail-
ablefor installation

shardman. gv_avai | abl e_ext en- |pg_available extensions Extensions that are available for installa-

si ons tion

shar dman. gv_cast pg_cast Casts (data type conversions)

shardman. gv_cl ass pg_class Tables, indexes, sequences, views (“rela-
tions”)

shardman. gv_col | ati on pg_collation Collations (locale information)

shardnman. gv_config pg_config Compile-time configuration parameters of
the currently installed version of Postgres
Pro

shardman. gv_constrai nt pg_constraint Check constraints, unique constraints, pri-
mary key constraints, foreign key con-
straints

shar dman. gv_conver si on pg_conversion Encoding conversion information

shar dman. gv_dat abase pg_database Databases within this database cluster

shardnman. gv_db _rol e _setting |pg db role setting Per-role and per-database settings

shardman. gv_ef aul t _acl pg_default_acl Default privileges for object types

shar dman. gv_depend pg_depend Dependencies between database objects

shardman. gv_descri ption pg_description Descriptions or comments on database
objects

shardnman. gv_enum pg_enum Enum label and value definitions

shardman. gv_event _tri gger pg_event_trigger Event triggers

shar dman. gv_ext ensi on pg_extension Installed extensions

shardman. gv_file_setting pg_file settings Installed extensions

100

https://postgrespro.com/docs/postgrespro/17/monitoring-stats#MONITORING-STATS-VIEWS
https://postgrespro.com/docs/postgresql/14/catalog-pg-aggregate?lang=en
https://postgrespro.com/docs/enterprise/14/catalog-pg-am
https://postgrespro.com/docs/enterprise/14/catalog-pg-amop.html
https://postgrespro.com/docs/enterprise/14/catalog-pg-amproc.html
https://postgrespro.com/docs/enterprise/14/catalog-pg-attrdef.htmlf
https://postgrespro.com/docs/enterprise/14/catalog-pg-attribute.html
https://postgrespro.com/docs/enterprise/14/catalog-pg-auth-members.html
https://postgrespro.com/docs/enterprise/14/view-pg-available-extension-versions.html
https://postgrespro.com/docs/enterprise/14/view-pg-available-extensions.html
https://postgrespro.com/docs/enterprise/14/catalog-pg-cast.html
https://postgrespro.com/docs/enterprise/14/catalog-pg-class.html
https://postgrespro.com/docs/enterprise/14/catalog-pg-collation.html
https://postgrespro.com/docs/postgresql/14/view-pg-config.html
https://postgrespro.com/docs/enterprise/14/catalog-pg-constraint.html
https://postgrespro.com/docs/enterprise/14/catalog-pg-conversion.html
https://postgrespro.com/docs/enterprise/14/catalog-pg-database.html
https://postgrespro.com/docs/enterprise/14/catalog-pg-db-role-setting.html
https://postgrespro.com/docs/enterprise/14/catalog-pg-default-acl.html
https://postgrespro.com/docs/enterprise/14/catalog-pg-depend.html
https://postgrespro.com/docs/enterprise/14/catalog-pg-description.html
https://postgrespro.com/docs/enterprise/14/catalog-pg-enum.html
https://postgrespro.com/docs/enterprise/14/catalog-pg-event-trigger.html
https://postgrespro.com/docs/enterprise/14/catalog-pg-extension.html
https://postgrespro.com/docs/enterprise/14/view-pg-file-settings.html

Shardman Reference

Global view

Local view

Description

shardman. gv_forei gn_data_
wr apper

pg_foreign_data wrapper

Foreign-data wrapper definitions

shardnman. gv_forei gn_server

pg_foreign_server

Foreign server definitions

shardman. gv_foreign_table

pg foreign table

Additional foreign table information

shar dman. gv_gr oup

pg_group

Exists for backwards compatibility: it em-
ulates a catalog that existed in Postgres
Pro before version 8.1

shardman. gv_hba_file_rules

pg_hba file rules

Summary of the contents of the client au-
thentication configuration file

shar dnman. gv_i ndex pg_index Additional index information

shardman. gv_i ndexes pg_indexes Provides access to useful information
about each index in the database

shardman. gv_i nherits pg_inherits Table inheritance hierarchy

shardman. gv_init_privs pg_init_privs Object initial privileges

shardnman. gv_I| anguage pg_language Languages for writing functions

shardman. gv_|I ar geobj ect pg_largeobject Data pages for large objects

shardman. gv_|I ar geobj ect _
net adat a

pg_largeobject_metadata

M etadata associated with large objects

shar dman. gv_mat vi ews pg_matviews Provides access to useful information
about each materialized view in the data-
base

shar dnman. gv_nanespace pg_namespace Schemas

shar dman. gv_opcl ass pg_opclass Access method operator classes

shar dman. gv_oper at or pg_operator Operators

shardman. gv_opfam |y pg_opfamily Access method operator families

shardnman. gv_partitioned ta-
bl e

pg_partitioned_table

Information about partition key of tables

shar dman. gv_proc

Pg_proc

Functions and procedures

shardman. gv_profile

pg_profile

Profiles, a set of authentication restric-
tions

shardman. gv_publ i cation

pg_publication

Publications for logical replication

shardnman. gv_publication_rel

pg_publication_rel

Relation to publication mapping

shardman. gv_publication_ta-
bl es

pg_publication_tables

Information about the mapping between
publications and information of tables
they contain

shar dman. gv_r ange

pg_range

Information about range types

shardman. gv_replication_ori-
gin

pg_replication_origin

Registered replication origins

shardnman. gv_replication_ori-
gin_status

pg_replication_origin_status

Information about how far replay for a
certain origin has progressed

shardman. gv_replication_
slots

pg_replication_slots

Provides alisting of all replication slots
that currently exist on the database clus-
ter, along with their current state

shardman. gv_rewite

pg_rewrite

Query rewrite rules

101

https://postgrespro.com/docs/enterprise/14/catalog-pg-foreign-data-wrapper.html
https://postgrespro.com/docs/enterprise/14/catalog-pg-foreign-server.html
https://postgrespro.com/docs/enterprise/14/catalog-pg-foreign-table.html
https://postgrespro.com/docs/enterprise/14/view-pg-group.html
https://postgrespro.com/docs/enterprise/14/view-pg-hba-file-rules.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-index
https://postgrespro.com/docs/postgresql/17/view-pg-indexes.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-inherits.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-init-privs.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-language.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-largeobject.html
https://postgrespro.com/docs/postgresql/17/catalog-pg-largeobject-metadata
https://postgrespro.com/docs/postgresql/17/view-pg-matviews.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-namespace.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-opclass.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-operator.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-opfamily.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-partitioned-table.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-proc.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-profile.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-publication.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-publication-rel.html
https://postgrespro.com/docs/postgresql/17/view-pg-publication-tables.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-range.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-replication-origin.html
https://postgrespro.com/docs/postgresql/17/view-pg-replication-origin-status.html
https://postgrespro.com/docs/postgresql/17/view-pg-replication-slots.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-rewrite.html

Shardman Reference

Global view L ocal view Description

shardman. gv_rul es pg_rules Provides access to useful information
about query rewrite rules

shar dnman. gv_secl abel pg_seclabel Security labels on database objects

shar dman. gv_secl abel s pg_seclabels Provides information about security labels

shar dman. gv_sequence pg_sequence Information about sequences

shar dman. gv_sequences pg_sequences Provides access to useful information
about each sequence in the database

shardnman. gv_settings pg_settings Provides access to run-time parameters of
the server

shar dman. gv_shdepend pg_shdepend Dependencies on shared objects

shar dman. gv_shdescri pti on pg_shdescription Comments on shared objects

shar dman. gv_shsecl abel pg_shseclabel Security |abels on shared database objects

shardman. gv_subscri ption pg_subscription Logical replication subscriptions

shar dman. gv_subscri ption_rel |pg_subscription rel Relation state for subscriptions

shar dman. gv_t abl espace pg_tablespace Tablespaces within this database cluster

shardman. gv_t abl es pg_tables Provides access to useful information
about each table in the database

shardnman. gv_prepared_xacts pg_prepared xacts Provides information about transactions

that are currently prepared for two-phase
commit

shar dman.

gv_ti mezone_nanes

pg_timezone names

List of time zone names that are recog-
nized by SET TI MEZONE, aong with
their associated abbreviations, UTC off-
sets, and daylight-savings status

shar dman.

gv_timezone_abbrevs

pg_timezone_abbrevs

List of time zone abbreviations that are
currently recognized by the datetime input
routines

shar dman.

gv_transform

pg_transform

Transforms (data type to procedural lan-
guage conversions)

shar dman.

gv_trigger

pg_trigger

Triggers

shar dman.

gv_ts_config

pg_ts config

Text search configurations

shar dman.

gv_ts_config_map

pg_ts config_map

Text search configurations' token map-
pings

shar dman.

gv_ts_dict

pg_ts dict

Text search dictionaries

shar dman.

gv_ts_parser

pg_ts parser

Text search parsers

shar dman.

gv_ts tenplate

pg_ts template

Text search templates

shar dman.

gv_type

Pg_type

Datatypes

shar dman.

gv_user _mappi ng

pg_user_mapping

Mappings of usersto foreign servers

shar dman.

gv_user _nmappi ngs

pg_user_mappings

Provides access to information about user
mappings

shardman. gv_vi ews pg_views Provides access to useful information
about each view in the database
shardman. gv_|I ocks pg_locks Provides access to information about the

locks held by active processes within the
database server.

102

https://postgrespro.com/docs/postgresql/17/view-pg-rules.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-seclabel.html
https://postgrespro.com/docs/postgresql/17/view-pg-seclabels.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-sequence.html
https://postgrespro.com/docs/postgresql/17/view-pg-sequences.html
https://postgrespro.com/docs/postgresql/17/view-pg-settings.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-shdepend.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-shdescription.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-shseclabel.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-subscription.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-subscription-rel
https://postgrespro.com/docs/postgrespro/17/catalog-pg-tablespace.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-tablespace.html
https://postgrespro.com/docs/enterprise/17/view-pg-prepared-xacts
https://postgrespro.com/docs/postgrespro/17/view-pg-timezone-names.html
https://postgrespro.com/docs/postgrespro/17/view-pg-timezone-abbrevs.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-transform.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-trigger.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-ts-config.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-ts-config-map.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-ts-dict.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-ts-parser.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-ts-template.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-type.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-user-mapping.html
https://postgrespro.com/docs/postgresql/17/view-pg-user-mappings.html
https://postgrespro.com/docs/postgrespro/17/view-pg-views.html
https://postgrespro.com/docs/postgresql/14/view-pg-locks

Shardman Reference

Global view L ocal view Description
shardman. gv_shnem al | oca- pg_shmem allocations Shows allocations made from the server's
tions main shared memory segment.

6.5. SQL Commands

Shardman extends some DDL SQL commands supported by PostgreSQL to enable distributed DDL processing. Thisreference only
describes Shardman-specific command syntax. See PostgreSQL documentation for adescription of standard DDL SQL commands.

103

https://postgrespro.com/docs/postgresql/14/view-pg-shmem-allocations
https://postgrespro.com/docs/postgresql/14/sql-commands

Shardman Reference

ALTER SEQUENCE

ALTER SEQUENCE — change the definition of a sequence generator

Synopsis

ALTER
[

[
[
[
[

[
ALTER

SEQUENCE [| F EXISTS] nane

AS data_type]

| NCREMENT [BY] increment]

M NVALUE mi nvalue | NO M NVALUE] [MAXVALUE maxval ue | NO MAXVALUE]

RESTART [[WTH] restart]]

CACHE cache 1 [[NO] CYCLE]

OMED BY { table_nane.colum_name | NONE }]

SEQUENCE [I F EXISTS] nane OMER TO { new owner | CURRENT_ROLE | CURRENT_USER |

SESSI ON_USER }

ALTER SEQUENCE [I F EXISTS] nanme RENAME TO new_nharne
ALTER SEQUENCE [I F EXISTS] name SET SCHEMA new_schenma
Description
ALTER SEQUENCE changes the parameters of an existing sequence generator. The extended forms of ALTER SEQUENCE are

mostly the same as in PostgreSQL (see ALTER SEQUENCE) except for the following differences:

* The minimum seguence value parameter in Shardman works more like alower boundary on the global interval of available
values, so it can only be increased to make sure no duplicate numbers are generated.

» The RESTART W TH clause alows restarting a sequence at any arbitrary lower bound, but in this case, there is no guarantee
that previously generated numbers will not repeat.

e Using both RESTART W THand M NVALUE in asingle statement is not permitted to avoid confusion.

Examples

Alter the block size parameter of asequencecaled seri al :
ALTER SEQUENCE serial SET (block_size = 8192);

See Also

CREATE SEQUENCE, Section 7.6

104

https://postgrespro.com/docs/postgresql/14/sql-altersequence/sql-altersequence

Shardman Reference

ALTER TABLE
ALTER TABLE — change the definition of atable
Synopsis
ALTER TABLE [IF EXISTS] [ONLY] name [*]
action [, ...]

ALTER TABLE [IF EXISTS] [ONLY] name [*]
RENAME [COLUWN] col um_nane TO new_col um_nane
ALTER TABLE [IF EXISTS] [ONLY] name [*]
RENAME CONSTRAI NT constraint_nane TO new _constrai nt_nane
ALTER TABLE [| F EXISTS] nane
RENAME TO new_nane
ALTER TABLE [| F EXISTS] nane
SET SCHEMA new _schema
ALTER TABLE ALL I N TABLESPACE nane [OWNED BY role_name [, ...]]
SET TABLESPACE new t abl espace [NOMAI T]
ALTER TABLE [| F EXISTS] nane
ATTACH PARTI TION partition_nane { FOR VALUES partition_bound_spec | DEFAULT }
ALTER TABLE [| F EXISTS] nane
DETACH PARTI TI ON partition_name [CONCURRENTLY | FI NALI ZE]

where action is one of:

ADD [COLUWN] [IF NOT EXISTS] columm_nane data type [COLLATE collation]
[colum_constraint [...]]
DROP [COLUW] [IF EXISTS] colum_name [RESTRICT | CASCADE]

ALTER [COLUW] colum_nane [SET DATA] TYPE data_type [COLLATE collation]
[USING expression]

ALTER [COLUW] col umm_nane SET DEFAULT expression

ALTER [COLUW] col um_nane DROP DEFAULT

ALTER [COLUW] colum_nanme { SET | DROP } NOT NULL

ALTER [COLUWN] colum_nane DROP EXPRESSION [| F EXI STS]

ALTER [COLUWN] col um_nanme ADD GENERATED { ALWAYS | BY DEFAULT } AS | DENTITY
[(sequence options)]

ALTER [COLUW] colum_nane { SET GENERATED { ALWAYS | BY DEFAULT } |
SET sequence_option | RESTART [[WTH] restart] } [...]

ALTER [COLUWN] colum_nanme DROP IDENTITY [| F EXI STS]

ALTER [COLUW] col umm_nane SET STATI STI CS i nt eger

ALTER [COLUW] colum_nane SET (attribute option = value [, ...])

ALTER [COLUW] colum_nane RESET (attribute option [, ...])

ALTER [COLUWN] colum_nane SET STORAGE { PLAIN | EXTERNAL | EXTENDED | MAIN }

ALTER [COLUW] col umm_nane SET COVPRESSI ON conpressi on_net hod

ADD table constraint [NOT VALID]

ADD t abl e_constrai nt_usi ng_i ndex

ALTER CONSTRAI NT constraint_name [DEFERRABLE | NOT DEFERRABLE] [I NI TIALLY
DEFERRED | | NI TI ALLY | MVEDI ATE]

VALI DATE CONSTRAI NT constrai nt _nane

DROP CONSTRAINT [IF EXISTS] constraint_name [RESTRICT | CASCADE]

DI SABLE TRIGGER [trigger_name | ALL | USER]

ENABLE TRIGGER [trigger_nane | ALL | USER]

ENABLE REPLI CA TRI GGER tri gger_nane

ENABLE ALWAYS TRI GGER tri gger _nane

DI SABLE RULE rewite rul e _nane

ENABLE RULE rewite _rul e_nane

ENABLE REPLI CA RULE rewite_rul e_nane

105

Shardman Reference

ENABLE ALWAYS RULE rewrite_rul e_nane

DI SABLE ROW LEVEL SECURI TY

ENABLE ROW LEVEL SECURI TY

FORCE ROW LEVEL SECURI TY

NO FORCE ROW LEVEL SECURI TY

CLUSTER ON i ndex_nane

SET W THOUT CLUSTER

SET W THOUT O DS

SET TABLESPACE new_t abl espace

SET { LOGGED | UNLOGGED }

SET (storage_parameter [= value] [, ...])

RESET (storage paraneter [, ...])

I NHERI T parent _table

NO I NHERI T parent _tabl e

CF type_nane

NOT OF

OMER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSI ON_USER }
REPLI CA | DENTI TY { DEFAULT | USING I NDEX i ndex_name | FULL | NOTH NG }

and partition_bound_spec is:

IN (partition_bound_expr [, ...]) |
FROM ({ partition_bound_expr | M NVALUE | MAXVALUE } [, ...])
TO ({ partition_bound_expr | M NVALUE | MAXVALUE } [, ...]) |

WTH (MODULUS numeric_literal, REMAINDER nurmeric_literal)
and colum_constraint is:

[CONSTRAI NT constraint_nane |
{ NOT NULL |
NULL |
CHECK (expression) [NOINHERI T] |
DEFAULT def aul t _expr |
GENERATED ALWAYS AS (generation_expr) STORED |
GENERATED { ALWAYS | BY DEFAULT } AS IDENTITY [(sequence_options)] |
UNI QUE i ndex_paraneters |
PRI MARY KEY i ndex_paraneters |
REFERENCES reftable [(refcolum)] [MATCH FULL | MATCH PARTI AL | MATCH SI MPLE]
[ON DELETE referential _action] [ON UPDATE referential _action] }
[DEFERRABLE | NOT DEFERRABLE] [I NITIALLY DEFERRED | I NI TIALLY | MVEDI ATE]

and table_constraint is:

[CONSTRAI NT constraint_nane |
{ CHECK (expression) [NOINHERIT] |
UNI QUE (columm_nane [, ...]) index_paraneters |
PRI MARY KEY (columm_nane [, ...]) index_paraneters |
EXCLUDE [USING i ndex_nethod] (exclude_el enent W TH oper at or
[, ...]) index_paranmeters [WHERE (predicate)] |
FOREI GN KEY (columm_nane [, ...]) REFERENCES reftable [(refcolum [, ...])]
[MATCH FULL | MATCH PARTIAL | MATCH SIMPLE] [ON DELETE referential _action] [ON
UPDATE referential _action] }
[DEFERRABLE | NOT DEFERRABLE] [I NITIALLY DEFERRED | I NI TIALLY | MVEDI ATE]

and tabl e_constraint_using_index is:

[CONSTRAI NT constraint_nane]
{ UNIQUE | PRIMARY KEY } USING | NDEX i ndex_nane

106

Shardman Reference

[DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | I NI TI ALLY | MVEDI ATE]
i ndex_paraneters in UNl QJE, PRI MARY KEY, and EXCLUDE constraints are:

[INCLUDE (colum_name [, ...])]
[WTH (storage_paranmeter [= value] [, ...])]
[USING I NDEX TABLESPACE t abl espace_nane]

exclude_elenment in an EXCLUDE constraint is:
{ colum_nane | (expression) } [opclass] [ASC| DESC] [NULLS { FIRST | LAST }]

Description
Shardman extension of the ALTER TABLE syntax allows coherently changing definitions of sharded and global tables.

The set of ALTER operations supported for global and sharded tables is restricted. For details, see ALTER TABLE Limitations.

Parameters

Storage Parameters
Shardman extends storage parameters of tables with its own storage metaparameters. They are not stored in the corresponding
catalog entry, but are used to tell the Shardman extension to perform some additional actions.
gl obal
This parameter can be specified only for global tables. If set to 0, the global table will be converted to a regular one on the
replication group where the command is executed. The global table will not exist on other nodes after completion of this state-
ment. No other storage parameter can be set when gl obal parameter is specified.
Examples
Create aglobal table pgbench_t el | er s and then convert it to local.

CREATE TABLE pgbench_tellers (

tid i nteger PRI MARY KEY,
bi d i nteger,

t bal ance i nteger,

filler char act er (84)

)
W TH (gl obal);
ALTER TABLE pgbench_tellers SET (gl obal =0);

See Also
ALTER TABLE Limitations, PostgreSQL ALTER TABLE

107

https://postgrespro.com/docs/postgresql/14/sql-altertable/sql-altertable

Shardman Reference

CREATE SEQUENCE

CREATE SEQUENCE — define a new sequence generator

Synopsis

CREATE SEQUENCE [| F NOT EXI STS] nane
[AS data_type]
[INCREMENT [BY] increnment]
[MNVALUE minvalue | NO MNVALUE | [MAXVALUE naxval ue | NO MAXVALUE]
[START [WTH] start] [CACHE cache] [[NO] CYCLE]
[OANED BY { tabl e _nane.colum_nanme | NONE }]
WTH ([global],
[block _size = bl ock_size]
)

Description

Shardman extensions to the CREATE SEQUENCE command enabl e creation of global sequence number generators. This command
creates an ordinary PostgreSQL sequence on all nodes in a cluster and records sequence parameters in the global sequence state
dictionary. (See Section 7.6 for details.)

After a global sequence is created, usual next val function can be used to generate next sequence values that are guaranteed be
unique acrosstheentire cluster. Other standard sequence manipulation functions (e.g. set val) must not be used on global sequences
as this may lead to unexpected results.

Parameters
In addition to the parameters recognized by PostgreSQL, the following parameters are supported by Shardman.

gl obal
If specified, the sequence object is created as a Shardman-managed global sequence.

bl ock_si ze

The number of elements allocated for alocal sequence. The default value is 65536.

Notes

Global sequencesare meant to behave similarly to ordinary PostgreSQL sequences (see CREATE SEQUENCE) with somelimitations,
the most important one being that a global sequence is always increasing. There's no support for negative increment values or
wraparound (asin CYCLE), which also meansthere's practically no difference between the minimum sequence value and its starting
value, so both parameters cannot be provided at the same time to avoid confusion.

Just like with regular sequence objects, the DROP SEQUENCE command removes a global sequence and the ALTER SEQUENCE
command allows changing some of the global sequence parameters.
Examples
Create aglobal sequencecalled seri al .
CREATE SEQUENCE serial M NVALUE 100 W TH (gl obal);

Select the next number from this sequence:

SELECT nextval ('serial');
next val

108

https://postgrespro.com/docs/postgresql/14/sql-createsequence/sql-createsequence

Shardman Reference

See Also
ALTER SEQUENCE, Section 7.6

109

Shardman Reference

CREATE TABLE

CREATE TABLE — define anew table

Synopsis
CREATE [UNLOGGED | TABLE [I F NOT EXISTS] table_name (|
{ colum_nane data_type [COLLATE collation] [colum_constraint [...]]
| table_constraint
| LIKE source_table [like_option ...]}

[,]
)

]

[USI NG net hod]

[WTH (storage_paraneter [= value] [, ... 1)]
[TABLESPACE t abl espace_nane]

CREATE TABLE table name ([
{ colum_nanme data_type }
[, ... 1]
1)
WTH ({ distributed_by = 'col um_nane’

[, numparts = nunber_of partitions]

[, colocate_ with = 'col ocation_table_nanme']
[, partition_by = 'colum_nane',

partition_bounds = "array_of_partition_bound_exprs'] |
gl obal }

)

where colum_constraint is:

[CONSTRAI NT constraint_nane]
{ NOT NULL |
NULL |
CHECK (expression) [NOINHERIT] |
DEFAULT def aul t _expr |
UNI QUE i ndex_paraneters |
PRI MARY KEY i ndex_paraneters }
[DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | | NI TI ALLY | MVEDI ATE]

and table_constraint is:

[CONSTRAI NT constraint_nane]
{ CHECK (expression) [NOINHERIT] |
UNI QUE (columm_nane [, ...]) index_paraneters |
PRI MARY KEY (columm_nane [, ...]) index_paraneters |
EXCLUDE [USI NG i ndex_nethod] (exclude_el ement W TH oper at or
[, ...]) index paraneters [WHERE (predicate)] }
[DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | I NI TI ALLY | MVEDI ATE]

Description

Shardman extension of the CREATE TABLE syntax enables creation of sharded tables distributed across all replication groups with
asingle DDL statement.

The extended CREATE TABLE syntax imposes limitations on the general syntax of the command. For example, thereis currently
no support for:

110

Shardman Reference

» Generated columns.

» REFERENCES and FOREI GN KEY constraints between non-colocated sharded tables.

* PARTI TI ON BY and PARTI TI ON CF clauses.

When creating a colocated table, have in mind the related limitations. Specifically, from these limitations, it follows that a foreign
key on aglobal table can reference only another global table and aforeign key on a sharded table can reference a colocated sharded
table or a global table. Note that when a foreign key on a sharded or a global table references a global table, only NO ACTI ON

or RESTRI CT referential actions are supported for the ON UPDATE action and only NO ACTI ON, RESTRI CT or CASCADE are
supported for the ON DELETE action.

Columns of the SERI AL8 type are implemented using an automatically created global sequence, so all global sequence properties
also apply here. (See Section 7.6 for details.)

Parameters
| F NOT EXI STS

Do not throw an error if arelation with the same name already exists. A noticeisissued inthiscase. | F NOT EXI STS does
not lead to an error if an existing table with the same name is global or sharded, or if it islocal yet islocated on a nhode from
which the query isrun. Otherwise, such a query failswith error.

Storage Parameters

Shardman extends storage parameters of tables with its own storage metaparameters. They are not stored in the corresponding
catalog entry, but are used to tell the Shardman extension to perform some additional actions. Regular storage parameters are trans-
parently passed to table partitions.

di stri buted_by (t ext)

This specifies the name of the column to use for the table partitioning. Only hash partitioning is currently supported, so thisis
effectively an equivalent of PARTI TI ON BY HASH, but all the leaf partitions will be created immediately on all replication
groups and the table will be registered in the Shardman metadata.

num parts (i nt eger)

This setsthe number of partitionsthat will be created for thistable. This parameter isoptional. If it isnot specified, for asharded
table, the value of the global setting of shardman.num_parts will be used, for a colocated table, the value will be taken from
the corresponding colocating table.

col ocate_with (text)
This specifies the name of the table to colocate with. If set, Shardman will try to place partitions of the created table with the
same partition key on the same nodesascol ocat i on_t abl e_nane. This parameter is optional.

partition_by (text)
This specifiesthe name of the column to use for the second-level table partitioning. Only range partitioning is currently support-
ed. When this parameter is used, each table partition is created as a partitioned table. Subpartitions can be created immediately
if partition_bounds parameter is set. This parameter is optional.

partition_bounds (t ext)

This sets bounds of second-level table partitions. Bounds should be a string representation of a two-dimensional array. Each
array member isapair of alower and upper bound for partitions. If lower and upper bounds are both NULL, the default partition
is created. Number of partitionsis determined by the first array dimension. This parameter is optional.
gl obal (bool ean)
This defines that the table is global. If set, the table will be distributed on al replication groups and will be synchronized by
triggers. This parameter is optional.
Examples

In this example, the table pgbench_branches is created, as well as colocated tables pgbench_accounts and pg-
bench_hi st ory. Each partition of thepgbench_hi st or y tableis additionally subpartitioned by range.

111

Shardman Reference

CREATE TABLE pgbench_branches (
bi d i nteger NOT NULL PRI MARY KEY,
bbal ance i nteger,
filler character(88)

)

WTH (distributed_by = "bid',

num parts = 8);

CREATE TABLE pgbench_accounts (
aid integer NOT NULL,
bid integer,
abal ance i nt eger,
filler character(84),

PRI MARY KEY (bid, aid)

)

WTH (distributed_by = "bid',

num parts = 8,

col ocate_with = ' pgbench_branches');
CREATE TABLE public. pgbench_history (
tid integer,
bid integer,

aid integer,
delta integer,
nime tinmestanp without tine zone,
filler character(22)
)
WTH (distributed_by = "bid",
col ocate_wi th = ' pgbench_branches’,
partition_by = 'ntinme',
partition_bounds =
$${{m nval ue, '2021-01-01 00:00'},{' 2021-01-01 00: 00', '2022-01-01 00:00'},
{' 2022-01-01 00: 00', naxval ue}}3$$
)

These simple examples of CREATE TABLE illustrate limitations related to creation of colocated tables:

This command creates a table to colocate with:

CREATE TABLE teans_pl ayers (
team.id integer NOT NULL
pl ayer _id integer,
scores int,
PRI MARY KEY (team.id, player_id)
) WTH (distributed_by="team.id, player_id);

This command correctly creates a colocated table:

CREATE TABLE pl ayers_scores (

pl ayer _id integer NOT NULL,

team.id integer,

i nterval tstzrange,

scores integer,

foreign key (team.id, player_id) references teans_players(team.id, player_id)
) WTH (distributed_by="team.id, player_id , colocate_wth="teans_players');

And this command contains an error in the definition of aforeign key:

CREATE TABLE pl ayers_scores (
player _id integer NOT NULL,
team.id integer,

i nterval tstzrange,
scores integer,

112

Shardman Reference

foreign key (team.id, player_id) references teans_players(team.id, player_id)
) WTH (distributed_by="player_id, teamid , colocate_wth="teans_players');
ERROR: foreign key should start with distributed_by col ums

Consider another example:

CREATE TABLE teans (team.id integer primary key, teamnane text) wth
(distributed_by="teamid');
CREATE TABLE pl ayers_teans (
pl ayer _id integer,
teamid integer references teans(team.id),
scores integer
) WTH (distributed_by="player_id , colocate_ with="teans");
ERROR: foreign key should start with distributed_by col ums

See Also
CREATE TABLE Limitations, PostgreSQL CREATE TABLE

113

https://postgrespro.com/docs/postgresql/14/sql-createtable/sql-createtable

Shardman Reference

CREATE TABLESPACE

CREATE TABLESPACE — define anew tablespace

Synopsis

CREATE TABLESPACE t abl espace_nane
[OMNER { new owner | CURRENT_ROLE | CURRENT_USER | SESSI ON_USER }]
LOCATI ON 't enpl at €'
[WTH (tabl espace_option = value [, ...])]

Description

Shardman extension of the CREATE TABLESPACE syntax enables creation of anew cluster-wide tablespace. All tablespacesin a
Shardman cluster must be cluster-wide. The cluster-wide tablespace is created on each cluster node with the location derived from
the tenpl at e parameter.

Parameters
t abl espace_nane

The name of atablespace to be created. The name cannot begin with pg_ as such names are reserved for system tablespaces.
Also the name cannot contain new line characters.

tenpl ate

The directory name template that will be used for the tablespace. The template must include “{rgid}” substring, which will be
translated into the actual replication group ID on each instance where a statement is executed. The directory name template
must allow conversion to an absolute path. The path cannot contain new line characters. CREATE TABLESPACE will create
the corresponding directory if it is missing. If the directory exists, it must be empty and must be owned by the PostgreSQL
system user.

t abl espace_option

A tablespace parameter to be set or reset. The list of parameters must include gl obal boolean parameter. Creation of non-
global tablespacesis not allowed by default.

Examples

To create a tablespace dbspace under the file system location / dat a/ dbs, first create the directory using operating system
facilities on all nodes and set the correct ownership (or ensure that post gr es user has permissionsto create it):

nkdi r /data/dbs
chown post gres: postgres /data/dbs

Then issue the tablespace creation command inside PostgreSQL :
CREATE TABLESPACE dbspace LOCATION '/data/dbs/ts-{rgid}' WTH (gl obal);

See Also
PostgreSQL CREATE TABLESPACE

6.6. SQL Limitations

To ensure consistency of a sharded database, Shardman imposes some restrictions on SQL commands executed.

6.6.1. ALTER SYSTEMLimitations
 ALTER SYSTEMis prohibited (configuration changes should be performed viashar dmanct | confi g updat e).

6.6.2. ALTER TABLE Limitations
e ALTER TABLE isprohibited for partitions of sharded tables.

114

https://postgrespro.com/docs/postgresql/14/sql-createtable/sql-createtablespace
https://postgrespro.com/docs/postgresql/14/alter-system
https://postgrespro.com/docs/postgresql/14/sql-altertable

Shardman Reference

All forms of ALTER TABLE are prohibited for sharded or global tables except these:
e ALTER TABLE OMNERisallowed. For sharded table it also changes the owner of table partitions. Only the global user
can be an owner of sharded or global table.

e ALTER TABLE COLUWN TYPE isallowed with limitations. Y ou cannot alter type of sharded table column participating
in sharding or partitioning key. Y ou cannot alter type of sharded table column with USI NG clause (but for global tables it
isalowed). Also, it isauser's duty for now to create and keep new type exactly equal on every cluster node.

* ALTER TABLE COLUMN RENAME isallowed.

e Adding or dropping table-wide unique constraints and checks is alowed. For global tables dropping primary key constraint
or dropping columns, participating in primary key, is forbidden.

« Adding foreign keys between sharded tablesis possible only when they are colocated and a foreign key references tuples
that are stored in the same replication group. A foreign key between sharded tables must begin with the columns used for
table partitioning in both tables. A foreign key on aglobal table can reference only another global table. A foreign key ona
sharded table can reference a col ocated sharded table or a global table.

e SET/DROP NOT NULL isallowed.

e Setting storage optionsis allowed for global tables.

» Global tables cannot inherit other tables.

e ALTER COLUWN SET STATI STI CSisallowed for global and sharded tables.

6.6.3. CREATE TABLE Limitations

For CREATE TABLE, all limitationsfor ALTER TABLE apply.

Using of non-builtin types (types with Ol Ds >= 10000) or non-base types or arrays are not alowed in 'distributed_by"
columns.

Only the global user can create sharded or global table.

In acolocated table, the number and types of columns used for table partitioning must be the same as for the table to colocate
with.

A temporary table cannot be created as sharded or global.

Self-referencing sharded tables are allowed only if aforeign key is referencing the same partition of the sharded table.
For tables created using LI KE sour ce_t abl e wheresour ce_t abl e isalocal table, the following limitations apply:
» Copyingwithout thel i ke_opt i on clause or with | NCLUDI NG | NDEXES is only supported.

e With| NCLUDI NG | NDEXES, only unique indexes and indexes supporting the primary relation key are copied.

e Copying indexes for columnsis not supported.

* EXCLUDE constraints are not supported.

* Local tablesused in CREATE TABLE LI KE statement must only have columns of base types.

« Partia indexes are not supported.

e Standard collations are only supported.

e NULLS NOT DI STI NCT constraint is not supported.

6.6.4. DROP TABLE Limitations

Sharded or global tables and local tables cannot be dropped in the same statement with DROP TABLE.
Partitions of a sharded table cannot be dropped.

6.6.5. CREATE | NDEX CONCURRENTLY Limitations

CREATE | NDEX CONCURRENTLY isanon-transactional command. If a problem arises while building index on sharded
or global tabe, such as network failure, deadlock or a uniqueness violation in aunique index, the CREATE | NDEX CON-

115

https://postgrespro.com/docs/postgresql/14/sql-createtable
https://postgrespro.com/docs/postgresql/14/sql-droptable
https://postgrespro.com/docs/postgresql/14/sql-createindex

Shardman Reference

CURRENTLY will partialy fail, but can leave behind valid or invalid indexes on Shardman cluster nodes. Also an index can be
completely missing on some nodes. In the later case DROP | NDEX will fail to drop the index. The recommended way to re-
move such index cluster-wideisto use DROP | NDEX | F EXI STS command. Note that DROP | NDEX CONCURRENTLY
is not supported on sharded tables, so this operation should be better performed in a maintenance window.

6.6.6. UPDATE Limitations

e UPDATE of asharded tableis executed as a series of usual UPDATESsif it doesn't move data between partitions or subparti-
tions. Otherwise it is executed internally as DELETE from one partition and | NSERT into another (so called target partition).
If apartition where UPDATE INSERTSs data, is going to be UPDATED in the same statement, an error will be raised. In prac-
tice this means that if UPDATE moves data between partitions, you should explicitly exclude target partition from updating in
VWHERE clause of the statement.

6.6.7. 1| NSERT ON CONFLI CT DO UPDATE Limitations

e | NSERT ON CONFLI CT DO UPDATEt able name... ON CONFLICT [conflict_target] conflic-
t _action [WHERE condi ti on] command is not supported on foreign tables when conflict_target is DO UPDATE. For
sharded tablesit is supported if expressionsin SET and WHERE clause can be safely deparsed (currently deparsing of sglval-
ue-functions, parameters and subqueries inside these clauses is not supported) and a non-partia unique index, containing only
table columns (not coulmn-based expressions), corresponds to conflict_target expression. Thisis usually the case with table's

primary key.
6.6.8. Limitations of Managing Global Roles
» Global users can be created only by user with CREATERCLE permission on all cluster nodes.
* Global roles cannot be renamed.
» Global and local roles cannot be dropped in the same statement.
e GRANT toaloca and global rolein the same statement is prohibited.
* REVCKE from alocal and global role in the same statement is prohibited.

6.6.9. Limitations of User Mappings

» The CREATE USER MAPPI NG ALTER USER MAPPI NG and DROP USER MAPPI NG commands are prohibited when
applied to mappings for foreign servers from the Shardman cluster. Use Shardman mechanisms of Managing Users and Roles
instead.

6.6.10. ALTER SCHEMA Limitations

» Schemas containing global or sharded tables cannot be renamed with ALTER SCHENMA . Shardman service schemas
(shar dman) cannot be renamed or dropped.

6.6.11. DROP SERVER Limitations

e Shardman cluster servers cannot be dropped with DROP SERVER . Use Shardman tools to remove servers from the cluster.

6.6.12. Limitations of Using Custom Databases

» Custom databases are not supported. All the local custom databases can be corrupted or lost during the shardmanctl operations.

6.6.13. CREATE COLLATI ONLimitations

» If you use custom collation with CREATE COLLATI ON, all servers must have same version of icu. Otherwise results of
queries on sharded tables may be incorrect.

6.6.14. Logical Replication Limitations

» If you attempt to publish atable containing foreign partitions with the publ i sh_vi a_partiti on_r oot option enabled,
the operation will fail. Without this option, only the local partitions will be included in the publication.

116

https://postgrespro.com/docs/postgresql/14/sql-update
https://postgrespro.com/docs/postgresql/14/sql-insert
https://postgrespro.com/docs/postgresql/14/sql-grant
https://postgrespro.com/docs/postgresql/14/sql-revoke
https://postgrespro.com/docs/postgresql/14/sql-alterschema
https://postgrespro.com/docs/postgresql/14/sql-dropserver
https://postgrespro.com/docs/postgresql/14/sql-createcollation
https://postgrespro.com/docs/postgresql/14/sql-createpublication

Shardman Reference

e Whenusing FOR TABLES | N SCHEMA or FOR ALL TABLES, only local partitions will be published.

e If you publishusing FOR TABLES | N SCHEMA W THor FOR ALL TABLES alongwiththepubl i sh_via_parti -
ti on_root option, any tableswith foreign partitions will be excluded from the publication.

e When executing ALTER SUBSCRI PTI ON ... REFRESH PUBLI CATI ON, depending on changes to table partitions, ta-
bles may be added to or removed from the publication.

e Whenusing FOR ALL TABLES, tablesfrom the shar dnman schema are excluded from the publication. However, you can
still create a publication specifically for tables in this schema or for individua tables within it.

6.6.15. Other Limitations
« DROP TYPE CASCADE isprohibited if it affectstypes used in global or sharded tables.

» Access privileges management per columnsis not supported for global tables.

