
Postgres Pro Shardman
14.17.2 Documentation

Postgres Professional
The PostgreSQL Global Development Group

https://postgrespro.com

https://postgrespro.com

Postgres Pro Shardman 14.17.2 Documentation
Postgres Professional
The PostgreSQL Global Development Group
Copyright © 2021-2025 Postgres Professional
Copyright © 1996-2025 The PostgreSQL Global Development Group

1. Get Started with Shardman .. 1
1.1. What is Shardman ... 1
1.2. When to use ... 2
1.3. Quickstart Guide ... 2

1.3.1. Cluster Configuration .. 3
1.3.2. Preparation .. 3
1.3.3. Deploy an etcd One-Node Cluster ... 4
1.3.4. Deploy Shardman Nodes .. 5
1.3.5. Initialize the Shardman Cluster ... 6
1.3.6. Add Nodes to the Shardman Cluster .. 6
1.3.7. Check the Shardman Cluster Status .. 7
1.3.8. Connect to the Shardman Cluster .. 9
1.3.9. Create Sharded Tables ... 9
1.3.10. Example: Deploy a Multi-Node etcd Cluster .. 10

2. Manage .. 13
2.1. Cluster Services ... 13
2.2. Scaling the Cluster ... 13

2.2.1. Adding and Removing a Node .. 13
2.3. Rebalancing the Data ... 18

2.3.1. Automatically Rebalancing the Data ... 18
2.3.2. Manually Rebalancing the Data ... 19

2.4. Analyzing and Vacuuming .. 23
2.5. Access Management ... 24

2.5.1. Cluster Initialization Settings Related to Access Management ... 24
2.5.2. Managing Users and Roles ... 25
2.5.3. Managing Permissions on Sharded Tables ... 25

2.6. Backup and Recovery ... 26
2.6.1. Cluster Backup with pg_basebackup ... 27
2.6.2. Cluster Recovery from a Backup Using pg_basebackup ... 27
2.6.3. Cluster Backup with pg_probackup .. 28
2.6.4. Cluster Restore from a Backup with pg_probackup ... 29
2.6.5. Merging Backups with pg_probackup ... 30
2.6.6. Deleting Backups with pg_probackup ... 30

2.7. Configuring Secure Communications with etcd ... 31
2.7.1. Generating SSL Certificates .. 31
2.7.2. Configuring etcd and shardmand Services ... 32
2.7.3. Using Shardman Tools ... 33

2.8. Upgrading a Cluster ... 33
2.8.1. Upgrade Packages ... 34
2.8.2. Restart Shardman Services and Database Instances ... 34
2.8.3. Upgrade the Extension ... 34

2.9. Fault Tolerance and High Availability ... 35
2.9.1. Timeouts ... 35

2.10. Logging .. 36
2.10.1. PostgreSQL Logs .. 36
2.10.2. shardmand Logs .. 36
2.10.3. Getting Information on Backend Crashes ... 37

3. Develop .. 39
3.1. Migration of a Database Schema .. 39

3.1.1. Database Source Schema .. 40
3.1.2. Shardman Cluster Configuration .. 41
3.1.3. Selecting the Sharding Key ... 41

3.2. Data Migration .. 51
3.2.1. Naive Approach .. 51
3.2.2. Complex Approach .. 52

3.3. Queries .. 53
3.3.1. q1 Query ... 53
3.3.2. q2 Query ... 53

iii

Postgres Pro Shardman
14.17.2 Documentation

3.3.3. q3 Query ... 55
3.3.4. q4 Query ... 56
3.3.5. q5 Query ... 57
3.3.6. q6 Query ... 59
3.3.7. q7 Query ... 61
3.3.8. q8 Query ... 62
3.3.9. q9 Query ... 63

3.4. Connecting and Working with a Shardman Cluster .. 65
3.4.1. SQL .. 66
3.4.2. psql/libpq ... 69
3.4.3. Python ... 69
3.4.4. Java .. 69
3.4.5. Go .. 70

4. Additional Features .. 71
4.1. AQO (Adaptive Query Optimization) .. 71
4.2. CFS (Compressed File System) .. 71
4.3. pgpro_stats (Planning and Execution Statistics) ... 72
4.4. pgpro_pwr (Workload Reporting) ... 72
4.5. pg_query_state .. 72

5. Performance Tuning ... 73
5.1. Examining Plans .. 73

5.1.1. EXPLAIN Parameters .. 78
5.2. DML Optimizations ... 78

5.2.1. DML Optimizations of Global Tables ... 79
5.3. Time Synchronization ... 80
5.4. Distributed Query Diagnostics ... 81

5.4.1. Displaying Plans from the Remote Server ... 81
5.4.2. Network Metrics and Latency ... 81
5.4.3. Query Tracing for Silk Transport ... 82

6. Shardman Reference ... 84
6.1. Functions ... 84
6.2. pgpro_stats Functions ... 86
6.3. Advisory Lock Functions .. 87
6.4. Views .. 87

6.4.1. Shardman-specific Views .. 87
6.4.2. Multiplexor Diagnostics Views .. 90
6.4.3. Global Views ... 96

6.5. SQL Commands .. 103
6.6. SQL Limitations .. 114

6.6.1. ALTER SYSTEM Limitations ... 114
6.6.2. ALTER TABLE Limitations ... 114
6.6.3. CREATE TABLE Limitations ... 115
6.6.4. DROP TABLE Limitations ... 115
6.6.5. CREATE INDEX CONCURRENTLY Limitations ... 115
6.6.6. UPDATE Limitations .. 116
6.6.7. INSERT ON CONFLICT DO UPDATE Limitations .. 116
6.6.8. Limitations of Managing Global Roles .. 116
6.6.9. Limitations of User Mappings ... 116
6.6.10. ALTER SCHEMA Limitations .. 116
6.6.11. DROP SERVER Limitations .. 116
6.6.12. Limitations of Using Custom Databases ... 116
6.6.13. CREATE COLLATION Limitations .. 116
6.6.14. Logical Replication Limitations .. 116
6.6.15. Other Limitations ... 117

6.7. Shardman CLI Reference .. 117
7. Shardman Internals ... 200

7.1. Table Types .. 200
7.1.1. Sharded Tables ... 200

iv

Postgres Pro Shardman
14.17.2 Documentation

7.1.2. Global Tables ... 200
7.1.3. Distributed DDL ... 201

7.2. Query Processing ... 201
7.2.1. Push-down Technique .. 201
7.2.2. Asynchronous Execution ... 203
7.2.3. Fetch-all Fallback .. 205

7.3. Distributed Transactions .. 205
7.3.1. Visibility and CSN .. 205
7.3.2. 2PC and Prepared Transaction Resolution .. 206

7.4. Silk .. 208
7.4.1. Concept ... 208
7.4.2. Event Loop .. 208
7.4.3. Routing and Multiplexing ... 208
7.4.4. Error Handling and Route Integrity .. 209
7.4.5. Data Transmitting/batching/splitting Oversized Tuples ... 209
7.4.6. Streams Flow Control .. 209
7.4.7. Implementation details .. 209

7.5. Distributed Deadlock Detection .. 211
7.6. Global Sequences ... 212
7.7. Syncpoints and Consistent Backup .. 212
7.8. Collecting Distributed Statement Statistics Using the pgpro_stats Extension ... 213
7.9. Advisory Locks ... 213

A. Release Notes ... 214
A.1. Postgres Pro Shardman 14.17.2 ... 214

A.1.1. Core and Extensions .. 214
A.1.2. Management Utilities .. 214

A.2. Postgres Pro Shardman 14.17.1 ... 214
A.2.1. Core and Extensions .. 214
A.2.2. Management Utilities .. 215

A.3. Postgres Pro Shardman 14.15.4 ... 215
A.3.1. Core and Extensions .. 215
A.3.2. Management Utilities .. 215

A.4. Postgres Pro Shardman 14.15.3 ... 215
A.4.1. Core and Extensions .. 216
A.4.2. Management Utilities .. 216

A.5. Postgres Pro Shardman 14.15.2 ... 216
A.5.1. Core and Extensions .. 216
A.5.2. Management Utilities .. 217

A.6. Postgres Pro Shardman 14.15.1 ... 217
A.6.1. Core and Extensions .. 217
A.6.2. Management Utilities .. 218

A.7. Postgres Pro Shardman 14.13.4 ... 218
A.7.1. Core and Extensions .. 218
A.7.2. Management Utilities .. 218

A.8. Postgres Pro Shardman 14.13.3 ... 219
A.8.1. Core and Extensions .. 219
A.8.2. Management Utilities .. 219

A.9. Postgres Pro Shardman 14.13.2 ... 219
A.9.1. Core and Extensions .. 219
A.9.2. Management Utilities .. 220

A.10. Postgres Pro Shardman 14.13.1 .. 220
A.10.1. Core and Extensions .. 220
A.10.2. Management Utilities ... 220

A.11. Postgres Pro Shardman 14.12.2 .. 221
A.11.1. Core and Extensions .. 221
A.11.2. Management Utilities ... 221

A.12. Postgres Pro Shardman 14.12.1 .. 222
A.12.1. Core and Extensions .. 222

v

Postgres Pro Shardman
14.17.2 Documentation

A.12.2. Management Utilities ... 222
A.13. Postgres Pro Shardman 14.11.2 .. 222

A.13.1. Core and Extensions .. 222
A.13.2. Management Utilities ... 222

A.14. Postgres Pro Shardman 14.11.1 .. 223
A.14.1. Core and Extensions .. 223
A.14.2. Management Utilities ... 223

A.15. Postgres Pro Shardman 14.10.3 .. 224
A.16. Postgres Pro Shardman 14.10.2 .. 224

B. Glossary ... 226
C. FAQ .. 227

C.1. General Questions ... 227
C.1.1. What is Shardman? ... 227
C.1.2. What does Shardman consist of? ... 227
C.1.3. When to use Shardman? ... 227
C.1.4. When is Shardman not appropriate? ... 227
C.1.5. How many nodes does it take to deploy Shardman? .. 227
C.1.6. Does Shardman support fault tolerance? ... 227
C.1.7. How is sharding structured? .. 227
C.1.8. Is it possible to change the number of partitions? ... 227
C.1.9. Does Shardman support resharding? ... 227
C.1.10. Is it possible to convert an unsharded (local) table to a sharded one? .. 228
C.1.11. Does Shardman support adding and removing shards? ... 228
C.1.12. What is the status of data balancing? .. 228
C.1.13. How is a Shardman cluster accessed? ... 228
C.1.14. How is balancing between cluster nodes implemented? .. 228
C.1.15. Is mass data loading supported in Shardman? ... 228

C.2. Databases ... 228
C.2.1. Is it possible to create multiple databases in a Shardman cluster? ... 228

C.3. Tables ... 228
C.3.1. What kind of tables are there in Shardman? ... 228
C.3.2. What are global tables? .. 228
C.3.3. What are global tables suitable for? ... 228
C.3.4. What are sharded tables? .. 228
C.3.5. Which partitioning parameters are optimal when creating a sharded table? .. 229
C.3.6. What are colocated tables? ... 229
C.3.7. How to create a colocated table? ... 229
C.3.8. What are local tables? ... 229
C.3.9. Are foreign keys supported in Shardman? ... 229

C.4. Sequences .. 229
C.4.1. Are global sequences supported in Shardman? ... 229
C.4.2. How to create a global sequence? .. 230

C.5. User Management .. 230
C.5.1. Does Shardman support global user roles? .. 230
C.5.2. How do I create a global user in Shardman? .. 230
C.5.3. How do I grant permissions to a global user? .. 230

C.6. Useful Functions and Tables ... 230
C.6.1. How do I see which tables and sequences are distributed? .. 230
C.6.2. How do I execute some SQL command on all nodes in the cluster? ... 231
C.6.3. How do I get Shardman configuration parameters on a selected node? .. 231
C.6.4. How do I update Shardman configuration parameters? .. 231

C.7. Disaster Recovery Cluster Requirements ... 231
C.7.1. Terms and Abbreviations ... 231
C.7.2. High-level Description of the DRC .. 232
C.7.3. Replication Topology .. 232
C.7.4. Hardware and Network Requirements ... 232
C.7.5. Replication Mechanisms ... 232
C.7.6. Monitoring and Management .. 232

vi

Postgres Pro Shardman
14.17.2 Documentation

C.7.7. Security ... 232
C.7.8. QA and Rollback .. 233
C.7.9. Backup in Geografically Distributed System .. 233
C.7.10. Documentation and Regulations ... 233

Index .. 234

vii

Chapter 1. Get Started with Shardman
Shardman is a PostgreSQL-based distributed database management system (DBMS) that implements sharding. Sharding is a database
design principle where rows of a table are held separately in different databases that are potentially managed by different DBMS
instances. The main purpose of Shardman is to make querying sharded distributed databases efficient and ease the complexity of
managing them.

This chapter provides an introduction to the Shardman distributed DBMS.

1.1. What is Shardman
The database size in modern enterprises and in highload web applications is constantly growing. The only working approach to
accommodate this growth is horizontal scaling. The Shardman distributed DBMS is intended to enable horizontal scaling of online
transaction processing (OLTP) databases while preserving the strong ACID semantics.

Shardman provides the following advantages, compatibility features to your applications:

• Strong ACID guarantees.

• Compatibility with Postgres Pro Enterprise.

• Trust level 4 and security class 4 certificates.

• Several clusters support.

• Transparent horizontal scaling without a need in adopting NoSQL DBMS.

• Built-in support of replication with no single point of failure, with any node being able to become coordinator that requires no
system shut down and prevents any data loss.

• Capacity of up to 100 cluster nodes.

• High availability with primary and stand-by modes, along with the synchronous solution for the failover scenarios, and asyn-
chronous solution that has a minimal performance impact.

• Support of planning and execution statistics of all SQL statements.

• Utility to discover most resource-intensive activities in your database.

• Tools to support REPEATABLE READ isolation level in a distributed system.

• Work with cluster as with a fully functional DBMS.

• Hot standby and backup and recovery tools that support full and incremental backup with logs.

• Point-in-time recovery (PITR).

• Streaming replication.

• High-availability cluster creation with multiple primary nodes with special utilities.

• ANSI standard.

• SQL arrays.

• Stored procedures.

• Big data storing and processing.

• Full text search.

• Covering indexes.

• B-tree, hash, GiST, GIN, SP-GiST, BRIN indexes.

• Perl and Python procedural languages.

• Interfaces for C++, Ruby, C, ODBC Perl, Python, Tcl, and Java.

• EUC, UTF-8, and Mule character set.

• Adaptive query optimization.

• Compressed file system.

• Access data stored in external PostgreSQL servers with postgres_fdw, e.g. Microsoft Active Directory, Mysql server, Oracle,
and Postgres Pro Enterprise.

1

https://postgrespro.com/docs/enterprise/14/
https://postgrespro.com/docs/shardman/14/scaling-cluster
https://postgrespro.com/docs/shardman/14/fault-tolerance
https://postgrespro.com/docs/postgresql/17/high-availability
https://postgrespro.com/docs/shardman/14/pgpro-stats
https://postgrespro.com/docs/shardman/14/pgpro-pwr
https://postgrespro.com/docs/shardman/14/shardman-spec-config#CONFIG-EXAMPLE-ENABLE_CSN_SNAPSHOT
https://postgrespro.com/docs/shardman/14/cluster-services
https://postgrespro.com/docs/postgresql/17/hot-standby
https://postgrespro.com/docs/shardman/14/backup-and-recovery
https://postgrespro.com/docs/shardman/14/backup-and-recovery
https://postgrespro.com/docs/postgresql/17/warm-standby#STREAMING-REPLICATION
https://postgrespro.com/docs/shardman/14/app-shardmanctl
https://postgrespro.com/docs/postgresql/17/history#HISTORY-POSTGRES95
https://postgrespro.com/docs/postgresql/17/intarray
https://postgrespro.com/docs/postgresql/17/features-sql-standard
https://postgrespro.com/docs/shardman/14/develop
https://postgrespro.com/docs/postgresql/17/textsearch
https://postgrespro.com/docs/postgresql/17/indexes-index-only-scans
https://postgrespro.com/docs/postgresql/17/indexes
https://postgrespro.com/docs/postgresql/17/plperl
https://postgrespro.com/docs/postgresql/17/plpython
https://postgrespro.com/docs/postgresql/17/ecpg-cpp
https://postgrespro.com/docs/postgresql/17/xfunc-c
https://postgrespro.com/docs/postgresql/17/infoschema-sql-sizing
https://postgrespro.com/docs/postgresql/17/libpq
https://postgrespro.com/docs/shardman/14/develop-connect-and-work
https://postgrespro.com/docs/postgresql/17/multibyte
https://postgrespro.com/docs/shardman/14/aqo
https://postgrespro.com/docs/shardman/14/cfs
https://postgrespro.com/docs/postgresql/17/postgres-fdw
https://postgrespro.com/docs/postgresql/17/libpq-connect#LIBPQ-CONNECT-KRBSRVNAME
https://postgrespro.com/docs/postgresql/17/sql-select
https://postgrespro.com/docs/postgresql/17/ecpg-oracle-compat
https://postgrespro.com/docs/enterprise/17

Get Started with Shardman

• Long queries monitoring with the pg_query_state module.

• In-built monitoring agent.

• No limits for the number of records or indexes, with the maximum table size of 32 TB, maximum attribute size of 1 GB, and
maximum number of attributes of 1600.

• Detailed access management with different access levels and roles.

• Secure password storing.

• Detailed memory purge configuration.

1.2. When to use
Shardman provides horizontal scalability with a view and consistency of a single database. Applications can use every node to access
the distributed database and operate mostly the same way as with a single PostgreSQL instance. Still internally it is a distributed
system that imposes certain rules on designing schema and writing queries. The main direction of adoption is to localize the data
and the computations.

The following properties of a database or workload should be marks to consider a distributed system:

• The working set of data does not fit in RAM of one server. Sharded systems can have much bigger total size of RAM.

• Maintenance operations such as vacuum take too long. Shardman utilizes partitioned tables under the hood. Maintenance oper-
ations can be parallelized by nodes and partitions of tables.

• Number of read sessions is too large for one instance of PostgreSQL. Shardman allows to distribute read sessions across the
cluster and handle internal connections very efficiently with multiplexing transport.

• Intensive write operations. Sharded systems can have much bigger total number of disk IOPS.

• CPU intensive queries. Shardman allows to distribute calculations by nodes and reduce execution time for complex queries.

When Shardman is not appropriate:

• Vertical scaling is economically and technically possible.

• Data model and workload require a lot of cross-shard transactions.

• Complex analytics, in particular joins of sharded tables when conditions don't include the sharding key.

• Multi-DC/Multi-region deployments.

1.3. Quickstart Guide
Shardman is composed of several software components:

• PostgreSQL 14 DBMS with a set of patches.

• Shardman extension.

• Management tools and services, including built-in stolon manager to provide high availability.

Postgres Pro Shardman and stolon store their configuration in an etcd cluster. Therefore, we can use an existing etcd cluster, or we
can deploy a simple one-node etcd cluster.

The shardmand daemon monitors the cluster configuration and manages stolon clusters, which are used to guarantee high availability
of all shards. The common Shardman configuration (shardmand, stolon) is stored in an etcd cluster.

Currently Shardman packages are available for

• Ubuntu 20.04/22.04

• Debian 10/11/12

• Red Hat Enterprise Linux 7/8/9

• Red OS 7.3/7.3.1/7.3.2

• Alt 9/10

• AstraLinux 1.7 (Smolensk)

2

https://postgrespro.com/docs/shardman/14/pg-query-state
https://postgrespro.com/docs/postgresql/17/monitoring
https://postgrespro.com/docs/postgresql/17/limits
https://postgrespro.com/docs/shardman/14/access-management
https://postgrespro.com/docs/postgresql/17/auth-password
https://postgrespro.com/docs/postgrespro/17/guc-memory-purge

Get Started with Shardman

1.3.1. Cluster Configuration
Assume that we have three nodes for deploying Postgres Pro Shardman. Let’s make the first one for the etcd one-node cluster and
the other two nodes for the Postgres Pro Shardman two-node cluster.

Let’s suppose that we have the following node names and IP addresses:

192.0.1.1 etcd - etcd one-node cluster
192.0.1.20 sdm01 - Shardman node1
192.0.1.21 sdm02 - Shardman node2

Each node has 4Gb RAM, 20GB HDD, 2CPU and Ubuntu 22.04 installed.

1.3.2. Preparation

1.3.2.1. Add host names to /etc/hosts
This step must be performed on all nodes.

sudo /bin/sh -c 'cat << EOF >> /etc/hosts
192.0.1.1 etcd
192.0.1.20 sdm01
192.0.1.21 sdm02
EOF'

1.3.2.2. Time Synchronization
This step must be performed on all nodes.

Deploy and start chrony daemon on all hosts.

sudo apt install -y chrony

By default, chrony gets the time from available servers on internet or the local time server. You can check available time servers
as follows:

chronyc sources
MS Name/IP address Stratum Poll Reach LastRx Last sample
===
^? 192.0.1.100 1 6 7 1 -98us[-98us] +/- 11ms
^* time.cloudflare.com 3 6 7 1 +139us[+163us] +/- 11ms
^+ tms04.deltatelesystems.ru 1 6 7 1 -381us[-357us] +/- 17ms

It is desirable to synchronize time with your server or the local server for the cluster. To do this, make changes similar to the following
to chrony configuration:

cat /etc/chrony/chrony.conf

server 192.0.1.100 iburst
keyfile /etc/chrony.keys
driftfile /var/lib/chrony/chrony.drift
log tracking measurements statistics
logdir /var/log/chrony

systemctl restart chrony

Check that chrony is connected to the appropriate server.

chronyc sources
MS Name/IP address Stratum Poll Reach LastRx Last sample
===
^? 192.0.1.100 8 6 17 37 +14us[+70us] +/- 161us
chronyc tracking
Reference ID : 0A80000C (ntp.local)

3

Get Started with Shardman

Stratum : 9
Ref time (UTC) : Wed Nov 15 11:58:52 2023
System time : 0.000000004 seconds slow of NTP time
Last offset : -0.000056968 seconds
RMS offset : 0.000056968 seconds
Frequency : 10.252 ppm fast
Residual freq : -2.401 ppm
Skew : 364.419 ppm
Root delay : 0.000455358 seconds
Root dispersion : 0.010503666 seconds
Update interval : 2.1 seconds
Leap status : Normal

1.3.3. Deploy an etcd One-Node Cluster
Note also a Deploy a Multi-Node etcd cluster section.

Install the following packages:

sudo apt install -y vim curl

To connect a Postgres Pro Shardman repository:

• Run

curl -fsSL -u "<user>:<password>" https://repo.postgrespro.ru/sdm/sdm-14/keys/pgpro-
repo-add.sh > pgpro-repo-add.sh
chmod +x pgpro-repo-add.sh

• Open the file pgpro-repo-add.sh and specify the repository password in the PASSWORD variable.

• Run sudo pgpro-repo-add.sh.

Install etcd-sdm packages:

sudo apt install -y etcd-sdm

In the file that lists environment variables, insert specific values for them:

sudo vim /etc/default/etcd-sdm
ETCD_NAME=etcd
ETCD_LISTEN_CLIENT_URLS=http://0.0.0.0:2379
ETCD_ADVERTISE_CLIENT_URLS=http://192.0.1.1:2379
ETCD_MAX_SNAPSHOTS=5
ETCD_MAX_WALS=5
ETCD_AUTO_COMPACTION_MODE=periodic
ETCD_AUTO_COMPACTION_RETENTION=5m
ETCD_QUOTA_BACKEND_BYTES=6442450944
ETCD_DATA_DIR=/var/lib/etcd-sdm/sdm-14

This file will be loaded at etcd start.

Clear the etcd data directory:

sudo rm -rf /var/lib/etcd-sdm/sdm-14/*

Restart the etcd-sdm service:

sudo systemctl restart etcd-sdm

For your user, add /opt/pgpro/sdm-14/bin to the PATH environment variable:

echo "export PATH=$PATH:/opt/pgpro/sdm-14/bin" >> .bashrc
source .bashrc

Check that etcd is properly configured:

4

Get Started with Shardman

etcdctl endpoint --endpoints=http://192.0.1.1:2379 status health -w table
+------------------------+------------------+---------+---------
+-----------+------------+-----------+------------+--------------------
+--------------------------------+
| ENDPOINT | ID | VERSION | DB SIZE | IS LEADER | IS
 LEARNER | RAFT TERM | RAFT INDEX | RAFT APPLIED INDEX | ERRORS
 |
+------------------------+------------------+---------+---------
+-----------+------------+-----------+------------+--------------------
+--------------------------------+
| http://192.0.1.1:2379 | 9324a99282752a09 | 3.5.9 | 2.1 GB | true | false
14	91459207	91459207	memberID:10602785869456026121	
			alarm:NOSPACE	
+------------------------+------------------+---------+---------
+-----------+------------+-----------+------------+--------------------
+--------------------------------+

etcd one-node cluster is properly configured and ready to serve requests.

To prevent bloat when etcd is intensively used, add a defragmentation command to cron:

sudo sh -c '
{ crontab -l; echo "@hourly /opt/pgpro/sdm-14/bin/etcdctl defrag"; }
| crontab'

1.3.4. Deploy Shardman Nodes
Let’s add a Postgres Pro Shardman repository on each node:

• Set a user and password as in Section 1.3.3.

• Run

curl -fsSL -u "<user>:<password>" https://repo.postgrespro.ru/sdm/sdm-14/keys/pgpro-
repo-add.sh > pgpro-repo-add.sh | bash
chmod +x pgpro-repo-add.sh

• Open the file pgpro-repo-add.sh and specify the repository password in the PASSWORD variable.

• Run pgpro-repo-add.sh.

Next step is installation of packages (on each node):

 sudo apt update
 sudo apt install -y postgrespro-sdm-14-server postgrespro-sdm-14-client postgrespro-
sdm-14-contrib postgrespro-sdm-14-libs pg-probackup-sdm-14 shardman-services shardman-
tools

Suppose we have chosen a default cluster name of cluster0. The next step is to put Shardman environment vars into the /etc/
shardman directory (on each node):

sudo sh -c 'cat << EOF > /etc/shardman/shardmand-cluster0.env
SDM_CLUSTER_NAME=cluster0
SDM_LOG_LEVEL=info
SDM_STORE_ENDPOINTS=http://etcd:2379
EOF'

The file and directory are created with sudo, but later shardmanctl does not use sudo, thus cannot access the file with the
environment variables. To access it, either add the variables to the system with export, or grant user with access rights to the
file and the directory.

For your user, add /opt/pgpro/sdm-14/bin to the PATH environment variable:

5

Get Started with Shardman

echo "export PATH=$PATH:/opt/pgpro/sdm-14/bin" >> .bashrc
source .bashrc

Let’s generate a sample configuration with the Shardman utilities (only on one node).

 shardmanctl config generate > spec.json

In this step, you can make some changes to the cluster specification (configuration), i.e., change the password or PostgreSQL
shared_buffers parameter and so on.

1.3.5. Initialize the Shardman Cluster
Now we have some final steps. First, let's initialize the cluster configuration in etcd (only on one [any] node).

 shardmanctl init -f spec.json

The expected output is:

 2023-04-18T12:30:03.043Z DEBUG cmd/common.go:100 Waiting for metadata lock...
 2023-04-18T12:30:03.048Z DEBUG cluster/cluster.go:365 DataDir is not specified,
 setting to default /var/lib/pgpro/sdm-14/data

Enable and start the shardmand service (on each node):

 sudo systemctl enable --now shardmand@cluster0
 sudo systemctl status shardmand@cluster0

 # shardmand@cluster0.service - deployment daemon for shardman
 Loaded: loaded (/lib/systemd/system/shardmand@.service; enabled; vendor preset:
 enabled)
 Active: active (running) since Tue 2023-04-18 12:28:18 UTC; 2min 13s ago
 Docs: https://github.com/postgrespro/shardman
 Main PID: 618 (shardmand)
 Tasks: 10 (limit: 4571)
 Memory: 32.0M
 CPU: 422ms
 CGroup: /system.slice/system-shardmand.slice/shardmand@cluster0.service
 ##618 /opt/pgpro/sdm-14/bin/shardmand --cluster-name cluster0 --system-
bus --user postgres

1.3.6. Add Nodes to the Shardman Cluster
In this step we assume that all previous steps were executed successfully: etcd cluster is working properly, the time on all hosts is
synchronized, and the daemon is launched on sdm01 and sdm02. The final step should be executed with shardmanctl command
as follows:

 shardmanctl nodes add -n sdm01,sdm02 \
 --cluster-name cluster0 \
 --log-level debug \
 --store-endpoints=http://etcd:2379

The expected output should be:

 2023-04-18T12:43:11.300Z DEBUG cmd/common.go:100 Waiting for metadata lock...
 2023-04-18T12:43:11.306Z INFO cluster/store.go:277 Checking if shardmand on all nodes
 have applied current cluster configuration
 # Waiting for shardmand on node sdm01 to apply current configuration: success 0.000s
 # Waiting for shardmand on node sdm02 to apply current configuration: success 0.000s
 2023-04-18T12:43:11.307Z INFO add/case.go:112 Initting Stolon instances...
 2023-04-18T12:43:11.312Z INFO add/case.go:170 Waiting for Stolon daemons to start...
 make sure shardmand daemons are running on the nodes
 # Waiting for Stolon daemons of rg clover-1-sdm01: success 31.012s

6

Get Started with Shardman

 # Waiting for Stolon daemons of rg clover-1-sdm02: success 0.012s
 2023-04-18T12:43:42.336Z INFO add/case.go:187 Adding repgroups...
 # waiting rg 1 config apply: done 7.014s
 2023-04-18T12:43:49.444Z DEBUG broadcaster/worker.go:33 start broadcaster worker for
 repgroup id=1
 2023-04-18T12:43:49.453Z DEBUG broadcaster/worker.go:51 repgroup 1 connect
 established
 2023-04-18T12:43:49.453Z DEBUG commands/addrepgroup.go:575 waiting for extension
 lock...
 2023-04-18T12:43:49.453Z DEBUG commands/addrepgroup.go:137 Loading schema into
 replication group rg 1
 ...
 2023-04-18T12:44:25.665Z DEBUG rebalance/service.go:528 wait all tasks finish
 2023-04-18T12:44:25.666Z DEBUG broadcaster/worker.go:75 finish broadcaster worker for
 repgroup id=1
 2023-04-18T12:44:25.666Z DEBUG broadcaster/worker.go:75 finish broadcaster worker for
 repgroup id=2
 2023-04-18T12:44:25.666Z INFO add/case.go:221 Successfully added nodes sdm01, sdm02
 to the cluster

The “Successfully added nodes sdm01, sdm02 to the cluster” message means that everything is fine and nodes sdm01 and sdm02
are working properly.

1.3.7. Check the Shardman Cluster Status

Let's check the status of the cluster nodes

 shardmanctl status

 ##
 # == STORE STATUS ==
 #

 ##
 # STATUS # MESSAGE # REPLICATION GROUP #
 NODE #

 ##
 # Warning # Store has only one member, consider # #
 #
 # # deploying store cluster # #
 #

 ##

 ###
 # == TOPOLOGY STATUS ==
 #

 ###
 # STATUS # MESSAGE # REPLICATION GROUP #
 NODE #

 ###
 # CROSS # Topology placement policy is CROSS # #
 #

 ###

7

Get Started with Shardman

 ###
 # == METADATA STATUS ==
 #

 ###
 # STATUS # MESSAGE # REPLICATION GROUP #
 NODE #

 ###
 # OK # Metadata is OK # #
 #

 ###

 ###
 # == SHARDMAND STATUS ==
 #

 ###
 # STATUS # MESSAGE # REPLICATION GROUP #
 NODE #

 ###
 # OK # shardmand on node sdm01 is OK # #
 sdm01 #

 ###
 # OK # shardmand on node sdm02 is OK # #
 sdm02 #

 ###

 ###
 # == REPLICATION GROUP STATUS ==
 #

 ###
 # STATUS # MESSAGE # REPLICATION GROUP #
 NODE #

 ###
 # OK # Replication group clover-1-sdm01 is OK # clover-1-sdm01 #
 #

 ###
 # OK # Replication group clover-1-sdm02 is OK # clover-1-sdm02 #
 #

 ###

 ##
 # == MASTER STATUS ==
 #

 ##
 # STATUS # MESSAGE # REPLICATION GROUP #
 NODE #

8

Get Started with Shardman

 ##
 # OK # Replication group clover-1-sdm01 master # clover-1-sdm01 #
 sdm01:5432 #
 # # is running on sdm01:5432 # #
 #

 ##
 # OK # Replication group clover-1-sdm02 master # clover-1-sdm02 #
 sdm02:5432 #
 # # is running on sdm02:5432 # #
 #

 ##

 ##
 # == DICTIONARY STATUS ==
 #

 ##
 # STATUS # MESSAGE # REPLICATION GROUP #
 NODE #

 ##
 # OK # Replication group clover-1-sdm01 # clover-1-sdm01 #
 #
 # # dictionary is OK # #
 #

 ##
 # OK # Replication group clover-1-sdm02 # clover-1-sdm02 #
 #
 # # dictionary is OK # #
 #

 ##

1.3.8. Connect to the Shardman Cluster
To connect to the cluster we should get the cluster connection string on any cluster node (sdm01 or sdm02):

 shardmanctl getconnstr

 dbname=postgres host=sdm01,sdm02 password=!!!CHANGE_ME!!! port=5432,5432
 user=postgres

And then let’s try to connect:

 psql -d 'dbname=postgres host=sdm01,sdm02 password=!!!CHANGE_ME!!! port=5432,5432
 user=postgres'

 psql (14.7)
 Type "help" for help.

 postgres=#

1.3.9. Create Sharded Tables
Let's try to create a sharded table and check if everything is working properly.

9

Get Started with Shardman

 postgres=# create table x(id int primary key, t text) with
 (distributed_by='id',num_parts=2);
 CREATE TABLE

 postgres=# \d
 List of relations
 Schema | Name | Type | Owner
 --------+---------+-------------------+----------
 public | x | partitioned table | postgres
 public | x_0 | table | postgres
 public | x_1_fdw | foreign table | postgres
 (3 rows)

 postgres=# \d x_0
 Table "public.x_0"
 Column | Type | Collation | Nullable | Default
 --------+---------+-----------+----------+---------
 id | integer | | not null |
 t | text | | |
 Partition of: x FOR VALUES WITH (modulus 2, remainder 0)
 Indexes:
 "x_0_pkey" PRIMARY KEY, btree (id)

 postgres=# \d x_1_fdw
 Foreign table "public.x_1_fdw"
 Column | Type | Collation | Nullable | Default | FDW options
 --------+---------+-----------+----------+---------+-------------
 id | integer | | not null | |
 t | text | | | |
 Partition of: x FOR VALUES WITH (modulus 2, remainder 1)
 Server: shardman_rg_2
 FDW options: (table_name 'x_1')

 postgres=# insert into x values (1,'t'),(2,'t'),(3,'t');
 INSERT 0 3

 postgres=# select * from x_0;
 id | t
 ----+---
 1 | t
 2 | t
 (2 rows)

 postgres=# select * from x_1_fdw;
 id | t
 ----+---
 3 | t
 (1 row)

Everything works as expected.

1.3.10. Example: Deploy a Multi-Node etcd Cluster
The process is described for the following servers:

192.0.1.1 etcd1
192.0.1.2 etcd2
192.0.1.3 etcd3

Install the needed packages on each server:

10

Get Started with Shardman

sudo apt install -y vim curl

To connect the repository, on each server, run:

sudo curl -fsSL https://repo.postgrespro.ru/sdm/sdm-14/keys/pgpro-repo-add.sh | bash

Install etcd-sdm packages on each server:

sudo apt install -y etcd-sdm

For each server, edit the file that lists environment variables, replacing placeholders in angle brackets with specific values:

sudo vim /etc/default/etcd-sdm
ETCD_NAME=<hostname>
ETCD_LISTEN_PEER_URLS=http://0.0.0.0:2380
ETCD_LISTEN_CLIENT_URLS=http://0.0.0.0:2379
ETCD_ADVERTISE_CLIENT_URLS=http://<host ip address>:2379
ETCD_INITIAL_ADVERTISE_PEER_URLS=http://<host ip address>:2380
ETCD_INITIAL_CLUSTER_TOKEN=etcd-cluster-1
ETCD_INITIAL_CLUSTER_STATE=new
ETCD_MAX_SNAPSHOTS=5
ETCD_MAX_WALS=5
ETCD_AUTO_COMPACTION_MODE=periodic
ETCD_AUTO_COMPACTION_RETENTION=5m
ETCD_QUOTA_BACKEND_BYTES=6442450944
ETCD_DATA_DIR=/var/lib/etcd-sdm/sdm-14
ETCD_INITIAL_CLUSTER=etcd1=http://<ip etcd1>:2380,etcd2=http://<ip
 etcd2>:2380,etcd3=http://<ip etcd3>:2380

This file will be loaded at etcd start with its own start settings on each server.

Clear the etcd data directory:

sudo rm -rf /var/lib/etcd-sdm/sdm-14/*

Restart the etcd-sdm service on each server:

sudo systemctl restart etcd-sdm

For your user, add /opt/pgpro/sdm-14/bin to the PATH environment variable:

echo "export PATH=$PATH:/opt/pgpro/sdm-14/bin" >> .bashrc
source .bashrc

Check that etcd is properly configured:

etcdctl member list -w table
+------------------+---------+-------+----------------------------
+----------------------------+------------+
| ID | STATUS | NAME | PEER ADDRS | CLIENT ADDRS
 | IS LEARNER |
+------------------+---------+-------+----------------------------
+----------------------------+------------+
| 318be6342e6d9ac | started | etcd1 | http://192.0.1.1:2380 |
 http://192.0.1.1:2379 | false |
| 9e49480544aedb89 | started | etcd2 | http://192.0.1.2:2380 |
 http://192.0.1.2:2379 | false |
| bb3772bfa22482d7 | started | etcd3 | http://192.0.1.3:2380 |
 http://192.0.1.3.4:2379 | false |
+------------------+---------+-------+----------------------------
+----------------------------+------------+

11

Get Started with Shardman

$ etcdctl --endpoints=http://192.0.1.1:2380,http://192.0.1.2:2380,http://192.0.1.3:2380
 endpoint status health -w table
+----------------------------+------------------+---------+---------+-----------
+------------+-----------+------------+--------------------+--------+
| ENDPOINT | ID | VERSION | DB SIZE | IS LEADER | IS
 LEARNER | RAFT TERM | RAFT INDEX | RAFT APPLIED INDEX | ERRORS |
+----------------------------+------------------+---------+---------+-----------
+------------+-----------+------------+--------------------+--------+
| http://192.0.1.1:2380 | 318be6342e6d9ac | 3.5.9 | 5.7 MB | true |
 false | 13 | 425686 | 425686 | |
| http://192.0.1.2:2380 | 9e49480544aedb89 | 3.5.9 | 5.7 MB | false |
 false | 13 | 425686 | 425686 | |
| http://192.0.1.3:2380 | bb3772bfa22482d7 | 3.5.9 | 5.7 MB | false |
 false | 13 | 425686 | 425686 | |
+----------------------------+------------------+---------+---------+-----------
+------------+-----------+------------+--------------------+--------+
-------+

The etcd cluster is properly configured and ready to serve requests.

To prevent bloat when etcd is intensively used, add a defragmentation command to cron:

sudo { crontab -l; echo "@hourly /opt/pgpro/sdm-14/bin/etcdctl defrag"; } | crontab

The final endpoints string of the etcd cluster:

etcd1=http://<ip etcd1>:2380,etcd2=http://<ip etcd2>:2380,etcd3=http://<ip etcd3>:2380

It should be specified in /etc/shardman configuration file and as a --store-endpoints parameter of shardmanctl.

12

Chapter 2. Manage

2.1. Cluster Services
The Shardman cluster configuration is stored in etcd. Shardman cluster services are organized as systemd services. The Shardman
configuration daemon shardmand monitors the cluster configuration and manages PostgreSQL instances through integrated stolon.
Each node has one shardmand service, whose typical name is shardmand@CLUSTER_NAME.service. Here CLUSTER_NAME
is the Shardman cluster name, cluster0 by default.

Each shardmand includes several integrated stolon keeper and stolon sentinel threads.

Each registered DBMS instance has an associated stolon keeper thread that directly manages this PostgreSQL instance. The
keeper starts, stops, initializes and resyncs PostgreSQL instances according to the desired stolon cluster state.

Each registered DBMS instance has an associated stolon sentinel thread. For each replication group, stolon sentinels elect
the leader among existing sentinels. This leader makes decisions about the desired cluster state (for example, which keeper
should become a new master when the existing one fails). When the new master in a replication group is selected, the leader selects
the keeper with the minimal lag. When all replicas are synchronous, the keeper with the maximal priority is selected to become
a new master even when the master in the replication group is alive. Shardman only uses synchronous replicas (otherwise, there is
a chance to lose data when a node fails).

shardmand is a systemd unit, its logs are written to journald. You can use journalctl to examine it. For example, to get all logs
since 2023-05-09 10:00 for the shardmand service of the cluster0 cluster, you can use the following command:

 $ journalctl -u shardmand@cluster0 --since '2023-05-09 10:00'

To control the log verbosity for all Shardman services, set SDM_LOG_LEVEL in the shardmand configuration file.

2.2. Scaling the Cluster
The Shardman architecture allows you to scale out your cluster without any downtime. This section describes how you can add
more nodes to your Shardman cluster in order to improve query performance/scalability. If a Shardman cluster does not meet your
performance expectations or storage capacity, you can add new nodes to the cluster.

2.2.1. Adding and Removing a Node
How nodes are added to a cluster and where replicas will be located depends on the type of a highly available configuration. Shardman
supports two types of configurations: cross-replication mode and manual-topology mode. The PlacementPolicy parameter in
sdmspec.json allows you to select the cluster behavior. The parameter supports two values: cross and manual. The default
is cross. For example:

 {
 "PlacementPolicy": "cross",
 "Repfactor": 1,
 ...
 }

2.2.1.1. Cross Replication

The shardmanctl nodes add command is used to add new nodes to a Shardman cluster. With cross placement policy, nodes
are added to a cluster by clovers. Each node in a clover runs the primary DBMS instance and replicas of other nodes in the clover.
The number of replicas is determined by the Repfactor configuration parameter. So, each clover consists of Repfactor + 1
nodes and can stand loss of Repfactor nodes. An example of creating a cluster of four nodes with Repfactor=1 and cross
replication is shown below:

 $ shardmanctl --store-endpoints http://etcd1:2379,http://
etcd2:2379,http://etcd3:2379 init -f sdmspec.json

13

Manage

 $ shardmanctl --store-endpoints http://etcd1:2379,http://
etcd2:2379,http://etcd3:2379 nodes add -n n1,n2,n3,n4

View the topology of a cluster:

 $ shardmanctl --store-endpoints http://etcd1:2379,http://
etcd2:2379,http://etcd3:2379 cluster topology

The command output is as follows:

 ###
 # == REPLICATION GROUP clover-1-n1, RGID - 1 ==
 #

 ###
 # HOST # PORT # STATUS
 #

 ###
 # n1 # 5432 # PRIMARY
 #

 ###
 # n2 # 5433 # STANDBY
 #

 ###

 ###
 # == REPLICATION GROUP clover-1-n2, RGID - 2 ==
 #

 ###
 # HOST # PORT # STATUS
 #

 ###
 # n1 # 5433 # STANDBY
 #

 ###
 # n2 # 5432 # PRIMARY
 #

 ###

 ###
 # == REPLICATION GROUP clover-2-n3, RGID - 1 ==
 #

 ###
 # HOST # PORT # STATUS
 #

 ###
 # n3 # 5432 # PRIMARY
 #

 ###

14

Manage

 # n4 # 5433 # STANDBY
 #

 ###

 ###
 # == REPLICATION GROUP clover-2-n4, RGID - 2 ==
 #

 ###
 # HOST # PORT # STATUS
 #

 ###
 # n3 # 5433 # STANDBY
 #

 ###
 # n4 # 5432 # PRIMARY
 #

 ###

The shardmanctl nodes rm command is used to remove nodes from a Shardman cluster. This command removes clovers
containing the specified nodes from the cluster. The last clover in the cluster cannot be removed. Any data (such as partitions
of sharded relations) on removed replication groups is migrated to the remaining replication groups using logical replication, and
all references to the removed replication groups (including definitions of foreign servers) are removed from the metadata of the
remaining replication groups. Finally, the metadata in etcd is updated.

 $ shardmanctl --store-endpoints http://etcd1:2379,http://
etcd2:2379,http://etcd3:2379 nodes rm -n n3

View the topology of a cluster:

 $ shardmanctl --store-endpoints http://etcd1:2379,http://
etcd2:2379,http://etcd3:2379 cluster topology

The command output is as follows:

 ###
 # == REPLICATION GROUP clover-1-n1, RGID - 1 ==
 #

 ###
 # HOST # PORT # STATUS
 #

 ###
 # n1 # 5432 # PRIMARY
 #

 ###
 # n2 # 5433 # STANDBY
 #

 ###

 ###
 # == REPLICATION GROUP clover-1-n2, RGID - 2 ==
 #

15

Manage

 ###
 # HOST # PORT # STATUS
 #

 ###
 # n1 # 5433 # STANDBY
 #

 ###
 # n2 # 5432 # PRIMARY
 #

 ###

2.2.1.2. Manual Topology

In the manual-topology mode, to add a primar# to a cluster, use the shardmanctl nodes add command, which adds the list
of nodes to the cluster as primaries with a separate replication group for each primary. Create a cluster with three primary nodes and
manual topology (PlacementPolicy=manual in sdmspec.json):

 $ shardmanctl --store-endpoints http://etcd1:2379,http://
etcd2:2379,http://etcd3:2379 init -f sdmspec.json
 $ shardmanctl --store-endpoints http://etcd1:2379,http://
etcd2:2379,http://etcd3:2379 nodes add -n n1,n2,n3

To view the topology of a cluster, use the shardmanctl cluster topology command:

 $ shardmanctl --store-endpoints http://etcd1:2379,http://
etcd2:2379,http://etcd3:2379 cluster topology

The command output is as follows:

 ##
 # == REPLICATION GROUP clover-1-n1, RGID - 1 ==
 #

 ##
 # HOST # PORT # STATUS
 #

 ##
 # n1 # 5432 #
 PRIMARY #

 ##

 ##
 # == REPLICATION GROUP clover-2-n2, RGID - 2 ==
 #

 ##
 # HOST # PORT # STATUS
 #

 ##
 # n2 # 5432 #
 PRIMARY #

 ##

16

Manage

 ##
 # == REPLICATION GROUP clover-3-n3, RGID - 3 ==
 #

 ##
 # HOST # PORT # STATUS
 #

 ##
 # n3 # 5432 #
 PRIMARY #

 ##

Add n4, n5, n6 nodes as replicas using the shardmanctl shard add command:

 $ shardmanctl --store-endpoints http://etcd1:2379,http://
etcd2:2379,http://etcd3:2379 shard --shard clover-1-n1 add -n n4
 $ shardmanctl --store-endpoints http://etcd1:2379,http://
etcd2:2379,http://etcd3:2379 shard --shard clover-2-n2 add -n n5
 $ shardmanctl --store-endpoints http://etcd1:2379,http://
etcd2:2379,http://etcd3:2379 shard --shard clover-3-n3 add -n n6

In manual-topology mode, one node can be added to more than one replication group.

As a result, we get the following cluster configuration:

 ###
 # == REPLICATION GROUP clover-1-n1, RGID - 1 ==
 #

 ###
 # HOST # PORT # STATUS
 #

 ###
 # n1 # 5432 # PRIMARY
 #

 ###
 # n4 # 5432 # STANDBY
 #

 ###

 ###
 # == REPLICATION GROUP clover-2-n2, RGID - 2 ==
 #

 ###
 # HOST # PORT # STATUS
 #

 ###
 # n2 # 5432 # PRIMARY
 #

 ###

17

Manage

 # n5 # 5432 # STANDBY
 #

 ###

 ###
 # == REPLICATION GROUP clover-3-n3, RGID - 3 ==
 #

 ###
 # HOST # PORT # STATUS
 #

 ###
 # n3 # 5432 # PRIMARY
 #

 ###
 # n6 # 5432 # STANDBY
 #

 ###

To remove a replica, just run the shardmanctl shard rm command. For example:

 $ shardmanctl --store-endpoints http://etcd1:2379,http://
etcd2:2379,http://etcd3:2379 shard --shard clover-1-n1 rm -n n4

To remove the master, first run the shardmanctl shard switch command to switch the master to the replica; then delete
the old master.

 $ shardmanctl --store-endpoints http://etcd1:2379,http://
etcd2:2379,http://etcd3:2379 shard --shard clover-1-n1 switch --new-primary n4

2.3. Rebalancing the Data

2.3.1. Automatically Rebalancing the Data
Automatic rebalancing is used as the default mode. A rebalance process starts automatically after adding nodes (by default if --no-
rebalance is not set) or before deleting a node. Rebalance can also be started manually. The essence of the rebalancing process
is to evenly distribute partitions for each sharded table between replication groups.

The rebalancing process for each sharded table iteratively determines the replication group with the maximum and minimum number
of partitions and creates a task to move one partition to the replication group with the minimum number of partitions. This process is
repeated while max - min > 1. To move partitions, we use logical replication. Partitions of colocated tables are moved together
with partitions of the sharded tables to which they refer.

It is important to remember that max_logical_replication_workers should be rather high since the rebalance process
uses up to max(max_replication_slots, max_logical_replication_workers, max_worker_processes,
max_wal_senders)/3 concurrent threads. In practice, you can use max_logical_replication_workers = Rep-
factor + 3 * task_num (task_num is the number of parallel rebalance tasks).

To rebalance sharded tables in the cluster0 cluster manually, run the command (where etcd1, etcd2, etcd3 are etcd cluster nodes):

 $ shardmanctl --store-endpoints http://etcd1:2379,http://
etcd2:2379,http://etcd3:2379 rebalance

If the process ends with an error, then you need to call the shardmanctl cleanup command with the --after-rebalance
option.