6.7. Shardman CLI Reference

117

https://postgrespro.com/docs/postgresql/14/sql-altersubscription
https://postgrespro.com/docs/postgresql/14/sql-droptype

Shardman Reference

shardmanctl
shardmanctl — Shardman auxiliary command-line client and deployment tool

Synopsis

shardmanct | [conmon_opti ons] backup --datadir directory [--maxtasks nunber_ of tasks]--
use- ssh

shardmanct | [conmon_opt i ons] daenon check - n |- - nodes node_nanes: port

shar dmanct| [comon_opti ons] cl eanup [-p | -- processrepgroups] --after-node-operation --af -
t er-rebal ance

shardmanct | [comon_options]config generate[-f |--filefil enane]
shardmanct | [conmon_options]config verify[-f |--filefilenane]
shardmanct | [common_options]config get [-f |--file][-c|--choose-revision][-r |--revision]
shardmanct | [common_options]config revisions rm[-r |--revision][-y|--yes]

shardmanct | [conmon_options]config update[[-f |--filestol on_spec_file|shardman_spec_fil e]
| spec_text [--force][-p]|--patch][-w|--wait time_duration]]

shardmanct | [common_options]config rollback[-r |--revision][-w|--wait tine_duration]]--
force]

shardmanct | [common_options] config update credentials[-u|--user J[-p|--password][-k]|--
ssl-key][-c|--ssl-cert][-w|--wait time_duration][-f |--force][-y]|--yes]

shardmanct | [conmon_options]config revisions[-f |--format json|text]
shardmanct | [comon_opti ons] config revisions set --keep-config-revisions

shardmanct | [common_options]config update ip[-u|ip_1=i p_2, hostnane_1=hostname_2][-y|--
yes]

shardmanct | [conmon_opti ons] confi g update fdw[-y|--yes]
shardmanct | [common_options]cluster repfactor set --val ue val ue
shardmanct | [common_options]cluster start

shar dmanct| [common_options]cluster stop[-y|--yes]
shardmanct | [common_options]cluster topology[-f |--format tabl e|json|text]
shardmanct | [common_options]forall --sql query]|[--twophase]

shardmanct | [common_opti ons] get connstr --al |

shardmanct | [comon_options]init [-y]|--yes][-f |--spec-filespec _file nane]| spec_text

shardmanct | [comon_options]intcheck[-s|--system][-c|--catalog][-u]|--user][-0]--output
][-n|--node node]

shar dmanct| [common_options]load[-b|--batch-sizelines_limt][--destination-fieldsfield-
s_list][--distributed-keyskey type_ list][-D|--delimter character][--null_marker string]
[-e]|--escapecharacter][-f |--fileinput_file][-F|--format text |[csv][-] |--jobstask_total]
[-g|--quotecharacter][--reject-filefilenanme][--schemafilenane][--sourcefile|postgres]

118

Shardman Reference

[--source-connstr connect_string][--source-fieldsfields_list][--source-tabletable|view
func][-t |--tabledestination_table][-h]|--help]

shardmanct | [conmon_opti ons] nodes add - n|--nodes node_nanes [- - no-r ebal ance]
shardmanct | [common_opti ons] nodes start -n|--nodes node_nanes [--no-wait]
shar dmanct | [common_opti ons]nodes restart -n|--nodes node_nanmes [--no-wait]
shardmanct | [conmon_opti ons] nodes stop-n|--nodes node_nanes [--no-wait]
shardmanct | [comon_opti ons] nodes repl ace--ol dol d_node --newnew _node

shar dmanct | [common_opti ons] nodes rm-n |--nodes node_nanes

shardmanct | [conmon_opt i ons] probackup [init |archi ve- command | backup |checkdb |del et e |ner ge |
restore|set-config|show|validate|show config][subconmand_options]

shardmanct | [common_options]rebal ance[-f |--force]

shardmanct | [common_options]recover [--info file][--dunpfile file][--shard shard]][--neta-
dat a-onl y][--schema-onl y][--ti meout seconds]

shardmanct | [common_options]restart [-y|--yes][--no-wait]

shardmanct | [comon_opti ons] set pgPar ani=val uel [pgParanR=value2 [...]][-y|--yes][-w]|--
wait tinme _duration][-f |--force]

shar dmanct | [common_options]shard-s|--shardshard_nane add - n |- - node node_nanes

shardmanct | [common_opti ons] shard-s |--shardshard_nane master set -n|--node node_nanes
shardmanct | [comon_options] shard-s |--shardshard _nane naster reset

shar dmanct | [common_options]shard-s |--shardshard_nanereset [-y|--yes][--newprimary|-p]
shardmanct | [cormbn_options]shard-s|--shardshard_namerm-n|--nodenode_nanes[-f |--force]
shardmanct | [comon_options] shard-s |--shardshard _naneswitch[--new prinmary node_nanes]

shardmanct| [conmon_options] shard -s | --shard shard_nane start [--no-wait][-n | --node
node_nane]

shardmanct | [common_opti ons] shard-s |--shardshard_nane stop[-n|--node node_nane]

shardmanct | [cormopn_options] shard-s |--shard shard_nanereplicasreinit [--no-wait J[-y|--
yes][-n|--node node_nanes]

shardmanct| [conmon_options]status[--filter all | dictionary | primary | netadata | rg
| shardmand | store | topology | restart_required_parans][-f |--format text | json]
[-s]--sort node | rg | status]

shardmanct | [conmon_opti ons]status transactions[-r |--repgroupreplication_group_nane]
shardmanct | [common_options]store dunp[-f |--filefil enane]
shar dmanct | [conmon_options]store restore[--del ete-ol d-keys][-f|--filefil ename][-y|--yes]

shardmanct | [cormon_options]store get [-a|--alias cluster | ladle | repgroups | stol onspec
| spec]J[-k]|--keykeynane][-f |--filefilename]

shardmanct | [conmon_opti ons] store keys

shardmanct | [cormon_options]store set [-a|--alias cluster | ladle | repgroups | stol onspec
| spec J[-k]|--keykeynane][-f |--filefilenane]

119

Shardman Reference

shardmanct| [common_options]store lock[-f |--format text | json]
shar dmanct| [common_options]tables sharded info[-t |--table table]
shardmanct | [comon_opti ons]tabl es sharded |i st

shardmanct | [common_opti ons]tabl es sharded norebal ance

shardmanct| [common_options] tables sharded partmove [-t |--table table][-s|--shard
shard _nanme]J[-p]|--partnum partition_nunber]

shardmanct | [conmon_options] tabl es sharded rebalance[-t |--table table]][--skip-run-
rebal ance]

shardmanct | [conmon_opt i ons] upgr ade

shardmanct | [comron_opti ons] bench init [--schema-type single|sinple|shardman| custom][-S|
--schema-filefile_nane][-s|--scalescale_value][--partitionspartitions_value][-n]--no-
vacuum][-F|--fillfactor fillfactor_val ue]

shardmanct | [comon_opti ons] bench run|[--schema-type single|sinple|shardman|custom][-f |
--filefile_name][-c|--client client_value][-C]|--connect |[--full-output][-j |--]jobsjob-
s_value][-s|--scalescale_factor][-T|--tineseconds][-t |--transactionstransactions_val ue]
[-P|--progressseconds][-R|--raterate][-M|--protocol querynode]

shardmanct | [common_opti ons] bench cl eanup

shardmanct| [comon_options] bench generate [-c |--configconfig file][-0]|--output-file
file_nane]

shar dmanct | [common_opti ons]script [-s|--shardshard_name][[-f |--filefile_name|--sqgl query]]
shardmanct | [common_opti ons] psqgl -s |--shard shard_nane

shardmanct | [common_opti ons] daenbn set [--session-1og-1evel |debug |info|warn|error J[--
session-1og-format |text |json][--session-|o0g-nodes]

shardmanct | [comon_options]history[-r |--reverse][-f |--format text | json J[-I|--limt
nunber of comands]

Here cormon_opt i ons are!

[--cluster-nanmecluster_nane][--1o0g-Ievel error |[warn|info|debug][--nmonitor-port port][--
retries retries_nunber][--session-tinmeout seconds][--store-endpoints store_endpoints]][--
store-ca-file store_ca file][--store-cert-file store cert_file][--store-key client_pri-
vate_key][--store-tinmeout duration][--version][-h]|--help]

Description

shardmanctl is an utility for managing a Shardman cluster.
For any command that uses the node name as an argument, the node name can be specified either by its hostname or | P address.

Thebackup command is used to backup a Shardman cluster. A backup consists of adirectory with base backups of all replication
groupsand WAL filesneeded for recovery. etcd metadataissavedtotheet cd_dunp file. Thebackup_i nf o fileiscreated during
abackup and contains the backup description. For details of the backup command logic, see Cluster backup with pg_basebackup.
For usage details of the command, see the section called “ Backing up a Shardman Cluster”.

The ¢l eanup command is used for cleanup after failure of the nodes add command or of the shardmanctl r ebal ance
command. Final changes to the etcd store are done at the end of the command execution. This simplifies the cl eanup process.
During cleanup, incomplete clover definitions and definitions of the corresponding replication groups are removed from the etcd
metadata. Definitions of the corresponding foreign servers are removed from the DBMS metadata of the remaining replication
groups. Since the cl eanup process can be destructive, by default, the tool operatesin the report-only mode: it only shows actions

120

Shardman Reference

to be done during the actual cleanup. To perform the actual cleanup, add the - p flag. For usage details of the command, see the
section called “Performing Cleanup”.

Thedaenon check command isused to verify that shardmand daemon isrunning on the nodes specified by - - nodes option and
is configured for the same cluster as shardmanctl . For usage details of the command, see the section called “ Checking shardmand
Service on Nodes'.

Thei ni t command is used to register anew Shardman cluster in the etcd store or to reinitialize the existing cluster defining a new
cluster configuration and removing all data and nodes. In the init mode, shardmanctl reads the cluster specification, processesit and
saves to the etcd store as parts of two JSON documents: Cl ust er Spec — as part of shar dnan/ cl ust er 0/ dat a/ cl us-
ter and Ladl eSpec — aspart of shar dnman/ cl ust er 0/ dat a/ | adl e (cl ust er O isthe default cluster name used by
Shardman utilities). Common options related to the etcd store, such as - - st or e- endpoi nt s, are also saved to the etcd store
and pushed down to all Shardman services started by shardmand. For the description of the Shardman initialization file format, see
sdmspec.json. For usage details of the command, see the section called “Registering a Shardman Cluster”.

The confi g generate command is used to create a default sdimspec. j son template. By default, data is returned to the
standard output. To writethe result to afile, useflag-f fi | ename. For the description of the Shardman initialization file format,
see sdmspec.json.

Theconfi g veri fy commandisusedtocheck acorrectnessof theinput Shardmaninitializationfile. By default, the configuration
is read from standard input. To read the configuration from afile, useflag-f fi | enane. For the description of the Shardman
initialization file format, see sdmspec.json.

The confi g get command is used to output the current full cluster specification or a configuration of the specified revision.
The command takes the current cluster configuration from the cluster store. For the description of the Shardman initialization file
format, see sdmspec.json.

Theconfi g updat e command is used to update the stolon or full Shardman configuration. The new configuration is applied
to al replication groups and is saved in shar dman/ cl ust er 0/ dat a/ cl ust er etcd key. Note that confi g updat e can
cause a DBMS restart.

Thef oral | command isused to execute an SQL statement on all replication groups in a Shardman cluster.
Theget connst r command is used to get the libpg connection string for connecting to a cluster as administrator.

Thel oad command is used to upload datafrom atext file to a distributed table or to upload a database schema from a PostgreSQL
database to Shardman. When loading datafrom afile, t ext and csv formats are supported. If afileiscompressed with gzip, it will
be automatically decoded while reading. To read data from stdin, specify - - f i | e=-. The data loading process can be optimized
by specifying the number of parallel workers (key - j).

Thenodes add command is used to add new nodes to a Shardman cluster. With the default cr oss placement policy, nodes are
added to a cluster by clovers. Each nodein aclover runsthe primary DBMS instance and perhaps several replicas of other nodesin
the clover. The number of replicasis determined by the Repfactor configuration parameter. So, each clover consists of Repf act or
+ 1 nodes and can stand loss of Repf act or nodes.

With manual placement policy, each new nodeisadded as areplication group consisting of one primary server. After adding primary
nodes, you can add replicas to the new replication group by calling theshar d add command.

shardmanctl performsthe nodes add operation in several steps:

1. Acquires aglobal metadatalock.
2. For each specified node, checksthat shardmand isrunning on it and that it sees the current cluster configuration.

3. Calculates the services to be present on each node and saves this information in etcd as part of the shar dman/ cl us-
ter O/ dat a/l adl e Layout object.

4. Generates the configuration for new stolon clusters (also called replication groups) and initializes them.
5. Registers the added replication groupsin the shar dman/ cl ust er 0/ dat a/ | adl e etcd key.

6. Waits for shardmand to start all the necessary services, checks that new replication groups are accessible and have correct
configuration.

121

Shardman Reference

7. Creates an auxiliary broadcaster that holds locks on each existing replication group in the cluster.

8. For each new replication group, copies al schemas and shar dman schema data from arandomly selected existing replication
group to the new one, ensures that the Shardman extension isinstalled on the new replication group, and recal culates Ol Ds used
in the extension configuration tables.

9. On each existing replication group, defines foreign servers referencing the new replication group and recreates definitions of
foreign servers on the new replication group.

10. Recreates al partitions of sharded tables as foreign tables referencing data from old replication groups and has the changes
registered in the etcd storage.

11. For each new replication group, copies the global table data from existing replication groups to the new one.

12. Rebalances partitions of sharded tables. The rebalancing process for each sharded table iteratively determines the replication
group with the maximum and minimum number of partitions and creates a task to move one partition to the replication group
with the minimum number of partitions. This processis repeated whilemax - min > 1. To move partitions, we use logical
replication. Partitions of colocated tables are moved together with partitions of the distributed tables to which they refer. You
can skip thisstep using the - - no- r ebal ance.

For usage details of the command, see the section called “ Adding Nodes to a Shardman Cluster”.

The nodes r mcommand is used to remove nodes from a Shardman cluster. In the manual-topology mode, this command only
removes the specified nodes from the cluster and if anodeisthe last in the replication group, the entire group gets removed. In the
cross-replication mode, this command removes clovers containing the specified nodes from the cluster. The last clover in the cluster
cannot be removed. Any data (such as partitions of sharded relations) on removed replication groups is migrated to the remaining
replication groups using logical replication, and all references to the removed replication groups (including definitions of foreign
servers) are removed from the metadata of the remaining replication groups. Finally, the metadata in etcd is updated. For usage
details of the command, see the section called “Removing Nodes from a Shardman cluster”.

The pr obackup command is used to backup and restore the Shardman cluster using pg_probackup backup utility. For details
of the pr obackup command logic, see Backup anf Recovery Shardman Backups using pg_probackup. For usage details of the
command, see the section called “ pr obackup .

The r ebal ance command is used to evenly rebalance sharded tables in a cluster. This can be useful, for example, if you did
not perform rebalance when adding nodes to the cluster. If the - - f or ce option is not provided, then tables with manually moved
partitions will be skipped.

The cl eanup command with flag --after-rebalance is used to perform cleanup after failure of ar ebal ance command. On each
node, it cleans up subscriptions and publications left from the r ebal ance command and drops tables that store data of partial-
ly-transferred partitions of sharded tables.

Thecl ust er repfactor set commandisusedto setthevalue of thereplication factor for the Shardman cluster. Thiscommand
can only be used in manual topology cluster mode. The value of the new replication factor is passed through the command line
flag- - val ue repfactor.

Thecl uster start commandisused to start al stopped PostgreSQL instances with the cl ust er st op command. For the
command to work, shardmand must be running.

Thecl ust er st op command isused to stop al PostgreSQL instances for the Shardman cluster. At the same time, the shardmand
daemons continue to work.

Thecl ust er topol ogy command is used visualize the topology of a cluster. By default, the topology is returned in a table
view. If you want to get a JSON or text representation, then usetheflag - - f or mat j son| t ext.

Ther ecover command is used to restore a Shardman cluster from a backup created by the backup command. For details of the
recover command logic, see Cluster recovery from a backup using pg_basebackup. For usage details of the command, see the
section called “Restoring a Shardman Cluster”.

Therestart command is used to restart a Shardman cluster, including al shardmand instances. If PostgreSQL instances were
previously stopped using thecl ust er st op command, they will be started. The command returns control after all primary nodes
in the cluster have been restarted.

122

Shardman Reference

The set command is used to set one or more parameters for DBMS instances of the Shardman cluster. Parameters are passed as
argumentsto the command line, each of them lookslike par amrval ue. Thecommandisactually an aternativetoshar dmanct |
confi g update - p toupdate database settings.

The st at us command is used to display health status of Shardman cluster subsystems. It can show status of several components:
store, metadata, shardmand, replication groups, primary nodes, dictionary, and restart of the required parameters. If only some
subsystems are of interest, option - - fi | t er may be used. Also st at us supports sorting its messages by st at us, node or
replication group and printing the result to stdout as a table (t abl e), text (t ext) or JSON (j son) with t abl e as the
default. For usage details of the command, see the section called “ Getting the Status of Cluster Subsystems”.

The st ore dunp command gets all the keys and their values from the etcd store and outputs them into the - - fi | e, where -
value is used for outputting to stdout (default). It is intended to be used for debugging, so some harmless errors may be produced
during execution, yet all the available information will be dumped. Only keysfor the current cluster (with current cluster prefix like
shar dman/ cl ust er 0/) will be dumped. For usage details of the command, see the section called “Dumping All Keys from the
Store to Debug Error Configuration”.

Thest ore get command gets a particular value from the store by its key name. It is expected to be a JSON value, so if it isnot
(whichisnot prohibited), some harmless errors may be produced. The key to retrieve from store can be specified with - - key option;
several keys have aliases— short namesfor easy use. To get akey by itsalias, use- - al i as option with one of the available aliases
(use- - hel p or examplesbelow for reference). Also aliases stolonspec and spec can be used to manipulateinitial cluster and stolon
configuration explicitly, without retrieving it from the full cluster specification. It is recommended to use existing aliases instead of
full key names since there are some additional checks in alias processing, which help to achieve safer results. By default, akey is
printed to stdout (explicitly — with - - f i | e=- option), but can be output to any desired file. For usage details of the command,
see the section called “ Getting the Current stolon Specification”.

The st ore keys command shows all the keys in the store for the current cluster (with cluster prefix) and its aliases. Aliases
st ol onspec and spec are not shown since they are parts of other keys. For usage details of the command, see the section called
“Getting the Cluster and Ladle Key Names For the Current Cluster”.

Thest ore set command creates or rewrites one particular key in the store. It is not expected to be a JSON value for a random
key, but if it is one of the keys that have aliases with a known mapping (likel adl e or cl ust er), the command will not accept
incorrect JSON structures. Just likest or e get command, st ore set acceptsakey namevia- - key or- - al i as option and
theinput sourcefileas- - fi | e (stdin is specified with - value). For usage details of the command, see the section called “ Setting
aNew Spec for the Cluster”.

The st ore | ock command show the current cluster meta lock information. In case lock does not exist returns Lock not
f ound. Displays cluster id, command that acquired locks, host name and lock time. Y ou can specify - - f or mat tooutputinj son
format orint ext format (by default). For usage details of the command, see the section called “ Output Current Cluster Meta L ock
Information”.

The upgr ade command is used to update the version of Postgresgl shardman extension on all cluster nodes. Before upgrading
extensions, you need to install new packages and run the r est art command. As aresult of upgr ade, utilities will upgrade
shardman and all the other extensions on the server.

Sometimes after running theupgr ade command or some user's manual manipulations, dictionary errors may appear in the output of
thest at us command. Oneof thereasonsfor theseerrorsisthat thevalueof thesr vopt i ons field of thepg_f or ei gn_ser ver
table differs from what the system expects. To solve this specific issue, use the confi g updat e fdwcommand, which will
return sr vopt i ons to the expected state.

Note

Most of the described shardmanctl commands take a global metadata lock.

Command-line Reference

This section describes shar dnmanct | commands. For Shardman common options used by the commands, see the section called
“Common Options’.

123

Shardman Reference

backup
Syntax:

shardmanct| [conmmon_options] backup --datadir directory [--
maxt asks nunber of tasks] [--use-ssh]

Backs up a Shardman cluster.

--datadir directory

Required.

Specifies the directory to write the output to. If the directory exists, it must be empty. If it does not exist, shardmanctl creates
it (but not parent directories).

- -maxt asks nunber _of tasks

Specifies the maximum number of concurrent tasks (pg_pr obackup commands) to run.
Default: number of logical CPUs of the system.

--use-ssh

If specified shardmanctl r ecover command will use scp command to restore data. It allows to use backup repository on
the local host.

For more details, see the section called “Backing up a Shardman Cluster”

cl eanup

Syntax:

shardmanct| [comron_options] cleanup [-p|--processrepgroups] --after-node-operation|--
after-rebal ance

Performs cleanup after thenodes add or r ebal ance command.

-p node_nanes
- - processr epgr oups=node_nanes

Perform an actual cleanup. By default, the tool only shows actions to be done during the actual cleanup. For more details, see
the section called “ Performing Cleanup”.

--after-node-operation

Perform cleanup after afailure of anodes add command.

--after-rebal ance

Perform cleanup after afailure of ar ebal ance command.

config update credentials

Syntax:
shardmanct| [common_options] config update credentials [-u | --user] [-p | --password]
[-k | --ssl-key] [-¢c | --ssl-cert] [-W--wait time_duration] [--force] [-y | --yes]

Updates password or certificatelkey of a user to connect to a Shardman cluster. It only updates the authentication type that was
specified by the user (scr am sha- 256, ssl) and not the type itself.

-u
--user

User that requires an update of the authentication parameters.

124

Shardman Reference

-p
- - passwor d

New password.
-k
- -ssl - key
New SSL key.
-C
--ss|-cert
New SSL certificate.
-w
--wai t

Sets shardmanctl to wait for configuration changes to take effect. If a new configuration cannot be loaded by al replication
groups, shardmanctl will wait forever.

--force

Perform forced update if a cluster operationisin progress.
-y
--yes

Confirm the operation instead of asking approval from the standard input.

cluster repfactor set
Syntax:
shardmanct| [common_options] cluster repfactor set --value new repfactor

Sets the replication factor for the manual-topology mode.

--val ue=new r epf act or

New replication factor value

cluster start
Syntax:
shardmanct| [comon_options] cluster start

Starts all PostgreSQL server instances.

cluster stop
Syntax:
shardmanct| [comon_options] cluster stop [-y|--yes]
Stops all PostgreSQL server instances.
-y
--yes

confirm the operation instead of asking approval from the standard inpuit.

cl uster topol ogy

Syntax:

shardmanct| [common_options] cluster topology -f|--format tabl e|json|text

Displays the cluster topology.

125

Shardman Reference

-f table|json|text
--format =t abl e| j son| t ext

Output format. For more details, see the section called “Displaying the Cluster Topology”.

daenon check
Syntax:
shardmanct| [comon_opti ons] daenon check -n|--nodes node_nane: port
Checks shardmand on nodes.
-n node_nane: port
- -nodes=node_nane: port

List of nodes to check shardmand on. For more details, see the section called “ Checking shardmand Service on Nodes”.

forall
Syntax:

shardmanct| [common_options] forall --sql query[--sql query[--sql query ...]] [--
t wophase]

Executes an SQL statement on all replication groups in a Shardman cluster.

--sqgl query
Specifies the statement to be executed.
--twophase

Use the two-phase-commit protocol to execute the statement.

getconnstr

Syntax:

shardmanct| [conmmon_options] getconnstr --all
Gets the libpg connection string for connecting to a cluster as administrator.

--all
Addsreplicastoget connstr.
init
Syntax:

shardmanct| [comon_options] init [-y|--yes] [-f]|--spec-
file spec_file_nane]|spec_text

Registers a new Shardman cluster in the etcd store or reinitializes the existing cluster defining a new cluster configuration and
removing all data and nodes.

-f spec_file_nane

--specfil e=spec_file_nane
Specifies the file with the cluster specification string. The value of - means the standard input. By default, the string is passed
inspec_t ext . For usage details, see the section called “ Registering a Shardman Cluster”.

-y

--yes
Confirm the operation instead of asking approval from the standard input.

i nt check
Syntax:

126

Shardman Reference

shardmanct| [comon_options] intcheck [-s|--systen] [-u|--user] [-c|--catalog] [-
o| --output] [-n|--node node]

Runs pg_integrity check on all nodes of a Shardman cluster or on a selected one node.
-s
--system
Validate checksums for read-only files. Checksums for read-only files control both file contents and file attributes.
-u
- -user
Validate checksums for additional files. Checksums for additional files control both file contents and file attributes.
-C
--catal og

Vadidate checksums for system catalog tables. For the - ¢ option to work correctly, the database server must be started and
accept connections.

-0
- - out put

Recalculate checksums and write them into afile

-n node_nanes
--node=node_nanes

Only execute the pg_integrity check command on the selected node

| oad
Syntax:
shardmanct| [common_options] load [-b | --batch-size lines limt] [--
destination-fields fields_|ist]
[--distributed-keys key type list] [-D| --delimter character]
--null _marker string] [-e | --escape character] [-f | --file input_file]
-F | --format text|csv] [-j | --jobs task total] [-q | --quote character]

--reject-file filename] [--schema filenane] [--source file|postgres]
--source-connstr connect_string] [--source-fields fields list] [--source-
tabl e source_tabl e]

[-t | --table destination_table]

[
[
[
[

L oads data to a Shardman cluster.

-blines_limt
--batch-size=lines |limt

Number of rows per batch to write to the Shardman cluster.
Default: 1000.

--destination-fields=fields |ist

Comma-separated list of target tablefields. If thevalueisnot set, then all fields of thetable are used in the order they are declared.

--di stribut ed-keys=key type |ist

Comma-separated list of pairs. Each pair consists of a field number (starting with zero) and a type, which are separated by a
colon. The following types are supported: bool , char,fl oat4,fl oat8,int2,int4,int8, nane,text, varchar
and uui d.

127

Shardman Reference

-D character
--deli mter=character

Specifies the character that separates columns within each row (line) of the file. This must be a single one-byte character.
Default: tab for text format, commafor CSV format

--nul |l _marker=string

Specifies the string that represents a null value.
Default: \N for text format, unquoted empty string for CSV format.

-e character
- -escape=char act er

Specifies the character that should appear before a data character that matches the QUOTE value. The default is the same as
the QUOTE value (so that the quoting character is doubled if it appears in the data). This must be a single one-byte character.
Thisoption is allowed only when using CSV format.

-f fil enane
--file=fil enane

Input data filename (or - for stdin)

-F text]|csv
--format =text| csv

Input dataformat. Possible valuesaret ext andcsv.
Default: t ext .

-j nunber
- -j obs=nunber

Number of parallel processesto load data.
Default: number of replication groups.

-q character
- - quot e=char act er

Specifies the quoting character to be used when a data value is quoted. The default is double-quote. This must be a single one-
byte character. This option is allowed only when using CSV format.

--reject-file=fil ename

All data batches with errors during upload will be written to thisfile. If the value is not set, then such batches will be skipped.

--schema=fi | enane

The schemathat definesthe rulesfor transferring data from PostgreSQL to Shardman. If this option is set, then all other options
are not used.

--source=fil e| postgres

Datasourcetype—fi | e or post gr es.
Default: fi | e.

--source-connstr=string

Data source database connection string

--source-fields=fields_list

Commarseparated list of source table fields. If the value is not set, then all fields of the table are used in the order they are
declared.

128

Shardman Reference

--source-tabl e=tabl e

Source table, view or function (f uncnane(par am, . . ., param)).

-t table
--tabl e=tabl e

Destination table.

nodes add
Syntax:
shardmanct| [comon_options] nodes add -n|--nodes node_nanes [--no-rebal ance]

Adds nodes to a Shardman cluster.

-n node_nanes
- -nodes=node_nanes

Required.
Specifies the comma-separated list of nodesto be added.

--no-rebal ance

Skip the step of rebalancing partitions of sharded tables. For more details, see the section called “ Adding Nodes to a Shardman
Cluster”.

nodes rm
Syntax:
shardmanct| [comon_options] nodes rm -n|--nodes node_nanes

Removes nodes from a Shardman cluster.

-n node_nanes
- -nodes=node_nanes

Specifies the commarseparated list of nodes to be removed. For usage details, see the section called “Removing Nodes from
a Shardman cluster”.

pr obackup
Syntax:

shardmanct| [comon_options] probackup

[init]archive-comrand| backup| checkdb| del et e| ner ge| r est or e| set - confi g| show
val i dat e| show confi g]

[--10g-to-consol e] [-- hel p]

[subcomand_opt i ons]

Creates a backup of a Shardman cluster and restores the Shardman cluster from a backup using pg_probackup.
List of subcommands:
init

Initializes a new repository folder for the Shardman cluster backup and creates a configuration file on al nodes for connection
to the backup storageiif - - st or age-t ype isS3.

ar chi ve- command

Adds ar chi ve_command to each replication group (or to a single one if the - - shar d option is specified) and enables or
disablesit in the Shardman cluster.

backup
Creates a backup of the Shardman cluster.

129

Shardman Reference

checkdb
Verifies the Shardman cluster correctness by detecting physical and logical corruption.

del ete

Deletes a backup of the Shardman cluster with the specified backup_i d.

mer ge

Merges the backups that belong to a common incremental backup chain. The full backup merges the backups with their first
incremental backup. The incremental backup merges the backups with their parent full backup, along with all the incremental
backups between them. Once the merge is complete, the full backup covers all the merged data, and the incremental backups
are removed as redundant. In this version, you cannot run the mer ge command using the S3 interface.

restore

Restores the Shardman cluster from the sel ected backup.

show

Shows the list of backups of the Shardman cluster.

val i dat e

Checks the selected Shardman cluster backup for integrity.

show config

Displaysall the current pg_probackup configuration settings, including those that are specified inthepg_pr obackup. conf
configuration file located in the backup_di r/ backups/ shar d_nane directory and those that were provided on a com-
mand line.

set-config

Adds the specified settingsto the pg_pr obackup. conf or modifies those previously added.
The following options can be used with all pr obackup subcommands:

--log-to-consol e

Outputs a full pr obackup log to the console. By default, for each replication group the pr obackup log file is written
to the backup directory (see - - backup- pat h below) as the <backup- di r ect or y>/ backup/ | og/ pg_pr oback-
up- <r epgr oup- nane>. | og file. The log rotation file size is 20MB. If this value is reached, the log file is rotated once a
shardmanct | probackup vali dat e or shardmanct| probackup backup command islaunched.

--hel p

Shows subcommand help.
init
Syntax:

shardmanct| [common_options] probackup init
- B| - - backup-path path
-E|--etcd-path path
[--renpte-port port]
[--renpte-user usernane]
[--ssh-key path]

[-t]--tinmeout seconds]

[-m --maxt asks nunber _of _t asks]
[--storage-type nount|renote| S3]
[--s3-config-only]
[--s3-config-path path]

130

Shardman Reference

--s3-host S3_host]

-s3-port S3_port]
-s3-access-key S3_access_key]
-s3-secret-key S3_secret_key]
-s3- bucket S3_bucket]
-s3-region S3_region]
-s3-buffer-size size]
-s3-retries nunber_of retries]
-s3-timeout tine]

--s3-https]

[-yl--yes]

Initializes a new repository folder for the Shardman cluster backup.

[

[_
[_
[_
[_
[_
[_
[_
[_
[

-B path
- - backup-path path

Requiredif - - s3- conf i g- onl y isnot used. Specifiesthe path to the backup catalog where Shardman cluster backups should
be stored.

-E path
--etcd-path path

Required if - - s3- conf i g- onl y isnot used. Specifies the path to the catalog where the etcd dumps should be stored.

--renote-port port

Specifies the remote ssh port for replication group instances.
Default: 22.

--renote-user usernane

Specifies the remote ssh user for replication group instances.
Default: post gr es.

--ssh-key path

Specifies the ssh private key for execution of remote ssh commands.
Default: $HOVE/ . ssh/id_rsa.

--storage-type nount|renote| S3

Type of the backup storage. If the value isr enot e, SSH is used to copy data files to the remote backup directory. But this
behavior is different if a directory mounted to all nodes or an S3-compatible object storage is used to store backups. To specify
these kinds of storage, the value of the - - st or age- t ype optionis set to nount or S3, respectively.

Default: r enot e.

--s3-config-path path
Specifies the path where the S3 configuration file will be created on all Shardman nodes.

Default: <shar dman- dat a- di r >/ s3. confi g.

--s3-config-only

Create only S3 configuration files on all nodes and skip backup repository initialization. This flag is useful if the value of - -
st orage-typeisS3.

--s3-host host
Specifies the S3 host to connect to S3-compatible storage.

131

Shardman Reference

--s3-port port
Specifies the S3 port to connect to S3-compatible storage.

--s3-access- key access-key

Specifies the S3 access key to connect to S3-compatible storage.

--s3-secret-key access-key

Specifies the S3 secret key to connect to the S3-compatible storage.

--s3-bucket bucket
Specifies the bucket in the S3-compatible object storage for storing backups.

--s3-regi on bucket

Specifies the region in the S3-compatible object storage.

--s3-buffer-size size

Size of the read/write buffer for pg_probackup to communicate with the S3-compatible object storage, in MiB.
Default: 16.

--s3-retries nunber_of retries

Maximum number of attempts for pg_probackup to execute an S3 request in case of failures.
Default: 5.

--s3-tinmeout tine

Maximum allowable amount of time for pg_probackup to transfer data of size - - s3- buf f er - si ze to/from the S3-compat-

ible object storage, in seconds.
Default: 300.

--s3-https
Specifiesthe HTTPS URL to connect to the S3-compatible object storage.

-y|--yes
Approve the operation regardless of whether the file specified in - - s3- conf i g- pat h exists.

ar chi ve- conmand

Syntax:

shardmanct| [comon_opti ons] probackup archive-command [add|rni
- B| - - backup-path path
[-]|--]obs count]
[--conpress]
--conpress-al gorithmal gorithm
-conpress-| evel |evel]
-batch-si ze batch_si ze]
-storage-type nount| renpte| S3]
-renote-port port]
--renot e-user usernane]
[-s|--shard shard- nane]
[--s3-config-path path]
[-yl--yes]

[
[_
[_
[_
[_
[

Adds/removes and enabl es/disables the archive command for every replication group in the Shardman cluster to put WAL logsinto

the initialized backup repository.

132

Shardman Reference

add

Adds and enablesthe ar chi ve command for every replication group in the Shardman cluster.

rm

Disablesthe ar chi ve command in every replication group in the Shardman cluster. No additional options are required.

-B path
- - backup-path path

Required when adding ar chi ve_conmand. Specifies the path to the backup catalog where the Shardman cluster backups
should be stored.

--bat ch-si ze batch_si ze

To speed up the archiving, specify the - - bat ch- si ze option to copy the WAL segmentsin batches of a specified size. If the
- - bat ch-si ze option isused, it is also possible to specify the - j option to copy a batch of the WAL segments on multiple
threads.

--j obs count
-j count

The number of parallel threads that pg_probackup uses when creating a backup. Default: 1.

--conpress

Enables backup compression. If thisflag is not specified, compression will be disabled. If theflag is specified, the default zst d
algorithm is used with the compression level set to 1, while other compression options are ignored even if they are specified.

--conpress-al gorithm al gorithm

Defines the compression algorithm: zl i b, | z4, zst d, pgl z, or none. Once defined, it checksiif the values are valid within
the scale of the defined algorithm.

The supported compression algorithms depend on the version of Postgres Pro Enterprise that includes the pg_probackup used,
as explained in Compression Options.

Default: none.

--conpress-1level |evel

Defines the compression level — 0-9 for zI i b, 1 for pgl z, 0-22 for zst d, and 0-12 for | z4.
Default: 1.

--storage-type nount|renote| S3

Type of the backup storage. If the value isr enot e, SSH is used to copy data files to the remote backup directory. But this
behavior is different if a directory mounted to all nodes or an S3-compatible object storage is used to store backups. To specify
these kinds of storage, the value of the - - st or age- t ype optionis set to nount or S3, respectively.

Default: r enpt e.

--renote-port port

Specifies the remote ssh port for replication group instances.
Default: 22.

--renot e-user usernane

Specifies the remote ssh user for replication group instances.

Default: post gr es.

133

https://postgrespro.com/docs/enterprise/14/app-pgprobackup#PBK-COMPRESSION-OPTS

Shardman Reference

-s|--shard shard- nane

Specifies the name of the shard where the ar chi ve command must be added, enabled or disabled. If not specified, the
ar chi ve command is enabled or disabled for every shard.

--s3-config-path path
Specifies the path to the S3 configuration file.

Default: <shar dnman- dat a- di r >/ s3. confi g.

-y
--yes

Confirm the restart instead of asking approval from the standard input. Only applies for the add command.

backup

Syntax:

shardmanct| [comon_options] probackup backup -B|--backup-path path
-E|--etcd-path path
- b| - - backup- node MODE
[-j]--]jobs count]
[--conpress]
[--conpress-algorithmal gorithm
[--conpress-level |evel]
[--batch-size batch_size]
[--storage-type nount|renote| S3]
[--rempte-port port]
[--renote-user usernane]
[--ssh-key path]
[-t]--tineout seconds]
[-m --maxtasks nunber _of _t asks]
[--10g-directory path]
[--s3-config-path path]
[--no-validat e]
[- - ski p- bl ock-val i dation]
[--10g-to-consol e]
[--retention-redundancy]
[--retention-w ndow
[--wal -dept h]
[--del ete-wal]
[- - del et e- expi red]
[--merge-expired]
[- y | --yes]
[--lock-lifetinme]

Creates a backup of the Shardman cluster.
-B path
- - backup-path path
Required. Specifies the path to the backup catalog where Shardman cluster backups should be stored.
-E path
--etcd-path path
Required. Specifies the path to the catalog where the etcd dumps should be stored.
-b MODE
- - backup- node MODE
Required. Defines the backup mode: FULL, PAGE, DELTA, PTRACK.

134

Shardman Reference

--batch-si ze batch_size

To speed up the archiving, specify the - - bat ch- si ze option to copy the WAL segmentsin batches of a specified size. If the
- - bat ch- si ze option isused, it is also possible to specify the - j option to copy a batch of the WAL segments on multiple
threads.

--j obs count
-j count

The number of parallel threads that pg_probackup uses when creating a backup. Default: 1.

--conpress

Enables backup compression. If thisflag is not specified, compression will be disabled. If theflag is specified, the default zst d
algorithm is used with the compression level set to 1, while other compression options are ignored even if they are specified.

--conpress-al gorithm al gorithm

Defines the compression algorithm: z1 i b, | z4, zst d, pgl z, or none.

The supported compression algorithms depend on the version of Postgres Pro Enterprise that includes the pg_probackup used,
as explained in Compression Options.

Default: none.

--conpress-1level |evel

Defines the compression level — 0-9 for zI i b, 1 for pgl z, 0-22 for zst d, and 0-12 for | z4.
Default: 1.

--renote-port port

Specifies the remote ssh port for replication group instances.
Default: 22.

--renot e-user usernane

Specifies the remote ssh user for replication group instances.
Default: post gr es.

--ssh-key path

Specifies the ssh private key for execution of remote ssh commands.
Default: $HOVE/ . ssh/ i d_rsa.

-t seconds
--ti meout seconds

Exit with error after waiting until the cluster is ready for the specified number of seconds.

-m nunber _of tasks
- -maxt asks nunber _of tasks

Specifies the maximum number of concurrent tasks (pg_pr obackup commands) to run.
Default: number of logical CPUs of the system.

--no-val i date

Skip automatic validation after the backup is taken. You can use this flag if you validate backups regularly and would like to
save time when running backup operations.

Default: f al se.

135

https://postgrespro.com/docs/enterprise/14/app-pgprobackup#PBK-COMPRESSION-OPTS

Shardman Reference

- - ski p- bl ock-val i dati on

Disables block-level checksum verification to speed up the backup process.
Default: f al se.

--storage-type nount|renote| S3

Type of the backup storage. If the value isr enpt e, SSH is used to copy data files to the remote backup directory. But this
behavior is different if a directory mounted to all nodes or an S3-compatible object storage is used to store backups. To specify
these kinds of storage, the value of the - - st or age- t ype optionis set to nount or S3, respectively.

Default: r enot e.

--log-to-consol e

Enables output of the pg_probackup logs to the console.
Default: f al se.

--log-directory path

Specifiesthedirectory for pg_probackup logs. Requiredif - - st or age-t ype issetto S3 unlessthe SDM LOG DI RECTORY
environment variableis set.

Default: <backup- di rect ory>/ backup/ | og.

--s3-config-path path
Specifies the path to the S3 configuration file.

Default: <shar dman- dat a- di r >/ s3. confi g.

--retention-redundancy=r edundancy

Specifiesthe number of full backup copiesto keep in the data directory. Must be anon-negative integer. The zero value disables
this setting.

Default: current value of the pg_pr obackup. conf file, O if not specified.

--retention-w ndow=wi ndow

Number of days of recoverability. Must be a non-negative integer. The zero value disables this setting.
Default: current value of the pg_pr obackup. conf file, O if not specified.

--wal - dept h=wal _depth

Number of latest valid backups on every timeline that must retain the ability to perform PITR. Must be a non-negative integer.
The zero value disables this setting.

Default: current value of the pg_pr obackup. conf file, O if not specified.

- -del et e- wal

Deletes WAL filesthat are no longer required to restore the cluster from any of the existing backups.
Default: f al se.

--del et e-expired

Deletes backups that do not conform to the retention policy.
Default: f al se.

- - mer ge- expi red

Mergesthe oldest incremental backup that satisfiesthe requirements of retention policy with its parent backupsthat have already
expired.

136

Shardman Reference

Default: f al se.
-y
--yes
Confirm the restart instead of asking approval from the standard input.

--lock-lifetine

Allows setting the maximum time that probackup can hold the lock, in seconds.
Default: 1800.

checkdb

Syntax:

shardmanct| [conmmon_options] probackup checkdb
[--antheck [--skip-block-validation] [--heapallindexed]] [--shard shard]
[-m --nmaxt asks number of tasks]

Verifies the Shardman cluster correctness by detecting physical and logical corruption.

- -antheck

Performs logical verification of indexes if no corruption was found while checking data files. Y ou must have the amcheck
extension or the amcheck next extension installed in the database to check its indexes. For databases without amcheck, index
verification will be skipped. The amcheck extension isincluded with the Shardman package.

--heapal | i ndexed

Checksthat all heap tuplesthat should beindexed are actually indexed. Y ou can use thisflag only together with the- - antheck
flag. This option is effective depending on the version of amcheck/amcheck_next installed. The amcheck extension included
in the Shardman package supports this verification.

- - ski p- bl ock-val i dati on
Skip validation of data files. You can use this flag only together with the - - ancheck flag, so that only logical verification
of indexesis performed.

--shard shard

Perform the verification only on the specified shard. By default, the verification is performed on all shards.

-m nunber _of tasks
- - maxt asks numnber _of _tasks

Specifies the maximum number of concurrent tasks (pg_pr obackup commands) to run.

Default: number of logical CPUs of the system.

del ete
Syntax:
shardmanct| [comon_options] probackup del ete -B|--backup-path path
[-i]--backup-id backup_id]
[-]]--]jobs count]

[-m --maxt asks number _of _t asks]
--storage-type nount|renote| S3]
-s3-config-path path]

- del et e-wal]

yl--yes]
-retention-redundancy]
-retention-w ndow

-wal - dept h]

- del et e- expi red]

- mer ge- expi red]

[
[
[
[
[
[
[
[
[

137

https://postgrespro.com/docs/postgresql/14/amcheck#AMCHECK
https://github.com/petergeoghegan/amcheck

Shardman Reference

Deletes abackup of the Shardman cluster with specified backup_i d or launchesthe retention purge of backups and archived WAL
that do not satisfy the current retention policies.

Note that backup_i d cannot be used with mer ge- expi r ed or del et e- expi r ed.

-B path

- - backup-path path
Required. Specifies the path to the backup catalog (or key in the bucket of the S3-compatible storage) where Shardman cluster
backups should be stored.

-i backup_id

- -backup-id backup_id

Specifies the unique identifier of the backup.

--j obs count
-j count

The number of parallel threads that pg_probackup uses when creating a backup. Default: 1.

-m nunber _of tasks
- -maxt asks nunber _of tasks

Specifies the maximum number of concurrent tasks (pg_pr obackup commands) to run.
Default: number of logical CPUs of the system.

--storage-type nount|renote| S3

Type of the backup storage. If the value isr enpt e, SSH is used to copy data files to the remote backup directory. But this
behavior is different if a directory mounted to all nodes or an S3-compatible object storage is used to store backups. To specify
these kinds of storage, the value of the - - st or age- t ype optionis set to nount or S3, respectively.

Default: r enpt e.

To delete the backup that was created with a - - st or age-t ype option with a S3 value, set a- - st or age-t ype option
toaS3 valueinthedel et e command.

--s3-config-path path
Specifies the path to the S3 configuration file.

Default: <shar dman- dat a- di r >/ s3. confi g.

--del et e- wal
Deletes WAL filesthat are no longer required to restore the cluster from any of the existing backups.

Default: f al se.

-y
--yes

Approve operation.
Default: f al se.

--retention-redundancy=r edundancy

Specifiesthe number of full backup copiesto keep in the datadirectory. Must be anon-negative integer. The zero value disables
this setting.

Default: current value of the pg_pr obackup. conf file, O if not specified.

--retention-w ndow=wi ndow

Number of days of recoverability. Must be a non-negative integer. The zero value disables this setting.

138

Shardman Reference

Default: current value of the pg_pr obackup. conf file, O if not specified.

--wal - dept h=wal _depth

Number of latest valid backups on every timeline that must retain the ability to perform PITR. Must be a non-negative integer.
The zero value disables this setting.

Default: current value of the pg_pr obackup. conf file, O if not specified.

--del et e-expired

Deletes backups that do not conform to the retention policy.
Default: f al se.

- - mer ge- expi red

Mergesthe oldest incremental backup that satisfiesthe requirements of retention policy with its parent backupsthat have already

expired.
Default: f al se.
mer ge
Syntax:

shardmanct| [comon_options] probackup merge - B|--backup-path path

-i|--backup-id backup_id

[-j]--jobs count]

[-m --maxt asks number _of _t asks]

[--no-validat e]

[--no-sync]

[-yl--yes]
Merges the backups that belong to a common incremental backup chain. The full backup merges the backups with their first incre-
mental backup. The incremental backup merges the backups with their parent full backup, along with all the incremental backups
between them. Once the merge is complete, the full backup covers all the merged data, and the incremental backups are removed
as redundant.

-B path
- - backup-path path
Required. Specifies the path to the backup catalog where Shardman cluster backups should be stored.
-i backup_id
- - backup-id backup_id
Required. Specifies the unique identifier of the backup.

--jobs count
-j count

The number of parallel threads that pg_probackup uses when creating a backup. Default: 1.

-m nunber _of tasks
- -maxt asks nunber _of tasks

Specifies the maximum number of concurrent tasks (pg_pr obackup commands) to run.
Default: number of logical CPUs of the system.

--no-sync

Do not sync merged filesto disk. Y ou can usethisflag to speed up the merge process. Using thisflag can result in data corruption
in case of operating system or hardware crash.

139

Shardman Reference

Default: f al se.
--no-validate
Skip automatic validation before and after merge.

Default: f al se.
-y
--yes
Approve the operation.

Default: f al se.

restore

Syntax:

shardmanct| [comon_options] probackup restore
- B| - - backup-path path

-i|--backup-id id

-j]--jobs count
[--recovery-target-tinme tinestanp]
[-1]--recovery-npnde increnmental node]

[-t]--timeout seconds]

[-m --maxt asks number _of _t asks]

--nmetadata-only] [--schema-only] [--shard shard]
-no-val i dat e]

- ski p- bl ock-val i dati on]

-s3-confi g-path path]

-storage-type nount|renote| S3]

-wal -1imt nunber_of wal _segnents]

-l og-directory path]

--dat a-val i dat e]

[
[
[
[
[
[
[
[

Restores a Shardman cluster from the selected backup.
-B path
- - backup-path path
Required. Specifies the path to the backup catal og where Shardman cluster backups should be stored.
-iid
--backup-id id
Required. Specifies backup ID for restore.

--j obs count
-j count

The number of parallel threads that pg_probackup uses when restoring from a backup. Default: 1.

--recovery-target-tine tinestanp
Point-in-Time Recovery (PITR) option. Specifies the timestamp for restore. Example: '2024-01-25 15:30:36' in UTC.

-1 incremental node
--recovery-node incremental _node

Specifies the incremental restore mode to be used. Possible values are:

e checksum— replace only pages with mismatched checksum and L SN.
* | sn — replace only pages with LSN greater than point of divergence.
e none — regular restore, default.

140

Shardman Reference

-t seconds
--ti meout seconds

Exit with error after waiting until the cluster is ready or the recovery is complete for the specified number of seconds.

--net adat a-only

Perform metadata-only restore. By default, full restore is performed.

--schema-only

Perform schema-only restore. By default, full restore is performed.

--shard shard

Perform restoring only on the specified shard. By default, restoring is performed on all shards.

--no-validate

Skip backup validation. You can use this flag if you validate backups regularly and would like to save time when running
restore operations.

Default: f al se.

- - ski p- bl ock-val i dati on

Disable block-level checksum verification to speed up validation. During automatic validation before the restore only file-level
checksums will be verified.

Default: f al se.

--s3-config-path path
Specifies the path to the S3 configuration file.

Default: <shar dnan- dat a-di r >/ s3. confi g.

--storage-type nount|renote| S3

Type of the backup storage. If the value isr enpt e, SSH is used to copy data files to the remote backup directory. But this
behavior is different if a directory mounted to all nodes or an S3-compatible object storage is used to store backups. To specify
these kinds of storage, the value of the - - st or age-t ype optionisset to mount or S3, respectively. When creating backup
witha- - st or age- t ype option with a S3 value, set - - st or age-t ype option to a S3 valueinther est or e command.

Default: r enot e.
--wal -limt nunber_of wal segnents
Specifies the number of WAL segmentsin which the closest synchronization points will be searched in the case of PITR.

Default: 0 — no limit.

--log-directory path

Specifiesthedirectory for pg_probackup logs. Requiredif - - st or age-t ype issetto S3 unlessthe SDM LOG DI RECTORY
environment variableis set.

Default: <backup- di r ect or y>/ backup/ | og.

--data-validate
If enabled, verifies datawith pr obackup val i dat e before restoring.
Default: false.

show

Syntax:

141

Shardman Reference

shardmanct| [comon_options] probackup show
- B| - - backup-path path
[-f]--format table|json]
[--archive]
[-i]--backup-id backup-id]
[--instance instance]
[--storage-type nount|renpte| S3]
[--s3-config-path path]

Shows the list of backups of the Shardman cluster.
-B path
- - backup-path path
Required. Specifies the path to the backup catal og where Shardman cluster backups should be stored.
-f table|json
--format table|json

Specifies the output format.
Default: t abl e.

--archive

Shows the WAL archive information.
-i backup-id
- - backup-i dbackup-i d

Shows information about the specific backups.

--instancei nst ance

Shows information about the specific instance.

--s3-config-path path
Specifies the path to the S3 configuration file.

Default: <shar dman- dat a- di r >/ s3. confi g.

--storage-type nount|renote| S3

Type of the backup storage. If the value isr enpt e, SSH is used to copy data files to the remote backup directory. But this
behavior is different if a directory mounted to all nodes or an S3-compatible object storage is used to store backups. To specify
these kinds of storage, the value of the - - st or age- t ype optionisset to mount or S3, respectively. To show a backup that
was created with the S3 value of - - st or age- t ype, set - - st or age- t ype to S3 in the show command.

Default: r enpt e.

show confi g
Syntax:

shardmanct| [common_options] probackup show config
-B backup_path
[--format =text|]son]
[--no-scal e-units]
-s|--shard shard_nane
[--s3-config-path path]
[--storage-type nount|renote| S3]
Displays all the current pg_probackup configuration settings, including those that are specified in the pg_pr obackup. conf

configuration file located in the backup_di r/ backups/ shar d_nane directory and those that were provided on a command
line.

142

Shardman Reference

-B string
- - backup- pat h=stri ng

Required. Specifies the absolute path to the backup catalog.

--format text]|json

Specifies the output format.
Default: t ext .

--no-scal e-units
Output the configuration parameter values for the time and the amount of memory in the default units.
Default: f al se.

-s string

--shard=string

A name of the shard to execute the show- conf i g command for.

--s3-config-path path
Specifies the path where the S3 configuration file will be created on all Shardman nodes.

Default: <shar dman- dat a- di r >/ s3. confi g.

--storage-type nount|renote| S3

Type of the backup storage. If the value isr enpt e, SSH is used to copy data files to the remote backup directory. But this
behavior is different if adirectory mounted to all nodes or an S3-compatible object storage is used to store backups. To specify
these kinds of storage, the value of the - - st or age- t ype optionis set to nount or S3, respectively.

Default: r enot e.

val i dat e

Syntax:

shardmanct| [conmon_options] probackup validate
- B| - - backup-path path
-i|--backup-id id
[-t]--timeout seconds]
[-m --maxt asks number of tasks]
--1 og-to-consol €]
-storage-type nount|renote| S3]
-s3-confi g-path path]
-l og-directory path]
-renote-port port]
--renot e-user user nane]

[
[_
[_
[_
[_
[

Checks the selected Shardman cluster backup for integrity.
-B path
- - backup-path path
Required. Specifies the path to the backup catal og where Shardman cluster backups should be stored.
-iid
- -backup-id id
Required. Specifies backup ID for validation.
--log-to-consol e

Enables output of pg_probackup logs to the console.

143

Shardman Reference

Default: f al se.

-t seconds
--ti meout seconds

Exit with error after waiting until the cluster is ready for the specified number of seconds.

-m nunber _of tasks
- - maxt asks number _of _t asks

Specifies the maximum number of concurrent tasks (pg_pr obackup commands) to run.
Default: number of logical CPUs of the system.

--s3-config-path path
Specifies the path to the S3 configuration file.

Default: <shar dman- dat a- di r >/ s3. confi g.

--storage-type nount|renote| S3

Type of the backup storage. If the value isr enot e, SSH is used to copy data files to the remote backup directory. But this
behavior is different if a directory mounted to all nodes or an S3-compatible object storage is used to store backups. To specify
these kinds of storage, the value of the - - st or age-t ype option is set to nount or S3, respectively. To validate a backup
that was created with the S3 value of - - st or age-t ype, set- - st or age-t ype to S3 intheval i dat e command.

Default: r enot e.

--log-directory path

Specifiesthedirectory for pg_probackup logs. Requiredif - - st or age-t ype issetto S3 unlessthe SDM LOG DI RECTORY
environment variableis set.

Default: <backup- di r ect ory>/ backup/ | og.

--renote-port port

Specifies the remote ssh port for replication group instances.
Default: 22.

--renot e-user usernane

Specifies the remote ssh user for replication group instances.
Default: post gr es.

--ssh-key path

Specifies the ssh private key for execution of remote ssh commands.

Default: $HOVE/ . ssh/i d_r sa.

set-config
Syntax:

shardmanct| [common_options] probackup set-config
[--archive-tinmeout int]
[-B | --backup-path string]
[-m]|--maxtasks int]
--renote-port int]
-renot e-user string]
-retention-redundancy int]
-retention-w ndow int]

[
[
[
[
[--wal -depth int]

144

Shardman Reference

[--s3-config-path string]
[-s |--shard string]
[--storage-type string]

Adds the specified settingsto the pg_pr obackup. conf or modifies those previously added.

--archive-ti meout int

Sets atimeout for the WAL segment archiving and streaming, in seconds.
Default: pg_probackup waits for 300 seconds.

-B string
- - backup- pat h=stri ng

Specifies the absolute path to the backup catal og.

-mint
- - maxt asks=i nt

Specifies the maximum number of concurrent tasks (pg_pr obackup commands) to run.
Default: number of logical CPUs of the system.

--renote-port int

An SSH remote backup port.
Default: 22.

--renote-user string

An SSH remote backup user.

--retention-redundancyint

Specifies the number of the full backup copiesto store in the data directory. It must be set to a non-negative integer. The zero
value disables this setting.

Default: 0.

--retention-w ndowi nt

A number of days of recoverability. It must be set to a non-negative integer. The zero value disables this setting.
Default: 0.

--wal -depthint

A number of the latest valid backups on every timeline that must retain the ability to perform PITR. Must be set to a non-
negative integer. The zero value disables this setting.

--s3-config-pathstring
A path to the S3 configuration file.

Default: / var/ 1'i b/ pgpr o/ sdm 14/ dat a/ s3. config

-s string
--shard=string

A name of the shard to make the set - conf i g command for. If not specified, the command is run for al the shards.
Default: current value of the pg_pr obackup. conf file.

--storage-typestring

A backup storage type, the possible values are r enot e, nount , S3.

145

Shardman Reference

Default: r enot e.

rebal ance
Syntax:
shardmanct| [comon_options] rebal ance [-f|--force]
Rebalances sharded tables.
-f
--force

Perform forced rebalance of sharded tables whose partitions were manually moved.

recover

Syntax:

shardmanct| [common_options] recover [--info file] [--dunpfile file] [--shard shard]
[--metadata-only][--schema-only] [--timeout seconds]

Restores a Shardman cluster from a backup created by the backup command.

--dunpfile file
Required for metadata-only restore.

Specifiesthefile to load the etcd metadata dump from.

--info file

Required for full restore.
Specifies the file to load information about the backup from.

--shard shard

Perform restoring only on the specified shard. By default, restoring is performed on all shards.

--net adat a-only

Perform metadata-only restore. By default, full restore is performed.

--schema-only

Perform schema-only restore. By default, full restore is performed.

--ti meout seconds

Exit with error after waiting until the cluster is ready or the recovery is complete for the specified number of seconds.
For more details, see the section called “ Restoring a Shardman Cluster”

restart

Syntax:

shardmanct| [common_options] restart [-y|--yes] [--no-wait]

Restarts a Shardman cluster.

-y
--yes

Confirm the operation instead of asking approval from the standard input.

--no-wai t

Do not wait for the replicas to start.

146

Shardman Reference

shard add
Syntax:

shardmanct| [common_options] shard -s|--shard shard_name add -n|--nodes node_nanes |[--
no-wai t |

Adds areplicato ashard.

-s shard_nane
- -shar d=shard_nane

Shard name.

-n node_nanes
- -nodes=node_nanes

Specifies the comma-separated list of replica nodes to be added.
--no-wai t

Do not wait for the shard to start.

shard master set
Syntax:
shardmanct| [comon_options] shard -s|--shard shard_name master set -n| node node_nanes

Sets the precedence for a certain primary server for a specified shard.

-s shard_nane
--shard=shard_nane

Shard name.

mast er set

Primary server with precedence.

-n node_narmes
--nodes=node_nanes

Specifies the comma-separated list of replica nodes.

shard nmaster reset
Syntax:
shardmanct| [conmmon_options] shard -s|--shard shard_name naster reset

Resets the parameters of the master with precedence for the shard.

-s shard_nane
- -shar d=shard_nane

Shard name.

mast er reset

Resets the parameters of the master with precedence for the shard.

-n node_names
- -nodes=node_nanes

Specifies the comma-separated list of replica nodes.

shard add
Syntax:

147

Shardman Reference

shardmanct| [comon_options] shard -s|--shard shard_nane reset [--yes | -y][--new
primary | -p]
Resets nodes of areplication group if they are in a state of hanging.

-s shard_nane
- -shard=shard_nane

Shard name.
-y
--yes
Confirm the operation instead of asking approval from the standard input.
--new primary
-p
New primary node host.

shard rm

Syntax:

shardmanct| [common_options] shard -s|--shard shard_name rm -n|--nodes node_nanes
[-f|--force]

Removes areplicafrom a shard.

-s shard_nane
- -shar d=shard_nane

Shard name

-n node_narnes
- -nodes=node_nanes

Specifies the comma-separated list of replica nodes to be removed.
-f
--force

Perform forced removal of the node, even if it is dead.

shard switch

Syntax:

shardmanct| [common_options] shard -s|--shard shard _nanme switch [--new
primary node_nanes]

Switches the primary node.

-s shard_nane
- -shar d=shar d_nane

Shard name.

- -new pri mar y=node_nanes

New primary node host.

shard start

Syntax:

shardmanct| [common_options] shard -s |--shard shard_nanme start [--no-wait] [-n|--
node node_nane]

148

Shardman Reference

Starts the shard.

-s shard_nane
--shard=shard_nane

Shard name.
--no-wait

Do not wait for the shard to start.

-n node_nane
- -node=node_nane

Specifies the node to start.

shard stop
Syntax:

shardmanct| [common_options] shard -s |--shard shard_nane stop [-n|--
node node_nane]

Stops the shard.

-s shard_nane
--shard=shard_nane

Shard name.

-n node_nane
--node=node_nane

Specifies the node to stop.

shard replicas reinit

Syntax:

shardmanct| [comon_options] shard -s|--shard shard_name replicas reinit [-n|--
node node_nanes] [-y|--yes] [--no-wait]

Resets replicas of a specific shard.

-s shard_nane
- -shar d=shard_nane

Shard name.

-n node_nanes
--node=node_nanes

Specifies the node on which to reset replicas. If not specified, checks shard replicas on all nodes.

-y
--yes

Confirm the operation instead of asking approval from the standard input.

--no-wait

Do not wait wait for replicas to become ready.
For more details, see the section called “Reinitializing Replicas’

nodes start
Syntax:

149

Shardman Reference

shardmanct| [comon_options] nodes start -n|--nodes node_nanmes [--no-wait]

Starts the nodes.

-n node_nanes
--nodes=node_nanes

Node names.
--no-wai t

Sets shardmanct! not to wait for the nodes to start.

nodes restart

Syntax:

shardmanct| [comon_opti ons] nodes restart -n|--nodes node_nanes [--no-wait]

Restarts the nodes.

-n node_nanes
- -nodes=node_nanes

Node names.
--no-wai t

Do not wait for the nodes to restart.

nodes stop

Syntax:

shardmanct| [comon_opti ons] nodes stop -n|--nodes node_nanes [--no-wait]

Stops the nodes.

-n node_nanes
- -nodes=node_nanes

Node names.
--no-wait

Do not wait for the nodes to stop.

status

Syntax:

shardmanct| [common_options] status [-f|--format table|json] [--
filter store| netadatal shardmand|rg| master|dictionary|all|restart_required_parans] |-
s|--sort node| rg| status]

Reports on the health status of Shardman cluster subsystems.

-f table|json
--format =t abl e| j son

Specifies the report format.
Default: t abl e.

For more details, see the section called “ Getting the Status of Cluster Subsystems”.

150

Shardman Reference

--filter store|netadatal shardmand|rg| master|dictionary|allrestart_required_parans
Specifies subsystems whose status information should be included in the output.
Default: al | .

For more details, see the section called “ Getting the Status of Cluster Subsystems”.

-s node| rg| status
--sort node|rg| status

Sort messages inside one group (table) as specified.

Default: node.

For more details, see the section called “ Getting the Status of Cluster Subsystems”.
status transactions

Syntax:

shardmanct| [comon_options] status transactions [-r]|--
repgroup replication_group_nane

Shows distributed transactions that Shardman built-in monitoring tools failed to resolve.

-r replication_group_nane
--repgroup=replication_group_namne

Specifies the replication group for which to output transactions.

Default: all replication groups.

For more details, see the section called “ Outputting the List of Unresolved Distributed Transactions’.
store dunp

Syntax:
shardmanct| [common_options] store dunp [-f|--file fil enane]

Dumps current cluster specifications from the store.

-f fil enane
--file=fil enane

Specifies the output file (- for stdout).
Default: - .

For more details, see the section called “ Dumping All Keys from the Store to Debug Error Configuration”.

store restore

Syntax:
shardmanct| [common_options] store restore [--delete-ol d-keys][-f|--file fil enane]
[-yl--yes]

Allows to safely restore the et cd cluster from the dump. To do this, shardmand must be disabled on every shard. Also, it only
works for the cold backup.

- -del et e- ol d- keys
Clean all the et cd keys before restoring.

151

Shardman Reference

-f fil enanme
--file=fil enane

Specifies the name of the et cd keys dump.

-y
--yes

Perform automatic confirmation.

store | ock
Syntax:

shardmanct| [common_options] store lock [-f|--format text]|json]

Shows the current cluster meta lock information.

-f=text|json
--format =text|json

Specifies the output format.
Default: t ext .
For more details, see the section called “Output Current Cluster Meta Lock Information”.

store get
Syntax:

shardmanct| [conmon_options] store get [[-a]--alias aliasnanme]|[-k|--key keynane]
[-f|--file filename]]
Gets the specified key from the store.

-a aliasnane
--alias=ladle|cluster |spec|stolonspec

Specifies the use of aiasinstead of the full key name. Cannot be used with - - key.
For more details, see the section called “ Getting the Current stolon Specification”.

-k keynane
- - key=keynane

Specifies the key to retrieve from the store. Cannot be used with - - al i as.
For more details, see the section called “ Getting the Current stolon Specification”.

-f fil enane
--file=fil enane

Specifiesthefile to print the value to.
Default: - (stdout).
For more details, see the section called “ Getting the Current stolon Specification”.

store keys
Syntax:

shardmanct| [common_options] store keys

Gets all keyswith the current cluster prefix from the store.

152

Shardman Reference

For more details, see the section called “ Getting the Cluster and Ladle Key Names For the Current Cluster”.
store set

Syntax:

shardmanct| [common_options] store set [[-a]--alias aliasnane]|[-k|--key keynane]]
[-f|--file filenane]

Creates or rewrites akey in the store.

-a ladle|cluster |spec|stol onspec
--alias=ladle|cluster |spec|stolonspec

Specifies the use of aiasinstead of the full key name. Cannot be used with - - key.

-k keyname
- - key=keynane

Specifies the key name to set in the store. Cannot be used with - - al i as.

-f filenane
--file=fil enane

Specifiesthe file with input data (- for stdin).
For more details, see the section called “ Setting a New Spec for the Cluster”.

t abl es sharded info

Syntax:

shardmanct| [common_options] tables sharded info [-t]|--table tabl e _nane]

Gets information about a sharded table.

-t table
--tabl e=tabl e

Specifies the name of the tablein the format schena. t abl e
tabl es sharded |i st
Syntax:

shardmanct| [comon_options] tables sharded |i st

Getsthelist of all sharded tables.

t abl es sharded norebal ance
Syntax:

shardmanct| [common_options] tabl es sharded norebal ance

Getsthe list of sharded tables with automatic rebalancing disabled.

tabl es sharded partnove
Syntax:

shardmanct| [common_options] tables sharded partnove [-t|--table table_nane] [-s|--
shard shard_nane] [-p|--partnum nunber]

Moves the specified partition of a sharded table to a new shard.

153

Shardman Reference

-t table
--tabl e=t abl e

Specifies the name of the tablein the format schena. t abl e.

-p number
- - par t numenunber

Specifies the number of the partition to move.

-s shard_nane
--shard=shard_nane

Specifies the name of the new shard for the partition.

t abl es sharded rebal ance

Syntax:

shardmanct| [comon_options] tables sharded rebal ance [-t]|--table tabl e_nane]

Enables and runs automatic data rebalancing for the selected sharded table.

-t table
--tabl e=tabl e

Specifies the name of the tablein the format schena. t abl e.

confi g get
Syntax:

shardmanct| [comron_options] config get [-c | --choose-revision] [-r | --revision] [-f
| --file]

Outputs the current full cluster specification or a configuration of the specified revision.
-C
--choose-revision
Enables an interactive mode of choosing a configuration of the specified revision.
-r
--revision
ID of aconfiguration revision.
-f file_name
--file=fil e_nane

Name of afilefor writing the configuration. If not specified, the valueis stdout.

config revisions rm

Syntax:

shardmanct| [comon_options] config revisions rm[-r | --revision] [-y | --yes]

Deletes a specified configuration revision from history.

-r

--revision
ID of aconfiguration revision. If not specified, enables an interactive mode of choosing aconfiguration of the specified revision.
Thisis atimestamp of an operation that resulted in Shardman configuration change.

-y

--yes
Perform automatic confirmation.

154

Shardman Reference

config update

Syntax:
shardmanct| [comon_options] config update [[-f|--file stolon_spec_file|
shardman_spec_file]|spec_text [-p|--patch][-W--wait]] [--force] [-y | --yes]

Updates the stolon or full Shardman configuration.
-f stolon_spec_file|shardnman_spec_file
--specfil e=stol on_spec_fil e| shardnman_spec_file

Specifies the file with the stolon or full Shardman configuration. The configuration file type is determined automatically. The
value of - means the standard input. By default, the configuration is passed in spec_t ext .

-wW
--wai t
Sets shardmanctl to wait for configuration changes to take effect. If a new configuration cannot be loaded by all replication
groups, shardmanct! will wait forever.
-p
--patch
Merge the new configuration into the existing one. By default, the new configuration replaces the existing one.
--force
Perform forced update if a cluster operation isin progress.
-y
--yes

Confirm the restart necessary for the parametersto take effect. If this option is not specified, and the parameters update requires
arestart, the manual confirmation will be requested. If not confirmed, the cluster will continue to work, yet the new parameter
values will only take effect after the restart.

config rollback
Syntax:

shardmanct| [comon_options] config rollback [-r | --revision] [-wW--
wait time_duration] [--force] [-y|--yes]

Makes arollback of Shardman to one of the previous states. When rolling back to the config revision that hasmax_connect i ons,
max_prepar ed_t ransacti ons, or max_wor ker _pr ocesses parameters, the replicas are reinitialized.

-r
--revision

ID of arevision therollback must be madeto. It is atimestamp of an operation that resulted in Shardman configuration change.

If not specified, a user is presented with alist of revisions that he can choose from.

-w
--wait
Sets shardmanctl to wait for configuration changes to take effect. If a new configuration cannot be loaded by all replication
groups, shardmanctl will wait forever.
Default: 1h.
-f
--force

Perform forced setting of a parameter if acluster operationisin progress.

155

Shardman Reference

-y
--yes

Perform automatic confirmation.

config revisions

Syntax:

shardmanct| [comon_options] config revisions [-f|--format text]|]json]

Outputs the revision history of the Shardman cluster configuration. It has the following information for each revision:
e revision_id— timestamp of the command that resulted in the Shardman cluster configuration change

* host — name of the host from which this command was executed

e user — user who executed this command

* comrand — the command itself

-f=text]|json

--format =text|json

Specifies the output format.

Default: t ext .

config revisions set

Syntax:

shardmanct| [comon_options] config revisions set [--keep-config-revisions]

Allows setting the length of the configuration revision history. Thislength cannot be lower than 5, in which caseit is automatically
set to 5. For Shardman clusters where the configuration revision history was not collected yet, the length is automatically set to 20.

--keep-config-revisions

A limit on the number of revisions for one Shardman configuration. If the limit is lower than the current history length, the
older versions out of this limit will be deleted. Also, if the number of operations resulting in configuration changes exceeds
the limit, the oldest revision is deleted.

Default: 20.

config update ip

set

Syntax:
shardmanct| [comon_options] config update ip [-u]ip_1=ip_2, host nane_l=host nane_2]| -
yl--yes]
Updates the specified node | Psin the cluster.
-u
i p_1=i p_2, host nanme_1=host nane_2
Specifies the node | Ps to be updated.
-y
--yes
Perform automatic confirmation.

Syntax:

shardmanct| [common_options] set pgParaml=val uel [pgParanR=value2 [...]] [-y|--yes] [-
W--wait time_duration] [-f|--force]

Sets the values of the specified Shardman cluster database parameters.

156

Shardman Reference

-wW
--wai t
Sets shardmanctl to wait for configuration changes to take effect. Value examples: 2h45m 1n80s, 5m 10s.
Default: 1h.
-y
--yes
Confirm the restart necessary for the parametersto take effect. If this option is not specified, and the parameters update requires
arestart, the manual confirmation will be requested. If not confirmed, the cluster will continue to work, yet the new parameter
values will only take effect after the restart.
-f
--force
Perform forced setting of a parameter if acluster operationisin progress.
upgr ade
Syntax:

shardmanct| [common_options] upgrade

Upgrades the shardman database extension and updatespg_f or ei gn_ser ver options.

bench init
Syntax:

shardmanct| [comon_options] bench init [--schema-type single|sinple|shardman| customn
[--schema-file file_nanme] [-s|--scale scale_value] [-n]|--no-vacuum
[-F]--fillfactor fillfactor_val ue]

Initializes the benchmark schema via pgbench. Schema can be custom or predefined. Createst pc- b schematables and fills them.

--schema-t ype=si ngl e| si npl e| shar dnan| cust om
Type of schemaused by schemainitialization. Possible values:
* si ngl e — schemafor asingle PostgreSQL benchmark test
* si npl e — simple sharded schema
» shar dman — sharded schema optimized for Shardman
» cust om— schemainitialized by the user fromthe - - schena- fi |l e file

Default schema: shar dman.

--schema-file=file_name

File with DDL query for the custom schema type, to be used to create t pc- b tables for pgbench: pgbench_account s,
pgbench_branches, pgbench_tel |l ers, pgbench_hi story.

-s scal e_val ue
--scal e=scal e_val ue

Multiply the number of generated rows by the given scale factor.
-n
--no-vacuum

Perform no vacuuming during initialization.

-F fillfactor_val ue
--fillfactor=fillfactor_val ue

Fill pgbench tables with the given fillfactor value.

157

Shardman Reference

bench run

Syntax:

shardmanct| [common_options] bench run [--schema-type singl e|sinple| shardman| cust oni
[-f]--file file_nane] [-c|--client client_value] [-C --connect] [--full-output]
[-j]--]jobs jobs value][-T|--time seconds][-t|--transactions transactions_val ue]
[-s|--scale scale factor] [-P | --progress seconds] [-R| --rate rate] [-M| --
prot ocol querynode]

Runs the initialized benchmark via pgbench. Can use the default pgbench script or a custom script from afile.

- -schema- t ype=si ngl e| si npl e| shar dnan| cust om
Type of schemaused by schemainitialization (bench i ni t). Possible values:
e si ngl e — schemafor single PostgreSQL benchmark
* si npl e — simple sharded schema
» shar dman — sharded schema optimized for Shardman
e cust om— schemainitiaized by the user fromthe- - schena-fi | e file.
Default schema: shar dnan.

-f file_nane

--file=file_nane

Add atransaction script read from f i | enane to the list of scripts to be executed.

Optionally, write an integer weight after @to adjust the probability of selecting this script versus other ones. The default
weight is 1. (To use a script file name that includes an @character, append aweight so that there is no ambiguity, for example
filen@ea@).

-c client_val ue
--client=client_value

Number of clients simulated, that is, number of concurrent database sessions.
-C
- -connect

Establish a new connection for each transaction rather than doing it just once per client session.

--ful | -out put

Print all pgbench output.
-j jobs_val ue
--j obs=j obs_val ue

Number of worker threads within pgbench.

-s scal e_factor
--scal e=scal e_factor

Multiply the number of generated rows by + the given scale factor.

-T seconds
--ti ne=seconds

Run the test for this many seconds instead of a fixed number of transactions per client.

-t transactions_val ue
--transactions=transactions_val ue

Number of transactions each client runs.

Default: 10.

158

Shardman Reference

-P seconds
- - progr ess=seconds

Show progress report every sec seconds. The report includes the time since the beginning of the run, the TPS since the last
report, and the transaction latency average, standard deviation, and the number of failed transactions since the last report. Under
throttling (- R), the latency is computed with respect to the transaction scheduled start time, not the actual transaction beginning
time, thus it also includes the average schedule lag time. When - - max-tri es is used to enable transaction retries after
seriaization/deadlock errors, the report includes the number of retried transactions and the sum of all retries.

-Rrate
--rate=rate

Execute transactions targeting the specified rate instead of running as fast as possible (the default). Therateis givenin transac-
tions per second. If the targeted rate is above the maximum possible rate, the rate limit won't impact the resuilts.

- M quer ynode
- - pr ot ocol =quer ynode
Protocol to use for submitting queriesto the server:
» si npl e: use simple query protocol.
» ext ended: use extended query protocol.
* prepar ed: use extended query protocol with prepared statements.
In the pr epar ed mode, pgbench reuses the parse analysis result starting from the second query iteration, so pgbench runs
faster than in other modes.
Default: si npl e.

bench cl eanup

Syntax:

shardmanct| [comon_options] bench cl eanup

Cleans up schema database after benchmarks. Dropst pc- b tables.

bench generate

Syntax:

shardmanct| [conmon_opti ons] bench generate [-c|--config file_nane] [-o|--output-
file file_nane]

Gets the benchmark configuration from afile and generates a bash script to create a schema optimized for Shardman and run the
benchmark using pgbench. The configuration file must beinyam format.

-f file_name
--file=fil e_nane

The configuration file path. The file contains a sequence of script confugurations. Each script must have aschena_t ype:
si ngl e| si npl e| shar dnman| cust om For a custom schemait is necessary to specify theschema_fi | e with the DDL
script. Optional parameters:i nit _fl ags (default set:-s 1000),run_f 1 ags (defaultset:-n -P 10 -¢c 10 -j 4 -T
60), partitions (default value: 50). It is highly recomended to use - n (- - no- vacuum) parameter insider un_f | ags.
Configuration file example:

benches:
- schema_type: single
init flags: "-s 3"

run_flags: "-n -P 10 -¢c 10 -j 4 -T 10"
- schema_type: sinple
init _flags: "-s 4"
run_flags: "-n -P 10 -¢c 20 -j 4 -T 10"
partitions: 100
- schema_type: shardnan

159

Shardman Reference

init_flags: "-s 5"

run_flags: "-n -P 10 -¢c 20 -j 4 -T 10"
- schema_type: custom

init_flags: "-s 6"

schema_file: "schema.psqgl™

-o file_nane
--output-file=file_name

Output file. Default: stdout.

script
Syntax:

shardmanct| [comron_options] script -s|--shard shard_nanme][[-f|--file file_nane][--
sql query]]
Executes non-transactional commands from afile or from the command-line on the specified shards.

-s shard_nane
--shard=shard_nane

Shard name.

-f file_nane
--file=file_nane

Add atransaction script from thef i | e_narme fileto thelist of scriptsto be executed.

--sgl query
Specifies the statement to be executed and can only be used separately from - f .

psql
Syntax:
shardmanct| [common_options] psqgl -s|--shard shard_nane

Connects to the first available primary node if no options are specified.

-s shard_nane
- -shar d=shard_nane

Name of the shard. If specified, the connection isinstalled with this shard current primary.

daenon set

Syntax:

shardmanct| [comon_opti ons] daenbn set [--session-log-level debug | info | warn
error] [--session-log-format json|text] [--session-log-nodes]

Allows updating the log parameters “on the fly”.

--session-log-level debug | info | warn | error

Updatesthelog level to debug, i nf o, warn, orerror.

--session-log-format json|text

Updates the log output format tot ext orj son.

--sessi on-1 0og- nodes
Specifies which cluster nodes must be updated. If not specified, the parameters are updated on every node.

Default: all nodes.

160

Shardman Reference

hi story
Syntax:

shardmanct| [comon_options] history [--reverse | -r] [-f]|--format json|text] [-1]--
[imt nunber_of _conmands]

Shows history of the commands that updated the cluster. By default, they are sorted from the most recent to the oldest ones.
-r
--reverse
Switches to the ascending sorting order.
-f json|text
--format =j son| t ext
Output format.
Default: t ext .
-1
--limt=nunber_of conmands

Limit for the number of the most recent commands in the output. The maximum vaue is 200.

Default: 20.

Common Options

shardmanctl common options are optional parametersthat are not specific to the utility. They specify etcd connection settings, cluster
name and afew more settings. By default shardmanctl triesto connect to the etcd store127. 0. 0. 1: 2379 and usethecl ust er O
cluster name. The default log level isi nf o.

-h, --help
Show brief usage information.

--cluster-nane cl uster_nane

Specifies the name for a cluster to operate on. The default iscl ust er O.

--log-level |evel

Specifiesthelog verbosity. Possiblevaluesof | evel are(from minimum to maximum): err or, war n,i nf o and debug.
Thedefaultis i nfo.

--retries nunber

Specifies how many times shardmanctl retries afailing etcd request. If an etcd request fails, most likely, due to a connectivity
issue, shardmanctl retries it the specified number of times before reporting an error. The default is 5.

--session-ti meout seconds

Specifies the session timeout for shardmanctl locks. If there is no connectivity between shardmanctl and the etcd store for the
specified number of seconds, the lock isreleased. The default is 30.

--store-endpoints string

Specifiesthe etcd addressintheformat: ht t p[s]: //address[: port] (, http[s]://address[: port])*.Thede
faultishttp: //127.0. 0. 1: 2379.

--store-ca-file string
Verify the certificate of the HTTPS-enabled etcd store server using this CA bundle.

--store-cert-file string

Specifies the certificate file for client identification by the etcd store.

161

Shardman Reference

--store-key string

Specifies the private key file for client identification by the etcd store.

--store-tinmeout duration

Specifies the timeout for a etcd request. The default is5 seconds.

--noni tor-port nunber

Specifies the port for the shardmand http server for metrics and probes. The default is 15432.

--api -port nunber

Specifies the port for the shardmand http api server. The default is 15432.

--version

Show shardman-utils version information.

Environment
SDM_BACKUP_MODE
An dternative to setting the - - backup- node option.

SDM BACKUP_PATH
An dternative to setting the - - backup- pat h option.

SDM CLUSTER_NAME
An dternative to setting the - - ¢l ust er - nane option.
SDM ETCD_PATH
An dternative to setting the - - et cd- pat h option.
SDM FI LE
An dternative to setting the- - fi | e option for confi g updat e.
SDM LOG_LEVEL
An dternativeto setting the - - | og- | evel option.
SDM_NCODES
An dternative to setting the - - nodes option for nodes add and nodes rm

SDM_RETRI ES

An aternativeto setting the- - ret r i es option.
SDM SPEC _FI LE

An dternativeto setting the - - spec-fi |l e optionforini t.
SDM STORE_ENDPQ NTS

An dternative to setting the - - st or e- endpoi nt s option.
SDM STORE_CA FI LE

An aternativeto setting the - - st or e- ca-fi | e option.

SDM STORE_CERT_FI LE

An dternativeto setting the - - st ore-cert - fi | e option.

162

Shardman Reference

SDM STORE_KEY
An alternative to setting the - - st or e- key option.

SDM STORE_TI MEOUT

An dternativeto setting the - - st or e- t i meout option.