18

Manage

2.3.2. Manually Rebalancing the Data
There are times when you need to place partitions of sharded tables in a specific way across the cluster nodes. To solve this problem,
Shardman supports the manual data rebalancing mode.

How it works:

1. Get a list of sharded tables using the shardmanctl tables sharded list command. As a result, we get an answer
similar to the following:

$ shardmanctl shardmanctl tables sharded list

Sharded tables:

public.doc
public.resolution
public.users

2. Request information about the selected sharded tables. Example:

$ shardmanctl shardmanctl tables sharded info -t public.users

Table public.users

Partitions:

Partition RgID Shard Master
0 1 clover-1-shrn1 shrn1:5432
1 2 clover-2-shrn2 shrn2:5432
2 3 clover-3-shrn3 shrn3:5432
3 1 clover-1-shrn1 shrn1:5432
4 2 clover-2-shrn2 shrn2:5432
5 3 clover-3-shrn3 shrn3:5432
6 1 clover-1-shrn1 shrn1:5432
7 2 clover-2-shrn2 shrn2:5432
8 3 clover-3-shrn3 shrn3:5432
9 1 clover-1-shrn1 shrn1:5432
10 2 clover-2-shrn2 shrn2:5432
11 3 clover-3-shrn3 shrn3:5432
12 1 clover-1-shrn1 shrn1:5432
13 2 clover-2-shrn2 shrn2:5432
14 3 clover-3-shrn3 shrn3:5432
15 1 clover-1-shrn1 shrn1:5432
16 2 clover-2-shrn2 shrn2:5432
17 3 clover-3-shrn3 shrn3:5432
18 1 clover-1-shrn1 shrn1:5432
19 2 clover-2-shrn2 shrn2:5432
20 3 clover-3-shrn3 shrn3:5432
21 1 clover-1-shrn1 shrn1:5432
22 2 clover-2-shrn2 shrn2:5432
23 3 clover-3-shrn3 shrn3:5432

3. Move a partition to a new shard, as shown below:

$ shardmanctl --log-level debug tables sharded partmove -t public.users --partnum 1
 --shard clover-1-shrn1

19

Manage

2023-07-26T06:00:36.900Z DEBUG cmd/common.go:105 Waiting for metadata
 lock...
2023-07-26T06:00:36.936Z DEBUG rebalance/service.go:256 take
 extension lock
2023-07-26T06:00:36.938Z DEBUG broadcaster/worker.go:33 start
 broadcaster worker for repgroup id=3
2023-07-26T06:00:36.938Z DEBUG broadcaster/worker.go:33 start
 broadcaster worker for repgroup id=2
2023-07-26T06:00:36.938Z DEBUG broadcaster/worker.go:33 start
 broadcaster worker for repgroup id=1
2023-07-26T06:00:36.951Z DEBUG broadcaster/worker.go:51 repgroup 3
 connect established
2023-07-26T06:00:36.951Z DEBUG broadcaster/worker.go:51 repgroup 2
 connect established
2023-07-26T06:00:36.952Z DEBUG broadcaster/worker.go:51 repgroup 1
 connect established
2023-07-26T06:00:36.952Z DEBUG extension/lock.go:35 Waiting for
 extension lock...
2023-07-26T06:00:36.976Z INFO rebalance/service.go:276 Performing
 move partition...
2023-07-26T06:00:36.977Z DEBUG broadcaster/worker.go:33 start
 broadcaster worker for repgroup id=3
2023-07-26T06:00:36.978Z DEBUG broadcaster/worker.go:33 start
 broadcaster worker for repgroup id=2
2023-07-26T06:00:36.978Z DEBUG broadcaster/worker.go:33 start
 broadcaster worker for repgroup id=1
2023-07-26T06:00:36.987Z DEBUG broadcaster/worker.go:51 repgroup 1
 connect established
2023-07-26T06:00:36.989Z DEBUG broadcaster/worker.go:51 repgroup 2
 connect established
2023-07-26T06:00:36.992Z DEBUG broadcaster/worker.go:51 repgroup 3
 connect established
2023-07-26T06:00:36.992Z DEBUG rebalance/service.go:71 Performing cleanup
 after possible rebalance operation failure
2023-07-26T06:00:37.077Z DEBUG broadcaster/worker.go:75 finish
 broadcaster worker for repgroup id=3
2023-07-26T06:00:37.077Z DEBUG broadcaster/worker.go:75 finish
 broadcaster worker for repgroup id=1
2023-07-26T06:00:37.077Z DEBUG broadcaster/worker.go:75 finish
 broadcaster worker for repgroup id=2
2023-07-26T06:00:37.082Z DEBUG rebalance/service.go:422 Rebalance
 will run 1 tasks
2023-07-26T06:00:37.095Z DEBUG rebalance/service.go:452 Guessing
 that rebalance() can use 3 workers
2023-07-26T06:00:37.096Z DEBUG rebalance/job.go:352 state: Idle
 {"worker_id": 1, "table": "users", "partition num": 1, "source rgid": 2, "dest
 rgid": 1, "kind": "move"}
2023-07-26T06:00:37.111Z DEBUG rebalance/job.go:352 state:
 ConnsEstablished {"worker_id": 1, "table": "users", "partition num": 1, "source
 rgid": 2, "dest rgid": 1, "kind": "move"}
2023-07-26T06:00:37.171Z DEBUG rebalance/job.go:352 state: WaitInitCopy
 {"worker_id": 1, "table": "users", "partition num": 1, "source rgid": 2, "dest
 rgid": 1, "kind": "move"}
2023-07-26T06:00:38.073Z DEBUG rebalance/job.go:347 current state
 {"worker_id": 1, "table": "users", "partition num": 1, "source rgid": 2, "dest
 rgid": 1, "kind": "move", "state": "WaitInitialCatchup"}

20

Manage

2023-07-26T06:00:38.073Z DEBUG rebalance/job.go:352 state:
 WaitInitialCatchup {"worker_id": 1, "table": "users", "partition num": 1,
 "source rgid": 2, "dest rgid": 1, "kind": "move"}
2023-07-26T06:00:38.084Z DEBUG rebalance/job.go:347 current state
 {"worker_id": 1, "table": "users", "partition num": 1, "source rgid": 2, "dest
 rgid": 1, "kind": "move", "state": "WaitFullSync"}
2023-07-26T06:00:38.084Z DEBUG rebalance/job.go:352 state: WaitFullSync
 {"worker_id": 1, "table": "users", "partition num": 1, "source rgid": 2, "dest
 rgid": 1, "kind": "move"}
2023-07-26T06:00:38.108Z DEBUG rebalance/job.go:347 current state
 {"worker_id": 1, "table": "users", "partition num": 1, "source rgid": 2, "dest
 rgid": 1, "kind": "move", "state": "Committing"}
2023-07-26T06:00:38.108Z DEBUG rebalance/job.go:352 state: Committing
 {"worker_id": 1, "table": "users", "partition num": 1, "source rgid": 2, "dest
 rgid": 1, "kind": "move"}
2023-07-26T06:00:38.254Z DEBUG rebalance/job.go:352 state: Complete
 {"worker_id": 1, "table": "users", "partition num": 1, "source rgid": 2, "dest
 rgid": 1, "kind": "move"}
2023-07-26T06:00:38.258Z DEBUG rebalance/service.go:583 Produce and
 process tasks on destination replication groups...
2023-07-26T06:00:38.258Z DEBUG rebalance/service.go:594 Produce and
 process tasks on source replication groups...
2023-07-26T06:00:38.258Z DEBUG rebalance/service.go:606 wait all
 tasks finish
2023-07-26T06:00:38.258Z DEBUG rebalance/service.go:531 Analyzing
 table public.users in rg 1 {"table": "public.users", "rgid": 1, "action":
 "analyze"}
2023-07-26T06:00:38.573Z DEBUG rebalance/service.go:531 Analyzing
 table public.users in rg 2 {"table": "public.users", "rgid": 2, "action":
 "analyze"}
2023-07-26T06:00:38.833Z DEBUG broadcaster/worker.go:75 finish
 broadcaster worker for repgroup id=1
2023-07-26T06:00:38.833Z DEBUG broadcaster/worker.go:75 finish
 broadcaster worker for repgroup id=2
2023-07-26T06:00:38.833Z DEBUG broadcaster/worker.go:75 finish
 broadcaster worker for repgroup id=3

In this example, partition number 1 of the public.users table will be moved to the clover-1-shrn1 shard.

After manually moving a partition of a sharded table and for all tables collocated with it, automatic data rebalancing for these
tables will be disabled.

To get the list of tables with disabled automatic rebalancing, call the shardmanctl tables sharded norebalance
command. Example:

$ shardmanctl tables sharded norebalance

public.users

To enable automatic data rebalancing for a selected sharded table, call the shardmanctl tables sharded rebalance
command, as shown in the example below:

$ shardmanctl tables sharded rebalance -t public.users

2023-07-26T07:07:00.657Z DEBUG cmd/common.go:105 Waiting for metadata
 lock...

21

Manage

2023-07-26T07:07:00.687Z DEBUG broadcaster/worker.go:33 start
 broadcaster worker for repgroup id=1
2023-07-26T07:07:00.687Z DEBUG broadcaster/worker.go:33 start
 broadcaster worker for repgroup id=2
2023-07-26T07:07:00.687Z DEBUG broadcaster/worker.go:33 start
 broadcaster worker for repgroup id=3
2023-07-26T07:07:00.697Z DEBUG broadcaster/worker.go:51 repgroup 1
 connect established
2023-07-26T07:07:00.698Z DEBUG broadcaster/worker.go:51 repgroup 2
 connect established
2023-07-26T07:07:00.698Z DEBUG broadcaster/worker.go:51 repgroup 3
 connect established
2023-07-26T07:07:00.698Z DEBUG extension/lock.go:35 Waiting for extension
 lock...
2023-07-26T07:07:00.719Z DEBUG rebalance/service.go:381 Planned moving
 pnum 21 for table users from rg 1 to rg 2
2023-07-26T07:07:00.719Z INFO rebalance/service.go:244 Performing
 rebalance...
2023-07-26T07:07:00.720Z DEBUG broadcaster/worker.go:33 start
 broadcaster worker for repgroup id=1
2023-07-26T07:07:00.720Z DEBUG broadcaster/worker.go:33 start
 broadcaster worker for repgroup id=2
2023-07-26T07:07:00.720Z DEBUG broadcaster/worker.go:33 start
 broadcaster worker for repgroup id=3
2023-07-26T07:07:00.732Z DEBUG broadcaster/worker.go:51 repgroup 3
 connect established
2023-07-26T07:07:00.732Z DEBUG broadcaster/worker.go:51 repgroup 1
 connect established
2023-07-26T07:07:00.734Z DEBUG broadcaster/worker.go:51 repgroup 2
 connect established
2023-07-26T07:07:00.734Z DEBUG rebalance/service.go:71 Performing cleanup
 after possible rebalance operation failure
2023-07-26T07:07:00.791Z DEBUG broadcaster/worker.go:75 finish
 broadcaster worker for repgroup id=1
2023-07-26T07:07:00.791Z DEBUG broadcaster/worker.go:75 finish
 broadcaster worker for repgroup id=2
2023-07-26T07:07:00.791Z DEBUG broadcaster/worker.go:75 finish
 broadcaster worker for repgroup id=3
2023-07-26T07:07:00.795Z DEBUG rebalance/service.go:422 Rebalance will
 run 1 tasks
2023-07-26T07:07:00.809Z DEBUG rebalance/service.go:452 Guessing that
 rebalance() can use 3 workers
2023-07-26T07:07:00.809Z DEBUG rebalance/job.go:352 state: Idle
 {"worker_id": 1, "table": "users", "partition num": 21, "source rgid": 1, "dest rgid":
 2, "kind": "move"}
2023-07-26T07:07:00.823Z DEBUG rebalance/job.go:352 state: ConnsEstablished
 {"worker_id": 1, "table": "users", "partition num": 21, "source rgid": 1, "dest rgid":
 2, "kind": "move"}
2023-07-26T07:07:00.880Z DEBUG rebalance/job.go:352 state: WaitInitCopy
 {"worker_id": 1, "table": "users", "partition num": 21, "source rgid": 1, "dest rgid":
 2, "kind": "move"}
2023-07-26T07:07:01.886Z DEBUG rebalance/job.go:347 current state
 {"worker_id": 1, "table": "users", "partition num": 21, "source rgid": 1, "dest rgid":
 2, "kind": "move", "state": "WaitInitialCatchup"}
2023-07-26T07:07:01.886Z DEBUG rebalance/job.go:352 state:
 WaitInitialCatchup {"worker_id": 1, "table": "users", "partition num": 21,
 "source rgid": 1, "dest rgid": 2, "kind": "move"}

22

Manage

2023-07-26T07:07:01.904Z DEBUG rebalance/job.go:347 current state
 {"worker_id": 1, "table": "users", "partition num": 21, "source rgid": 1, "dest rgid":
 2, "kind": "move", "state": "WaitFullSync"}
2023-07-26T07:07:01.905Z DEBUG rebalance/job.go:352 state: WaitFullSync
 {"worker_id": 1, "table": "users", "partition num": 21, "source rgid": 1, "dest rgid":
 2, "kind": "move"}
2023-07-26T07:07:01.932Z DEBUG rebalance/job.go:347 current state
 {"worker_id": 1, "table": "users", "partition num": 21, "source rgid": 1, "dest rgid":
 2, "kind": "move", "state": "Committing"}
2023-07-26T07:07:01.932Z DEBUG rebalance/job.go:352 state: Committing
 {"worker_id": 1, "table": "users", "partition num": 21, "source rgid": 1, "dest rgid":
 2, "kind": "move"}
2023-07-26T07:07:02.057Z DEBUG rebalance/job.go:352 state: Complete
 {"worker_id": 1, "table": "users", "partition num": 21, "source rgid": 1, "dest rgid":
 2, "kind": "move"}
2023-07-26T07:07:02.060Z DEBUG rebalance/service.go:583 Produce and
 process tasks on destination replication groups...
2023-07-26T07:07:02.060Z DEBUG rebalance/service.go:594 Produce and
 process tasks on source replication groups...
2023-07-26T07:07:02.060Z DEBUG rebalance/service.go:531 Analyzing table
 public.users in rg 2 {"table": "public.users", "rgid": 2, "action": "analyze"}
2023-07-26T07:07:02.060Z DEBUG rebalance/service.go:606 wait all tasks
 finish
2023-07-26T07:07:02.321Z DEBUG rebalance/service.go:531 Analyzing table
 public.users in rg 1 {"table": "public.users", "rgid": 1, "action": "analyze"}
2023-07-26T07:07:02.587Z DEBUG broadcaster/worker.go:75 finish
 broadcaster worker for repgroup id=3
2023-07-26T07:07:02.587Z DEBUG broadcaster/worker.go:75 finish
 broadcaster worker for repgroup id=2
2023-07-26T07:07:02.587Z DEBUG broadcaster/worker.go:75 finish
 broadcaster worker for repgroup id=1

To enable automatic data rebalancing for all sharded tables, run the shardmanctl rebalance command with the --force
option.

$ shardmanctl rebalance --force

2.4. Analyzing and Vacuuming
Shardman databases require periodic maintenance, known as vacuuming. For many installations, it is sufficient to let vacuuming
be performed by the autovacuum daemon. As in PostgreSQL installation, autovacuum daemon will automatically issue ANALYZE
commands whenever the content of a table has changed sufficiently. When ANALYZE is run by the autovacuum daemon or manually
on the whole database, statistics from foreign partitions is transferred from remote nodes.

Rebalance process can move or copy data between cluster nodes. After this operation, all transferred objects are automatically
analyzed. As usual, local statistics is gathered, and remote statistics is fetched from foreign servers.

Note
Database-wide ANALYZE relies on statistics being available on remote shards. But statistics on remote shards may be missing,
and it is not enough to just broadcast ANALYZE for cluster-wide update of statistics. Instead, shardman.global_analyze()
function can be used. It performs gathering of statistics for sharded and global tables.

Database-wide VACUUM command can be broadcast to perform cluster-wide vacuuming. It can be done when the shard-
man.broadcast_ddl configuration parameter is on.

23

Manage

Note

When ANALYZE is run on a global table, only statistics on corresponding local table is updated. When ANALYZE is run on
a sharded table, statistics on local partitions is updated, statistics for foreign partitions is transferred from remote nodes, if
remote nodes have it. When ANALYZE is run on a foreign table directly and remote node doesn't have any statistics for the
corresponding local table, local table is analyzed remotely. Then statistics is transferred from the remote node.

When VACUUM is run on a sharded or global table, the statement is broadcast. For a sharded table, it is efficiently run on
all table partitions.

2.5. Access Management
A Shardman cluster emulates a usual PostgreSQL security model, which, however, has features inherent to a distributed DBMS.
This section describes these features and aims to give you an idea of access management in a Shardman cluster.

2.5.1. Cluster Initialization Settings Related to Access Management
When a Shardman cluster is initialized, security-related settings are taken from the initialization file. You can change them later, but
do this with care and remember that in most cases, the change will require a DBMS restart.

A Shardman cluster has two special users: administrative and replication. stolon and Shardman manage controlled DBMS instances
with administrative users. stolon needs replication users for replications between controlled DBMS instances.

Security-related settings from the initialization file specify:

• Authentication methods for administrative and replication users — PgSuAuthMethod, PgReplAuthMethod

• Usernames for administrative and replication users — PgSuUsername, PgReplUsername

• Passwords for administrative and replication users — PgSuPassword, PgReplPassword

• pg_hba.conf rules used by DBMS instances — StolonSpec.pgHBA

See sdmspec.json for detailed descriptions of these settings.

To change security-related user settings, perform these steps:

1. Check that the user that you want to specify in PgReplUsername /PgSuUsername exists with REPLICATION/ SUPE-
RUSER privileges on all replication groups in the cluster and his password matches the new PgReplPassword/PgSuPass-
word setting.

2. If this is true, create dump of the shardman/cluster0/data/cluster etcd key (here and further the name of the Shard-
man cluster is assumed to be cluster0). For example:

$ etcdctl --endpoints etcdserver:2379 get --print-value-only shardman/cluster0/
data/cluster |jq . > clusterdata.json

This example creates the dump of the data/cluster key for the Shardman cluster with the cluster0 name from the etcd
server etcdserver listening on port 2379, formats the dump with jq and saves to the clusterdata.json file.

3. Edit the dump as necessary and store it back in etcd:

$ cat clusterdata.json | etcdctl --endpoints etcdserver:2379 put shardman/cluster0/
data/cluster

Modifying these settings will lead to a DBMS restart.

Unlike the above settings, the StolonSpec.pgHBA setting can be changed online. To do this, perform these steps:

1. Extract the StolonSpec definition from shardman/cluster0/data/cluster, save to some file, modify as necessary
and update cluster settings with the shardmanctl config update command:

24

Manage

$ etcdctl --endpoints etcdserver:2379 get --print-value-only shardman/cluster0/
data/cluster | jq .Spec.StolonSpec . > stolonspec.json

2. Edit stolonspec.json and replace the StolonSpec.pgHBA definition with the appropriate one, for example:

"pgHBA": [
 "host all postgres 0.0.0.0/0 scram-sha-256",
 "host replication postgres 0.0.0.0/0 scram-sha-256",
 "host replication postgres ::0/0 scram-sha-256",
 "host all someuser 0.0.0.0/0 scram-sha-256"
],

3. Apply the edited stolonspec.json file:

$ shardmanctl --store-endpoints etcdserver:2379 --cluster-name cluster0 config
 update -f stolonspec.json

2.5.2. Managing Users and Roles
Users and roles in a Shardman cluster are usual PostgreSQL users and roles. You can manage them separately on each server or
globally, using broadcast DDL. Shardman also uses concepts of global users and global roles. And only the global users (or roles)
can create and own other Shardman cluster-wide objects, such as sharded or global tables. Operations on such users are always
performed on all replication groups simultaneously. For example, when you include a global role in some other role or drop it, this
operation will be performed on all replication groups.

You can create a global user with a CREATE USER ... IN ROLE global statement, for example:

CREATE USER someuser ENCRYPTED PASSWORD 'somepass' IN ROLE global;

When a global user is created, Shardman automatically creates user mappings on all replication groups and grants this user with
access to all foreign servers corresponding to existing replication groups. Therefore, when you create a global user, you need to
specify either a cleartext password, so that it can be saved in a user mapping, or no password at all. A passwordless global user or
role is unable to access foreign servers, but you can use such a role to accumulate some permissions and grant it to different users.
You can also set a password for a passwordless global user later.

Global users can be created only by user with CREATEROLE permission on all cluster nodes.

ALTER and DROP statements for global users are broadcasted to all replication groups. When a role is granted to a global user, this
operation is also broadcasted. Renaming a global user is not supported since this invalidates md5/scram-sha-256 passwords stored
in user mappings.

The list of global users is stored in the shardman.users table.

The role specified in PgSuUsername (usually, postgres) is also created as global user during cluster initialization. However,
the role specified in PgReplUsername is created as local user on each replication group.

The role global is reserved and cannot be used directly in a Shardman cluster. Note that 'global' is not a really defined role but
just a reserved word.

2.5.3. Managing Permissions on Sharded Tables
In Shardman, a sharded table is basically a partitioned table where partitions are either local shards or foreign tables referencing
shards in other replication groups.

Permissions granted on a sharded table are broadcasted to all replication groups and to all partitions of the table.

When a new replication group is added to a cluster, shardmanctl copies the schema from a random existing replication group to
the new one. It also creates a foreign server for the new replication group on all existing replication groups and recreates foreign
servers on new replication groups. Permissions for the created foreign servers and user mappings are copied from a random foreign
server in an existing replication group. In the new replication group, for each partition of the sharded table shardmanctl creates a
foreign table referencing the existing shard and replaces the partition with this foreign table. Later some of these foreign tables can
be replaced by real tables. This happens during the shardmanctl nodes add rebalance stage when rebalance is enabled. Data

25

Manage

for these partitions is transferred from existing nodes using logical replication. When shardmanctl creates tables (or foreign tables),
it copies permissions from the parent table. The parent table must already have correct permissions since they were copied from
an existing replication group.

2.5.3.1. Examples

These examples assume administrator privileges.

If you want to create a sharded table and a global user, as well as grant him read-only access to the table, you can use the following
statements:

CREATE USER someuser ENCRYPTED PASSWORD 'somepass' IN ROLE global;
CREATE TABLE pgbench_branches (
 bid integer NOT NULL PRIMARY KEY,
 bbalance integer,
 filler character(88)
)
WITH (distributed_by = 'bid', num_parts = 8);
GRANT SELECT ON pgbench_branches TO someuser;

To allow someuser to access a Shardman cluster, you should also provide proper settings in pg_hba.conf (as this is done
earlier).

Now assume that a new clover is added to the cluster with the shardmanctl nodes add command, like this:

$ shardmanctl --store-endpoints http://etcdserver:2379 --cluster-name cluster0 nodes
 add -n newnode1,newnode2

In this example, some shards of the pgbench_branches table are transferred to new replication groups and someuser is granted
the SELECT privilege on this table. Later you can drop someuser from all replication groups in the cluster in one command:

DROP USER someuser;

2.6. Backup and Recovery
This section describes basics of backup and recovery in Shardman.

You can use the backup command of the shardmanctl tool to perform a full binary consistent backup of a Shardman cluster to a
shared directory or local directory (if --use-ssh is specified) and the recover command to perform a recovery from this backup.

Also you can use the probackup backup command of the shardmanctl tool to perform a full binary consistent backup of a
Shardman cluster to the backup repository on the local host or S3-compatible object storage and the probackup restore
command to perform a recovery from any backup from the repository.

The PostgreSQL pg_probackup utility for creating consistent full and incremental backups was integrated into shardman-utils. shard-
man-utils uses the pg_probackup approach to store backups in a pre-created repository. In addition, the pg_probackup commands
archive-get and archive-push are used to deliver WAL logs into the backup repository. Backup and restore modes use a
passwordless ssh connection between the cluster nodes and the backup node.

Shardman cluster configuration parameter enable_csn_snapshot must be set to on. This parameter is necessary for the cluster backup
to be consistent. If this option is disabled, a consistent backup is not possible.

For consistent visibility of distributed transactions, the technique of global snapshots based on physical clocks is used. Similarly, it
is possible to get a consistent snapshot for backups, only the time corresponding to the global snapshot must be mapped to the set of
LSNs for each node. Such a set of consistent LSNs in a cluster is called a syncpoint. By getting the syncpoint and taking the LSN
for each node in the cluster from it, we can make a backup of each node, which must necessarily contain that LSN. We can also
recover to this LSN using the point in time recovery (PITR) mechanism.

The backup and probackup commands use different mechanisms to create backups. The backup command is based on the
standard utilities pg_basebackup and pg_receivewal. The probackup command uses the pg_probackup utility and its options
to create a cluster backup. In any case of using backup or probackup commands for restoration, the node names, defined by
hostname or IP-address, must correspond to those that were in place at the time of the backup.

26

Manage

2.6.1. Cluster Backup with pg_basebackup
This section describes basics of backup and recovery in Shardman with the basebackup command.

2.6.1.1. Requirements

To backup and restore a Shardman cluster via the basebackup command, the following requirements must be met:

• Shardman cluster configuration parameter enable_csn_snapshot must be on. This parameter is necessary for the cluster back-
up to be consistent. If this parameter is disabled, a consistent backup is not possible.

• On each Shardman cluster node, Shardman utilities must be installed into /opt/pgpro/sdm-14/bin.

• On each Shardman cluster node, pg_basebackup must be installed into /opt/pgpro/sdm-14/bin.

• On each Shardman cluster node, postgres Linux user and group must be created.

• Passwordless SSH connection between Shardman cluster nodes for the postgres Linux user must be configured.

• If the --use-ssh flag isn't specified, all Shardman cluster nodes must be connected to a shared network storage and backup
folder must be created on that shared network storage.

• If the --use-ssh flag is specified, the backup directory can be created on the local storage on the node where recover
will be called.

• Access for the postgres Linux user to the backup folder must be granted.

• shardmanctl utility must be run as postgres Linux user.

2.6.1.2. basebackup Backup Process

shardmanctl conducts a backup task in several steps. The tool:

1. Takes necessary locks in etcd to prevent concurrent cluster-wide operations.

2. Connects to a random replication group and locks Shardman metadata tables to prevent modification of foreign servers during
the backup.

3. Creates replication slots on each replication group to ensure that WAL records are not lost.

4. Dumps Shardman metadata stored in etcd to a JSON file in the backup directory.

5. To get backups from each replication group, concurrently runs pg_basebackup using replication slots created.

6. Creates the syncpoint and uses pg_receivewal to fetch WAL logs generated after finishing each basebackup until LSNs extracted
from syncpoint are reached.

7. Fixes partial WAL files generated by pg_receivewal and creates the backup description file.

2.6.2. Cluster Recovery from a Backup Using pg_basebackup
You can restore a backup on the same or compatible cluster. By compatible clusters, those that use the same Shardman version and
have the same number of replication groups are meant.

shardmanctl can perform either full restore, metadata-only or schema-only restore. Metadata-only restore is useful if issues are
encountered with the etcd instance, but DBMS data is not corrupted.

During metadata-only restore, shardmanctl restores etcd data from the dump created during the backup.

Important
Restoring metadata to an incompatible cluster can lead to catastrophic consequences, including data loss, since the metadata
state can differ from the actual configuration layout. Do not perform metadata-only restore if there were cluster reconfigu-
rations after the backup, such as addition or deletion of nodes, even if the same nodes were added back again.

27

Manage

Schema-only recovery restore only schema information without data. It can be useful if the scale of the data is large and the schema
is needed for testing or checking.

During a full restore, shardmanctl checks whether the number of replication groups in the target cluster matches the number of
replication groups in the backup. This means that you cannot restore on an empty cluster, but need to add as many replication groups
as necessary for the total number of them to match that of the cluster from which the backup was taken.

shardmanctl probackup restore can restore a working or partially working cluster from a backup that was created on
a working or partially working cluster.

Also you can perform restoring only on a single shard using --shard parameter.

shardmanctl conducts full restore in several steps. The tool:

1. Takes the necessary locks in etcd to prevent concurrent cluster-wide operations and tries to assign replication groups in the
backup to existing replication groups. If it cannot do this (for example, due to cluster incompatibility), the recovery fails.

2. Restores part of the etcd metadata: the cluster specification and parts of replication group definitions.

3. When the correct metadata is in place, runs stolon init in PITR initialization mode with RecoveryTargetName set to the
value of the syncpoint LSN from the backup info file. DataRestoreCommand and RestoreCommand are also taken from
the backup info file.

4. Waits for each replication group to recover.

2.6.3. Cluster Backup with pg_probackup
This section describes basics of backup and recovery in Shardman with the probackup command.

You can use the probackup backup command of the shardmanctl tool to perform binary backups of a Shardman cluster into the
backup repository on the local (backup) host and the probackup restore command to perform a recovery from the selected
backup. Full and partial (delta) backups are supported.

2.6.3.1. Requirements

To backup and restore a Shardman cluster via the probackup command, the following requirements must be met:

• Shardman cluster configuration parameter enable_csn_snapshot must be on. This parameter is necessary for the cluster back-
up to be consistent. If this parameter is disabled, a consistent backup is not possible.

• On the backup host, Shardman utilities must be installed into /opt/pgpro/sdm-14/bin.

• On the backup host and on each cluster node, pg_probackup must be installed into /opt/pgpro/sdm-14/bin.

• On the backup host, postgres Linux user and group must be created.

• Passwordless SSH connection between the backup host and each Shardman cluster node for the postgres Linux user must
be configured. To do this, on each node:

• The postgres user must create the .ssh subdirectory in the /var/lib/postgresql directory and place there the
keys required for the passwordless SSH connection.

• To perform a backup/restore in a pretty large number of threads, such as 50 (-j=50, see the section called “ backup ” for
details), MaxSessions and MaxStartups must be set to 100 for the backup host in the /etc/ssh/sshd_config
file.

Note
Setting the number of threads (-j option) to a value greater than 10 for shardmanctl probackup may result
in the actual number of SSH connections exceeding the maximum allowed number of simultaneous SSH connec-
tions on the backup host and consequently lead to an “ERROR: Agent error: kex_exchange_identification: Connec-
tion closed by remote host” error. To correct the error, either reduce the number of probackup threads or adjust
the value of MaxStartups configuration parameter of the backup host. If SSH is set up as a xinetd service on the
backup host, adjust the value of the xinetd per_source configuration parameter rather than MaxStartups.

28

Manage

You can disable SSH for data copying by setting the --storage-type option to the mount or S3 value (but SSH will be
required to execute remote commands). Also this value will be automatically used in the restore process.

• A backup folder or bucket in the S3-compatible object storage must be created.

• Access for the postgres Linux user to the backup folder must be granted.

• shardmanctl utility must be run as postgres Linux user.

• init subcommand for the backup repository initialization must be successfully executed on the backup host.

• archive-command add subcommand for enabling archive_command for each replication group to stream WALs into
the initialized repository must be successfully executed on the backup host.

2.6.3.2. pg_probackup Backup Process

shardmanctl conducts a backup task in several steps. The tool:

1. Takes necessary locks in etcd to prevent concurrent cluster-wide operations.

2. Connects to a random replication group and locks Shardman metadata tables to prevent modification of foreign servers during
the backup.

3. Dumps Shardman metadata, stored in etcd, to a JSON file in the backup directory or bucket in the S3-compatible object storage.

4. To get backups from each replication group, concurrently runs pg_probackup using the configured archive_command.

5. Creates the syncpoint and gets LSNs for each replication group from the syncpoint data structure. Then uses the pg_probackup
archive-push command to push WAL logs generated after finishing backup and the WAL file where syncpoint LSNs are
present for each replication group.

2.6.4. Cluster Restore from a Backup with pg_probackup
You can restore a backup on the same or compatible cluster. By compatible clusters, those that use the same Shardman version and
have the same number of replication groups are meant here.

Also, you can restore other clusters from the same backup if these clusters have the same topology.

shardmanctl can perform either full restore, metadata-only or schema-only restore. Metadata-only restore is useful if issues are
encountered with the etcd instance, but DBMS data is not corrupted.

During metadata-only restore, shardmanctl restores etcd data from the dump created during the backup.

Important

Restoring metadata to an incompatible cluster can lead to catastrophic consequences, including data loss, since the metadata
state can differ from the actual configuration layout. Do not perform metadata-only restore if there were cluster reconfigu-
rations after the backup, such as addition or deletion of nodes, even if the same nodes were added back again.

Schema-only recovery restore only schema information without data. It can be useful if the scale of the data is large and the schema
is needed for testing or checking.

During a full restore, shardmanctl checks whether the number of replication groups in the target cluster matches the number of
replication groups in the backup. This means that you cannot restore on an empty cluster, but need to add as many replication groups
as necessary for the total number of them to match that of the cluster from which the backup was taken.

Also you can perform restoring only on the single shard using --shard parameter.

Also you can perform Point-in-Time Recovery using --recovery-target-time parameter. In this case Shardman finds closest
syncpoint to specified timestamp and suggests to restore on found LSN. You can also specify a --wal-limit option to limit the
number of WAL segments to be processed.

29

Manage

shardmanctl conducts full restore in several steps. The tool:

1. Takes the necessary locks in etcd to prevent concurrent cluster-wide operations and tries to assign replication groups in the
backup to existing replication groups. If it cannot do this (for example, due to cluster incompatibility), the recovery fails.

2. Restores part of the etcd metadata: the cluster specification and parts of replication group definitions.

3. When the correct metadata is in place, runs stolon init in PITR initialization mode with RecoveryTargetName set to the
value of the syncpoint LSN from the backup info file. DataRestoreCommand and RestoreCommand are also taken from
the backup info file. These commands are generated automatically during the backup phase, it is not recommended to make any
corrections to the file containing the Shardman cluster backup description. When restoring a cluster for each replication group,
the WAL files containing the final LSN to restore will be requested automatically from the backup repository from the remote
backup node via the pg_probackup archive-get command.

4. Waits for each replication group to recover.

5. Finally we need to enable archive_command back.

When performing a sequential restoration in PostgreSQL, be cautious of potential timeline conflicts within WAL (Write-Ahead
Logging) segments. This issue commonly arises when restoring a database from a backup that was created at a certain point in time.
If the database continues to operate and generate WAL segments after this backup, these new WAL segments are associated with
a different timeline. During restoration, if the system tries to replay WAL segments from a different timeline - one that diverged
from the point of backup - it can lead to inconsistencies and conflicts. Additionally, after completing a restoration in PostgreSQL,
it is strongly advised not to restore the database onto the same timeline or onto any timeline that precedes the one from which the
backup was made.

2.6.5. Merging Backups with pg_probackup
The more incremental backups are created, the bigger the total size of the backup catalog grows. To save the disk space, it is possible
to merge the incremental backups to their parent full backup by running the merge command, specifying the backup ID of the most
recent incremental backup to merge:

$ shardmanctl --store-endpoints http://etcd1:2379,http://etcd2:2379,http://etcd3:2379
 probackup merge --backup-path backup_dir --backup-id backup_id

This command merges the backups that belong to a common incremental backup chain. If a full backup is specified, it is merged with
its first incremental backup. If an incremental backup is specified, it is merged to its parent full backup, along with all the incremental
backups between them. Once the merge is complete, the full backup covers all the merged data, and the incremental backups are
removed as redundant. Thus, the merge operation virtually equals to removing all the outdated backups from a full backup, but a lot
faster, especially for the large data volumes. It also saves I/O and network traffic when using pg_probackup in the remote mode.

Before merging, pg_probackup validates all the affected backups to ensure that they are valid. The current backup status can be
seen by running the show command:

$ shardmanctl --store-endpoints http://etcd1:2379,http://etcd2:2379,http://etcd3:2379
 probackup show --backup-path backup_dir

For more information, see reference.

2.6.6. Deleting Backups with pg_probackup
To delete a backup that is no longer needed, run the following command:

$ shardmanctl --store-endpoints http://etcd1:2379,http://etcd2:2379,http://etcd3:2379
 probackup delete --backup-path backup_dir --backup-id backup_id

This command deletes a backup with a specified backup_id, along with all the incremental backups that descend from this
backup_id, if any. It allows to delete some of the recent incremental backups, without affecting the underlying full backup and
other incremental backups that follow it.

To delete the obsolete WAL files that are not needed for recovery, use the --delete-wal flag:

$ shardmanctl --store-endpoints http://etcd1:2379,http://etcd2:2379,http://etcd3:2379
 probackup delete --backup-path backup_dir --backup-id backup_id --delete-wal

30

Manage

For more information, see reference.

2.7. Configuring Secure Communications with etcd
This section describes how to configure secure communications between the etcd store and Shardman services and tools.

etcd is a critical component for a Shardman cluster. If an intruder gets access to the etcd store, it gains full control over the whole
cluster, including DBMS access with DBA privileges. To protect your cluster, it is recommended that you configure TLS authenti-
cation between etcd daemons and Shardman services.

To this end, you can use HTTPS transport with certificates signed by your local certification authority (CA) to encrypt traffic between
the etcd cluster and Shardman services and restrict etcd access. To do this, perform the steps described in the next sections.

2.7.1. Generating SSL Certificates
To generate SSL certificates, perform the following steps:

1. If the CA does not exist, generate a self-signed root certificate. Generate all certificates on one trusted host. Here certificates that
expire in 10000 days are generated (you can choose a more suitable interval):

openssl genrsa -out rootCA.key 4096
openssl req -x509 -new -key rootCA.key -days 10000 -out rootCA.crt

2. Prepare the following openssl configuration file for each etcd host:

[req]
default_bits = 4096
distinguished_name = req_distinguished_name
req_extensions = req_ext
[req_distinguished_name]
countryName = Country Name (2 letter code)
stateOrProvinceName = State or Province Name (full name)
localityName = Locality Name (eg, city)
organizationName = Organization Name (eg, company)
commonName = Common Name (e.g. server FQDN or YOUR name)
[req_ext]
subjectAltName = @alt_names
[alt_names]
DNS.1 = n1
IP.1 = 192.168.1.1
IP.2 = 127.0.0.1

Under [alt_names], specify alternative subject names for the etcd host. These names must include the etcd server hostname,
IP address and local IP. Including the local IP is convenient rather than required.

Save the file. For example, the names of configuration files for nodes n1 — n3 can be n1.san.conf — n3.san.conf.

3. Using the configuration files prepared, generate private keys and certificate requests for etcd hosts:

openssl genrsa -out n1.etcd.key 4096
openssl req -config n1.san.conf -new -key n1.etcd.key -out n1.etcd.csr -subj "/
C=RU/ST=Moscow Region/L=Moscow/O=Test/CN=n1"

Here “ /C=RU/ST=Moscow Region/L=Moscow/O=Test/CN=n1 ” means that the certificate request is generated with
the country name RU, state Moscow Region, locality Moscow, organization Test and common name n1. The common
name must match the DNS name of your etcd server.

4. Sign the certification request:

openssl x509 -extfile n1.san.conf -extensions req_ext -req -in n1.etcd.csr -CA
 rootCA.crt -CAkey rootCA.key -CAcreateserial -out n1.etcd.crt -days 10000

5. Check the certificates to ensure they contain correct X509v3 Subject Alternative Name fields. The fields must contain
the list of DNS names and IP addresses that you added to the openssl configuration file:

31

Manage

openssl x509 -in n1.etcd.crt -noout -text

6. Generate client certificates for Shardman services and client tools. These certificates do not need to contain the subjec-
tAltName header, and CN is not important in the example below. It generates one common certificate-key pair for services
and one — for tools:

openssl x509 genrsa -out shardman_services.key 4096
openssl req -new -key shardman_services.key -out shardman_services.csr -subj "/
C=RU/ST=Moscow Region/L=Moscow/O=Test/CN=shardman_services"
openssl x509 -req -in shardman_services.csr -CA rootCA.crt -CAkey rootCA.key -
CAcreateserial -out shardman_services.crt -days 10000
openssl x509 genrsa -out shardman_tools.key 4096
openssl req -new -key shardman_tools.key -out shardman_tools.csr -subj "/C=RU/
ST=Moscow Region/L=Moscow/O=Test/CN=shardman_tools"
openssl x509 -req -in shardman_tools.csr -CA rootCA.crt -CAkey rootCA.key -
CAcreateserial -out shardman_tools.crt -days 10000

2.7.2. Configuring etcd and shardmand Services
Now configure services (etcd and shardmand) to use the generated certificates. To do this, perform the following steps:

1. On each etcd node, put rootCA.crt, nX.etcd.crt and nX.etcd.key in the location accessible to the etcd daemon (for
example, create /etc/etcd directory and put files there). Ensure that the nX.etcd.key file is only accessible to the etcd
daemon user.

2. Specify the following configuration for etcd daemons in /etc/default/etcd:

unqualified first name
ETCD_NAME=n1
where we actually listen for peers
ETCD_LISTEN_PEER_URLS=https://0.0.0.0:2380
where we actually listen for clients
ETCD_LISTEN_CLIENT_URLS=https://0.0.0.0:2379
advertise where this machine is listening for clients
ETCD_ADVERTISE_CLIENT_URLS=https://n1:2379

--initial flags are used during bootstrapping and ignored afterwards, so it is
ok to specify them always
advertise where this machine is listening for peer
ETCD_INITIAL_ADVERTISE_PEER_URLS=https://n1:2380
ETCD_INITIAL_CLUSTER_TOKEN=etcd-cluster
ansible_nodename is fqdn
ETCD_INITIAL_CLUSTER=n1=https://n1:2380,n2=https://n2:2380,n3=https://n3:2380
ETCD_INITIAL_CLUSTER_STATE=new

ETCD_DATA_DIR=/var/lib/etcd/default/member
ETCD_AUTO_COMPACTION_RETENTION=1

ETCD_KEY_FILE=/etc/etcd/n1.etcd.key
ETCD_CERT_FILE=/etc/etcd/n1.etcd.crt
ETCD_TRUSTED_CA_FILE=/etc/etcd/rootCA.crt
ETCD_CLIENT_CERT_AUTH=true

ETCD_PEER_CERT_FILE=/etc/etcd/n1.etcd.crt
ETCD_PEER_KEY_FILE=/etc/etcd/n1.etcd.key
ETCD_PEER_TRUSTED_CA_FILE=/etc/etcd/rootCA.crt
ETCD_PEER_CLIENT_CERT_AUTH=true

Replace n1 here with the appropriate node name.

3. Restart etcd services on all etcd cluster nodes:

32

Manage

systemctl restart etcd

4. To check the new configuration, use the following command:

etcdctl --endpoints=https://n1:2379,https://n2:2379,https://n3:2379 --cacert /
etc/etcd/rootCA.crt --cert /etc/etcd/n1.etcd.crt --key /etc/etcd/n1.etcd.key member
 list -w table

+------------------+---------+------+-----------------+-----------------
+------------+
| ID | STATUS | NAME | PEER ADDRS | CLIENT ADDRS | IS LEARNER
 |
+------------------+---------+------+-----------------+-----------------
+------------+
| 66ebe06d7302c3f0 | started | n2 | https://n2:2380 | https://n2:2379 | false
 |
| b1080bf5ff059980 | started | n1 | https://n1:2380 | https://n1:2379 | false
 |
| d98323257249fefb | started | n3 | https://n3:2380 | https://n3:2379 | false
 |
+------------------+---------+------+-----------------+-----------------
+------------+

5. On each Shardman cluster node, put rootCA.crt, shardman_services.crt and shardman_services.key in a
location accessible to the postgres user (for example, create the /etc/shardman directory and put files there). Ensure
that the shardman_services.key file is only accessible to the postgres user.

6. Edit the shardmand configuration file /etc/shardman/shardmand-cluster0.env as follows:

SDM_STORE_ENDPOINTS=https://n1:2379,https://n2:2379,https://n3:2379
SDM_STORE_CA_FILE=/etc/shardman/rootCA.crt
SDM_STORE_CERT_FILE=/etc/shardman/shardman_services.crt
SDM_STORE_KEY=/etc/shardman/shardman_services.key

7. Restart shardmand@cluster0 services on all Shardman nodes:

systemctl restart shardmand@cluster0

2.7.3. Using Shardman Tools
Before using Shardman tools, copy rootCA.crt, shardman_tools.crt and shardman_tools.key to some location on
the Shardman management node where they are accessible to the management user. Here, any node with installed Shardman utilities
that is used to manage the Shardman cluster is meant by management node. This can also be one of the Shardman cluster nodes
(or all of them). By management user, a user is meant who runs shardmanctl tool. It is assumed that the certificates and key are
located in the /etc/shardman directory.

When using Shardman tools, be sure to add --store-ca-file, --store-cert-file and --store-key options to
shardmanctl command. For example, the following command gets the cluster status:

shardmanctl --store-ca-file /etc/shardman/rootCA.crt --store-cert-file /etc/shardman/
shardman_tools.crt --store-key /etc/shardman/shardman_tools.key --store-endpoints
 https://n1:2379,https://n2:2379,https://n3:2379 status

2.8. Upgrading a Cluster
This section discusses how to upgrade your database from one Shardman release to a newer one. It is best to review the Release
Notes before an upgrade and look for any changes that may cause issues for your application. You can proceed to upgrade if there
are no potential issues.

The process of updating a Shardman consists of several steps that must be performed sequentially:

1. Upgrade Shardman packages.

33

Manage

2. Restart all Shardman services and database instances.

3. Upgrade database shardman extension.

2.8.1. Upgrade Packages

2.8.1.1. APT-based Systems

To upgrade packages, typically run the following command:

$ apt update && apt --only-upgrade install shardman-tools shardman-services
 postgrespro-sdm-14-contrib postgrespro-sdm-14-server

or upgrade all packages:

$ apt update && apt upgrade

Check that all packages have been updated on each node:

$ dpkg -l | grep -E '(postgrespro|shardman)'

2.8.1.2. RPM-based systems

To upgrade packages, typically run the following command:

$ yum update shardman-tools shardman-services postgrespro-sdm-14-contrib postgrespro-
sdm-14-server

or upgrade all packages:

$ yum update

Check that all packages have been updated on each node:

$ yum list --installed | grep -E '(postgrespro|shardman)'

2.8.2. Restart Shardman Services and Database Instances
After updating the packages, you need to restart all cluster services. It can be done with a single shardmanctl restart
command:

$ shardmanctl --cluster-name cluster0 --store-endpoints http://etcd1:2379,http://
etcd2:2379,http://etcd3:2379 restart

You can skip the --cluster-name and --store-endpoints options by setting the SDM_CLUSTER_NAME and SDM_S-
TORE_ENDPOINTS environment variables as in the example below:

 export SDM_STORE_ENDPOINTS=http://etcd1:2379,http://
etcd2:2379,http://etcd3:2379
 export SDM_CLUSTER_NAME=cluster0

2.8.3. Upgrade the Extension
After restarting services of the cluster, you should update the server extensions by running the following command:

$ shardmanctl --cluster-name cluster0 --store-endpoints http://etcd1:2379,http://
etcd2:2379,http://etcd3:2379 upgrade

In the case when the shardman extension version and server library version are different, distributed queries and Shardman DDL
will not work.

Shardman extensions try to ensure that they do not communicate with incompatible software. Incompatibilities can arise for several
reasons: the shardman shared library version does not match the extension version or the remote server version does not match the
local server version. In case when the extension and library versions mismatch, Shardman cannot modify its metadata and will refuse
to perform operations on global objects until the extension is updated. In case when the remote server version does not match the
local server version or when they belong to different clusters, Shardman will refuse to communicate with the server.

34

Manage

2.9. Fault Tolerance and High Availability
Shardman provides out-of-the-box fault tolerance. The shardmand daemon monitors the cluster configuration and manages stolon
clusters, which are used to guarantee high availability of all shards and fault tolerance. The common Shardman configuration (shard-
mand, stolon clusters) is stored in an etcd cluster.

To ensure fault tolerance for each stolon cluster, you must set Repfactor > 0 in the cross-replication mode (PlacementPol-
icy=cross) or add at least one replica in the manual-topology mode (PlacementPolicy=manual).

stolon sentinels have the responsibility of observing the keepers and carrying out elections to choose one of the keepers
as the master. Sentinels hold elections when the cluster starts and every time the current master keeper goes down.

One of the keepers is elected as the master. All write operations take place at the master, and the other instances are used as
follower instances.

In the case of automatic failover, stolon will take care of automatically changing slave to master and failed master to standby. Only
one additional thing you need is etcd to store the master/slave instant information by stolon.

If necessary, you can switch to a new master manually by running the shardmanctl shard switch command.

#utomatic failover is based on the use of timeouts, which can be overridden in sdmspec.json, as in the example:

 {
 "ShardSpec":{
 "failInterval": "20s",
 "sleepInterval": "5s",
 "convergenceTimeout": "30s",
 "deadKeeperRemovalInterval": "48h",
 "requestTimeout": "10s",
 ...
 },
 ...
 },
 ...

You can specify some high-availability options to define cluster behavior in a fault state: masterDemotionEnabled, masterDemo-
tionTimeout, minSyncMonitorEnabled and minSyncMonitorUnhealthyTimeout.

2.9.1. Timeouts
convergenceTimeout

Interval to wait for a database to be converged to the required state when no long operations are expected.

Default: 30s.

deadKeeperRemovalInterval

Interval after which a dead keeper will be removed from the cluster data.

Default: 48h.

failInterval

Interval after the first failure to declare a keeper or a database as not healthy.

Default: 20s.

requestTimeout

Time after which any request (keeper checks from sentinel etc...) will fail.

35

Manage

Default: 10s.

sleepInterval

Interval to wait before the next check.

Default: 5s.

2.10. Logging
Shardman is a critical point in your infrastructure as it stores all of your data. This makes logging mandatory. So you should under-
stand how logging works in Shardman. Due to the complexity of Shardman, it supports logging from several components: logs from
the shardmand daemon that manages the cluster configuration and logs from PostgreSQL database instances.