SDM_SESSI ON_TI MEOQUT

An aternative to setting the - - sessi on-ti meout option.
Usage

Adding Nodes to a Shardman Cluster
To add nodes to a Shardman cluster, run the following command:
shardmanct| [common_options] nodes add -n|--nodes node_nhanes

Y ou must specify the- n (- - nodes) option to pass the comma-separated list of nodes to be added. Nodes can be referred by their
hostname or 1P address. Hostnames must be correctly resolved on all nodes.

If nodes add command fails during execution, use the cl eanup --after-node-operati on command to fix possible
cluster configuration issues.

Performing Cleanup

By default, cl eanup operates in the report-only mode, that is, the following command will only show actions to be done during
actual cleanup:

shardmanct| [common_options] cleanup --after-node-operation|--after-rebal ance

To perform the actual cleanup, run the following command:

shardmanct| [common_options] cleanup -p|--processrepgroups --after-node-
operation|--after-rebal ance

Displaying the Cluster Topology

cl uster topol ogy displaysthe current cluster topology. The default is the table mode. All cluster nodes will be grouped by
the replication groups they belong to. For each node, its status will be displayed.

shardmanct| [comon_options] cluster topology -f|--format table|json|text

Checking shardmand Service on Nodes

daenon check not only checksthat shardmand serviceisrunning on specified nodes, but al so assuresthose servicesare configured
for the same cluster as shardmanct!:

shardmanct| [comon_opti ons] daenon check -n|--nodes node_nanes

Removing Nodes from a Shardman cluster
To remove nodes from a Shardman cluster, run the following command:
shardmanct| [common_options] nodes rm -n|--nodes node_nanes
Specify the- n (- - nodes) option to passthe comma-separated list of nodesto be removed.Recreates all partitions of sharded tables

Note

Do not use the cl eanup command to fix possible cluster configuration issues after a failure of nodes r m Redo the
nodes r mcommand instead.

163

Shardman Reference

Toremoveal nodesin acluster and not care about the data, just reinitialize the cluster. If aremoved replication group contains local
(non-sharded and non-global) tables, the datais silently lost after the replication group removal.
Getting the Status of Cluster Subsystems

To get areport on the health status of Shardman cluster in atableformat for met adat a and st or e subsystems sorted by replication
group, run the following command:

shardmanct| [common_options] status --filter=netadata,store --sort=rg

To get thereport in JSON format, use- f | - - f or mat =j son option (omitted above sincet abl e format is used by default). Each

detected issue isreported as an Unknown, Warning, Error or Fatal error status. The tool can also report an Operational error, which

means there was an issue during the cluster health check. When the command encounters aFatal or Operational error, it stopsfurther

diagnostics. For example, an inconsistency in the store metadata does not allow correct cluster operations and must be handled first.
Outputting the List of Unresolved Distributed Transactions

To view thelist of distributed transactions that Shardman built-in monitoring tools failed to resolve, run the following command:

shardmanct| [comon_options] status transactions -r|--
repgroup replication_group_nane

Each output transaction consists of t x_i d (transaction ID), coordi nator i d,creation_ti ne anddescri pti on (error
or transaction status). To display thelist of transactions for a specific replication group, use the-r | - - r epgr oup option (for al
replication groups by default). In case there are no such transactions, returns nul | value in JSON.

Dumping All Keys from the Store to Debug Error Configuration

After facing an error while using Shardman cluster, to fill in an exhaustive report, it is convinient to dump all specifications that
could produce such an error with the following command:

shardmanct| [comon_options] store dunp -f|--file filenane

Some harmless errors may be shown, but they will not interrupt dumping. If you do not specify the filename, dump will be sent to
stdout and may pollute your terminal.

Getting the Current stolon Specification
To get the current stolon specification, which is normally a part of cluster key in the store, use the following command:

shardmanct| [conmon_options] store get -al--alias stolonspec -f|--file filenane

If the cluster key is corrupted itself, stolon specification will not be shown either. Instead of using the alias, you may also find out
the full cluster data key name (by listing all keyswith st or e keys command), usest or e get toretrieveit and find the stolon
part there. Mind that while using the last option, shar drmman. conf i g_uui d parameter will not be deleted, which may result in
aconflict in later use of this data; for manipulation with stolon specification, it is recommended to use shar dnmanct| store
get -a stol onspec command.

Getting the Cluster and Ladle Key Names For the Current Cluster
To get all key namesin the store at once, run the following command:

shardmanct| [commopn_options] store keys

It can only be shown in JSON format. It will also print alias names for keys that have them (excluding st ol onspec and spec,
since they are parts of other keys)

Output Current Cluster Meta Lock Information
Y ou can view information about current cluster metalocks that acquired by any command:

shardmanct| [comon_options] store lock -f|--format json

To get thereport in JSON format, use- f | - - f or mat =j son option (omitted above sincet ext format isused by default). In case
the lock does not existsreturnsLock not found

164

Shardman Reference

Setting a New Spec for the Cluster
To set anew spec part of the cluster specification, run the following command:

shardmanct| [conmon_options] store set --alias=spec --file=spec.json

Since spec isapart of cluster data key, it cannot be set with - - key. If the provided file is not avalid JSON, the new spec part
will not be set.

Backing up a Shardman Cluster

Requirements for backing up and restoring a Shardman cluster using the basebackup command are listed in Section 2.6.1.1.

To backup a Shardman cluster, you can run the following command:

shardmanct| [common_options] backup --datadir directory [--use-ssh]

Y ou must pass the directory to write the output to through the - - dat adi r option. Y ou can limit the number of running concurrent
tasks (pg_r ecei vewal or pg_basebackup commands) by passing the limit through the - - maxt asks option.

If - -use-ssh is specified shardmanctl recover command will use scp command to restore data. It allows to use backup
repository on the local host.

Registering a Shardman Cluster
To register a Shardman cluster in the etcd store, run the following command:

shardmanct| [common_options] init [-y|--yes] [-f]|--spec-
file spec_file_nane]|spec_text

Y ou must provide the string with the cluster specification. Y ou can do it as follows:

* Onthe command line— do not specify the- f option and passthe string in spec_t ext .

* Onthe standard input — specify the - f option and pass- inspec_fil e_nane.

e Inafile— specify the- f option and passthefilenameinspec_fil e_nane.
Restoring a Shardman Cluster

shardmanctl can perform either full restore, metadata-only or schema-only restore of a Shardman cluster from a backup created by
thebackup command.

To perform full restore, you can run the following command:

shardmanct| [conmon_options] recover --info file

Pass the file to load information about the backup from through the - - i nf 0 option. In most cases, set this option to point to the
backup_i nf o filein the backup directory or to its modified copy.

If you encounter issues with an etcd instance, it makes sense to perform metadata-only restore. To do this, you can run the following
command:

shardmanct| [common_options] recover --dunpfile file --metadata-only

Y ou must pass the file to load the etcd metadata dump from through the - - dunpf i | e option.
If you need to restore only schemainformation, like: tables, roles and etc. you should specify - - schena- onl y option.

For all kinds of restore, you can specify - - t i meout for the tool to exit with error after waiting until the cluster is ready or the
recovery is complete for the specified number of seconds.

Y ou can specify - - shar d parameter for restoring only on the single shard.

165

Shardman Reference

Before running ther ecover command, specify Dat aRest or eConmand and Rest or eCommand inthe backup_info
file. Dat aRest or eCommand fetches the base backup and restores it to the stolon data directory. Rest or eConmand fetches
the WAL fileand savesitto stolon pg_wal directory. These commands can use the following substitutions:

%
Destination path on the server.

s

Syst e d of the restored database (the same in the backup and in restored cluster).

%
Name of the WAL file to restore.

stolon keeper thread runs both commands on each node in the cluster. Therefore:

» Make the backup accessible to these nodes (for example, by storing it in a shared filesystem or by using aremote copy proto-
col, such as SFTP).

» Commands to fetch the backup are executed as the operating system user under which stolon daemonswork (usually post -
gr es), so set the permissions for the backup files appropriately.
These examples show how to specify Rest or eCommand and Dat aRest or eCommand:

« If abackup is available through a passwordless SCP, you can use:

"Dat aRest oreCommand": "scp -r user @ost:/var/backup/ shardman/ %/ backup/* %",
"Rest oreConmand": "scp user @ost:/var/ backup/ shardman/ %/ wal / % %"

» If abackupis stored on NFS and available through / var/ backup/ shar drman path, you can use:

" Dat aRest or eCommand”: "cp -r /var/backup/shardman/ %/ backup/* %",
"Rest oreCommand”: "cp /var/backup/ shardman/ %/ wal / % %"

Backing up a Shardman Cluster Using pr obackup Command

Requirements for backing up and restoring a Shardman cluster using the pr obackup command are listed in Section 2.6.3.1.

For example, following these requirements, on the backup host:

groupadd post gres
useradd -m-N -g postgres -r -d /var/lib/postgresql -s /bin/bash

Then add SSH keys to provide passwordless SSH connection between the backup host and Shardman cluster hosts. Then on the
backup host:

apt-get install pg-probackup shardman-utils

nkdir -p directory

chown postgres: postgres directory -R

shardmanct| [common_options] probackup init --backup-path=directory --etcd-
pat h=di rectory/etcd --renpte-user=postgres --renote-port=22

shardmanct| [conmon_opti ons] probackup archive-command --backup-pat h=directory --
r enot e- user =post gres --renote-port=22

If al the requirements are met, then run the backup subcommand for the cluster backup:

shardmanct| [common_options] probackup backup --backup-path=directory --etcd-
pat h=di rectory --backup-node=MODE

You must pass the directories through the - - backup- pat h and - - et cd- pat h options and backup mode through - - back-
up- node. Full and deltabackups are availablewith FULL, DELTA, PTRACK and PACE values. Also it ispossibleto specify backup

166

Shardman Reference

compression options through - - conpr ess, - - conpr ess-al gori t hmand - - conpr ess- | evel flags, as well as specify
--renote-port and--renot e-user flags. You can limit the number of running concurrent tasks when doing backup by
passing the limit through the - - maxt asks flag.

By default, copying datavia SSH is used to create abackup. To copy datato amounted partition instead, usethe- - st or age- t ype
option with the rount value. Thisvalue will be automatically used in the restore process.

You can aso copy data to an S3-compatible object storage. To do this, use the - - st or age-t ype option with the S3 value.
When thisvalue is used, it is required to specify the directory for pg_probackup logs. Y ou can do it either by specifying - - | og-
di rect ory for each command or set the environment variable SDM_LOG_DI RECTORY, for example:

export SDM LOG DI RECTORY=/ backup/ | ogs

If you are going to perform backup/restore only for an S3-compatibl e object storage, you can also set an environment variable instead
of specifying - - st or age-t ype in each pr obackup command:

export SDM STORAGE_TYPE=S3

Restoring a Shardman Cluster using probackup command

shardmanctl in probackup mode can perform either full restore, metadata-only or schema-only restore of a Shardman cluster from
abackup created by the pr obackup backup command.

To perform full or partia restore, firstly you must select needed backup to restore from. To show list of available backups run the
following command:

shardmanct| [comon_options] probackup show --backup-path=path --format=format [--
archive] [-i]|--backup-id backup-id] [--instance instance]

The output should be a list of backups with their IDs in a table or JISON format. Then pick the needed backup ID and run the
probackup restore command.

shardmanct| [conmmon_opti ons] probackup restore --backup-path=path --backup-id=id

Pass the path to the repo through the - - backup- pat h option and backup ID througt - - backup- i d flag.

If you encounter issues with an etcd instance, it makes sense to perform metadata-only restore. To do this, you can run the following
command:

shardmanct| [common_options] probackup restore --backup-path=path --backup-id=id --
net adat a- only

If you need to restore only schemainformation, like: tables, roles and etc. you should specify - - schemna- onl y option.

For both kinds of restore, you can specify - - t i meout for the tool to exit with error after waiting until the cluster is ready or the
recovery is complete for the specified number of seconds.

Y ou can specify - - shar d parameter for restoring only on the single shard.

Also you can specify - - r ecovery-t ar get-ti ne option for Point-in-Time Recovery. In this case Shardman finds the closest
syncpoint to specified timestamp and suggests restoring on the found LSN. Y ou can also specify - - wal - 1 i mi t tolimit the number
of WAL segments to be processed.

| mportant

Before restoring a Shardman cluster, make sure that the cluster is up by executing theshar dmanct | st at us command.
If the output shows errors, performing the restore can result in the cluster becoming unavailable. First, fix the errors by
reinitializing the cluster and restoring the etcd metadata. Then you can proceed to restoring the cluster from backup.

Reinitializing Replicas

If replicas are in an incorrect state, you can reset them using the shardmanctl command:

167

Shardman Reference

shardmanct| [comon_options] shard --shard=shard_name replicas reinit

This command determines the nodes on which replicas of the specified shard are running and sends arequest to shardmand on these
nodes. After receiving this request, shardmand clears the postgres data directory and restartsthe keeper thread that isresponsible
for managing the replica. After that, the replicas are restarted and begin to receive data from the corresponding primary.

Examples

Initializing the Cluster

To initialize a Shardman cluster that hasthe cl ust er 0 name, uses an etcd cluster consisting of n1,n2 and n3 nodes listening
on port 2379, ensure proper settingsin the spec file sdnspec. j son and run:

$ shardmanct| --store-endpoints http://nl:2379, http://n2:2379,http://n3:2379 init -f
sdnspec. j son

Getting the Cluster Connection String

To get the connection string for a Shardman cluster that has the cl ust er 0 name, uses an etcd cluster consisting of n1,n2 and
n3 nodes listening on port 2379, run:

$ shardmanct| --store-endpoints http://nl:2379, http://n2:2379, http://n3:2379
getconnstr

dbname=post gres host=nl, n4, n2, n1, nl, n2, n4, n3 passwor d=your passwor dher e
port=5432, 5433, 5432, 5433, 5432, 5433, 5432, 5433 user =post gres

Toadd replicastoget connstr,use--al | .

Getting the Cluster Status
Here is a sample status output from shardmanct! with OK and Error statuses:

$ shardmanct| status --filter store,shardmand,rg --sort=node

BHABHBHABHHHH BB H BB BB BB B R B B R R R R R R R R

== STORE STATUS ==
#
BHHBHBHHBH R R R R R R R R R R R R R R R
STATUS # MVESSAGE # REPLI CATI ON GROUP
NCDE #
BHHBHBHHBH R R R R R R R R R R R R R R R
(04 # etcd store is K #
#

BHABHBHABHHHH BB H BB BB BB B R B B R R R R R R R R
BHABHBHABHHHH BB H BB BB BB B R B B R R R R R R R R

== SHARDMAND STATUS ==
#
BHHBHBHHBH R R R R R R R R R R R R R R R
STATUS # VESSAGE # REPLI CATI ON GROUP
NCDE #
BHHBHBHHBH R R R R R R R R R R R R R R R
(04 # shardmand on node 56d819b4e9%e4 is K #
56d819b4e9e4 #
BHHBHBHHBH R R R R R R R R R R R R R R R
(04 # shardmand on node 6dOaabd50acc is OK #
6d0aabd50acc #

BHABHBHABHHHH BB H BB BB BB B R B B R R R R R R R R
BHABHBHABHHHH BB H BB BB BB B R B B R R R R R R R R
== REPLI CATI ON GROUP STATUS ==

#

168

Shardman Reference

BHABHBHABH BB H B H BB R R B R R R R R R R R R R R R

STATUS # MESSAGE # REPLI CATION GROUP
NODE #
HERHHHHH T H T H R H R H R H R H R
X # Replication group clover-1-56d819b4e9e4 is # clover-1-56d819b4e9e4
#
OK #
#
HERHHHHH T H T H T H R H R H R R H R R
Replication connection is down for slave #
#
Error # 6d0aabd50acc: 5442 in replication group # cl over-1-6d0aabd50acc
6d0aabd50acc: 5442 #
cl over - 1- 6d0aabd50acc #
#

BHARHBHABHHHHBH AR H BB R R B R R B R R R R R R R R R
RHHABHBHHBHHHHBH AR H BB B R B R R R R R R R R R R R

== RESTART REQUI RED PARAMS STATUS ==
#

RHABHBHHBHHHHBH AR H BB B R B R R R R R R R R R R R

STATUS # MESSAGE # REPLI CATI ON GROUP # NCDE
#

RHHABHBHHBHHHHBH AR H BB B R B R R R R R R R R R R R

X # No pending restart paraneters # shard-1 # shrnl
#

RHABHBHHBHHHHBH AR H BB B R B R R R R R R R R R R

X # No pending restart paraneters # shard- 2 # shrn4d
#

RHABHBHHBHHHHBH AR H BB B R R R R R R R R R R R R R R

Rewriting stolon Specification
First, get the list of available keysin the store using the following command:
$ shardmanct!| store keys

{

"Key": "shardman/cl uster0/data/cluster”
"Alias": "cluster"

H
"Key": "shardman/ cl ust er 0/ dat a/ shar dnand/ 56d819b4e9e4"

H

"Key": "shardman/ cl ust er 0/ st ol on/ renot eLogs/ 6d0aabd50acc/ cl over - 1- 6d0aabd50acc/
keeper_1/error"

}

Get stolon configuration from the store and saveit in the st ol onspec. j son file with the command

169

Shardman Reference

$ shardmanct| store get -a stolonspec -f stolonspec.json

Apply the necessary changes to the file and upload the new specification using shar dnanct| confi g updat e. Mind that
shar dman. confi g_uui d parameter isdeleted withshar dmanct| store get -a stol onspec and not withshar d-
manct| store get -k full/path/to/clusterspec; using spec with existing shardman. confi g_uui d will
result in a conflict.

| mportant

Do not use st ore set command to update cluster configurations because it does not apply a new specification on all
nodes, it only writes it to the store. For the above example with stolon specification, shar dmanct| confi g update
is acceptable.

To double-check, you can get the cluster key with new St ol onSpec by the full key name (which was shown earlier with st or e
keys command):

$ shardmanct| store get -k shardman/cl uster0/ data/cl uster

{
"For mat Versi on": 1,
"Spec": {
"PgSuAut hiMet hod": "md5",
"PgSuPassword": "12345",
"PgSuUser nanme": "postgres",
"PgRepl Aut hMet hod": " nd5",
"PgRepl Password": "12345",
"PgRepl User nane": "repl user",
"Shar dSpec": {
}

Adding Nodes to the Cluster
Toaddn1,n2,n3 and n4 nodesto the cluster, run:

$ shardmanct| --store-endpoints http://nl:2379, http://n2:2379, http://n3:2379 nodes add
-n nl,n2,n3, n4

| mportant

The number of nodes being added must be amultiple of Repf act or + 1 if cr oss placement policy isused.

Removing Nodes from the Cluster
Toremovenl and n2 nodesfromthe cl ust er O cluster, run:

$ shardmanct| --store-endpoints http://nl:2379, http://n2:2379, http://n3:2379
nodes rm-n nl, n2
If cr oss placement policy is used, then the clovers that contain them will be deleted along with the nodes.

Executing a Query on All Replication Groups

To executethesel ect versi on() query onall replication groups, run:

170

Shardman Reference

$ shardmanct| --store-endpoints http://nl:2379, http://n2:2379,http://n3:2379 forall --
sql "select version()'

Node 1 says:

[PostgreSQL 13.1 on x86_64-pc-1linux-gnu, conpiled by gcc (Ubuntu
9. 3.0-17ubuntul~20.04) 9.3.0, 64-bit]

Node 4 says:

[PostgreSQL 13.1 on x86_64-pc-1linux-gnu, conpiled by gcc (Ubuntu
9. 3.0-17ubuntul~20.04) 9.3.0, 64-bit]

Node 3 says:

[PostgreSQL 13.1 on x86_64-pc-1linux-gnu, conpiled by gcc (Ubuntu
9. 3.0-17ubuntul~20.04) 9.3.0, 64-bit]

Node 2 says:

[PostgreSQL 13.1 on x86_64-pc-1linux-gnu, conpiled by gcc (Ubuntu
9. 3.0-17ubuntul~20.04) 9.3.0, 64-bit]

Performing Rebalance
To rebalance sharded tablesin thecl ust er O cluster, run:
$ shardmanct| --store-endpoints http://nl:2379, http://n2:2379,http://n3:2379 rebal ance

Updating PostgreSQL Configuration Settings

To set the max_connect i ons parameter to 200 in the cluster, create the spec file (for instance, ~/ st ol on. j son) with the
following contents:

{
"pgParaneters”: {
"max_connections": "200"
}
}
Then run:

$ shardmanct| --store-endpoints http://nl:2379, http://n2:2379, http://n3:2379 config
update -p -f ~/stolon.json

Since changing max_connect i ons requires arestart, DBMS instances are restarted by this command.

Performing Backup and Recovery

To create abackup of thecl ust er O cluster using etcd at et cdser ver listening on port 2379 and storeit in the local directory
/ var / backup/ shar dman, run:

$ shardmanct| --store-endpoints http://etcdserver: 2379 backup --datadir=/var/backup/
shardman --use-ssh

Assume that you are performing a recovery from a backup to the cl ust er O cluster using etcd at et cdser ver listening on
port 2379 and you take the backup description from the / var / backup/ shar dman/ backup_i nf o file. Edit the /var/
backup/ shar dman/ backup_i nf o file, set Dat aRest or eConmrand , Rest or eConmand as necessary and run:

$ shardmanct| --store-endpoints http://etcdserver: 2379 recover --info /var/backup/
shar dman/ backup_i nfo

For metadata-only restore, run:

$ shardmanct| --store-endpoints http://etcdserver: 2379 recover --netadata-only --
dunpfile /var/backup/shardman/ et cd_dunp

171

Shardman Reference

For schema-only restore, run;

$ shardmanct| --store-endpoints http://etcdserver: 2379 recover --schema-only --
dunpfile /var/backup/shardman/ et cd_dunp

For single shard restore, run:
$ shardmanct!| --store-endpoints http://etcdserver: 2379 recover --info /var/backup/
shar dman/ backup_i nfo --shard shard_1

Performing Backup and Recovery with probackup Command

To create abackup of thecl ust er O cluster using etcd at et cdser ver listening on port 2379 and storeit in the local directory
/ var / backup/ shar dman, first initialize the backups repository with thei ni t subcommand:

$ shardmanct| --store-endpoints http://etcdserver: 2379 probackup init --backup-path=/
var/ backup/ shardnan --etcd- pat h=/var/ backup/ et cd_dunp

Then add and enable ar chi ve_comrand with thear chi ve- command subcommand:

$ shardmanct| --store-endpoints http://etcdserver: 2379 probackup archive-comrand add - -
backup- pat h=/ var/ backup/ shar dman

If the repository is successfully initialized and ar chi ve- conmand successfully added, create a FULL backup with the backup
subcommand:

$ shardmanct| --store-endpoints http://etcdserver: 2379 probackup backup --backup-path=/
var/ backup/ shardnman - - et cd- pat h=/ var/ backup/ et cd_dunp --backup- node=FULL --conpress --
conpress-al gorithmezlib --conpress-|evel =5

To create DELTA, PTRACK or PAGE backup, run the backup subcommand with DELTA, PTRACK or PAGE value of the - -
backup- node option:

$ shardmanct| --store-endpoints http://etcdserver: 2379 probackup backup --backup- path=/
var/ backup/ shar dnan --etcd- pat h=/var/ backup/ etcd_dunp --backup- node=DELTA --conpress --
conpress-al gorithmezlib --conpress-|evel =5

To show the created backup ID, run show subcommand:
$ shardmanct| --store-endpoints http://etcdserver: 2379 probackup show --backup- pat h=/
var/ backup/ shardnan --fornat =t abl e

BHABHBHABHHHH BB H BB BB BB B R B B R R R R R R R R
#
== BACKUP | D ' S88FRO

#
#
#
BHABHBHABHHHH BB H BB BB BB B R B B R R R R R R R R
I NSTANCE # HCST
RECOVERY TI ME # MCDE # WAL MODE # TLI # DATA # WAL

Z-RATIO # START LSN # STOP LSN # STATUS
BHABHBHABHHHH BB H BB BB BB B R B B R R R R R R R R

shard-1 # nl

2024-02-02 14:19: 05+00 # FULL # ARCH VE # 1/0 # 42.37TMB #

i16MB # 1.00 # 0/ C000028 # 0/D0018B0O # (04 #
BHHBHBHHBH R R R R R R R R R R R R R R R
shard- 2 # n2

2024-02-02 14:19: 05+00 # FULL # ARCH VE # 1/0 # 42.38M B #

i16MB # 1.00 # 0/ C000028 # 0O/DOO1EOO # (04 #

BHABHBHABHHHH BB H BB BB BB B R B B R R R R R R R R

172

Shardman Reference

In PTRACK backup mode, Shardman tracks page changes on the fly. Continuous archiving is not necessary for it to operate. Each
time a relation page is updated, this page is marked in a special PTRACK bitmap. Tracking implies some minor overhead on the
database server operation, but speeds up incremental backups significantly.

If you are going to use PTRACK backups, complete the following additional steps:

» Preload the ptrack shared library on each node. This can be done by adding the pt r ack valueto theshar ed_pr e-
| oad_I i brari es parameter.

» freate the PTRACK extension on each cluster node:

$ shardmanct| --store-endpoints http://etcdserver: 2379
forall --sql "create extension ptrack"

» To enable tracking page updates, set the pt r ack. map_si ze parameter asfollows:

$ shardmanct| --store-endpoints http://etcdserver: 2379
updat e ' {"pgParaneters": {"ptrack. map_si ze":"64"}}"

For optimal performance, it isrecommended to set pt r ack. map_si ze to N 1024, where Nis the maximum size of the
cluster node, in MB. If you set this parameter to alower value, PTRACK is more likely to map several blocks together, which
leads to fal se-positive results when tracking changed blocks and increases the incremental backup size as unchanged blocks
can aso be copied into the incremental backup. Setting pt r ack. map_si ze to a higher value does not affect PTRACK op-
eration, but it is not recommended to set this parameter to a value higher than 1024.

To vaidate the created backup, run val i dat e subcommand:

$ shardmanct| --store-endpoints http://etcdserver: 2379 probackup validate --backup-
pat h=/ var/ backup/ shardman --backup-i d=RFP1FI

Assume that you are performing a recovery from a backup to the cl ust er O cluster using etcd at et cdser ver listening on port
2379 and you take the backup ID from the show command:

$ shardmanct| --store-endpoints http://etcdserver: 2379 probackup restore --backup-
pat h=/ var/ backup/ shardman - -backup-i d=RFP1FI

Finally we need to enable ar chi ve_conmand back.

$ shardmanct| --store-endpoints http://etcdserver: 2379 probackup archi ve-comand add --
backup- pat h=/ var/ backup/ shar dman

For metadata-only restore, run:

$ shardmanct| --store-endpoints http://etcdserver: 2379 probackup restore --netadata-
only --backup-pat h=/var/backup/ shardman --backup-i d=RFP1FI

For metadata-only restore, run:

$ shardmanct| --store-endpoints http://etcdserver: 2379 probackup restore --schema-only
- - backup- pat h=/ var/ backup/ shar dman --backup-i d=RFP1FI

For single shard restore, run:

$ shardmanct| --store-endpoints http://etcdserver: 2379 probackup restore --backup-
pat h=/ var/ backup/ shardman --backup-i d=RFP1Fl --shard shard_ 1

For Point-in-Time Recovery, run:

$ shardmanct| --store-endpoints http://etcdserver: 2379 probackup restore --netadata-
only --backup- pat h=/var/backup/shardman --backup-i d=RFP1Fl --recovery-target-
ti me=' 2006- 01-02 15:04:05"' -s
Loading Data from a Text File
To load datainto a Shardman cluster, run the following command:

$ shardmanct| --store-endpoints http://etcdserver:2379 load --file=/var/load/data.tsv
--tabl e=nytable --source file --format text -j 8

173

Shardman Reference

In this example, data is loaded from the/ var /| oad/ dat a. t sv datafile (tab-delimited) into the table myt abl e in 8 parallel
threads. You can useschena. t abl e asthetable name.

Loading data from PostgreSQL table
To load data into a Shardman cluster from a PostgreSQL table, run the following command:

$ shardmanct| --store-endpoints http://etcdserver:2379 |load -t desttable --
source postgres --source-connstr "dbnanme=db host=srchost port=srcport user=login
passwor d=passwd” --source-table sourcetable -j 8

In this example, data is loaded from the table sour cet abl e into the dest t abl e table in 8 parallel threads. You can use
schenma. t abl e astable names.

Loading Data with a Schema from PostgreSQL
To load data with a schema into Shardman cluster from PostgreSQL, run the following command:

$ shardmanct| --store-endpoints http://etcdserver: 2379 |oad --schema | oad_schena. yan

Thefilel oad_schenma. yanl hasthe folowing format:

version: "1.0"
m grate:

connstr: "dbnanme=wor kdb host =wor khost port=workport user=wor kuser

passwor d=wor kpasswor d"

jobs: 8

bat ch: 1000

options:
- create_schemn
- create_table
- create_index
- create_sequence
- create_foreign_key
- create_role
- copy_ownership
- copy_grants
- truncate_table
- skip_no_pkey_tabl es
- skip_create_index_error
- skip_create_extension_error
- skip_load errors
- skip_create foreign key error
- skip create role_error
- skip_copy_grants_error
- ski p_copy_ownership_error

schenmas:
- nane: public
all: false
t abl es:

- name: tabl
type: sharded
partitions: 6
di stributedby: id

priority: 3
- name: tab2
type: gl obal

- nane: tab3
type: sharded

174

Shardman Reference

partitions: 6
distributedby: field_id
col ocatewith: tabl
- nane: tabled
type: gl obal
source: schemn. vi ew
source_pk: field_id
- nane: tableb
type: gl obal
source: schema. func(arg)
source_pk: field_id
- nane: schema2
all: false
defaul t _type: sharded
default_partitions: 6
t abl es:
- nane: tablel
distributedby: field_id

priority: 2
- name: table2
type: gl obal

- nane: table3
source: schema. vi ew
di stributedby: field_id
priority: 3
- nane: tabled
di stributedby: field_id
source: schema. func(arg)
- nane: tableb
source: schema. "conpl ex.""tabl e. nane"
di stributedby: field_id
- nane: schema3

all: true
skip_tables: [tablel, table2, table3]
rol es:

- nane: test_userl
password: test_password
- nane: test_user?2

Them gr at e. j obs value defines the number of parallel dataloader processes.
Them gr at e. bat ch valueisthe number of rows in one batch (recommended value is 1000).

Theni gr at e. schenas section defines an array of source database schemas that you are working with. All other schemas will
be skipped.

If theal | valueissettot r ue, thenall tablesfrom the current schemawill be migrated (with gl obal type by default). If atableis
listedinthem gr at e. schenms. t abl es array, then the target table type must be explicitly specified for it. Two types of tables
are currently supported: gl obal and shar ded. @ obal tables are loaded first, then shar ded tables and at the end shar ded
tableswiththecol ocat edw t h parameter. The order of |oading tables of the same type can be changed using pri ori t y option.

Them grat e. schenas. ski p_t abl es section defines an array of table namesthat will be skipped when the schemaisloaded
evenif theal | parameterissettot r ue.

For sharded tables, the following attributes must be set: di st ri but edby (specifies the name of the column to use for the table
partitioning) and par t i t i ons (number of partitionsthat will be created for thistable). Optionally, for sharded tablescol ocat e-
Wi t h attribute can be set (name of the table to colocate with). Shardman will try to place partitions of the created table with the
same partition key on the same nodes as the corresponding partitions of the table specified by col ocat ewi t h.

175

Shardman Reference

You can specify the table def aul t _t ype option for a schema: gl obal or shar ded (default: gl obal). For the shar ded
type you can also specify thedef aul t _partiti ons option (default: 20). If you set def aul t _t ype to shar ded, you need
to specify thedi st ri but edby option for each table.

The sour ce option for atable should include the schema and table source: schema. sour ce. The source can be atable, view or
function. For example: publ i c. t abl e, publ i c. vi ew, public. func(arg).If yousetthesour ce view or function for a
global table, you should specify sour ce_pk to set the primary key for thistable. If sour ce isnot specified or contains the name
of atable, you can also specify sour ce_pk to create a primary key or override the existing one.

Thepri ori ty optionfor table determinesthe order in which the tables of the sametypeareloaded. Tableswith higherpri ority
are loaded earlier. Default pri ori ty valueisO.

Them gr at e. r ol es section defines an array of role names and passwords that will be copied from the source databaseif cr e-
at e_rol e isspecified.

The schema supports the following options:

* create_schema — create database schemasif they do not exist.

* create_tabl e—createtablesif they do not exist.

e create_index — createindexes after creating tables.

e create_sequence — create sequencesif they do not exist.

» create_foreign_key — createforeign keys after creating tables.

e truncat e_t abl e — truncate tables before data load.

» create_rol e — createglobal rolesdefined inm gr at e. r ol es and copy role parameters from the source database.
e copy_grant s — copy access privileges from the source database.

e copy_owner shi p — change of table ownersto the owner in the source database.
* ski p_no_pkey_t abl es — skip tables without primary keys.

» skip_create_index_error — skipindex creation errors.

» skip_create_extensi on_error — skip extension crestion errors.

e skip_l oad_errors — continueloading if errors occur.

e skip_create foreign_key error — skipforeignkey creation errors.

* skip_create_rol e_error —skiprolecreation errors.

» ski p_copy_owner shi p_error — skip table owner changing errors.

» skip_copy_grants_error — skip errors when copying access privuleges from the source database.

Initialization and Running Benchmarks
To initialize abenchmark via shardmanctl using pgbench with the shar dman schema, scale=1000, partitions=40, run:

$ shardmanct!| bench init --schema-type=shardman --scal e=1000 --partitions=40

Torunaninitialized benchmark for the sameshar dman schema, number of jobs=4, number of clients=10, duration in seconds=60
and full pgbench output, use:

$ shardmanct!| bench run --schena-type=shardman --jobs=4 --client=10 --tinme=60 --full -
out put

Toinitialize abenchmark with the cust omschemafrom fileschenma. psql with scale=1000 run:

$ shardmanct!| bench init --schema-type=custom --schenma-fil e=schena. psql --scal e=1000

To run aninitialized benchmark with the cust omschema and custom transaction script from scri pt . psql with the number of
jobs=4, number of clients=10, duration in seconds=60, use:

176

Shardman Reference

$ shardmanct| bench run --schema-type=custom--file=script.psql --jobs=4 --client=10 --
ti me=60

To clean up a PostgreSQL database of t pc- b tables, use:

$ shardmanct!| bench cl eanup

Benchmark Generation Scripts
To generate abenchmark sequence viashardmanctl from the config file=cf g. yam and output theresulttofile=scri pt . sh, run:
$ shardmanct| bench generate --config=cfg.yaml --output-file=script.sh
Configuration file example:

benches:
- schema_type: single
init_flags: "-s 3"
run_flags: "-n -P 10 -¢c 10 -j 4 -T 10"
- schema_type: sinple
init_flags: "-s 4"
run_flags: "-n -P 10 -¢c 20 -j 4 -T 10"
partitions: 100
- schema_type: shardnan
init_flags: "-s 5"
run_flags: "-n -P 10 -¢c 20 -j 4 -T 10"
- schema_type: custom
init_flags: "-s 6"
schema_file: "schema.psqgl™

See Also
sdmspec.json, shardmand

177

Shardman Reference

sdmspec.json

sdmspec.json — Shardman initialization file

Synopsis

sdnspec. j son

Description

shardmanctl usesthe sdnspec. j son configuration file during Shardman cluster initialization. A shar dman- uti | s package
provides a sample configuration file.

sdmspec. j son file contains basic filesystem paths used by Shardman, global settings of the cluster, database-related settings, i.
e., administrative and replication user logins and authentication method, FDW parameters and shard configuration (Shar dSpec).

Note that there is a number of the internal Shardman parameters that, if modified by user, can result in the total cluster failure.
These parameters are:

e shardman. cl ust er _uui d definesthe version of arunning cluster that the node belongs to.

* shardman. confi g_uui d definesthe config version. Ignored if set via shardmanctl confi g updat e or shardmanctl
init.

» shardman. manual _execut i on controls the consistent work with the global objects.

* shardman. sil k_never _restart prohibitsthe multiplexer workersrestart in case of an error.

* shardman. pre_pr onot e_node applies the consistent promotion mechanism (from standby to primary).

List of Parameters
Repf act or

Integer determining how many replicas shardmanct! should configure for each DBMS. This setting can only be changed for a
Shardman cluster with a manual-topology mode.

Pl acenent Pol i cy

String determining the policy of placing DBMS instances. Currently, cr oss and manual placement policy is only supported.
Theformer valuecl over isused asan adiasfor cr oss policy.

With cr oss placement policy, nodes are grouped in clovers, where each node is running the master DBM S server and replicas
for al other nodesin the clover. The number of nodesin aclover is determined by Repfactor and equals Repf act or + 1.

manual placement policy allowsyou to manually add/remove the required number of replicas to/from the specified replication
groups. In this case, R#pf act or isonly used for recommendation purposes and does not impose restrictions.

Dat aDi r

Allows you to specify a directory other than the default one (/ var/ | i b/ pgpr o/ sdm 14/ dat a) for storing data. This
parameter cannot be changed after the cluster has been initialized.

PGsl nitial Port
Ports starting with this integer are assigned to PostgeSQL instances. This parameter cannot be changed after the cluster has
been initialized.

Silklnitial Port

Ports starting with this integer are assigned to Silk (Shardman InterLinK) instances. This parameter cannot be changed after
the cluster has been initialized.

178

Shardman Reference

Aut hMet hod

Authentication method used by the administrative user to connect to the DBMS. Can be any authentication method supported
by PostgreSQL . scr am sha- 256 iscurrently recommended. nd5 is currently allowed but not recommended. This parameter
cannot be changed after the cluster has been initialized. Located under a separate User s block for each array element.

Default: t r ust .
G oups

An array that can have two possible values, su for superuser or r epl for replication.
HTTP

Defines settings for the secure HTTP/HTTPS connection, with Por t being an API port, and Por t Met ri ¢s being a port for
the metrics. If these ports are the same, then API and metrics listen to the same port.

Default: 15432.

Name

Name of the user. Created on cluster initialization. Defaults to the name of the effective user running shar dmanct| init.
This parameter cannot be changed after the cluster has been initialized. Located under a separate User s block for each array
element.

Passwor d

Password for the user. Can be changed using shardmanctl confi g update credenti al s. Located under a separate
User s block for each array element.

PgSuSSLCert
Client certificate for the administrative DBMS user.

PgSSLRoot Cer t

Location of the root certificate file for the DBMS user connection.

PgSuSSLKey
Client private key for the administrative DBMS user.

PgSSLMde
SSL mode for the DBM S user. Allowed values: veri fy-caandverify-full.
PgRepl SSLCer t
Client certificate for the replication DBM S user.
PgRepl SSLKey
Client private key for the replication DBM S user.
Shar dSpec

Shard cluster specification. For more details, see Shar dSpec Parameters. Can be changed using shardmanctl confi g up-
dat e.

FDWDpt i ons
This object contains FDW settings.

These settings can be changed using shardmanctl confi g updat e (with the exception of settings related to authorization,
server connection, SSL and Kerberos, aswell astheser vi ce,t ar get _sessi on_at t r s options).

Foreign servers corresponding to Shardman replication groups will also get ext ended_f eat ur es setting automatically
enabled. Never set this parameter for postgres fdw foreign servers which you define for your own purposes (for example, to
load data into Shardman cluster).

179

Shardman Reference

Shar dSpec Parameters

TheShar dSpec specification canincludeall usual stolon optionsdescribed in Solon Cluster Specification. However, thefollowing
options should be carefully tuned for a Shardman cluster.

pgHBA

JSON array of pg_hba. conf strings. The default value allows user from the su group access from anywhere with Aut h-
Met hod authentication method. If the value of def aul t SURepl AccessMode isstri ct, pg_hba. conf strings must
explicitly allow users from the groups su or r epl access from all Shardman cluster nodes.

f orceSuUser Local Peer Aut h

When enabled, it sets a peer authentication via unix socket for the post gr es user, if stri ct User HBAisnot settot r ue.
Default: f al se.

synchronousRepl i cation

Determines whether replicas should use synchronous replication. Should bet r ue in a Shardman cluster.
Default: t r ue.

maxSynchr onous St andbys

Maximum number of required synchronous standbys when synchronous replication is enabled. Should be >= Repfactor in a
Shardman cluster. Default: Repf act or .

strictUser HBA
Prohibits adding automatically generated linesto pg_hba. conf file. Default: f al se.

aut omat i cPgRest art

Determines whether a DBMS instance should be automatically restarted after a change of the pgParameters hash table that
requires arestart. Should be enabled in a Shardman cluster.

Default: t r ue.

nmast er Denot i onEnabl ed

Enable master demotion in case the replica group master has lost connectivity with etcd. The master attempts to connect to each
of its standby nodes to determine if any of them has become the master. If it discovers another master, it shuts down its own
DBM S instance until the connectivity with etcd is restored. If the master fails to connect to one of its standby nodes for along
time, a DBM S instance shutdown occurs.

Default: f al se.

mast er Denot i onTi neout

The timeout during which the master attempts to connect to its standbys in cases where connectivity with etcd is lost. Works
only if themast er Denot i onEnabl ed parameter is set to true.

Default: 30s.

nm nSynchMbni t or Enabl ed

Enable the monitor for the M nSynchr onous St andbys value for every replica group. If a node loses connection with the
cluster (all keeper s are unhealthy: akeeper doesnot updateits state longer than mi nSyncMoni t or Unheal t hy Ti me-

out), themonitor decreasestheM nSynchr onous St andbys vauefor every replicagroup related to the disconnected node
to the maximum available value. This allows preventing the read-only condition caused by the fake replica. The maximum
available value is always less than or equal to the value specified in the cluster configuration. If al keeper s related to the
disconnected node become healthy, the monitor changes M nSynchr onousSt andbys value for the replica group to the
value specified in the cluster configuration.

Default: f al se.

180

https://github.com/sorintlab/stolon/blob/master/doc/cluster_spec.md

Shardman Reference

m nSynchMbni t or Unheal t hyTi neout

Timeinterval after which the node (and all keeper s related to this node) will be considered in an unhealthy condition. Works
only if them nSyncMoni t or Enabl ed parameter is set to true.

Default: 30s.

syncPoi nt Moni t or Enabl ed

Enable the monitor that creates a syncpoint every minute, ensuring the Shardman can restore to a consistent LSN. At each
syncpoint, the cluster's state is consistent, meaning that all transactions are complete. If this parameter is set to true, PITR will be
guaranteed towork. If settot r ue, it saves the syncpoint history in etcd with the key shar dman/ { cl ust er _nane}/ da-
tal/cluster/syncpoints.

Default: f al se.

dbWai t Rewi ndTi neout

Before full resync of areplica, the cluster software first tries to do pg_rewind. Because the rewind operation is significantly
faster than other approaches when the database is large and only a small fraction of blocks differs between the clusters. The
dbWai t Rewi ndTi meout parameter specifies the maximum working time for pg_rewind (examples of values. 5m 30s,
1nB0s).

Default: 7m

addi ti onal ReplicationSlots

Array of names of physical replication slotsthat are created on the master. Each slot name must begin with thest ol on_ prefix.

cr eat eS| ot sOnFol | owner s

If t r ue, physical replication slots are also created on standby nodes.

addi ti onal Sl ot sLagLi m t

The limit of the volume by which replication slots defined by theaddi t i onal Repl i cati onSl ot s configuration parame-

ter can lag behind. If this value is exceeded, the slot is recreated. Specify the value as a number followed by a unit of measure-

ment. Possibleunits. B, kB, ki B, MB,M B,GB,G B, TB, Ti B, PB, Pi B,EB, Ei B,ZB, Zi B, YB, and Yi B. For example: 100MB.
pgPar aneters

Hash table that determines PostgreSQL settings, including Shardman-specific settings. Supports the following placeholders for
post gr es parameters: {{ dat abDi r}} for data directory, { { keeper Di r }} for keeper data directory under dat abi r,
{{keeper Nane}} for keeper name, { { keeper | D} } for keeper ID, {{cluster}} forcluster name, {{shard}}
for shard name, {{host}} for host with the working post gr es instance.

Shardman-specific PostgreSQL Settings
The following settingsin pgPar anet er s are Shardman-specific:
enabl e_csn_snapshot (bool ean)
Enables or disables Commit Sequence Number (CSN) based tracking of the transaction visibility for a snapshot.

PostgreSQL uses the clock timestamp as a CSN, so enabling CSN-based snapshots can be useful for implementing global
snapshots and global transaction visibility.

When this parameter is enabled, PostgreSQL creates the pg_csn directory under PGDATA to keep track of CSN and XID
mappings.

Default: of f .

enabl e_cust om cache_cost s (bool ean)

Enables estimation logic for plan costs. It helps the planner choose generic plans more often considering the runtime pruning.

Default: of f .

181

Shardman Reference

enabl e_sqgl func_custom pl ans (bool ean)

If enabled, custom plans can be created to execute statementsinside SQL functions. These plans depend on the parameter values.

Query plans can be cached within one query. First, the plan is built five times with different parameter values, then a generic
plan is created regardless of the values. If custom and generic plan price is dightly different, then the generic plan is cached
and is set to be used in the future. However, custom plans allow a more effective way of excluding queries to the sharded table
partitions if the choice of these partitions depends on the query parameter.

Default: of f .
enabl e_ner ge_append (bool ean)

Enables the use of Mer geAppend plans by the query planner.

Default: on.
enabl e_async_ner ge_append (bool ean)

Enables or disables the query planner's use of async-aware merge append plan types. The default is on.
csn_snapshot _defer _time (i nt eger)

Specifies the minimal age of records that are allowed to be vacuumed, in seconds.

All global transactions must start on al participant nodes within csn_snapshot _def er _ti me seconds after start, other-
wise, they are aborted witha“csn snapshot too ol d” error.

Default: 15.

csn_comit _del ay (i nt eger)

Specifies the maximum possible clock skew (in nanoseconds) in the cluster. Adds adelay before every commit in the system to
ensure external consistency. If set to 0, external consistency is not guaranteed. Value suffixesns, us, ns and s are allowed.

Default: O.

csn_| sn_map_si ze (i nt eger)
Size of CSNLSNMap.

The commit record of each completed transaction in Shardman contains the assigned CSN for this transaction. This value,
together with the LSNof this record, forms a pair of values (CSN, LSN) . Each of the cluster nodes stores a certain number
of such pairsin RAM in a specia structure - the CSNLSNMap. This map is used to get the syncpoint. See the “Syncpoints and
Consistent Backup” section of the Internals chapter for more information.

Default: 1024.

csn_nmax_shift_error (bool ean)
When checked against thecsn_nmax_shi ft vaue, raisesan error if thecsn_max_shi ft valueis exceeded.
Default: of f .

csn_max_shift (i nt eger)

Maximum CSN shift in seconds for distributed queries and imported snapshots. If the shift exceeds the csn_nmax_shi ft
value, an error or warning will occur. If the value is set to 0, no check isrun.

Default: 15 (seconds).

foreign_anal yze_i nterval (i nteger)

Specifies how often foreign statistics should be gathered during autovacuum, in seconds. If the value of f or ei gn_ana-
I yze interval islessthanaut ovacuum napt i ne, foreign statistics will be gathered each aut ovacuum napt i ne
seconds.

182

https://postgrespro.com/docs/postgresql/14/runtime-config-autovacuum#GUC-AUTOVACUUM-NAPTIME

Shardman Reference

Default: 60.

foreign_join_fast path (bool ean)

Turns on afast path for foreign join planning. When it ison, foreign join paths for SELECT queries are searched before all other
possible paths and the search stops for ajoin as soon as aforeign join path is found.

Default: of f .

optim ze_correl ated_subqueri es (bool ean)

Enables or disables the query planner'slogic of transforming correlated subgueries into semi-joins.
Default: on.

port (i nteger)

A TCP port the server listens on. For a Shardman cluster, the por t is assigned automatically by the system and is based on
the PGsl ni ti al Port parameter. If changed manually, the value will be overwritten by the configuration parameter that is
automatically assigned.

enabl e_partition_pruni ng_extra (bool ean)

Enables the extended partition pruning for the prepared queries with a known partitioning key. If turned on, the partition-wise
join plans can be pruned.

Default: of f .

crash_i nf o (bool ean)

When set to on, Shardman will write diagnostic information about a backend crash into afile.
Default: on.

crash_i nfo_dunp (t ext)

Specifies acommarseparated list of character strings that contain data sourcesto provide data for a crash dump. Possible values
of the strings are as follows:

e queries — query texts

* menory_cont ext — memory context

* syst em— information on the OS

» nmodul e — information on modules loaded to the post gr es process
» cpui nf o — information on the processor

e virtual _nenory — information on virtual memory regions
Default: syst em nodul e, queri es, nenory_cont ext

crash_info_l ocation(string)

Specifies the directory where information about a backend crash isto be stored. The value of st der r sends information about
the crash to stderr. If this parameter is set to the empty string ' ' , the SPGDATA/ cr ash_i nf o directory is used. If you wish
to keep the files el sawhere, create the target directory in advance and grant appropriate privileges.

Default: ' " .

shar dman. cont ext _| og (bool)

L ogs the remote contexts. If enabled, in case of an error, displaysafield Renot e CONTEXT. Notethat if the standart log level
issettol og_verbosi ty=t erse,theshardnan. cont ext | og will be disabled automatically.

Default: on.

183

Shardman Reference

postgres_fdw. enforce foreign_join(bool ean)

Turns on alternative estimations for foreign join costs, which highly increases chancesfor join of several foreign tablesreferring
to the same server to be pushed down. The cost of origina joinisestimatedas(1 - 1/(cost + 1)),wherecost isan
originally estimated cost for this remote join.

Default: of f .

post gres_fdw. forei gn_expl ai n(enun

Defines how to include the EXPLAI N command output from the remote servers if the query plan contains For ei gnScan
nodes. The possible values are: none to exclude the EXPLAI N output from the remote servers, f ul | to include the EXPLAI N
output from the remote servers, col | apsed to include the EXPLAI N output only for the first For ei gnScan node under
its Append/Mer geAppend.

Default: col | apsed.

postgres_fdw. optim ze_cursors (bool ean)

Sets postgres _fdw to try fetching the first portion of cursor dataimmediately after declaration and delay the cursor closing.
Thispostgres fdw parameter forcesit to avoid closing cursors after the end of scan. Cursors are closed at the end of transaction.
Default: of f .

post gres_fdw. subpl an_pushdown (bool ean)
Enables or disables postgres fdw logic of pushing down subqueries referencing only foreign server tablesto thisforeign server.
Default: of f .

post gres_fdw. use_t wophase (enun

Sets postgres _fdw to use the two-phase commit (2PC) protocol for distributed transactions.

This postgres fdw parameter forces it to use a two-phase commit if the transaction touches several nodes. When set to aut o,
atwo-phase commit is only used in transactions with enabl e_csn_snapshot =t r ue and isolation level equal to or higher
than REPEATABLE READ.

Temporary tables cannot be used in 2PC transactions.
Default: aut o.

postgres_fdw. estimate_as_hashj oi n (bool ean)

When enabled, the planner estimates aforeign join cost in away similar to a cost of a hash-join whenever possible. Thiscost is
compared to the default cost (which is similar to nested loops) and the smaller cost is selected for the path.

Default: of f .

post gres_f dw. addi ti onal _or der ed_pat hs (bool ean)

When enabled, sorting on the remote server is considered if it allows performing Mer geJoi n or Mer geAppend operations.
This parameter is enabled by default in new installations but must be explicitly enabled in upgraded clusters.

shar dman. br oadcast _ddl (bool ean)

Sets Shardman extension to broadcast DDL statements to al replication groups.

When this parameter is on, Shardman extension broadcasts supported DDL statementsto all replication groupsiif it does make
sense for those statements. Y ou can enable/disable this behavior anytime. This parameter is not honored when set in configu-
ration file.

Default: of f .

184

Shardman Reference

shardman. enabl e_| i m t_pushdown (bool ean)

Enable pushing down limit clauses through the underlying appends. When on, Shardman optimizer will try to push down alimit
clauseto the subpaths of the underlying Append/Mer geAppend plan nodeif they reference postgres fdw foreign tables. This
optimization works only for SELECT plans when limit option is represented as a constant or a parameter. It is aso restricted
for Append paths, corresponding to a partitioned table. The optimization does not work for SELECT with locking clauses
(SELECT FOR UPDATE/NO KEY UPDATE/FOR SHARE/KEY SHARE).

Default: on.

shar dman. num parts (i nt eger)
Specifies the default number of sharded table partitions.

A sharded table has this default number of partitionsunlessnum part s isspecified in CREATE TABLE.

To alow scaling, shar dman. num part s should be larger than the expected maximum number of nodes in a Shardman
cluster.

Possible values are from 1 to 1000.
Default: 20.

shardman. rgi d (i nt eger)

Specifies the replication group ID of a Shardman node.
This parameter is set by Shardman utilities when the node is added to the cluster and should never be changed manually.
Default: - 1.

shar dnman. sync_schenma (bool ean)

Sets Shardman to propagate all DDL statements that touch sharded and global relationsto all replication groups.

When this parameter is on, Shardman broadcasts all supported utility statements touching sharded and global relations to all
replication groups. It is not recommended to turn this off. This parameter is not honored when set in configuration file.

Default: on.

shar dman. sync_cl ust er _set ti ngs (bool ean)

Enables cluster-wide synchronization of configuration parameters set by user. The configuration parameters are propagated
with each remote query.

Default: on.

shardman. sync_cl uster_settings_bl ackli st (bool ean)

Excludes the options not to be propagated to a remote cluster.
Default: local system configuration parameters that are never synchronized.

shar dman. query_engi ne_node (enum

Switches between modes of query planning/execution. Possible valuesare none andt ext .

none means that query planning/execution will not use the Silk transport.

t ext meansthat the text query representation istransferred via Silk transport for remote execution.
Default: none.

shardman. sil k_use_ip (string)

Silk transport uses | P address specified by this parameter for node identification. If the host nameis specified, it isresolved and
the first IP address corresponding to this name, is used.

185

Shardman Reference

Default: node hostname.

shardman. silk _|isten_ip(string)

The Silk routing daemon listens for incoming connections on this IP address. If the host name is specified, it is resolved and
the first IP address corresponding to this name, is used.

Default: node hostname.

shar dman. si | k_use_port (i nt eger)

The Silk routing daemon listens for incoming connections on this port. This setting should be the same for all nodes in the
Shardman cluster.

Default: 8888.

shardman. si | k_tracepoi nts (bool)

Enables tracing of queries passing through the Silk pipeline. The tracing results can be accessed by running the EXPLAI N
command with ANALYZE set to ON.

Default: of f .

shardman. si | k_num wor ker s (i nt eger)

Number of background workers allocated for distributed execution. This setting must belessthan max_wor ker _pr ocesses
(including auxilary postgres worker processes).

Default: 2.

shardman. si | k_stream wor k_nmem(i nt eger)

Sets the base maximum amount of memory to be used by a Silk stream (as a buffer size) before writing to the temporary disk
files. If thisvalueis specified without units, the default is kilobytes.

Note that most queries can perform multiple fetch operations at the same time, usually one for each remote partition of asharded
table, if any. Each fetch operation is generay allowed to use as much memory as this value specifies before it starts to write
datainto temporary files. Also, several running sessions can execute such operations concurrently. Therefore, the total memory
used by Silk for buffers could be many times the value of shar dman. si | k_stream wor k_nemand is correlated with
shardman.num_parts. Thus, mind this fact when choosing the value.

Default: 16 MB.

shardman. si | kworm fetch_si ze (i nt eger)
Number of rowsinachunk that thesi | kwor mworker extractsand sendsto the multiplexer asaresult, per onereadingiteration.
Default: 100.

shardman. si | k_unassi gned_j ob_queue_si ze (i nt eger)
Size of queue for jobs that have not yet been assigned to the si | kwor mmultiplexer workers, in case all the workers are busy.
Default: 1024.

shardman. si | k_max_mnessage (i nt eger)

Maximum message sizethat can betransfered with Silk, in bytes. Note that this parameter does not limit the maximum size of the
result returned by the query. It only affects messages sent to workers. Increasing this parameter value will result in aproportional
memory increase consumed by Shardman. It is strongly recommended to use the default value unless there is an urgent need.

Default: 524288.

shardman. sil k_hel l o_ti neout (i nteger)

Handshake timeout between multiplexers of different nodes, in seconds.

186

Shardman Reference

Default: 3.

shardman. si | k_schedul er _node (enum

Enables additional CPU scheduling settings for multiplexer processes (si | kr oad and si | kwor mj.

Whenthisparameterisf i f 0, Shardman assigns scheduling policy SCHED_FIFOfor processessi | kr oad andeachof si | k-
wor m It assigns the static schediling priority (sched_priority) to values shar dnan. si | kroad_sched_priority and
shardman. si | kworm sched_pri ority respectively.

This setting improves silk transport performance while it operates under heavy CPU load.

Note that postgres binary need to have CAP_SY S _NICE capability to use this option. If no appropriate capability was assigned
to the process, enabling this setting will have no effect. The capability must be assigned to postgres binary before starting
postgres. Postgres (i.e. processes silkroad and silkworm) will apply scheduling options once during service start. You need
restart postgres service if you want to change scheduling options.

Default: none.

To set capability you need execute following command once after postgres installed:
$ sudo setcap cap_sys_ni ce+tep /opt/ pgpro/ sdm 14/ bi n/ post gres

Replace / opt / pgpr o/ sdm 14/ bi n/ post gr es to the correct path to your postgres binary if needed.
Also note that your filesystem should support extended file attributes. Y ou need set this for each node in the
cluster to take the full effect.

In the Linux kernel, there is a mechanism called real-time throttling, which is designed to prevent tasks with
real-time scheduling policies (like SCHED _FI FO) from monopolizing CPU resources. This ensuresthat other
tasks with lower priorities, typically scheduled under the SCHED OTHER policy, still get some amount of
the CPU time. This mechanism is controlled by two parameters, exported into the pr oc filesystem or the
sysct | interface

» /proc/sys/kernel/sched_rt_period_us setsthe duration of ascheduling period in mi-
croseconds. During this period, both real-time and non-real-time tasks share CPU time.

* /proc/sys/kernel/sched_rt_runtime_us specifies how much of the scheduling period is
alocated to real-time tasks (with SCHED_FI FO). The remainder of the timeisleft for non-real-time
tasks (SCHED_OTHER).

A typical and acceptable configuration for Shardman might set these parameters as follows:

cat /proc/sys/kernel/sched rt_period us
1000000

cat /proc/sys/kernel/sched rt_runtine_us
950000

Thisconfiguration allowsreal -time tasksto use up to 950 milliseconds of each second, |eaving 50 milliseconds
for non-real-time tasks.

However, in some Linux distributions, the default values for these parameters might be set so low (or even
to zero) that real-time tasks receive very little or no CPU time. This can make rea -time scheduling ineffec-
tive or prevent the configuration from being applied. For example, attempting to manually set a task to the
SCHED_FI FOpriority using chrt might result in an error like:

$ sudo chrt -f -p 2 $(pgrep -f silkroad)
chrt: failed to set pid 1897706's policy: Operation not permtted

This error indicates that the kernel parameters are not configured correctly. In such cases, run the following:

echo 1000000 > /proc/sys/kernel/sched rt_period_us
echo 950000 > /proc/sys/kernel/sched rt_runtinme_us

187

Shardman Reference

Or add the corresponding valuesinto/ et ¢/ sysct | . conf and reload the settingsusing sysct | - p:

kernel .sched _rt_period_us = 1000000
kernel .sched_rt_runtime_us = 950000

shardman. si | kroad_sched_priority (i nt eger)

Vaueof static scheduling priority (sched_priority) for si | kr oad process. It only makessenseif shar dman. si | k_sched-
ul er _node equasto 'fifo'.

Default: 2.

shar dman. si | kworm sched_priority (i nteger)

Value of static scheduling priority (sched_priority) for si | kwor mprocesses (the same value for each of them). It only makes
senseif shar dman. si | k_schedul er _node equalsto fifo'.

Default: 1.

shardman. sil k_set_affinity (bool)

Enables pinning of multiplexer processes (si | kr oad and si | kwor m) to CPU cores to eliminate negative effects of thread's
Cross-cpu migration.

When this parameter ist r ue, si | kr oad process will be pinned to the first available CPU core and si | kwor mprocesses
(al of them) will pinned to all available CPU cores except the first one.

This setting improves silk transport performance while it operates under heavy CPU load.

Note that postgres binary need to have CAP_SY S NICE capability to use this option. If no appropriate capability was assigned
to the process, enabling this setting will have no effect. The capability must be assigned to postgres binary before starting
postgres. Postgres (i.e. processes silkroad and silkworm) will apply affinity options once during service start. Y ou need restart
postgres service if you want to change affinity options.

To set capability you need execute following command once after postgres installed:

$ sudo setcap cap_sys_ni ce+ep /opt/ pgpro/ sdm 14/ bi n/ postgres

Replace / opt / pgpr o/ sdm 14/ bi n/ post gr es to the correct path to your postgres binary if needed.
Also note that your filesystem should support extended file attributes. Y ou need set this for each node in the
cluster to take the full effect.

Default: f al se.

shardman. si |l k_fl ow_control (bool ean)

Controlsthe mode of handling read events. It hasthree possiblevalues: none,r ound_r obi n,andshortest _job first.

The none mode means no control nor additional overhead. Yet in this case, the channel may become occupied by just one
distributed query.

Ther ound_r obi n mode means the events created earlier are the first ones to be processed, for each event loop. If enabled,
all the backends are grouped, and the client backends are prioritized over the other.

Theshortest _job_first modemeansfull control over thetraffic. If enabled, all the backends are grouped, and the client
backends are prioritized over the others, along with the workers with the least session traffic.

Default: r ound_r obi n.

shardman. sil k_track_ti ne (bool ean)

Enables or disables the metrics with prefix transferred_ and time-based metrics (with prefixes read_efd_,
wite efd ,andsort _tine). If disabled, these metrics have O values.

188

Shardman Reference

Default: of f .

shar dman. si |l k_t racel og (bool)

Enables or disables Silk logging.

Default: of f .

shardman. si |l k_tracel og_category (string)

Defines the Silk message categories to be traced.

Default:streans, routing, events.

shar dnman. dat abase (st ri ng)

Name of the database that all Silk workers connect to.

Default: post gr es.

shar dman. noni t or _i nterval (i nt eger)

shar dman. noni t or _i nt er val isdeprecated and acts as noop.

Useshar dman. noni t or _dxact _i nt erval instead.

shar dman. noni t or _dxact _i nterval (i nteger)

Interval between checks for outdated prepared transactions.

The Shardman monitor background process wakes up every shar dman. noni t or _dxact _i nt erval seconds and at-
tempts to check and resolve any prepared transactions that did not complete and became outdated for some reason. To resolve
these transactions, the Shardman monitor process determines the coordinator of the transaction and requests the transaction sta-
tusfrom the coordinator. Based on the status of the transaction, Shardman monitor will either roll back or commit thetransaction.

To disable the prepared transaction resolution logic, set shar dman. nmoni t or _dxact _i nt erval toO.

Default: 5 (seconds).

shardman. noni tor_trimcsnxi d_map_i nterval (i nt eger)

Each cluster node freezes its own xm n value for csn_snapshot _def er _ti me seconds to support global transactions.
Largecsn_snapshot _def er _ti ne values can negatively impact the performance. Shardman monitor has a routine that
every shardman. nonitor _trim.csnxi d_map_i nt erval secondsupdatesxni n on all nodesto the minimum possi-
ble value (taking into account active transactions).

Thebackground routinewill run on only one nodein the Shardman cluster. Notethat thiswill give an additional |oad on thisnode.
To disable such updates, set shar dman. nonitor _trimcsnxi d_map_i nterval toO.

Default: 5 (seconds).

shar dman. noni t or _dxact _ti neout (i nt eger)

Maximum allowed age of prepared transactions before a resolution attempt.

During the resolution of a prepared transaction, Shardman monitor determines whether the transaction is outdated or not. A
transaction becomes outdated if it was prepared more than shar dman. noni t or _dxact _ti neout seconds ago.

Default: 5 (seconds).

shardman. trimcsnxi d_map_napti ne (i nt eger)

Specifies the minimum delay between xmi n updates on all nodes. See shardman.monitor_trim_csnxid_map_interval for more
information.

189

Shardman Reference

Possible values are from 1 to 600.
Default: 5.

shar dman. noni t or _deadl ock_i nterval (i nteger)

Interval between checks for distributed deadlock conditions.

The Shardman monitor background process wakes up every shar dman. noni t or _dead| ock_i nt er val seconds and
searches for distributed deadlocksin the cluster. It gathersinformation about mutual locks from all nodes and looks for circular
dependencies between transactions. If it detects a deadlock, it resolves it by canceling one of the backend processes involved
in the lock.

To disable the distributed deadlock resolution logic, set shar dnan. moni t or _deadl ock_i nterval toO.
Default: 2 (seconds).

post gres_fdw. renot e_pl an_cache (bool ean) — EXPERIMENTAL
Enables remote plan caching for FDW queries produced by locally cached plans.

Default: of f .

shar dman. pl an_cache_nmem(i nt eger) — EXPERIMENTAL

Specifies how much memory per worker can be used for remote plan caches.
Default: O (caches are disabled).

shardman. gt _bat ch_si ze (i nt eger) —

Specifies the buffer size for | NSERT and DELETE commands executed on a global table.

Default: 64K.

post gres_f dw. enabl e_al ways_shi ppabl e (bool ean) — EXPERIMENTAL

Always alow some expressions to be evaluated on aremote. Right now thisis limited to just afew functions. All nodes should
have identical t i mezone settings for this feature to work correctly.

Warning

Do not turn thison unless all post gr es_f dw remotes are Shardman-managed.

Default: f al se.

track fdw wait _tim ng (bool ean)

The statistics for the network latency (wait time) for inter-cluster operations, in milliseconds. It can be accessed by running the
EXPLAI N command with the net wor k parameter enabled, and viathe pgpro_stats view pgpro_stats sdm_statements.

Default: on.

track_xact _ti me (bool ean)

Enables or disables statistics collection for time spent on a transaction.
Default: of f .

enabl e_non_equi val ence_filters (bool ean)

Enables the optimizer to generate additional non-equival ence conditions using equivalence classes.

190

Shardman Reference

Default: of f .

optim ze_row_i n_expr (bool ean)

Enables the optimizer to generate additional conditionsfromthel N () expression.

Default: of f .

Examples

Spec File for a Cluster with Enabled scram-sha-256 Authentication

Note

Theinitia configuration file should be generated with the following command:

shar dmanct |

config generate > sdnspec.json

The example below is for educational purposes only and may lack the latest updates.

Thisisthe contents of an example sdnspec. j son configuration file:

{

"ConfigVersion": "1",
"Repfactor": 1,
"Pl acenment Pol i cy": "manual ",
"PGslnitial Port": 5432,
"Silklnitial Port": 8000,
"HTTP': {
"Port": 15432,
"PortMetrics": 15432

}
"Users": |

{
"Nanme": "postgres",
"Groups": ["su"],
" Aut hMet hod": "scram sha- 256",
"Password": "changeMe"

}

{
"Nane": "repluser"”,
"Groups": ["repl"],
" Aut hMet hod": "scram sha- 256",
"Password": "changeMe"

}

"Shar dSpec": {
"synchronousReplication": true,
"usePgrew nd": true,
"pgParaneters": {

"csn_snapshot _defer _tinme": "300",

"enabl e_csn_snapshot": "on",

"enabl e_csn_wal ": "true",

"shardman. query_engi ne_node": "text",
"shardman. si | k_num wor kers": "8",
"max_connections": "600",
"max_files_per_process": "65535",

"max_| ogi cal replication_ workers": "14"

191

Shardman Reference

"max_prepared_transacti ons": "200",
"max_wor ker _processes": "24",
"shared_preload_libraries": "postgres_fdw, shardman”
} 1
"pgHBA": [

"host replication postgres 0.0.0.0/0 scram sha- 256",
"host replication postgres ::0/0 scram sha-256"

]l

"automati cPgRestart": true,

"mast er Denot i onEnabl ed”: fal se

I

"FDWOpt i ons": {
"async_capabl e": "on",
"batch_size": "100",
"connect tineout": "5",
"fdw_ tuple_cost": "0.2",
"fetch_size": "50000",
"tcp_user_tineout”: "10000"

}

}

From that configuration file, you can see that a Shardman cluster initialized with this spec file has Repf act or equal to 1 (one
replicafor each master). The configuration file al so shows that two special users are created in this cluster — superuser post gr es
and replication user r epl user with ChangeMe passwords. They can be authenticated using the md5 or scr am sha- 256 au-
thorization method. One postgres fdw fetch operation will get up to 50000 rows from the remote server. The cost of fetching one
row is set to areasonably high value to make PostgreSQL planner consider conditions pushdown-attractive. pg_hba. conf settings
allow post gr es user access from anywhere using a replication protocol; al other users can access any database from anywhere.
Since def aul t SURepl AccessMbde isnot settostri ct, utilitieswill automatically add entries that allow PgSuUser nane
user's (post gr es) access to any database from anywhere and PgRepl User nane user's (r epl user) replication access from
anywhere.

Severa important Shardman-specific parameters are set in the pgPar anet er s hash table. These are:
wal | evel

Should besetto| ogi cal for Shardman to work correctly.

shared_preload_libraries

Should include postgres _fdw and shardman extensions in the specified order.

max_| ogi cal _replication_workers
Should berather high since the rebalance processusesupto max(nax_replication_slots, max_| ogical _repli -
cation_workers, max_worker processes, nmax_wal senders)/ 3 concurrent threads.
max_prepared_transactions

Should be rather high since Shardman utilities use the 2PC protocol. If post gr es_f dw. use_t wophase is true, post-
gres_fdw also uses 2PC.

enabl e_csn_snapshot

Should be enabled to achieve atrue REPEATABLE READ solation level in a distributed system.

csn_snapshot _defer tine

All global transactionsmust start on all participant nodeswithincsn_snapshot _def er _t i me secondsafter start, otherwise
they will be aborted.

enabl e_partiti onwi se_aggregate
enabl e_partiti onwi se_join

Set to on to enable optimizations for partitioned tables.

192

Shardman Reference

Spec File for a Cluster with Enabled Certificate Authentication

Thisisthe contents of an example sdnspec. j son configuration file:

{
"ConfigVersion": "1",
"HTTP": {
"Port": 15432,
“"PortMetrics": 15432
"SSLKey": "/ pgpro/ssl/server.key",
"SSLCert": "/pgpro/ssl/server.crt”

1
"Users": |
{
"Nanme": "postgres",
"SSLKey": "/var/lib/postgresql/.ssh/client.key",
"SSLCert": "/var/lib/postgresql/.ssh/client.crt",
"Groups": ["su"],
" Aut hMet hod": " scram sha- 256"
1
{
"Nane": "repluser"”,
"SSLKey": "/var/lib/postgresql/.ssh/repluser.key",
"SSLCert": "/var/lib/postgresqgl/.ssh/repluser.crt",
"Groups": ["repl"],
" Aut hMet hod": " scram sha- 256"
}
]

"Shar dSpec": {
"synchronousReplication": true,
"usePgrew nd": true,
"pgParaneters": {

"ssl": "on",

"ssl _cert _file": "/var/libl/postgresql/.ssh/server.crt",
"ssl _key file": "/var/lib/postgresql/.ssh/server.key",
"ssl _ca file": "/var/lib/postgresqgl/.ssh/ca.crt",
"csn_snapshot _defer _time": "300",

"enabl e_csn_snapshot": "on",

"enabl e_csn_wal ": "true",

"log_line prefix": "%m|[%][%%]",

"l og_m n_nessages": "I NFO',

"l og_statenment": "none",

"mai nt enance_wor k_neni': "1GB",

"max_connections": "600",

"max_files_per_process": "65535",

"max_| ogi cal _replication workers": "9",
"max_prepared_transactions": "200",

"max_wal _size": "4GB",

"max_wor ker _processes": "16",

"mn_wal _size": "512MB",

"post gres_fdw subpl an_pushdown": "off",

"shardman. query_engi ne_node": "text",

"shardman. si | k_num wor kers": "8",

"shared _buffers": "4@&B",

"shared _preload libraries": "postgres fdw, shardman”

}l
"strictUser HBA": true,

"pgHBA": |
"hostssl all postgres 0.0.0.0/0 cert clientcert=verify-full",

193

Shardman Reference

"hostssl all repluser 0.0.0.0/0 cert clientcert=verify-full"”
"hostssl replication postgres 0.0.0.0/0 cert clientcert=verify-full",
"hostssl replication postgres ::0/0 cert clientcert=verify-full"
"hostssl replication repluser 0.0.0.0/0 cert clientcert=verify-full",
"hostssl replication repluser ::0/0 cert clientcert=verify-full"
"hostnossl all all 0.0.0.0/0 reject”,
"l ocal postgres postgres scram sha-256"
"l ocal replication repluser scram sha-256"

I

"automati cPgRestart": true,

"mast er Denot i onEnabl ed”: fal se

I

"FDWOpt i ons": {
"async_capabl e": "on",
"batch_size": "100",
"connect tineout": "5",
"fdw_ tuple_cost": "0.2",
"fetch_size": "50000",
"tcp_user_tineout”: "10000"

}

pgpro_stats parameters
pgpro_stats. track_sharded (bool ean)

Specifies whether the sharded statements are tracked and aggregated by pgpro_stats.
Default: on.

pgpro_stats. pgss_max_nodes_tracked (i nt eger)

Sets the maximum number of nodes that are tracked by pgpro_stats for query fragments.

It actually setsthe maximum amount of the status entriesthat pgpro_stats can storefor thepgpr o_st at s_sdm st at s_up-
dat ed function. It does not affect the statistics tracking itself.

Default: 2048.

pgpro_stats.transport_conpression (string)

Sets algorithm for transport compression during statistics transferring between nodes.

Transport compression isused to compress statistical entries passed from the shard nodesto the coordinator. The possible values
arepgl z,zlib,l z4,zstd orof f .

Default: pgl z.

pgpro_stats. enabl e_wai t _count ers (bool ean)

Enables or disables statistics collection for wait counters by enabling or disabling functions that cal culate metrics of wait events.
Default: of f .

pgpro_stats. enabl e_i nval _nmsgs_count er s (bool ean)

Enables or disables statistics collection the invalidation messages by enabling or disabling functions that calculate metrics of
invalidation messages.

If disabled, thepgpr o_stats_i nval _st at us view isempty.

Default: of f .

194

Shardman Reference

pgpro_stats. enabl e_rusage_count ers (bool ean)

Enables or disables statistics collection for resource usage counters by enabling or disabling functions that calculate metrics
of OS resource usage.

Default: of f .

pgpro_stats.track_shardman_connecti ons (enum
Enables or disables Shardman-specific statements processing. This parameter has three possible values. none with no process-
ing, nor mal i zed (default) with generalized statements being processed, and al | with all statements being processed.

See Also
shardmanctl

195

Shardman Reference

shardmand

shardmand — Shardman configuration daemon

Synopsis
shar dmand [conmon_options][--systembus][--user user_nane |

Here cormon_opt i ons are:

[--cluster-nanecluster_name][--1o0g-level error |warn|info|debug][--retries retries_num
ber][--session-tineout seconds][--store-endpoints store_endpoints][--store-ca-file
store_ca file][--store-cert-file store_cert file][--store-key client_private key]][--
store-tinmeout duration][--version][-h|--help][--1o0g-format]

Description

shardmand is a Shardman configuration daemon. It runs on each node in a Shardman cluster, subscribes for changes of shar d-
man/ cl ust er 0/ dat a/ | adl e and shar dnan/ cl ust er 0/ dat a/ cl ust er keysintheetcd store (cl ust er 0 isthe de-
fault cluster name used by Shardman utils) and manages Shardman processes on the node where it is running according to the con-
figuration described in these JISON documents.

shardmand manages integrated keeper s and sent i nel s. On startup and when one of the monitored etcd keys changes, shard-
mand reconfigures them as follows:

» It calculates the expected node configuration, i. e., thelist of keeper s and sent i nel s expected to run and their configura-
tions, fromthe shar dman/ cl ust er 0/ dat a/ | adl e and shar dnan/ cl ust er 0/ dat a/ cl ust er vaues.

» ltreceivesthelist of running keeper s and sent i nel s with their configurations from the internal process manager.

e |t stops processes that are not expected to run. This can be a process that belongs to a cluster with the same name, but a dif-
ferent UUID, or a process whose description is no longer present in the expected node configuration. For keeper processes,
shardmand purges their data directory.

» If aprocess should be running, but its settings are different from the expected ones, shardmand updates the configuration and
restarts the process. |f a process should be running, but it is not running, shardmand startsiit.

Also, a separate thread of shardmand periodically updates the shar dman/ cl ust er 0/ dat a/ shar dmand/ NODENAME etcd
key with the O ust er UUI D of the last cluster to which the configuration was applied. So, before the shardmanctl nodes add
command tries to initialize new stolon clusters for a clover, the command can ensure that no alive stolon threads from a previous
cluster configuration are left on al nodesin the clover.

Additionaly, shardmand starts two http servers in separate threads. If servers ports match, a single server running
both roles is started. The first server provides following metrics: shar dmand_et cd_unavai | abl e_ti ne_seconds,
shardmand_heal t hy _keepers,shar dnand_senti nel s,shar dmand_upti nme,shardmand_etcd _errors_to-
tal ,shardmand_reconfi gurations_nunber total,shardnmand_denoti ons_nunber t ot al . Also server pro-
videsa/ heal t hz endpoint for shardmand health-check. The second server provides the following endponts:

» /shardmand/ v1l/repl i ca— returns 200 status code if a secondary instance is running on node, 500 status code if a
master instance isrunning on node, / shar dmand/ v1/ mast er — returns 200 status code if a master instance is running on
node, 500 status code if a secondary instance is running on node. If node both master and secondary instances are running on
node/ shar dnmand/ v1/ repl i ca and shar dmand/ v1/ mast er endpoints return 404 status code.

* /shardmand/ v1/ st at us — getting information about shardmand status.

All Shardman services are managed by shar dmand@ | ust er 0. ser vi ce, so when it is started, stopped or restarted, it aso
starts, stops or restarts all other Shardman processes (including DBM S instances).

Command-line Reference

This section describes shar dmand-specific command-line options. For Shardman common options used by the commands, see
the section called “ Common Options”.

196

Shardman Reference

--1 og-format

Specifiesthelog output format, j son ort ext . Thedefault ist ext .

--system bus
Not used. Left for compatibility. Ignored.

--user user_nane

Not used. Left for compatibility. Ignored.

Common Options

shardmand common options are optional parametersthat are not specific to the utility. They specify etcd connection settings, cluster
name and a few more settings. By default shardmand tries to connect to the etcd store 127. 0. 0. 1: 2379 and usethecl ust er 0
cluster name. The default log level isi nf o .

-h, --help
Show brief usage information.

--cluster-nane cl uster_nane

Specifies the name for a cluster to operate on. The default iscl ust er O.

--1og-1level |evel

Specifiesthelog verbosity. Possiblevaluesof | evel are(from minimum to maximum): err or, war n,i nf o and debug.
Thedefaultis i nf o.

--retries nunber

Specifies how many times shardmanctl retries afailing etcd request. If an etcd request fails, most likely, due to a connectivity
issue, shardmanctl retriesit the specified number of times before reporting an error. The default is 5.

--session-ti meout seconds

Specifies the session timeout for shardmanctl locks. If there is no connectivity between shardmanctl and the etcd store for the
specified number of seconds, the lock isreleased. The default is 30.

--store-endpoints string

Specifiesthe etcd addressintheformat: ht t p[s]: //address[: port] (, http[s]://address[: port])*.Thede
faultishttp://127.0.0. 1: 2379.

--store-ca-file string
Verify the certificate of the HTTPS-enabled etcd store server using this CA bundle.

--store-cert-file string

Specifies the certificate file for client identification by the etcd store.

--store-key string

Specifies the private key file for client identification by the etcd store.

--store-tinmeout duration

Specifies the timeout for a etcd request. The default is 5 seconds.

--noni tor-port nunber

Specifies the port for the shardmand http server for metrics and probes. The default is 15432.

--api -port nunber

Specifies the port for the shardmand http api server. The default is 15432.

197

Shardman Reference

--version

Show shardman-utils version information.

Environment

A shardmand service reads the environment from / et ¢/ shar dnman/ shar dnand- cl ust er 0. env. The following environ-
ment variables affect the behavior of shardmand.

SDM _CLUSTER NAME

An dternative to setting the - - ¢l ust er - nane option

SDM LOG_LEVEL
An dternativeto setting the - - | og- | evel option

SDM _RETRI ES
An dternativeto settingthe- - r et ri es option
SDM _SYSTEM BUS

An dternative to setting the - - syst em bus option

SDM _STORE_ENDPQOI NTS

An aternative to setting the - - st or e- endpoi nt s option
SDM STORE_CA FI LE

An dternativeto setting the - - st ore- ca-fi | e option

SDM STORE_CERT_FI LE

An dternativeto setting the- - st ore-cert-fi |l e option

SDM STORE_KEY
An aternative to setting the - - st or e- key option

SDM_STORE_TI MEOUT

An dternative to setting the - - st or e-t i meout option
SDM_SESSI ON_TI MEOUT

An dternative to setting the - - sessi on-ti meout option
SDM USER

An aternative to setting the - - user option

Examples

Configuring a shardmand Service

shardmand settings are usually specified inthe / et ¢/ shar dman/ shar dmand- cl ust er 0. env file. If you want shardmand
to connect to an etcd cluster at hosts n1-n3 using port 2379 and all Shardman services to use the debug log level, you can use
thefollowing env file:

SDM _STORE_ENDPOI NTS=htt p://nl: 2379, http://n2: 2379, http://n3: 2379
SDM LOG LEVEL=debug
Note that you need to restart shar dmand@ | ust er O service to apply new settings from the env file.