2.10.1. PostgreSQL Logs
Shardman uses standard PostgreSQL logging settings, described here. Logging settings should be placed to sdmspec.json in the
pgParameters section, as shown in the example below:

 {
 "ShardSpec": {
 "pgParameters": {
 "log_line_prefix": "%m [%r][%p]",
 "log_min_messages": "INFO",
 "log_statement": "none",
 "log_destination": "stderr",
 "log_filename": "pg.log",
 "logging_collector": "on",
 "log_checkpoints": "false",
 ...
 },
 ...
 },
 ...
 }

By default, logs are placed in the directory like this: /var/lib/pgpro/sdm-14/data/keeper-cluster0-clover-1-
shrn1-0/postgres/log. In this example, cluster0 is the current cluster, clover-1-shrn1 is the name of the current
shard, 0 is the identifier of the integrated keeper process. To change the log directory, set the log_directory parameter.

2.10.2. shardmand Logs
shardmand is a systemd unit, its logs are written to journald. You can use journalctl to examine it. For example, you can use
the following command:

 $ journalctl -u shardmand@cluster0.service

You can filter logs by arbitrary time limits using the --since and --until options, which restrict the entries displayed to those
after or before the given time, respectively. The time values can come in a variety of formats. For absolute time values, you should
use YYYY-MM-DD HH:MM:SS. For instance, we can see all of the entries since January 10th, 2023 at 5:15 PM by typing:

 $ journalctl -u shardmand@cluster0.service --since "2023-01-10
 17:15:00"

If components of the above format are left off, some defaults will be applied. For instance, if the date is omitted, the current date
will be assumed. If the time component is missing, “00:00:00” (midnight) will be substituted. The seconds field can be left off as
well to default to “00”:

 $ journalctl -u shardmand@cluster0.service --since "2023-01-10" --
until "2023-01-11 03:00"

36

https://www.postgresql.org/docs/14/runtime-config-logging.html

Manage

To control the log verbosity for all Shardman services, set SDM_LOG_LEVEL in the shardmand configuration file.

2.10.3. Getting Information on Backend Crashes
Some crashes are caused by the hardware failure or the DBMS issues. To understand the root causes of the crash, use crash_info.
To set it up, follow these steps:

• Create a directory on each cluster node that the Shardman operating system user has access to (usually, it is postgres). Er-
ror reports will be sent to this directory.

install -d -o postgres -g postgres -m 700 /var/lib/postgresql/crashinfo

• Set the crash_info_location value.

Note
This will cause the DBMS to restart.

shardmanctl --store-endpoints http://etcdserver:2379 set -y crash_info_location=/
var/lib/postgresql/crashinfo

• To make sure the changes are applied, send a signal that will cause the backend failure and a core dump creation, along with
the instance restart.

Note
Do it in your test environment only.

Connect to your DBMS and find out PID of the backend associated with the current session:

postgres=# select pg_backend_pid();
pg_backend_pid

 23770

Then send the SIGSEGV signal to the process with the received PID:

kill -11 23770

This will result in this backend crash, and a log file with the time, backtrace and cause of an error will be written to /var/lib/
postgresql/crashinfo:

 # Signal
Program received signal: 11 (SIGSEGV)
Signal UTC date time: 25.10.2024 08:37:02

Program
 pid: 23770
 ppid: 17506
 program_invocation_name: postgres: postgres postgres 10.42.42.10(34202) idle
program_invocation_short_name: tgres 10.42.42.10(34202) idle
 exe_path: /opt/pgpro/sdm-14/bin/postgres
 exe: postgres

Backtrace
1 postgres + 0x5b55c0 0x55c5ba8459b7 0x00007ffcbef19070
 bt_crash_handler + 0x3f7

37

Manage

2 libc.so.6 + 0x4251f 0x7f01c2caa520 0x00007ffcbef19140 __sigaction +
 0x50
unknown ./signal/../sysdeps/unix/sysv/linux/x86_64/libc_sigaction.c:0
3 libc.so.6 + 0x125f80 0x7f01c2d8df9a 0x00007ffcbef195b8 epoll_wait +
 0x1a
epoll_wait ../sysdeps/unix/sysv/linux/epoll_wait.c:30
4 postgres + 0x433870 0x55c5ba6c39bb 0x00007ffcbef195c0
 WaitEventSetWait + 0x14b
5 postgres + 0x320de0 0x55c5ba5b0e74 0x00007ffcbef19650 secure_read +
 0x94
6 postgres + 0x327d20 0x55c5ba5b7dae 0x00007ffcbef196a0 pq_recvbuf +
 0x8e
7 postgres + 0x328980 0x55c5ba5b8995 0x00007ffcbef196c0 pq_getbyte +
 0x15
8 postgres + 0x457da0 0x55c5ba6e909c 0x00007ffcbef196d0 PostgresMain +
 0x12fc
9 postgres + 0x3ce210 0x55c5ba65ef86 0x00007ffcbef19a60 ServerLoop +
 0xd76
10 postgres + 0x3cf240 0x55c5ba65fe18 0x00007ffcbef1a040 PostmasterMain
 + 0xbd8
11 postgres + 0x14ecc0 0x55c5ba3df182 0x00007ffcbef1a0c0 main + 0x4c2
12 libc.so.6 + 0x29d10 0x7f01c2c91d90 0x00007ffcbef1a0f0
 __libc_init_first + 0x90
__libc_start_call_main ../sysdeps/nptl/libc_start_call_main.h:58
13 libc.so.6 + 0x29dc0 0x7f01c2c91e40 0x00007ffcbef1a190
 __libc_start_main + 0x80
call_init ../csu/libc-start.c:128
__libc_start_main_impl ../csu/libc-start.c:379
14 postgres + 0x14f200 0x55c5ba3df225 0x00007ffcbef1a1e0 _start + 0x25

38

Chapter 3. Develop
A Shardman cluster uses two main ways to store data: sharded tables is the main way, designed for big data, and global tables,
designed for small dictionaries. A sharded table contains different parts of the data in each shard, while a global table contains the
same data in all shards. Efficient query execution on a Shardman cluster requires that the data is properly distributed across cluster
shards and primarily, a sharding key is properly selected.

First of all, when transitioning from a regular database schema to the distributed one, it makes sense to start the design with deciding
how the data will be distributed in the Shardman cluster. Shardman distributes table rows across shards according to the hash value
of the column to use for the table partitioning. In other words, the desired distribution must be even, and it aims to distribute equal
parts of the data across cluster nodes and evenly distribute the workload.

When a database architect chooses the column to use for the table partitioning, the majority of typical queries executed must be
taken into account to ensure the maximum performance.

In general, for most queries, especially, for those that use joins, the sharding key must be included in the query text. Otherwise,
Shardman will not push down queries to cluster nodes for execution, which will cause essential performance degradation as compared
to usage of a single instance.

Secondly, when choosing a sharding key, it is important that it does not change. A resharding operation, that is, a change of the
sharding key, is pretty time-consuming and resource-intensive. At present, Shardman lacks techniques that automate this procedure.
In general, if resharding is required, the data in all the sharded tables should be either moved to local tables or to sharded tables
with another sharding key. Then you will have to create new sharded tables with a new sharding key and move the data back. This
operation is very expensive and resource-intensive. Such operations often cannot be performed without the system outage during
the migration.

Another point is that distributed transactions, that is, those that update data on several cluster shards at the same point in time, cannot
be performed for free. So the better data is located and computations are performed inside one shard, the faster queries are executed.
In general, the proportion of distributed and non-distributed transactions must be shifted towards non-distributed ones. Only apply
distributed transactions if you have a compelling need to do it.

And finally, Shardman is a distributed system, which has both advantages and disadvantages inherent to such systems. Besides,
Shardman is primarily designed for OLTP load. OLAP queries to Shardman are also possible, but only pretty simple of them (for
details, see limitations). If you want to load an OLTP system with OLAP functionality, bear in mind that the lists of analytic and
aggregate SQL functions to be sent to other shards for execution are highly limited.

Also special attention should be paid to type casts in queries because inclusion of a type casting function in a query condition can
make it impossible to be pushed down to a remote server.

Taking into account the above features and limitations of the RDBMS, we will provide two simple examples of the transition from
a regular to a distributed database schema.

3.1. Migration of a Database Schema
Let's use the demo database “Airlines” as an example for development. The detailed description of the database schema is available at
https://postgrespro.ru/education/demodb. This schema is used as a demo in training courses of Postgres Professional, for example,
in “QPT. Query Optimization”.

The schema authors characterized it like this: “We tried to make the database schema as simple as possible, without overloading it
with unnecessary details, but not too simple to allow writing interesting and meaningful queries.”

The database schema contains several tables with meaningful contents. For example, let's take the demo database version of
13.10.2016. You can find a link to downloading the database and schema dump (in Russian) following the link https://postgre-
spro.ru/education/courses/QPT. In addition to query examples provided below, you can find more examples from the above course
and in the “Postgres. The First Experience” book.

This section shows two examples of schema modification and query adaptation:

• Naive approach. It is simple, with minimal transformations to the schema, and it aims to add clarity to how queries work in a
distributed schema.

39

https://postgrespro.com/education/demodb
https://postgrespro.com/community/courses
https://postgrespro.ru/education/courses/QPT
https://postgrespro.ru/education/courses/QPT
https://edu.postgrespro.ru/introbook_v9_en.pdf

Develop

• Complex approach It is more complex, provided for better understanding of problems and processes that a developer may con-
front when migrating to a distributed schema and adapting applications to such a schema.

3.1.1. Database Source Schema

Figure 3.1. Database Source Schema

Bookings
############

book_ref
* book_date
* total_amount

Ticket_flights
########

ticket_no
flight_id
* fare_conditions
* amount

Flights
#####

flight_id
* flight_no
* scheduled_departure
* scheduled_arrival
* departure_airport
* arrival_airport
* status
* aircraft_code
° actual_departure
° actual_arrival

Boarding_passes
########## ######

ticket_no
flight_id
* boarding_no
* seat_no

Airports
#########

airport_code
* airport_name
* city
* longitude
* latitude
* timezone

Aircrafts
########

aircraft_code
* model
* range

Seats
#####

aircraft_code
seat_no
* fare_conditions

Tickets
######

ticket_no
* book_ref
* passenger_id
* passenger_name
° contact_data

The authors describe the “Airlines” database as follows:

The main entity is a booking (bookings).

One booking can include several passengers, with a separate ticket (tickets) issued to each passenger. A ticket
has a unique number and includes information about the passenger. As such, the passenger is not a separate entity.
Both the passenger's name and identity document number can change over time, so it is impossible to uniquely
identify all the tickets of a particular person; for simplicity, we can assume that all passengers are unique.

The ticket includes one or more flight segments (ticket_flights). Several flight segments can be included
into a single ticket if there are no non-stop flights between the points of departure and destination (connecting
flights), or if it is a round-trip ticket. Although there is no constraint in the schema, it is assumed that all tickets
in the booking have the same flight segments.

Each flight (flights) goes from one airport (airports) to another. Flights with the same flight number have
the same points of departure and destination, but differ in departure date.

At flight check-in, the passenger is issued a boarding pass (boarding_passes), where the seat number is
specified. The passenger can check in for the flight only if this flight is included into the ticket. The flight-seat
combination must be unique to avoid issuing two boarding passes for the same seat.

40

Develop

The number of seats (seats) in the aircraft and their distribution between different travel classes depends on the
model of the aircraft (aircrafts) performing the flight. It is assumed that every aircraft model has only one
cabin configuration. Database schema does not check that seat numbers in boarding passes have the corresponding
seats in the aircraft (such verification can be done using table triggers, or at the application level).

Let's look at the common entities and sizes of tables in the above schema. It is clear that ticket_flights, boarding_passes
and tickets tables are linked by the ticket_no field. Additionally, the data size in these tables is 95% the total DB size.

Let's look at the bookings table. Although it seems to have a pretty compact structure, it can reach a considerable size over time.

Migration examples are provided for a Shardman cluster that contains four shards. Sharded tables are divided into four parts, so that
one part of a sharded table is only located in one shard. This is done on purpose, to more clearly display query plans. In real life, the
number of partitions should be determined by the maximum number of cluster nodes.

When migrating a real-life DB schema, you should think over in advance the number of partitions to partition data in distributed
tables. Also bear in mind that the best migration approach is to use SQL transformations that impose minimal limitations on database
objects.

3.1.2. Shardman Cluster Configuration

The Shardman cluster consists of four nodes — node1, node2, node3 and node4. Each cluster node is a shard.

The examples assume that the tables are divided into four partitions by the sharding key (num_parts = 4) and distributed across
cluster nodes. Each table part with the data is located in the corresponding shard:

• shard-1 is located on the cluster node node1

• shard-2 is located on the cluster node node2

• shard-3 is located on the cluster node node3

• shard-4 is located on the cluster node node4

The cluster is intentionally presented in a simplified configuration. Cluster nodes have no replicas, and the configuration is not fault-
tolerant.

3.1.3. Selecting the Sharding Key

3.1.3.1. Naive1 Approach — ticket_no Sharding Key

With this approach, the choice of the sharding key is pretty evident. It is the ticket number ticket_no. The ticket number is the
primary key of the tickets table, and it is a foreign key of the ticket_flights and boarding_passes tables.

The primary key of the ticket_flights and boarding_passes tables is composite. It is a unique index composed of tick-
et_no and flight_id.

So if ticket_no is chosen to be a sharding key, the data of the three tables is distributed across cluster shards and partitions that
contain linked data are located in the same shards.

The rest of the tables — airports, flights, aircrafts and seats are small enough and rarely change. This allows making
them global tables, or dictionary tables.

41

Develop

Figure 3.2. Naive Approach Schema

The main advantage of this approach from the point of view of creating the schema and queries to the DB is that no changes are
needed except those that are inherent to working with distributed systems, that is, explicitly declaring tables, sequences etc. as
distributed when creating them.

Once the sharding key is selected, we can proceed to creation of the distributed schema.

1

3.1.3.1.1. Creating the Schema Distributed by ticket_no

First, turn on broadcasting DDL statements to all cluster shards:

SET shardman.broadcast_ddl TO on;

Let's create the bookings schema on all shards:

CREATE SCHEMA bookings;

As tables in the schema are linked with one another by a foreign key, the order of creating them, as well as auxiliary objects, matters.

The demo database contains “snapshots” of data, similar to a backup copy of a real system captured at some point in time. For
example, if a flight has the Departed status, it means that the aircraft had already departed and was airborne at the time of the
backup copy. The “snapshot” time is saved in the bookings.now() function. You can use this function in demo queries for cases
where you would use the now() function in a real database. In addition, the return value of this function determines the version of
the demo database. The latest version available is of 13.10.2016:

SELECT bookings.now() as now;
 now

1 In the context of computer science, the expression “naïve approach” (verbatim: naive method, naive approach) means something very similar to “brute-force approach” and means the first basic idea that
occurs in one's mind and often takes no account of the complexity, corner cases and of some requirements. On one hand, this is a coarse and direct method that only aims to get a working solution. On the other
hand, such solutions are easy to understand and implement, but system resources may be used inefficiently.

42

Develop

2016-10-13 17:00:00+03

In relation to this moment, all flights are classified as past and future flights.

Let's create the utility function bookings.now():

 CREATE FUNCTION bookings.now() RETURNS timestamp with time zone
 LANGUAGE sql IMMUTABLE COST 0.00999999978
 AS
 sql
 SELECT qq2016-10-13 17:00:00qq::TIMESTAMP AT TIME ZONE
zzEurope/Moscowzz;
 sql;

In addition to tables, a global sequence is needed for generating IDs for data insertion in the flights table. In this example, we
create the sequence explicitly and link it with a column of this table by assigning the generated values by default.

Let's create the sequence using the following DDL statement:

CREATE SEQUENCE bookings.flights_flight_id_seq
 INCREMENT BY 1
 NO MINVALUE
 NO MAXVALUE
 CACHE 1 with(global);

with(global) creates a single distributed sequence available on all cluster nodes, which assigns values in a certain range for
each shard, and the ranges for different shards do not intersect. See Section 7.6 and Section 6.5 for more details of global sequences.

Under the hood of global sequences, there are regular sequences on each shard, and they are allocated by sequential blocks (of 65536
numbers by default). When all the numbers in a block are over, the next block is allocated to the local sequence of the shard. I.e.,
numbers from the global sequences are unique, but there is no strict monotony, and there may be "holes" in the values given by
the sequencer2.

The sequences can have the bigserial, smallserial, or serial type. Sequences are applicable both for sharded and global
tables.

You should not create local sequences in each shard as their values may be duplicated.

2

Now, we create global tables. As explained above, they are small-size, their data changes rarely, so they are actually dictionary
tables, which must contain the same data in all cluster shards. It is required that each global table has a primary key.

Let's create global tables using the following DDL statements:

CREATE TABLE bookings.aircrafts (
 aircraft_code character(3) NOT NULL primary key,
 model text NOT NULL,
 range integer NOT NULL,
 CONSTRAINT aircrafts_range_check CHECK ((range > 0))
) with (global);

CREATE TABLE bookings.seats (
 aircraft_code character(3) references bookings.aircrafts(aircraft_code),
 seat_no character varying(4) NOT NULL,
 fare_conditions character varying(10) NOT NULL,
 CONSTRAINT seats_fare_conditions_check CHECK (((fare_conditions)::text = ANY
 (ARRAY[('Economy'::character varying)::text, ('Comfort'::character varying)::text,
 ('Business'::character varying)::text]))),
 PRIMARY KEY (aircraft_code, seat_no)
) with (global);

2 As values from different ranges can be assigned, the value can leap. For example, the value of 5 may be assigned in the first shard, the value of 140003 — in the second one, 70003 — in the third one etc.

43

Develop

CREATE TABLE bookings.airports (
 airport_code character(3) NOT NULL primary key,
 airport_name text NOT NULL,
 city text NOT NULL,
 longitude double precision NOT NULL,
 latitude double precision NOT NULL,
 timezone text NOT NULL
) with (global);

CREATE TABLE bookings.bookings (
 book_ref character(6) NOT NULL,
 book_date timestamp with time zone NOT NULL,
 total_amount numeric(10,2) NOT NULL,
 PRIMARY KEY (book_ref)
) with (global);

CREATE TABLE bookings.flights (
 flight_id bigint NOT NULL PRIMARY KEY,-- <= a sequence will be assigned
 flight_no character(6) NOT NULL,
 scheduled_departure timestamp with time zone NOT NULL,
 scheduled_arrival timestamp with time zone NOT NULL,
 departure_airport character(3) REFERENCES bookings.airports(airport_code),
 arrival_airport character(3) REFERENCES bookings.airports(airport_code),
 status character varying(20) NOT NULL,
 aircraft_code character(3) references bookings.aircrafts(aircraft_code),
 actual_departure timestamp with time zone,
 actual_arrival timestamp with time zone,
 CONSTRAINT flights_check CHECK ((scheduled_arrival > scheduled_departure)),
 CONSTRAINT flights_check1 CHECK (((actual_arrival IS NULL) OR ((actual_departure IS
 NOT NULL) AND (actual_arrival IS NOT NULL) AND (actual_arrival > actual_departure)))),
 CONSTRAINT flights_status_check CHECK (((status)::text = ANY (ARRAY[('On
 Time'::character varying)::text, ('Delayed'::character varying)::text,
 ('Departed'::character varying)::text, ('Arrived'::character varying)::text,
 ('Scheduled'::character varying)::text, ('Cancelled'::character varying)::text])))
) with (global);

-- associate the sequence with table column
ALTER SEQUENCE bookings.flights_flight_id_seq OWNED BY bookings.flights.flight_id;

-- assign the default value to the column
ALTER TABLE bookings.flights ALTER COLUMN flight_id SET DEFAULT
 nextval('bookings.flights_flight_id_seq');

ALTER TABLE bookings.flights ADD CONSTRAINT flights_flight_no_scheduled_departure_key
 UNIQUE (flight_no, scheduled_departure);

Next, we create sharded tables tickets, ticket_flights and boarding_passes in the bookings schema:

CREATE TABLE bookings.tickets (
 ticket_no character(13) PRIMARY KEY,
 book_ref character(6) REFERENCES bookings.bookings(book_ref),
 passenger_id character varying(20) NOT NULL,
 passenger_name text NOT NULL,
 contact_data jsonb
) with (distributed_by='ticket_no', num_parts=4);

CREATE TABLE bookings.ticket_flights (

44

Develop

 ticket_no character(13) NOT NULL,
 flight_id bigint references bookings.flights(flight_id),
 fare_conditions character varying(10) NOT NULL,
 amount numeric(10,2) NOT NULL,
 CONSTRAINT ticket_flights_amount_check CHECK ((amount >= (0)::numeric)),
 CONSTRAINT ticket_flights_fare_conditions_check CHECK (((fare_conditions)::text =
 ANY (ARRAY[('Economy'::character varying)::text, ('Comfort'::character varying)::text,
 ('Business'::character varying)::text]))),
 PRIMARY KEY (ticket_no, flight_id)
) with (distributed_by='ticket_no', colocate_with='bookings.tickets');

CREATE TABLE bookings.boarding_passes (
 ticket_no character(13) NOT NULL,
 flight_id bigint NOT NULL,
 boarding_no integer NOT NULL,
 seat_no character varying(4) NOT NULL,
 FOREIGN KEY (ticket_no, flight_id) REFERENCES bookings.ticket_flights(ticket_no,
 flight_id),
 PRIMARY KEY (ticket_no, flight_id)
) with (distributed_by='ticket_no', colocate_with='bookings.tickets');

-- constraints must contain sharding key
ALTER TABLE bookings.boarding_passes ADD CONSTRAINT
 boarding_passes_flight_id_boarding_no_key UNIQUE (ticket_no, flight_id, boarding_no);

ALTER TABLE bookings.boarding_passes ADD CONSTRAINT
 boarding_passes_flight_id_seat_no_key UNIQUE (ticket_no, flight_id, seat_no);

Additionally, when creating sharded tables, the num_parts parameter can be specified, which defines the number of sharded table
partitions. In this example, it equals 4 to minimize the output of query plans. The default value is 20. This parameter may be important
if in future you are going to add shards to a cluster and scale horizontally.

Based on the assumed future load and data size, num_parts should be sufficient for data rebalancing when new shards are added
(num_parts must be greater than or equal to the number of cluster nodes). On the other hand, too many partitions cause a con-
siderable increase of the query planning time. Therefore, an optimal balance should be achieved between the number of partitions
and number of cluster nodes.

The last thing to do is to create a view that is needed to execute some queries:

CREATE VIEW bookings.flights_v AS
 SELECT f.flight_id,
 f.flight_no,
 f.scheduled_departure,
 timezone(dep.timezone, f.scheduled_departure) AS scheduled_departure_local,
 f.scheduled_arrival,
 timezone(arr.timezone, f.scheduled_arrival) AS scheduled_arrival_local,
 (f.scheduled_arrival - f.scheduled_departure) AS scheduled_duration,
 f.departure_airport,
 dep.airport_name AS departure_airport_name,
 dep.city AS departure_city,
 f.arrival_airport,
 arr.airport_name AS arrival_airport_name,
 arr.city AS arrival_city,
 f.status,
 f.aircraft_code,
 f.actual_departure,
 timezone(dep.timezone, f.actual_departure) AS actual_departure_local,
 f.actual_arrival,
 timezone(arr.timezone, f.actual_arrival) AS actual_arrival_local,

45

Develop

 (f.actual_arrival - f.actual_departure) AS actual_duration
 FROM bookings.flights f,
 bookings.airports dep,
 bookings.airports arr
 WHERE ((f.departure_airport = dep.airport_code) AND (f.arrival_airport =
 arr.airport_code));

Now creation of the distributed schema is complete. Let's turn off broadcasting of DDL statements:

SET shardman.broadcast_ddl TO off;

3.1.3.2. Complex Approach — book_ref Sharding Key

A more complex approach to the sharding key choice involves the source schema modification, inclusion of new parameters in
queries and other important changes.

What if an airline is in the market for over 10 years and the bookings table reaches the size that does not allow you to continue
having it global anymore? But distributing its data is impossible either as it does not contain fields contained in other tables that it
can be distributed among (as in variant 1).

When modifying the source schema, another field can be appropriate for use as a sharding key.

Looking at the bookings table, we can notice that values of the book_ref field are unique and this field is a primary key.
book_ref is also a foreign key to the tickets table. So this field seems suitable for being the sharding key. However, book_ref
is missing from the ticket_flights and boarding_passes tables.

If we add book_ref to the ticket_flights and boarding_passes tables, distributing of all the tables bookings, tick-
ets, ticket_flights and boarding_passes with the book_ref sharding key becomes possible.

book_ref should be added to ticket_flights and boarding_passes in the source schema, and book_ref must be
filled with data from the bookings table.

46

Develop

Figure 3.3. Source Schema Modification

3.1.3.2.1. Modifying the Source Schema

To properly transfer data from the source schema to the distributed one, the schema should be modified as follows:

1. Add the book_ref field to the ticket_flights and boarding_passes tables:

ALTER TABLE ticket_flights
 ADD COLUMN book_ref char(6);

ALTER TABLE boarding_passes
 ADD COLUMN book_ref char(6);

2. In these tables, fill the added book_ref field with data:

WITH batch AS (SELECT book_ref,
 ticket_no
 FROM tickets)
UPDATE ticket_flights
 SET book_ref = batch.book_ref
 FROM batch
 WHERE ticket_flights.ticket_no = batch.ticket_no
 AND ticket_flights.book_ref IS NULL;

WITH batch AS (SELECT book_ref,
 ticket_no
 FROM tickets)
UPDATE boarding_passes
 SET book_ref = batch.book_ref

47

Develop

 FROM batch
 WHERE boarding_passes.ticket_no = batch.ticket_no
 AND boarding_passes.book_ref IS NULL;

Avoid using this example in a loaded production system as this approach blocks entire tables, that is, all rows in the tables. In
production systems, data should be transferred incrementally, by parts.

Now the database schema is ready for data transferring.

3.1.3.2.2. Creating a Schema Distributed by book_ref

Here the Shardman shardman.broadcast_all_sql() function is used to broadcast DDL statements on all cluster nodes. Let's create
the bookings schema on all shards:

SELECT shardman.broadcast_all_sql('CREATE SCHEMA bookings');

As tables in the schema are linked with an external key, the order of creating tables matters.

First we create a utility function bookings.now():

SELECT shardman.broadcast_all_sql(
 sql
 CREATE FUNCTION bookings.now() RETURNS timestamp with time zone
 LANGUAGE sql IMMUTABLE COST 0.00999999978
 AS
 q
 SELECT qq2016-10-13 17:00:00qq::TIMESTAMP
 AT TIME ZONE zzEurope/Moscowzz;
 q;
 sql
);

Tables, users and sequences are created with the regular SQL. This function is not needed for that.

In this example, the global sequence is not explicitly created as for the bigserial type, Shardman creates a global sequence
automatically.

Now let's create global tables using the following DDL statements:

CREATE TABLE bookings.aircrafts (
 aircraft_code character(3) NOT NULL PRIMARY KEY,
 model text NOT NULL,
 range integer NOT NULL,
 CONSTRAINT aircrafts_range_check CHECK ((range > 0))
) WITH (global);

CREATE TABLE bookings.seats (
 aircraft_code character(3) REFERENCES bookings.aircrafts(aircraft_code),
 seat_no character varying(4) NOT NULL,
 fare_conditions character varying(10) NOT NULL,
 CONSTRAINT seats_fare_conditions_check CHECK ((
 (fare_conditions)::text = ANY (ARRAY[
 ('Economy'::character varying)::text,
 ('Comfort'::character varying)::text,
 ('Business'::character varying)::text])
)),
 PRIMARY KEY (aircraft_code, seat_no)
) WITH (global);

CREATE TABLE bookings.airports (
 airport_code character(3) NOT NULL PRIMARY KEY,
 airport_name text NOT NULL,
 city text NOT NULL,

48

Develop

 longitude double precision NOT NULL,
 latitude double precision NOT NULL,
 timezone text NOT NULL
) WITH (global);

CREATE TABLE bookings.flights (
-- the global sequence will be created automatically
-- the default value will be assigned
 flight_id bigserial NOT NULL PRIMARY KEY,
 flight_no character(6) NOT NULL,
 scheduled_departure timestamp with time zone NOT NULL,
 scheduled_arrival timestamp with time zone NOT NULL,
 departure_airport character(3) REFERENCES bookings.airports(airport_code),
 arrival_airport character(3) REFERENCES bookings.airports(airport_code),
 status character varying(20) NOT NULL,
 aircraft_code character(3) REFERENCES bookings.aircrafts(aircraft_code),
 actual_departure timestamp with time zone,
 actual_arrival timestamp with time zone,
 CONSTRAINT flights_check CHECK ((scheduled_arrival > scheduled_departure)),
 CONSTRAINT flights_check1 CHECK ((
 (actual_arrival IS NULL)
 OR ((actual_departure IS NOT NULL)
 AND (actual_arrival IS NOT NULL)
 AND (actual_arrival > actual_departure)))),
 CONSTRAINT flights_status_check CHECK (
 ((status)::text = ANY (
 ARRAY[('On Time'::character varying)::text,
 ('Delayed'::character varying)::text,
 ('Departed'::character varying)::text,
 ('Arrived'::character varying)::text,
 ('Scheduled'::character varying)::text,
 ('Cancelled'::character varying)::text])))
) WITH (global);

ALTER TABLE bookings.flights
 ADD CONSTRAINT flights_flight_no_scheduled_departure_key
 UNIQUE (flight_no, scheduled_departure);

Now let's create sharded tables bookings, tickets, ticket_flights and boarding_passes in the bookings schema,
as in the previous example:

-- no modifications to these tables are done except distributing them
CREATE TABLE bookings.bookings (
 book_ref character(6) NOT NULL PRIMARY KEY,
 book_date timestamp with time zone NOT NULL,
 total_amount numeric(10,2) NOT NULL
) WITH (distributed_by='book_ref', num_parts=4);

CREATE TABLE bookings.tickets (
 ticket_no character(13) NOT NULL,
 book_ref character(6) REFERENCES bookings.bookings(book_ref),
 passenger_id character varying(20) NOT NULL,
 passenger_name text NOT NULL,
 contact_data jsonb,
 PRIMARY KEY (book_ref, ticket_no)
) WITH (distributed_by='book_ref', colocate_with='bookings.bookings');

-- adding the book_ref foreign key to these tables

49

Develop

CREATE TABLE bookings.ticket_flights (
 ticket_no character(13) NOT NULL,
 flight_id bigint NOT NULL,
 fare_conditions character varying(10) NOT NULL,
 amount numeric(10,2) NOT NULL,
 book_ref character(6) NOT NULL, -- <= added book_ref
 CONSTRAINT ticket_flights_amount_check
 CHECK ((amount >= (0)::numeric)),
 CONSTRAINT ticket_flights_fare_conditions_check
 CHECK (((fare_conditions)::text = ANY (
 ARRAY[('Economy'::character varying)::text,
 ('Comfort'::character varying)::text,
 ('Business'::character varying)::text]))),
 FOREIGN KEY (book_ref, ticket_no)
 REFERENCES bookings.tickets(book_ref, ticket_no),
 PRIMARY KEY (book_ref, ticket_no, flight_id) -- <= changed the primary key
) with (distributed_by='book_ref', colocate_with='bookings.bookings');

CREATE TABLE bookings.boarding_passes (
 ticket_no character(13) NOT NULL,
 flight_id bigint NOT NULL,
 boarding_no integer NOT NULL,
 seat_no character varying(4) NOT NULL,
 book_ref character(6) NOT NULL, – <= added book_ref
FOREIGN KEY (book_ref, ticket_no, flight_id)
REFERENCES bookings.ticket_flights(book_ref, ticket_no, flight_id),
PRIMARY KEY (book_ref, ticket_no, flight_id)
) WITH (distributed_by='book_ref', colocate_with='bookings.bookings');

-- constraints must contain the sharding key
ALTER TABLE bookings.boarding_passes
 ADD CONSTRAINT boarding_passes_flight_id_boarding_no_key
 UNIQUE (book_ref, ticket_no, flight_id, boarding_no);

ALTER TABLE bookings.boarding_passes
 ADD CONSTRAINT boarding_passes_flight_id_seat_no_key
 UNIQUE (book_ref, ticket_no, flight_id, seat_no);

Let's create the bookings.flights view:

SELECT shardman.broadcast_all_sql($$
CREATE VIEW bookings.flights_v AS
SELECT f.flight_id,
 f.flight_no,
 f.scheduled_departure,
 timezone(dep.timezone, f.scheduled_departure) AS scheduled_departure_local,
 f.scheduled_arrival,
 timezone(arr.timezone, f.scheduled_arrival) AS scheduled_arrival_local,
 (f.scheduled_arrival - f.scheduled_departure) AS scheduled_duration,
 f.departure_airport,
 dep.airport_name AS departure_airport_name,
 dep.city AS departure_city,
 f.arrival_airport,
 arr.airport_name AS arrival_airport_name,
 arr.city AS arrival_city,
 f.status,
 f.aircraft_code,
 f.actual_departure,

50

Develop

 timezone(dep.timezone, f.actual_departure) AS actual_departure_local,
 f.actual_arrival,
 timezone(arr.timezone, f.actual_arrival) AS actual_arrival_local,
 (f.actual_arrival - f.actual_departure) AS actual_duration
FROM bookings.flights f,
 bookings.airports dep,
 bookings.airports arr
WHERE ((f.departure_airport = dep.airport_code) AND (f.arrival_airport =
 arr.airport_code));
$$);

The schema creation is now complete. Let's proceed to data migration.

3.2. Data Migration
When migrating data, the order of fields in the source and target schema is important. The order and types of fields in the non-
distributed and distributed databases must be the same.

The migration utility does exactly what is requested by the user, who does not interfere with data migration processes except, maybe,
distributing the data directly to the shard where it must be stored.

Shardman provides convenient migration tools. Once the distributed schema is created and the sharding key chosen, it is now needed
to define the data migration rules. The data source can be either export CSV data files or a single DBMS server.

It is not always convenient to use CSV files as they can reach a pretty large size and require additional resources for storage and
transfer.

Migrating data directly from DB to DB without an intermediate storage phase is much more convenient.

The order of loading data during migration must be taken into account. Tables can be linked with a foreign key, so the data in tables
that other tables will reference must be loaded first. To follow such an order, in the migration file, you should establish the priority
that defines tables whose data must be loaded first. The higher the value of the priority parameter, the higher the priority. For
example, if the priorities 1, 2 and 3 are defined, tables with the priority 3 will be loaded first, then those with the priority 2, and
last with the priority 1.

The shardmanctl load command lets you define the order of migrating tables, which can be specified in the configuration
YML file.

3.2.1. Naive Approach
The following is an example of the migrate.yml file:

version: "1.0"
migrate:
 connstr: "dbname=demo host=single-pg-instance port=5432 user=postgres password=******"
 jobs: 8
 batch: 2000
 options:
 schemas:
 - name: bookings
 # the all parameter set to false turns off automatic creation of pages
 # tables are already created, at the Schema Migration phase
 all: false
 tables:
 - name: airports
 # defining a global table
 type: global
 # as tables are linked, data migration priority must be defined
 # setting highest priority to tables whose data
 # must be copied first

51

Develop

 priority: 3
 - name: aircrafts
 type: global
 priority: 3
 - name: seats
 type: global
 priority: 3
 - name: bookings
 type: global
 priority: 3
 - name: flights
 type: global
 priority: 3
 - name: tickets
 type: sharded
 # defining a sharded table
 # specifying the sharding key
 distributedby: ticket_no
 partitions: 4
 priority: 2
 - name: ticket_flights
 type: sharded
 distributedby: ticket_no
 # defining a sharded and colocated table
 # specifying the name of the table that ticket_flights table will be colocated
 with
 colocatewith: tickets
 partitions: 4
 priority: 2
 - name: boarding_passes
 type: sharded
 distributedby: ticket_no
 colocatewith: tickets
 partitions: 4
 priority: 1

This file defines the data source, that is, the single-pg-instance node, its connection port, user name and password, and data
source DB name. Some parameters of the migration utility operation are also defined (there can be quite a few of them, as explained
in the section called “Loading Data with a Schema from PostgreSQL”). The file also defines the number of threads — 8, batch size,
that is, the number of rows organized into batches for processing during migration, as well as table processing priorities. The data
for the global tables is migrated first, then the data for the sharded tables tickets and ticket_flights, and migration of the
boarding_passes table completes the migration. The value of priority defines the priority of data loading, data for tables
with higher value will be loaded earlier than with the lower value. The following command performs the migration:

shardmanctl load --schema migrate.yml

If the utility completes with the message “data loading completed successfully”, it means that the migration was a success.

3.2.2. Complex Approach
With this approach, the launch and operation of the shardmanctl utility in the load mode is the same as with the naive approach.
However, the file that defines the order of loading tables will slightly differ as the sharding key has changed:

version: "1.0"
migrate:
 connstr: "dbname=demo host=single-pg-instance port=5432 user=postgres
 password=postgres"
 jobs: 8
 batch: 2000

52

Develop

 options:
 schemas:
 - name: bookings
 all: false
 tables:
 - name: airports
 type: global
 priority: 5
 - name: aircrafts
 type: global
 priority: 5
 - name: seats
 type: global
 priority: 5
 - name: flights
 type: global
 priority: 5
 - name: bookings
 type: sharded
 priority: 4
 partitions: 4
 distributedby: book_ref
 - name: tickets
 type: sharded
 distributedby: book_ref
 colocatewith: bookings
 partitions: 4
 priority: 3
 - name: ticket_flights
 type: sharded
 distributedby: book_ref
 colocatewith: bookings
 partitions: 4
 priority: 2
 - name: boarding_passes
 type: sharded
 distributedby: book_ref
 colocatewith: bookings
 partitions: 4
 priority: 1

3.3. Queries
When all the migration operations were performed successfully, it's time to check how queries are executed in the distributed schema.

3.3.1. q1 Query
The q1 query is pretty simple, it selects the booking with the specified number:

SELECT *
 FROM bookings.bookings b
WHERE b.book_ref = '0824C5';

For the regular PostgreSQL and for the ticket_no sharding key, this query runs comparably fast. How fast the query is for the
book_ref sharding key, depends on the shard where it is executed. If it is executed in a shard where there is physically no data,
Shardman sends the query to another shard, which causes a time delay due to network communication.

3.3.2. q2 Query
This q2 query selects all the tickets from the specified booking:

53

Develop

SELECT t.*
FROM bookings.bookings b
JOIN bookings.tickets t
 ON t.book_ref = b.book_ref
WHERE b.book_ref = '0824C5';

With the book_ref sharding key, the query is pushed down to shards and the global table is joined with partitions of a sharded table:

Foreign Scan (actual rows=2 loops=1)
 Relations: (bookings_2_fdw b) INNER JOIN (tickets_2_fdw t)
 Network: FDW bytes sent=433 received=237

Let's look at the query plan for the ticket_no sharding key:

Append (actual rows=2 loops=1)
 Network: FDW bytes sent=1263 received=205
 -> Nested Loop (actual rows=1 loops=1)
 -> Seq Scan on tickets_0 t_1 (actual rows=1 loops=1)
 Filter: (book_ref = '0824C5'::bpchar)
 Rows Removed by Filter: 207092
 -> Index Only Scan using bookings_pkey on bookings b (actual rows=1 loops=1)
 Index Cond: (book_ref = '0824C5'::bpchar)
 Heap Fetches: 0
 -> Async Foreign Scan (actual rows=1 loops=1)
 Relations: (tickets_1_fdw t_2) INNER JOIN (bookings b)
 Network: FDW bytes sent=421 received=205
 -> Async Foreign Scan (actual rows=0 loops=1)
 Relations: (tickets_2_fdw t_3) INNER JOIN (bookings b)
 Network: FDW bytes sent=421
 -> Async Foreign Scan (actual rows=0 loops=1)
 Relations: (tickets_3_fdw t_4) INNER JOIN (bookings b)
 Network: FDW bytes sent=421

The plan contains Async Foreign Scan nodes, which mean network data exchange between the query source node and shards,
that is, data is received from shards and final processing is done on the query source node.

Look at the Network line. A good criterion of whether query execution on shards is optimal is the value of received. The lower
its value, the better shards execute distributed queries. Most processing is done remotely, and the query source node gets the result
that is ready for further processing.

The case where the sharding key is book_ref looks much better as the table with ticket numbers already contains book_ref.

The plan of the query to be executed on an arbitrary node is as follows:

Foreign Scan (actual rows=2 loops=1)
 Relations: (bookings_2_fdw b) INNER JOIN (tickets_2_fdw t)
 Network: FDW bytes sent=433 received=237

The network data exchange is only done with one shard, in which the query is executed. It is shard-3, and the tickets_2
partition of the tickets table is on the fourth node.

If this query is executed in the shard where the data is physically located, the query will be executed yet faster.

Let's look at the plan:

Nested Loop (actual rows=2 loops=1)
 -> Index Only Scan using bookings_2_pkey on bookings_2
 -> Bitmap Heap Scan on tickets_2
 -> Bitmap Index Scan on tickets_2_book_ref_idx

Network data exchange is not needed here as the requested data is located within the shard in which the query is executed.

In some cases, the choice of the shard for query execution matters. Being aware of the distribution logic, you can implement it at the
application level and send some queries immediately to the shard where the needed data is located based on the sharding key.

54

Develop

3.3.3. q3 Query
The q3 query finds all the flights for one of the tickets in the booking selected earlier:

SELECT tf.*, t.*
FROM bookings.tickets t
JOIN bookings.ticket_flights tf
 ON tf.ticket_no = t.ticket_no
WHERE t.ticket_no = '0005435126781';

To choose a specific shard for query execution, as discussed in Section 3.3.2, note that with the ticket_no sharding key, the query
execution will be more optimal in the shard that contains the partition with the data. The planner knows that the shard contains all
the data needed for joining tables, so no network communication between shards will occur.

For the book_ref sharding key, note that from the booking number you can compute the ticket number and request it right from
the “proper” shard.

So the query is as follows:

SELECT tf.*, t.*
FROM bookings.tickets t
JOIN bookings.ticket_flights tf
 ON tf.ticket_no = t.ticket_no
 AND t.book_ref = tf.book_ref
WHERE t.ticket_no = '0005435126781'
AND tf.book_ref = '0824C5';

The query is executed more slowly in the shard that does not contain the partition with the data sought:

Foreign Scan (actual rows=6 loops=1)
 Relations: (tickets_1_fdw t) INNER JOIN (ticket_flights_1_fdw tf)
 Network: FDW bytes sent=434 received=369

Network communication between shards is present in the plan, as it contains the Foreign Scan node.

The importance of including the sharding key in a query can be illustrated with the following query for the book_ref sharding key:

SELECT tf.*, t.*
FROM bookings.tickets t
JOIN bookings.ticket_flights tf
 ON tf.ticket_no = t.ticket_no
WHERE t.ticket_no = '0005435126781'
AND tf.book_ref = '0824C5';

Here the sharding key is not included in join on purpose. Let's look at the plan:

Nested Loop (actual rows=6 loops=1)
 Network: FDW bytes sent=1419 received=600
 -> Foreign Scan on ticket_flights_2_fdw tf (actual rows=6 loops=1)
 Network: FDW bytes sent=381 received=395
 -> Append (actual rows=1 loops=6)
 Network: FDW bytes sent=1038 received=205
 -> Seq Scan on tickets_0 t_1 (actual rows=0 loops=6)
 Filter: (ticket_no = '0005435126781'::bpchar)
 Rows Removed by Filter: 207273
 -> Async Foreign Scan on tickets_1_fdw t_2 (actual rows=0 loops=6)
 Network: FDW bytes sent=346 received=205
 -> Async Foreign Scan on tickets_2_fdw t_3 (actual rows=1 loops=6)
 Network: FDW bytes sent=346
 -> Async Foreign Scan on tickets_3_fdw t_4 (actual rows=0 loops=6)
 Network: FDW bytes sent=346

We can notice differences from previous examples. Here the query was executed on all nodes and index was not used, so to return
as few as 6 rows, Shardman had to sequentially scan whole partitions of the tickets table, return the result to the query source

55

Develop

node and after that perform join with the ticket_flights table. Async Foreign Scan nodes indicate the sequential
scan of the tickets table on shards.

3.3.4. q4 Query
This query returns all the flights for all the tickets included in a booking. There are several ways to do this: include a subquery in
a WHERE clause with the booking number, in the IN clause, explicitly list ticket numbers or use the WHERE...OR clause. Let's
check execution of the query for all these variants.

SELECT tf.*, t.*
FROM bookings.tickets t
JOIN bookings.ticket_flights tf
 ON tf.ticket_no = t.ticket_no
WHERE t.ticket_no IN (
 SELECT t.ticket_no
 FROM bookings.bookings b
 JOIN bookings.tickets t
 ON t.book_ref = b.book_ref
 WHERE b.book_ref = '0824C5'
);

This is just the query from the non-distributed database that we tried to execute. But its execution is equally poor for both sharding
keys.

The query plan is like this:

Hash Join (actual rows=12 loops=1)
 Hash Cond: (tf.ticket_no = t.ticket_no)
 -> Append (actual rows=2360335 loops=1)
 -> Async Foreign Scan on ticket_flights_0_fdw tf_1 (actual rows=589983
 loops=1)
 -> Async Foreign Scan on ticket_flights_1_fdw tf_2 (actual rows=590175
 loops=1)
 -> Seq Scan on ticket_flights_2 tf_3 (actual rows=590174 loops=1)
 -> Async Foreign Scan on ticket_flights_3_fdw tf_4 (actual rows=590003
 loops=1)
 -> Hash (actual rows=2 loops=1)
 Buckets: 1024 Batches: 1 Memory Usage: 9kB
 -> Hash Semi Join (actual rows=2 loops=1)
 Hash Cond: (t.ticket_no = t_5.ticket_no)
 -> Append (actual rows=829071 loops=1)
 -> Async Foreign Scan on tickets_0_fdw t_1 (actual rows=207273
 loops=1)
 -> Async Foreign Scan on tickets_1_fdw t_2 (actual rows=207058
 loops=1)
 -> Seq Scan on tickets_2 t_3 (actual rows=207431 loops=1)
 -> Async Foreign Scan on tickets_3_fdw t_4 (actual rows=207309
 loops=1)
 -> Hash (actual rows=2 loops=1)
 Buckets: 1024 Batches: 1 Memory Usage: 9kB
 -> Nested Loop (actual rows=2 loops=1)
 -> Index Only Scan using tickets_2_pkey on tickets_2 t_5
 -> Materialize (actual rows=1 loops=2)
 -> Index Only Scan using bookings_2_pkey on bookings_2
 b

This plan shows that Shardman coped with the WHERE subquery, then had to request all the rows of the tickets and tick-
et_flights tables and then process them on the query source node. This is a really poor performance. Let's try other variants:

For the ticket_no sharding key, the query is:

56

Develop

 SELECT tf.*, t.*
 FROM bookings.tickets t
 JOIN bookings.ticket_flights tf
 ON tf.ticket_no = t.ticket_no
 WHERE t.ticket_no IN ('0005435126781','0005435126782');

and the plan is:

 Append (actual rows=12 loops=1)
 Network: FDW bytes sent=1098 received=1656
 -> Async Foreign Scan (actual rows=6 loops=1)
 Relations: (tickets_0_fdw t_1) INNER JOIN (ticket_flights_0_fdw tf_1)
 Network: FDW bytes sent=549 received=1656
 -> Async Foreign Scan (actual rows=6 loops=1)
 Relations: (tickets_1_fdw t_2) INNER JOIN (ticket_flights_1_fdw tf_2)
 Network: FDW bytes sent=549

Everything is pretty good here: the query was executed on two shards of four, and Append of the results received only had to be done.

Let's recall that book_ref is contained in both tickets and ticket_flights tables. So for the book_ref sharding key,
the query is:

SELECT tf.*, t.*
FROM bookings.tickets t
JOIN bookings.ticket_flights tf
ON tf.ticket_no = t.ticket_no
AND tf.book_ref = t.book_ref
WHERE t.book_ref = '0824C5';

and the plan is:

Foreign Scan (actual rows=12 loops=1)
 Relations: (tickets_2_fdw t) INNER JOIN (ticket_flights_2_fdw tf)
 Network: FDW bytes sent=547 received=1717

This is an excellent result — the query was modified to execute well in the distributed schema.

3.3.5. q5 Query
This is a small analytical query, which returns the names and ticket numbers of the passengers who got registered first.