Showing shardmand Logs

To look at shardmand logs, youcanusea j our nal ct| command:

198

Shardman Reference

$ journalctl -u shardmand@l usterO. service

Restarting Shardman Services
Y ou can restart all Shardman serviceson anodeusingasyst enct | command:
$ systenctl restart shardnmand@l usterO. service

See Also
shardmanct! , sdmspec.json

199

Chapter 7. Shardman Internals

The Shardman software comprises these main components. PostgreSQL core with additional features, shardman extension, man-
agement services and utilities. This section considers Shardman cluster as a group of PostgreSQL instances or shards. Each shard
may aso have one or more replicas and to emphasize this the term replication group is used. The support for highly available con-
figurationsis currently done on the level of tools and services and will be covered in the Management section.

7.1. Table Types

In adistributed database managed by Shardman the following special table types are used: sharded tables and global tables.

7.1.1. Sharded Tables

Sharded tables are just usual PostgreSQL partitioned tables where a few partitions, making up a shard, are regular local tables
and the other partitions are foreign tables available from remote servers via postgres fdw. Sharded tables are registered in the
shar dman. shar ded_t abl es dictionary. Usethe CREATE TABLE statement withthedi st ri but ed_by parameter to create
asharded table. Several sharded tables can be created as col ocated. This meansthat they have the same number of partitions and that
their partitions corresponding to the same sharding key should reside together. During a rebalance, Shardman management utilities
ensure that corresponding partitions of colocated tables are moved to the same node. (Such a rebalance happens, for example, when
anew node is added to the cluster). Colocation is necessary to ensure that joins of several tables are propagated to the node where the
actual dataresides. To define one sharded tabl e col ocated with another one, first, create onetableand thenusethecol ocat e_wi t h
parameter of the CREATE TABLE statement while creating the second table. Chains of colocated tables are not supported, all related
tables should be marked as colocated to one of thetablesinstead. Notethat col ocat e_wi t h property is symmetric and transitive.

7.1.1.1. Partitions

A sharded table consists of several partitions. Some of them are regular tables, and others are foreign tables. By default, the number
of partitions is determined by the shar dman. num part s parameter, but it can be overwritten by the num part s CREATE
TABLE parameter. Most of DDL operations are restricted on partitions of asharded table. Y ou should modify the parent tableinstead.

The number of partitionsin asharded tableisdefined whenit is created and cannot be changed afterwards. When new nodes are added
to the cluster, some partitions are moved from existing nodes to the new ones to balance the load. So, to allow scaling of clusters,
theinitial number of partitions should be high enough, but not too high since an extremely large number of partitions significantly
dowsdown query planning. For example, if you expect the number of nodesin your cluster to grow by 4 times at amaximum, create
sharded tables with the number of partitions equal to 4 * N, where Nis the number of nodes. A cluster becomes unable to scale
when the number of cluster nodes reaches the number of partitions in the sharded table with the minimal number of them.

7.1.1.2. Subpartitions

Partitions of a sharded table can be partitioned by range. In this case, each partition of a sharded table is a partitioned table con-
sisting only of regular or only of foreign subpartitions. All subpartitions of a partition are located on the same node. Use the par -

tition_by CREATE TABLE parameter to specify a column that should be used as a subpartition key column and the par ti -

ti on_bounds parameter to set bounds of the second-level table partitions. New subpartitions can be added or removed from a
table as necessary. So you can omit the parti ti on_bounds parameter during table creation and create partitions later using
the shar dnan. creat e_subpart () function. Other subpartition management functions allow you to drop, detach or attach
subpartitions of a sharded table. Subpartition management is cluster-wide.

7.1.2. Global Tables

Global tables are available to all nodes of a cluster. Now aglobal table is a set of regular tables synchronized by triggers. The main
use case for a global table isto store arelatively rarely updated set of data that is used by all cluster nodes. When a sharded table
isjoined to aglobal table, joins between sharded table partitions and the global table can be performed on nodes where individual
partitions reside. The implementation of trigger-based replication requires a non-deferrable primary key on a global table to be
defined. Currently when a global table is modified, an after-statement trigger fires and propagates changes to other nodes of the
cluster via foreign tables. When new nodes are added to a cluster, global table data is transferred to the new nodes via logical
replication. When some nodes are removed from a cluster, global tables get locked for writes for a brief time. Use the gl oball
CREATE TABLE parameter to create aglobal table. Global tables are registered intheshar dnman. gl obal _t abl es dictionary.
Partitioned global tables are not supported.

200

https://postgrespro.com/docs/postgresql/14/postgres-fdw

Shardman Internals

7.1.3. Distributed DDL

Shardman extension allows creating several kinds of global objects. These are sharded and global tables, roles and tablespaces. The
list of operations allowed on global objectsis limited particularly to protect consistency of a global schema. For the same reason,
most operations on global objects are cluster-wide. The list of cluster-wide operations includes:

» CREATE for sharded and global tables, global roles and tablespaces or indexes on sharded or global tables.
» DROP for sharded and global tables, global roles and tablespaces or indexes on sharded or global tables.

e ALTER TABLE for sharded and global tables.

e ALTER TABLESPACE for global tablespaces.

e ALTER ROLEfor global roles.

» RENAME for sharded and global tables or indexes on them.

e SET CONSTRAI NTS ALL inside atransaction block.

These configuration settings control execution of the distributed DDL : shardman.broadcast_ddl and shardman.sync_schema. The
first one can be used for a cluster-wide broadcast of all regular DDL operations (for example, creating schemas or functions). The
second one controls broadcasting of statements related to global objects and should never be turned off without consulting the
Postgres Pro Shardman support team.

7.2. Query Processing

Shardman uses the standard PostgreSQL query execution pipeline. Other nodes in the cluster are accessed via the modified post-
gres fdw extension.

Shardman query planner takes the query abstract syntax tree (AST) and creates a query plan, which is used by the executor. While
evaluating query execution methods, the planner operates with so-called paths, which specify how relations should be accessed.
While processing aquery join tree, the planner looks at different combinations of how relations can bejoined. Each time it examines
ajoin of two relations, one of which can be a join relation itself. After choosing the order and strategies for joining relations the
planner considers the group by, order by and limit operations. When the cheapest path is selected, it is transformed to a query plan.
A plan consists of atree of nodes, each of which has methods to get one next result row (or NULL if there are no more results).

7.2.1. Push-down Technique

7.2.1.1. Joins

The efficiency of query execution in a distributed DBMS is determined by how many operations can be executed on nodes that
hold the actual data. For Shardman, a lot of effort is devoted to pushing down join operations. When the planner finds a relation
that is accessible via a foreign data wrapper (FDW), it creates For ei gnPat h to accessit. Later, when it examines ajoin of two
relations and both of them are available viaFor ei gnPat h from the same foreign server, it can consider pushing down thisjoin to
the server and generating a so-called For ei gnJoi nPat h. The planner can fail to do it if the join type is not supported, if filters
attached to the relation should be applied locally, or if the relation scan result contains fields that cannot be evaluated on the remote
server. An example of a currently unsupported join type is anti-join. Local filters attached to the relation should be applied locally
when remote execution can lead to a different result or if the postgres fdw module cannot create SQL expressions to apply some
of the filters. An example of fields that cannot be evaluated on a remote server are attributes of semi-join inner relation that are
not accessible via an outer relation. If the foreign_join_fast_path configuration parameter is set to on (which is the default value),
the Shardman planner stops searching for other join strategies of two relations once it finds aforeign join possible for them. When
the postgres fdw.enforce foreign join configuration parameter is set to on (which is also the default), the cost of aforeign joinis
estimated so as to be always less than the cost of alocal join.

When several sharded tables are joined on a sharding key, a partitionwise join can be possible. This means that instead of joining
original tables, we canjoin their matching partitions. Partitionwisejoin currently applies only when thejoin conditionsinclude al the
partition keys, which must be of the same data type and have exactly matching sets of child partitions. Partitionwisejoiniscrucial to
the efficient query execution asit allows pushing down joins of table partitions. Evidently, to push down ajoin of several partitions,
these partitions should reside on the same node. Thisis usually the case when sharded tables are created with the samenum part s
parameter. However, for a rebalance process to move the corresponding partitions to the same nodes, sharded tables should be

201

https://postgrespro.com/docs/postgresql/14/query-path

Shardman Internals

marked as colocated when created (see Section 7.1.1). Partitionwise join is enabled with theenabl e_partitionwi se_join
configuration parameter, which is turned on by default in Shardman.

When a sharded tableisjoined to a plain global table, asymmetric partitionwise join is possible. This means that instead of joining
original tables, we can join each partition of the sharded table with the global table. This makes it possible to push down ajoin of
sharded table partitions - with a global table to the foreign server.

7.2.1.2. Aggregations

After planning joins, the planner considers paths for post-join operations, such as aggregations, limiting, sorting and grouping. Not
all such operations reach FDW pushdown logic. For example, currently partitioning efficiently prevents the LI M T clause from
being pushed down. There are two efficient strategies for executing aggregates on remote nodes. The first one is a partitionwise
aggregation — when a GROUP BY clause includes a partitioning key, the aggregate can be pushed down together with the GROUP
BY clause (this behavior is controlled by theenabl e_partiti onwi se_aggr egat e configuration parameter, which isturned
on by default in Shardman). Alternatively, the planner can decide to execute partial aggregation on each partition of a sharded table
and then combine the results. In Shardman, such a partial aggregate can be pushed down if the partial aggregate efficiently matches
the main aggregate. For example, partial sun{) aggregate can always be pushed down, but avg() cannot. Also the planner refuses

pushing down partial aggregates if they contain additional clauses, such as ORDER BY or DI STI NCT, or if the statement has the
HAVI NG clause.

7.2.1.3. Subqueries

Generally, subqueries cannot be pushed down to other cluster nodes. However, Shardman uses two approaches to aleviate this
limitation.

The first is subquery unnesting. In PostgreSQL, non-correlated subgueries can be transformed into semi-joins. In the following
example, ANY subquery on non-partitioned tablesistransformed to Hash Serni Joi n:

EXPLAI N (COSTS OFF) SELECT * FROM pgbench_branches WHERE bid = ANY (SELECT bi d FROM
pgbench_tellers);

QUERY PLAN

Hash Sem Join
Hash Cond: (pgbench_branches. bid = pgbench_tellers. bid)
-> Seq Scan on pgbench_branches
-> Hash
-> Seq Scan on pgbench_tellers

When optimize_correlated subqueriesison (which isthe default), Shardman planner also triesto convert correlated subqueries (i.e.,
subqueriesthat reference upper-level relations) into semi-joins. This optimization worksfor | Nand = operators. The transformation
has some restrictions. For example, it is not considered if a subquery contains aggregates or references upper-level relations from

outside of a WHERE clause. This optimization allows transforming more complex subqueries into semi-joins, like in the following
example:

EXPLAI N (COSTS OFF) SELECT * FROM pgbench_branches WHERE bid = ANY (SELECT bi d FROM
pgbench_tel |l ers WHERE t bal ance = bbal ance);

QUERY PLAN

Hash Sem Join
Hash Cond: ((pgbench_branches. bid = pgbench_tellers.bid) AND
(pgbench_branches. bbal ance = pgbench_tellers.tbal ance))
-> Seq Scan on pgbench_branches
-> Hash
-> Seq Scan on pgbench_tellers
(5 rows)

After applying subguery unnesting, semi-join can be pushed down for execution to a remote node.

The second approach is to push down the entire subquery. This is possible when the optimizer has aready figured out that the
subquery references only partitions from the same foreign server as the upper-level query and corresponding foreign scans do not

202

https://postgrespro.com/docs/postgresql/14/runtime-config-query#GUC-ENABLE-PARTITIONWISE-JOIN
https://postgrespro.com/docs/postgresql/14/runtime-config-query#GUC-ENABLE-PARTITIONWISE-AGGREGATE

Shardman Internals

have local conditions. The optimization is controlled by postgres fdw.subplan_pushdown (whichis off by default). When adecision
to push down a subquery is made by postgres fdw, it has to deparse this subquery. A subguery that contains plan nodes for which
deparsing is not implemented will not be pushed down. An example of a subquery pushdown looks as follows:

EXPLAI N (VERBCSE ON, COSTS OFF)
SELECT * FROM pgbench_accounts a WHERE a. bi d=90 AND abal ance =
(SELECT m n(tbal ance) FROM pgbench _tellers t WHERE t. bi d=90 and a. bi d=t. bid);
QUERY PLAN

Forei gn Scan on public. pgbench_accounts 5 fdw a
Qutput: a.aid, a.bid, a.abalance, a.filler
Renote SQ.: SELECT aid, bid, abalance, filler FROM public. pgbench_accounts 5
r2 WHERE ((r2.bid = 90)) AND ((r2.abalance = ((SELECT m n(spO_2.tbal ance) FROM
public. pgbench tellers 5 sp0_2 WHERE ((spO_2.bid = 90)) AND ((r2.bid = 90))))))
Transport: Silk
SubPl an 1
-> Finalize Aggregate
Qut put: mn(t.tbal ance)
-> Foreign Scan
Qut put: (PARTIAL m n(t.tbal ance))
Rel ati ons: Aggregate on (public.pgbench tellers 5 fdwt)
Renote SQ.: SELECT mi n(tbal ance) FROM public. pgbench _tellers 5 WHERE
((bid = 90)) AND ((%1::integer = 90))
Transport: Silk

Note that in the plan above there are no referencesto SubPl an 1.

7.2.2. Asynchronous Execution

When a sharded table is queried, the Shardman planner creates Append plans to scan all partitions of the table and combine the
result. When some of partitions are foreign tables, the planner can decide to use an asynchronous execution. This means that when
an Append node for the first time after initialization is asked for the tuples, it asks asynchronous child nodes to start fetching the
result. For postgres fdw async For ei gnScan nodes, it means that a remote cursor is declared and a fetch request is sent to the
remote server. If Silk transport is used, this means that the query is sent for execution to the remote server asan MI_SPI message.

After sending areguest to the remote servers, Append returnsto fetching data from synchronous child nodes— local scan nodes or
synchronous For ei gnScan nodes. Data from such nodes is fetched in a blocking manner. When Append ends getting data from
synchronous nodes, it looks if async nodes have some data. If they do not, it waits for async nodes to produce results.

Shardman can execute several types of plans asynchronously. These are asynchronous For ei gnScans, projections and trivial
subquery scans(sel ect * from subquer y) over asynchronous plans.

The asynchronous execution is turned on by default on the level of a foreign server. This is controlled by async_capabl e
postgres_fdw option. For now, only Append plans support asynchronous execution. Mer geAppend does not support asynchronous
execution.

While examining query plans, pay attention to the presence of non-asynchronous For ei gnScan nodesin the plan. Asynchronous
execution can significantly increase query execution time.

Examples:

EXPLAI N (COSTS OFF) SELECT * FROM pgbench_accounts;
QUERY PLAN

Append

-> Seq Scan on pgbench_accounts_0 pghbench _accounts_1
-> Async Foreign Scan on pgbench_accounts_1 fdw pgbench_accounts 2
-> Async Foreign Scan on pgbench_accounts 2 fdw pgbench_accounts_ 3
-> Seq Scan on pgbench_accounts_3 pghbench_accounts_4

203

Shardman Internals

-> Async Foreign Scan on pgbench_accounts_4_ fdw pgbench_accounts_5
-> Async Foreign Scan on pgbench_accounts_5 fdw pgbench_accounts_6
-> Seq Scan on pgbench_accounts_6 pgbench_accounts_7

-> Async Foreign Scan on pgbench_accounts_7_fdw pgbench_accounts_8
-> Async Foreign Scan on pgbench_accounts_8 fdw pgbench_accounts_9
-> Seq Scan on pgbench_accounts_9 pgbench_accounts_10

-> Async Foreign Scan on pgbench_accounts_10 fdw pgbench_accounts_11
-> Async Foreign Scan on pgbench_accounts_11 fdw pgbench_accounts_12
-> Seq Scan on pgbench_accounts_12 pgbench_accounts_13

-> Async Foreign Scan on pgbench_accounts_13 fdw pgbench_accounts_14
-> Async Foreign Scan on pgbench_accounts_14 fdw pgbench_accounts_15
-> Seq Scan on pgbench_accounts_15 pgbench_accounts_16

-> Async Foreign Scan on pgbench_accounts_16 fdw pgbench_accounts_17
-> Async Foreign Scan on pgbench_accounts_17 fdw pgbench_accounts_18
-> Seq Scan on pgbench_accounts_18 pgbench_accounts_19

-> Async Foreign Scan on pgbench_accounts_19 fdw pgbench_accounts_20

Here we see a typical asynchronous plan. There are asynchronous foreign scans and local sequential scans, which are executed
synchronously.

EXPLAI N (COSTS OFF) SELECT * FROM pgbench_accounts ORDER BY aid

QUERY PLAN
Mer ge Append
Sort Key: pgbench_accounts. aid
-> Sort

Sort Key: pgbench_accounts 1.aid

-> Seq Scan on pgbench_accounts_0 pghbench_accounts_1
-> Foreign Scan on pgbench_accounts_1 fdw pgbench_accounts 2
-> Foreign Scan on pgbench_accounts_2 fdw pgbench_accounts_ 3
-> Sort

Sort Key: pgbench_accounts 4.aid

-> Seq Scan on pgbench_accounts_3 pghbench _accounts_ 4
-> Foreign Scan on pgbench_accounts_4 fdw pgbench_accounts 5
-> Foreign Scan on pgbench_accounts 5 fdw pgbench_accounts 6
-> Sort

Sort Key: pgbench_accounts 7.aid

-> Seq Scan on pgbench_accounts_6 pghbench _accounts_ 7
-> Foreign Scan on pgbench_accounts_7 fdw pgbench_accounts 8
-> Foreign Scan on pgbench_accounts_8 fdw pgbench_accounts 9
-> Sort

Sort Key: pgbench_accounts 10. aid

-> Seq Scan on pgbench_accounts_9 pghbench _accounts_10
-> Foreign Scan on pgbench_accounts_ 10 fdw pgbench_accounts 11
-> Foreign Scan on pgbench_accounts_11 fdw pgbench_accounts 12
-> Sort

Sort Key: pgbench_accounts 13.aid

-> Seq Scan on pgbench_accounts_12 pgbench_accounts 13
-> Foreign Scan on pgbench_accounts_ 13 fdw pgbench_accounts_ 14
-> Foreign Scan on pgbench_accounts_ 14 fdw pgbench_accounts_ 15
-> Sort

Sort Key: pgbench_accounts 16. ai d

-> Seq Scan on pgbench_accounts_15 pgbench_accounts 16
-> Foreign Scan on pgbench_accounts_ 16 fdw pgbench_accounts 17
-> Foreign Scan on pgbench_accounts_ 17 fdw pgbench_accounts 18
-> Sort

Sort Key: pgbench_accounts 19.aid

-> Seq Scan on pgbench_accounts_18 pgbench_accounts 19
-> Foreign Scan on pgbench_accounts_19 fdw pgbench_accounts_ 20

204

Shardman Internals

Herener ge append is used, and so the execution cannot be asynchronous.

7.2.3. Fetch-all Fallback

There are alot of cases when operations on data cannot be executed remotely (for example, when some non-immutable function is
used in filters, when several sharded tables are joined by an attribute that is not a sharding key, when pushdown of a particular join
typeis not supported) or when the planner considerslocal execution to be cheaper. In such cases different operations (selection, joins
or aggregations) are not pushed down, but executed locally. This can lead to inefficient query execution due to large inter-cluster
traffic and high processing cost on a coordinator. When this happens, you should check if an optimizer has fresh statistics, consider
rewriting the query to benefit from different forms of pushdown or at least check that the suggested query plan is reasonable enough.
To make DBMS analyze data for the whole cluster, you can use shardman.global _analyze function.

7.3. Distributed Transactions

7.3.1. Visibility and CSN

7.3.1.1. CSN — Commit Sequence Number

A Shardman cluster uses a snapshot i solation mechanism for distributed transactions. The mechanism provides away to synchronize
snapshots between different nodes of a cluster and a way to atomically commit such a transaction with respect to other concurrent
global andlocal transactions. These global transactions can be coordinated by using provided SQL functionsor through postgres _fdw,
which uses these functions on remote nodes transparently.

Assume that each node uses the CSN-based visibility: the database tracks the counter for each transaction commit (CSN). With such
a setting, a snapshot is just a single number — a copy of the current CSN at the moment when the snapshot was taken. Visibility
rules are boiled down to checking whether the current tuple's CSNis less than our snapshot's CSN.

Let's assume that CSN is the current physical time on the node and call it @ obal CSN. If the physical time on different nodesis
perfectly synchronized, then such a snapshot obtained on one node can be used on other nodes to provide the necessary level of
transaction isolation. But unfortunately physical time is never perfectly sync and can drift, and this should be taken into account.
Also, thereisno easy notion of lock or atomic operation in the distributed environment, so commit atomicity on different nodeswith
respect to concurrent snapshot acquisition should be handled somehow. Thisis addressed in the following way:

1. To achieve commit atomicity of different nodes, intermediate step is introduced: at the first run, a transaction is marked as
I nDoubt on all nodes, and only after that each node commitsit and stampswith agiven A obal CSN. All readersthat ran into
tuples of an | nDoubt transaction should wait until it ends and recheck the visibility.

2. When the coordinator is marking transactions as | nDoubt on other nodes, it collects Pr oposedd obal CSN from each par-
ticipant, which isthe local time on those nodes. Next, it selectsthe maximal value of all Pr oposedd obal CSNsand commits
the transaction on all nodes with that maximal G obal CSN even if that value is greater than the current time on this node due
to clock drift. So the @ obal CSN for the given transaction will be the same on all nodes. Each node records its last generat-
ed CSN (I ast _csn) and cannot generate CSN < | ast _csn. When a node commits a transaction with CSN > | ast _csn,
| ast _csn is adjusted to record this CSN. Due to this mechanism, a node cannot generate a CSN, that is less than CSNs of
aready committed transactions.

3. When alocal transaction imports aforeign global snapshot with some @ obal CSN and the current time on this nodeis smaller
than theincoming G obal CSN, then the transaction should wait until this G obal CSN time comesto the local clock.

The two last rules provide protection against time drift.

7.3.1.2. Commit Delay and External Consistency

The rules above still do not guarantee recency for snapshots genereted on nodes that do not participate in a transaction. A read
operation that originates from such a node can see stale data. The probability of the anomaly directly depends on the system clock
skew in the Shardman cluster.

Particular attention should be paid to the synchronization of system clocks on all cluster nodes. The size of the clock skew must be
measured. If an external consistency is required, then the clock skew can be compensated with a commit delay. This delay is added

205

Shardman Internals

before every commit in the system, so it has a negative impact on the latency of transactions. Read-only transactions are not affected
by this delay. The delay can be set using the configuration parameter csn_commit_delay.

7.3.1.3. CSN Map

The CSN visibility mechanism described above is not a general way to check the visibility of all transactions. It is used to provide
isolation only for distributed transactions. As a result, each cluster node uses a visibility checking mechanism based on xi d and
xm n. To be able to use the CSN snapshot that points to the past, we need to keep old versions of tuples on all nodes and therefore
defer vacuuming them. To do this, each node in a Shardman cluster maintains a CSN to xi d mapping. The map is called CSNS-

napshot Xi dvap. This map is aring buffer, and it stores the correspondence between the current snapshot _csn and xmi n
in asparse way: snapshot _csn isrounded to seconds (and here we use the fact that snapshot _csn isjust atimestamp), and
xm n is stored in the circular buffer where rounded snapshot _csn acts as an offset from the current circular buffer head. The
size of the circular buffer is controlled by the csn_snapshot_defer_time configuration setting. VACUUM s not allowed to clean up
tuples whose xmax is newer than the oldest xmi n in CSNSnapshot Xi dMap.

When a CSN snapshot arrives, we check that its snapshot _csn is till in our map, otherwise, we will error out with “snapshot
too old” message. If the snapshot _csn is successfully mapped, we fill backend's xmi n with the value from the map. That way
we can take into account backends with an imported CSN snapshot, and old tuple versions will be preserved.

7.3.1.4. CSN Map Trimming

To support global transactions, each node keeps old versions of tuplesfor at least csn_snapshot _def er _ti me seconds. With
largevalues of csn_snapshot _def er _ti e, this negatively affects performance. Thisis because nodes save all row versions
duringthelast csn_snapshot _def er _t i me seconds, but there may not be more transactions in the cluster that can read them.
A special task of the monitor periodically recalculates xmi n in the cluster and sets it on al nodes to the minimum possible value.
This allows the vacuuming routine to remove a row version that is no longer of interest to any transaction. The shardman.moni-
tor_trim_csnxid_map_interval configuration setting controls the worker. The worker wakes up every noni t or _i nt er val sec-
onds and performs the following operations:

1. Checksif the current node's repgroup ID is the smallest among all IDsin the cluster. If this condition is not met, then the work
on the current node is terminated. So only one node in the cluster can perform a horizon negotiation.

2. From each node of the Shardman cluster, the coordinator collects the oldest snapshot CSN among all active transactions on the
node.

3. The coordinator chooses the smallest CSN and sends it to each node. Each node discards its csnXi dMap values that are less
than this value.

7.3.2. 2PC and Prepared Transaction Resolution

Shardman implements a two-phase commit protocol to ensure the atomicity of distributed transactions. During the execution of a
distributed transaction, the coordinator node sends the command BEG N to participant nodesto initiate their local transactions.

The term "participant nodes' herein and subsequently refers to a subset of cluster nodes that participate in the
execution of atransaction's command while the node is engaged in writing activity.

Additionally, alocal transaction is created on the coordinator node. This ensures that there are corresponding local transactions on
all nodes participating in the distributed transaction.

During the two-phase transaction commit, the coordinator node sends the command PREPARE TRANSACTI ON to the participant
nodes to initiate the preparation of their local transactions for commit. If the preparation is successful, the local transaction data
is stored in a disk storage, making it persistent. If al participant nodes report successful preparation to the coordinator node, the
coordinator node will commit its local transaction. Subsequently, the coordinator node will also commit the previously prepared
transactions on the participant nodes using the command COVM T PREPARED.

If afailure occurs during the PREPARE TRANSACTI ON command on any of the participant nodes, the distributed transaction
is considered aborted. The coordinator node then broadcasts the command to abort the previously prepared transactions using the
ROLLBACK PREPARED command. If the local transaction was aready prepared, it is aborted. However, if there was no prepared
transaction with the specified name, the command to rollback is simply ignored. Subsequently, the coordinator node rolls back its
local transaction.

206

Shardman Internals

After a successful preparation phase, there will be an object pr epar ed transacti on on the each of participant nodes. These
objects are actually disk files and records in the server memory.

It is possible to have a prepared transaction that was created earlier through a two-phase operation and will never be completed.
This can occur, for example, if the coordinator node fails exactly after the preparation step but before the commit step. It can also
occur as aresult of network connectivity issues. For instance, if the command COVMM T PREPARED from the coordinator node to
a participant node ends with an error, local transactions will be committed on all participant nodes except for the one with the error.
Thelocal transaction will also be committed on the coordinator node. All participants, except for the one with the error, believe that
the distributed transaction was completed. However, the one participant still waiting for COMM T PREPARED will never receive
it, resulting in a prepared transaction that will never be completed.

A prepared transaction consumes system resources, such as memory and disk space. An incomplete prepared transaction causes
other transactions that access rows modified by that transaction to wait until the distributed operation completes. Therefore, it is
necessary to complete prepared transactions, even in cases where there were failures during commit, to free up resources and ensure
that other transactions can proceed.

To resolve such situations, there is a mechanism for resolving prepared transactions that is implemented as part of the Shardman
monitor. It isimplemented as a background worker that wakes up periodically, acting as an internal “crontab” job. By default, the
period is set to 5 seconds, but it can be configured using theshar dnan. noni t or _dxact _i nt er val configuration parameter.
The worker checks the presence of prepared transactions that were created earlier by a certain amount of time, specified by the
shar dman. noni t or _dxact _ti meout configuration parameter (which is also set to 5 seconds by default), on the same node
where the Shardman monitor is running.

When the PREPARE TRANSACTI ON command is sent to a participant node, aspecial nameis assigned to the prepared transaction.
This name encodes useful information, which alows identifying the coordinator node and its local transaction.

If the Shardman monitor finds outdated prepared transactions, it extracts the coordinator's replication group ID and transaction ID
of the coordinator's local transaction. The monitor then sends a query to the coordinator

SELECT shar dnman. xact _stat us(Transacti onl d)

which requests the current status of the coordinator's local transaction. If the query fails, for example, due to network connectivity
issues, then the prepared transaction will remain untouched until the next time when the monitor wakes up.

In the case of a successful query, the coordinator node can reply with one of the following statuses:
conmitted

Thelocal transaction on the coordinator node was completed successfully. Therefore, the Shardman monitor also commits this
prepared transaction using the COMM T PREPARED command.

aborted
The local transaction on the coordinator node was aborted. Therefore, the monitor also aborts this transaction using the ROLL -
BACK PREPARED command.

unknown
The transaction with such an identifier never existed on the coordinator node. Therefore, the monitor aborts this transaction
using the ROLLBACK PREPARED command.

active
The local transaction on the coordinator node is still somewhere inside the Conmmi t Tr ansact i on() flow. Therefore, the
monitor does nothing with this transaction. The monitor will try again with this transaction at the next wake-up.

anmbi guous

This status can be returned when CLOGS truncating is enabled on the coordinator node. The CLOG is a bitmap that stores the
status of completed local transactions. When a transaction is committed or aborted, its statusis marked in the CLOG. However,
the CLOG can be truncated (garbage collected) by the VACUUMprocess to discard statuses of old transactions that do not affect
the visibility of datafor any existing transaction.

When the CLOGis truncated, there is a possibility that the shar dnman. xact _st at us() function may not be able to unam-
biguously decide if a transaction exists in the past (with some status) or if it never existed. In such cases, the function returns

207

Shardman Internals

an ambiguous status. This can lead to uncertainty about the actual status of the transaction and can make it difficult to resolve
the prepared transaction.

When the shar dman. xact _st at us() function returns the anbi guous status for a prepared transaction, the monitor
node logs a warning message indicating that the status could not be determined unambiguously. The prepared transaction is
left untouched, and the monitor will try again with this transaction at the next wake-up. It is important to properly configure
them n_cl og_si ze parameter with the value of 1024000 (which means "never truncate CLOG") to avoid ambiguity in
the status of prepared transactions.

In situations where the prepared transaction resol ution mechanism is unable to resolve prepared transactions due to constant errors
or ambiguous status, the administrator will need to manually intervene to resolve these transactions. This may involve examining
the server logs and performing a manual rollback or commit operation on the prepared transaction. Note that leaving prepared
transactions unresolved can lead to resource-consumption and performance issues, so it is important to address these situations as
soon as possible.

7.4. Silk
7.4.1. Concept

Silk (Shardman InterLinK) isan experimental transport feature. It isinjected at the point wherepost gr es_f dwdecidesto transmit
deparsed piece of query through| i bpg connection to the remote node, replacing | i bpq connection with itself. It is designed to de-
crease the count of idlepost gr es_f dwconnections during transaction execution, minimize latency and boost overall throughput.

Silk implementation uses several background processes. The main routing/multiplexing process (one per PostgreSQL instance),
caled si | kr oad, and a bunch of background workers, called si | kwor ms. While post gres_fdwuses| i bpq, it spawns
multiple ! i bpq connections from each backend to the remote node (where multiple backend processes are spawned accordingly).
But if si | k replaces| i bpq - every si | kr oad process is connected to only one remote si | kr oad. In this scheme, remote
si | kwor s play the role of remote backends otherwise spawned by post gres_f dw.

Si | kr oad wireslocal backend with remote node's workers this way:

1. Backend processusesregular post gr es_f dwAPI to accessremote dataasusual. But post gr es_f dw, whensilk isenabled,
writes the query into shared memory queueinstead of | i bpg connection;

2. Si | kr oad process parses incoming shared memory queue from that backend and routes the message to appropriate network
connection with remote si | kr oad process.

3. Remote si | kr oad process grabs incoming message from network and (if it is a new one) redirects it to available worker's
shared memory queue (or in aspecial "unassigned jobs' queueif all of the workers are busy).

4. At last, remote worker gets the message through its shared memory queue, executes it and sends back the result tuples (or an
error) the same way.

Si | kr oad acts here like a common network switch, tossing packets between backend's shared memory and appropriate network
socket. It knows nothing about content of a message relying only on the message header.

7.4.2. Event Loop

Si | kr oad processrunsan event loop powered by thel i bev library. Each backend's shared memory queueis exposed at the event
loop with the event f d descriptor, and each network connection - with a socket descriptor.

During startup, the backend registers itself (its event f d descriptors) at alocal si | kr oad process. Si | kr oad responds by
specifying which memory segments to use for the backend's message queue. From this moment si | kr oad will respond to events
from the queue associated with this backend. Network connections between local and remote si | kr oads will be established at
once on the first request from the backend to the remote node and stay alive until both of participants (si | kr oad processes) exist.

7.4.3. Routing and Multiplexing

For each subquery, we expect a subset of tuples, and therefore represent the interaction within the subquery as a bidirectional data
stream. Si | kr oad uses an internal routing table to register these streams. A unique stream ID (within the Shardman cluster) is
formed asapair of "origin node address, target node address' and alocally (within the node) unique number. Each particular subquery

208

Shardman Internals

from a backend to remote nodes will be registered by si | kr oad as such a stream. So, any backend can be associated with many
streams at the time.

When alocal si | kr oad process got a message with a new stream 1D from backend, it registersit in alocal routing table and then
redirects this message to an appropriate socket. If the connection with the remote si | kr oad does not exist, it is established using
a handshake procedure. The original message that initiated a handshake is placed into a special internal buffer until the handshake
succeeds. Theremotesi | kr oad processreceiving a packet with the new 1D registersit initsown table, then assignsasi | kwor m
worker from a pool of available workers and places the message into the worker's shared memory queue. If all of the si | kwor m
workers are busy at the moment, the message will be postponed, i.e., placed into a specia "unassigned jobs queue” (note that the
configuration parameter shar dnman. si | k_unassi gned_j ob_queue_si ze is 1024). If there is no free space in the queue,
an error message will be generated and sent back to the source backend. A job from this queue will be assigned later to the first
available worker when it gets rid of the previous job.

When the worker got anew “job”, it executes it through SPI subsystem, organizing result tuples into batches and sends them back
through shared memory tothelocal si | kr oad process. Therestistrivia dueto the whole routeisknown. Thelast resulting packet
with tuplesin astream is marked as “closing”. It isan order to si | kr oads to wipe out this route from their tables.

Note that backend and remote workers stay “subscribed” to their streams until they are explicitly closed. So the backend has the
opportunity to send an abort message or notify the remote worker to prematurely close the transaction. And it makes it possible to
discard obsol ete data packets, possibly from previous aborted transactions.

Toobservethe current state of thesi | kr oad multiplexer process, Silk diagnosticsviewsareavailable, asexplainedin Section 6.4.2.

7.4.4. Error Handling and Route Integrity

Besides the routing table si | kr oad tracks endpoints (backends and network connections) that were involved in some particular
stream. So when some connection is closed, al the involved backends (and/or workers) will be notified of that event with a special
error message, and all routes/streams related to this connection will be dismissed. The same way, if the backend crashes, its shared
memory queue become detached and si | kr oad reacts by sending error messages to remote participants of every stream related to
the crashed backend. So remote workers are not left doing useless work when the requester has aready died.

7.4.5. Data Transmitting/batching/splitting Oversized Tuples

The resulting tuples are transmitted by si | kwor min a native binary mode. Tuples with ext er nal storage attribute will be
deTOASTed, but those that were compressed stay compressed.

Small tuples will be organized in batches (about 256k). Big tuples will be cut into pieces by the sender and assembled into awhole
by the receiving backend.

7.4.6. Streams Flow Control

It may happen that when the next message is received from a backend, it will not fit the target network buffer. Or the message
received from the network does not fit into the target shared memory queue. In such a case, the stream that caused this situation will
be* suspended”. Thismeansthat thesi | kr oad pausesthe reaction to eventsfrom the source endpoint (connection or backend) until
the target endpoint drains their messages. The rest backends and connections not affected by this route are kept working. Receiving
modules of backends are designed to minimize these situations. The backend periodically checks and drains the incoming queue
even when the plan executor is busy processing other plan nodes. Received tuples are stored in backend's tuplestores according the
plan nodes until the executor requests the next tuple for a particular plan node execution.

When enough spaceisfreed on the target queue, the suspended stream gets resumed, endpoint's events get unblocked and the process
of receiving and sorting packets continues.

7.4.7. Implementation details

7.4.7.1. State Transferring and CSNs

When postgres fdw works over Silk transport, only one connection between si | kr oad routing daemons is used to transfer user
requeststosi | kwor mworkers and get their responses. Each request contains a transaction state, areplication group D of the node
where the request is formed (coordinator), a query itself and query parameters (if present). A response is either an error response
message with a specific error message and error code or a bunch of tuples followed by “end of tuples’ message. This means that
si | kwor mhasto switch to the transaction state coming with the request prior to executing the request.

209

Shardman Internals

For now, Silk transport isused only for read-only SELECT queries. All modifying requests are processed viaausual libpg connection
and handled mostly as all other DML requests in PostgreSQL postgres fdw. The only distinction is that when a DML request is
processed by postgres fdw, it resetsthe saved transaction state for the connection cache entry corresponding to the connection where
thisrequest is sent. Also aread-only flag is set to false for such a connection cache entry. When arequest is sent over Silk transport,
Shardman extension asks for the transaction state for a pair of serverid and userid from postgres fdw. If such a connection cache
entry isfound in the postgres fdw connection cache, it is not aread-only cache entry and transaction state is present in thisentry, the
stateisreturned. If it is not present, postgres fdw retreives afull transaction state from the remote server, savesit in the connection
cache entry and returns to the Shardman extension.

The full transaction state is similar to the parallel worker transaction state and contains:

» information related to the current user (uid, username)

* pid of the current backend

e transaction start timestamp

e current snapshot CSN

» flagsindicating that invalidation messages are present

» backend private state:

» array of ComboCIDs
< internal transaction state (full transaction ID, isolation level, current command ID, etc.)
» information about reindexed indexes

If the connection is not found in the postgres_fdw connection cache (i.e., it isanew connection) or the entry in the connection cache
is marked as read-only, only these characteristics form the transaction state:

» information related to the current user (username)

e transaction start timestamp

e current snapshot CSN

» flagsindicating that invalidation messages are present

Using such transaction states, si | kwor mcan attach to arunning transaction or start a new read-only transaction with the provided
snapshot CSN and retreive the result.

Note that the full transaction state can be imported only on the server that exported it. Also note that due to this transaction state
transferring method, you cannot use Silk transport without enabling CSN snapshots.

7.4.7.2. Integration with Asynchronous FDW Engine

In the Section 7.2.2, asynchronous For ei gnScan plan nodes were presented as a way to optimize data retrieval from multiple
hosts while these plan nodes were located under a single Append node. In the standard PostgreSQL architecture, the execution of
For ei gnScan plan nodes isimplemented using the network protocol based on libpg. To improve the system performance during
data transfer and reduce resource consumption, Shardman employs a different method for exchanging data with remote hosts. The
mechanism for executing For ei gnScan nodes isimplemented using the Silk protocol.

To incorporate Silk transport into the asynchronous executor, modifications were made to the postgres fdw extension. A pluggable
transport was implemented as a set of interface functionsincluded as part of the Shardman extension. During execution of callbacks
that interact with remote hosts, these functions are called by the postgres fdw extension. The pluggable Silk transport is activated if
the Shardman extension is preloaded and if the foreign server has the attribute ext ended_f eat ur es (applicable for any FDW
server in the Shardman cluster). For all other cases, the postgres fdw extension uses the standard exchange protocol based on libpg.

To disable the pluggable Silk transport in the Shardman cluster, it is necessary to set the query_engi ne_node configuration
parameter to the value of ENG NE_NONE.

In the current implementation, the pluggable Silk transport is only used for read-only queries, specifically during the execution of
the For ei gnScan node. The standard exchange protocol based on libpq is used for modifying queries.

When receiving query execution result rows using the Silk transport, the data is stored in a Tupl eSt or eSt at e storage as a
complete result set, which is the same size as that returned by the remote host. The Tupl eSt or eSt at e is implemented as a

210

Shardman Internals

data structure that can spill data to the disk in case of memory shortage. If the remote host returns a large result set, it does not
lead to an out-of-memory (OOM) condition. Once the result set is received in the Tupl eSt or eSt at e, the data is copied into
the For ei gnScan executor's in-memory buffer. The size of this buffer is defined by the f et ch_si ze attribute of the foreign
server. The default value of 50000 rows can be adjusted to find a balance between the performance (number of For ei gnScan
node calls) and memory consumption.

Utilizing the pluggable Silk transport for the asynchronous FDW engine resultsin an increase of the network exchange performance
and a reduction of the system resource consumption due to better utilization of system resources, including the number of network
connections.

7.5. Distributed Deadlock Detection

Distributed deadl ocks may occur during the processing of distributed transactions. Let us consider the following example:

create table players(id int, usernane text, pass text) with (distributed by="id");
insert into players select id, 'user_' || id, '"pass_" || id from
generate_series(1,1000) id;

Assume that the record with i d=2 belongsto nodel and the record with i d=3 belongsto node2.

Let us execute the following commands on different nodes:

nodel=# begin;
nodel=# update pl ayers set pass='soneval' where id=3;

node2=# begi n;
node2=# update pl ayers set pass='soneval' where id=2;

-- it should stuck because transacti on on nodel |ocked record with id=3
node2=# update players set pass='soneval 2' where id=3;

-- it should stuck because transacti on on node2 | ocked record with id=2
nodel=# update players set pass='soneval 2' where id=2;

A distributed deadlock situation arises when transactions are mutually locked by each other. PostgreSQL has an internal mechanism
for deadlock detection, which detects mutual locking between child processes of asingle PostgreSQL instance (backend) and resolves
it. However, this mechanism is not applicable to the discovered situation because mutual locking is distributed, i.e., backends from
different nodes are involved. From the point of view of the PostgreSQL lock manager, there is no deadlock condition because
processes of the single instance are not locking each other. Therefore, Shardman has its own mechanism for distributed deadlock
resolution.

We can represent the interaction between processes in the entire cluster as a graph. A graph vertex represents a process (backend),
which we can identify with a couple of attributes { r gi d; vxi d}, wherer gi d is the replication group 1D, and vxi d is the
virtual transaction ID of the currently executed transaction. Graph edges represent directional connections between vertices. Each
connection is directed from the locked process to the locking process.

It is obvious that any process can be locked by only one process. In other words, if the backend is waiting for alock, it can only
wait for a specific lock. On the other hand, alocking process can acquire multiple locks, meaning that it can lock multiple backends
simultaneously.

With that said, the lock graph acts as asingly linked list. If thislist contains a closed loop, then here is a deadlock condition. To
detect a deadlock, it is necessary to build such alist and detect closed loopsin it.

The distributed deadlock detector in Shardman is implemented as a separate task inside the Shardman monitor. If a processis un-
able to acquire a lock within a specified amount of time (which is one second by default, but can be adjusted using the dead-
| ock_tinmeout configuration parameter), the internal PostgreSQL deadlock detector attempts to detect a local deadlock. If no
local deadlock isfound, the distributed deadlock detector is activated.

Thedistributed deadlock detector buildsagraph (list) of locksinthecluster. It queriesviewspg | ocks andpg_stat _activity
on the local node and on each of the remote cluster nodes.

211

Shardman Internals

The process of building the list of locks involves sequentially querying nodes in the cluster, and it is not atomic, so the list is not
consistent. This means that the distributed deadlock detector may produce false positives. During the building of the list, we can
store alock that can disappear before the end of thelist building process. To guarantee the reliability of deadlock detection, after the
detection of aclosed loop, it is necessary to re-query the nodes involved in the closed loop.

After finding the closed loop, the distributed deadlock detector chooses the process belonging to the local node and cancelsit. The
user process served by the cancelled backend will receive a message:

cancel i ng statenent due distributed deadl ock was found

A verbose message about the detected deadlock will be recorded in the server logs:

LOG distributed deadl ock detected

DETAIL: repgroup 1, PID 95264 (application 'psql'), executed query 'update
pl ayers set pass='qqq" where id=2;' is blocked by repgroup 1, PID 95283 (application
"pof dw 2: 95278: 9/ 2"), executed query ' UPDATE public. players_0 SET pass = 'qqq' ::text
WHERE ((id = 2))'

repgroup 1, PID 95283 (application 'pgfdw 2:95278:9/2"), executed query 'UPDATE
public.players 0 SET pass = 'qqq'::text WHERE ((id = 2))' is blocked by repgroup 2,
PI D 95278 (application 'psqgl'), executed query 'update players set pass='qqq where
id=3;"'

repgroup 2, PID 95278 (application 'psql'), executed query 'update players
set pass='qqq where id=3;' is blocked by repgroup 2, PID 95267 (application
"pofdw 1: 95264: 8/ 4"), executed query ' UPDATE public. players_1 SET pass = 'qqq' ::text
WHERE ((id = 3))"'

repgroup 2, PID 95267 (application 'pgfdw 1:95264:8/4"), executed query 'UPDATE
public.players_1 SET pass = 'qqq'::text WHERE ((id = 3))' is blocked by repgroup 1
PI D 95264 (application 'psqgl'), executed query 'update players set pass='qqq where
id=2;"'

7.6. Global Sequences

Global sequencesin Shardman areimplemented on top of regular PostgreSQL sequenceswith some additional cluster-wide metadata,
which among other things holds the interval of globally unused sequence elements.

When CREATE SEQUENCE isissued, an ordinary PostgreSQL sequence with the same name is created on every cluster node. The
range of thislocal sequenceisabounded sub-interval of the global sequence (asdefined by M NVAL UE and MAXVAL UE parameters),
and it contains at most bl ock_si ze elements. The next val function returns values from the local sequence until it runs out,
then a new sub-interval with bl ock_si ze elementsis alocated from the global sequence using a broadcast query involving all
cluster nodes. So, smaller block size values make the generated numbers more monotonic across the cluster, but incur a performance
penalty since the broadcast query may be rather expensive. Another way to describe the block size parameter isto say that it controls
the size of the second cache level, similarly to how the CACHE parameter works, except at the level of an entire Shardman cluster.

Alsonote, that every timeanew sub-interval isall ocated the underlying local sequenceismaodified (asin ALTER SEQUENCE), which
will lock it for the transaction duration, preventing any other local concurrent transactions from obtaining next sequence values.

7.7. Syncpoints and Consistent Backup

To ensure that cluster binary backup is consistent, Shardman implements the syncpoints mechanism.

To achieve consistent visibility of distributed transactions, the technique of globa snapshots based on physical clocks is used.
Similarly, it is possible to get a consistent snapshot for backups, only the time corresponding to the global snapshot must be mapped
to aset of LSN for each node. Such a set of consistent LSN in acluster is called a syncpoint.

In a Shardman cluster, each node can generate its own independent local CSN, which does not guarantee the global ordering of
values in time. Therefore, we cannot take this arbitrary local CSN as the basis for a syncpoint. Instead, Shardman chooses only
those CSNs that match distributed transaction commit records as the basis of the syncpoint. These CSNs have the property of global
ordering and can be used to obtain a syncpoint. The main points of this mechanism are described below.

The commit record of each completed transaction in Shardman contains the assigned CSN for this transaction. This value, together
with the LSN of thisrecord, formsapair of values (CSN, LSN) . Each of the cluster nodes stores a certain number of such pairsin

212

Shardman Internals

RAM in aspecial structure - the CSNLSNWVAp. CSNLSNVap isacircular buffer. Each element of themapisa(CSN, LSN) pair.
The map size is set by the configuration settings csn_Isn_ map _size. A (CSN, LSN) pair can be added to the map only if there
are no transactions on the node that can receive a CSN |ess than the one added. This important condition guarantees monotonous
growth of CSN and LSN in CSNL SNmap, but does not guarantee that every commit record will get into the map.

When a user submits a request to create a syncpoint, a search by every CSNLSNVap is made for alargest possible CSN for which
thereisanentry (CSN ,, LSN) in each node and the condition CSN;, <= CSNy istrue. The monotonic growth property of every
CSNLSNWVap ensures that each found pair (CSN,, LSN) corresponds to the state of the global data at the time corresponding to
CSNy. If no such value of CSN is found, the get syncpoint operation fails and can be retried later. If such a value CSNy is found,
then a syncpoint is generated as a specia type of WAL record, which is duplicated on all nodes of the cluster.

By getting a syncpoint and taking the LSN for each node in the cluster from it, we can make a backup of each node, which must
necessarily contain that LSN. We can also recover to this LSN using the point in time recovery (PITR) mechanism.

7.8. Collecting Distributed Statement Statistics Using the pgpro_s-
tats Extension

During execution of distributed queries, Shardman sends derived SQL queries to remote nodes that hold data partitions involved in
the query execution. Let's call these SQL queries query fragments. Shardman sends such queries using the postgres fdw extension.
Thenodethat queriesthe sharded tableiscalledthecoor di nat or , whilethe nodesthat accept query fragmentsarecalledshar ds.

When the pgpro_stats extension is enabled on a Shardman cluster node, it collects statistics about local and distributed queries. The
information about distributed queries initiated by this node is incomplete because it misses data about remote query fragments. The
statistics concerning queries initiated by other nodes is also ambiguous because there is no simple way for a user to determine the
distributed query to which the fragment corresponds.

To addresstheseissues, pgpro_statsfor Shardman introduces an aggregation of statisticsfor the distributed queries. These aggregated
statistics can be accesseswiththepgpr o_st at s_sdm st at enent s view. However, each Shardman node collects statistics for
all the statements, so that the pgpr o_st at s_st at enent s view can work the way it did before.

When anode receives a query fragment, it saves its statistics to a separate shared hash table. Periodically and asynchronously, each
node sends this information from a separate table to the coordinator corresponding to the query. The coordinator aggregates the
statistical data obtained from the query fragments with the statistics of its parent query, which is the query initiated by the client.

The pgpro_stats extension starts a separate background worker. This worker is responsible for sending the accumulated statistics
to the coordinator nodes either every 5 seconds or when triggered by the guard latch. The collecting function sets this latch when
the hash tableis amost full.

To reduce the network traffic initiated by a statistics sender, compression is applied to the statistics data sent. The compression
method can be selected by thepgpr o_st at s. t ransport _conpr essi on configuration parameter.

Each node stores the total number of statistics entries received from the shard node and the timestamp of when they were last
received. When a coordinator node receives a statistics message, it updates the appropriate values, which are accessible using the
SQL interface.

There are additional pgpro_stats SQL functionsintroduced by Shardman additions described in Section 6.2 and configuration para-
meters described in the section called “pgpro_stats parameters’.

7.9. Advisory Locks

PostgreSQL provides ways of creating locks that have application-defined meanings. These are cluster-wide advisory locks because
the system does not enforce their use. Advisory locks and global locks work simultaneously and do not conflict with each other.
Both these locks can be viewed with the pg_|ocks view and have the shr adman valuein | ockt ype.

To see the advisory lock functions, refer to Advisory Lock Functions.

213

https://postgrespro.com/docs/postgresql/14/view-pg-locks

Appendix A. Release Notes
A.l. Postgres Pro Shardman 14.17.2

Releasedate: 2025-04-14

Thisrelease is based on PostgreSQL 14.17 and Shardman 14.17.1 and provides new features, optimizations and bug fixes. Major
changes are as follows:

A.1.1. Core and Extensions

Added the csn_max_shift and csn_max_shift_error configuration parameters to work with CSN snapshots for the distributed
queries and imported snapshots.

Added the shardman.context_log configuration parameter that allows the coordinator to see the error context on aworker.
Deletedthecsn_nmax_comrit _shift andcsn_max_snapshot _shi ft configuration parameters.
Forbade access to global views from standby servers.

Updated the ABORT command output for workers that now shows a detailed information about the abort reasons on a coordi-
nator.

Optimized the Mer ge Append behavior to consider the cheapest sorted total path. Previously the most efficient path could not
be chosen by the planner.

A.1.2. Management Utilities

Fixed the GO-2025-3553 vulnerability.

Fixed the invalid shardmanctl nodes command behavior. Now the same node cannot be specified more than once in the shrad-
manctl nodes start, shradmanctl nodes stop, and shradmanctl nodes restart commands.

Added cluster configuration parameters related to replication slots: addi t i onal Repl i cat i onSl ot s to specify an array
of names for replication slots to be created on the master, cr eat eS|l ot sOnFol | ower s to also create replication slots on
standby nodes, and addi t i onal Sl ot sLagLi mi t tolimit lagging behind for additional replication slots.

Added placeholder support for pgParameters.
Optimized the pgwal dunp adapter to avoid sending the entire pg_wal dunp output to the buffer.

A.2. Postgres Pro Shardman 14.17.1

Releasedate: 2025-03-17

This release is based on PostgreSQL 14.17 and Shardman 14.15.4 and provides new features, optimizations and bug fixes. Major
changes are as follows:

A.2.1. Core and Extensions

Theshar dman. si | k_shnem si ze,shardnman. si | k_net buf _si ze shardman. si | k_sus-
pend_shnge_limt,shardman. sil k _resune_shnge |imt,shardman. sil k _suspend netqe limt,
shardman. si | k_resune_netqge_| i mi t parameters now cannot change their values and are only kept for compatibility
purposes.

Added a detailed description for the following configuration parameters. shardman.silk_unassigned job queue size, shard-
man.silk_max_message, shardman.silkworm_fetch size, and shardman.silk_hello_timeout.

Optimized mechanismsto result in receiving of a consistent syncpoint.
Improved error messages for temporary sharded or global tables creation failures.

Updated the CREATE USER MAPPI NG ALTER USER MAPPI NG and DROP USER MAPPI NG commands that are now
prohibited when applied to mappings for foreign servers from the Shardman cluster.

214

Release Notes

e Updated theshar dman. user s and pg_user _mappi ng catalogsthat are now not stored in plain-text.
* Fixed anissue with the processing of ALTER | NDEX commands for the sharded tables.

» Fixed abug related to the Silk transport that previously resulted in arecursive error and the postmaster crash.
» Fixed the BDU:2025-01601 vulnerabilitiy.

A.2.2. Management Utilities

* Added anew parameter - - | ock-1i f et i nme to the probackup backup command to allow setting the maximum time that
pg_probackup can hold the lock, in seconds.

e Updated the shardmanctl forall, shardmanctl load, and shardmanct| history commands so they can run concurrently and do not
block other processes.

* Added anew option - n| - - node to the commands shardmanct! shard stop and shardmanctl shard start to specify the node to
start or stop.

» Improved error messaging for the pg_probackup-related tools.

» Implemented safe restoration of the et cd cluster from the dump for the cold backup by adding a shardmanctl store restore
command.

» Optimized the backup validation process by adding new options - - dat a- val i dat e,-renot e-port,--re-
not e- user , and - - ssh- key to the shardmanctl probackup restore command.

» Added anew filterrest art _requi red_par ans to the shardmanctl status command that checksthat all the post gr es
parameters requiring apost gr es instance restart are applied. The successful output shows no pending restart parameters.

» Implemented the automatic confirmation of the restart for the shardmanctl probackup archive-command add and the proback-
up backup commandswith the- y| - - yes option.

» Updated the shardmanctl history output to show whether the listed commands succeeded or failed.

» Implemented the automatic confirmation of the restart necessary for the parameters to take effect for the shardmanctl config
update and shardmanctl config set command with the- y| - - yes option. If thisoption is not specified, and the parameters up-
date requires arestart, the manual confirmation will be requested. If not confirmed, the cluster will continue to work, yet the
new parameter values will only take effect after the restart.

» Fixed anissuethat previously resulted in the pg_hba. conf row duplicates.
» Fixed abug that previously resulted in the shardmanctl status command failure.

» Updated the supported version of pg_probackup to 2.8.8.

A.3. Postgres Pro Shardman 14.15.4

Releasedate: 2025-02-19

This release is based on PostgreSQL 14.15 and Shardman 14.15.3 and provides optimizations and bug fixes. Major changes are
asfollows:

A.3.1. Core and Extensions

» Fixed abug that previously resulted in the incorrect reusing of the tracepoint memory while executing a prepared statement
with shardman.silk_tracepoints enabled.

A.3.2. Management Utilities
» Fixed anissue that previously resulted in the backup failure after the primary nodes were switched.

» Updated the supported version of pg_probackup to 2.8.7.

A.4. Postgres Pro Shardman 14.15.3

Releasedate; 2025-02-10

215

Release Notes

Thisrelease is based on PostgreSQL 14.15 and Shardman 14.15.2 and provides new features, optimizations and bug fixes. Major
changes are as follows:

A.4.1. Core and Extensions

Added the shardman.pg_indoubt_xacts view that displays information about transactions that are currently in the | nDoubt
state.

Added the global views for the system catalog and statistics-related views.

Added new fieldsto theshar dnan. si | k_connect s, shar dnan. si | k_backends, and shar drman. si | k_r out -
i ng views that show time from the last reading or writing event of a connect or a backend.

Added a new error message for the coordinator if the MT_SPI message size exceedsthe si | k_rmax_nessage value, if a
query is executed via Silk.

Added new diagnostic messages for the scenarios where the exported transaction state size is more than half of shar d-
man. si | k_max_message.

Updated the maximum values of the shar dman. si | k_num wor ker s, shar dnan. si | k_unas-

si gned_j ob_queue_si ze,shardnan. si | k_nmax_nessage, shardman. si | k_shnem si ze,

shardman. si | k_net buf _si ze,shardman. si | k_suspend_shnge _|imt,shardman. silk_re-
sume_shnge_linmt,shardman. sil k_suspend_netqge_linit,andshardman.sil k_resune_netqge |im
i t parameters.

Added afeature to pushdown the type conversion operations to a remote server.

Added a new limitation for the self-referencing sharded tables that are allowed only if aforeign key is referencing the same
partition of the sharded table.

Upgraded etcd to version 3.5.18.

A.4.2. Management Utilities

Added a new subcommand show-config to the shardmanctl probackup command. It displays all the current pg_probackup con-
figuration settings, including those that are specified in the pg_pr obackup. conf , and those that were provided on a com-
mand line.

Updated the backup retention policies with the new parameters of the sharmanctl probackup delete and shardmanctl probackup
backup subcommands: --retention-redundancy, --retention-window, --wal-depth, --delete-expired, and --merge-expired.

Fixed the CV E-2024-24790 and CV E-2024-45337 vulnerabilities.

A.5. Postgres Pro Shardman 14.15.2

Releasedate: 2024-12-16

Thisrelease is based on PostgreSQL 14.15 and provides new features, optimizations and bug fixes. Mg or changes are as follows:

A.5.1. Core and Extensions

Added thei n_queue_used and out _queue_used fields to the shardman.silk backends view that show the number of
queued data bytes in the incoming or outgoing queue in the shared memory between the backend and multiplexer.

Added a new shardman.silk_routing function along with the corresponding views shardman.silk_routing and
gv_si | k_routi ng. They show information about the current active routes.

Added a new shardman.silk_rbc_snap function that retrieves a consistent snapshot of all the connects, backends and routes that
canbeusedby si | k_connect s, si | k_backends, andsi | k_rout es functions.

Added shar dman. si | k_stat e andshar dman. si | k_stati nf o views,theshardman. sil k_statinfo_re-
set () function and the shardman.silk_track_time configuration parameter that cover the multiplexer process state.

Added two new configuration parameters, shardman.silk_tracelog configuration parameter that enables or disables Silk tracing
and debug logging, and shardman.silk_tracelog_category that defines the Silk message categories to be traced.

216

Release Notes

Added two new configuration parameters, enable non_equivalence filters that enables the optimizer to generate additional
non-equivalence conditions using equivalence classes, and optimize _row_in_expr that enables the optimizer to generate addi-
tional conditionsfromthel N () expression.

Added anew configuration parameter track_xact_time, the shardman.pg_stat xact_time view, and the shar dman. gv_s-
tat _xact _ti ne global view for showing statistics for the time spent on transactions.

Added theat t ached field to the shardman.silk_backends view and the si | k_backends function that shows the actua at-
taching of a backend to the multiplexer.

Added anew shardman.silk_stream_work_mem configuration parameter that sets the base maximum amount of memory to be
used by a Silk stream before writing to the temporary disk files.

Updated the EXPLAI N command output to show ser ver andt r ansport blocksin onerow, if settover bose.
Updated the supported version of pgpro_pwr to 4.8.

Updated the supported version of pg_query stateto 1.1.

Updated the supported version of pgpro_statsto 1.8-sdm4.

Updated the supported version of pg_probackup to 2.8.5.

Sped up planning for the queriesfi el d = ANY (ARRAY[val ues]) for the arrays with a big number of records.

Updated the postgres fdw.foreign_explain configuration parameter type from bool ean to enum the default value being
col | apsed. Also updated the EXPLAI N command output to comply with the new values.

Fixed a bug that previously resulted in the multiplexer hanging.

Updated the next val function that can be used to generate next sequence values that are unique across the entire cluster.

A.5.2. Management Utilities

Fixed abug that previously resulted in the command line key being ignored if a corresponding environment variable was set.
Fixed abug that previoudly resulted in shardmanctl bench run failure due to its memory buffers overflow.
Fixed a bug that previously resulted in shardmanctl bench failure if the command wasn't executed under the post gr es user.

Fixed abug that previously resulted in the full resync of areplicaand was caused by saving invalid data to the post -
gresql . aut o. conf file

Fixed abug that previoudly resulted in the PANIC-level error when calling any commands that modify configurations of a
cluster that was not yet initialized.

Updated the shardmanctl bench run command flag-f| --fil e fil e_name toadd atransaction script read fromfi | e-
narre to thelist of scriptsto be executed and to write an integer weight for each file.

Updated the shardmanct! bench run command with - P| - - progress,-R| --rate,and- M - - pr ot ocol flags.

A.6. Postgres Pro Shardman 14.15.1

Releasedate: 2024-11-25

This release provides new features, optimizations and bug fixes. Mgjor changes are as follows:

A.6.1. Core and Extensions

Added anew metric to theshar dman. pg_st at _csn view that counts transactions with an exceeded timein thei nDoubt
state.

Added new fields to the shardman.silk_pending_jobsview: quer y, pendi ng_queue_byt es, and pend-
i ng_queue_nessages for the first queued message, the pending queue size, in bytes, and the number of pending queue

messages.

Added tracing for the queries processed viathe Silk transport and added a new configuration parameter shardman.silk_trace-
points that enablesiit.

217

Release Notes

Updated the function cur r ent _dat e that now can be pre-evaluated locally on coordinator. t i nest anp andt i ne-
st anpt z comparisons are now considered safe for the remote execution.

Added pg_query_state support.

Introduced cluster-wide advisory locks which are recommended locks that have application-defined meanings. Also added ad-
visory lock functions.

Fixed abug that previously resulted in uncontrolled memory usage and allocation by si | kwor mwhile processing messages.

Fixed abug that previoudly resulted in unstable Silk connectivity and potential queries hanging in case shar d-
man. si | k_fl ow control wasenabled.

A.6.2. Management Utilities

Added a new shardmanctl history command that shows history of the commands that updated the cluster. By default, they are
sorted from the most recent to the oldest ones.

Updated etcd version to 3.5.13.

Added the normalization for the rebalance process. It allows properly resuming it if it was interrupted.

Added a new feature for the shardmand application that allows configuring aport in sdnspec. j son with encryption option.
Updated the PostgreSQL parameter validation mechanism that now uses data returned by PostgreSQL instance.

A.7. Postgres Pro Shardman 14.13.4

Releasedate: 2024-11-13

This release provides new features, optimizations and bug fixes. Mgjor changes are as follows:

A.7.1. Core and Extensions

#dded support for asynchronous execution of For ei gnScan operations under Mer geAppend, controlled by the enable a-
sync_merge_append parameter, which is enabled by default. If the operations under Mer geAppend support asynchronous
execution, requests are sent asynchronously at the start of the Mer geAppend operation, and the results are cached as they are
received. These cached results are then used, just as they would be in synchronous Mer ge Append, for merge sorting.

Implemented the ability to use sorting on the remote server if it allows performing Mer geJoi n or Mer geAppend opera-
tions. Thisis controlled by the postgres fdw.additional _ordered paths parameter, which is enabled by default in new installa-
tions but must be explicitly enabled in upgraded clusters.

Added support for the limit clause pushdown under Appendand Mer geAppend when thereisa Sor t plan node between
LI M T and Append. It is possible when rows in subplans of Append/Mer geAppend are aready sorted in the necessary or-
der.

Sped up | NSERT, UPDATE, and DEL ETE operations with global tables. Added the shardman.gt_batch_size configuration pa-
rameter that specifies the buffer size for | NSERT and DELETE commands executed on global tables.

Added alimitation on creating sharded and local partitioned tables based on the same attribute.
Added a new shardman.broadcast_query function that returns an executed SQL st at enent results.

Added anew field CSNXi dvap_| ast _tri mtotheshar dman. pg_st at _csn view that shows the last time when the
shardman. tri m csnxi d_map() function was called.

Improved the state consistency checks for the shardman application.

Fixed an issue with inappropriate resource all ocation, which could cause errors in some corner cases when tuples were spilled
to disk.

Fixed abug in pg_rewind that previously resulted in the former primary server full resync on replica promotion.

Upgraded supported version of pgpro_pwr to 4.7.

A.7.2. Management Utilities

Added logging of the updated parametersin caseit resultsin post gr esql restart.

218

Release Notes

e Improved the logic for obtaining the state of the PostgreSQL instance.
* Improved shardmand log messaging.
» Fixed abug that previously resulted in the shardmanctl psgl command failure.

» Added support for compression level values depending on the compression algorithm when creating a backup with shard-
manctl probackup backup.

» Updated the shardmanctl benchmark with a new dependency between the pgbench_br anches number of records and the
number of nodes. This allows a better distribution of data between nodes.

e Added the shardmanctl shard reset command that resets nodes of areplication group if they are in a state of hanging.
» Added the shardmanctl daemon set command that allows updating the log parameters without restart.

A.8. Postgres Pro Shardman 14.13.3

Releasedate: 2024-10-28

This release provides new features, optimizations and bug fixes. Mgjor changes are as follows:

A.8.1. Core and Extensions

» Added configuration parameters to enable getting information on crashes of a backend. The crash_info parameter turns on this
functionality, while crash_info_dump and crash_info_location specify the contents and location of crash information files, re-
spectively.

A.8.2. Management Utilities

» Fixed abug that affected switching from primary to replica server in cases when attempts to receive server configuration para-
meters failed.

A.9. Postgres Pro Shardman 14.13.2

Releasedate: 2024-10-22

This release provides new features, optimizations and bug fixes. Mgjor changes are as follows:

A.9.1. Core and Extensions

» Added anew configuration parameter shar dman. si | k- f | ow cont r ol that controls the mode of handling read events.
It has three possible values: none, r ound_r obi n,andshortest _job_first.

» Added the shardman.pg_stat foreign_stat_bytes view that shows the amount of statistics for foreign relations transferred over
the network between Shardman cluster nodes. Also added the corresponding global view shar dman. gv_stat _f or -
ei gn_byt es.

» Added anew configuration parameter shar dman. sync_cl ust er _set ti ngs that enables cluster-wide synchronization
of configuration parameters set by user.

* Added anew configuration parameter shar dman. sync_cl ust er _setti ngs_bl ackl i st that excludes the options
not to be propagated to a remote cluster.

e Added anew configuration parameter enabl e_sqgl _func_cust om pl ans. If enabled, custom plans can be created to
run SQL functions. Enabled by default for the new clusters and disabled for the old ones.

» Fixed abug that previously resulted in shardmand hanging in case an etcd cluster looses quorum.

* Allowed ALTER COLUMN SET STATI STI CSfor global and sharded tables.

» Introduces the limitation for the privilege management per columns that is not supported for global tables.
» Introduced alimitation that global tables cannot inherit other tables.

» Removed the limitation for using of DEFERRABLE constraints for global tables that is now allowed.

219

Release Notes

Added anew field CSNXi dMap_| ast _tri mtotheshar dnan. pg_st at _csn view that shows when the most recent
shardman. tri m csnxi d_nmap() function was called.

A.9.2. Management Utilities

Added the shardmanctl psgl command that creates a connection to the first available master node if no options are specified. If
- - shar d is specified, the connection is installed with the shard current master.

Enabled thel z4 compression method for the def aul t _t oast _conpr essi on.

Fixed a bug that previously resulted in afailure of the shardmanctl probackup checkdb command when a custom port was
specified in Shardman configuration.

Fixed a shardmand bug that previously resulted in the application failing with PANIC-level error in case of insufficient access
rightsto the Dat aDi r directory.

Fixed a bug that previously resulted in primary server switching to areplica after restart. Also, added a new option - - no-
wai t totheshar dmanct| restart command (disabled by default).

A.10. Postgres Pro Shardman 14.13.1

Releasedate: 2024-09-12

This release provides new features, optimizations and bug fixes. Major changes are as follows:

A.10.1. Core and Extensions

Added a possibility to push down thejoinslike JO N UNI QUE | NNER to aremote server.

Added the shardman.pg_stat_monitor view showing metrics of the Shardman monitor; shardman.pg_stat_net_usage view
showing the cumulative network traffic between Shardman cluster nodes; and shar drman. gv_I ock_gr aph view that dis-
plays a graph of locks between processes on Shardman cluster nodes including external locks.

Added the shardman.oldest_csn view that showstuplecsn, xi d, and r gi d containing CSN and XID of the oldest transaction
in the cluster, along with transaction's replication group number.

Added thecsn_nax_snapshot _shi ft configuration parameter that enables checking the imported snapshotsin pg_c-
sn_snapshot _i nmport ().

Introduced new limitations on the types of tablesthat can beincluded in logical replication.
Upgraded supported version of pg_probackup to 2.8.3.

A.10.2. Management Utilities

Updated the text of the messages sent when trying to get the topology configuration sent by theshar dnanct| cl ust er
t opol ogy command on an uninitialized cluster, as well aslowered the logging level for this case.

Fixedtheshar dmanct | bench run command to avoid long delays before its execution.

Addedtheshar dnmanct| confi g update credenti al s command that updates password or certificate/key of a user
to connect to a Shardman cluster.

Addedtheshar dmanct| config revisions,shardmanct!| config roll back,shardmanct|l config
revi sions rmandshardmanct!| confi g get commands, and added to the console output the information about the
host from which the appropriate command was executed and the user who executed it.

e Theshardmanct| config roll back command makesarollback of Shardman to one of the previous states of
Shardman cluster configuration. This command has the replicas reinitialized when rolling back to the config revision that
hasmax_connecti ons, max_prepared_t ransacti ons, or max_wor ker _processes parameters.

e Theshardmanct| config revisi ons command outputsr evi si on_i d that isthe timestamp of the command
that resulted in the Shardman configuration change, host that isthe host from which the appropriate command was exe-
cuted, user that isthe user who executed the command, and comand that is the command itself.

e Theshardmanct| config revisions set command allows setting the length of the configuration revision his-
tory. Added a hard lower limit on the revision history length of a Shardman cluster configuration. This value cannot be

220

Release Notes

lower than 5. For clusters where the configuration revision history was not tracked, the length is automatically set to the
default value of 20.

e Theshardmanct| config get command outputsthe current full cluster specification or the configuration of the
specified revision. The - - choose- r evi si on option enables an interactive mode of choosing the configuration of the
specified revision.

e Theshardmanct| config revisions rmcommand deletes a specified configuration revision from the history.

Modified the role descriptionin sdims pec. j son.

A.l11. Postgres Pro Shardman 14.12.2

Release date: 2024-08-01

This release provides new features, optimizations and bug fixes. Mgjor changes are as follows:

A.11.1. Core and Extensions

Added a possibility to create aglobal or sharded table like another global, sharded or local table. Creation of atable likealo-
cal table currently has certain limitations.

Fixed processing of thel F NOT EXI STS parameter of the CREATE TABLE command for sharded and global tables. Ear-
lier atable with an incorrect structure could be created if a partitioned table with the same name existed on one of the cluster
nodes.

Changed the default value of the num_parts storage parameter to 24 to achieve a more even data distribution for 2, 3, 4, 6, and
8-node clusters.

Added enable_merge append configuration parameter that enables or disables the use of Mer geAppend plans by the query
planner. Specifically, this allows disabling the use of these plans when they are too expensive.

Added the pgpro_stats.track_shardman_connections configuration parameter that enables or disables Shardman-specific state-
ment processing.

Enabled pushing down join queries with VALUES to aremote server.
Removed alimit of about 64K on the number of tablesin aquery.

Added theshar dman. pg_stat nonit or view that provides statistics on the work of the distributed deadlock detector
and of the prepared transaction resolution services.

Added theshar dman. gv_st at s_sdm st at enent s global view that allows accessing the aggregated statistics for the
distributed queries.

Updated the pgpro_statspgpr o_st at s_sdm st at enent s view to only contain statistics on queries involving sharded ta-
bles.

Upgraded supported version of pg_probackup to 2.8.2.

A.11.2. Management Utilities

Implemented the ability to backup clusters with tablespaces. Now the tablespaces are located under the backup directory.

Enabled shar dmanct | probackup restore afully/partially working cluster from a backup made on a partially working
cluster.

Added the - - no- wai t option for theshar dnmanct| shard add command that sets shardmanctl not to wait for the
shard to start and lifts the lock on other commands.

Added the s| - - scal e option for theshar dmanct | bench run command. It multiplies the number of generated rows
by the scale factor.

Added theshar dmanct| scri pt command that executes non-transactional commands from afile or from the com-
mand-line on the specified shards.

Updated the sdnspec. j son configuration file generated by theshar dmanct | confi g gener at e command to ex-
clude the parameters that depend on the hardware resources and the workload on the cluster node. These parameters are now

221

Release Notes

set to their default values. Previously, cluster initialization could fail on nodes with lower capacity due to setting these values
too high.

Enabled restoring other clusters from a cluster backup if they have the same topology. Added the shar dmanct| confi g
updat e i p command that updates the specified node IPsin the cluster.

Addedthe- - | og- f or mat option to shardmand that specifies the log output format, j son or t ext .

A.12. Postgres Pro Shardman 14.12.1

Release date: 2024-06-06

This release provides new features, optimizations and bug fixes. Mgjor changes are as follows:

A.12.1. Core and Extensions

Added the new REMOTE parameter of EXPLAI N, enabled by default, which alows the EXPLAI N output for queries executed
on foreign servers.

Implemented a Shardman-specific estimation logic for plan costs. It may help the planner choose generic plans more often
when the overall shape of ageneric plan is similar to that of a custom plan.

Added support for initial pruning of foreign aggregate plan nodes.

Added cumulative metrics for the network traffic between Shardman cluster nodesin the shar dnman. pg_st at _net usage
view.

Updated thepg_stat _acti vi ty view to show the status of the monitor's worker processes.

A.12.2. Management Utilities

Prevented the CVE-2023-45288 and CV E-2023-44487 vulnerabilities.
Fixed abugintheshar dmanct | cl eanup command that could make it impossible to delete replication groups.
Improved the output of theshar dmanct | foral | command in the cases where the result is empty.

Fixed shardmand failures that could occur when the Shardman cluster was underconfigured.

A.13. Postgres Pro Shardman 14.11.2

Release date; 2024-04-18

This release provides new features, optimizations and bug fixes. Mgjor changes are as follows:

A.13.1. Core and Extensions

Added the foreign_analyze interval setting, in seconds, indicating how often to gather foreign statistics during autovacuum.

Added a possibility to create aforeign key between a sharded and a global table or between two global tables with the ON
DELETE CASCADE action.

Added support for Mer geAppend node pruning in generic plans.
Added support for a pushdown (remote execution) of t o_t i nest anp() functions.

Implemented global views. Fetching from a global view returns a union of rows from the corresponding local views with the
rows fetched from each of the local view cluster nodes.

Added a description of Silk multiplexer diagnostics views.
Improved error messages related to updating cluster parameters.

A.13.2. Management Utilities

Added the- - no-val i dat e and - - ski p- bl ock-val i dati on flagstotheshar dnmanct| probackup restore
command.

222

Release Notes

Improved the process of r est or e to acluster compatible with the source one.

Added theshar dmanct| probackup checkdb command to verify the Shardman cluster correctness by detecting phys-
ical and logical corruption.

Enabled shardmanctl set and confi g updat e commands to work on a cluster that was stopped using shar dnmanct |
st op.

Added the- - al | flagtotheshardmanct| get connstr command to add information on replicas to the command out-
put.

Added new commandsnodes st art,nodes restart andnodes st op for nodes, aswell asst art and st op for
shards to shardmanctl.

Extended permissions for the shardmand data directory.

A.14. Postgres Pro Shardman 14.11.1

Releasedate: 2024-03-14

This release provides new features, optimizations and bug fixes. Major changes are as follows:

A.14.1. Core and Extensions

Enhanced the pgpro_stats extension to give a better understanding of what system resources are used for distributed queries.
Now theregular pgpr o_st at s_st at ement s view shows the gathered statistics for individual statements on the current
Shardman node (they can be part of some distributed query), whilethe pgpr o_st at s_sdm st at enent s view shows the
gathered statistics for the distributed queries originating from the current node, that is, aggregated from all the participating
nodes.

Added the pgpro_pwr package compatible with Shardman. This allows Shardman users to build workload reports.

Improved the EXPLAI Noutput. If aquery plan contains For ei gnScan nodes, the EXPLAI N output for queries executed on
the remote server can now be included.

Added anew configuration parameter enabl e_partiti on_pruni ng_ext r a that enables extended subplan pruning log-
ic when building and executing generic plans where the set of useful partitions depends on the prepared query parameters. This
alows Shardman to do initial pruning of complex subplans, joins and partial aggregates, in particular.

Added metricsto the shar dmain. pg_st at _csn view that show delays of the global horizon and the transaction that may
cause that delay. They may be useful to research autovacuum issues.

A.14.2. Management Utilities

Considerably improved backup and restore with the shar dmanct | pr obackup command. Notable changes are as fol-
lows:

* Added support of backupsto an S3-compatible object storage.
* Implemented selective WAL archiving on the specified shards by the pr obackup subcommand.

e Added two new commandsshar dmanct| probackup del et e andshar dmanct| probackup nerge. The
del et e command deletes a backup with a specified ID and the archived WAL filesthat are no longer in use. The mer ge
command merges the backups that belong to a common incremental backup chain.

e Added new shardmanct| probackup set-confi g command that adds the specified settingsto the
pg_probackup. conf or modifies the existing ones.

e Addedanew option| og-t o- consol e for theval i dat e subcommand. Set the log rotation file size to 20 MB. If this
valueisreached, thelog file isrotated once aval i dat e or backup subcommand is launched.

* Increased the number of retries for some subcommands to avoid backup failures caused by large database sizes.

e Added topology compatibility checks between the current Shardman cluster and the one in the backup directory to back-
up and r est or e subcommands.

e Set the default value for the number of concurrent pg_probackup processes to the number of logical CPUs of the system.

223

https://postgrespro.com/docs/enterprise/14/pgpro-pwr

Release Notes

» Fixed data cleanup after afailure of abackup subcommand. Previously, some data of afailed backup could still remain
in the repository.

« Fixed hanging that could occur during metadata-only restore of a Shardman cluster.
« Fixed the pg_probackup issue that could occur during the schema recovery process.

e Changed the behavior of metadata-only restore to avoid losing a cluster. Now the cluster is stopped before such arestore
and restarted after it, a cluster that has no nodes cannot be restored from the etcd dump, and if cluster I1Ds of the dump and
the current cluster are different, the user is asked whether restoring the cluster with the changed ID is OK.

e Added new optionsfor ar chi ve- command: - - conpr ess, - - conpress-al gorithm--conpress-1evel,--
bat ch-si ze,and-j | - - j obs. Thishelpsto reduce the WAL size.

* Improved the show subcommand output. Added new flags - ar chi ve to output the log information, - i nst ance and -
i | --backup-i d tooutput information for the specified backups and instances.

Updated theget connstr andcl ust er topol ogy commands so that they do not issue alock on other processes. Previ-
oudly, some commands failed to receive a connection string because of the locks.

Fixed a panic that could occur on a Shardman cluster configured with Pl acenent Pol i cy = manual when auser executed
thecommand shar dmanct| cluster repfactor set.

Hid uninformative warnings that pg_dump displayed during execution of shar dnanct| nodes add andshar dmanct |
probackup backup commands.

Removed alock that was required by the shar dmanct | st at us command. Previously shar dmanct | st at us did not
provide any useful information in case a process hung as it was waiting for the lock from that process.

Added thef or ceSuUser Local Peer Aut h configuration parameter. When enabled, it sets a peer authentication via unix
socket for thepost gr es user unlessstri ct User HBAissettot r ue. See sdmspec.json for details.

Added a URL for Prometheus automatic service discovery metrics to shardmand.

A.15. Postgres Pro Shardman 14.10.3

Release date: 2024-02-02

Thisrelease is based on Shardman 14.10.2 and provides optimizations and bug fixes. Mgjor changes are as follows.

Fixed an issue that prevented Shardman from working with pg_probackup when PostgresSQL ran on port different from
5432.