SELECT t.passenger_name, t.ticket_no
FROM bookings.tickets t
JOIN bookings.boarding_passes bp
 ON bp.ticket_no = t.ticket_no
GROUP BY t.passenger_name, t.ticket_no
HAVING max(bp.boarding_no) = 1
AND count(*) > 1;

This query is executed pretty slowly for both sharding keys. Below is the plan for book_ref:

HashAggregate (actual rows=424 loops=1)
 Group Key: t.ticket_no
 Filter: ((max(bp.boarding_no) = 1) AND (count(*) > 1))
 Batches: 85 Memory Usage: 4265kB Disk Usage: 112008kB
 Rows Removed by Filter: 700748
 Network: FDW bytes sent=1215 received=77111136
 -> Append (actual rows=1894295 loops=1)
 Network: FDW bytes sent=1215 received=77111136
 -> Async Foreign Scan (actual rows=473327 loops=1)
 Relations: (tickets_0_fdw t_1) INNER JOIN (boarding_passes_0_fdw bp_1)
 Network: FDW bytes sent=404 received=813128

57

Develop

 -> Async Foreign Scan (actual rows=472632 loops=1)
 Relations: (tickets_1_fdw t_2) INNER JOIN (boarding_passes_1_fdw bp_2)
 Network: FDW bytes sent=404
 -> Async Foreign Scan (actual rows=475755 loops=1)
 Relations: (tickets_2_fdw t_3) INNER JOIN (boarding_passes_2_fdw bp_3)
 Network: FDW bytes sent=407
 -> Hash Join (actual rows=472581 loops=1)
 Hash Cond: (bp_4.ticket_no = t_4.ticket_no)
 Network: FDW bytes received=28841344
 -> Seq Scan on boarding_passes_3 bp_4 (actual rows=472581 loops=1)
 -> Hash (actual rows=207118 loops=1)
 Buckets: 65536 Batches: 4 Memory Usage: 3654kB
 Network: FDW bytes received=9176680
 -> Seq Scan on tickets_3 t_4 (actual rows=207118 loops=1)
 Network: FDW bytes received=9176680

Note a pretty large amount of network data transfer between shards. Let's improve the query by adding book_ref as one more
condition for joining tables:

SELECT t.passenger_name, t.ticket_no
FROM bookings.tickets t
JOIN bookings.boarding_passes bp
 ON bp.ticket_no = t.ticket_no
 AND bp.book_ref=t.book_ref -- <= added book_ref
GROUP BY t.passenger_name, t.ticket_no
HAVING max(bp.boarding_no) = 1
AND count(*) > 1;

Let's look at the query plan:

GroupAggregate (actual rows=424 loops=1)
 Group Key: t.passenger_name, t.ticket_no
 Filter: ((max(bp.boarding_no) = 1) AND (count(*) > 1))
 Rows Removed by Filter: 700748
 Network: FDW bytes sent=1424 received=77092816
 -> Merge Append (actual rows=1894295 loops=1)
 Sort Key: t.passenger_name, t.ticket_no
 Network: FDW bytes sent=1424 received=77092816
 -> Foreign Scan (actual rows=472757 loops=1)
 Relations: (tickets_0_fdw t_1) INNER JOIN (boarding_passes_0_fdw bp_1)
 Network: FDW bytes sent=472 received=2884064
 -> Sort (actual rows=472843 loops=1)
 Sort Key: t_2.passenger_name, t_2.ticket_no
 Sort Method: external merge Disk: 21152kB
 Network: FDW bytes received=22753536
 -> Hash Join (actual rows=472843 loops=1)
 Hash Cond: ((bp_2.ticket_no = t_2.ticket_no) AND (bp_2.book_ref =
 t_2.book_ref))
 Network: FDW bytes received=22753536
 -> Seq Scan on boarding_passes_1 bp_2 (actual rows=472843 loops=1)
 -> Hash (actual rows=207058 loops=1)
 Buckets: 65536 Batches: 8 Memory Usage: 2264kB
 Network: FDW bytes received=22753536
 -> Seq Scan on tickets_1 t_2 (actual rows=207058 loops=1)
 Network: FDW bytes received=22753536
 -> Foreign Scan (actual rows=474715 loops=1)
 Relations: (tickets_2_fdw t_3) INNER JOIN (boarding_passes_2_fdw bp_3)
 Network: FDW bytes sent=476 received=2884120
 -> Foreign Scan (actual rows=473980 loops=1)
 Relations: (tickets_3_fdw t_4) INNER JOIN (boarding_passes_3_fdw bp_4)

58

Develop

 Network: FDW bytes sent=476 received=25745384

The situation considerably improved, the result was received on the query source node, and then final filtering, grouping and joining
data were done.

For the ticket_no sharding key, the source query plan looks like this:

HashAggregate (actual rows=424 loops=1)
 Group Key: t.ticket_no
 Filter: ((max(bp.boarding_no) = 1) AND (count(*) > 1))
 Batches: 85 Memory Usage: 4265kB Disk Usage: 111824kB
 Rows Removed by Filter: 700748
 Network: FDW bytes sent=1188 received=77103620
 -> Append (actual rows=1894295 loops=1)
 Network: FDW bytes sent=1188 received=77103620
 -> Async Foreign Scan (actual rows=473327 loops=1)
 Relations: (tickets_0_fdw t_1) INNER JOIN (boarding_passes_0_fdw bp_1)
 Network: FDW bytes sent=394
 -> Hash Join (actual rows=472632 loops=1)
 Hash Cond: (bp_2.ticket_no = t_2.ticket_no)
 Network: FDW bytes received=77103620
 -> Seq Scan on boarding_passes_1 bp_2 (actual rows=472632 loops=1)
 -> Hash (actual rows=206712 loops=1)
 Buckets: 65536 Batches: 4 Memory Usage: 3654kB
 Network: FDW bytes received=23859576
 -> Seq Scan on tickets_1 t_2 (actual rows=206712 loops=1)
 Network: FDW bytes received=23859576
 -> Async Foreign Scan (actual rows=475755 loops=1)
 Relations: (tickets_2_fdw t_3) INNER JOIN (boarding_passes_2_fdw bp_3)
 Network: FDW bytes sent=397
 -> Async Foreign Scan (actual rows=472581 loops=1)
 Relations: (tickets_3_fdw t_4) INNER JOIN (boarding_passes_3_fdw bp_4)
 Network: FDW bytes sent=397

We can see that table joining is done on shards, while data filtering, grouping and aggregation are done on the query source node.
The source query does not need to be modified in this case.

3.3.6. q6 Query
For each ticket booked a week ago from now, this query displays all the included flight segments, together with connection time.

SELECT tf.ticket_no,f.departure_airport,
 f.arrival_airport,f.scheduled_arrival,
 lead(f.scheduled_departure) OVER w AS next_departure,
 lead(f.scheduled_departure) OVER w - f.scheduled_arrival AS gap
FROM bookings.bookings b
JOIN bookings.tickets t
 ON t.book_ref = b.book_ref
JOIN bookings.ticket_flights tf
 ON tf.ticket_no = t.ticket_no
JOIN bookings.flights f
 ON tf.flight_id = f.flight_id
WHERE b.book_date = bookings.now()::date - INTERVAL '7 day'

WINDOW w AS (
PARTITION BY tf.ticket_no
ORDER BY f.scheduled_departure);

For this query, the type of the book_date column must be cast from the timestamptz to date. When casting types, PostgreSQL
casts the column data type to the data type specified in the filtering condition, but not vice versa. Therefore, Shardman must first get
all the data from other shards, cast the type and apply filtering only after that. The query plan looks like this:

59

Develop

WindowAgg (actual rows=26 loops=1)
 Network: FDW bytes sent=1750 received=113339240
 -> Sort (actual rows=26 loops=1)
 Sort Key: tf.ticket_no, f.scheduled_departure
 Sort Method: quicksort Memory: 27kB
 Network: FDW bytes sent=1750 received=113339240
 -> Append (actual rows=26 loops=1)
 Network: FDW bytes sent=1750 received=113339240
 -> Hash Join (actual rows=10 loops=1)
 Hash Cond: (t_1.book_ref = b.book_ref)
 Network: FDW bytes sent=582 received=37717376
 -> Hash Join (actual rows=6 loops=1)
 Hash Cond: (t_2.book_ref = b.book_ref)
 Network: FDW bytes sent=582 received=37700608
 -> Hash Join (actual rows=2 loops=1)
 Hash Cond: (t_3.book_ref = b.book_ref)
 Network: FDW bytes sent=586 received=37921256
 -> Nested Loop (actual rows=8 loops=1)
 -> Nested Loop (actual rows=8 loops=1)
 -> Hash Join (actual rows=2 loops=1)
 Hash Cond: (t_4.book_ref = b.book_ref)
 -> Seq Scan on tickets_3 t_4 (actual rows=207118
 loops=1)
 -> Index Scan using flights_pkey on flights f (actual rows=1
 loops=8)
 Index Cond: (flight_id = tf_4.flight_id)

Pay attention to the number of bytes received from other cluster shards and to the sequential scan of the tickets table. Let's try
to rewrite the query to avoid the type cast.

The idea is pretty simple: the interval will be computed at the application level rather than at the database level, and the data of the
timestamptz type will be readily passed to the query. Besides, creation of an additional index can help:

CREATE INDEX if not exists bookings_date_idx ON bookings.bookings(book_date);

For the book_ref sharding key, the query looks like this:

SELECT tf.ticket_no,f.departure_airport,
 f.arrival_airport,f.scheduled_arrival,
 lead(f.scheduled_departure) OVER w AS next_departure,
 lead(f.scheduled_departure) OVER w - f.scheduled_arrival AS gap
FROM bookings.bookings b
JOIN bookings.tickets t
 ON t.book_ref = b.book_ref
JOIN bookings.ticket_flights tf
 ON tf.ticket_no = t.ticket_no
AND tf.book_ref = t.book_ref -- <= added book_ref
JOIN bookings.flights f
 ON tf.flight_id = f.flight_id
WHERE b.book_date = '2016-10-06 14:00:00+00'
WINDOW w AS (
PARTITION BY tf.ticket_no
ORDER BY f.scheduled_departure);

This query has a different plan:

WindowAgg (actual rows=18 loops=1)
 Network: FDW bytes sent=2268 received=892
 -> Sort (actual rows=18 loops=1)
 Sort Key: tf.ticket_no, f.scheduled_departure
 Sort Method: quicksort Memory: 26kB
 Network: FDW bytes sent=2268 received=892

60

Develop

 -> Append (actual rows=18 loops=1)
 Network: FDW bytes sent=2268 received=892
 -> Nested Loop (actual rows=4 loops=1)
 -> Nested Loop (actual rows=4 loops=1)
 -> Nested Loop (actual rows=1 loops=1)
 -> Bitmap Heap Scan on bookings_0 b_1
 Heap Blocks: exact=1
 -> Bitmap Index Scan on bookings_0_book_date_idx
 -> Index Only Scan using tickets_0_pkey on tickets_0
 t_1
 Index Cond: (book_ref = b_1.book_ref)
 Heap Fetches: 0
 -> Index Only Scan using ticket_flights_0_pkey on
 ticket_flights_0 tf_1
 Heap Fetches: 0
 -> Index Scan using flights_pkey on flights f (actual rows=1
 loops=4)
 Index Cond: (flight_id = tf_1.flight_id)
 -> Async Foreign Scan (actual rows=14 loops=1)
 Network: FDW bytes sent=754 received=892
 -> Async Foreign Scan (actual rows=0 loops=1)
 Network: FDW bytes sent=757 -- received=0!
 -> Async Foreign Scan (actual rows=0 loops=1)
 Network: FDW bytes sent=757 -- received=0!

This is much better. First, the whole table is not scanned, Index Only Scan is only included. Second, it is clear how much the
amount of network data transfer between nodes is reduced.

3.3.7. q7 Query
Assume that statistics is needed showing how many passengers there are per booking. To find this out, let's first compute the number
of passengers in each booking and then the number of bookings with each number of passengers.

SELECT tt.cnt, count(*)
FROM (
 SELECT count(*) cnt
 FROM bookings.tickets t
 GROUP BY t.book_ref
) tt
GROUP BY tt.cnt
ORDER BY tt.cnt;

This query processes all the data in the tickets and bookings tables. So intensive network data exchange between shards cannot
be avoided. Also note that the value of the work_mem parameter must be pretty high to avoid the use of disk when joining tables.
So let's change the value of work_mem in the cluster:

shardmanctl set work_mem='256MB';

The query plan for the ticket_no sharding key is as follows:

GroupAggregate (actual rows=5 loops=1)
 Group Key: tt.cnt
 Network: FDW bytes sent=798 received=18338112
 -> Sort (actual rows=593433 loops=1)
 Sort Key: tt.cnt
 Sort Method: quicksort Memory: 57030kB
 Network: FDW bytes sent=798 received=18338112
 -> Subquery Scan on tt (actual rows=593433 loops=1)
 Network: FDW bytes sent=798 received=18338112
 -> Finalize HashAggregate (actual rows=593433 loops=1)
 Group Key: t.book_ref

61

Develop

 Batches: 1 Memory Usage: 81953kB
 Network: FDW bytes sent=798 received=18338112
 -> Append (actual rows=763806 loops=1)
 Network: FDW bytes sent=798 received=18338112
 -> Async Foreign Scan (actual rows=190886 loops=1)
 Relations: Aggregate on (tickets_0_fdw t)
 Network: FDW bytes sent=266 received=1558336
 -> Async Foreign Scan (actual rows=190501 loops=1)
 Relations: Aggregate on (tickets_1_fdw t_1)
 Network: FDW bytes sent=266
 -> Async Foreign Scan (actual rows=191589 loops=1)
 Relations: Aggregate on (tickets_2_fdw t_2)
 Network: FDW bytes sent=266
 -> Partial HashAggregate (actual rows=190830 loops=1)
 Group Key: t_3.book_ref
 Batches: 1 Memory Usage: 36881kB
 Network: FDW bytes received=4981496
 -> Seq Scan on tickets_3 t_3 (actual rows=207118
 loops=1)
 Network: FDW bytes received=4981496

The query plan for the book_ref sharding key is as follows:

Sort (actual rows=5 loops=1)
 Sort Key: (count(*))
 Sort Method: quicksort Memory: 25kB
 Network: FDW bytes sent=798 received=14239951
 -> HashAggregate (actual rows=5 loops=1)
 Group Key: (count(*))
 Batches: 1 Memory Usage: 40kB
 Network: FDW bytes sent=798 received=14239951
 -> Append (actual rows=593433 loops=1)
 Network: FDW bytes sent=798 received=14239951
 -> GroupAggregate (actual rows=148504 loops=1)
 Group Key: t.book_ref
 -> Index Only Scan using tickets_0_book_ref_idx on tickets_0 t
 (rows=207273)
 Heap Fetches: 0
 -> Async Foreign Scan (actual rows=148256 loops=1)
 Relations: Aggregate on (tickets_1_fdw t_1)
 Network: FDW bytes sent=266 received=1917350
 -> Async Foreign Scan (actual rows=148270 loops=1)
 Relations: Aggregate on (tickets_2_fdw t_2)
 Network: FDW bytes sent=266
 -> Async Foreign Scan (actual rows=148403 loops=1)
 Relations: Aggregate on (tickets_3_fdw t_3)
 Network: FDW bytes sent=266

The query plans differ first by the order of joining tables and by the computation of aggregates.

For the ticket_no sharding key, all the partially aggregated data of the joined tables is received (17 Mb), and all the rest of
processing is performed on the query source node.

For the book_ref sharding key, as it is included in the query, most of the computation of aggregates is performed on the nodes
and only the result (13 Mb) is returned to the query source node, which is then finalized.

3.3.8. q8 Query
This query answers the question: which are the most frequent combinations of first and last names in bookings and what is the ratio
of the passengers with such names to the total number of passengers. A window function is used to get the result:

62

Develop

SELECT passenger_name,
 round(100.0 * cnt / sum(cnt) OVER (), 2)
 AS percent
FROM (
 SELECT passenger_name,
 count(*) cnt
 FROM bookings.tickets
 GROUP BY passenger_name
) t
ORDER BY percent DESC;

For both sharding keys, the query plan looks like this:

Sort (actual rows=27909 loops=1)
 Sort Key: (round(((100.0 * ((count(*)))::numeric) / sum((count(*))) OVER (?)), 2))
 DESC
 Sort Method: quicksort Memory: 3076kB
 Network: FDW bytes sent=816 received=2376448
 -> WindowAgg (actual rows=27909 loops=1)
 Network: FDW bytes sent=816 received=2376448
 -> Finalize HashAggregate (actual rows=27909 loops=1)
 Group Key: tickets.passenger_name
 Batches: 1 Memory Usage: 5649kB
 Network: FDW bytes sent=816 received=2376448
 -> Append (actual rows=74104 loops=1)
 Network: FDW bytes sent=816 received=2376448
 -> Partial HashAggregate (actual rows=18589 loops=1)
 Group Key: tickets.passenger_name
 Batches: 1 Memory Usage: 2833kB
 -> Seq Scan on tickets_0 tickets (actual rows=207273
 loops=1)
 -> Async Foreign Scan (actual rows=18435 loops=1)
 Relations: Aggregate on (tickets_1_fdw tickets_1)
 Network: FDW bytes sent=272 received=2376448
 -> Async Foreign Scan (actual rows=18567 loops=1)
 Relations: Aggregate on (tickets_2_fdw tickets_2)
 Network: FDW bytes sent=272
 -> Async Foreign Scan (actual rows=18513 loops=1)
 Relations: Aggregate on (tickets_3_fdw tickets_3)
 Network: FDW bytes sent=272

The plan shows that the data preprocessing, table joins and partial aggregation are performed on shards, while the final processing
is performed on the query source node.

3.3.9. q9 Query
This query answers the question: who traveled from Moscow (SVO) to Novosibirsk (OVB) on seat 1A the day before yesterday, and
when was the ticket booked. The day before yesterday is computed from the function booking.now rather than from the current
date. The query in the non-distributed schema is as follows:

SELECT
 t.passenger_name,
 b.book_date v
FROM bookings b
JOIN tickets t ON
 t.book_ref = b.book_ref
JOIN boarding_passes bp
 ON bp.ticket_no = t.ticket_no
JOIN flights f ON
 f.flight_id = bp.flight_id
WHERE f.departure_airport = 'SVO'

63

Develop

AND f.arrival_airport = 'OVB'
AND f.scheduled_departure::date = bookings.now()::date - INTERVAL '2 day'
AND bp.seat_no = '1A';

As explained for the q6 Query, INTERVAL causes the type cast. Let's get rid of it and rewrite the query for the book_ref sharding
key as follows:

SELECT
 t.passenger_name,
 b.book_date v
FROM bookings b
JOIN tickets t ON
 t.book_ref = b.book_ref
JOIN boarding_passes bp
 ON bp.ticket_no = t.ticket_no
 AND bp.book_ref = b.book_ref -- <= added book_ref
JOIN flights f ON
 f.flight_id = bp.flight_id
WHERE f.departure_airport = 'SVO'
AND f.arrival_airport = 'OVB'
AND f.scheduled_departure
 BETWEEN '2016-10-11 14:00:00+00' AND '2016-10-13 14:00:00+00'
AND bp.seat_no = '1A';

Let's also create a couple of additional indexes:

CREATE INDEX idx_boarding_passes_seats
 ON boarding_passes((seat_no::text));
CREATE INDEX idx_flights_sched_dep
 ON flights(departure_airport,arrival_airport,scheduled_departure);

As a result, the query plan appears pretty good:

Append (actual rows=1 loops=1)
 Network: FDW bytes sent=2484 received=102
 -> Nested Loop (actual rows=1 loops=1)
 Join Filter: (bp_1.ticket_no = t_1.ticket_no)
 Rows Removed by Join Filter: 1
 -> Nested Loop (actual rows=1 loops=1)
 -> Hash Join (actual rows=1 loops=1)
 Hash Cond: (bp_1.flight_id = f.flight_id)
 -> Bitmap Heap Scan on boarding_passes_0 bp_1 (actual rows=4919
 loops=1)
 Recheck Cond: ((seat_no)::text = '1A'::text)
 Heap Blocks: exact=2632
 -> Bitmap Index Scan on boarding_passes_0_seat_no_idx
 (actual rows=4919)
 Index Cond: ((seat_no)::text = '1A'::text)
 -> Hash (actual rows=2 loops=1)
 Buckets: 1024 Batches: 1 Memory Usage: 9kB
 -> Bitmap Heap Scan on flights f (actual rows=2 loops=1)
 Recheck Cond:
 ((departure_airport = 'SVO'::bpchar) AND (arrival_airport =
 'OVB'::bpchar) AND
 (scheduled_departure >= '2016-10-11 14:00:00+00'::timestamp with
 time zone) AND
 (scheduled_departure < '2016-10-13 14:00:00+00'::timestamp with
 time zone))
 Heap Blocks: exact=2
 -> Bitmap Index Scan on idx_flights_sched_dep (actual
 rows=2 loops=1)

64

Develop

 Index Cond:
 ((departure_airport = 'SVO'::bpchar) AND
 (arrival_airport = 'OVB'::bpchar) AND
 (scheduled_departure >= '2016-10-11 14:00:00+00'::timestamp with
 time zone) AND
 (scheduled_departure <= '2016-10-13 14:00:00+00'::timestamp with
 time zone))
 -> Index Scan using bookings_0_pkey on bookings_0 b_1 (actual rows=1
 loops=1)
 Index Cond: (book_ref = bp_1.book_ref)
 -> Index Scan using tickets_0_book_ref_idx on tickets_0 t_1 (actual rows=2
 loops=1)
 Index Cond: (book_ref = b_1.book_ref)
 -> Async Foreign Scan (actual rows=0 loops=1)
 Relations: (((boarding_passes_1_fdw bp_2) INNER JOIN (flights f)) INNER JOIN
 (tickets_1_fdw t_2)) INNER JOIN (bookings_1_fdw b_2)
 Network: FDW bytes sent=826 received=68
 -> Async Foreign Scan (actual rows=0 loops=1)
 Relations: (((boarding_passes_2_fdw bp_3) INNER JOIN (flights f)) INNER JOIN
 (tickets_2_fdw t_3)) INNER JOIN (bookings_2_fdw b_3)
 Network: FDW bytes sent=829 received=34
 -> Async Foreign Scan (actual rows=0 loops=1)
 Relations: (((boarding_passes_3_fdw bp_4) INNER JOIN (flights f)) INNER JOIN
 (tickets_3_fdw t_4)) INNER JOIN (bookings_3_fdw b_4)
 Network: FDW bytes sent=829

It is clear from this plan that all the table joining was done on shards and the query source node received the result that did not
contain rows as the data was located on one shard where the query was executed.

If this query were executed on a different shard, the plan would be the same, but the data for finalization would be received from
the shard with the data.

3.4. Connecting and Working with a Shardman Cluster
As explained in Section 3.1.2, the cluster considered consists of four shards. This is how the data partitions of the main sharded
table are distributed across shards.

For the ticket_no sharding key:

• tickets_0 — shard-1 (cluster node node1)

• tickets_1 — shard-2 (cluster node node2)

• tickets_2 — shard-3 (cluster node node3)

• tickets_3 — shard-4 (cluster node node4)

For the book_ref sharding key:

• bookings_0 — shard-1 (cluster node node1)

• bookings_1 — shard-2 (cluster node node2)

• bookings_2 — shard-3 (cluster node node3)

• bookings_3 — shard-4 (cluster node node4)

The examples below are provided for the book_ref sharding key, but the code in the subsections is suitable for the ticket_no
sharding key.

Do not treat this code as optimal or use it in a production environment. It only shows how to implement creation of a connection
pull to work with a Shardman cluster.

What is common for all the examples is the cluster connection string, which must contain node names, TCP port numbers, user name
and password, database name for connection and a set of session parameters.

65

Develop

You can get this string using the shardmanctl utility. In the simplest case, the string looks like this:

$ shardmanctl getconnstr

dbname=postgres host=node1,node2,node3,node4 port=5432,5432,5432,5432

You can get this string to connect to cluster nodes or to create the connection pool in applications.

3.4.1. SQL
A few convenient functions and views are implemented in Shardman that add cluster observability by:

• Listing global tables

• Listing sharded tables

• Listing global sequences

• Finding the shard number from the value of the sharding key

• Perfroming ANALYZE for all the global and sharded tables in the cluster

3.4.1.1. Listing Global Tables

To display all global tables in the cluster, use the shardman.global_tables view:

postgres=# select
 relname as table_name,
 nspname as schema
from shardman.global_tables;

 table_name | schema
------------+----------
 aircrafts | bookings
 seats | bookings
 airports | bookings
 flights | bookings
(4 rows)

3.4.1.2. Listing Sharded Tables

To display information on all the sharded tables in the cluster, query the shardman.sharded_tables view as follows:

postgres=# select
 relname as table_name,
 nparts as partitions,
 colocated_with::oid::regclass::text as colocated_with,
 nspname as schema
from shardman.sharded_tables;

 table_name | partitions | colocated_with | schema
-----------------+------------+----------------+----------
 bookings | 4 | | bookings
 ticket_flights | 4 | bookings | bookings
 tickets | 4 | bookings | bookings
 boarding_passes | 4 | bookings | bookings
(4 rows)

3.4.1.3. Listing Global Sequences

To display all the global sequences in the cluster, use the shardman.sequence view:

postgres=# select
 seqns as schema,
 seqname as sequence_name,
 seqmin as min_value,

66

Develop

 seqmax as max_value,
 seqblk as bulk_size
from shardman.sequence;

 schema | sequence_name | min_value | max_value | bulk_size
----------+-------------------------+-----------+---------------------+-----------
 bookings | flights_flight_id_seq | 262145 | 9223372036854775807 | 65536
(1 rows)

3.4.1.4. Finding the Shard Number from the Sharding Key Value

To display the name of the partition that contains data and the replication group name, call the shardman.get_parti-
tion_for_value() function. For example, for book_ref = 0369E5:

postgres=# select * from shardman.get_partition_for_value(
 'bookings'::regclass,
 '0369E5'::character(6));

 rgid | local_nspname | local_relname | remote_nspname | remote_relname
------+---------------+---------------+----------------+----------------
 1 | bookings | bookings_0 | bookings | bookings_0

This output shows that the data is in the bookings_0 partition of the bookings table and is located on the node where the
query was executed.

Let's create a query to display the name of the server where the partition with data is located. If we connect to the server that contains
the partition, the server name is displayed as “current server”. If the data is on a different server, the hostname of the shard master
is displayed:

SELECT p.rgid,
 local_relname AS partition_name,
 CASE
 WHEN r.srvid IS NULL THEN 'current server'
 ELSE (SELECT (SELECT split_part(kv, '=', 2)
 FROM (SELECT unnest(fs.srvoptions) as kv) x
 WHERE split_part(kv, '=', 1) = 'host')
 FROM shardman.repgroups rg
 JOIN pg_catalog.pg_foreign_server AS fs ON fs.oid = rg.srvid
 WHERE rg.id = p.rgid)
 END AS server_name
FROM shardman.get_partition_for_value('bookings'::regclass, '0369E5'::character(6)) p
 JOIN shardman.repgroups AS r ON
 r.id = p.rgid;

 rgid | partition_name | server_name
------+----------------+----------------
 1 | bookings_0 | current server
(1 row)

Execution of this query with another value of the sharding key, 0369E6, produces the output:

 rgid | partition_name | server_name
------+----------------+-------------
 4 | bookings_3_fdw | node4
(1 row)

It is clear that the partition is on the node4 node.

Also note that the shardman.rgid parameter allows you to find the number of the node with the connection session. To do this,
execute the query:

SELECT pg_catalog.current_setting('shardman.rgid');

67

Develop

You can use this value to determine the location of connection sessions for queries like discussed in this section.

The shardman.get_partition_for_value() is mainly designed for administration purposes, to better understand the data
topology.

As a rule, do not use administration functions when writing SQL code for data access.

3.4.1.5. Understanding How Partitions of Sharded Tables Are Distributed Across Shards

You can get the list of all sharded tables in the bookings schema, together with the number of partitions and their distribution
across servers (shards) from Shardman metadata on any cluster node.

Consider the following query:

SELECT p.rel::regclass::text AS table_name,
 p.pnum,
 p.rgid,
 r.srvid,
 fs.srvname
FROM shardman.parts p
JOIN shardman.repgroups r
 ON p.rgid = r.id
LEFT OUTER JOIN pg_foreign_server fs
 ON r.srvid = fs.oid;

To learn how the data is distributed, let's combine this query with a subquery from Section 3.4.1.4:

SELECT p.rel::regclass AS table_name,
 st.nparts AS total_parts,
 p.pnum AS num_part,
 CASE
 WHEN r.srvid IS NULL THEN 'connected server'
 ELSE
 (SELECT split_part(kv, '=', 2)
 FROM (SELECT unnest(fs.srvoptions) AS kv) x
 WHERE split_part(kv, '=', 1) = 'host')
 END AS server_name
FROM shardman.parts p
 JOIN shardman.repgroups r
 ON p.rgid = r.id
 LEFT JOIN shardman.sharded_tables st
 ON p.rel = st.rel
 LEFT JOIN pg_foreign_server fs
 ON r.srvid = fs.oid
WHERE st.nspname = 'bookings'
ORDER BY table_name, num_part, server_name;

The output format is the table name, number of table partitions, partition number and server name:

 table_name | total_parts | num_part | server_name
--------------------------+-------------+----------+------------------
 bookings.bookings | 4 | 0 | connected server
 bookings.bookings | 4 | 1 | node2
 bookings.bookings | 4 | 2 | node3
 bookings.bookings | 4 | 3 | node4
 bookings.ticket_flights | 4 | 0 | connected server
 bookings.ticket_flights | 4 | 1 | node2
 bookings.ticket_flights | 4 | 2 | node3
 bookings.ticket_flights | 4 | 3 | node4
 bookings.tickets | 4 | 0 | connected server
 bookings.tickets | 4 | 1 | node2
 bookings.tickets | 4 | 2 | node3

68

Develop

 bookings.tickets | 4 | 3 | node4
 bookings.boarding_passes | 4 | 0 | connected server
 bookings.boarding_passes | 4 | 1 | node2
 bookings.boarding_passes | 4 | 2 | node3
 bookings.boarding_passes | 4 | 3 | node4

3.4.1.6. Collecting Statistics

To collect statistics for sharded and global tables, call the shardman.global_analyze() function. This function first collects
statistics for all local partitions of sharded tables on each node and then broadcasts this statistics to other nodes. For a global table,
the function first collects statistics on a certain node and then the statistics is broadcast to all the other nodes.

3.4.2. psql/libpq
To connect to a Shardman cluster and successfully work with it, it is sufficient to connect to one cluster node. To do this, first get
the connection string.

The PostgreSQL documentation contains the description of the cluster connection string. The string can be specified using two
formats: a keyword/value string and URI. Any of them can be used to connect to a Shardman cluster.

Some parameters must also be specified. The list of parameters is also available in the PostgreSQL documentation.

The value of target_session_attrs must be set to read-write. Only connections that allow read/write transactions are
acceptable. If the connection to a cluster node is a success, the request “SHOW transaction_read_only;” is sent. If it returns on, the
connection is closed. If several servers are specified in the connection string, other servers will be iterated through, the same way
as with the failed connection attempt. The target_session_attrs parameter allows you to specify both masters and replicas
of the Shardman cluster.

The following examples illustrate the connection:

psql -d "dbname=postgres host=node3,node4,node2,node1 port=5432,5432,5432,5432
 user=username password=password target_session_attrs=read-write"

psql postgres://username:password@node1:5432,node2:5432,node3:5432,node4:5432/postgres?
target_session_attrs=read-write

3.4.3. Python
Connection to a Shardman cluster using the psycopg2 library looks like this:

import psycopg2
from psycopg2 import pool

pool = psycopg2.pool.SimpleConnectionPool(
 min_size=1,
 max_size=5,
 user="pguser",
 password="*****",
 host="node1,node2,node3,node4",
 port="5432,5432,5432,5432",
 database="postgres",
 target_session_attrs="read-write")

connection = pool.getconn()

A connection pool with the following parameters is created: the minimum and maximum number of connections min_size=1 and
max_size=5. Then a specific connection to the cluster is selected, the user login and password are specified, as well as the list of
nodes and TCP ports, database and connection parameters (see Section 3.4.2 for more information).

3.4.4. Java
Connection to a Shardman cluster using JDBC looks like this:

69

https://postgrespro.com/docs/postgresql/14/libpq-connect#LIBPQ-CONNSTRING
https://postgrespro.com/docs/postgresql/14/libpq-connect#LIBPQ-PARAMKEYWORDS

Develop

String url = "jdbc:postgresql://node1:5432,node2:5432,node3:5432,node4:5432/postgres?
loadBalanceHosts=true&targetServerType=primary";
Properties props = new Properties();

props.setProperty("user","postgres");
props.setProperty("password","********");

Connection conn = DriverManager.getConnection(url, props);

url contains the connection string, where all the available shard masters are listed. If no additional connection parameters of the
JDBC driver are specified, connection to the cluster is performed through the first node available for connection. This is not always
convenient. Therefore, connection string settings are added that allow using different cluster shards for different connections.

loadBalanceHosts=true allows iterating through nodes connecting to one of them, and targetServerType=primary
indicates a need to only choose masters, then replicas can be added to the connection string.

3.4.5. Go
Ways to connect to a Shardman cluster for Go are pretty much the same as those accepted in Java or Python. You need to specify
lists of nodes, their TCP ports, as well as connection parameters and choose a suitable driver.

One of these drivers for Go is pgx version 4 or 5.

The following is an example of a connection string and creation of a pool for connecting to a cluster:

dbURL := "postgres://username:password@node1:5432,node2:5432,node3:5432,node4:5432/
postgres?target_session_attrs=read-write")
dbPool, err := pgxpool.New(context.Background(), dbURL)

Also pay attention to the description of the target_session_attrs parameter.

70

https://github.com/jackc/pgx

Chapter 4. Additional Features
Shardman includes some additional features and modules imported from Postgres Pro Enterprise, namely AQO (Adaptive Query
Optimization), CFS (Compressed File System) support, as well as pgpro_stats, pgpro_pwr, and pg_query_state modules.

4.1. AQO (Adaptive Query Optimization)
AQO is a Shardman extension that uses query execution statistics for improving cardinality estimation, which can optimize execution
plans and, consequently, speed up query execution.

To turn on AQO:

1. Add aqo to the shared_preload_libraries parameter in sdmspec.json.

2. Create extension aqo on all nodes.

SET shardman.broadcast_ddl TO ON;
CREATE EXTENSION aqo;
RESET shardman.broadcast_ddl;

3. Set aqo.mode for learn and run queries that you want to optimize with EXPLAIN ANALYZE until the plan stops changing.

BEGIN;
SET aqo.mode = 'learn';
EXPLAIN ANALYZE <query>
RESET aqo.mode;
COMMIT;

Note that aqo statistics is collected separately on all nodes in a Shardman cluster. So you need to repeat this process on each
node in the cluster. Alternatively, you can set aqo.mode to learn and run your application for some time and later turn it
back to the default mode (controlled).

Note
AQO will not be activated if you join less than aqo.join_threshold relations (3 by default).

Complete aqo documentation can be found here.

4.2. CFS (Compressed File System)
CFS enables page-level compression in Shardman. Compression can only be enabled for separate tablespaces. To compress a table-
space, you need to enable the compression option when creating this tablespace. For example:

CREATE TABLESPACE data LOCATION '/mnt/data-{rgid}' WITH (global, compression='zlib');

Now you can create tables and indexes in this tablespace or move existing table or index to it.

CREATE TABLE pgbench_branches (
 bid integer NOT NULL PRIMARY KEY USING INDEX TABLESPACE data,
 bbalance integer,
 filler character(88)
)
WITH (distributed_by = 'bid') TABLESPACE data;

Note
The cfs_compression_ratio() function returns the actual compression ratio for all segments of the compressed
relation. However, it returns NaN for partitioned and foreign tables, so it works only for local partitions of a sharded table.

Complete CFS documentation can be found here.

71

https://postgrespro.com/docs/enterprise/14/aqo
https://postgrespro.com/docs/enterprise/14/cfs

Additional Features

4.3. pgpro_stats (Planning and Execution Statistics)
The pgpro_stats extension provides a means for tracking planning and execution statistics of all SQL statements executed by a
server. In addition to tracking local statements, the pgpro_stats extension collects the aggregated statistics for distributed queries
that involve multiple nodes in a cluster. This allows users to get a better understanding of how system resources are being used
for distributed queries.

The architecture of Shardman additions to thepgpro_stats extension is described in Section 7.8.

Complete pgpro_stats documentation can be found here.

4.4. pgpro_pwr (Workload Reporting)
pgpro_pwr is designed to discover most resource-intensive activities in your database. This extension is based on Postgres Pro's
Statistics Collector views and the pgpro_stats or pg_stat_statements extension.

To build workload reports using pgpro_pwr on a Shardman cluster, perform the following installation:

• Install the dblink module and the pgpro_stats extension on each Shardman cluster node.

• Install pgpro_pwr compatible with Shardman on each Shardman cluster node as follows:

sudo apt install pgpro-pwr-sdm-14

Complete pgpro_pwr documentation can be found here.

4.5. pg_query_state
The pg_query_state module provides facility to know the current state of query execution on working backend and silkworm
multiplexer workers.

Complete pg_query_state documentation can be found here.

72

https://postgrespro.com/docs/postgrespro/14/pgpro-stats
https://postgrespro.com/docs/postgrespro/14/monitoring-stats
https://postgrespro.com/docs/postgrespro/14/monitoring-stats
https://postgrespro.com/docs/postgrespro/14/pgpro-stats
https://postgrespro.com/docs/postgrespro/14/pgstatstatements
https://postgrespro.com/docs/postgresql/14/dblink
https://postgrespro.com/docs/postgrespro/14/pgpro-stats
https://postgrespro.com/docs/postgrespro/14/pgpro-pwr
https://postgrespro.com/docs/postgrespro/14/pg-query-state

Chapter 5. Performance Tuning
Performan#e tuning should be done during application development and include an accurate choice of hardware (for example,
estimating the number of CPUs and memory per Shardman cluster node or tuning your storage), OS tuning (for example, tuning
the swappiness parameter or network-related behavior) and DBMS tuning (choosing efficient configuration). But first of all, an
application should be tested and tuned for distributed DBMS. This includes designing a distributed schema (or converting an existing
schema to a distributed one), tuning queries, using connection poolers, caching and even checking performance issues related to
possible serialization errors or Shardman node outage. The design of the schema should include accurate selection of a sharding key
and a decision which tables should become global. Usually you select a sharding key so that:

1. Most of the queries filter out most of sharded table partitions.

2. Sharded tables are colocated and all joins of sharded tables are equi-joins on the sharding key.

These rules allow Shardman to efficiently exclude unused shards from queries and to push down joins to shards where the required
data resides.

Each Shardman node operates as a usual DBMS server, so all standard recommendations for tuning PostgreSQL for production load
remain in place. You should select shared_buffers, work_mem, effective_cache_size depending on resources avail-
able to DBMS. Keep in mind that if the cluster topology is set to cross, Repfactor instances run on a single node w. When all
cluster nodes are online, replicas should not utilize a lot of CPUs. However, in case of node failure, masters for Repfactor repli-
cation groups can become running on one server, which can create significant load on it. While tuning the max_connections pa-
rameter, note that each transaction can initiate n-1 connections, where n is the number of replication groups in the cluster. When Silk
is enabled, it is still true for transactions containing DML operations. When Silk is disabled, it is also true for read-only transactions.

Other parameters, which you perhaps would like to tune, are foreign server options. They can be set in FDWOptions section of
Shardman configuration file. Parameters that significantly affect Shardman performance are fetch_size, batch_size and
async_capable. When Silk transport is not enabled, fetch_size determines the number of records that are fetched from
a remote server at once. When Silk transport is enabled, fetch_size currently does not have significant impact on the query
execution. batch_size specifies how many rows can be combined in a single remote INSERT operation for a sharded table.
async_capable allows asynchronous execution and should always be turned on (which is the default).

The shardman.gt_batch_size configuration parameter allows you to optimize the size of an intermediate buffer for INSERT and
DELETE operations on global tables.

5.1. Examining Plans
Tuning query execution is better on a subset of production data that represents actual data distribution. Let's look at some sample
plans.

EXPLAIN VERBOSE
SELECT bid,avg(abalance) FROM pgbench_accounts
WHERE bid IN (10,20,30,40)
GROUP BY bid;
 QUERY PLAN

 Append (cost=0.29..21.98 rows=4 width=36)
 -> GroupAggregate (cost=0.29..18.98 rows=1 width=36)
 Output: pgbench_accounts.bid, avg(pgbench_accounts.abalance)
 Group Key: pgbench_accounts.bid
 -> Index Scan using pgbench_accounts_15_pkey on public.pgbench_accounts_15
 pgbench_accounts (cost=0.29..18.96 rows=1 width=8)
 Output: pgbench_accounts.bid, pgbench_accounts.abalance
 Index Cond: (pgbench_accounts.bid = ANY ('{10,20,30,40}'::integer[]))
 -> Async Foreign Scan (cost=0.99..0.99 rows=1 width=36)
 Output: pgbench_accounts_1.bid, (avg(pgbench_accounts_1.abalance))
 Relations: Aggregate on (public.pgbench_accounts_16_fdw pgbench_accounts_1)
 Remote SQL: SELECT bid, avg(abalance) FROM public.pgbench_accounts_16 WHERE
 ((bid = ANY ('{10,20,30,40}'::integer[]))) GROUP BY 1

73

Performance Tuning

 Transport: Silk
 -> Async Foreign Scan (cost=0.99..0.99 rows=1 width=36)
 Output: pgbench_accounts_2.bid, (avg(pgbench_accounts_2.abalance))
 Relations: Aggregate on (public.pgbench_accounts_17_fdw pgbench_accounts_2)
 Remote SQL: SELECT bid, avg(abalance) FROM public.pgbench_accounts_17 WHERE
 ((bid = ANY ('{10,20,30,40}'::integer[]))) GROUP BY 1
 Transport: Silk
 -> Async Foreign Scan (cost=1.00..1.00 rows=1 width=36)
 Output: pgbench_accounts_3.bid, (avg(pgbench_accounts_3.abalance))
 Relations: Aggregate on (public.pgbench_accounts_19_fdw pgbench_accounts_3)
 Remote SQL: SELECT bid, avg(abalance) FROM public.pgbench_accounts_19 WHERE
 ((bid = ANY ('{10,20,30,40}'::integer[]))) GROUP BY 1
 Transport: Silk
 Query Identifier: -1714706980364121548

We see here that queries scanning three partitions are going to be sent to other nodes, coordinator data is also going to be scanned
using Index Scan. We do not know what plan will be used on the remote side, but we see which queries will be sent (marked
with Remote SQL). Note that Transport: Silk section is present in the foreign scan description. This indicates that Silk
transport will be used to transfer results. We see that Async foreign scan is going to be used, which is fine. To discover which servers
are used in the query, we should look at foreign tables definitions. For example, we can find out that public.pgbench_ac-
counts_19_fdw is located on the shardman_rg_2 server listening on 127.0.0.2:65432:

SELECT srvname,srvoptions FROM pg_foreign_server s JOIN pg_foreign_table ON ftserver =
 s.oid
WHERE ftrelid = 'public.pgbench_accounts_19_fdw'::regclass;
-[RECORD
 1]---
srvname | shardman_rg_2
srvoptions |
 {async_capable=on,batch_size=100,binary_format=on,connect_timeout=5,dbname=postgres,extended_features=on,fdw_tuple_cost=0.2,fetch_size=50000,host=127.0.0.2,port=65432,silk_port=8000,tcp_user_timeout=10000}

Now we can connect to shardman_rg_2 server and find out which plan is used for the local query which was shown by the
above EXPLAIN:

EXPLAIN SELECT bid, avg(abalance)
FROM public.pgbench_accounts_19
WHERE ((bid = ANY ('{10,20,30,40}'::integer[]))) GROUP BY 1;

 QUERY PLAN

 HashAggregate (cost=3641.00..3641.01 rows=1 width=36)
 Group Key: bid
 -> Seq Scan on pgbench_accounts_19 (cost=0.00..3141.00 rows=100000 width=8)
 Filter: (bid = ANY ('{10,20,30,40}'::integer[]))

While looking at distributed query plans, we can see that sometimes aggregates are not pushed down:

EXPLAIN VERBOSE
SELECT avg(abalance) FROM pgbench_accounts;

 QUERY PLAN

--
 Finalize Aggregate (cost=156209.38..156209.39 rows=1 width=32) (actual
 time=590.359..590.371 rows=1 loops=1)
 Output: avg(pgbench_accounts.abalance)
 -> Append (cost=2891.00..156209.33 rows=20 width=32) (actual time=56.815..590.341
 rows=20 loops=1)
 -> Partial Aggregate (cost=2891.00..2891.01 rows=1 width=32) (actual
 time=56.812..56.813 rows=1 loops=1)
 Output: PARTIAL avg(pgbench_accounts.abalance)

74

Performance Tuning

 -> Seq Scan on public.pgbench_accounts_0 pgbench_accounts
 (cost=0.00..2641.00 rows=100000 width=4) (actual time=0.018..38.478 rows=100000
 loops=1)
 Output: pgbench_accounts.abalance
 -> Partial Aggregate (cost=23991.00..23991.01 rows=1 width=32) (actual
 time=75.133..75.134 rows=1 loops=1)
 Output: PARTIAL avg(pgbench_accounts_1.abalance)
 -> Foreign Scan on public.pgbench_accounts_1_fdw pgbench_accounts_1
 (cost=100.00..23741.00 rows=100000 width=4) (actual time=41.281..67.293 rows=100000
 loops=1)
 Output: pgbench_accounts_1.abalance
 Remote SQL: SELECT abalance FROM public.pgbench_accounts_1
 Transport: Silk
.....

Here avg() is calculated on the coordinator side. This can lead to a significant growth of data transfer between nodes. The actual
data transfer can be monitored with the NETWORK parameter of EXPLAIN ANALYZE (look at the Network received field
of the topmost plan node):

EXPLAIN (ANALYZE, VERBOSE, NETWORK)
SELECT avg(abalance) FROM pgbench_accounts

 QUERY PLAN

--
 Finalize Aggregate (cost=156209.38..156209.39 rows=1 width=32) (actual
 time=589.014..589.027 rows=1 loops=1)
 Output: avg(pgbench_accounts.abalance)
 Network: FDW bytes sent=3218 received=14402396
 -> Append (cost=2891.00..156209.33 rows=20 width=32) (actual time=52.111..588.999
 rows=20 loops=1)
 Network: FDW bytes sent=3218 received=14402396
 -> Partial Aggregate (cost=2891.00..2891.01 rows=1 width=32) (actual
 time=52.109..52.109 rows=1 loops=1)
 Output: PARTIAL avg(pgbench_accounts.abalance)
 -> Seq Scan on public.pgbench_accounts_0 pgbench_accounts
 (cost=0.00..2641.00 rows=100000 width=4) (actual time=0.020..34.472 rows=100000
 loops=1)
 Output: pgbench_accounts.abalance
 -> Partial Aggregate (cost=23991.00..23991.01 rows=1 width=32) (actual
 time=78.616..78.617 rows=1 loops=1)
 Output: PARTIAL avg(pgbench_accounts_1.abalance)
 Network: FDW bytes sent=247 received=2400360
 -> Foreign Scan on public.pgbench_accounts_1_fdw pgbench_accounts_1
 (cost=100.00..23741.00 rows=100000 width=4) (actual time=42.359..69.984 rows=100000
 loops=1)
 Output: pgbench_accounts_1.abalance
 Remote SQL: SELECT abalance FROM public.pgbench_accounts_1
 Transport: Silk
 Network: FDW bytes sent=247 received=2400360
.....

In such cases, we sometimes can rewrite the query:

EXPLAIN (ANALYZE, NETWORK, VERBOSE)
SELECT sum(abalance)::float/count(abalance) FROM pgbench_accounts where abalance is not
 null;

 QUERY PLAN

75

Performance Tuning

--
 Finalize Aggregate (cost=12577.20..12577.22 rows=1 width=8) (actual
 time=151.632..151.639 rows=1 loops=1)
 Output: ((sum(pgbench_accounts.abalance))::double precision /
 (count(pgbench_accounts.abalance))::double precision)
 Network: FDW bytes sent=3907 received=872
 -> Append (cost=3141.00..12577.10 rows=20 width=16) (actual time=55.589..151.621
 rows=20 loops=1)
 Network: FDW bytes sent=3907 received=872
 -> Partial Aggregate (cost=3141.00..3141.01 rows=1 width=16) (actual
 time=55.423..55.424 rows=1 loops=1)
 Output: PARTIAL sum(pgbench_accounts.abalance), PARTIAL
 count(pgbench_accounts.abalance)
 -> Seq Scan on public.pgbench_accounts_0 pgbench_accounts
 (cost=0.00..2641.00 rows=100000 width=4) (actual time=0.023..37.212 rows=100000
 loops=1)
 Output: pgbench_accounts.abalance
 Filter: (pgbench_accounts.abalance IS NOT NULL)
 -> Async Foreign Scan (cost=1.00..1.00 rows=1 width=16) (actual
 time=0.055..0.089 rows=1 loops=1)
 Output: (PARTIAL sum(pgbench_accounts_1.abalance)), (PARTIAL
 count(pgbench_accounts_1.abalance))
 Relations: Aggregate on (public.pgbench_accounts_1_fdw
 pgbench_accounts_1)
 Remote SQL: SELECT sum(abalance), count(abalance) FROM
 public.pgbench_accounts_1 WHERE ((abalance IS NOT NULL))
 Transport: Silk
 Network: FDW bytes sent=300 received=800
....

Rewriting the query here, we could decrease incoming network traffic generated by the query from 13 MB to 872 bytes.

Now let's look at two nearly identical joins.

EXPLAIN ANALYZE SELECT count(*) FROM pgbench_branches b
JOIN pgbench_history h ON b.bid = h.bid
WHERE mtime > '2023-03-14 10:00:00'::timestamptz AND b.bbalance > 0;

 QUERY PLAN

--
 Finalize Aggregate (cost=8125.68..8125.69 rows=1 width=8) (actual time=27.464..27.543
 rows=1 loops=1)
 -> Append (cost=3.85..8125.63 rows=20 width=8) (actual time=0.036..27.475 rows=20
 loops=1)
 -> Partial Aggregate (cost=3.85..3.86 rows=1 width=8) (actual
 time=0.033..0.036 rows=1 loops=1)
 -> Nested Loop (cost=0.00..3.69 rows=67 width=0) (actual
 time=0.025..0.027 rows=0 loops=1)
 Join Filter: (b.bid = h.bid)
 -> Seq Scan on pgbench_branches_0 b (cost=0.00..1.01 rows=1
 width=4) (actual time=0.023..0.024 rows=0 loops=1)
 Filter: (bbalance > 0)
 Rows Removed by Filter: 1
 -> Seq Scan on pgbench_history_0 h (cost=0.00..1.84 rows=67
 width=4) (never executed)
 Filter: (mtime > '2023-03-14 10:00:00+03'::timestamp with
 time zone)

76

Performance Tuning

 -> Partial Aggregate (cost=222.65..222.66 rows=1 width=8) (actual
 time=3.969..3.973 rows=1 loops=1)
 -> Nested Loop (cost=200.00..222.43 rows=86 width=0) (actual
 time=3.736..3.920 rows=86 loops=1)
 Join Filter: (b_1.bid = h_1.bid)
 -> Foreign Scan on pgbench_branches_1_fdw b_1
 (cost=100.00..101.22 rows=1 width=4) (actual time=1.929..1.932 rows=1 loops=1)
 -> Foreign Scan on pgbench_history_1_fdw h_1
 (cost=100.00..120.14 rows=86 width=4) (actual time=1.795..1.916 rows=86 loops=1)
 Filter: (mtime > '2023-03-14 10:00:00+03'::timestamp with
 time zone)
 -> Partial Aggregate (cost=864.54..864.55 rows=1 width=8) (actual
 time=1.780..1.786 rows=1 loops=1)
 -> Hash Join (cost=200.01..864.53 rows=5 width=0) (actual
 time=1.769..1.773 rows=0 loops=1)
 Hash Cond: (h_2.bid = b_2.bid)
 -> Foreign Scan on pgbench_history_2_fdw h_2
 (cost=100.00..760.81 rows=975 width=4) (never executed)
 Filter: (mtime > '2023-03-14 10:00:00+03'::timestamp with
 time zone)
 -> Hash (cost=100.00..100.00 rows=1 width=4) (actual
 time=1.740..1.742 rows=0 loops=1)
 Buckets: 1024 Batches: 1 Memory Usage: 8kB
 -> Foreign Scan on pgbench_branches_2_fdw b_2
 (cost=100.00..100.00 rows=1 width=4) (actual time=1.738..1.738 rows=0 loops=1)
....
 Planning Time: 6.066 ms
 Execution Time: 33.851 ms

An interesting thing to note is that joining of pgbench_branches and pgbench_history partitions happens locally. It is
a fetch-all plan — you can discover this by joins being located above foreign scans. It is not always evident why join pushdown
does not happen. But if we look at the pgbench_history definition, we can see that mtime has the timestamp without
time zone type.

\d pgbench_history
 Partitioned table "public.pgbench_history"
 Column | Type | Collation | Nullable | Default
--------+-----------------------------+-----------+----------+---------
 tid | integer | | |
 bid | integer | | |
 aid | integer | | |
 delta | integer | | |
 mtime | timestamp without time zone | | |
 filler | character(22) | | |
Partition key: HASH (bid)
Number of partitions: 20 (Use \d+ to list them.)

And in the above query, the string describing time is converted to timestamp with timezone. This requires comparison of
mtime column (of timestamp type) and timestamptz value. The comparison is implicitly performed using the stable function
timestamp_gt_timestamptz. A filter containing a non-immutable function cannot be pushed down to the foreign server, so
join is executed locally. If we rewrite the query, converting the string to a timestamp, we can see not only that joins are pushed
down, but also that remote queries can be executed asynchronously because foreign scans in a plan tree are located immediately
below Append:

EXPLAIN ANALYZE SELECT count(*) FROM pgbench_branches b
JOIN pgbench_history h ON b.bid = h.bid
WHERE mtime > '2023-03-14 10:00:00'::timestamp AND b.bbalance > 0;
 QUERY PLAN

--

77

Performance Tuning

 Finalize Aggregate (cost=84.30..84.31 rows=1 width=8) (actual time=22.962..22.990
 rows=1 loops=1)
 -> Append (cost=3.85..84.25 rows=20 width=8) (actual time=0.196..22.927 rows=20
 loops=1)
 -> Partial Aggregate (cost=3.85..3.86 rows=1 width=8) (actual
 time=0.032..0.034 rows=1 loops=1)
 -> Nested Loop (cost=0.00..3.69 rows=67 width=0) (actual
 time=0.024..0.026 rows=0 loops=1)
 Join Filter: (b.bid = h.bid)
 -> Seq Scan on pgbench_branches_0 b (cost=0.00..1.01 rows=1
 width=4) (actual time=0.023..0.023 rows=0 loops=1)
 Filter: (bbalance > 0)
 Rows Removed by Filter: 1
 -> Seq Scan on pgbench_history_0 h (cost=0.00..1.84 rows=67
 width=4) (never executed)
 Filter: (mtime > '2023-03-14 10:00:00'::timestamp without
 time zone)
 -> Async Foreign Scan (cost=0.99..0.99 rows=1 width=8) (actual
 time=10.870..10.871 rows=1 loops=1)
 Relations: Aggregate on ((pgbench_branches_1_fdw b_1) INNER JOIN
 (pgbench_history_1_fdw h_1))
 -> Async Foreign Scan (cost=0.99..0.99 rows=1 width=8) (actual
 time=0.016..0.017 rows=1 loops=1)
 Relations: Aggregate on ((pgbench_branches_2_fdw b_2) INNER JOIN
 (pgbench_history_2_fdw h_2))
...
 Planning Time: 7.729 ms
 Execution Time: 14.603 ms

Note that foreign scans here include a list of joined relations. The expected cost of a foreign join is below 1.0. This is due to
an optimistic technique of foreign join cost estimation, turned on by the postgres_fdw.enforce_foreign_join setting.
Compare the total execution time (planning time + execution time) of the original and modified query — we could decrease it from
about 40 to 22 ms.

Overall, while examining query plans, pay attention to what queries are actually pushed down. Some of the common reasons why
joins cannot be pushed down is the absence of equi-joins on the sharding key and filters that contain non-immutable functions
(possibly implicitly). If data is fetched from multiple replication groups, check that execution is mostly asynchronous.

5.1.1. EXPLAIN Parameters
This section lists Shardman-specific EXPLAIN parameters.

NETWORK (boolean)

Include the actual data transfer between nodes in the EXPLAIN ANALYZE output. If this parameter is not specified, off is
assumed. If the parameter is specified without a value, on is assumed.

REMOTE (boolean)

Include plans for queries executed on foreign servers. If this parameter or its value is not specified, on is assumed.

5.2. DML Optimizations
While evaluating performance of DML statements, it is important to understand how they are processed in Shardman.

First of all, the execution of INSERT significantly differs from the execution of UPDATE and DELETE statements. The behavior of
INSERT for sharded tables is controlled by the batch_size foreign server option, which can be set in FDWOptions section of
Shardman configuration file. If batch_size is greater than 0, an INSERT in the same statement of several values that fall into
the same foreign partition leads to the values being grouped together in batches of the specified size. Remote INSERT statements
are prepared with the necessary number of parameters and then are executed with the given values. If the number of values does not
match the number of prepared arguments, the modified statement with the necessary number of parameters is prepared again. A batch

78

Performance Tuning

insert optimization can fail if a transaction inserts records one by one or records routed to different foreign tables are intermixed in
one INSERT statement. A batch is formed for a single foreign modify operation. It is sent to the remote server when the batch is filled
or when the modify operation is over. The modify operation is over when we start routing tuples to another sharded table partition.
So, for bulk load, inserting multiple values in a single INSERT command or using COPY is recommended (as COPY is optimized
in a similar way). Large batch_size values allow issuing less INSERT statements on remote side and so significantly reduce
communication costs. However, during construction of parameters for prepared INSERT statements, all inserted values should be
copied to libpq-allocated memory. This can lead to unrestricted memory usage on the query coordinator side when several large
text or bytea objects are loaded.

UPDATE and DELETE statements can be executed in a direct or indirect mode. A direct mode is used when a statement can be
directly sent to a foreign server. In this mode, to modify a table on a remote server, a new statement is created based on the original
ModifyTable plan node. Using a direct update is not always possible. In particular, it is impossible when some conditions should
be evaluated locally. In this case, a much less efficient indirect modification is used. An indirect modification includes several
statements. The first one is SELECT FOR UPDATE to lock remote rows. The second one is an actual UPDATE or DELETE, which
is prepared once and then executed with different parameters for each row of the SELECT FOR UPDATE statement result after
local filters are applied to the result. Evidently, direct modifications are much more efficient.

You can easily identify whether a DML statement is going to be executed in a direct or indirect mode looking at the query plan.
A typical example of an indirect modification is:

EXPLAIN VERBOSE DELETE FROM pgbench_history
WHERE bid = 20 AND mtime > '2023-03-14 10:00:00'::timestamptz;
 QUERY PLAN

--
 Delete on public.pgbench_history (cost=100.00..142.66 rows=0 width=0)
 Foreign Delete on public.pgbench_history_17_fdw pgbench_history_1
 Remote SQL: DELETE FROM public.pgbench_history_17 WHERE ctid = $1
 -> Foreign Scan on public.pgbench_history_17_fdw pgbench_history_1
 (cost=100.00..142.66 rows=4 width=10)
 Output: pgbench_history_1.tableoid, pgbench_history_1.ctid
 Filter: (pgbench_history_1.mtime > '2023-03-14 10:00:00+03'::timestamp with
 time zone)
 Remote SQL: SELECT mtime, ctid FROM public.pgbench_history_17 WHERE ((bid =
 20)) FOR UPDATE

If we had chosen another type for the string constant, this would become a direct update.

EXPLAIN VERBOSE DELETE FROM pgbench_history
WHERE bid = 20 AND mtime > '2023-03-14 10:00:00'::timestamp;
explain verbose delete from pgbench_history where bid = 20 and mtime > '2023-03-14
 10:00:00'::timestamp;
 QUERY PLAN

 Delete on public.pgbench_history (cost=100.00..146.97 rows=0 width=0)
 Foreign Delete on public.pgbench_history_17_fdw pgbench_history_1
 -> Foreign Delete on public.pgbench_history_17_fdw pgbench_history_1
 (cost=100.00..146.97 rows=4 width=10)
 Remote SQL: DELETE FROM public.pgbench_history_17 WHERE ((mtime > '2023-03-14
 10:00:00'::timestamp without time zone)) AND ((bid = 20))

We see that in a direct update mode, only one statement is executed on the remote server.

5.2.1. DML Optimizations of Global Tables
The shardman.gt_batch_size configuration parameter, which you can tune, defines the size of an intermediate buffer used before
sending data to a remote server.

INSERT uses the binary protocol and creates batches of the shardman.gt_batch_size size. Large values of the buffer size
enable sending fewer network requests on the remote side and thus substantially reduce the connection costs. On the other hand,

79

Performance Tuning

large values of this parameter can increase memory consumption on the query coordinator side. Therefore, when specifying the
buffer size, it is important to achieve a compromise between the connection costs and the allocated memory size.

For UPDATE, a query for each column and each row is created on the coordinator and sent to remote nodes.

For DELETE, a query for a batch of data of the shardman.gt_batch_size size is created on the coordinator and sent to remote
nodes.

5.3. Time Synchronization
The algorithm that provides data consistency on all the cluster nodes uses the system clock installed on the hosts. Therefore, the
transaction commit latency depends on clock drift on different hosts, as the coordinator always waits for the most lagging host to catch
up. This makes it crucial that the time on all the connected nodes of a Shardman cluster are synchronized, as lack of synchronization
may have a negative impact on Shardman performance by increasing the query latency.

First, to ensure time synchronization on all cluster nodes, install chrony daemon when deploying a new cluster.

 sudo apt update
 sudo apt install -y chrony
 sudo systemctl enable --now chrony

Check that chrony is working properly.

chronyc tracking

Expected output:

 Reference ID : C0248F82 (Time100.Stupi.SE)
 Stratum : 2
 Ref time (UTC) : Tue Apr 18 11:50:44 2023
 System time : 0.000019457 seconds slow of NTP time
 Last offset : -0.000005579 seconds
 RMS offset : 0.000089375 seconds
 Frequency : 30.777 ppm fast
 Residual freq : -0.000 ppm
 Skew : 0.003 ppm
 Root delay : 0.018349268 seconds
 Root dispersion : 0.000334640 seconds
 Update interval : 1039.1 seconds
 Leap status : Normal

Note that managing the clock drift should be performed using the OS tools. Shardman diagnostic tools cannot be considered as the
only and defining measurement utility.

To see if any major drift already exists, use the shardman.pg_stat_csn view that shows statistics on delays that take place during
import of CSN snapshots. Its values are calculated when any related action is performed, or if any of the shardman.trim_c-
snxid_map() or shardman.pg_oldest_csn_snapshot() functions are called. These functions are called from the csn
trimmer routine worker, therefore disabling this worker will result in these statistics not being collected.

The csn_max_shift field of the shardman.pg_stat_csn view shows the maximum registered snapshot CSN shift that
caused a delay. This value defines the clock drift between the nodes in the cluster. A consecutive increase of this value means at
least one's cluster system clock is out of sync. If this value exceeds 1000 (microseconds), it is recommended to check the time
synchronization settings.

The same can be discovered if the csn_total_import_delay value increases while csn_max_shift remains unchanged.
However, one-time increase may be due to single failures, non-related to the time issues.

Also, if the difference between CSNXidMap_head_csn and shardman.oldest_csn exceeds the csn_snapshot_de-
fer_time parameter value and stays the same for a long time, it means that the CSNSnapshotXidMap map is full. It can result
in a global transaction failure.

80

Performance Tuning

There are two main reasons for this issue.

• There is a transaction that runs for more than csn_snapshot_defer_time seconds and holds the entire cluster, holding
the VACUUM process. In this case, xid field of the shardman.oldest_csn view is used to determine the transaction ID of
this transaction, and the rgid field is used to determine the cluster node where this transaction is located.

• The CSNSnapshotXidMap map lacks capacity. During the normal operation the system might have transactions that exceed
the csn_snapshot_defer_time value. To fix it, increase the csn_snapshot_defer_time time so that these trans-
actions stay below this value.

If the shardman.silk_tracepoints configuration parameter is enabled, executing the EXPLAIN command for the distrib-
uted queries outputs the rows with information about how much time was spent on the query execution and what result it ended with,
depending on the system components. These rows show metric values for the time spent on each component. The net (qry),
net (1st tup), net (last tup) metrics calculate the difference between timestamps on different servers. This difference
includes both time spent on a message transfer and the clock drift (positive or negative) between these servers. Therefore, these
metrics can also help to determine whether there is any clock drift.

5.4. Distributed Query Diagnostics
Shardman enhances the EXPLAIN command so that it can provide additional information about a query if it is distributed. The work
with the distributed tables is based on the plan nodes with the ForeignScan type. A query to each remote partition is determined by
a single plan node of this type, with Shardman submitting additional information to the EXPLAIN blocks with the node description.

When executing a distributed query, the part of the plan (a subtree) that relates to a specific remote partition is serialized into an
SQL statement. This process is known as deparsing. Then, this statement is sent to a remote server. The result of this query is the
output of a ForeignScan node. It is used to gather the final results of the distributed query execution.

When the VERBOSE option of the EXPLAIN command is set to on, the Remote SQL field of the ForeignScan node block
shows the statement sent to the remote server. Also, the Server field indicates the name of the server as it was specified during the
cluster configuration and as it is displayed in pg_foreign_server, along with the transport method used to send this statement.
The transport field can take two values: silk for the the enhanced interconnect Shardman mechanism, or libpq for sending
via the standard PostgreSQL protocol.

5.4.1. Displaying Plans from the Remote Server
To see the execution plan that will be used on the remote server under the EXPLAIN block of the ForeignScan node, use the
postgres_fdw.foreign_explain configuration parameter. The possible values are: none to exclude the EXPLAIN output
from the remote servers, full to include the EXPLAIN output from the remote servers, collapsed to include the EXPLAIN
output only for the first ForeignScan node under its Append/MergeAppend.

In production, it is recommended to disable this parameter (set it to none) or set it to collapsed, because obtaining any EXPLAIN
information results in an additional implicit request to the server. Moreover, this request is executed in a synchronous mode, meaning
the overall EXPLAIN output is built only once all the servers are sequentially queried. It can be a costly operationin case of a table
with a large number of partitions.

Note that in case of the internal request for obtaining the EXPLAIN blocks for a remote plan, certain parameters are forcibly disabled,
regardless of the parameters specified by a user when requesting EXPLAIN from the coordinator: ANALYZE OFF, TIMING OFF,
SUMMARY OFF, SETTINGS OFF, NETWORK OFF. In this case, the EXPLAIN block of a remote plan will lack the corresponding
metrics. Other EXPLAIN parameters (FORMAT, VERBOSE, COSTS, BUFFERS, WAL) are inherited from the coordinator.

If the subplan deparsing forms a statement that includes parameters (in the statement using symbols $1, $2, etc.), such a statement
generally cannot be sent to the remote server to obtain EXPLAIN results. Therefore, the ForeignExplain blocks are not formed
for the SQL statements with parameters.

5.4.2. Network Metrics and Latency
Setting the NETWORK option of the EXPLAIN command to on shows the network operation metrics for the plan nodes, including
individual ForeignScan nodes and general nodes Append or MergeAppend.

For each plan node, the FDW bytes, sent, and received parameters are displayed for the outgoing and incoming traffic when
the node is executed (regardless of the transport type). Note that these metrics are only output when the ANALYZE option of the
EXPLAIN command is set to on.

81

Performance Tuning

When the track_fdw_wait_timing configuration parameter is enabled, the wait_time metric is also output. This metric
summarizes all stages of the plan node execution, starting from the time the request is sent to the remote server, including the time
spent on the execution itself and all the time until the complete set of results for that plan node is received.

Note that the ForeignScan node can operate in both synchronous and asynchronous modes. For the asynchronous execution,
the node's execution function sends a request to the remote server and completes its execution without waiting for the result. The
result is considered and processed later, upon receipt. In this scenario, the wait_time metric may not accurately reflect the actual
execution time.

5.4.3. Query Tracing for Silk Transport
For the Silk transport, there is an option to output the extended debug information about tracing of a query passing from the coordi-
nator to the remote server and back, including the results from the remote server. This information is only available if the ANALYZE
option of the EXPLAIN command is set to on, and the shardman.silk_tracepoints configuration parameter is enabled.

When these parameters are enabled, each message transferred through the Silk transport (sending the SQL query, delivering it to the
recipient, executing the query, and returning the execution result) is accompanied by an array of the timestamps measured at certain
points in the pipeline. Once the query is executed, this information is displayed in the EXPLAIN block as rows starting with the
word Trace. Each metric represents the difference between the timestamps at different points, in milliseconds:

Table 5.1. Query Tracing for Silk Transport Metrics

Interval Description

bk shm->mp1 (qry) The time taken to transfer an SQL query from the coordinator
to its multiplexer via the shared memory.

mp1 shm->net (qry) The time between receiving a query within the multiplexer from
the shared memory and transferring it over the network.

net (qry) The time spent by an SQL query to transfer over the network
between the multiplexers.

mp2 recv->shm (qry) The time between receiving an SQL query from the network
and placing it in the queue in the shared memory on a remote
multiplexer.

wk exec (1st tup) The time spent to execute a query in Silkworm until the first
row of the result is received.

wk exec (all tups) The time spent to execute a query on Silkworm until the com-
plete result is received.

wk->shm (1st tup) The time taken to place the first row of the result into the
Silkworm queue.

wk->shm (last tup) The time taken to place the last row of the result into the
Silkworm queue.

mp2 shm->net (1st tup) The time between reading the first row of the result from the
queue by the remote multiplexer and transferring it over the net-
work.

net (1st tup) The time spent to transfer the first row of the result over the
network between the multiplexers.

mp1 recv->shm (1st tup) The time between receiving the first row of the result from the
network and placing it in the queue by the local multiplexer.

mp1 shm->bk (1st tup) The time spent to retrieve the first row of the result from the
queue by the coordinator.

mp2 shm->net (last tup) The time between reading of the last row of the result from the
queue by the remote multiplexer and transferring it over the net-
work.

net (last tup) The time spent to transfer the last row of the result over the net-
work between the multiplexers.

82

Performance Tuning

Interval Description

mp1 recv->shm (last tup) The time between receiving the last row of the result from the
network and placing it in the queue by the local multiplexer.

mp1 shm->bk (last tup) The time taken by the coordinator to retrieve the last row o the
result from the queue.

END-TO-END The total time from sending the query to receiving the last row
of the result. This approximately corresponds to the wait_
time.

For the metrics net (qry), net (1st tup), and net (last tup), the interval value is calculated as the difference between
timestamps on different servers. Therefore, negative values may appear in these lines. This difference includes both time spent on
a message transfer and the clock drift (positive or negative) between these servers. Thus, even with a slight drift, the values will be
negative if its absolute value exceeds the duration of network transfer. Although it is not a bug, you should pay close attention to
whether the cluster clocks are synchronized. For more information, see Section 5.3.

83

Chapter 6. Shardman Reference
The entries in this Reference are meant to provide in reasonable length an authoritative, complete, and formal summary about their
respective subjects. More information about the use of Shardman, in narrative, tutorial, or example form, can be found in other parts
of this book. See the cross-references listed on each reference page.

6.1. Functions
shardman.broadcast_all_sql(statement text)

Executes statement on every replication group.

Warning
The shardman.broadcast_all_sql function cannot be executed recursively. An attempt to do so results in an
error “Command execution must be initiated by coordinator”.

shardman.broadcast_query(statement text)

Functions as shardman.broadcast_all_sql and returns an executed SQL statement results.

You may optionally set include_rgid to true, then the resulting tuples will have a number of the node the tuple originated
from.

Example with include_rgid set to false:

select shardman.broadcast_query('SELECT relname from pg_class where relkind=''f''');
broadcast_query

(t_1_fdw)
(t_2_fdw)
(t_0_fdw)
(t_2_fdw)
(t_0_fdw)
(t_1_fdw)
(6 rows)

Example with include_rgid set to true:

select shardman.broadcast_query('SELECT relname from pg_class where relkind=''f''',
 include_rgid => true);
broadcast_query

(1,t_1_fdw)
(1,t_2_fdw)
(2,t_0_fdw)
(2,t_2_fdw)
(3,t_0_fdw)
(3,t_1_fdw)
(6 rows)

shardman.broadcast_sql(statement text)

Executes statement on every replication group but the current one.

Warning
The shardman.broadcast_sql function cannot be executed recursively. An attempt to do so results in an error
“Command execution must be initiated by coordinator”.

84

Shardman Reference

shardman.get_partition_for_value(relid oid, val variadic "any") → shardman.get_parti-
tion_for_value_type (rgid int, local_nspname text, local_relname text, remote_nspname
text, remote_relname text)

Finds out which partition of a sharded table with oid relid the val belongs to. Returns NULL if the sharded table with oid
relid does not exist. Returns the local schema name and relation names. If the value belongs to a partition stored in another
replication group, also returns the remote schema and relation name. Returns only rgid if second-level partitioning is used.

Example:

select * from shardman.get_partition_for_value('pgbench_branches'::regclass, 20);
 rgid | local_nspname | local_relname | remote_nspname | remote_relname

------+---------------+-------------------------+----------------
+---------------------
 3 | public | pgbench_branches_17_fdw | public |
 pgbench_branches_17

shardman.global_analyze()

Performs cluster-wide analysis of sharded and global tables. First, this function executes ANALYZE on all local partitions of
sharded tables on each node, then sends this statistics to other nodes. Next, it selects one node per global table and runs ANALYZE
of this table on the selected node. Gathered statistics is broadcast to all other nodes in the cluster.

Example:

select shardman.global_analyze();

shardman.attach_subpart(relid regclass, snum int, partition_bound text[])

Attaches a previously detached subpartition number snum to a locally-partitioned table relid as a partition for the values
within partition_bound. All subpartition tables and foreign tables should already exist. The partition_bound pa-
rameter is a pair of lower and upper bounds for the partition. If lower and upper bounds are both NULL, the subpartition is
attached as the default one.

The operation is performed cluster-wide.

Example:

select shardman.attach_subpart('pgbench_history'::regclass, 1,$${'2021-01-01 00:00',
 '2022-01-01 00:00'}$$);

shardman.create_subpart(relid regclass, snum int, partition_bound text[])

Creates a subpartition number snum for a locally-partitioned table relid as a partition for the values within parti-
tion_bound. The partition_bound parameter is a pair of lower and upper bounds for the partition. If lower and upper
bounds are both NULL, the subpartition is created as the default one. If the subpartition number is not specified, it will be
selected as the next available partition number.

The operation is performed cluster-wide.

Examples:

select shardman.create_subpart('pgbench_history'::regclass, 1, $${'2021-01-01
 00:00', '2022-01-01 00:00'}$$);
select shardman.create_subpart('pgbench_history'::regclass, partition_bound:=$
${'2022-01-01 00:00', '2023-01-01 00:00'}$$);

shardman.detach_subpart(relid regclass, snum int)

Detaches a subpartition number snum from a locally-partitioned table relid. The partition number can be determined from
the shardman.subparts view.

85

Shardman Reference

The operation is performed cluster-wide.

Example:

select shardman.detach_subpart('pgbench_history'::regclass, 1);

shardman.drop_subpart(relid regclass, snum int)

Drops subpartition number snum from locally-partitioned table relid. Partition number can be determined from the shard-
man.subparts view.

The operation is performed cluster-wide.

Example:

select shardman.drop_subpart('pgbench_history'::regclass, 1);

shardman.am_coordinator()

Returns whether the current session is the query coordinator. This check allows avoiding cases where global and sharded table
triggers fire twice, first on the query coordinator, then on the remote nodes when data is modified.

SELECT shardman.am_coordinator();
am_coordinator

t
(1 row)

Example of the trigger function checking the query coordinator:

CREATE OR REPLACE FUNCTION trg_func() RETURNS TRIGGER
AS $$
BEGIN
IF NOT shardman.am_coordinator() THEN
 -- exit on non coordinator
 RETURN NEW;
END IF;
-- execute only by coordinator
RAISE WARNING 'Trigger fired!';
END
$$ LANGUAGE plpgsql;

shardman.silk_statinfo_reset()

Resets the values of the metrics with prefix transferred_ and time-based metrics (with prefixes read_efd_,
write_efd_, and sort_time_) in the shardman.silk_statinfo view.

shardman.silk_routing

Retrieves the results of the multiplexer silk_connects, silk_backends, and silk_routes functions.

shardman.silk_rbc_snap

Retrieves a consistent snapshot of all the connects, backends and routes that can be used by silk_connects, silk_back-
ends, and silk_routes functions.

6.2. pgpro_stats Functions
pgpro_stats_sdm_stats_updated

returns a number of statistics entries received from each shard node and the timestamp of the last received statistics.

pgpro_stats_sdm_stats_updated_reset

resets the information specified above.

86

Shardman Reference

6.3. Advisory Lock Functions
Advisory locks are cluster-wide locks with no enforced use. Here is a list of functions to work with these locks.

Table 6.1. Advisory Lock Functions

Function Returns

shardman.advisory_xact_lock(key64 BIGINT); void

shardman.advisory_xact_lock_shared(key64
BIGINT);

void

shardman.try_advisory_xact_lock(key64
BIGINT);

bool

shardman.try_advisory_xact_lock_shared(
key64 BIGINT);

bool

shardman.advisory_xact_lock(key1 INT, key2
INT);

void

shardman.advisory_xact_lock_shared(key1
INT, key2 INT);

void

shardman.try_advisory_xact_lock(key1 INT,
key2 INT);

bool

shardman.try_advisory_xact_lock_shared(
key1 INT, key2 INT);

bool

6.4. Views

6.4.1. Shardman-specific Views

6.4.1.1. shardman.pg_stat_csn

The shardman.pg_stat_csn view has one row showing statistics on delays that take place during import of CSN snapshots.
These delays occur because system clocks on Shardman cluster nodes may be out of sync. The delays negatively impact the perfor-
mance by increasing the query latency. The shardman.pg_stat_csn view allows tracking these delays. The view data is based
on The Statistics Collector. The columns of the view are shown in Table 6.2.

Table 6.2. shardman.pg_stat_csn Columns

Name Type Description

csn_snapshots_imported bigint Total number of imported CSN snapshots

csn_total_import_delay interval Total duration of all delays in importing
CSN snapshots, in microseconds

csn_max_shift bigint Maximum registered snapshot CSN shift
that caused a delay

local_oldest_csn bigint CSN of the oldest transaction on the cur-
rent node

local_oldest_xid xid XID of the oldest transaction on the cur-
rent node

indoubt_threshold_incidents bigint Total number of transactions that exceed-
ed the 10 seconds limit in the inDoubt
state.

CSNXidMap_head_csn bigint Most recent CSN in the CSNSnap-
shotXidMap

CSNXidMap_head_xid xid XID corresponding to the most recent
CSN in the CSNSnapshotXidMap

87

https://www.postgresql.org/docs/14/monitoring-stats.html

Shardman Reference

Name Type Description

CSNXidMap_tail_csn bigint Oldest CSN in the CSNSnapshotX-
idMap

CSNXidMap_tail_xid xid XID corresponding to the oldest CSN in
the CSNSnapshotXidMap

stats_reset timestamp with time zone Time at which these statistics were last re-
set

CSNXidMap_last_trim timestamp with time zone Shows the last time when the shard-
man.trim_csnxid_map() function
was called.

To reset CSN-related statistics, call the pg_stat_reset_shared function with the only text argument equal to csn.

Note
Shardman functionality related to CSN snapshots is work in progress. So anticipate changes to the corresponding views in
future releases.

6.4.1.2. shardman.pg_indoubt_xacts
The view shardman.pg_indoubt_xacts displays information about transactions that are currently in the InDoubt state. An
entry is removed when the transaction state changes.

Table 6.3. shardman.pg_indoubt_xacts Columns

Name Type Description

xid xid Transaction ID of a transaction in the In-
Doubt state

duration_msec bigint Time the transaction was in the InDoubt
state, in milliseconds

When the shardman.pg_indoubt_xacts view is accessed, the internal transaction manager data structures are momentarily
locked, and a copy is made for the view to display. This ensures that the view produces a consistent set of results, while not blocking
normal operations longer than necessary. Nonetheless there could be some impact on database performance if this view is frequently
accessed.

6.4.1.3. shardman.pg_stat_xact_time
The shardman.pg_stat_xact_time view shows statistics for the time spent on a transaction. The columns of the view are
shown in Table 6.4.

Table 6.4. shardman.pg_stat_xact_time Columns

Name Type Description

overall_committed_xact_time bigint Overall time spent for the committed
transactions

overall_aborted_xact_time bigint Overall time spent for the aborted transac-
tions

overall_commit_time bigint Overall time spent for the committing
transactions

local_commit_time bigint Overall time spent for writing to WAL for
all the committed transactions

global_commit_time bigint Overall time spent for the distributed
queries sending messages about transac-
tion statuses for all the committed transac-
tions

88

Shardman Reference

Name Type Description

overall_abort_time bigint Overall time spent for aborting transac-
tions

local_abort_time bigint Overall time spent for writing to WAL for
all the aborted transactions

global_abort_time bigint Overall time spent for the distributed
queries sending messages about transac-
tion statuses for all the aborted transac-
tions

stats_reset timestamp with time zone Time at which these statistics were last re-
set

6.4.1.4. shardman.oldest_csn

The shardman.oldest_csn view has one row showing tuple csn, xid, and rgid containing CSN and XID of the oldest
transaction in the cluster along with transaction's replication group number.

6.4.1.5. shardman.pg_stat_monitor

The shardman.pg_stat_monitor view has one row showing metrics of the Shardman monitor. The view data is based on the
Statistics Collector. The columns of the view are shown in Table 6.5.

Table 6.5. shardman.pg_stat_monitor Columns

Name Type Description

resolved_deadlocks bigint Number of resolved distributed deadlocks

aborted_xacts bigint Number of aborted outdated prepared
transactions

committed_xacts bigint Number of committed outdated prepared
transactions

errors bigint Number of Shardman monitor errors

stats_reset timestamp with time zone Time at which these statistics were last re-
set

6.4.1.6. shardman.pg_stat_netusage

The shardman.pg_stat_netusage view has one row showing the cumulative network traffic between Shardman cluster
nodes. The view data is based on the Statistics Collector. The columns of the view are shown in Table 6.6.

Table 6.6. shardman.pg_stat_netusage Columns

Name Type Description

netusage_recv_bytes numeric Total number of bytes received from other
nodes through the network by each Shard-
man cluster node

netusage_sent_bytes numeric Total number of bytes sent to other nodes
through the network by each Shardman
cluster node

stats_reset timestamp with time zone Time at which these statistics were last re-
set

6.4.1.7. shardman.pg_stat_foreign_stat_bytes

The shardman.pg_stat_foreign_stat_bytes view shows the amount of statistics for foreign relations transferred over
the network between Shardman cluster nodes. The view data is based on The Statistics Collector. The columns of the view are
shown in Table 6.7.

89

https://www.postgresql.org/docs/14/monitoring-stats.html
https://www.postgresql.org/docs/14/monitoring-stats.html
https://www.postgresql.org/docs/14/monitoring-stats.html
https://www.postgresql.org/docs/14/monitoring-stats.html

Shardman Reference

Table 6.7. shardman.pg_stat_foreign_stat_bytes Columns

Name Type Description

foreign_stat_recv_bytes bigint Total number of bytes of the statistics for
the foreign relations received from other
nodes through the network by this node

stats_reset timestamp with time zone Time at which these statistics were last re-
set

6.4.1.8. Shardman-specific Global Views

6.4.1.8.1. shardman.gv_sharded_tables

This view displays information on all the sharded tables in the cluster.

6.4.1.8.2. shardman.gv_global_tables

This view displays information on all the global tables in the cluster.

6.4.2. Multiplexor Diagnostics Views
Views in this section provide various information related to Silk multiplexing. See Section 7.4 for details of silkroad multiplexing
process.

6.4.2.1. shardman.silk_routes

The shardman.silk_routes view displays the current snapshot of the multiplexer routing table. The columns of the view are
shown in Table 6.8.

Table 6.8. shardman.silk_routes Columns

Name Type Description

hashvalue integer Internal unique route identifier. Can be
used to join with other Silk diagnostics
views.

origin_ip inet IP address of the source node, which gen-
erated this route

origin_port int2 External TCP connection port of the
source node, which generated this route

channel_id integer Route sequential number within the node
that generated this route. channel_
id is unique for the pair origin_ip
+ origin_port. This pair is a unique
node identifier within the Shardman clus-
ter and hence the origin_ip + ori-
gin_port + channel_id tuple is a
unique route identifier within the Shard-
man cluster.

from_cn integer Connect index in the shardman.silk_
connects view for incoming routes,
that is, not generated by this node, and -1
for routes generated by this node.

backend_id integer ID of the local process that is current-
ly using this route: either the ID of the
backend that generated this route or the
ID of the silkworm worker assigned to
this route. Equals -1 for queued incom-
ing routes that have not been assigned a
worker yet.

90

Shardman Reference

Name Type Description

pending_queue_bytes bigint Size of the queue of delayed messages (
awaiting a free worker) for this route, in
bytes. This value is only meaningful for
incoming routes of each node that are not
assigned to a worker yet.

pending_queue_messages bigint Number of messages in the queue of de-
layed messages (awaiting a free worker)
for this route. This value is only meaning-
ful for incoming routes of each node that
are not assigned to a worker yet.

connects integer[] List of indexes of connects that are cur-
rently using this route.

6.4.2.2. shardman.silk_connects

The shardman.silk_connects view displays the current list of multiplexer connects. The columns of the view are shown
in Table 6.9.

Table 6.9. shardman.silk_connects Columns

Name Type Description

cn_index integer Unique connect index

reg_ip inet “Registration” IP address of the node with
which the connection is established. See
Notes for details.

reg_port int2 “Registration” TCP port of the node with
which the connection is established. See
Notes for details.

read_ev_active boolean true if the multiplexer is ready to re-
ceive data to the incoming queue. See
Notes for details.

write_ev_active boolean true if the multiplexer filled the queue
of non-sent messages and is waiting for it
to get free. See Notes for details.

is_outgoing boolean true if the connection is outgoing, that
is, created by connect, and false for
incoming connects, that is, created by
accept. Only used during the handshak-
ing.

state text Current state of the connect: connect-
ed — if the connection is established, in
progress — if the client has already
connected, but handshaking has not hap-
pened yet, free — if the client has al-
ready disconnected, but the connect struc-
ture for the disconnected client has not
been destroyed yet.

pending_queue_bytes bigint Size of the queue of non-sent messages
for this connect, in bytes

pending_queue_messages bigint Number of messages in the queue of non-
sent messages for this connect

blocked_by_backend integer ID of the backend that blocked this con-
nect

91

Shardman Reference

Name Type Description

blocks_backends integer[] List of IDs of backends that are blocked
by this connect

routes integer[] List of unique IDs of routes that use this
connect

elapsed_time_write bigint Time from the last writing event of a con-
nect

elapsed_time_read bigint Time from the last reading event of a con-
nect

6.4.2.3. shardman.silk_backends

The shardman.silk_backends view displays the current list of processes of two kinds: backends that serve client connections
and silkworm multiplexer workers, which interact with the multiplexer. The columns of the view are shown in Table 6.10.

Table 6.10. shardman.silk_backends Columns

Name Type Description

backend_id integer Unique backend/worker identifier

pid integer OS process ID

attached boolean Value is true if backend is attached to
multiplexer, false otherwis

read_ev_active boolean true if the backend/worker is ready to
receive data to the incoming queue. See
Notes for details.

write_ev_active boolean true if the backend/worker filled the
queue of non-sent messages and is wait-
ing for it to get free. See Notes for details.

is_worker boolean true if this process is a silkworm mul-
tiplexer worker and false otherwise

pending_queue_bytes bigint Size of the queue of messages being sent
to this backend/worker, in bytes

pending_queue_messages bigint Number of messages in the queue of mes-
sages being sent to this backend/worker

blocked_by_connect integer Index of the connect that blocks this back-
end/worker

blocks_connects integer[] List of indexes of connects that are
blocked by this backend/worker

routes integer[] List of unique IDs of routes that are used
by this backend/worker

in_queue_used bigint Number of queued data bytes in the in-
coming queue in the shared memory be-
tween the backend and multiplexer

out_queue_used bigint Number of queued data bytes in the out-
going queue in the shared memory be-
tween the backend and multiplexer

elapsed_time_write bigint Time from the last writing event of a
backend

elapsed_time_read bigint Time from the last reading event of back-
end

6.4.2.4. shardman.silk_routing

92

Shardman Reference

The shardman.silk_routing view displays the results of the shardman.silk_routing function. Table 6.11.

Table 6.11. shardman.silk_routing Columns

Name Type Description

hashvalue integer Internal unique route identifier

origin_ip inet IP address of the node that generated this
route

origin_port int2 External TCP connection port of the
source node that generated this route

channel_id integer Route sequential number within the node
that generated this route

is_reply bool Index of the connect from which a mes-
sage was received that caused generation
of this route

pending_queue_bytes bigint Pending queue size, in bytes

pending_queue_messages bigint Number of pending queue messages

backend_id integer ID of the local process that is current-
ly using this route: either the ID of the
backend that generated this route or the
ID of the silkworm worker assigned to
this route. Equals -1 for queued incom-
ing routes that have not been assigned a
worker yet.

backend_pid integer Returns the process ID of the server
process attached to the current session

attached boolean Value is true if backend is attached to
multiplexer, false otherwis

backend_rd_active boolean true if the backend/worker is ready to
receive data to the incoming queue. See
Notes for details.

backend_wr_active boolean true if the backend/worker filled the
queue of non-sent messages and is wait-
ing for it to get free. See Notes for details.

is_worker boolean true if this process is a silkworm mul-
tiplexer worker and false otherwise

backend_blocked_by_cn integer Index of the connect that blocks this back-
end/worker

blocks_connects integer[] List of indexes of connects that are
blocked by this backend/worker

in_queue_used bigint Number of queued data bytes in the in-
coming queue in the shared memory be-
tween the backend and multiplexer

out_queue_used bigint Number of queued data bytes in the out-
going queue in the shared memory be-
tween the backend and multiplexer

connect_id integer Unique connect index

reg_ip inet “Registration” IP address of the node with
which the connection is established

reg_port int2 “Registration” TCP port of the node with
which the connection is established

93

Shardman Reference

Name Type Description

connect_rd_active boolean true if the multiplexer is ready to re-
ceive data to the incoming queue

connect_wr_active boolean true if the multiplexer filled the queue
of non-sent messages and is waiting for it
to get free

connect_is_outgoing boolean true if the connection is outgoing, that
is, created by connect, and false for
incoming connects, that is, created by
accept. Only used during the handshak-
ing.

connect_state text Current state of the connect: connect-
ed — if the connection is established, in
progress — if the client has already
connected, but handshaking has not hap-
pened yet, free — if the client has al-
ready disconnected, but the connect struc-
ture for the disconnected client has not
been destroyed yet

connect_outgoing_queue_bytes bigint Size of the queue of non-sent messages
for this connect, in bytes

connect_outgoing_queue_mes-
sages

bigint Number of messages in the queue of non-
sent messages for this connect

connect_blocked_by_bk integer ID of the backend that blocked this con-
nect

blocks_backends integer[] List of IDs of backends that are blocked
by this connect

connect_elapsed_time_write bigint Time from the last writing event of a con-
nect

connect_elapsed_time_read bigint Time from the last reading event of a con-
nect

backend_elapsed_time_write bigint Time from the last writing event of a
backend

backend_elapsed_time_read bigint Time from the last reading event of a
backend

6.4.2.5. shardman.silk_pending_jobs

The shardman.silk_pending_jobs view displays the current list of routes in the queue of delayed multiplexer jobs, that is,
jobs that are not assigned to workers yet. The columns of the view are shown in Table 6.12.

Table 6.12. shardman.silk_pending_jobs Columns

Name Type Description

hashvalue integer Internal unique route identifier

origin_ip inet IP address of the node that generated this
route

origin_port int2 TCP connection port of the node that gen-
erated this route

channel_id integer Route sequential number within the node
that generated this route

query text The first queued message

94

Shardman Reference

Name Type Description

pending_queue_bytes bigint Pending queue size, in bytes

pending_queue_messages bigint Number of pending queue messages

6.4.2.6. shardman.silk_statinfo

The shardman.silk_statinfo view displays the current multiplexer state information. The columns of the view are shown
in Table 6.13.

Table 6.13. shardman.silk_statinfo Columns

Name Type Description

pid integer silkroad process ID

started_at timestamp with time zone Time when the silkroad backend was
started.

transferred_bytes json JSON object of key value pairs, where the
key is the name of the message type, and
the value is total number of bytes sent for
the message types with at least one mes-
sage sent

transferred_pkts json JSON object of key value pairs, where the
key is the name of the message type, and
the value is the total number of sent mes-
sages for the message types with at least
one message sent

transferred_max json JSON object of key value pairs, where the
key is the name of the message type, and
the value is the maximum size of a mes-
sage for the message types with at least
one message sent

memcxt_dpg_allocated bigint The mem_allocated value of the
process in DPGMemoryContext

memcxt_top_allocated bigint The mem_allocated value of the
process in TopMemoryContext

read_efd_max bigint Maximum reading time of the eventfd
since reset

write_efd_max bigint Maximum writing time of the eventfd
since reset

read_efd_total bigint Total reading time of the eventfd since
reset

write_efd_total bigint Total writing time of the eventfd since
reset

read_efd_count bigint Total number of reading events of the
eventfd since reset

write_efd_count bigint Total number of writing events of the
eventfd since reset

sort_time_max bigint Maximum time of sorting operations with
the silk_flow_control enabled (
any value other than none)

sort_time_total bigint Total time of sorting operations with the
silk_flow_control enabled (any
value other than none)

95

Shardman Reference

Name Type Description

sort_time_count bigint Total number of the sorting operations
with the silk_flow_control en-
abled (any value other than none)

Note that read_efd_max, write_efd_max, read_efd_total, write_efd_total, read_efd_count,
write_efd_count, sort_time_max, sort_time_total, and sort_time_count are only calculated if the shard-
man.silk_track_time configuration parameter is enabled.

6.4.2.7. shardman.silk_state
The shardman.silk_state view displays the current silkroad process state. The columns of the view are shown in Ta-
ble 6.14.

Table 6.14. shardman.silk_state Columns

Name Type Description

state text State of the silkroad process

6.4.2.8. Notes
reg_ip and reg_port values are not actual network addresses, but the addresses by which the multiplexer accesses the node.
They are determined during a handshake between multiplexer nodes and are equal to the corresponding parameters of an appropriate
server in the pg_foreign_server table.

All the read_ev_active values are true and all the write_ev_active values are false when the multiplexer is in the
idle state.

6.4.3. Global Views
Shardman has a list of global views based on the PostgeSQL local views. The definition of global view columns is the same as in
its corresponding local view. Fetching from a global view returns a union of rows from the corresponding local views. The rows are
fetched from each of their cluster nodes. Another difference is that the global views have an added column rgid. The rgid value
shows the replication group ID of the cluster node from which a row is fetched.

6.4.3.1. Global Views for Statistics
Below is the list of the statistics-related global views with links to their corresponding local views:

Table 6.15. Statistics-related global and local views

Global view Local view Description

shardman.gv_stats pg_stats One row per planner statistics.

shardman.gv_stats_ext pg_stats_ext Provides access to information about each
extended statistics object in the database.

shardman.gv_stats_ext_exprs pg_stats_ext_exprs Provides access to information about all
expressions included in extended statistics
objects.

shardman.gv_stat_activity pg_stat_activity One row per server process, showing in-
formation related to he current activity of
that process.

shardman.gv_stat_replication pg_stat_replication One row per WAL sender process, show-
ing statistics about replication to that
sender's connected standby server.

shardman.gv_stat_replica-
tion_slots

pg_stat_replication_slots One row per replication slot, showing sta-
tistics about the replication slot's usage.

shardman.gv_stat_subscrip-
tion

pg_stat_subscription One row per subscription for main work-
er (with null PID if the worker is not run-
ning), and additional rows for workers

96

https://postgrespro.com/docs/postgrespro/14/catalog-pg-foreign-server
https://postgrespro.com/docs/postgresql/17/view-pg-stats.html
https://postgrespro.com/docs/postgresql/17/view-pg-stats-ext.html
https://postgrespro.com/docs/postgresql/17/view-pg-stats-ext-exprs.html
https://postgrespro.com/docs/postgresql/14/monitoring-stats#MONITORING-PG-STAT-ACTIVITY-VIEW
https://postgrespro.com/docs/postgresql/14/monitoring-stats#MONITORING-PG-STAT-REPLICATION-VIEW
https://postgrespro.com/docs/postgresql/14/monitoring-stats#MONITORING-PG-STAT-REPLICATION-SLOTS-VIEW
https://postgrespro.com/docs/postgresql/14/monitoring-stats#MONITORING-PG-STAT-SUBSCRIPTION

Shardman Reference

Global view Local view Description

handling the initial data copy of the sub-
scribed tables.

shardman.gv_stat_ssl pg_stat_ssl One row per backend or WAL sender
process, showing statistics about SSL us-
age on this connection.

shardman.gv_stat_gssapi pg_stat_gssapi One row per backend, showing informa-
tion about GSSAPI usage on this connec-
tion.

shardman.gv_stat_archiver pg_stat_archiver One row only, showing statistics about
the WAL archiver process's activity.

shardman.gv_stat_bgwriter pg_stat_bgwriter One row only, showing statistics about
the background writer process's activity.

shardman.gv_stat_progress_
analyze

pg_stat_progress_analyze One row for each backend (including au-
tovacuum worker processes) running AN-
ALYZE, showing current progress.

shardman.gv_stat_progress_
basebackup

pg_stat_progress_basebackup One row for each WAL sender process
streaming a base backup, showing current
progress.

shardman.gv_stat_progress_
cluster

pg_stat_progress_cluster One row for each backend running
CLUSTER or VACUUM FULL, showing
current progress.

shardman.gv_stat_checkpoint-
er

pg_stat_checkpointer One row only, containing data about the
checkpointer process of the cluster.

shardman.gv_statistic_ext pg_statistic_ext Extended planner statistics (definition)

shardman.gv_stat_progress_
create_index

pg_stat_progress_create_index One row for each backend running CRE-
ATE INDEX or REINDEX, showing cur-
rent progress.

shardman.gv_stat_progress_
vacuum

pg_stat_progress_vacuum One row for each backend (including au-
tovacuum worker processes) that is cur-
rently vacuuming

shardman.gv_stat_progress_
copy

pg_stat_progress_copy One row for each backend running
COPY, showing current progress.

shardman.gv_stat_wal pg_stat_wal One row only, showing statistics about
WAL activity.

shardman.gv_stat_database pg_stat_database One row per database, showing data-
base-wide statistics about query cancels
due to conflict with recovery on standby
servers.

shardman.gv_stat_database_
conflicts

pg_stat_database_conflicts One row per database, showing data-
base-wide statistics about query cancels
occurring due to conflicts with recovery
on standby servers. This view will only
contain information on standby servers,
since conflicts do not occur on primary
servers.

shardman.gv_stat_all_tables pg_stat_all_tables One row for each table in the current data-
base, showing statistics about accesses to
that specific table.

shardman.gv_stat_sys_tables pg_stat_sys_tables Same as pg_stat_all_tables, ex-
cept that only system tables are shown.

97

https://postgrespro.com/docs/postgrespro/16/monitoring-stats#MONITORING-PG-STAT-SSL-VIEW
https://postgrespro.com/docs/postgresql/14/monitoring-stats#MONITORING-PG-STAT-GSSAPI-VIEW
https://postgrespro.com/docs/postgresql/14/monitoring-stats#MONITORING-PG-STAT-ARCHIVER-VIEW
https://postgrespro.com/docs/postgresql/14/monitoring-stats#MONITORING-PG-STAT-BGWRITER-VIEW
https://postgrespro.com/docs/postgrespro/17/progress-reporting#ANALYZE-PROGRESS-REPORTING
https://postgrespro.com/docs/postgrespro/17/progress-reporting#BASEBACKUP-PROGRESS-REPORTING
https://postgrespro.com/docs/postgrespro/17/progress-reporting#CLUSTER-PROGRESS-REPORTING
https://postgrespro.com/docs/postgrespro/17/monitoring-stats#MONITORING-PG-STAT-CHECKPOINTER-VIEW
https://postgrespro.com/docs/postgrespro/17/catalog-pg-statistic-ext.html
https://postgrespro.com/docs/postgrespro/17/progress-reporting#COPY-PROGRESS-REPORTING
https://postgrespro.com/docs/enterprise/17/progress-reporting#VACUUM-PROGRESS-REPORTING
https://postgrespro.com/docs/postgrespro/17/progress-reporting#COPY-PROGRESS-REPORTING
https://postgrespro.com/docs/postgresql/14/monitoring-stats#MONITORING-PG-STAT-WAL-VIEW
https://postgrespro.com/docs/postgresql/14/monitoring-stats#MONITORING-PG-STAT-DATABASE-VIEW
https://postgrespro.com/docs/postgresql/14/monitoring-stats#MONITORING-PG-STAT-DATABASE-CONFLICTS-VIEW
https://postgrespro.com/docs/postgresql/14/monitoring-stats#MONITORING-PG-STAT-ALL-TABLES-VIEW
https://postgrespro.com/docs/postgrespro/17/monitoring-stats#MONITORING-PG-STAT-SUBSCRIPTION-STATS

Shardman Reference

Global view Local view Description

shardman.gv_stat_user_tables pg_stat_user_tables Same as pg_stat_all_tables, ex-
cept that only user tables are shown.

shardman.gv_stat_all_indexes pg_stat_all_indexes One row for each index in the current
database, showing statistics about access-
es to that specific index.

shardman.gv_stat_user_index-
es

pg_stat_user_indexes Same as pg_stat_all_indexes, ex-
cept that only indexes on user tables are
shown.

shardman.gv_stat_sys_indexes pg_stat_sys_indexes Same as pg_stat_all_indexes, ex-
cept that only indexes on system tables
are shown.

shardman.gv_stat_user_index-
es

pg_stat_user_indexes Same as pg_stat_all_indexes, ex-
cept that only indexes on user tables are
shown.

shardman.gv_statio_user_in-
dexes

pg_statio_user_indexes Same as pg_statio_all_indexes,
except that only indexes on user tables are
shown.

shardman.gv_statio_all_ta-
bles

pg_statio_all_tables One row for each table in the current data-
base, showing statistics about I/O on that
specific table.

shardman.gv_statio_all_in-
dexes

pg_statio_all_indexes One row for each index in the current
database, showing statistics about I/O on
that specific index.

shardman.gv_statio_sys_in-
dexes

pg_statio_sys_indexes Same as pg_statio_all_indexes,
except that only indexes on system tables
are shown.

shardman.gv_statio_all_se-
quences

pg_statio_all_sequences One row for each sequence in the current
database, showing statistics about I/O on
that specific sequence.

shardman.gv_statio_user_se-
quences

pg_statio_user_sequences Same as pg_statio_all_se-
quences, except that only user se-
quences are shown.

shardman.gv_statio_sys_se-
quences

pg_statio_sys_sequences Same as pg_statio_all_se-
quences, except that only system se-
quences are shown.

shardman.gv_statio_sys_ta-
bles

pg_statio_sys_tables Same as pg_statio_all_tables,
except that only system tables are shown.

shardman.gv_statio_user_ta-
bles

pg_statio_user_tables Same as pg_statio_all_tables,
except that only user tables are shown.

shardman.gv_stat_user_func-
tions

pg_stat_user_functions One row for each tracked function, show-
ing statistics about executions of that
function.

shardman.gv_stat_slru pg_stat_slru One row per SLRU, showing statistics of
operations.

shardman.gv_stat_csn shardman.pg_stat_csn One row showing statistics on delays that
take place during import of CSN snap-
shots.

shardman.gv_stat_monitor shardman.pg_stat_monitor One row showing metrics of the Shard-
man monitor.

98

https://postgrespro.com/docs/postgrespro/17/monitoring-stats#MONITORING-PG-STAT-SUBSCRIPTION-STATS
https://postgrespro.com/docs/postgresql/14/monitoring-stats#MONITORING-PG-STAT-ALL-INDEXES-VIEW
https://postgrespro.com/docs/postgresql/14/monitoring-stats#MONITORING-PG-STAT-ALL-INDEXES-VIEW
https://postgrespro.com/docs/postgrespro/17/monitoring-stats
https://postgrespro.com/docs/postgrespro/17/monitoring-stats
https://postgrespro.com/docs/postgrespro/17/monitoring-stats
https://postgrespro.com/docs/postgresql/14/monitoring-stats#MONITORING-PG-STATIO-ALL-TABLES-VIEW
https://postgrespro.com/docs/postgresql/14/monitoring-stats#MONITORING-PG-STATIO-ALL-INDEXES-VIEW
https://postgrespro.com/docs/postgresql/14/monitoring-stats#MONITORING-PG-STATIO-ALL-INDEXES-VIEW
https://postgrespro.com/docs/postgresql/14/monitoring-stats#MONITORING-PG-STATIO-ALL-SEQUENCES-VIEW
https://postgrespro.com/docs/postgresql/14/monitoring-stats#MONITORING-PG-STATIO-ALL-SEQUENCES-VIEW
https://postgrespro.com/docs/postgresql/14/monitoring-stats#MONITORING-PG-STATIO-ALL-SEQUENCES-VIEW
https://postgrespro.com/docs/postgrespro/17/monitoring-stats#MONITORING-PG-STATIO-ALL-TABLES-VIEW
https://postgrespro.com/docs/postgrespro/17/monitoring-stats#MONITORING-PG-STATIO-ALL-TABLES-VIEW
https://postgrespro.com/docs/postgresql/14/monitoring-stats#MONITORING-PG-STAT-USER-FUNCTIONS-VIEW
https://postgrespro.com/docs/postgresql/14/monitoring-stats#MONITORING-PG-STAT-SLRU-VIEW

Shardman Reference

Global view Local view Description

shardman.gv_stat_netusage shardman.pg_stat_net_usage One row showing the cumulative network
traffic between Shardman cluster nodes.

shardman.gv_stat_xact_time shardman.pg_stat_xact_time One row showing statistics for the time
spent on a transaction.

shardman.gv_silk_routes shardman.silk_routes One row showing the current snapshot of
the multiplexer routing table.

shardman.gv_silk_connects shardman.silk_connects One row showing the current list of multi-
plexer connects.

shardman.gv_silk_backends shardman.silk_backends One row showing the current list of
processes of two kinds: backends that
serve client connections and silkworm
multiplexer workers, which interact with
the multiplexer.

shardman.gv_silk_pending_
jobs

shardman.silk_pending_jobs One row showing the current list of routes
in the queue of multiplexer jobs that are
not assigned to workers yet.

shardman.gv_silk_routing shardman.silk_routing One row showing the results of the
shardman.silk_routing function.

shardman.gv_stats_sdm_state-
ments

pgpro_stats_sdm_statements This view allows accessing the aggregat-
ed statistics for the distributed queries.
This view can only be created if Shard-
man is installed for the database that has
pgpro_stats. The pgpro_stats must be cre-
ated on all the cluster nodes for the global
view to work.

shardman.gv_lock_graph shardman.lock_graph One row showing a graph of locks be-
tween processes on Shardman cluster
nodes including external locks. This view
is based on the pg_locks and pg_
prepared_xacts system views and on
the pg_stat_activity view of the
Statistics Collector.

shardman.gv_stat_foreign_
bytes

shardman.pg_stat_foreign_stat_bytes One row showing the amount of statistics
for foreign relations transferred over the
network between Shardman cluster nodes.

shardman.gv_stat_wal_receiv-
er

pg_stat_wal_receiver One row, showing statistics about the
WAL receiver from that receiver's con-
nected server.

shardman.gv_stat_xact_all_
tables

pg_stat_xact_all_tables Similar to pg_stat_all_tables, but
counts actions taken so far within the cur-
rent transaction (which are not yet includ-
ed in pg_stat_all_tables and re-
lated views). The columns for numbers of
live and dead rows and vacuum and ana-
lyze actions are not present in this view.

shardman.gv_stat_xact_sys_
tables

pg_stat_xact_sys_tables Same as pg_stat_xact_all_ta-
bles, except that only system tables are
shown.

shardman.gv_stat_xact_user_
functions

pg_stat_xact_user_functions Similar to pg_stat_user_func-
tions, but counts only calls during the
current transaction (which are not yet

99

https://postgrespro.com/docs/postgrespro/14/views-overview
https://postgrespro.com/docs/postgrespro/14/monitoring-stats#MONITORING-PG-STAT-ACTIVITY-VIEW
https://postgrespro.com/docs/postgrespro/17/monitoring-stats#MONITORING-PG-STAT-WAL-RECEIVER-VIEW
https://postgrespro.com/docs/postgrespro/17/monitoring-stats#MONITORING-STATS-VIEWS
https://postgrespro.com/docs/postgrespro/17/monitoring-stats#MONITORING-STATS-VIEWS
https://postgrespro.com/docs/postgrespro/17/monitoring-stats#MONITORING-STATS-VIEWS

Shardman Reference

Global view Local view Description

included in pg_stat_user_func-
tions).

shardman.gv_stat_xact_user_
tables

pg_stat_xact_user_tables Same as pg_stat_xact_all_ta-
bles, except that only user tables are
shown.

6.4.3.2. Global Views for System Calalog

Below is the list of the global views that relate to the system catalog, and links to their corresponding local views:

Table 6.16. Global and local views for system catalog

Global view Local view Description

shardman.gv_aggregate pg_aggregate Stores information about aggregate func-
tions

shardman.gv_am pg_am Relation access methods

shardman.gv_amop pg_amop Access method operators

shardman.gv_amproc pg_amproc Access method support functions

shardman.gv_attrdef pg_attrdef Column default values

shardman.gv_attribute pg_attribute Table columns (“attributes”)

shardman.gv_auth_members pg_auth_members Authorization identifier membership rela-
tionships

shardman.gv_available_exten-
sion_versions

pg_available_extension_versions Specific extension versions that are avail-
able for installation

shardman.gv_available_exten-
sions

pg_available_extensions Extensions that are available for installa-
tion

shardman.gv_cast pg_cast Casts (data type conversions)

shardman.gv_class pg_class Tables, indexes, sequences, views (“rela-
tions”)

shardman.gv_collation pg_collation Collations (locale information)

shardman.gv_config pg_config Compile-time configuration parameters of
the currently installed version of Postgres
Pro

shardman.gv_constraint pg_constraint Check constraints, unique constraints, pri-
mary key constraints, foreign key con-
straints

shardman.gv_conversion pg_conversion Encoding conversion information

shardman.gv_database pg_database Databases within this database cluster

shardman.gv_db_role_setting pg_db_role_setting Per-role and per-database settings

shardman.gv_efault_acl pg_default_acl Default privileges for object types

shardman.gv_depend pg_depend Dependencies between database objects

shardman.gv_description pg_description Descriptions or comments on database
objects

shardman.gv_enum pg_enum Enum label and value definitions

shardman.gv_event_trigger pg_event_trigger Event triggers

shardman.gv_extension pg_extension Installed extensions

shardman.gv_file_setting pg_file_settings Installed extensions

100

https://postgrespro.com/docs/postgrespro/17/monitoring-stats#MONITORING-STATS-VIEWS
https://postgrespro.com/docs/postgresql/14/catalog-pg-aggregate?lang=en
https://postgrespro.com/docs/enterprise/14/catalog-pg-am
https://postgrespro.com/docs/enterprise/14/catalog-pg-amop.html
https://postgrespro.com/docs/enterprise/14/catalog-pg-amproc.html
https://postgrespro.com/docs/enterprise/14/catalog-pg-attrdef.htmlf
https://postgrespro.com/docs/enterprise/14/catalog-pg-attribute.html
https://postgrespro.com/docs/enterprise/14/catalog-pg-auth-members.html
https://postgrespro.com/docs/enterprise/14/view-pg-available-extension-versions.html
https://postgrespro.com/docs/enterprise/14/view-pg-available-extensions.html
https://postgrespro.com/docs/enterprise/14/catalog-pg-cast.html
https://postgrespro.com/docs/enterprise/14/catalog-pg-class.html
https://postgrespro.com/docs/enterprise/14/catalog-pg-collation.html
https://postgrespro.com/docs/postgresql/14/view-pg-config.html
https://postgrespro.com/docs/enterprise/14/catalog-pg-constraint.html
https://postgrespro.com/docs/enterprise/14/catalog-pg-conversion.html
https://postgrespro.com/docs/enterprise/14/catalog-pg-database.html
https://postgrespro.com/docs/enterprise/14/catalog-pg-db-role-setting.html
https://postgrespro.com/docs/enterprise/14/catalog-pg-default-acl.html
https://postgrespro.com/docs/enterprise/14/catalog-pg-depend.html
https://postgrespro.com/docs/enterprise/14/catalog-pg-description.html
https://postgrespro.com/docs/enterprise/14/catalog-pg-enum.html
https://postgrespro.com/docs/enterprise/14/catalog-pg-event-trigger.html
https://postgrespro.com/docs/enterprise/14/catalog-pg-extension.html
https://postgrespro.com/docs/enterprise/14/view-pg-file-settings.html

Shardman Reference

Global view Local view Description

shardman.gv_foreign_data_
wrapper

pg_foreign_data_wrapper Foreign-data wrapper definitions

shardman.gv_foreign_server pg_foreign_server Foreign server definitions

shardman.gv_foreign_table pg_foreign_table Additional foreign table information

shardman.gv_group pg_group Exists for backwards compatibility: it em-
ulates a catalog that existed in Postgres
Pro before version 8.1

shardman.gv_hba_file_rules pg_hba_file_rules Summary of the contents of the client au-
thentication configuration file

shardman.gv_index pg_index Additional index information

shardman.gv_indexes pg_indexes Provides access to useful information
about each index in the database

shardman.gv_inherits pg_inherits Table inheritance hierarchy

shardman.gv_init_privs pg_init_privs Object initial privileges

shardman.gv_language pg_language Languages for writing functions

shardman.gv_largeobject pg_largeobject Data pages for large objects

shardman.gv_largeobject_
metadata

pg_largeobject_metadata Metadata associated with large objects

shardman.gv_matviews pg_matviews Provides access to useful information
about each materialized view in the data-
base

shardman.gv_namespace pg_namespace Schemas

shardman.gv_opclass pg_opclass Access method operator classes

shardman.gv_operator pg_operator Operators

shardman.gv_opfamily pg_opfamily Access method operator families

shardman.gv_partitioned_ta-
ble

pg_partitioned_table Information about partition key of tables

shardman.gv_proc pg_proc Functions and procedures

shardman.gv_profile pg_profile Profiles, a set of authentication restric-
tions

shardman.gv_publication pg_publication Publications for logical replication

shardman.gv_publication_rel pg_publication_rel Relation to publication mapping

shardman.gv_publication_ta-
bles

pg_publication_tables Information about the mapping between
publications and information of tables
they contain

shardman.gv_range pg_range Information about range types

shardman.gv_replication_ori-
gin

pg_replication_origin Registered replication origins

shardman.gv_replication_ori-
gin_status

pg_replication_origin_status Information about how far replay for a
certain origin has progressed

shardman.gv_replication_
slots

pg_replication_slots Provides a listing of all replication slots
that currently exist on the database clus-
ter, along with their current state

shardman.gv_rewrite pg_rewrite Query rewrite rules

101

https://postgrespro.com/docs/enterprise/14/catalog-pg-foreign-data-wrapper.html
https://postgrespro.com/docs/enterprise/14/catalog-pg-foreign-server.html
https://postgrespro.com/docs/enterprise/14/catalog-pg-foreign-table.html
https://postgrespro.com/docs/enterprise/14/view-pg-group.html
https://postgrespro.com/docs/enterprise/14/view-pg-hba-file-rules.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-index
https://postgrespro.com/docs/postgresql/17/view-pg-indexes.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-inherits.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-init-privs.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-language.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-largeobject.html
https://postgrespro.com/docs/postgresql/17/catalog-pg-largeobject-metadata
https://postgrespro.com/docs/postgresql/17/view-pg-matviews.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-namespace.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-opclass.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-operator.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-opfamily.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-partitioned-table.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-proc.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-profile.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-publication.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-publication-rel.html
https://postgrespro.com/docs/postgresql/17/view-pg-publication-tables.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-range.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-replication-origin.html
https://postgrespro.com/docs/postgresql/17/view-pg-replication-origin-status.html
https://postgrespro.com/docs/postgresql/17/view-pg-replication-slots.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-rewrite.html

Shardman Reference

Global view Local view Description

shardman.gv_rules pg_rules Provides access to useful information
about query rewrite rules

shardman.gv_seclabel pg_seclabel Security labels on database objects

shardman.gv_seclabels pg_seclabels Provides information about security labels

shardman.gv_sequence pg_sequence Information about sequences

shardman.gv_sequences pg_sequences Provides access to useful information
about each sequence in the database

shardman.gv_settings pg_settings Provides access to run-time parameters of
the server

shardman.gv_shdepend pg_shdepend Dependencies on shared objects

shardman.gv_shdescription pg_shdescription Comments on shared objects

shardman.gv_shseclabel pg_shseclabel Security labels on shared database objects

shardman.gv_subscription pg_subscription Logical replication subscriptions

shardman.gv_subscription_rel pg_subscription_rel Relation state for subscriptions

shardman.gv_tablespace pg_tablespace Tablespaces within this database cluster

shardman.gv_tables pg_tables Provides access to useful information
about each table in the database

shardman.gv_prepared_xacts pg_prepared_xacts Provides information about transactions
that are currently prepared for two-phase
commit

shardman.gv_timezone_names pg_timezone_names List of time zone names that are recog-
nized by SET TIMEZONE, along with
their associated abbreviations, UTC off-
sets, and daylight-savings status

shardman.gv_timezone_abbrevs pg_timezone_abbrevs List of time zone abbreviations that are
currently recognized by the datetime input
routines

shardman.gv_transform pg_transform Transforms (data type to procedural lan-
guage conversions)

shardman.gv_trigger pg_trigger Triggers

shardman.gv_ts_config pg_ts_config Text search configurations

shardman.gv_ts_config_map pg_ts_config_map Text search configurations' token map-
pings

shardman.gv_ts_dict pg_ts_dict Text search dictionaries

shardman.gv_ts_parser pg_ts_parser Text search parsers

shardman.gv_ts_template pg_ts_template Text search templates

shardman.gv_type pg_type Data types

shardman.gv_user_mapping pg_user_mapping Mappings of users to foreign servers

shardman.gv_user_mappings pg_user_mappings Provides access to information about user
mappings

shardman.gv_views pg_views Provides access to useful information
about each view in the database

shardman.gv_locks pg_locks Provides access to information about the
locks held by active processes within the
database server.

102

https://postgrespro.com/docs/postgresql/17/view-pg-rules.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-seclabel.html
https://postgrespro.com/docs/postgresql/17/view-pg-seclabels.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-sequence.html
https://postgrespro.com/docs/postgresql/17/view-pg-sequences.html
https://postgrespro.com/docs/postgresql/17/view-pg-settings.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-shdepend.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-shdescription.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-shseclabel.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-subscription.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-subscription-rel
https://postgrespro.com/docs/postgrespro/17/catalog-pg-tablespace.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-tablespace.html
https://postgrespro.com/docs/enterprise/17/view-pg-prepared-xacts
https://postgrespro.com/docs/postgrespro/17/view-pg-timezone-names.html
https://postgrespro.com/docs/postgrespro/17/view-pg-timezone-abbrevs.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-transform.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-trigger.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-ts-config.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-ts-config-map.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-ts-dict.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-ts-parser.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-ts-template.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-type.html
https://postgrespro.com/docs/postgrespro/17/catalog-pg-user-mapping.html
https://postgrespro.com/docs/postgresql/17/view-pg-user-mappings.html
https://postgrespro.com/docs/postgrespro/17/view-pg-views.html
https://postgrespro.com/docs/postgresql/14/view-pg-locks

Shardman Reference

Global view Local view Description

shardman.gv_shmem_alloca-
tions

pg_shmem_allocations Shows allocations made from the server's
main shared memory segment.

6.5. SQL Commands
Shardman extends some DDL SQL commands supported by PostgreSQL to enable distributed DDL processing. This reference only
describes Shardman-specific command syntax. See PostgreSQL documentation for a description of standard DDL SQL commands.

103

https://postgrespro.com/docs/postgresql/14/view-pg-shmem-allocations
https://postgrespro.com/docs/postgresql/14/sql-commands

Shardman Reference

ALTER SEQUENCE

ALTER SEQUENCE — change the definition of a sequence generator

Synopsis
ALTER SEQUENCE [IF EXISTS] name
 [AS data_type]
 [INCREMENT [BY] increment]
 [MINVALUE minvalue | NO MINVALUE] [MAXVALUE maxvalue | NO MAXVALUE]
 [RESTART [[WITH] restart]]
 [CACHE cache] [[NO] CYCLE]
 [OWNED BY { table_name.column_name | NONE }]
ALTER SEQUENCE [IF EXISTS] name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER |
 SESSION_USER }
ALTER SEQUENCE [IF EXISTS] name RENAME TO new_name
ALTER SEQUENCE [IF EXISTS] name SET SCHEMA new_schema

Description

ALTER SEQUENCE changes the parameters of an existing sequence generator. The extended forms of ALTER SEQUENCE are
mostly the same as in PostgreSQL (see ALTER SEQUENCE) except for the following differences:

• The minimum sequence value parameter in Shardman works more like a lower boundary on the global interval of available
values, so it can only be increased to make sure no duplicate numbers are generated.

• The RESTART WITH clause allows restarting a sequence at any arbitrary lower bound, but in this case, there is no guarantee
that previously generated numbers will not repeat.

• Using both RESTART WITH and MINVALUE in a single statement is not permitted to avoid confusion.

Examples

Alter the block size parameter of a sequence called serial:

ALTER SEQUENCE serial SET (block_size = 8192);

See Also
CREATE SEQUENCE, Section 7.6

104

https://postgrespro.com/docs/postgresql/14/sql-altersequence/sql-altersequence

Shardman Reference

ALTER TABLE

ALTER TABLE — change the definition of a table

Synopsis
ALTER TABLE [IF EXISTS] [ONLY] name [*]
 action [, ...]
ALTER TABLE [IF EXISTS] [ONLY] name [*]
 RENAME [COLUMN] column_name TO new_column_name
ALTER TABLE [IF EXISTS] [ONLY] name [*]
 RENAME CONSTRAINT constraint_name TO new_constraint_name
ALTER TABLE [IF EXISTS] name
 RENAME TO new_name
ALTER TABLE [IF EXISTS] name
 SET SCHEMA new_schema
ALTER TABLE ALL IN TABLESPACE name [OWNED BY role_name [, ...]]
 SET TABLESPACE new_tablespace [NOWAIT]
ALTER TABLE [IF EXISTS] name
 ATTACH PARTITION partition_name { FOR VALUES partition_bound_spec | DEFAULT }
ALTER TABLE [IF EXISTS] name
 DETACH PARTITION partition_name [CONCURRENTLY | FINALIZE]

where action is one of:

 ADD [COLUMN] [IF NOT EXISTS] column_name data_type [COLLATE collation]
 [column_constraint [...]]
 DROP [COLUMN] [IF EXISTS] column_name [RESTRICT | CASCADE]
 ALTER [COLUMN] column_name [SET DATA] TYPE data_type [COLLATE collation]
 [USING expression]
 ALTER [COLUMN] column_name SET DEFAULT expression
 ALTER [COLUMN] column_name DROP DEFAULT
 ALTER [COLUMN] column_name { SET | DROP } NOT NULL
 ALTER [COLUMN] column_name DROP EXPRESSION [IF EXISTS]
 ALTER [COLUMN] column_name ADD GENERATED { ALWAYS | BY DEFAULT } AS IDENTITY
 [(sequence_options)]
 ALTER [COLUMN] column_name { SET GENERATED { ALWAYS | BY DEFAULT } |
 SET sequence_option | RESTART [[WITH] restart] } [...]
 ALTER [COLUMN] column_name DROP IDENTITY [IF EXISTS]
 ALTER [COLUMN] column_name SET STATISTICS integer
 ALTER [COLUMN] column_name SET (attribute_option = value [, ...])
 ALTER [COLUMN] column_name RESET (attribute_option [, ...])
 ALTER [COLUMN] column_name SET STORAGE { PLAIN | EXTERNAL | EXTENDED | MAIN }
 ALTER [COLUMN] column_name SET COMPRESSION compression_method
 ADD table_constraint [NOT VALID]
 ADD table_constraint_using_index
 ALTER CONSTRAINT constraint_name [DEFERRABLE | NOT DEFERRABLE] [INITIALLY
 DEFERRED | INITIALLY IMMEDIATE]
 VALIDATE CONSTRAINT constraint_name
 DROP CONSTRAINT [IF EXISTS] constraint_name [RESTRICT | CASCADE]
 DISABLE TRIGGER [trigger_name | ALL | USER]
 ENABLE TRIGGER [trigger_name | ALL | USER]
 ENABLE REPLICA TRIGGER trigger_name
 ENABLE ALWAYS TRIGGER trigger_name
 DISABLE RULE rewrite_rule_name
 ENABLE RULE rewrite_rule_name
 ENABLE REPLICA RULE rewrite_rule_name

105

Shardman Reference

 ENABLE ALWAYS RULE rewrite_rule_name
 DISABLE ROW LEVEL SECURITY
 ENABLE ROW LEVEL SECURITY
 FORCE ROW LEVEL SECURITY
 NO FORCE ROW LEVEL SECURITY
 CLUSTER ON index_name
 SET WITHOUT CLUSTER
 SET WITHOUT OIDS
 SET TABLESPACE new_tablespace
 SET { LOGGED | UNLOGGED }
 SET (storage_parameter [= value] [, ...])
 RESET (storage_parameter [, ...])
 INHERIT parent_table
 NO INHERIT parent_table
 OF type_name
 NOT OF
 OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }
 REPLICA IDENTITY { DEFAULT | USING INDEX index_name | FULL | NOTHING }

and partition_bound_spec is:

IN (partition_bound_expr [, ...]) |
FROM ({ partition_bound_expr | MINVALUE | MAXVALUE } [, ...])
 TO ({ partition_bound_expr | MINVALUE | MAXVALUE } [, ...]) |
WITH (MODULUS numeric_literal, REMAINDER numeric_literal)

and column_constraint is:

[CONSTRAINT constraint_name]
{ NOT NULL |
 NULL |
 CHECK (expression) [NO INHERIT] |
 DEFAULT default_expr |
 GENERATED ALWAYS AS (generation_expr) STORED |
 GENERATED { ALWAYS | BY DEFAULT } AS IDENTITY [(sequence_options)] |
 UNIQUE index_parameters |
 PRIMARY KEY index_parameters |
 REFERENCES reftable [(refcolumn)] [MATCH FULL | MATCH PARTIAL | MATCH SIMPLE]
 [ON DELETE referential_action] [ON UPDATE referential_action] }
[DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INITIALLY IMMEDIATE]

and table_constraint is:

[CONSTRAINT constraint_name]
{ CHECK (expression) [NO INHERIT] |
 UNIQUE (column_name [, ...]) index_parameters |
 PRIMARY KEY (column_name [, ...]) index_parameters |
 EXCLUDE [USING index_method] (exclude_element WITH operator
 [, ...]) index_parameters [WHERE (predicate)] |
 FOREIGN KEY (column_name [, ...]) REFERENCES reftable [(refcolumn [, ...])]
 [MATCH FULL | MATCH PARTIAL | MATCH SIMPLE] [ON DELETE referential_action] [ON
 UPDATE referential_action] }
[DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INITIALLY IMMEDIATE]

and table_constraint_using_index is:

 [CONSTRAINT constraint_name]
 { UNIQUE | PRIMARY KEY } USING INDEX index_name

106

Shardman Reference

 [DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INITIALLY IMMEDIATE]

index_parameters in UNIQUE, PRIMARY KEY, and EXCLUDE constraints are:

[INCLUDE (column_name [, ...])]
[WITH (storage_parameter [= value] [, ...])]
[USING INDEX TABLESPACE tablespace_name]

exclude_element in an EXCLUDE constraint is:

{ column_name | (expression) } [opclass] [ASC | DESC] [NULLS { FIRST | LAST }]

Description

Shardman extension of the ALTER TABLE syntax allows coherently changing definitions of sharded and global tables.

The set of ALTER operations supported for global and sharded tables is restricted. For details, see ALTER TABLE Limitations.

Parameters

Storage Parameters

Shardman extends storage parameters of tables with its own storage metaparameters. They are not stored in the corresponding
catalog entry, but are used to tell the Shardman extension to perform some additional actions.

global

This parameter can be specified only for global tables. If set to 0, the global table will be converted to a regular one on the
replication group where the command is executed. The global table will not exist on other nodes after completion of this state-
ment. No other storage parameter can be set when global parameter is specified.

Examples

Create a global table pgbench_tellers and then convert it to local.

CREATE TABLE pgbench_tellers (
 tid integer PRIMARY KEY,
 bid integer,
 tbalance integer,
 filler character(84)
)
WITH (global);
ALTER TABLE pgbench_tellers SET (global=0);

See Also
ALTER TABLE Limitations , PostgreSQL ALTER TABLE

107

https://postgrespro.com/docs/postgresql/14/sql-altertable/sql-altertable

Shardman Reference

CREATE SEQUENCE

CREATE SEQUENCE — define a new sequence generator

Synopsis
CREATE SEQUENCE [IF NOT EXISTS] name
 [AS data_type]
 [INCREMENT [BY] increment]
 [MINVALUE minvalue | NO MINVALUE] [MAXVALUE maxvalue | NO MAXVALUE]
 [START [WITH] start] [CACHE cache] [[NO] CYCLE]
 [OWNED BY { table_name.column_name | NONE }]
 WITH ([global],
 [block_size = block_size]
)

Description

Shardman extensions to the CREATE SEQUENCE command enable creation of global sequence number generators. This command
creates an ordinary PostgreSQL sequence on all nodes in a cluster and records sequence parameters in the global sequence state
dictionary. (See Section 7.6 for details.)

After a global sequence is created, usual nextval function can be used to generate next sequence values that are guaranteed be
unique across the entire cluster. Other standard sequence manipulation functions (e.g. setval) must not be used on global sequences
as this may lead to unexpected results.

Parameters

In addition to the parameters recognized by PostgreSQL, the following parameters are supported by Shardman.

global

If specified, the sequence object is created as a Shardman-managed global sequence.

block_size

The number of elements allocated for a local sequence. The default value is 65536.

Notes

Global sequences are meant to behave similarly to ordinary PostgreSQL sequences (see CREATE SEQUENCE) with some limitations,
the most important one being that a global sequence is always increasing. There's no support for negative increment values or
wraparound (as in CYCLE), which also means there's practically no difference between the minimum sequence value and its starting
value, so both parameters cannot be provided at the same time to avoid confusion.

Just like with regular sequence objects, the DROP SEQUENCE command removes a global sequence and the ALTER SEQUENCE
command allows changing some of the global sequence parameters.

Examples

Create a global sequence called serial.

CREATE SEQUENCE serial MINVALUE 100 WITH (global);

Select the next number from this sequence:

SELECT nextval('serial');
 nextval

 100
(1 row)

108

https://postgrespro.com/docs/postgresql/14/sql-createsequence/sql-createsequence

Shardman Reference

See Also
ALTER SEQUENCE, Section 7.6

109

Shardman Reference

CREATE TABLE

CREATE TABLE — define a new table

Synopsis
CREATE [UNLOGGED] TABLE [IF NOT EXISTS] table_name ([
 { column_name data_type [COLLATE collation] [column_constraint [...]]
 | table_constraint
 | LIKE source_table [like_option ...]}
 [, ...]
])
[USING method]
[WITH (storage_parameter [= value] [, ...])]
[TABLESPACE tablespace_name]

CREATE TABLE table_name ([
 { column_name data_type }
 [, ...]
])
WITH ({ distributed_by = 'column_name'
 [, num_parts = number_of_partitions]
 [, colocate_with = 'colocation_table_name']
 [, partition_by = 'column_name',
 partition_bounds = 'array_of_partition_bound_exprs'] |
 global }
)

where column_constraint is:

[CONSTRAINT constraint_name]
{ NOT NULL |
 NULL |
 CHECK (expression) [NO INHERIT] |
 DEFAULT default_expr |
 UNIQUE index_parameters |
 PRIMARY KEY index_parameters }
[DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INITIALLY IMMEDIATE]

and table_constraint is:

[CONSTRAINT constraint_name]
{ CHECK (expression) [NO INHERIT] |
 UNIQUE (column_name [, ...]) index_parameters |
 PRIMARY KEY (column_name [, ...]) index_parameters |
 EXCLUDE [USING index_method] (exclude_element WITH operator
 [, ...]) index_parameters [WHERE (predicate)] }
[DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INITIALLY IMMEDIATE]

Description

Shardman extension of the CREATE TABLE syntax enables creation of sharded tables distributed across all replication groups with
a single DDL statement.

The extended CREATE TABLE syntax imposes limitations on the general syntax of the command. For example, there is currently
no support for:

110

Shardman Reference

• Generated columns.

• REFERENCES and FOREIGN KEY constraints between non-colocated sharded tables.

• PARTITION BY and PARTITION OF clauses.

When creating a colocated table, have in mind the related limitations. Specifically, from these limitations, it follows that a foreign
key on a global table can reference only another global table and a foreign key on a sharded table can reference a colocated sharded
table or a global table. Note that when a foreign key on a sharded or a global table references a global table, only NO ACTION
or RESTRICT referential actions are supported for the ON UPDATE action and only NO ACTION, RESTRICT or CASCADE are
supported for the ON DELETE action.

Columns of the SERIAL8 type are implemented using an automatically created global sequence, so all global sequence properties
also apply here. (See Section 7.6 for details.)

Parameters

IF NOT EXISTS

Do not throw an error if a relation with the same name already exists. A notice is issued in this case. IF NOT EXISTS does
not lead to an error if an existing table with the same name is global or sharded, or if it is local yet is located on a node from
which the query is run. Otherwise, such a query fails with error.

Storage Parameters

Shardman extends storage parameters of tables with its own storage metaparameters. They are not stored in the corresponding
catalog entry, but are used to tell the Shardman extension to perform some additional actions. Regular storage parameters are trans-
parently passed to table partitions.

distributed_by (text)

This specifies the name of the column to use for the table partitioning. Only hash partitioning is currently supported, so this is
effectively an equivalent of PARTITION BY HASH, but all the leaf partitions will be created immediately on all replication
groups and the table will be registered in the Shardman metadata.

num_parts (integer)

This sets the number of partitions that will be created for this table. This parameter is optional. If it is not specified, for a sharded
table, the value of the global setting of shardman.num_parts will be used, for a colocated table, the value will be taken from
the corresponding colocating table.

colocate_with (text)

This specifies the name of the table to colocate with. If set, Shardman will try to place partitions of the created table with the
same partition key on the same nodes as colocation_table_name. This parameter is optional.

partition_by (text)

This specifies the name of the column to use for the second-level table partitioning. Only range partitioning is currently support-
ed. When this parameter is used, each table partition is created as a partitioned table. Subpartitions can be created immediately
if partition_bounds parameter is set. This parameter is optional.

partition_bounds (text)

This sets bounds of second-level table partitions. Bounds should be a string representation of a two-dimensional array. Each
array member is a pair of a lower and upper bound for partitions. If lower and upper bounds are both NULL, the default partition
is created. Number of partitions is determined by the first array dimension. This parameter is optional.

global (boolean)

This defines that the table is global. If set, the table will be distributed on all replication groups and will be synchronized by
triggers. This parameter is optional.

Examples

In this example, the table pgbench_branches is created, as well as colocated tables pgbench_accounts and pg-
bench_history. Each partition of the pgbench_history table is additionally subpartitioned by range.

111

Shardman Reference

CREATE TABLE pgbench_branches (
 bid integer NOT NULL PRIMARY KEY,
 bbalance integer,
 filler character(88)
)
WITH (distributed_by = 'bid',
 num_parts = 8);
CREATE TABLE pgbench_accounts (
 aid integer NOT NULL,
 bid integer,
 abalance integer,
 filler character(84),
 PRIMARY KEY (bid, aid)
)
WITH (distributed_by = 'bid',
 num_parts = 8,
 colocate_with = 'pgbench_branches');
CREATE TABLE public.pgbench_history (
 tid integer,
 bid integer,
 aid integer,
 delta integer,
 mtime timestamp without time zone,
 filler character(22)
)
WITH (distributed_by = 'bid',
 colocate_with = 'pgbench_branches',
 partition_by = 'mtime',
 partition_bounds =
 $${{minvalue, '2021-01-01 00:00'},{'2021-01-01 00:00', '2022-01-01 00:00'},
{'2022-01-01 00:00', maxvalue}}$$
);

These simple examples of CREATE TABLE illustrate limitations related to creation of colocated tables:

This command creates a table to colocate with:

CREATE TABLE teams_players (
 team_id integer NOT NULL,
 player_id integer,
 scores int,
 PRIMARY KEY (team_id, player_id)
) WITH (distributed_by='team_id, player_id');

This command correctly creates a colocated table:

CREATE TABLE players_scores (
 player_id integer NOT NULL,
 team_id integer,
 interval tstzrange,
 scores integer,
 foreign key (team_id, player_id) references teams_players(team_id, player_id)
) WITH (distributed_by='team_id, player_id', colocate_with='teams_players');

And this command contains an error in the definition of a foreign key:

CREATE TABLE players_scores (
 player_id integer NOT NULL,
 team_id integer,
 interval tstzrange,
 scores integer,

112

Shardman Reference

 foreign key (team_id, player_id) references teams_players(team_id, player_id)
) WITH (distributed_by='player_id, team_id', colocate_with='teams_players');
ERROR: foreign key should start with distributed_by columns

Consider another example:

CREATE TABLE teams (team_id integer primary key, team_name text) with
 (distributed_by='team_id');
CREATE TABLE players_teams (
 player_id integer,
 team_id integer references teams(team_id),
 scores integer
) WITH (distributed_by='player_id', colocate_with='teams');
ERROR: foreign key should start with distributed_by columns

See Also
CREATE TABLE Limitations , PostgreSQL CREATE TABLE

113

https://postgrespro.com/docs/postgresql/14/sql-createtable/sql-createtable

Shardman Reference

CREATE TABLESPACE

CREATE TABLESPACE — define a new tablespace

Synopsis
CREATE TABLESPACE tablespace_name
 [OWNER { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }]
 LOCATION 'template'
 [WITH (tablespace_option = value [, ...])]

Description

Shardman extension of the CREATE TABLESPACE syntax enables creation of a new cluster-wide tablespace. All tablespaces in a
Shardman cluster must be cluster-wide. The cluster-wide tablespace is created on each cluster node with the location derived from
the template parameter.

Parameters

tablespace_name

The name of a tablespace to be created. The name cannot begin with pg_ as such names are reserved for system tablespaces.
Also the name cannot contain new line characters.

template

The directory name template that will be used for the tablespace. The template must include “{rgid}” substring, which will be
translated into the actual replication group ID on each instance where a statement is executed. The directory name template
must allow conversion to an absolute path. The path cannot contain new line characters. CREATE TABLESPACE will create
the corresponding directory if it is missing. If the directory exists, it must be empty and must be owned by the PostgreSQL
system user.

tablespace_option

A tablespace parameter to be set or reset. The list of parameters must include global boolean parameter. Creation of non-
global tablespaces is not allowed by default.

Examples

To create a tablespace dbspace under the file system location /data/dbs, first create the directory using operating system
facilities on all nodes and set the correct ownership (or ensure that postgres user has permissions to create it):

mkdir /data/dbs
chown postgres:postgres /data/dbs

Then issue the tablespace creation command inside PostgreSQL:

CREATE TABLESPACE dbspace LOCATION '/data/dbs/ts-{rgid}' WITH (global);

See Also
PostgreSQL CREATE TABLESPACE

6.6. SQL Limitations
To ensure consistency of a sharded database, Shardman imposes some restrictions on SQL commands executed.

6.6.1. ALTER SYSTEM Limitations
• ALTER SYSTEM is prohibited (configuration changes should be performed via shardmanctl config update).

6.6.2. ALTER TABLE Limitations
• ALTER TABLE is prohibited for partitions of sharded tables.

114

https://postgrespro.com/docs/postgresql/14/sql-createtable/sql-createtablespace
https://postgrespro.com/docs/postgresql/14/alter-system
https://postgrespro.com/docs/postgresql/14/sql-altertable

Shardman Reference

• All forms of ALTER TABLE are prohibited for sharded or global tables except these:

• ALTER TABLE OWNER is allowed. For sharded table it also changes the owner of table partitions. Only the global user
can be an owner of sharded or global table.

• ALTER TABLE COLUMN TYPE is allowed with limitations. You cannot alter type of sharded table column participating
in sharding or partitioning key. You cannot alter type of sharded table column with USING clause (but for global tables it
is allowed). Also, it is a user's duty for now to create and keep new type exactly equal on every cluster node.

• ALTER TABLE COLUMN RENAME is allowed.

• Adding or dropping table-wide unique constraints and checks is allowed. For global tables dropping primary key constraint
or dropping columns, participating in primary key, is forbidden.

• Adding foreign keys between sharded tables is possible only when they are colocated and a foreign key references tuples
that are stored in the same replication group. A foreign key between sharded tables must begin with the columns used for
table partitioning in both tables. A foreign key on a global table can reference only another global table. A foreign key on a
sharded table can reference a colocated sharded table or a global table.

• SET/DROP NOT NULL is allowed.

• Setting storage options is allowed for global tables.

• Global tables cannot inherit other tables.

• ALTER COLUMN SET STATISTICS is allowed for global and sharded tables.

6.6.3. CREATE TABLE Limitations
• For CREATE TABLE, all limitations for ALTER TABLE apply.

• Using of non-builtin types (types with OIDs >= 10000) or non-base types or arrays are not allowed in 'distributed_by'
columns.

• Only the global user can create sharded or global table.

• In a colocated table, the number and types of columns used for table partitioning must be the same as for the table to colocate
with.

• A temporary table cannot be created as sharded or global.

• Self-referencing sharded tables are allowed only if a foreign key is referencing the same partition of the sharded table.

• For tables created using LIKE source_table where source_table is a local table, the following limitations apply:

• Copying without the like_option clause or with INCLUDING INDEXES is only supported.

• With INCLUDING INDEXES, only unique indexes and indexes supporting the primary relation key are copied.

• Copying indexes for columns is not supported.

• EXCLUDE constraints are not supported.

• Local tables used in CREATE TABLE LIKE statement must only have columns of base types.

• Partial indexes are not supported.

• Standard collations are only supported.

• NULLS NOT DISTINCT constraint is not supported.

6.6.4. DROP TABLE Limitations
• Sharded or global tables and local tables cannot be dropped in the same statement with DROP TABLE.

• Partitions of a sharded table cannot be dropped.

6.6.5. CREATE INDEX CONCURRENTLY Limitations
• CREATE INDEX CONCURRENTLY is a non-transactional command. If a problem arises while building index on sharded

or global tabe, such as network failure, deadlock or a uniqueness violation in a unique index, the CREATE INDEX CON-

115

https://postgrespro.com/docs/postgresql/14/sql-createtable
https://postgrespro.com/docs/postgresql/14/sql-droptable
https://postgrespro.com/docs/postgresql/14/sql-createindex

Shardman Reference

CURRENTLY will partially fail, but can leave behind valid or invalid indexes on Shardman cluster nodes. Also an index can be
completely missing on some nodes. In the later case DROP INDEX will fail to drop the index. The recommended way to re-
move such index cluster-wide is to use DROP INDEX IF EXISTS command. Note that DROP INDEX CONCURRENTLY
is not supported on sharded tables, so this operation should be better performed in a maintenance window.

6.6.6. UPDATE Limitations
• UPDATE of a sharded table is executed as a series of usual UPDATEs if it doesn't move data between partitions or subparti-

tions. Otherwise it is executed internally as DELETE from one partition and INSERT into another (so called target partition).
If a partition where UPDATE INSERTs data, is going to be UPDATED in the same statement, an error will be raised. In prac-
tice this means that if UPDATE moves data between partitions, you should explicitly exclude target partition from updating in
WHERE clause of the statement.

6.6.7. INSERT ON CONFLICT DO UPDATE Limitations
• INSERT ON CONFLICT DO UPDATE table_name... ON CONFLICT [conflict_target] conflic-

t_action [WHERE condition] command is not supported on foreign tables when conflict_target is DO UPDATE. For
sharded tables it is supported if expressions in SET and WHERE clause can be safely deparsed (currently deparsing of sqlval-
ue-functions, parameters and subqueries inside these clauses is not supported) and a non-partial unique index, containing only
table columns (not coulmn-based expressions), corresponds to conflict_target expression. This is usually the case with table's
primary key.

6.6.8. Limitations of Managing Global Roles
• Global users can be created only by user with CREATEROLE permission on all cluster nodes.

• Global roles cannot be renamed.

• Global and local roles cannot be dropped in the same statement.

• GRANT to a local and global role in the same statement is prohibited.

• REVOKE from a local and global role in the same statement is prohibited.

6.6.9. Limitations of User Mappings
• The CREATE USER MAPPING, ALTER USER MAPPING, and DROP USER MAPPING commands are prohibited when

applied to mappings for foreign servers from the Shardman cluster. Use Shardman mechanisms of Managing Users and Roles
instead.

6.6.10. ALTER SCHEMA Limitations
• Schemas containing global or sharded tables cannot be renamed with ALTER SCHEMA . Shardman service schemas

(shardman) cannot be renamed or dropped.

6.6.11. DROP SERVER Limitations
• Shardman cluster servers cannot be dropped with DROP SERVER . Use Shardman tools to remove servers from the cluster.

6.6.12. Limitations of Using Custom Databases
• Custom databases are not supported. All the local custom databases can be corrupted or lost during the shardmanctl operations.

6.6.13. CREATE COLLATION Limitations
• If you use custom collation with CREATE COLLATION, all servers must have same version of icu. Otherwise results of

queries on sharded tables may be incorrect.

6.6.14. Logical Replication Limitations
• If you attempt to publish a table containing foreign partitions with the publish_via_partition_root option enabled,

the operation will fail. Without this option, only the local partitions will be included in the publication.

116

https://postgrespro.com/docs/postgresql/14/sql-update
https://postgrespro.com/docs/postgresql/14/sql-insert
https://postgrespro.com/docs/postgresql/14/sql-grant
https://postgrespro.com/docs/postgresql/14/sql-revoke
https://postgrespro.com/docs/postgresql/14/sql-alterschema
https://postgrespro.com/docs/postgresql/14/sql-dropserver
https://postgrespro.com/docs/postgresql/14/sql-createcollation
https://postgrespro.com/docs/postgresql/14/sql-createpublication

Shardman Reference

• When using FOR TABLES IN SCHEMA or FOR ALL TABLES, only local partitions will be published.

• If you publish using FOR TABLES IN SCHEMA WITH or FOR ALL TABLES along with the publish_via_parti-
tion_root option, any tables with foreign partitions will be excluded from the publication.

• When executing ALTER SUBSCRIPTION ... REFRESH PUBLICATION, depending on changes to table partitions, ta-
bles may be added to or removed from the publication.

• When using FOR ALL TABLES, tables from the shardman schema are excluded from the publication. However, you can
still create a publication specifically for tables in this schema or for individual tables within it.

6.6.15. Other Limitations
• DROP TYPE CASCADE is prohibited if it affects types used in global or sharded tables.

• Access privileges management per columns is not supported for global tables.

6.7. Shardman CLI Reference

117

https://postgrespro.com/docs/postgresql/14/sql-altersubscription
https://postgrespro.com/docs/postgresql/14/sql-droptype

Shardman Reference

shardmanctl

shardmanctl — Shardman auxiliary command-line client and deployment tool

Synopsis
shardmanctl [common_options] backup --datadir directory [--maxtasks number_of_tasks] --
use-ssh

shardmanctl [common_options] daemon check -n | --nodes node_names:port

shardmanctl [common_options] cleanup [-p | --processrepgroups] --after-node-operation --af-
ter-rebalance

shardmanctl [common_options] config generate [-f | --file filename]

shardmanctl [common_options] config verify [-f | --file filename]

shardmanctl [common_options] config get [-f | --file] [-c | --choose-revision] [-r | --revision]

shardmanctl [common_options] config revisions rm [-r | --revision] [-y | --yes]

shardmanctl [common_options] config update [[-f | --file stolon_spec_file|shardman_spec_file]
| spec_text [--force] [-p | --patch] [-w | --wait time_duration]]

shardmanctl [common_options] config rollback [-r | --revision] [-w | --wait time_duration] [--
force]

shardmanctl [common_options] config update credentials [-u | --user] [-p | --password] [-k | --
ssl-key] [-c | --ssl-cert] [-w | --wait time_duration] [-f | --force] [-y | --yes]

shardmanctl [common_options] config revisions [-f | --format json|text]

shardmanctl [common_options] config revisions set --keep-config-revisions

shardmanctl [common_options] config update ip [-u | ip_1=ip_2,hostname_1=hostname_2] [-y | --
yes]

shardmanctl [common_options] config update fdw [-y | --yes]

shardmanctl [common_options] cluster repfactor set --value value

shardmanctl [common_options] cluster start

shardmanctl [common_options] cluster stop [-y | --yes]

shardmanctl [common_options] cluster topology [-f | --format table|json|text]

shardmanctl [common_options] forall --sql query [--twophase]

shardmanctl [common_options] getconnstr --all

shardmanctl [common_options] init [-y | --yes] [-f | --spec-file spec_file_name] | spec_text

shardmanctl [common_options] intcheck [-s | --system] [-c | --catalog] [-u | --user] [-o | --output
] [-n | --node node]

shardmanctl [common_options] load [-b | --batch-size lines_limit] [--destination-fields field-
s_list] [--distributed-keys key_type_list] [-D | --delimiter character] [--null_marker string]
[-e | --escape character] [-f | --file input_file] [-F | --format text | csv] [-j | --jobs task_total]
[-q | --quote character] [--reject-file filename] [--schema filename] [--source file | postgres]

118

Shardman Reference

[--source-connstr connect_string] [--source-fields fields_list] [--source-table table|view|
func] [-t | --table destination_table] [-h | --help]

shardmanctl [common_options] nodes add -n | --nodes node_names [--no-rebalance]

shardmanctl [common_options] nodes start -n | --nodes node_names [--no-wait]

shardmanctl [common_options] nodes restart -n | --nodes node_names [--no-wait]

shardmanctl [common_options] nodes stop -n | --nodes node_names [--no-wait]

shardmanctl [common_options] nodes replace --old old_node --new new_node

shardmanctl [common_options] nodes rm -n | --nodes node_names

shardmanctl [common_options] probackup [init | archive-command | backup | checkdb | delete | merge |
restore | set-config | show | validate | show-config] [subcommand_options]

shardmanctl [common_options] rebalance [-f | --force]

shardmanctl [common_options] recover [--info file] [--dumpfile file] [--shard shard] [--meta-
data-only] [--schema-only] [--timeout seconds]

shardmanctl [common_options] restart [-y | --yes] [--no-wait]

shardmanctl [common_options] set pgParam1=value1 [pgParam2=value2 [...]] [-y | --yes] [-w | --
wait time_duration] [-f | --force]

shardmanctl [common_options] shard -s | --shard shard_name add -n | --node node_names

shardmanctl [common_options] shard -s | --shard shard_name master set -n | --node node_names

shardmanctl [common_options] shard -s | --shard shard_name master reset

shardmanctl [common_options] shard -s | --shard shard_name reset [-y | --yes] [--new-primary | -p]

shardmanctl [common_options] shard -s | --shard shard_name rm -n | --node node_names [-f | --force]

shardmanctl [common_options] shard -s | --shard shard_name switch [--new-primary node_names]

shardmanctl [common_options] shard -s | --shard shard_name start [--no-wait] [-n | --node
node_name]

shardmanctl [common_options] shard -s | --shard shard_name stop [-n | --node node_name]

shardmanctl [common_options] shard -s | --shard shard_name replicas reinit [--no-wait] [-y | --
yes] [-n | --node node_names]

shardmanctl [common_options] status [--filter all | dictionary | primary | metadata | rg
| shardmand | store | topology | restart_required_params] [-f | --format text | json]
[-s | --sort node | rg | status]

shardmanctl [common_options] status transactions [-r | --repgroup replication_group_name]

shardmanctl [common_options] store dump [-f | --file filename]

shardmanctl [common_options] store restore [--delete-old-keys] [-f | --file filename] [-y | --yes]

shardmanctl [common_options] store get [-a | --alias cluster | ladle | repgroups | stolonspec
| spec] [-k | --key keyname] [-f | --file filename]

shardmanctl [common_options] store keys

shardmanctl [common_options] store set [-a | --alias cluster | ladle | repgroups | stolonspec
| spec] [-k | --key keyname] [-f | --file filename]

119

Shardman Reference

shardmanctl [common_options] store lock [-f | --format text | json]

shardmanctl [common_options] tables sharded info [-t | --table table]

shardmanctl [common_options] tables sharded list

shardmanctl [common_options] tables sharded norebalance

shardmanctl [common_options] tables sharded partmove [-t | --table table] [-s | --shard
shard_name] [-p | --partnum partition_number]

shardmanctl [common_options] tables sharded rebalance [-t | --table table] [--skip-run-
rebalance]

shardmanctl [common_options] upgrade

shardmanctl [common_options] bench init [--schema-type single|simple|shardman|custom] [-S |
--schema-file file_name] [-s | --scale scale_value] [--partitions partitions_value] [-n | --no-
vacuum] [-F | --fillfactor fillfactor_value]

shardmanctl [common_options] bench run [--schema-type single|simple|shardman|custom] [-f |
--file file_name] [-c | --client client_value] [-C | --connect] [--full-output] [-j | --jobs job-
s_value] [-s | --scale scale_factor] [-T | --time seconds] [-t | --transactions transactions_value]
[-P | --progress seconds] [-R | --rate rate] [-M | --protocol querymode]

shardmanctl [common_options] bench cleanup

shardmanctl [common_options] bench generate [-c | --config config_file] [-o | --output-file
file_name]

shardmanctl [common_options] script [-s | --shard shard_name] [[-f | --file file_name | --sql query]]

shardmanctl [common_options] psql -s | --shard shard_name

shardmanctl [common_options] daemon set [--session-log-level | debug | info | warn | error] [--
session-log-format | text | json] [--session-log-nodes]

shardmanctl [common_options] history [-r | --reverse] [-f | --format text | json] [-l | --limit
number_of_commands]

Here common_options are:

[--cluster-name cluster_name] [--log-level error | warn | info | debug] [--monitor-port port] [--
retries retries_number] [--session-timeout seconds] [--store-endpoints store_endpoints] [--
store-ca-file store_ca_file] [--store-cert-file store_cert_file] [--store-key client_pri-
vate_key] [--store-timeout duration] [--version] [-h | --help]

Description

shardmanctl is an utility for managing a Shardman cluster.

For any command that uses the node name as an argument, the node name can be specified either by its hostname or IP address.

The backup command is used to backup a Shardman cluster. A backup consists of a directory with base backups of all replication
groups and WAL files needed for recovery. etcd metadata is saved to the etcd_dump file. The backup_info file is created during
a backup and contains the backup description. For details of the backup command logic, see Cluster backup with pg_basebackup.
For usage details of the command, see the section called “Backing up a Shardman Cluster”.

The cleanup command is used for cleanup after failure of the nodes add command or of the shardmanctl rebalance
command. Final changes to the etcd store are done at the end of the command execution. This simplifies the cleanup process.
During cleanup, incomplete clover definitions and definitions of the corresponding replication groups are removed from the etcd
metadata. Definitions of the corresponding foreign servers are removed from the DBMS metadata of the remaining replication
groups. Since the cleanup process can be destructive, by default, the tool operates in the report-only mode: it only shows actions

120

Shardman Reference

to be done during the actual cleanup. To perform the actual cleanup, add the -p flag. For usage details of the command, see the
section called “Performing Cleanup”.

The daemon check command is used to verify that shardmand daemon is running on the nodes specified by --nodes option and
is configured for the same cluster as shardmanctl . For usage details of the command, see the section called “Checking shardmand
Service on Nodes”.

The init command is used to register a new Shardman cluster in the etcd store or to reinitialize the existing cluster defining a new
cluster configuration and removing all data and nodes. In the init mode, shardmanctl reads the cluster specification, processes it and
saves to the etcd store as parts of two JSON documents: ClusterSpec — as part of shardman/cluster0/data/clus-
ter and LadleSpec — as part of shardman/cluster0/data/ladle (cluster0 is the default cluster name used by
Shardman utilities). Common options related to the etcd store, such as --store-endpoints, are also saved to the etcd store
and pushed down to all Shardman services started by shardmand. For the description of the Shardman initialization file format, see
sdmspec.json. For usage details of the command, see the section called “Registering a Shardman Cluster”.

The config generate command is used to create a default sdmspec.json template. By default, data is returned to the
standard output. To write the result to a file, use flag -f filename. For the description of the Shardman initialization file format,
see sdmspec.json.

The config verify command is used to check a correctness of the input Shardman initialization file. By default, the configuration
is read from standard input. To read the configuration from a file, use flag -f filename. For the description of the Shardman
initialization file format, see sdmspec.json.

The config get command is used to output the current full cluster specification or a configuration of the specified revision.
The command takes the current cluster configuration from the cluster store. For the description of the Shardman initialization file
format, see sdmspec.json.

The config update command is used to update the stolon or full Shardman configuration. The new configuration is applied
to all replication groups and is saved in shardman/cluster0/data/cluster etcd key. Note that config update can
cause a DBMS restart.

The forall command is used to execute an SQL statement on all replication groups in a Shardman cluster.

The getconnstr command is used to get the libpq connection string for connecting to a cluster as administrator.

The load command is used to upload data from a text file to a distributed table or to upload a database schema from a PostgreSQL
database to Shardman. When loading data from a file, text and csv formats are supported. If a file is compressed with gzip, it will
be automatically decoded while reading. To read data from stdin, specify --file=-. The data loading process can be optimized
by specifying the number of parallel workers (key -j).

The nodes add command is used to add new nodes to a Shardman cluster. With the default cross placement policy, nodes are
added to a cluster by clovers. Each node in a clover runs the primary DBMS instance and perhaps several replicas of other nodes in
the clover. The number of replicas is determined by the Repfactor configuration parameter. So, each clover consists of Repfactor
+ 1 nodes and can stand loss of Repfactor nodes.

With manual placement policy, each new node is added as a replication group consisting of one primary server. After adding primary
nodes, you can add replicas to the new replication group by calling the shard add command.

shardmanctl performs the nodes add operation in several steps:

1. Acquires a global metadata lock.

2. For each specified node, checks that shardmand is running on it and that it sees the current cluster configuration.

3. Calculates the services to be present on each node and saves this information in etcd as part of the shardman/clus-
ter0/data/ladle Layout object.

4. Generates the configuration for new stolon clusters (also called replication groups) and initializes them.

5. Registers the added replication groups in the shardman/cluster0/data/ladle etcd key.

6. Waits for shardmand to start all the necessary services, checks that new replication groups are accessible and have correct
configuration.

121

Shardman Reference

7. Creates an auxiliary broadcaster that holds locks on each existing replication group in the cluster.

8. For each new replication group, copies all schemas and shardman schema data from a randomly selected existing replication
group to the new one, ensures that the Shardman extension is installed on the new replication group, and recalculates OIDs used
in the extension configuration tables.

9. On each existing replication group, defines foreign servers referencing the new replication group and recreates definitions of
foreign servers on the new replication group.

10. Recreates all partitions of sharded tables as foreign tables referencing data from old replication groups and has the changes
registered in the etcd storage.

11. For each new replication group, copies the global table data from existing replication groups to the new one.

12. Rebalances partitions of sharded tables. The rebalancing process for each sharded table iteratively determines the replication
group with the maximum and minimum number of partitions and creates a task to move one partition to the replication group
with the minimum number of partitions. This process is repeated while max - min > 1. To move partitions, we use logical
replication. Partitions of colocated tables are moved together with partitions of the distributed tables to which they refer. You
can skip this step using the --no-rebalance.

For usage details of the command, see the section called “Adding Nodes to a Shardman Cluster”.

The nodes rm command is used to remove nodes from a Shardman cluster. In the manual-topology mode, this command only
removes the specified nodes from the cluster and if a node is the last in the replication group, the entire group gets removed. In the
cross-replication mode, this command removes clovers containing the specified nodes from the cluster. The last clover in the cluster
cannot be removed. Any data (such as partitions of sharded relations) on removed replication groups is migrated to the remaining
replication groups using logical replication, and all references to the removed replication groups (including definitions of foreign
servers) are removed from the metadata of the remaining replication groups. Finally, the metadata in etcd is updated. For usage
details of the command, see the section called “Removing Nodes from a Shardman cluster”.

The probackup command is used to backup and restore the Shardman cluster using pg_probackup backup utility. For details
of the probackup command logic, see Backup anf Recovery Shardman Backups using pg_probackup. For usage details of the
command, see the section called “ probackup ”.

The rebalance command is used to evenly rebalance sharded tables in a cluster. This can be useful, for example, if you did
not perform rebalance when adding nodes to the cluster. If the --force option is not provided, then tables with manually moved
partitions will be skipped.

The cleanup command with flag --after-rebalance is used to perform cleanup after failure of a rebalance command. On each
node, it cleans up subscriptions and publications left from the rebalance command and drops tables that store data of partial-
ly-transferred partitions of sharded tables.

The cluster repfactor set command is used to set the value of the replication factor for the Shardman cluster. This command
can only be used in manual topology cluster mode. The value of the new replication factor is passed through the command line
flag --value repfactor.

The cluster start command is used to start all stopped PostgreSQL instances with the cluster stop command. For the
command to work, shardmand must be running.

The cluster stop command is used to stop all PostgreSQL instances for the Shardman cluster. At the same time, the shardmand
daemons continue to work.

The cluster topology command is used visualize the topology of a cluster. By default, the topology is returned in a table
view. If you want to get a JSON or text representation, then use the flag --format json|text.

The recover command is used to restore a Shardman cluster from a backup created by the backup command. For details of the
recover command logic, see Cluster recovery from a backup using pg_basebackup. For usage details of the command, see the
section called “Restoring a Shardman Cluster”.

The restart command is used to restart a Shardman cluster, including all shardmand instances. If PostgreSQL instances were
previously stopped using the cluster stop command, they will be started. The command returns control after all primary nodes
in the cluster have been restarted.

122

Shardman Reference

The set command is used to set one or more parameters for DBMS instances of the Shardman cluster. Parameters are passed as
arguments to the command line, each of them looks like param=value. The command is actually an alternative to shardmanctl
config update -p to update database settings.

The status command is used to display health status of Shardman cluster subsystems. It can show status of several components:
store, metadata, shardmand, replication groups, primary nodes, dictionary, and restart of the required parameters. If only some
subsystems are of interest, option --filter may be used. Also status supports sorting its messages by status, node or
replication group and printing the result to stdout as a table (table), text (text) or JSON (json) with table as the
default. For usage details of the command, see the section called “Getting the Status of Cluster Subsystems”.

The store dump command gets all the keys and their values from the etcd store and outputs them into the --file, where -
value is used for outputting to stdout (default). It is intended to be used for debugging, so some harmless errors may be produced
during execution, yet all the available information will be dumped. Only keys for the current cluster (with current cluster prefix like
shardman/cluster0/) will be dumped. For usage details of the command, see the section called “Dumping All Keys from the
Store to Debug Error Configuration”.

The store get command gets a particular value from the store by its key name. It is expected to be a JSON value, so if it is not
(which is not prohibited), some harmless errors may be produced. The key to retrieve from store can be specified with --key option;
several keys have aliases — short names for easy use. To get a key by its alias, use --alias option with one of the available aliases
(use --help or examples below for reference). Also aliases stolonspec and spec can be used to manipulate initial cluster and stolon
configuration explicitly, without retrieving it from the full cluster specification. It is recommended to use existing aliases instead of
full key names since there are some additional checks in alias processing, which help to achieve safer results. By default, a key is
printed to stdout (explicitly — with --file=- option), but can be output to any desired file. For usage details of the command,
see the section called “Getting the Current stolon Specification”.

The store keys command shows all the keys in the store for the current cluster (with cluster prefix) and its aliases. Aliases
stolonspec and spec are not shown since they are parts of other keys. For usage details of the command, see the section called
“Getting the Cluster and Ladle Key Names For the Current Cluster”.

The store set command creates or rewrites one particular key in the store. It is not expected to be a JSON value for a random
key, but if it is one of the keys that have aliases with a known mapping (like ladle or cluster), the command will not accept
incorrect JSON structures. Just like store get command, store set accepts a key name via --key or --alias option and
the input source file as --file (stdin is specified with - value). For usage details of the command, see the section called “Setting
a New Spec for the Cluster”.

The store lock command show the current cluster meta lock information. In case lock does not exist returns Lock not
found. Displays cluster id, command that acquired locks, host name and lock time. You can specify --format to output in json
format or in text format (by default). For usage details of the command, see the section called “Output Current Cluster Meta Lock
Information”.

The upgrade command is used to update the version of Postgresql shardman extension on all cluster nodes. Before upgrading
extensions, you need to install new packages and run the restart command. As a result of upgrade, utilities will upgrade
shardman and all the other extensions on the server.

Sometimes after running the upgrade command or some user's manual manipulations, dictionary errors may appear in the output of
the status command. One of the reasons for these errors is that the value of the srvoptions field of the pg_foreign_server
table differs from what the system expects. To solve this specific issue, use the config update fdw command, which will
return srvoptions to the expected state.

Note

Most of the described shardmanctl commands take a global metadata lock.

Command-line Reference

This section describes shardmanctl commands. For Shardman common options used by the commands, see the section called
“Common Options”.

123

Shardman Reference

backup

Syntax:

 shardmanctl [common_options] backup --datadir directory [--
maxtasks number_of_tasks] [--use-ssh]

Backs up a Shardman cluster.

--datadir directory

Required.

Specifies the directory to write the output to. If the directory exists, it must be empty. If it does not exist, shardmanctl creates
it (but not parent directories).

--maxtasks number_of_tasks

Specifies the maximum number of concurrent tasks (pg_probackup commands) to run.

Default: number of logical CPUs of the system.

--use-ssh

If specified shardmanctl recover command will use scp command to restore data. It allows to use backup repository on
the local host.

For more details, see the section called “Backing up a Shardman Cluster”

cleanup

Syntax:

shardmanctl [common_options] cleanup [-p|--processrepgroups] --after-node-operation|--
after-rebalance

Performs cleanup after the nodes add or rebalance command.

-p node_names
--processrepgroups=node_names

Perform an actual cleanup. By default, the tool only shows actions to be done during the actual cleanup. For more details, see
the section called “Performing Cleanup”.

--after-node-operation

Perform cleanup after a failure of a nodes add command.

--after-rebalance

Perform cleanup after a failure of a rebalance command.

config update credentials

Syntax:

shardmanctl [common_options] config update credentials [-u | --user] [-p | --password]
 [-k | --ssl-key] [-c | --ssl-cert] [-w|--wait time_duration] [--force] [-y | --yes]

Updates password or certificate/key of a user to connect to a Shardman cluster. It only updates the authentication type that was
specified by the user (scram-sha-256, ssl) and not the type itself.

-u
--user

User that requires an update of the authentication parameters.

124

Shardman Reference

-p
--password

New password.

-k
--ssl-key

New SSL key.

-c
--ssl-cert

New SSL certificate.

-w
--wait

Sets shardmanctl to wait for configuration changes to take effect. If a new configuration cannot be loaded by all replication
groups, shardmanctl will wait forever.

--force

Perform forced update if a cluster operation is in progress.

-y
--yes

Confirm the operation instead of asking approval from the standard input.

cluster repfactor set

Syntax:

shardmanctl [common_options] cluster repfactor set --value new_repfactor

Sets the replication factor for the manual-topology mode.

--value=new_repfactor

New replication factor value

cluster start

Syntax:

shardmanctl [common_options] cluster start

Starts all PostgreSQL server instances.

cluster stop

Syntax:

shardmanctl [common_options] cluster stop [-y|--yes]

Stops all PostgreSQL server instances.

-y
--yes

confirm the operation instead of asking approval from the standard input.

cluster topology

Syntax:

shardmanctl [common_options] cluster topology -f|--format table|json|text

Displays the cluster topology.

125

Shardman Reference

-f table|json|text
--format=table|json|text

Output format. For more details, see the section called “Displaying the Cluster Topology”.

daemon check

Syntax:

shardmanctl [common_options] daemon check -n|--nodes node_name:port

Checks shardmand on nodes.

-n node_name:port
--nodes=node_name:port

List of nodes to check shardmand on. For more details, see the section called “Checking shardmand Service on Nodes”.

forall

Syntax:

shardmanctl [common_options] forall --sql query[--sql query[--sql query ...]] [--
twophase]

Executes an SQL statement on all replication groups in a Shardman cluster.

--sql query

Specifies the statement to be executed.

--twophase

Use the two-phase-commit protocol to execute the statement.

getconnstr

Syntax:

shardmanctl [common_options] getconnstr --all

Gets the libpq connection string for connecting to a cluster as administrator.

--all

Adds replicas to getconnstr.

init

Syntax:

 shardmanctl [common_options] init [-y|--yes] [-f|--spec-
file spec_file_name]|spec_text

Registers a new Shardman cluster in the etcd store or reinitializes the existing cluster defining a new cluster configuration and
removing all data and nodes.

-f spec_file_name
--specfile=spec_file_name

Specifies the file with the cluster specification string. The value of - means the standard input. By default, the string is passed
in spec_text. For usage details, see the section called “Registering a Shardman Cluster”.

-y
--yes

Confirm the operation instead of asking approval from the standard input.

intcheck

Syntax:

126

Shardman Reference

 shardmanctl [common_options] intcheck [-s|--system] [-u|--user] [-c|--catalog] [-
o|--output] [-n|--node node]

Runs pg_integrity_check on all nodes of a Shardman cluster or on a selected one node.

-s
--system

Validate checksums for read-only files. Checksums for read-only files control both file contents and file attributes.

-u
--user

Validate checksums for additional files. Checksums for additional files control both file contents and file attributes.

-c
--catalog

Validate checksums for system catalog tables. For the -c option to work correctly, the database server must be started and
accept connections.

-o
--output

Recalculate checksums and write them into a file

-n node_names
--node=node_names

Only execute the pg_integrity_check command on the selected node

load

Syntax:

 shardmanctl [common_options] load [-b | --batch-size lines_limit] [--
destination-fields fields_list]
 [--distributed-keys key_type_list] [-D | --delimiter character]
 [--null_marker string] [-e | --escape character] [-f | --file input_file]
 [-F | --format text|csv] [-j | --jobs task_total] [-q | --quote character]
 [--reject-file filename] [--schema filename] [--source file|postgres]
 [--source-connstr connect_string] [--source-fields fields_list] [--source-
table source_table]
 [-t | --table destination_table]

Loads data to a Shardman cluster.

-b lines_limit
--batch-size=lines_limit

Number of rows per batch to write to the Shardman cluster.

Default: 1000.

--destination-fields=fields_list

Comma-separated list of target table fields. If the value is not set, then all fields of the table are used in the order they are declared.

--distributed-keys=key_type_list

Comma-separated list of pairs. Each pair consists of a field number (starting with zero) and a type, which are separated by a
colon. The following types are supported: bool, char, float4, float8, int2, int4, int8, name, text, varchar
and uuid.

127

Shardman Reference

-D character
--delimiter=character

Specifies the character that separates columns within each row (line) of the file. This must be a single one-byte character.

Default: tab for text format, comma for CSV format

--null_marker=string

Specifies the string that represents a null value.

Default: \N for text format, unquoted empty string for CSV format.

-e character
--escape=character

Specifies the character that should appear before a data character that matches the QUOTE value. The default is the same as
the QUOTE value (so that the quoting character is doubled if it appears in the data). This must be a single one-byte character.
This option is allowed only when using CSV format.

-f filename
--file=filename

Input data filename (or - for stdin)

-F text|csv
--format=text|csv

Input data format. Possible values are text and csv.

Default: text.

-j number
--jobs=number

Number of parallel processes to load data.

Default: number of replication groups.

-q character
--quote=character

Specifies the quoting character to be used when a data value is quoted. The default is double-quote. This must be a single one-
byte character. This option is allowed only when using CSV format.

--reject-file=filename

All data batches with errors during upload will be written to this file. If the value is not set, then such batches will be skipped.

--schema=filename

The schema that defines the rules for transferring data from PostgreSQL to Shardman. If this option is set, then all other options
are not used.

--source=file|postgres

Data source type — file or postgres.

Default: file.

--source-connstr=string

Data source database connection string

--source-fields=fields_list

Comma-separated list of source table fields. If the value is not set, then all fields of the table are used in the order they are
declared.

128

Shardman Reference

--source-table=table

Source table, view or function (funcname(param1,...,paramN)).

-t table
--table=table

Destination table.

nodes add

Syntax:

shardmanctl [common_options] nodes add -n|--nodes node_names [--no-rebalance]

Adds nodes to a Shardman cluster.

-n node_names
--nodes=node_names

Required.

Specifies the comma-separated list of nodes to be added.

--no-rebalance

Skip the step of rebalancing partitions of sharded tables. For more details, see the section called “Adding Nodes to a Shardman
Cluster”.

nodes rm

Syntax:

shardmanctl [common_options] nodes rm -n|--nodes node_names

Removes nodes from a Shardman cluster.

-n node_names
--nodes=node_names

Specifies the comma-separated list of nodes to be removed. For usage details, see the section called “Removing Nodes from
a Shardman cluster”.

probackup

Syntax:

shardmanctl [common_options] probackup
 [init|archive-command|backup|checkdb|delete|merge|restore|set-config|show|
validate|show-config]
 [--log-to-console][--help]
 [subcommand_options]

Creates a backup of a Shardman cluster and restores the Shardman cluster from a backup using pg_probackup.

List of subcommands:

init

Initializes a new repository folder for the Shardman cluster backup and creates a configuration file on all nodes for connection
to the backup storage if --storage-type is S3.

archive-command

Adds archive_command to each replication group (or to a single one if the --shard option is specified) and enables or
disables it in the Shardman cluster.

backup

Creates a backup of the Shardman cluster.

129

Shardman Reference

checkdb

Verifies the Shardman cluster correctness by detecting physical and logical corruption.

delete

Deletes a backup of the Shardman cluster with the specified backup_id.

merge

Merges the backups that belong to a common incremental backup chain. The full backup merges the backups with their first
incremental backup. The incremental backup merges the backups with their parent full backup, along with all the incremental
backups between them. Once the merge is complete, the full backup covers all the merged data, and the incremental backups
are removed as redundant. In this version, you cannot run the merge command using the S3 interface.

restore

Restores the Shardman cluster from the selected backup.

show

Shows the list of backups of the Shardman cluster.

validate

Checks the selected Shardman cluster backup for integrity.

show-config

Displays all the current pg_probackup configuration settings, including those that are specified in the pg_probackup.conf
configuration file located in the backup_dir/backups/shard_name directory and those that were provided on a com-
mand line.

set-config

Adds the specified settings to the pg_probackup.conf or modifies those previously added.

The following options can be used with all probackup subcommands:

--log-to-console

Outputs a full probackup log to the console. By default, for each replication group the probackup log file is written
to the backup directory (see --backup-path below) as the <backup-directory>/backup/log/pg_proback-
up-<repgroup-name>.log file. The log rotation file size is 20MB. If this value is reached, the log file is rotated once a
shardmanctl probackup validate or shardmanctl probackup backup command is launched.

--help

Shows subcommand help.

init

Syntax:

shardmanctl [common_options] probackup init
-B|--backup-path path
-E|--etcd-path path
[--remote-port port]
[--remote-user username]
[--ssh-key path]
[-t|--timeout seconds]
[-m|--maxtasks number_of_tasks]
[--storage-type mount|remote|S3]
[--s3-config-only]
[--s3-config-path path]

130

Shardman Reference

[--s3-host S3_host]
[--s3-port S3_port]
[--s3-access-key S3_access_key]
[--s3-secret-key S3_secret_key]
[--s3-bucket S3_bucket]
[--s3-region S3_region]
[--s3-buffer-size size]
[--s3-retries number_of_retries]
[--s3-timeout time]
[--s3-https]
[-y|--yes]

Initializes a new repository folder for the Shardman cluster backup.

-B path
--backup-path path

Required if --s3-config-only is not used. Specifies the path to the backup catalog where Shardman cluster backups should
be stored.

-E path
--etcd-path path

Required if --s3-config-only is not used. Specifies the path to the catalog where the etcd dumps should be stored.

--remote-port port

Specifies the remote ssh port for replication group instances.

Default: 22.

--remote-user username

Specifies the remote ssh user for replication group instances.

Default: postgres.

--ssh-key path

Specifies the ssh private key for execution of remote ssh commands.

Default: $HOME/.ssh/id_rsa.

--storage-type mount|remote|S3

Type of the backup storage. If the value is remote, SSH is used to copy data files to the remote backup directory. But this
behavior is different if a directory mounted to all nodes or an S3-compatible object storage is used to store backups. To specify
these kinds of storage, the value of the --storage-type option is set to mount or S3, respectively.

Default: remote.

--s3-config-path path

Specifies the path where the S3 configuration file will be created on all Shardman nodes.

Default: <shardman-data-dir>/s3.config.

--s3-config-only

Create only S3 configuration files on all nodes and skip backup repository initialization. This flag is useful if the value of --
storage-type is S3.

--s3-host host

Specifies the S3 host to connect to S3-compatible storage.

131

Shardman Reference

--s3-port port

Specifies the S3 port to connect to S3-compatible storage.

--s3-access-key access-key

Specifies the S3 access key to connect to S3-compatible storage.

--s3-secret-key access-key

Specifies the S3 secret key to connect to the S3-compatible storage.

--s3-bucket bucket

Specifies the bucket in the S3-compatible object storage for storing backups.

--s3-region bucket

Specifies the region in the S3-compatible object storage.

--s3-buffer-size size

Size of the read/write buffer for pg_probackup to communicate with the S3-compatible object storage, in MiB.

Default: 16.

--s3-retries number_of_retries

Maximum number of attempts for pg_probackup to execute an S3 request in case of failures.

Default: 5.

--s3-timeout time

Maximum allowable amount of time for pg_probackup to transfer data of size --s3-buffer-size to/from the S3-compat-
ible object storage, in seconds.

Default: 300.

--s3-https

Specifies the HTTPS URL to connect to the S3-compatible object storage.

-y|--yes

Approve the operation regardless of whether the file specified in --s3-config-path exists.

archive-command

Syntax:

shardmanctl [common_options] probackup archive-command [add|rm]
 -B|--backup-path path
 [-j|--jobs count]
 [--compress]
 [--compress-algorithm algorithm]
 [--compress-level level]
 [--batch-size batch_size]
 [--storage-type mount|remote|S3]
 [--remote-port port]
 [--remote-user username]
 [-s|--shard shard-name]
 [--s3-config-path path]
 [-y|--yes]

Adds/removes and enables/disables the archive command for every replication group in the Shardman cluster to put WAL logs into
the initialized backup repository.

132

Shardman Reference

add

Adds and enables the archive command for every replication group in the Shardman cluster.

rm

Disables the archive command in every replication group in the Shardman cluster. No additional options are required.

-B path
--backup-path path

Required when adding archive_command. Specifies the path to the backup catalog where the Shardman cluster backups
should be stored.

--batch-size batch_size

To speed up the archiving, specify the --batch-size option to copy the WAL segments in batches of a specified size. If the
--batch-size option is used, it is also possible to specify the -j option to copy a batch of the WAL segments on multiple
threads.

--jobs count
-j count

The number of parallel threads that pg_probackup uses when creating a backup. Default: 1.

--compress

Enables backup compression. If this flag is not specified, compression will be disabled. If the flag is specified, the default zstd
algorithm is used with the compression level set to 1, while other compression options are ignored even if they are specified.

--compress-algorithm algorithm

Defines the compression algorithm: zlib, lz4, zstd, pglz, or none. Once defined, it checks if the values are valid within
the scale of the defined algorithm.

The supported compression algorithms depend on the version of Postgres Pro Enterprise that includes the pg_probackup used,
as explained in Compression Options.

Default: none.

--compress-level level

Defines the compression level — 0-9 for zlib, 1 for pglz, 0-22 for zstd, and 0-12 for lz4.

Default: 1.

--storage-type mount|remote|S3

Type of the backup storage. If the value is remote, SSH is used to copy data files to the remote backup directory. But this
behavior is different if a directory mounted to all nodes or an S3-compatible object storage is used to store backups. To specify
these kinds of storage, the value of the --storage-type option is set to mount or S3, respectively.

Default: remote.

--remote-port port

Specifies the remote ssh port for replication group instances.

Default: 22.

--remote-user username

Specifies the remote ssh user for replication group instances.

Default: postgres.

133

https://postgrespro.com/docs/enterprise/14/app-pgprobackup#PBK-COMPRESSION-OPTS

Shardman Reference

-s|--shard shard-name

Specifies the name of the shard where the archive command must be added, enabled or disabled. If not specified, the
archive command is enabled or disabled for every shard.

--s3-config-path path

Specifies the path to the S3 configuration file.

Default: <shardman-data-dir>/s3.config.

-y
--yes

Confirm the restart instead of asking approval from the standard input. Only applies for the add command.

backup

Syntax:

shardmanctl [common_options] probackup backup -B|--backup-path path
 -E|--etcd-path path
 -b|--backup-mode MODE
 [-j|--jobs count]
 [--compress]
 [--compress-algorithm algorithm]
 [--compress-level level]
 [--batch-size batch_size]
 [--storage-type mount|remote|S3]
 [--remote-port port]
 [--remote-user username]
 [--ssh-key path]
 [-t|--timeout seconds]
 [-m|--maxtasks number_of_tasks]
 [--log-directory path]
 [--s3-config-path path]
 [--no-validate]
 [--skip-block-validation]
 [--log-to-console]
 [--retention-redundancy]
 [--retention-window]
 [--wal-depth]
 [--delete-wal]
 [--delete-expired]
 [--merge-expired]
 [-y | --yes]
 [--lock-lifetime]

Creates a backup of the Shardman cluster.

-B path
--backup-path path

Required. Specifies the path to the backup catalog where Shardman cluster backups should be stored.

-E path
--etcd-path path

Required. Specifies the path to the catalog where the etcd dumps should be stored.

-b MODE
--backup-mode MODE

Required. Defines the backup mode: FULL, PAGE, DELTA, PTRACK.

134

Shardman Reference

--batch-size batch_size

To speed up the archiving, specify the --batch-size option to copy the WAL segments in batches of a specified size. If the
--batch-size option is used, it is also possible to specify the -j option to copy a batch of the WAL segments on multiple
threads.

--jobs count
-j count

The number of parallel threads that pg_probackup uses when creating a backup. Default: 1.

--compress

Enables backup compression. If this flag is not specified, compression will be disabled. If the flag is specified, the default zstd
algorithm is used with the compression level set to 1, while other compression options are ignored even if they are specified.

--compress-algorithm algorithm

Defines the compression algorithm: zlib, lz4, zstd, pglz, or none.

The supported compression algorithms depend on the version of Postgres Pro Enterprise that includes the pg_probackup used,
as explained in Compression Options.

Default: none.

--compress-level level

Defines the compression level — 0-9 for zlib, 1 for pglz, 0-22 for zstd, and 0-12 for lz4.

Default: 1.

--remote-port port

Specifies the remote ssh port for replication group instances.

Default: 22.

--remote-user username

Specifies the remote ssh user for replication group instances.

Default: postgres.

--ssh-key path

Specifies the ssh private key for execution of remote ssh commands.

Default: $HOME/.ssh/id_rsa.

-t seconds
--timeout seconds

Exit with error after waiting until the cluster is ready for the specified number of seconds.

-m number_of_tasks
--maxtasks number_of_tasks

Specifies the maximum number of concurrent tasks (pg_probackup commands) to run.

Default: number of logical CPUs of the system.

--no-validate

Skip automatic validation after the backup is taken. You can use this flag if you validate backups regularly and would like to
save time when running backup operations.

Default: false.

135

https://postgrespro.com/docs/enterprise/14/app-pgprobackup#PBK-COMPRESSION-OPTS

Shardman Reference

--skip-block-validation

Disables block-level checksum verification to speed up the backup process.

Default: false.

--storage-type mount|remote|S3

Type of the backup storage. If the value is remote, SSH is used to copy data files to the remote backup directory. But this
behavior is different if a directory mounted to all nodes or an S3-compatible object storage is used to store backups. To specify
these kinds of storage, the value of the --storage-type option is set to mount or S3, respectively.

Default: remote.

--log-to-console

Enables output of the pg_probackup logs to the console.

Default: false.

--log-directory path

Specifies the directory for pg_probackup logs. Required if --storage-type is set to S3 unless the SDM_LOG_DIRECTORY
environment variable is set.

Default: <backup-directory>/backup/log.

--s3-config-path path

Specifies the path to the S3 configuration file.

Default: <shardman-data-dir>/s3.config.

--retention-redundancy=redundancy

Specifies the number of full backup copies to keep in the data directory. Must be a non-negative integer. The zero value disables
this setting.

Default: current value of the pg_probackup.conf file, 0 if not specified.

--retention-window=window

Number of days of recoverability. Must be a non-negative integer. The zero value disables this setting.

Default: current value of the pg_probackup.conf file, 0 if not specified.

--wal-depth=wal_depth

Number of latest valid backups on every timeline that must retain the ability to perform PITR. Must be a non-negative integer.
The zero value disables this setting.

Default: current value of the pg_probackup.conf file, 0 if not specified.

--delete-wal

Deletes WAL files that are no longer required to restore the cluster from any of the existing backups.

Default: false.

--delete-expired

Deletes backups that do not conform to the retention policy.

Default: false.

--merge-expired

Merges the oldest incremental backup that satisfies the requirements of retention policy with its parent backups that have already
expired.

136

Shardman Reference

Default: false.

-y
--yes

Confirm the restart instead of asking approval from the standard input.

--lock-lifetime

Allows setting the maximum time that probackup can hold the lock, in seconds.

Default: 1800.

checkdb

Syntax:

shardmanctl [common_options] probackup checkdb
[--amcheck [--skip-block-validation] [--heapallindexed]] [--shard shard]
[-m|--maxtasks number_of_tasks]

Verifies the Shardman cluster correctness by detecting physical and logical corruption.

--amcheck

Performs logical verification of indexes if no corruption was found while checking data files. You must have the amcheck
extension or the amcheck_next extension installed in the database to check its indexes. For databases without amcheck, index
verification will be skipped. The amcheck extension is included with the Shardman package.

--heapallindexed

Checks that all heap tuples that should be indexed are actually indexed. You can use this flag only together with the --amcheck
flag. This option is effective depending on the version of amcheck/amcheck_next installed. The amcheck extension included
in the Shardman package supports this verification.

--skip-block-validation

Skip validation of data files. You can use this flag only together with the --amcheck flag, so that only logical verification
of indexes is performed.

--shard shard

Perform the verification only on the specified shard. By default, the verification is performed on all shards.

-m number_of_tasks
--maxtasks number_of_tasks

Specifies the maximum number of concurrent tasks (pg_probackup commands) to run.

Default: number of logical CPUs of the system.

delete

Syntax:

shardmanctl [common_options] probackup delete -B|--backup-path path
 [-i|--backup-id backup_id]
 [-j|--jobs count]
 [-m|--maxtasks number_of_tasks]
 [--storage-type mount|remote|S3]
 [--s3-config-path path]
 [--delete-wal]
 [-y|--yes]
 [--retention-redundancy]
 [--retention-window]
 [--wal-depth]
 [--delete-expired]
 [--merge-expired]

137

https://postgrespro.com/docs/postgresql/14/amcheck#AMCHECK
https://github.com/petergeoghegan/amcheck

Shardman Reference

Deletes a backup of the Shardman cluster with specified backup_id or launches the retention purge of backups and archived WAL
that do not satisfy the current retention policies.

Note that backup_id cannot be used with merge-expired or delete-expired.

-B path
--backup-path path

Required. Specifies the path to the backup catalog (or key in the bucket of the S3-compatible storage) where Shardman cluster
backups should be stored.

-i backup_id
--backup-id backup_id

Specifies the unique identifier of the backup.

--jobs count
-j count

The number of parallel threads that pg_probackup uses when creating a backup. Default: 1.

-m number_of_tasks
--maxtasks number_of_tasks

Specifies the maximum number of concurrent tasks (pg_probackup commands) to run.

Default: number of logical CPUs of the system.

--storage-type mount|remote|S3

Type of the backup storage. If the value is remote, SSH is used to copy data files to the remote backup directory. But this
behavior is different if a directory mounted to all nodes or an S3-compatible object storage is used to store backups. To specify
these kinds of storage, the value of the --storage-type option is set to mount or S3, respectively.

Default: remote.

To delete the backup that was created with a --storage-type option with a S3 value, set a --storage-type option
to a S3 value in the delete command.

--s3-config-path path

Specifies the path to the S3 configuration file.

Default: <shardman-data-dir>/s3.config.

--delete-wal

Deletes WAL files that are no longer required to restore the cluster from any of the existing backups.

Default: false.

-y
--yes

Approve operation.

Default: false.

--retention-redundancy=redundancy

Specifies the number of full backup copies to keep in the data directory. Must be a non-negative integer. The zero value disables
this setting.

Default: current value of the pg_probackup.conf file, 0 if not specified.

--retention-window=window

Number of days of recoverability. Must be a non-negative integer. The zero value disables this setting.

138

Shardman Reference

Default: current value of the pg_probackup.conf file, 0 if not specified.

--wal-depth=wal_depth

Number of latest valid backups on every timeline that must retain the ability to perform PITR. Must be a non-negative integer.
The zero value disables this setting.

Default: current value of the pg_probackup.conf file, 0 if not specified.

--delete-expired

Deletes backups that do not conform to the retention policy.

Default: false.

--merge-expired

Merges the oldest incremental backup that satisfies the requirements of retention policy with its parent backups that have already
expired.

Default: false.

merge

Syntax:

shardmanctl [common_options] probackup merge -B|--backup-path path
 -i|--backup-id backup_id
 [-j|--jobs count]
 [-m|--maxtasks number_of_tasks]
 [--no-validate]
 [--no-sync]
 [-y|--yes]

Merges the backups that belong to a common incremental backup chain. The full backup merges the backups with their first incre-
mental backup. The incremental backup merges the backups with their parent full backup, along with all the incremental backups
between them. Once the merge is complete, the full backup covers all the merged data, and the incremental backups are removed
as redundant.

-B path
--backup-path path

Required. Specifies the path to the backup catalog where Shardman cluster backups should be stored.

-i backup_id
--backup-id backup_id

Required. Specifies the unique identifier of the backup.

--jobs count
-j count

The number of parallel threads that pg_probackup uses when creating a backup. Default: 1.

-m number_of_tasks
--maxtasks number_of_tasks

Specifies the maximum number of concurrent tasks (pg_probackup commands) to run.

Default: number of logical CPUs of the system.

--no-sync

Do not sync merged files to disk. You can use this flag to speed up the merge process. Using this flag can result in data corruption
in case of operating system or hardware crash.

139

Shardman Reference

Default: false.

--no-validate

Skip automatic validation before and after merge.

Default: false.

-y
--yes

Approve the operation.

Default: false.

restore

Syntax:

shardmanctl [common_options] probackup restore
 -B|--backup-path path
 -i|--backup-id id
 -j|--jobs count
 [--recovery-target-time timestamp]
 [-I|--recovery-mode incremental_mode]
 [-t|--timeout seconds]
 [-m|--maxtasks number_of_tasks]
 [--metadata-only] [--schema-only] [--shard shard]
 [--no-validate]
 [--skip-block-validation]
 [--s3-config-path path]
 [--storage-type mount|remote|S3]
 [--wal-limit number_of_wal_segments]
 [--log-directory path]
 [--data-validate]

Restores a Shardman cluster from the selected backup.

-B path
--backup-path path

Required. Specifies the path to the backup catalog where Shardman cluster backups should be stored.

-i id
--backup-id id

Required. Specifies backup ID for restore.

--jobs count
-j count

The number of parallel threads that pg_probackup uses when restoring from a backup. Default: 1.

--recovery-target-time timestamp

Point-in-Time Recovery (PITR) option. Specifies the timestamp for restore. Example: '2024-01-25 15:30:36' in UTC.

-I incremental_mode
--recovery-mode incremental_mode

Specifies the incremental restore mode to be used. Possible values are:

• checksum — replace only pages with mismatched checksum and LSN.
• lsn — replace only pages with LSN greater than point of divergence.
• none — regular restore, default.

140

Shardman Reference

-t seconds
--timeout seconds

Exit with error after waiting until the cluster is ready or the recovery is complete for the specified number of seconds.

--metadata-only

Perform metadata-only restore. By default, full restore is performed.

--schema-only

Perform schema-only restore. By default, full restore is performed.

--shard shard

Perform restoring only on the specified shard. By default, restoring is performed on all shards.

--no-validate

Skip backup validation. You can use this flag if you validate backups regularly and would like to save time when running
restore operations.

Default: false.

--skip-block-validation

Disable block-level checksum verification to speed up validation. During automatic validation before the restore only file-level
checksums will be verified.

Default: false.

--s3-config-path path

Specifies the path to the S3 configuration file.

Default: <shardman-data-dir>/s3.config.

--storage-type mount|remote|S3

Type of the backup storage. If the value is remote, SSH is used to copy data files to the remote backup directory. But this
behavior is different if a directory mounted to all nodes or an S3-compatible object storage is used to store backups. To specify
these kinds of storage, the value of the --storage-type option is set to mount or S3, respectively. When creating backup
with a --storage-type option with a S3 value, set --storage-type option to a S3 value in the restore command.

Default: remote.

--wal-limit number_of_wal_segments

Specifies the number of WAL segments in which the closest synchronization points will be searched in the case of PITR.

Default: 0 — no limit.

--log-directory path

Specifies the directory for pg_probackup logs. Required if --storage-type is set to S3 unless the SDM_LOG_DIRECTORY
environment variable is set.

Default: <backup-directory>/backup/log.

--data-validate

If enabled, verifies data with probackup validate before restoring.

Default: false.

show

Syntax:

141

Shardman Reference

shardmanctl [common_options] probackup show
 -B|--backup-path path
 [-f|--format table|json]
 [--archive]
 [-i|--backup-id backup-id]
 [--instance instance]
 [--storage-type mount|remote|S3]
 [--s3-config-path path]

Shows the list of backups of the Shardman cluster.

-B path
--backup-path path

Required. Specifies the path to the backup catalog where Shardman cluster backups should be stored.

-f table|json
--format table|json

Specifies the output format.

Default: table.

--archive

Shows the WAL archive information.

-i backup-id
--backup-idbackup-id

Shows information about the specific backups.

--instanceinstance

Shows information about the specific instance.

--s3-config-path path

Specifies the path to the S3 configuration file.

Default: <shardman-data-dir>/s3.config.

--storage-type mount|remote|S3

Type of the backup storage. If the value is remote, SSH is used to copy data files to the remote backup directory. But this
behavior is different if a directory mounted to all nodes or an S3-compatible object storage is used to store backups. To specify
these kinds of storage, the value of the --storage-type option is set to mount or S3, respectively. To show a backup that
was created with the S3 value of --storage-type, set --storage-type to S3 in the show command.

Default: remote.

show-config

Syntax:

shardmanctl [common_options] probackup show-config
 -B backup_path
 [--format=text|json]
 [--no-scale-units]
 -s|--shard shard_name
 [--s3-config-path path]
 [--storage-type mount|remote|S3]

Displays all the current pg_probackup configuration settings, including those that are specified in the pg_probackup.conf
configuration file located in the backup_dir/backups/shard_name directory and those that were provided on a command
line.

142

Shardman Reference

-B string
--backup-path=string

Required. Specifies the absolute path to the backup catalog.

--format text|json

Specifies the output format.

Default: text.

--no-scale-units

Output the configuration parameter values for the time and the amount of memory in the default units.

Default: false.

-s string
--shard=string

A name of the shard to execute the show-config command for.

--s3-config-path path

Specifies the path where the S3 configuration file will be created on all Shardman nodes.

Default: <shardman-data-dir>/s3.config.

--storage-type mount|remote|S3

Type of the backup storage. If the value is remote, SSH is used to copy data files to the remote backup directory. But this
behavior is different if a directory mounted to all nodes or an S3-compatible object storage is used to store backups. To specify
these kinds of storage, the value of the --storage-type option is set to mount or S3, respectively.

Default: remote.

validate

Syntax:

shardmanctl [common_options] probackup validate
 -B|--backup-path path
 -i|--backup-id id
 [-t|--timeout seconds]
 [-m|--maxtasks number_of_tasks]
 [--log-to-console]
 [--storage-type mount|remote|S3]
 [--s3-config-path path]
 [--log-directory path]
 [--remote-port port]
 [--remote-user username]

Checks the selected Shardman cluster backup for integrity.

-B path
--backup-path path

Required. Specifies the path to the backup catalog where Shardman cluster backups should be stored.

-i id
--backup-id id

Required. Specifies backup ID for validation.

--log-to-console

Enables output of pg_probackup logs to the console.

143

Shardman Reference

Default: false.

-t seconds
--timeout seconds

Exit with error after waiting until the cluster is ready for the specified number of seconds.

-m number_of_tasks
--maxtasks number_of_tasks

Specifies the maximum number of concurrent tasks (pg_probackup commands) to run.

Default: number of logical CPUs of the system.

--s3-config-path path

Specifies the path to the S3 configuration file.

Default: <shardman-data-dir>/s3.config.

--storage-type mount|remote|S3

Type of the backup storage. If the value is remote, SSH is used to copy data files to the remote backup directory. But this
behavior is different if a directory mounted to all nodes or an S3-compatible object storage is used to store backups. To specify
these kinds of storage, the value of the --storage-type option is set to mount or S3, respectively. To validate a backup
that was created with the S3 value of --storage-type, set --storage-type to S3 in the validate command.

Default: remote.

--log-directory path

Specifies the directory for pg_probackup logs. Required if --storage-type is set to S3 unless the SDM_LOG_DIRECTORY
environment variable is set.

Default: <backup-directory>/backup/log.

--remote-port port

Specifies the remote ssh port for replication group instances.

Default: 22.

--remote-user username

Specifies the remote ssh user for replication group instances.

Default: postgres.

--ssh-key path

Specifies the ssh private key for execution of remote ssh commands.

Default: $HOME/.ssh/id_rsa.

set-config

Syntax:

shardmanctl [common_options] probackup set-config
 [--archive-timeout int]
 [-B | --backup-path string]
 [-m |--maxtasks int]
 [--remote-port int]
 [--remote-user string]
 [--retention-redundancy int]
 [--retention-window int]
 [--wal-depth int]

144

Shardman Reference

 [--s3-config-path string]
 [-s |--shard string]
 [--storage-type string]

Adds the specified settings to the pg_probackup.conf or modifies those previously added.

--archive-timeout int

Sets a timeout for the WAL segment archiving and streaming, in seconds.

Default: pg_probackup waits for 300 seconds.

-B string
--backup-path=string

Specifies the absolute path to the backup catalog.

-m int
--maxtasks=int

Specifies the maximum number of concurrent tasks (pg_probackup commands) to run.

Default: number of logical CPUs of the system.

--remote-port int

An SSH remote backup port.

Default: 22.

--remote-user string

An SSH remote backup user.

--retention-redundancy int

Specifies the number of the full backup copies to store in the data directory. It must be set to a non-negative integer. The zero
value disables this setting.

Default: 0.

--retention-window int

A number of days of recoverability. It must be set to a non-negative integer. The zero value disables this setting.

Default: 0.

--wal-depth int

A number of the latest valid backups on every timeline that must retain the ability to perform PITR. Must be set to a non-
negative integer. The zero value disables this setting.

--s3-config-path string

A path to the S3 configuration file.

Default: /var/lib/pgpro/sdm-14/data/s3.config

-s string
--shard=string

A name of the shard to make the set-config command for. If not specified, the command is run for all the shards.

Default: current value of the pg_probackup.conf file.

--storage-type string

A backup storage type, the possible values are remote, mount, S3.

145

Shardman Reference

Default: remote.

rebalance

Syntax:

shardmanctl [common_options] rebalance [-f|--force]

Rebalances sharded tables.

-f
--force

Perform forced rebalance of sharded tables whose partitions were manually moved.

recover

Syntax:

shardmanctl [common_options] recover [--info file] [--dumpfile file] [--shard shard]
 [--metadata-only][--schema-only] [--timeout seconds]

Restores a Shardman cluster from a backup created by the backup command.

--dumpfile file

Required for metadata-only restore.

Specifies the file to load the etcd metadata dump from.

--info file

Required for full restore.

Specifies the file to load information about the backup from.

--shard shard

Perform restoring only on the specified shard. By default, restoring is performed on all shards.

--metadata-only

Perform metadata-only restore. By default, full restore is performed.

--schema-only

Perform schema-only restore. By default, full restore is performed.

--timeout seconds

Exit with error after waiting until the cluster is ready or the recovery is complete for the specified number of seconds.

For more details, see the section called “Restoring a Shardman Cluster”

restart

Syntax:

 shardmanctl [common_options] restart [-y|--yes] [--no-wait]

Restarts a Shardman cluster.

-y
--yes

Confirm the operation instead of asking approval from the standard input.

--no-wait

Do not wait for the replicas to start.

146

Shardman Reference

shard add

Syntax:

shardmanctl [common_options] shard -s|--shard shard_name add -n|--nodes node_names [--
no-wait]

Adds a replica to a shard.

-s shard_name
--shard=shard_name

Shard name.

-n node_names
--nodes=node_names

Specifies the comma-separated list of replica nodes to be added.

--no-wait

Do not wait for the shard to start.

shard master set

Syntax:

shardmanctl [common_options] shard -s|--shard shard_name master set -n| node node_names

Sets the precedence for a certain primary server for a specified shard.

-s shard_name
--shard=shard_name

Shard name.

master set

Primary server with precedence.

-n node_names
--nodes=node_names

Specifies the comma-separated list of replica nodes.

shard master reset

Syntax:

shardmanctl [common_options] shard -s|--shard shard_name master reset

Resets the parameters of the master with precedence for the shard.

-s shard_name
--shard=shard_name

Shard name.

master reset

Resets the parameters of the master with precedence for the shard.

-n node_names
--nodes=node_names

Specifies the comma-separated list of replica nodes.

shard add

Syntax:

147

Shardman Reference

shardmanctl [common_options] shard -s|--shard shard_name reset [--yes | -y][--new-
primary | -p]

Resets nodes of a replication group if they are in a state of hanging.

-s shard_name
--shard=shard_name

Shard name.

-y
--yes

Confirm the operation instead of asking approval from the standard input.

--new-primary
-p

New primary node host.

shard rm

Syntax:

 shardmanctl [common_options] shard -s|--shard shard_name rm -n|--nodes node_names
 [-f|--force]

Removes a replica from a shard.

-s shard_name
--shard=shard_name

Shard name

-n node_names
--nodes=node_names

Specifies the comma-separated list of replica nodes to be removed.

-f
--force

Perform forced removal of the node, even if it is dead.

shard switch

Syntax:

 shardmanctl [common_options] shard -s|--shard shard_name switch [--new-
primary node_names]

Switches the primary node.

-s shard_name
--shard=shard_name

Shard name.

--new-primary=node_names

New primary node host.

shard start

Syntax:

 shardmanctl [common_options] shard -s |--shard shard_name start [--no-wait] [-n|--
node node_name]

148

Shardman Reference

Starts the shard.

-s shard_name
--shard=shard_name

Shard name.

--no-wait

Do not wait for the shard to start.

-n node_name
--node=node_name

Specifies the node to start.

shard stop

Syntax:

 shardmanctl [common_options] shard -s |--shard shard_name stop [-n|--
node node_name]

Stops the shard.

-s shard_name
--shard=shard_name

Shard name.

-n node_name
--node=node_name

Specifies the node to stop.

shard replicas reinit

Syntax:

 shardmanctl [common_options] shard -s|--shard shard_name replicas reinit [-n|--
node node_names] [-y|--yes] [--no-wait]

Resets replicas of a specific shard.

-s shard_name
--shard=shard_name

Shard name.

-n node_names
--node=node_names

Specifies the node on which to reset replicas. If not specified, checks shard replicas on all nodes.

-y
--yes

Confirm the operation instead of asking approval from the standard input.

--no-wait

Do not wait wait for replicas to become ready.

For more details, see the section called “Reinitializing Replicas”

nodes start

Syntax:

149

Shardman Reference

 shardmanctl [common_options] nodes start -n|--nodes node_names [--no-wait]

Starts the nodes.

-n node_names
--nodes=node_names

Node names.

--no-wait

Sets shardmanctl not to wait for the nodes to start.

nodes restart

Syntax:

 shardmanctl [common_options] nodes restart -n|--nodes node_names [--no-wait]

Restarts the nodes.

-n node_names
--nodes=node_names

Node names.

--no-wait

Do not wait for the nodes to restart.

nodes stop

Syntax:

 shardmanctl [common_options] nodes stop -n|--nodes node_names [--no-wait]

Stops the nodes.

-n node_names
--nodes=node_names

Node names.

--no-wait

Do not wait for the nodes to stop.

status

Syntax:

 shardmanctl [common_options] status [-f|--format table|json] [--
filter store|metadata|shardmand|rg|master|dictionary|all|restart_required_params] [-
s|--sort node|rg|status]

Reports on the health status of Shardman cluster subsystems.

-f table|json
--format=table|json

Specifies the report format.

Default: table.

For more details, see the section called “Getting the Status of Cluster Subsystems”.

150

Shardman Reference

--filter store|metadata|shardmand|rg|master|dictionary|allrestart_required_params

Specifies subsystems whose status information should be included in the output.

Default: all.

For more details, see the section called “Getting the Status of Cluster Subsystems”.

-s node|rg|status
--sort node|rg|status

Sort messages inside one group (table) as specified.

Default: node.

For more details, see the section called “Getting the Status of Cluster Subsystems”.

status transactions

Syntax:

 shardmanctl [common_options] status transactions [-r|--
repgroup replication_group_name

Shows distributed transactions that Shardman built-in monitoring tools failed to resolve.

-r replication_group_name
--repgroup=replication_group_name

Specifies the replication group for which to output transactions.

Default: all replication groups.

For more details, see the section called “Outputting the List of Unresolved Distributed Transactions”.

store dump

Syntax:

 shardmanctl [common_options] store dump [-f|--file filename]

Dumps current cluster specifications from the store.

-f filename
--file=filename

Specifies the output file (- for stdout).

Default: -.

For more details, see the section called “Dumping All Keys from the Store to Debug Error Configuration”.

store restore

Syntax:

 shardmanctl [common_options] store restore [--delete-old-keys][-f|--file filename]
[-y|--yes]

Allows to safely restore the etcd cluster from the dump. To do this, shardmand must be disabled on every shard. Also, it only
works for the cold backup.

--delete-old-keys

Clean all the etcd keys before restoring.

151

Shardman Reference

-f filename
--file=filename

Specifies the name of the etcd keys dump.

-y
--yes

Perform automatic confirmation.

store lock

Syntax:

 shardmanctl [common_options] store lock [-f|--format text|json]

Shows the current cluster meta lock information.

-f=text|json
--format=text|json

Specifies the output format.

Default: text.

For more details, see the section called “Output Current Cluster Meta Lock Information”.

store get

Syntax:

 shardmanctl [common_options] store get [[-a|--alias aliasname]|[-k|--key keyname]
 [-f|--file filename]]

Gets the specified key from the store.

-a aliasname
--alias=ladle|cluster |spec|stolonspec

Specifies the use of alias instead of the full key name. Cannot be used with --key.

For more details, see the section called “Getting the Current stolon Specification”.

-k keyname
--key=keyname

Specifies the key to retrieve from the store. Cannot be used with --alias.

For more details, see the section called “Getting the Current stolon Specification”.

-f filename
--file=filename

Specifies the file to print the value to.

Default: - (stdout).

For more details, see the section called “Getting the Current stolon Specification”.

store keys

Syntax:

 shardmanctl [common_options] store keys

Gets all keys with the current cluster prefix from the store.

152

Shardman Reference

For more details, see the section called “Getting the Cluster and Ladle Key Names For the Current Cluster”.

store set

Syntax:

 shardmanctl [common_options] store set [[-a|--alias aliasname]|[-k|--key keyname]]
 [-f|--file filename]

Creates or rewrites a key in the store.

-a ladle|cluster |spec|stolonspec
--alias=ladle|cluster |spec|stolonspec

Specifies the use of alias instead of the full key name. Cannot be used with --key.

-k keyname
--key=keyname

Specifies the key name to set in the store. Cannot be used with --alias.

-f filename
--file=filename

Specifies the file with input data (- for stdin).

For more details, see the section called “Setting a New Spec for the Cluster”.

tables sharded info

Syntax:

 shardmanctl [common_options] tables sharded info [-t|--table table_name]

Gets information about a sharded table.

-t table
--table=table

Specifies the name of the table in the format schema.table

tables sharded list

Syntax:

 shardmanctl [common_options] tables sharded list

Gets the list of all sharded tables.

tables sharded norebalance

Syntax:

 shardmanctl [common_options] tables sharded norebalance

Gets the list of sharded tables with automatic rebalancing disabled.

tables sharded partmove

Syntax:

 shardmanctl [common_options] tables sharded partmove [-t|--table table_name] [-s|--
shard shard_name] [-p|--partnum number]

Moves the specified partition of a sharded table to a new shard.

153

Shardman Reference

-t table
--table=table

Specifies the name of the table in the format schema.table.

-p number
--partnum=number

Specifies the number of the partition to move.

-s shard_name
--shard=shard_name

Specifies the name of the new shard for the partition.

tables sharded rebalance

Syntax:

 shardmanctl [common_options] tables sharded rebalance [-t|--table table_name]

Enables and runs automatic data rebalancing for the selected sharded table.

-t table
--table=table

Specifies the name of the table in the format schema.table.

config get

Syntax:

shardmanctl [common_options] config get [-c | --choose-revision] [-r | --revision] [-f
 | --file]

Outputs the current full cluster specification or a configuration of the specified revision.

-c
--choose-revision

Enables an interactive mode of choosing a configuration of the specified revision.

-r
--revision

ID of a configuration revision.

-f file_name
--file=file_name

Name of a file for writing the configuration. If not specified, the value is stdout.

config revisions rm

Syntax:

shardmanctl [common_options] config revisions rm [-r | --revision] [-y | --yes]

Deletes a specified configuration revision from history.

-r
--revision

ID of a configuration revision. If not specified, enables an interactive mode of choosing a configuration of the specified revision.
This is a timestamp of an operation that resulted in Shardman configuration change.

-y
--yes

Perform automatic confirmation.

154

Shardman Reference

config update

Syntax:

shardmanctl [common_options] config update [[-f|--file stolon_spec_file|
shardman_spec_file]|spec_text [-p|--patch][-w|--wait]] [--force] [-y | --yes]

Updates the stolon or full Shardman configuration.

-f stolon_spec_file|shardman_spec_file
--specfile=stolon_spec_file|shardman_spec_file

Specifies the file with the stolon or full Shardman configuration. The configuration file type is determined automatically. The
value of - means the standard input. By default, the configuration is passed in spec_text.

-w
--wait

Sets shardmanctl to wait for configuration changes to take effect. If a new configuration cannot be loaded by all replication
groups, shardmanctl will wait forever.

-p
--patch

Merge the new configuration into the existing one. By default, the new configuration replaces the existing one.

--force

Perform forced update if a cluster operation is in progress.

-y
--yes

Confirm the restart necessary for the parameters to take effect. If this option is not specified, and the parameters update requires
a restart, the manual confirmation will be requested. If not confirmed, the cluster will continue to work, yet the new parameter
values will only take effect after the restart.

config rollback

Syntax:

shardmanctl [common_options] config rollback [-r | --revision] [-w|--
wait time_duration] [--force] [-y|--yes]

Makes a rollback of Shardman to one of the previous states. When rolling back to the config revision that has max_connections,
max_prepared_transactions, or max_worker_processes parameters, the replicas are reinitialized.

-r
--revision

ID of a revision the rollback must be made to. It is a timestamp of an operation that resulted in Shardman configuration change.

If not specified, a user is presented with a list of revisions that he can choose from.

-w
--wait

Sets shardmanctl to wait for configuration changes to take effect. If a new configuration cannot be loaded by all replication
groups, shardmanctl will wait forever.

Default: 1h.

-f
--force

Perform forced setting of a parameter if a cluster operation is in progress.

155

Shardman Reference

-y
--yes

Perform automatic confirmation.

config revisions

Syntax:

shardmanctl [common_options] config revisions [-f|--format text|json]

Outputs the revision history of the Shardman cluster configuration. It has the following information for each revision:

• revision_id — timestamp of the command that resulted in the Shardman cluster configuration change

• host — name of the host from which this command was executed

• user — user who executed this command

• command — the command itself

-f=text|json
--format=text|json

Specifies the output format.

Default: text.

config revisions set

Syntax:

shardmanctl [common_options] config revisions set [--keep-config-revisions]

Allows setting the length of the configuration revision history. This length cannot be lower than 5, in which case it is automatically
set to 5. For Shardman clusters where the configuration revision history was not collected yet, the length is automatically set to 20.

--keep-config-revisions

A limit on the number of revisions for one Shardman configuration. If the limit is lower than the current history length, the
older versions out of this limit will be deleted. Also, if the number of operations resulting in configuration changes exceeds
the limit, the oldest revision is deleted.

Default: 20.

config update ip

Syntax:

shardmanctl [common_options] config update ip [-u|ip_1=ip_2,hostname_1=hostname_2][-
y|--yes]

Updates the specified node IPs in the cluster.

-u
ip_1=ip_2,hostname_1=hostname_2

Specifies the node IPs to be updated.

-y
--yes

Perform automatic confirmation.

set

Syntax:

shardmanctl [common_options] set pgParam1=value1 [pgParam2=value2 [...]] [-y|--yes] [-
w|--wait time_duration] [-f|--force]

Sets the values of the specified Shardman cluster database parameters.

156

Shardman Reference

-w
--wait

Sets shardmanctl to wait for configuration changes to take effect. Value examples: 2h45m, 1m30s, 5m, 10s.

Default: 1h.

-y
--yes

Confirm the restart necessary for the parameters to take effect. If this option is not specified, and the parameters update requires
a restart, the manual confirmation will be requested. If not confirmed, the cluster will continue to work, yet the new parameter
values will only take effect after the restart.

-f
--force

Perform forced setting of a parameter if a cluster operation is in progress.

upgrade

Syntax:

shardmanctl [common_options] upgrade

Upgrades the shardman database extension and updates pg_foreign_server options.

bench init

Syntax:

shardmanctl [common_options] bench init [--schema-type single|simple|shardman|custom]
[--schema-file file_name] [-s|--scale scale_value] [-n|--no-vacuum]
[-F|--fillfactor fillfactor_value]

Initializes the benchmark schema via pgbench. Schema can be custom or predefined. Creates tpc-b schema tables and fills them.

--schema-type=single|simple|shardman|custom

Type of schema used by schema initialization. Possible values:

• single — schema for a single PostgreSQL benchmark test

• simple — simple sharded schema

• shardman — sharded schema optimized for Shardman

• custom — schema initialized by the user from the --schema-file file

Default schema: shardman.

--schema-file=file_name

File with DDL query for the custom schema type, to be used to create tpc-b tables for pgbench: pgbench_accounts,
pgbench_branches, pgbench_tellers, pgbench_history.

-s scale_value
--scale=scale_value

Multiply the number of generated rows by the given scale factor.

-n
--no-vacuum

Perform no vacuuming during initialization.

-F fillfactor_value
--fillfactor=fillfactor_value

Fill pgbench tables with the given fillfactor value.

157

Shardman Reference

bench run

Syntax:

shardmanctl [common_options] bench run [--schema-type single|simple|shardman|custom]
[-f|--file file_name] [-c|--client client_value] [-C|--connect] [--full-output]
[-j|--jobs jobs_value][-T|--time seconds][-t|--transactions transactions_value]
[-s|--scale scale_factor] [-P | --progress seconds] [-R | --rate rate] [-M | --
protocol querymode]

Runs the initialized benchmark via pgbench. Can use the default pgbench script or a custom script from a file.

--schema-type=single|simple|shardman|custom

Type of schema used by schema initialization (bench init). Possible values:

• single — schema for single PostgreSQL benchmark

• simple — simple sharded schema

• shardman — sharded schema optimized for Shardman

• custom — schema initialized by the user from the --schema-file file.

Default schema: shardman.

-f file_name
--file=file_name

Add a transaction script read from filename to the list of scripts to be executed.

Optionally, write an integer weight after @ to adjust the probability of selecting this script versus other ones. The default
weight is 1. (To use a script file name that includes an @ character, append a weight so that there is no ambiguity, for example
filen@me@1).

-c client_value
--client=client_value

Number of clients simulated, that is, number of concurrent database sessions.

-C
--connect

Establish a new connection for each transaction rather than doing it just once per client session.

--full-output

Print all pgbench output.

-j jobs_value
--jobs=jobs_value

Number of worker threads within pgbench.

-s scale_factor
--scale=scale_factor

Multiply the number of generated rows by + the given scale factor.

-T seconds
--time=seconds

Run the test for this many seconds instead of a fixed number of transactions per client.

-t transactions_value
--transactions=transactions_value

Number of transactions each client runs.

Default: 10.

158

Shardman Reference

-P seconds
--progress=seconds

Show progress report every sec seconds. The report includes the time since the beginning of the run, the TPS since the last
report, and the transaction latency average, standard deviation, and the number of failed transactions since the last report. Under
throttling (-R), the latency is computed with respect to the transaction scheduled start time, not the actual transaction beginning
time, thus it also includes the average schedule lag time. When --max-tries is used to enable transaction retries after
serialization/deadlock errors, the report includes the number of retried transactions and the sum of all retries.

-R rate
--rate=rate

Execute transactions targeting the specified rate instead of running as fast as possible (the default). The rate is given in transac-
tions per second. If the targeted rate is above the maximum possible rate, the rate limit won't impact the results.

-M querymode
--protocol=querymode

Protocol to use for submitting queries to the server:

• simple: use simple query protocol.

• extended: use extended query protocol.

• prepared: use extended query protocol with prepared statements.

In the prepared mode, pgbench reuses the parse analysis result starting from the second query iteration, so pgbench runs
faster than in other modes.

Default: simple.

bench cleanup

Syntax:

shardmanctl [common_options] bench cleanup

Cleans up schema database after benchmarks. Drops tpc-b tables.

bench generate

Syntax:

shardmanctl [common_options] bench generate [-c|--config file_name] [-o|--output-
file file_name]

Gets the benchmark configuration from a file and generates a bash script to create a schema optimized for Shardman and run the
benchmark using pgbench. The configuration file must be in yaml format.

-f file_name
--file=file_name

The configuration file path. The file contains a sequence of script confugurations. Each script must have a schema_type:
single|simple|shardman|custom. For a custom schema it is necessary to specify the schema_file with the DDL
script. Optional parameters: init_flags (default set: -s 1000), run_flags (default set: -n -P 10 -c 10 -j 4 -T
60), partitions (default value: 50). It is highly recomended to use -n (--no-vacuum) parameter inside run_flags.
Configuration file example:

 benches:
 - schema_type: single
 init_flags: "-s 3"
 run_flags: "-n -P 10 -c 10 -j 4 -T 10"
 - schema_type: simple
 init_flags: "-s 4"
 run_flags: "-n -P 10 -c 20 -j 4 -T 10"
 partitions: 100
 - schema_type: shardman

159

Shardman Reference

 init_flags: "-s 5"
 run_flags: "-n -P 10 -c 20 -j 4 -T 10"
 - schema_type: custom
 init_flags: "-s 6"
 schema_file: "schema.psql"

-o file_name
--output-file=file_name

Output file. Default: stdout.

script

Syntax:

shardmanctl [common_options] script -s|--shard shard_name][[-f|--file file_name][--
sql query]]

Executes non-transactional commands from a file or from the command-line on the specified shards.

-s shard_name
--shard=shard_name

Shard name.

-f file_name
--file=file_name

Add a transaction script from the file_name file to the list of scripts to be executed.

--sql query

Specifies the statement to be executed and can only be used separately from -f.

psql

Syntax:

shardmanctl [common_options] psql -s|--shard shard_name

Connects to the first available primary node if no options are specified.

-s shard_name
--shard=shard_name

Name of the shard. If specified, the connection is installed with this shard current primary.

daemon set

Syntax:

shardmanctl [common_options] daemon set [--session-log-level debug | info | warn |
 error] [--session-log-format json|text] [--session-log-nodes]

Allows updating the log parameters “on the fly”.

--session-log-level debug | info | warn | error

Updates the log level to debug, info, warn, or error.

--session-log-format json|text

Updates the log output format to text or json.

--session-log-nodes

Specifies which cluster nodes must be updated. If not specified, the parameters are updated on every node.

Default: all nodes.

160

Shardman Reference

history

Syntax:

shardmanctl [common_options] history [--reverse | -r] [-f|--format json|text] [-l|--
limit number_of_commands]

Shows history of the commands that updated the cluster. By default, they are sorted from the most recent to the oldest ones.

-r
--reverse

Switches to the ascending sorting order.

-f json|text
--format=json|text

Output format.

Default: text.

-l
--limit=number_of_commands

Limit for the number of the most recent commands in the output. The maximum value is 200.

Default: 20.

Common Options

shardmanctl common options are optional parameters that are not specific to the utility. They specify etcd connection settings, cluster
name and a few more settings. By default shardmanctl tries to connect to the etcd store 127.0.0.1:2379 and use the cluster0
cluster name. The default log level is info.

-h, --help

Show brief usage information.

--cluster-name cluster_name

Specifies the name for a cluster to operate on. The default is cluster0.

--log-level level

Specifies the log verbosity. Possible values of level are (from minimum to maximum): error, warn, info and debug.
The default is info.

--retries number

Specifies how many times shardmanctl retries a failing etcd request. If an etcd request fails, most likely, due to a connectivity
issue, shardmanctl retries it the specified number of times before reporting an error. The default is 5.

--session-timeout seconds

Specifies the session timeout for shardmanctl locks. If there is no connectivity between shardmanctl and the etcd store for the
specified number of seconds, the lock is released. The default is 30.

--store-endpoints string

Specifies the etcd address in the format: http[s]://address[:port](,http[s]://address[:port])*. The de-
fault is http://127.0.0.1:2379.

--store-ca-file string

Verify the certificate of the HTTPS-enabled etcd store server using this CA bundle.

--store-cert-file string

Specifies the certificate file for client identification by the etcd store.

161

Shardman Reference

--store-key string

Specifies the private key file for client identification by the etcd store.

--store-timeout duration

Specifies the timeout for a etcd request. The default is 5 seconds.

--monitor-port number

Specifies the port for the shardmand http server for metrics and probes. The default is 15432.

--api-port number

Specifies the port for the shardmand http api server. The default is 15432.

--version

Show shardman-utils version information.

Environment

SDM_BACKUP_MODE

An alternative to setting the --backup-mode option.

SDM_BACKUP_PATH

An alternative to setting the --backup-path option.

SDM_CLUSTER_NAME

An alternative to setting the --cluster-name option.

SDM_ETCD_PATH

An alternative to setting the --etcd-path option.

SDM_FILE

An alternative to setting the --file option for config update.

SDM_LOG_LEVEL

An alternative to setting the --log-level option.

SDM_NODES

An alternative to setting the --nodes option for nodes add and nodes rm.

SDM_RETRIES

An alternative to setting the --retries option.

SDM_SPEC_FILE

An alternative to setting the --spec-file option for init.

SDM_STORE_ENDPOINTS

An alternative to setting the --store-endpoints option.

SDM_STORE_CA_FILE

An alternative to setting the --store-ca-file option.

SDM_STORE_CERT_FILE

An alternative to setting the --store-cert-file option.

162

Shardman Reference

SDM_STORE_KEY

An alternative to setting the --store-key option.

SDM_STORE_TIMEOUT

An alternative to setting the --store-timeout option.

SDM_SESSION_TIMEOUT

An alternative to setting the --session-timeout option.

Usage

Adding Nodes to a Shardman Cluster

To add nodes to a Shardman cluster, run the following command:

shardmanctl [common_options] nodes add -n|--nodes node_names

You must specify the -n (--nodes) option to pass the comma-separated list of nodes to be added. Nodes can be referred by their
hostname or IP address. Hostnames must be correctly resolved on all nodes.

If nodes add command fails during execution, use the cleanup --after-node-operation command to fix possible
cluster configuration issues.

Performing Cleanup

By default, cleanup operates in the report-only mode, that is, the following command will only show actions to be done during
actual cleanup:

 shardmanctl [common_options] cleanup --after-node-operation|--after-rebalance

To perform the actual cleanup, run the following command:

 shardmanctl [common_options] cleanup -p|--processrepgroups --after-node-
operation|--after-rebalance

Displaying the Cluster Topology

cluster topology displays the current cluster topology. The default is the table mode. All cluster nodes will be grouped by
the replication groups they belong to. For each node, its status will be displayed.

 shardmanctl [common_options] cluster topology -f|--format table|json|text

Checking shardmand Service on Nodes

daemon check not only checks that shardmand service is running on specified nodes, but also assures those services are configured
for the same cluster as shardmanctl:

 shardmanctl [common_options] daemon check -n|--nodes node_names

Removing Nodes from a Shardman cluster

To remove nodes from a Shardman cluster, run the following command:

shardmanctl [common_options] nodes rm -n|--nodes node_names

Specify the -n (--nodes) option to pass the comma-separated list of nodes to be removed.Recreates all partitions of sharded tables

Note
Do not use the cleanup command to fix possible cluster configuration issues after a failure of nodes rm. Redo the
nodes rm command instead.

163

Shardman Reference

To remove all nodes in a cluster and not care about the data, just reinitialize the cluster. If a removed replication group contains local
(non-sharded and non-global) tables, the data is silently lost after the replication group removal.

Getting the Status of Cluster Subsystems

To get a report on the health status of Shardman cluster in a table format for metadata and store subsystems sorted by replication
group, run the following command:

 shardmanctl [common_options] status --filter=metadata,store --sort=rg

To get the report in JSON format, use -f|--format=json option (omitted above since table format is used by default). Each
detected issue is reported as an Unknown, Warning, Error or Fatal error status. The tool can also report an Operational error, which
means there was an issue during the cluster health check. When the command encounters a Fatal or Operational error, it stops further
diagnostics. For example, an inconsistency in the store metadata does not allow correct cluster operations and must be handled first.

Outputting the List of Unresolved Distributed Transactions

To view the list of distributed transactions that Shardman built-in monitoring tools failed to resolve, run the following command:

 shardmanctl [common_options] status transactions -r|--
repgroup replication_group_name

Each output transaction consists of tx_id (transaction ID), coordinator_id, creation_time and description (error
or transaction status). To display the list of transactions for a specific replication group, use the -r|--repgroup option (for all
replication groups by default). In case there are no such transactions, returns null value in JSON.

Dumping All Keys from the Store to Debug Error Configuration

After facing an error while using Shardman cluster, to fill in an exhaustive report, it is convinient to dump all specifications that
could produce such an error with the following command:

 shardmanctl [common_options] store dump -f|--file filename

Some harmless errors may be shown, but they will not interrupt dumping. If you do not specify the filename, dump will be sent to
stdout and may pollute your terminal.

Getting the Current stolon Specification

To get the current stolon specification, which is normally a part of cluster key in the store, use the following command:

 shardmanctl [common_options] store get -a|--alias stolonspec -f|--file filename

If the cluster key is corrupted itself, stolon specification will not be shown either. Instead of using the alias, you may also find out
the full cluster data key name (by listing all keys with store keys command), use store get to retrieve it and find the stolon
part there. Mind that while using the last option, shardman.config_uuid parameter will not be deleted, which may result in
a conflict in later use of this data; for manipulation with stolon specification, it is recommended to use shardmanctl store
get -a stolonspec command.

Getting the Cluster and Ladle Key Names For the Current Cluster

To get all key names in the store at once, run the following command:

 shardmanctl [common_options] store keys

It can only be shown in JSON format. It will also print alias names for keys that have them (excluding stolonspec and spec,
since they are parts of other keys)

Output Current Cluster Meta Lock Information

You can view information about current cluster meta locks that acquired by any command:

 shardmanctl [common_options] store lock -f|--format json

To get the report in JSON format, use -f|--format=json option (omitted above since text format is used by default). In case
the lock does not exists returns Lock not found

164

Shardman Reference

Setting a New Spec for the Cluster

To set a new spec part of the cluster specification, run the following command:

 shardmanctl [common_options] store set --alias=spec --file=spec.json

Since spec is a part of cluster data key, it cannot be set with --key. If the provided file is not a valid JSON, the new spec part
will not be set.

Backing up a Shardman Cluster

Requirements for backing up and restoring a Shardman cluster using the basebackup command are listed in Section 2.6.1.1.

To backup a Shardman cluster, you can run the following command:

 shardmanctl [common_options] backup --datadir directory [--use-ssh]

You must pass the directory to write the output to through the --datadir option. You can limit the number of running concurrent
tasks (pg_receivewal or pg_basebackup commands) by passing the limit through the --maxtasks option.

If --use-ssh is specified shardmanctl recover command will use scp command to restore data. It allows to use backup
repository on the local host.

Registering a Shardman Cluster

To register a Shardman cluster in the etcd store, run the following command:

 shardmanctl [common_options] init [-y|--yes] [-f|--spec-
file spec_file_name]|spec_text

You must provide the string with the cluster specification. You can do it as follows:

• On the command line — do not specify the -f option and pass the string in spec_text.

• On the standard input — specify the -f option and pass - in spec_file_name.

• In a file — specify the -f option and pass the filename in spec_file_name.

Restoring a Shardman Cluster

shardmanctl can perform either full restore, metadata-only or schema-only restore of a Shardman cluster from a backup created by
the backup command.

To perform full restore, you can run the following command:

 shardmanctl [common_options] recover --info file

Pass the file to load information about the backup from through the --info option. In most cases, set this option to point to the
backup_info file in the backup directory or to its modified copy.

If you encounter issues with an etcd instance, it makes sense to perform metadata-only restore. To do this, you can run the following
command:

 shardmanctl [common_options] recover --dumpfile file --metadata-only

You must pass the file to load the etcd metadata dump from through the --dumpfile option.

If you need to restore only schema information, like: tables, roles and etc. you should specify --schema-only option.

For all kinds of restore, you can specify --timeout for the tool to exit with error after waiting until the cluster is ready or the
recovery is complete for the specified number of seconds.

You can specify --shard parameter for restoring only on the single shard.

165

Shardman Reference

Before running the recover command, specify DataRestoreCommand and RestoreCommand in the backup_info
file. DataRestoreCommand fetches the base backup and restores it to the stolon data directory. RestoreCommand fetches
the WAL file and saves it to stolon pg_wal directory. These commands can use the following substitutions:

%p

Destination path on the server.

%s

SystemId of the restored database (the same in the backup and in restored cluster).

%f

Name of the WAL file to restore.

stolon keeper thread runs both commands on each node in the cluster. Therefore:

• Make the backup accessible to these nodes (for example, by storing it in a shared filesystem or by using a remote copy proto-
col, such as SFTP).

• Commands to fetch the backup are executed as the operating system user under which stolon daemons work (usually post-
gres), so set the permissions for the backup files appropriately.

These examples show how to specify RestoreCommand and DataRestoreCommand:

• If a backup is available through a passwordless SCP, you can use:

 "DataRestoreCommand": "scp -r user@host:/var/backup/shardman/%s/backup/* %p",
 "RestoreCommand": "scp user@host:/var/backup/shardman/%s/wal/%f %p"

• If a backup is stored on NFS and available through /var/backup/shardman path, you can use:

 "DataRestoreCommand": "cp -r /var/backup/shardman/%s/backup/* %p",
 "RestoreCommand": "cp /var/backup/shardman/%s/wal/%f %p"

Backing up a Shardman Cluster Using probackup Command

Requirements for backing up and restoring a Shardman cluster using the probackup command are listed in Section 2.6.3.1.

For example, following these requirements, on the backup host:

 groupadd postgres
 useradd -m -N -g postgres -r -d /var/lib/postgresql -s /bin/bash

Then add SSH keys to provide passwordless SSH connection between the backup host and Shardman cluster hosts. Then on the
backup host:

 apt-get install pg-probackup shardman-utils
 mkdir -p directory
 chown postgres:postgres directory -R
 shardmanctl [common_options] probackup init --backup-path=directory --etcd-
path=directory/etcd --remote-user=postgres --remote-port=22
 shardmanctl [common_options] probackup archive-command --backup-path=directory --
remote-user=postgres --remote-port=22

If all the requirements are met, then run the backup subcommand for the cluster backup:

shardmanctl [common_options] probackup backup --backup-path=directory --etcd-
path=directory --backup-mode=MODE

You must pass the directories through the --backup-path and --etcd-path options and backup mode through --back-
up-mode. Full and delta backups are available with FULL, DELTA, PTRACK and PAGE values. Also it is possible to specify backup

166

Shardman Reference

compression options through --compress, --compress-algorithm and --compress-level flags, as well as specify
--remote-port and --remote-user flags. You can limit the number of running concurrent tasks when doing backup by
passing the limit through the --maxtasks flag.

By default, copying data via SSH is used to create a backup. To copy data to a mounted partition instead, use the --storage-type
option with the mount value. This value will be automatically used in the restore process.

You can also copy data to an S3-compatible object storage. To do this, use the --storage-type option with the S3 value.
When this value is used, it is required to specify the directory for pg_probackup logs. You can do it either by specifying --log-
directory for each command or set the environment variable SDM_LOG_DIRECTORY, for example:

export SDM_LOG_DIRECTORY=/backup/logs

If you are going to perform backup/restore only for an S3-compatible object storage, you can also set an environment variable instead
of specifying --storage-type in each probackup command:

export SDM_STORAGE_TYPE=S3

Restoring a Shardman Cluster using probackup command

shardmanctl in probackup mode can perform either full restore, metadata-only or schema-only restore of a Shardman cluster from
a backup created by the probackup backup command.

To perform full or partial restore, firstly you must select needed backup to restore from. To show list of available backups run the
following command:

shardmanctl [common_options] probackup show --backup-path=path --format=format [--
archive] [-i|--backup-id backup-id] [--instance instance]

The output should be a list of backups with their IDs in a table or JSON format. Then pick the needed backup ID and run the
probackup restore command.

shardmanctl [common_options] probackup restore --backup-path=path --backup-id=id

Pass the path to the repo through the --backup-path option and backup ID througt --backup-id flag.

If you encounter issues with an etcd instance, it makes sense to perform metadata-only restore. To do this, you can run the following
command:

shardmanctl [common_options] probackup restore --backup-path=path --backup-id=id --
metadata-only

If you need to restore only schema information, like: tables, roles and etc. you should specify --schema-only option.

For both kinds of restore, you can specify --timeout for the tool to exit with error after waiting until the cluster is ready or the
recovery is complete for the specified number of seconds.

You can specify --shard parameter for restoring only on the single shard.

Also you can specify --recovery-target-time option for Point-in-Time Recovery. In this case Shardman finds the closest
syncpoint to specified timestamp and suggests restoring on the found LSN. You can also specify --wal-limit to limit the number
of WAL segments to be processed.

Important
Before restoring a Shardman cluster, make sure that the cluster is up by executing the shardmanctl status command.
If the output shows errors, performing the restore can result in the cluster becoming unavailable. First, fix the errors by
reinitializing the cluster and restoring the etcd metadata. Then you can proceed to restoring the cluster from backup.

Reinitializing Replicas

If replicas are in an incorrect state, you can reset them using the shardmanctl command:

167

Shardman Reference

shardmanctl [common_options] shard --shard=shard_name replicas reinit

This command determines the nodes on which replicas of the specified shard are running and sends a request to shardmand on these
nodes. After receiving this request, shardmand clears the postgres data directory and restarts the keeper thread that is responsible
for managing the replica. After that, the replicas are restarted and begin to receive data from the corresponding primary.

Examples

Initializing the Cluster

To initialize a Shardman cluster that has the cluster0 name, uses an etcd cluster consisting of n1,n2 and n3 nodes listening
on port 2379, ensure proper settings in the spec file sdmspec.json and run:

$ shardmanctl --store-endpoints http://n1:2379,http://n2:2379,http://n3:2379 init -f
 sdmspec.json

Getting the Cluster Connection String

To get the connection string for a Shardman cluster that has the cluster0 name, uses an etcd cluster consisting of n1,n2 and
n3 nodes listening on port 2379, run:

 $ shardmanctl --store-endpoints http://n1:2379,http://n2:2379,http://n3:2379
 getconnstr

 dbname=postgres host=n1,n4,n2,n1,n1,n2,n4,n3 password=yourpasswordhere
 port=5432,5433,5432,5433,5432,5433,5432,5433 user=postgres

To add replicas to getconnstr, use --all.

Getting the Cluster Status

Here is a sample status output from shardmanctl with OK and Error statuses:

 $ shardmanctl status --filter store,shardmand,rg --sort=node

##
== STORE STATUS ==
 #
##
STATUS # MESSAGE # REPLICATION GROUP #
 NODE #
##
OK # etcd store is OK # #
 #
##
##
== SHARDMAND STATUS ==
 #
##
STATUS # MESSAGE # REPLICATION GROUP #
 NODE #
##
OK # shardmand on node 56d819b4e9e4 is OK # #
 56d819b4e9e4 #
##
OK # shardmand on node 6d0aabd50acc is OK # #
 6d0aabd50acc #
##
###
== REPLICATION GROUP STATUS ==
 #

168

Shardman Reference

###
STATUS # MESSAGE # REPLICATION GROUP #
 NODE #
###
OK # Replication group clover-1-56d819b4e9e4 is # clover-1-56d819b4e9e4 #
 #
OK # #
 #
###
Replication connection is down for slave # #
 #
Error # 6d0aabd50acc:5442 in replication group # clover-1-6d0aabd50acc #
 6d0aabd50acc:5442 #
clover-1-6d0aabd50acc # #
 #
###
###

== RESTART REQUIRED PARAMS STATUS ==
 #

###

STATUS # MESSAGE # REPLICATION GROUP # NODE
 #

###

OK # No pending restart parameters # shard-1 # shrn1
 #

###

OK # No pending restart parameters # shard-2 # shrn4
 #

###

Rewriting stolon Specification

First, get the list of available keys in the store using the following command:

 $ shardmanctl store keys

{
 "Key": "shardman/cluster0/data/cluster",
 "Alias": "cluster"
}{
 "Key": "shardman/cluster0/data/shardmand/56d819b4e9e4"
}{
...
 "Key": "shardman/cluster0/stolon/remoteLogs/6d0aabd50acc/clover-1-6d0aabd50acc/
keeper_1/error"
}

Get stolon configuration from the store and save it in the stolonspec.json file with the command

169

Shardman Reference

 $ shardmanctl store get -a stolonspec -f stolonspec.json

Apply the necessary changes to the file and upload the new specification using shardmanctl config update. Mind that
shardman.config_uuid parameter is deleted with shardmanctl store get -a stolonspec and not with shard-
manctl store get -k full/path/to/clusterspec; using spec with existing shardman.config_uuid will
result in a conflict.

Important
Do not use store set command to update cluster configurations because it does not apply a new specification on all
nodes, it only writes it to the store. For the above example with stolon specification, shardmanctl config update
is acceptable.

To double-check, you can get the cluster key with new StolonSpec by the full key name (which was shown earlier with store
keys command):

 $ shardmanctl store get -k shardman/cluster0/data/cluster

{
 "FormatVersion": 1,
 "Spec": {
 "PgSuAuthMethod": "md5",
 "PgSuPassword": "12345",
 "PgSuUsername": "postgres",
 "PgReplAuthMethod": "md5",
 "PgReplPassword": "12345",
 "PgReplUsername": "repluser",
 "ShardSpec": {
 ...
}

Adding Nodes to the Cluster

To add n1,n2, n3 and n4 nodes to the cluster, run:

$ shardmanctl --store-endpoints http://n1:2379,http://n2:2379,http://n3:2379 nodes add
 -n n1,n2,n3,n4

Important
The number of nodes being added must be a multiple of Repfactor + 1 if cross placement policy is used.

Removing Nodes from the Cluster

To remove n1 and n2 nodes from the cluster0 cluster, run:

 $ shardmanctl --store-endpoints http://n1:2379,http://n2:2379,http://n3:2379
 nodes rm -n n1,n2

If cross placement policy is used, then the clovers that contain them will be deleted along with the nodes.

Executing a Query on All Replication Groups

To execute the select version() query on all replication groups, run:

170

Shardman Reference

 $ shardmanctl --store-endpoints http://n1:2379,http://n2:2379,http://n3:2379 forall --
sql 'select version()'

 Node 1 says:
 [PostgreSQL 13.1 on x86_64-pc-linux-gnu, compiled by gcc (Ubuntu
 9.3.0-17ubuntu1~20.04) 9.3.0, 64-bit]
 Node 4 says:
 [PostgreSQL 13.1 on x86_64-pc-linux-gnu, compiled by gcc (Ubuntu
 9.3.0-17ubuntu1~20.04) 9.3.0, 64-bit]
 Node 3 says:
 [PostgreSQL 13.1 on x86_64-pc-linux-gnu, compiled by gcc (Ubuntu
 9.3.0-17ubuntu1~20.04) 9.3.0, 64-bit]
 Node 2 says:
 [PostgreSQL 13.1 on x86_64-pc-linux-gnu, compiled by gcc (Ubuntu
 9.3.0-17ubuntu1~20.04) 9.3.0, 64-bit]

Performing Rebalance

To rebalance sharded tables in the cluster0 cluster, run:

 $ shardmanctl --store-endpoints http://n1:2379,http://n2:2379,http://n3:2379 rebalance

Updating PostgreSQL Configuration Settings

To set the max_connections parameter to 200 in the cluster, create the spec file (for instance, ~/stolon.json) with the
following contents:

 {
 "pgParameters": {
 "max_connections": "200"
 }
 }

Then run:

 $ shardmanctl --store-endpoints http://n1:2379,http://n2:2379,http://n3:2379 config
 update -p -f ~/stolon.json

Since changing max_connections requires a restart, DBMS instances are restarted by this command.

Performing Backup and Recovery

To create a backup of the cluster0 cluster using etcd at etcdserver listening on port 2379 and store it in the local directory
/var/backup/shardman, run:

$ shardmanctl --store-endpoints http://etcdserver:2379 backup --datadir=/var/backup/
shardman --use-ssh

Assume that you are performing a recovery from a backup to the cluster0 cluster using etcd at etcdserver listening on
port 2379 and you take the backup description from the /var/backup/shardman/backup_info file. Edit the /var/
backup/shardman/backup_info file, set DataRestoreCommand , RestoreCommand as necessary and run:

$ shardmanctl --store-endpoints http://etcdserver:2379 recover --info /var/backup/
shardman/backup_info

For metadata-only restore, run:

$ shardmanctl --store-endpoints http://etcdserver:2379 recover --metadata-only --
dumpfile /var/backup/shardman/etcd_dump

171

Shardman Reference

For schema-only restore, run:

$ shardmanctl --store-endpoints http://etcdserver:2379 recover --schema-only --
dumpfile /var/backup/shardman/etcd_dump

For single shard restore, run:

$ shardmanctl --store-endpoints http://etcdserver:2379 recover --info /var/backup/
shardman/backup_info --shard shard_1

Performing Backup and Recovery with probackup Command

To create a backup of the cluster0 cluster using etcd at etcdserver listening on port 2379 and store it in the local directory
/var/backup/shardman, first initialize the backups repository with the init subcommand:

$ shardmanctl --store-endpoints http://etcdserver:2379 probackup init --backup-path=/
var/backup/shardman --etcd-path=/var/backup/etcd_dump

Then add and enable archive_command with the archive-command subcommand:

$ shardmanctl --store-endpoints http://etcdserver:2379 probackup archive-command add --
backup-path=/var/backup/shardman

If the repository is successfully initialized and archive-command successfully added, create a FULL backup with the backup
subcommand:

$ shardmanctl --store-endpoints http://etcdserver:2379 probackup backup --backup-path=/
var/backup/shardman --etcd-path=/var/backup/etcd_dump --backup-mode=FULL --compress --
compress-algorithm=zlib --compress-level=5

To create DELTA, PTRACK or PAGE backup, run the backup subcommand with DELTA, PTRACK or PAGE value of the --
backup-mode option:

$ shardmanctl --store-endpoints http://etcdserver:2379 probackup backup --backup-path=/
var/backup/shardman --etcd-path=/var/backup/etcd_dump --backup-mode=DELTA --compress --
compress-algorithm=zlib --compress-level=5

To show the created backup ID, run show subcommand:

$ shardmanctl --store-endpoints http://etcdserver:2379 probackup show --backup-path=/
var/backup/shardman --format=table

##

 == BACKUP ID 'S88FRO'
 #

 ==
 #
##
INSTANCE # HOST #
 RECOVERY TIME # MODE # WAL MODE # TLI # DATA # WAL
 # Z-RATIO # START LSN # STOP LSN # STATUS #
##
shard-1 # n1 #
 2024-02-02 14:19:05+00 # FULL # ARCHIVE # 1/0 # 42.37MiB #
 16MiB # 1.00 # 0/C000028 # 0/D0018B0 # OK #
##
shard-2 # n2 #
 2024-02-02 14:19:05+00 # FULL # ARCHIVE # 1/0 # 42.38MiB #
 16MiB # 1.00 # 0/C000028 # 0/D001E00 # OK #
##

172

Shardman Reference

In PTRACK backup mode, Shardman tracks page changes on the fly. Continuous archiving is not necessary for it to operate. Each
time a relation page is updated, this page is marked in a special PTRACK bitmap. Tracking implies some minor overhead on the
database server operation, but speeds up incremental backups significantly.

If you are going to use PTRACK backups, complete the following additional steps:

• Preload the ptrack shared library on each node. This can be done by adding the ptrack value to the shared_pre-
load_libraries parameter.

• #reate the PTRACK extension on each cluster node:

 $ shardmanctl --store-endpoints http://etcdserver:2379
 forall --sql "create extension ptrack"

• To enable tracking page updates, set the ptrack.map_size parameter as follows:

 $ shardmanctl --store-endpoints http://etcdserver:2379
 update '{"pgParameters":{"ptrack.map_size":"64"}}'

For optimal performance, it is recommended to set ptrack.map_size to N/1024, where N is the maximum size of the
cluster node, in MB. If you set this parameter to a lower value, PTRACK is more likely to map several blocks together, which
leads to false-positive results when tracking changed blocks and increases the incremental backup size as unchanged blocks
can also be copied into the incremental backup. Setting ptrack.map_size to a higher value does not affect PTRACK op-
eration, but it is not recommended to set this parameter to a value higher than 1024.

To validate the created backup, run validate subcommand:

$ shardmanctl --store-endpoints http://etcdserver:2379 probackup validate --backup-
path=/var/backup/shardman --backup-id=RFP1FI

Assume that you are performing a recovery from a backup to the cluster0 cluster using etcd at etcdserver listening on port
2379 and you take the backup ID from the show command:

$ shardmanctl --store-endpoints http://etcdserver:2379 probackup restore --backup-
path=/var/backup/shardman --backup-id=RFP1FI

Finally we need to enable archive_command back.

$ shardmanctl --store-endpoints http://etcdserver:2379 probackup archive-command add --
backup-path=/var/backup/shardman

For metadata-only restore, run:

$ shardmanctl --store-endpoints http://etcdserver:2379 probackup restore --metadata-
only --backup-path=/var/backup/shardman --backup-id=RFP1FI

For metadata-only restore, run:

$ shardmanctl --store-endpoints http://etcdserver:2379 probackup restore --schema-only
 --backup-path=/var/backup/shardman --backup-id=RFP1FI

For single shard restore, run:

$ shardmanctl --store-endpoints http://etcdserver:2379 probackup restore --backup-
path=/var/backup/shardman --backup-id=RFP1FI --shard shard_1

For Point-in-Time Recovery, run:

$ shardmanctl --store-endpoints http://etcdserver:2379 probackup restore --metadata-
only --backup-path=/var/backup/shardman --backup-id=RFP1FI --recovery-target-
time='2006-01-02 15:04:05' -s

Loading Data from a Text File

To load data into a Shardman cluster, run the following command:

$ shardmanctl --store-endpoints http://etcdserver:2379 load --file=/var/load/data.tsv
 --table=mytable --source file --format text -j 8

173

Shardman Reference

In this example, data is loaded from the /var/load/data.tsv data file (tab-delimited) into the table mytable in 8 parallel
threads. You can use schema.table as the table name.

Loading data from PostgreSQL table

To load data into a Shardman cluster from a PostgreSQL table, run the following command:

$ shardmanctl --store-endpoints http://etcdserver:2379 load -t desttable --
source postgres --source-connstr "dbname=db host=srchost port=srcport user=login
 password=passwd" --source-table sourcetable -j 8

In this example, data is loaded from the table sourcetable into the desttable table in 8 parallel threads. You can use
schema.table as table names.

Loading Data with a Schema from PostgreSQL

To load data with a schema into Shardman cluster from PostgreSQL, run the following command:

$ shardmanctl --store-endpoints http://etcdserver:2379 load --schema load_schema.yaml

The file load_schema.yaml has the folowing format:

version: "1.0"
migrate:
 connstr: "dbname=workdb host=workhost port=workport user=workuser
 password=workpassword"
 jobs: 8
 batch: 1000
 options:
 - create_schema
 - create_table
 - create_index
 - create_sequence
 - create_foreign_key
 - create_role
 - copy_