Fixed Shardman to enable pg_probackup run on anode that is not in the Shardman cluster.

Fixed hanging of shar dmanct | pr obackup rest or e that took place in some cases.

Added cleanup of the backup directory in case of ashar dmanct| probackup i nit falure

Improved error handling of pr obackup backups. Now if a backup fails on one shard, it gets terminated on the others.

Improved the behavior of shar dnmanct | probackup showto display a message informing of no backups when the
backup_i nf o fileismissing.

A.16. Postgres Pro Shardman 14.10.2

Release date; 2024-01-25

Thisisthefirst public release of Shardman software. It is shipped as packages with Shardman DBM S and management utilities.

Shardman DBM S is based on PostgreSQL with additional patches where most of the functionality isimplemented in shardman and
postgres fdw extensions.

Major features are as follows:

Distributed ACID transactions.
Distributed DDL to manage cluster-wide objects, including sharded and global tables, sequences and users.

224

https://postgrespro.com/docs/postgrespro/14/app-pgprobackup
https://postgrespro.com/docs/postgresql/14/postgres-fdw

Release Notes

« Efficient multiplexing transport for intercluster communication.

» Efficient distributed query planning and execution.

e Automatic resolution of prepared transactions and distributed deadlock detection.

e Aggregation of distributed statement statistics and internal network metricsin pgpro_stats extension.
e Support for global tablespaces and Compressed File System (CFS).

Management utilities are implemented as shardmand service and shardmanctl tool. They use third-party etcd service to store
global cluster configuration and exchange information.

Major features are as follows:

» Initial cluster configuration and setup.

» Managing and displaying the current configuration of shards and replicas.

» Updating and setting parametersin the cluster.

» Ensuring fault tolerance and high availability of shards.

» Consistent data backup and restore (pg_basebackup and pg_probackup support).
* Fast dataload and automatic schema migration.

* Benchmarking tools.

* Updating database metadata on DBM S updates.

225

https://postgrespro.com/docs/postgrespro/14/pgpro-stats
https://postgrespro.com/docs/postgrespro/14/app-pgbasebackup
https://postgrespro.com/docs/postgrespro/14/app-pgprobackup

Appendix B. Glossary

Thisisalist of terms and their meaning in the context of Shardman. For terms that are used in this document in the general context
of PostgreSQL and relational databases, see PostgreSQL Glossary.

ACID

Clover

etcd

Global role
Global user

Replication group

Shard

Sharded table

Sharding

Silk (Shardman InterLinK)

stolon

syncpoint

Atomicity, Consistency, Isolation and Durahility. This set of properties of database transactions
is intended to guarantee validity in concurrent operation and even in event of errors, power
failures, etc. For more information, see PostgreSQL Glossary.

A set of nodes where each node holds a PostgreSQL instance that is the master for one of the
replication groups and PostgreSQL instancesthat are replicasfor al the other replication groups.
Thetotal number of nodesin aclover is equal to the replication factor.

A distributed reliable key-value store for the most critical data of a distributed system. For more
information, see etcd home page.

A role such that operations on it are always performed on al replication groups simultaneously.
A user such that operations on it are always performed on all replication groups simultaneously.

A stolon cluster with one master and one or more replicas. Replication groups are organized in
Clovers. Shardman utilities often refer to replication groups as "repgroups’.

In Sharding, some table partitions located on one node being the master for them.

A partitioned table where some partitions are regular local tables that make up a Shard and the
other partitions are foreign tables available from remote serversviapost gr es_f dw.

A database design principle where rows of atable are held separately in different databases that
are potentially managed by different DBMS instances.

Experimental transport that can be used in a Shardman cluster for communication between
nodes.

A cloud native PostgreSQL manager for PostgreSQL high availability. For more information,
see stolon on github.

A set of consistent LSNsin a cluster corresponding to a global snapshot.

226

https://postgrespro.com/docs/postgresql/14/glossary
https://postgrespro.com/docs/postgresql/14/glossary#GLOSSARY-ACID
https://etcd.io
https://github.com/sorintlab/stolon

Appendix C. FAQ

C.1. General Questions

C.1.1. What is Shardman?

Shardman isaPostgreSQL -based di stributed database management system (DBM$S) that implements sharding. Sharding isadatabase
design principle where rows of atable are held separately in different databases that are potentially managed by different DBMS
instances. The main purpose of Shardman is to make querying sharded distributed databases efficient and ease the complexity of
managing them.

C.1.2. What does Shardman consist of?
Shardman is composed of several software components:
» PostgreSQL 14 DBMS with a set of patches.

e Shardman extension.

* Management tools and services, including built-in stolon manager to provide high availability.

C.1.3. When to use Shardman?

» Theworking volume of data does not fit in the RAM of one server, but several shards can fit (or at least reading is paral-
lelized).

» Number of sessionsistoo large for one instance of PostgreSQL.
* Intensive writing to WAL takes place.

» Complex logic consuming too much CPU, and one server is not enough.

C.1.4. When is Shardman not appropriate?

» If the memory, session, CPU load can be pulled by a single PostgreSQL server, thiswill be both faster and simpler. (This ap-
pliesto testing too!)

C.1.5. How many nodes does it take to deploy Shardman?

A minimum of three nodes are required to deploy Shardman. One node is required for an etcd cluster (single-node etcd cluster),
and a minimum of two nodes is required for the RDBMS cluster. It is possible to reduce the minimum deployment to two nodes by
placing etcd on one of the RDBM S cluster nodes. The minimal deployment is described in section Get Started with Shardman.

C.1.6. Does Shardman support fault tolerance?

Y es, Shardman is fault-tolerant at the level of each shard. Each shard is afault-tolerant cluster.

C.1.7. How is sharding structured?

In Shardman, tables are divided into partitions, and the partitions are distributed between shards.

C.1.8. Is it possible to change the number of partitions?

No, the number of partitions of sharded tables is set when creating them and remains unchanged. If you expect that the amount of
data you have will grow significantly, you should create the necessary number of partitions (by default - 20) in advance.

C.1.9. Does Shardman support resharding?

No, Shardman currently does not support automatic change of asharding key. In order to change the sharding key, you need to create
new tables with a new sharding key and migrate data from old tables to new ones.

227

FAQ

C.1.10. Is it possible to convert an unsharded (local) table to a sharded one?

No, Shardman currently does not support this feature.

C.1.11. Does Shardman support adding and removing shards?

Minimally a Shardman cluster can consist of a single node without fault tolerance, but such a configuration makes little sense. You
can add or remove shards, Shardman will automatically (by default, thisis adjustable) redistribute data between nodes. Replicas can
be added to Shardman, then shards will be fault-tolerant.

C.1.12. What is the status of data balancing?
When adding new shards, data will be redistributed between all shards, including new ones.

C.1.13. How is a Shardman cluster accessed?

Shardman can be accessed through any nodein the cluster, all nodesin the cluster are equal . Use the shardmanctl getconnstr command
to get the cluster connection string.

C.1.14. How is balancing between cluster nodes implemented?

There is no built-in balancing solution at the moment. But you can organize balancing at the application level, for example, see
JDBC driver options (I oadBal anceHost s). For libpg, this functionality will be implemented in PostgreSQL 16 release.

C.1.15. Is mass data loading supported in Shardman?

Y es, this functionality is built in the management utility, see shardmanctl load.

C.2. Databases

C.2.1.Is it possible to create multiple databases in a Shardman cluster?

For now, sharding works only for a database named post gr es (default), creating other databasesisin devel opment.

C.3. Tables

C.3.1. What kind of tables are there in Shardman?
In addition to local table types Shardman supports distributed tables. global and sharded.

C.3.2. What are global tables?

A global table in Shardman is a table that has the same schema and contents on all shards in the cluster. Global tables are created
asfollows:

CREATE TABLE g(id bigint PRIMARY KEY, t text) WTH(gl obal);

A copy of such atable is created on each shard. Data replication of global tables is based on triggers. When data is inserted into
such atable on any node of the cluster, data replication to other nodes occurs. When creating aglobal table, it is necessary to specify
non deferrable primary key.

C.3.3. What are global tables suitable for?

Global tables are suitable for directories and other relatively small and infrequently modified tables. Global tables are NOT suitable
for storing large amounts of dataand for intensive | NSERT/UPDATE/DEL ETE workload, especially with highly competitive access
(storefronts, queues, etc.)

C.3.4. What are sharded tables?

Sharded tables are tables whose parts are hosted on different shards. Each shard stores its own piece of data from such atable. A
sharded table can be created as follows:

228

https://jdbc.postgresql.org/documentation/use/

FAQ

CREATE TABLE ... WTH(distributed_by = 'colum_nane', numparts =
nunber _of partitions);

Where:

di stri but ed_by — table field being the sharding key,

num parts — (def aul t = 24) number of partitions into which the tableisinitially divided.
These parts are then distributed to shards.

C.3.5. Which partitioning parameters are optimal when creating a sharded table?

The number of partitions should be not less than the number of shardsincluding the shards that can be added later. In general it may
be a number with quite a few divisors like 12 or 24, so you can evenly divide the table into 2, 3, 4 or 6 shards. Large amount of
partitions adds overhead on planning and execution, so it is preferable to keep it reasonable.

C.3.6. What are colocated tables?

Colocated tables are used when atable is often joined with another sharded table (usually by foreign keys) and therefore it is better
to physically place their parts on the same shards.

C.3.7. How to create a colocated table?

CREATE TABLE ... WTH(distributed by = 'colum_name', numparts = nunber_of partitions,
colocate with "distributed table');

Here:

di stri buted_by
table) being created,

' col utm_name' — the name of the sharding key asit is called in the colocated table (not the col ocating

colocate with = 'distributed_tabl e — thename of thetablewith which you want to colocate parts of the colocated
table.

C.3.8. What are local tables?
A local tableis atable only hosted on the shard where it was created.

C.3.9. Areforeign keys supported in Shardman?

Foreign keys are allowed in Shardman but with some limitations:

* Onglobal tables, both from sharded tables and from other global tables
» Between sharded colocated tables.

Foreign keys are NOT allowed:

» Fromglobal to sharded tables
» Between sharded tables if they are not colocated.

C.4. Sequences

C.4.1. Are global sequences supported in Shardman?

Yes, they are supported. However, there are specifics of their work that should be taken into account. Under the hood of global
seguences, there are regular sequences on each shard, and they are allocated by sequentia blocks (of 65536 numbers by default).
When numbers are passed to the sequence, the local sequential block isgiven to the local sequential block on the shard. I.e., numbers

229

FAQ

from the global sequences are unique, but there is no strict monotony (unlike in PostgreSQL). Well, there may be "holes" in the
values given by the sequencer.

C.4.2. How to create a global sequence?
CREATE SEQUENCE ... WTH (GLOBAL);

Thenext val function can be used to fetch the next value of a sequence:

SELECT nextval ('acl __id_seq'::regclass);

Datatypes bi gseri al , smal | seri al , and seri al (for automatic creation of sequences and output of default values from
it) are implemented and work for both sharded and global tables. It is recommended to use bi gseri al unless there are special
requirements.

C.5. User Management

C.5.1. Does Shardman support global user roles?

Yes, global user roles are supported.

C.5.2. How do | create a global user in Shardman?

postgres=# create role ny _user with login password 'ny_user123' in role gl obal;
CREATE ROLE

C.5.3. How do | grant permissions to a global user?

The following commands can be run on one shard and will be cascaded to the other shards automatically:

GRANT\ REVCKE
CREATE ROLE ... I N ROLE GLOBAL / ALTER ROLE (for global role)

post gres=# grant CONNECT on DATABASE postgres TO ny_user;
GRANT ROLE
post gres=# grant pg_nonitor TO ny_user;
GRANT ROLE
post gres=# \du
Li st of roles
Rol e nane | Attributes | Menber of

my_user

| {p
postgres | Superuser, Create role, Create DB, Replication, Bypass RLS | {}
repluser | Replication | {}

Thelist of cascadable commandsis being finalized and will be changed in future versions of Shardman.

C.6. Useful Functions and Tables

C.6.1. How do | see which tables and sequences are distributed?

Here are lists of some useful internal Shardman tables.

» shardman. sequence — thelist of global sequences
e shardman. sharded_t abl es — thelist of sharded tables

230

FAQ

e shardman. gl obal _t abl es —thelist of global tables
For example:

post gres=# sel ect * from shardman. sequence,;

segns | seqnane | seqnmin | seqmax | segbl k
-------- Ty
public | s | 1| 9223372036854775807 | 65536
(1 row)
post gres=# select * from shardman. sharded_t abl es;
rel | nparts | colocated with | relname | nspnane
------- e S T
16648 | 20 | | d | public
16741 | 20 | 16648 | c | public
(2 rows)

post gres=# select * from shardman. gl obal _t abl es;
relid | main_rgid | relname | nspnane

16636 | | 9 | public
(1 row)

C.6.2. How do | execute some SQL command on all nodes in the cluster?

To do this, usethe shar dman. br oadcast _al | _sql function and shardmanctl f or al | option. For example:

post gres$ shardnanct! forall --sql "select nane,setting from pg_settings where nane =
' max_connections'"

SQL: select nane,setting frompg_settings where name = 'nax_connecti ons

Node 1 says:

[max_connecti ons 90]

Node 2 says:

[max_connecti ons 90]

C.6.3. How do | get Shardman configuration parameters on a selected node?

The standard SHOWcommand can be used to obtain Shardman-specific parametersthat arelisted inthesect i on.

Besides, you can use shardmanctl conf i g get command to obtain cluster configuration from etcd. Y ou can view the parameters,
but it is better to customize them after consulting with Posgres Pro engineers.

C.6.4. How do | update Shardman configuration parameters?

Y ou can use shardmanctl conf i g updat e functionality, see an example.

C.7. Disaster Recovery Cluster Requirements

The underlying functionality is under development. For the production usage contact Support.
C.7.1. Terms and Abbreviations

DB — Database.

DBMS — Database management system.

DC — Data center.

MDC — Main data center.

231

FAQ

BDC — Backup data center.
HaC — Hight availability cluster.

DRC Disaster — recovery cluster.

C.7.2. High-level Description of the DRC

MDC hosts the main cluster shards and the etcd cluster. Shards are high-availability clustersthat consist of two nodes with Postgres
Pro DBMS instances, one as a primary node, one as a synchronous standby. Every shard has the shardmand service running that
checks the Postgres Pro DBMS instances and exchanges the information with the etcd cluster, thus providing Shardman clustering.
The etcd cluster consists of three nodes that ensures a quorum.

Toensuredisaster recovery, the customer’ sBDC must host anidentical cluster with theidentical configuration and set of components.
By default, the standby Shardman cluster nodes are disabled. A continuous logs delivery from MDC to BDC is asynchronous and
uses the physical replication mechanisms. It is based on the standart Shardman utility pg_receivewal. It writes WAL s to the default
instance directory SPGDATA/ pg_wal . This utility is managed by the cluster software. When a syncpoint is detected under the
standby etcd cluster, a standby Shardman cluster nodes are started by shardmand. It resultsin WAL update till LSN received from
the syncpoin. In different DCs the etcd clusters are isolated, therefore, to distribute the syncpoint updated information, a script is
periodically run from the MDC to BDC etcd.

C.7.3. Replication Topology
Streaming physical replication is provided:
e From the Postgres Pro DBMS shard nodes to MDC (synchronous)
» From the Postgres Pro DBMS shard nodes to BDC (synchronous)
» From the Postgres Pro DBMS shard nodes to DC (asynchronous)

C.7.4. Hardware and Network Requirements
MDC and BDC hardware must have identical system resources and configuration for all the DRC components.
DCsmust be connected with fiber optic network with the capacity not lessthan 20 Gbit per second. A backup channel isalso required.

C.7.5. Replication Mechanisms

To provide high-availability and disaster recovery clusters Shardman uses the Postgres Pro built-in streaming physical replication
mechanism, for BDC it is also asynchronous.

Automatic recovery of ahigh-availability Shardman cluster is ensured by the cluster software.
DRC cluster recovery isonly provided in manual semi-automatic mode.

C.7.6. Monitoring and Management

Shardman cluster monitoring and management is provided within one DC with the shardmanct! utility.

C.7.7. Security

C.7.7.1. Encrypting Data Across A Network (TLS/SSL)
A secure channel between DCsis required.

C.7.7.2. Inter-nodes Authentication and Authorization

I nter-nodes authentication and authorization is ensured by the built-in Postgres Pro DMBS tools.

C.7.7.3. Protection from Unauthorized Access to Standby Servers

Protection from unauthorized access to standby serversis provided by the operation system and network tools.

232

FAQ

C.7.8. QA and Rollback

It is recommended to do periodical switchovers.

C.7.8.1. Data Integrity Check After Failover
Dataintegrity check after afailover is provided by the backup utility shar dnmanct| probackup.

C.7.8.2. Switchover to BDC

Should the MDC fail, the administrator must make sure it is, indeed, unavailable and initiate the promote of the standby nodes.
The standby cluster upgrades its state from st andby to mast er . This processis only initiated and managed by the shardmanctl
utility, no other procedures required.

C.7.8.3. MDC Recovery

To recover remote nodes to the MDC, create a backup of the main cluster and restore it on these nodes. The backup can be either
created as a cold backup or with the pg_probackup repository. Both options require a backup recovery to the MDC. Oncethe DB is
restored from the backup, run pg_receivewal that connects to a special primary or standby shard replication slot in the BDC, then it
receives WAL segments asynchronously and writes to the $PGDATA/ pg_wal directory of the main node.

In the BDC cluster, a script creates a syncpoint each specified period of time. It is written to the BDC etcd and sent to the MDC
etcd. Once asyncpoint isin etcd, the MDC stanby cluster nodes check if aWAL with thisrecord is received. If it isreceived by all
the MDC standby cluster nodes, the cluster software initiates the DBMS server startup in the recovery with WAL mode until the
syncpoint. Oncethe syncpoint is reached, no more WAL s are applied. If al nodes successfully applied the WAL records, the DBMS
server is stopped, followed by another cycle of receiving WAL, syncpoint check and recovery mode.

C.7.8.4. Switching Back to MDC

To switch back to the MDC, create and transfer a cluster backup from BDSto MDC, run the nodes in the standby node mode. Once
the lacking WAL s are received, the BDC cluster nodes are stopped, and the MDC cluster nodes are promoted.

C.7.9. Backup in Geografically Distributed System

Withinthe GDS (Geografically distributed systemt), BDC cluster must have the storage for the backupsidentical to one of the MDC.
Regular syncing between the main and backup storage is also required.

C.7.9.1. Storing Backups in Geographically Distributed Storages
The period of time the backups are stored is defined by the backup policy.

C.7.10. Documentation and Regulations

For more information on disaster failover and normal switchover to MDC instructions, contact Prostres Pro Support.

233

Index

A

ALTER SEQUENCE, 104
ALTER TABLE, 105

C

colocate with storage parameter, 111

crash_info configuration parameter, 183
crash_info_dump configuration parameter, 183
crash_info_location configuration parameter, 183
CREATE SEQUENCE, 108

CREATE TABLE, 110

CREATE TABLESPACE, 114
csn_commit_delay configuration parameter, 182
csn_Isn_map_size configuration parameter, 182
csn_max_shift configuration parameter, 182
csn_max_shift_error configuration parameter, 182
csn_snapshot_defer_time configuration parameter, 182

D
distributed_by storage parameter, 111

E

enable_async_merge_append configuration parameter, 182
enable_csn_snapshot configuration parameter, 181
enable_custom_cache_costs configuration parameter, 181
enable_merge_append configuration parameter, 182
enable_non_equivalence filters configuration parameter, 190
enable_partition_pruning_extra configuration parameter, 183
enable sgl_func_custom_plans configuration parameter, 182

F

foreign_analyze interval configuration parameter, 182
foreign join fast_path configuration parameter, 183

G

global storage parameter, 107, 111
Global Viewsfor Statistics, 96
Globa Viewsfor System Calaog, 100

N
NETWORK EXPLAIN ANALY ZE parameter, 78
num_parts storage parameter, 111

O

optimize_correlated _subqueries configuration parameter, 183
optimize_row_in_expr configuration parameter, 191

P

partition_bounds storage parameter, 111

partition_by storage parameter, 111

pgpro_stats.enable inval_msgs counters configuration parame-
ter, 194

pgpro_stats.enable rusage counters configuration parameter,
195

pgpro_stats.enable wait_counters configuration parameter, 194
pgpro_stats.pgss max_nodes tracked configuration parameter,
194

pgpro_stats.track_sharded configuration parameter, 194
pgpro_stats.track_shardman_connections configuration parame-
ter, 195

pgpro_stats.transport_compression configuration parameter, 194
port configuration parameter, 183

postgres fdw.additional_ordered paths configuration parameter,
184

postgres fdw.enable_always shippable configuration parameter,
190

postgres fdw.enforce foreign_join configuration parameter, 184
postgres fdw.estimate as_hashjoin configuration parameter, 184
postgres fdw.foreign_explain configuration parameter, 184
postgres fdw.optimize_cursors configuration parameter, 184
postgres fdw.remote plan_cache configuration parameter, 190
postgres fdw.subplan_pushdown configuration parameter, 184
postgres fdw.use twophase configuration parameter, 184

R
REMOTE EXPLAIN parameter, 78

S

shardman-spec-config, 178

shardman.am_coordinator() , 86

shardman.attach_subpart , 85

shardman.broadcast_all_sql , 84

shardman.broadcast_ddl configuration parameter, 184
shardman.broadcast_query , 84

shardman.broadcast_sql , 84

shardman.context_|log configuration parameter, 183
shardman.create_subpart , 85

shardman.database configuration parameter, 189
shardman.detach_subpart , 85

shardman.drop_subpart , 86

shardman.enable_limit_pushdown configuration parameter, 185
shardman.get_partition_for_value, 85
shardman.global_analyze, 85

shardman.gt_batch_size configuration parameter, 190
shardman.gv_global_tables, 90

shardman.gv_sharded_tables, 90
shardman.monitor_deadlock_interval configuration parameter,
190

shardman.monitor_dxact_interval configuration parameter, 189
shardman.monitor_dxact_timeout configuration parameter, 189
shardman.monitor_interval configuration parameter, 189
shardman.monitor_trim_csnxid_map_interval configuration pa
rameter, 189

shardman.num_parts configuration parameter, 185
shardman.oldest_csn, 89

shardman.pg_indoubt_xacts, 88

shardman.pg_stat_csn, 87

shardman.pg_stat_foreign stat bytes, 89
shardman.pg_stat_monitor, 89

shardman.pg_stat_netusage, 89

shardman.pg_stat xact_time, 88

shardman.plan_cache_mem configuration parameter, 190

234

Index

shardman.query_engine_mode configuration parameter, 185
shardman.rgid configuration parameter, 185
shardman.silkroad_sched priority configuration parameter, 188
shardman.silkworm_fetch size configuration parameter, 186
shardman.silkworm_sched priority configuration parameter, 188
shardman.silk_backends, 92

shardman.silk_connects, 91

shardman.silk_flow_control configuration parameter, 188
shardman.silk_hello_timeout configuration parameter, 186
shardman.silk_listen ip configuration parameter, 186
shardman.silk_max_message configuration parameter, 186
shardman.silk_num_workers configuration parameter, 186
shardman.silk_pending_jobs, 94

shardman.silk_rbc_snap , 86

shardman.silk_routes, 90

shardman.silk_routing , 86, 92

shardman.silk_scheduler_mode configuration parameter, 187
shardman.silk_set_affinity configuration parameter, 188
shardman.silk_state, 96

shardman.silk_statinfo, 95

shardman.silk_statinfo_reset() , 86
shardman.silk_stream_work_mem configuration parameter, 186
shardman.silk_tracelog configuration parameter, 189
shardman.silk_tracelog_category configuration parameter, 189
shardman.silk_tracepoints configuration parameter, 186
shardman.silk_track_time configuration parameter, 188
shardman.silk_unassigned job_queue size configuration para
meter, 186

shardman.silk_use ip configuration parameter, 185
shardman.silk_use port configuration parameter, 186
shardman.sync_cluster_settings configuration parameter, 185
shardman.sync_cluster_settings blacklist configuration parame-
ter, 185

shardman.sync_schema configuration parameter, 185
shardman.trim_csnxid_map_naptime configuration parameter,
189

shardmanctl, 118

shardmand, 196

storage parameters, 107, 111

T

track_fdw_wait_timing configuration parameter, 190
track_xact_time configuration parameter, 190

235

	Postgres Pro Shardman 14.17.2 Documentation
	Table of Contents
	Chapter 1. Get Started with Shardman
	1.1. What is Shardman
	1.2. When to use
	1.3. Quickstart Guide
	1.3.1. Cluster Configuration
	1.3.2. Preparation
	1.3.2.1. Add host names to /etc/hosts
	1.3.2.2. Time Synchronization

	1.3.3. Deploy an etcd One-Node Cluster
	1.3.4. Deploy Shardman Nodes
	1.3.5. Initialize the Shardman Cluster
	1.3.6. Add Nodes to the Shardman Cluster
	1.3.7. Check the Shardman Cluster Status
	1.3.8. Connect to the Shardman Cluster
	1.3.9. Create Sharded Tables
	1.3.10. Example: Deploy a Multi-Node etcd Cluster

	Chapter 2. Manage
	2.1. Cluster Services
	2.2. Scaling the Cluster
	2.2.1. Adding and Removing a Node
	2.2.1.1. Cross Replication
	2.2.1.2. Manual Topology

	2.3. Rebalancing the Data
	2.3.1. Automatically Rebalancing the Data
	2.3.2. Manually Rebalancing the Data

	2.4. Analyzing and Vacuuming
	2.5. Access Management
	2.5.1. Cluster Initialization Settings Related to Access Management
	2.5.2. Managing Users and Roles
	2.5.3. Managing Permissions on Sharded Tables
	2.5.3.1. Examples

	2.6. Backup and Recovery
	2.6.1. Cluster Backup with pg_basebackup
	2.6.1.1. Requirements
	2.6.1.2. basebackup Backup Process

	2.6.2. Cluster Recovery from a Backup Using pg_basebackup
	2.6.3. Cluster Backup with pg_probackup
	2.6.3.1. Requirements
	2.6.3.2. pg_probackup Backup Process

	2.6.4. Cluster Restore from a Backup with pg_probackup
	2.6.5. Merging Backups with pg_probackup
	2.6.6. Deleting Backups with pg_probackup

	2.7. Configuring Secure Communications with etcd
	2.7.1. Generating SSL Certificates
	2.7.2. Configuring etcd and shardmand Services
	2.7.3. Using Shardman Tools

	2.8. Upgrading a Cluster
	2.8.1. Upgrade Packages
	2.8.1.1. APT-based Systems
	2.8.1.2. RPM-based systems

	2.8.2. Restart Shardman Services and Database Instances
	2.8.3. Upgrade the Extension

	2.9. Fault Tolerance and High Availability
	2.9.1. Timeouts

	2.10. Logging
	2.10.1. PostgreSQL Logs
	2.10.2. shardmand Logs
	2.10.3. Getting Information on Backend Crashes

	Chapter 3. Develop
	3.1. Migration of a Database Schema
	3.1.1. Database Source Schema
	3.1.2. Shardman Cluster Configuration
	3.1.3. Selecting the Sharding Key
	3.1.3.1. Naive1 Approach — ticket_no Sharding Key
	3.1.3.1.1. Creating the Schema Distributed by ticket_no

	3.1.3.2. Complex Approach — book_ref Sharding Key
	3.1.3.2.1. Modifying the Source Schema
	3.1.3.2.2. Creating a Schema Distributed by book_ref

	3.2. Data Migration
	3.2.1. Naive Approach
	3.2.2. Complex Approach

	3.3. Queries
	3.3.1. q1 Query
	3.3.2. q2 Query
	3.3.3. q3 Query
	3.3.4. q4 Query
	3.3.5. q5 Query
	3.3.6. q6 Query
	3.3.7. q7 Query
	3.3.8. q8 Query
	3.3.9. q9 Query

	3.4. Connecting and Working with a Shardman Cluster
	3.4.1. SQL
	3.4.1.1. Listing Global Tables
	3.4.1.2. Listing Sharded Tables
	3.4.1.3. Listing Global Sequences
	3.4.1.4. Finding the Shard Number from the Sharding Key Value
	3.4.1.5. Understanding How Partitions of Sharded Tables Are Distributed Across Shards
	3.4.1.6. Collecting Statistics

	3.4.2. psql/libpq
	3.4.3. Python
	3.4.4. Java
	3.4.5. Go

	Chapter 4. Additional Features
	4.1. AQO (Adaptive Query Optimization)
	4.2. CFS (Compressed File System)
	4.3. pgpro_stats (Planning and Execution Statistics)
	4.4. pgpro_pwr (Workload Reporting)
	4.5. pg_query_state

	Chapter 5. Performance Tuning
	5.1. Examining Plans
	5.1.1. EXPLAIN Parameters

	5.2. DML Optimizations
	5.2.1. DML Optimizations of Global Tables

	5.3. Time Synchronization
	5.4. Distributed Query Diagnostics
	5.4.1. Displaying Plans from the Remote Server
	5.4.2. Network Metrics and Latency
	5.4.3. Query Tracing for Silk Transport

	Chapter 6. Shardman Reference
	6.1. Functions
	6.2. pgpro_stats Functions
	6.3. Advisory Lock Functions
	6.4. Views
	6.4.1. Shardman-specific Views
	6.4.1.1. shardman.pg_stat_csn
	6.4.1.2. shardman.pg_indoubt_xacts
	6.4.1.3. shardman.pg_stat_xact_time
	6.4.1.4. shardman.oldest_csn
	6.4.1.5. shardman.pg_stat_monitor
	6.4.1.6. shardman.pg_stat_netusage
	6.4.1.7. shardman.pg_stat_foreign_stat_bytes
	6.4.1.8. Shardman-specific Global Views
	6.4.1.8.1. shardman.gv_sharded_tables
	6.4.1.8.2. shardman.gv_global_tables

	6.4.2. Multiplexor Diagnostics Views
	6.4.2.1. shardman.silk_routes
	6.4.2.2. shardman.silk_connects
	6.4.2.3. shardman.silk_backends
	6.4.2.4. shardman.silk_routing
	6.4.2.5. shardman.silk_pending_jobs
	6.4.2.6. shardman.silk_statinfo
	6.4.2.7. shardman.silk_state
	6.4.2.8. Notes

	6.4.3. Global Views
	6.4.3.1. Global Views for Statistics
	6.4.3.2. Global Views for System Calalog

	6.5. SQL Commands
	ALTER SEQUENCE
	Description
	Examples
	See Also

	ALTER TABLE
	Description
	Parameters
	Storage Parameters

	Examples
	See Also

	CREATE SEQUENCE
	Description
	Parameters
	Notes
	Examples
	See Also

	CREATE TABLE
	Description
	Parameters
	Storage Parameters

	Examples
	See Also

	CREATE TABLESPACE
	Description
	Parameters
	Examples
	See Also

	6.6. SQL Limitations
	6.6.1. ALTER SYSTEM Limitations
	6.6.2. ALTER TABLE Limitations
	6.6.3. CREATE TABLE Limitations
	6.6.4. DROP TABLE Limitations
	6.6.5. CREATE INDEX CONCURRENTLY Limitations
	6.6.6. UPDATE Limitations
	6.6.7. INSERT ON CONFLICT DO UPDATE Limitations
	6.6.8. Limitations of Managing Global Roles
	6.6.9. Limitations of User Mappings
	6.6.10. ALTER SCHEMA Limitations
	6.6.11. DROP SERVER Limitations
	6.6.12. Limitations of Using Custom Databases
	6.6.13. CREATE COLLATION Limitations
	6.6.14. Logical Replication Limitations
	6.6.15. Other Limitations

	6.7. Shardman CLI Reference
	shardmanctl
	Description
	Command-line Reference
	backup
	cleanup
	config update credentials
	cluster repfactor set
	cluster start
	cluster stop
	cluster topology
	daemon check
	forall
	getconnstr
	init
	intcheck
	load
	nodes add
	nodes rm
	probackup
	List of subcommands:
	init
	archive-command
	backup
	checkdb
	delete
	merge
	restore
	show
	show-config
	validate
	set-config

	rebalance
	recover
	restart
	shard add
	shard master set
	shard master reset
	shard add
	shard rm
	shard switch
	shard start
	shard stop
	shard replicas reinit
	nodes start
	nodes restart
	nodes stop
	status
	status transactions
	store dump
	store restore
	store lock
	store get
	store keys
	store set
	tables sharded info
	tables sharded list
	tables sharded norebalance
	tables sharded partmove
	tables sharded rebalance
	config get
	config revisions rm
	config update
	config rollback
	config revisions
	config revisions set
	config update ip
	set
	upgrade
	bench init
	bench run
	bench cleanup
	bench generate
	script
	psql
	daemon set
	history

	Common Options
	Environment
	Usage
	Adding Nodes to a Shardman Cluster
	Performing Cleanup
	Displaying the Cluster Topology
	Checking shardmand Service on Nodes
	Removing Nodes from a Shardman cluster
	Getting the Status of Cluster Subsystems
	Outputting the List of Unresolved Distributed Transactions
	Dumping All Keys from the Store to Debug Error Configuration
	Getting the Current stolon Specification
	Getting the Cluster and Ladle Key Names For the Current Cluster
	Output Current Cluster Meta Lock Information
	Setting a New Spec for the Cluster
	Backing up a Shardman Cluster
	Registering a Shardman Cluster
	Restoring a Shardman Cluster
	Backing up a Shardman Cluster Using probackup Command
	Restoring a Shardman Cluster using probackup command
	Reinitializing Replicas

	Examples
	Initializing the Cluster
	Getting the Cluster Connection String
	Getting the Cluster Status
	Rewriting stolon Specification
	Adding Nodes to the Cluster
	Removing Nodes from the Cluster
	Executing a Query on All Replication Groups
	Performing Rebalance
	Updating PostgreSQL Configuration Settings
	Performing Backup and Recovery
	Performing Backup and Recovery with probackup Command
	Loading Data from a Text File
	Loading data from PostgreSQL table
	Loading Data with a Schema from PostgreSQL
	Initialization and Running Benchmarks
	Benchmark Generation Scripts

	See Also

	sdmspec.json
	Description
	List of Parameters
	ShardSpec Parameters
	Shardman-specific PostgreSQL Settings
	Examples
	Spec File for a Cluster with Enabled scram-sha-256 Authentication
	Spec File for a Cluster with Enabled Certificate Authentication

	pgpro_stats parameters
	See Also

	shardmand
	Description
	Command-line Reference
	Common Options
	Environment
	Examples
	Configuring a shardmand Service
	Showing shardmand Logs
	Restarting Shardman Services

	See Also

	Chapter 7. Shardman Internals
	7.1. Table Types
	7.1.1. Sharded Tables
	7.1.1.1. Partitions
	7.1.1.2. Subpartitions

	7.1.2. Global Tables
	7.1.3. Distributed DDL

	7.2. Query Processing
	7.2.1. Push-down Technique
	7.2.1.1. Joins
	7.2.1.2. Aggregations
	7.2.1.3. Subqueries

	7.2.2. Asynchronous Execution
	7.2.3. Fetch-all Fallback

	7.3. Distributed Transactions
	7.3.1. Visibility and CSN
	7.3.1.1. CSN — Commit Sequence Number
	7.3.1.2. Commit Delay and External Consistency
	7.3.1.3. CSN Map
	7.3.1.4. CSN Map Trimming

	7.3.2. 2PC and Prepared Transaction Resolution

	7.4. Silk
	7.4.1. Concept
	7.4.2. Event Loop
	7.4.3. Routing and Multiplexing
	7.4.4. Error Handling and Route Integrity
	7.4.5. Data Transmitting/batching/splitting Oversized Tuples
	7.4.6. Streams Flow Control
	7.4.7. Implementation details
	7.4.7.1. State Transferring and CSNs
	7.4.7.2. Integration with Asynchronous FDW Engine

	7.5. Distributed Deadlock Detection
	7.6. Global Sequences
	7.7. Syncpoints and Consistent Backup
	7.8. Collecting Distributed Statement Statistics Using the pgpro_stats Extension
	7.9. Advisory Locks

	Appendix A. Release Notes
	A.1. Postgres Pro Shardman 14.17.2
	A.1.1. Core and Extensions
	A.1.2. Management Utilities

	A.2. Postgres Pro Shardman 14.17.1
	A.2.1. Core and Extensions
	A.2.2. Management Utilities

	A.3. Postgres Pro Shardman 14.15.4
	A.3.1. Core and Extensions
	A.3.2. Management Utilities

	A.4. Postgres Pro Shardman 14.15.3
	A.4.1. Core and Extensions
	A.4.2. Management Utilities

	A.5. Postgres Pro Shardman 14.15.2
	A.5.1. Core and Extensions
	A.5.2. Management Utilities

	A.6. Postgres Pro Shardman 14.15.1
	A.6.1. Core and Extensions
	A.6.2. Management Utilities

	A.7. Postgres Pro Shardman 14.13.4
	A.7.1. Core and Extensions
	A.7.2. Management Utilities

	A.8. Postgres Pro Shardman 14.13.3
	A.8.1. Core and Extensions
	A.8.2. Management Utilities

	A.9. Postgres Pro Shardman 14.13.2
	A.9.1. Core and Extensions
	A.9.2. Management Utilities

	A.10. Postgres Pro Shardman 14.13.1
	A.10.1. Core and Extensions
	A.10.2. Management Utilities

	A.11. Postgres Pro Shardman 14.12.2
	A.11.1. Core and Extensions
	A.11.2. Management Utilities

	A.12. Postgres Pro Shardman 14.12.1
	A.12.1. Core and Extensions
	A.12.2. Management Utilities

	A.13. Postgres Pro Shardman 14.11.2
	A.13.1. Core and Extensions
	A.13.2. Management Utilities

	A.14. Postgres Pro Shardman 14.11.1
	A.14.1. Core and Extensions
	A.14.2. Management Utilities

	A.15. Postgres Pro Shardman 14.10.3
	A.16. Postgres Pro Shardman 14.10.2

	Appendix B. Glossary
	Appendix C. FAQ
	C.1. General Questions
	C.1.1. What is Shardman?
	C.1.2. What does Shardman consist of?
	C.1.3. When to use Shardman?
	C.1.4. When is Shardman not appropriate?
	C.1.5. How many nodes does it take to deploy Shardman?
	C.1.6. Does Shardman support fault tolerance?
	C.1.7. How is sharding structured?
	C.1.8. Is it possible to change the number of partitions?
	C.1.9. Does Shardman support resharding?
	C.1.10. Is it possible to convert an unsharded (local) table to a sharded one?
	C.1.11. Does Shardman support adding and removing shards?
	C.1.12. What is the status of data balancing?
	C.1.13. How is a Shardman cluster accessed?
	C.1.14. How is balancing between cluster nodes implemented?
	C.1.15. Is mass data loading supported in Shardman?

	C.2. Databases
	C.2.1. Is it possible to create multiple databases in a Shardman cluster?

	C.3. Tables
	C.3.1. What kind of tables are there in Shardman?
	C.3.2. What are global tables?
	C.3.3. What are global tables suitable for?
	C.3.4. What are sharded tables?
	C.3.5. Which partitioning parameters are optimal when creating a sharded table?
	C.3.6. What are colocated tables?
	C.3.7. How to create a colocated table?
	C.3.8. What are local tables?
	C.3.9. Are foreign keys supported in Shardman?

	C.4. Sequences
	C.4.1. Are global sequences supported in Shardman?
	C.4.2. How to create a global sequence?

	C.5. User Management
	C.5.1. Does Shardman support global user roles?
	C.5.2. How do I create a global user in Shardman?
	C.5.3. How do I grant permissions to a global user?

	C.6. Useful Functions and Tables
	C.6.1. How do I see which tables and sequences are distributed?
	C.6.2. How do I execute some SQL command on all nodes in the cluster?
	C.6.3. How do I get Shardman configuration parameters on a selected node?
	C.6.4. How do I update Shardman configuration parameters?

	C.7. Disaster Recovery Cluster Requirements
	C.7.1. Terms and Abbreviations
	C.7.2. High-level Description of the DRC
	C.7.3. Replication Topology
	C.7.4. Hardware and Network Requirements
	C.7.5. Replication Mechanisms
	C.7.6. Monitoring and Management
	C.7.7. Security
	C.7.7.1. Encrypting Data Across A Network (TLS/SSL)
	C.7.7.2. Inter-nodes Authentication and Authorization
	C.7.7.3. Protection from Unauthorized Access to Standby Servers

	C.7.8. QA and Rollback
	C.7.8.1. Data Integrity Check After Failover
	C.7.8.2. Switchover to BDC
	C.7.8.3. MDC Recovery
	C.7.8.4. Switching Back to MDC

	C.7.9. Backup in Geografically Distributed System
	C.7.9.1. Storing Backups in Geographically Distributed Storages

	C.7.10. Documentation and Regulations

	Index

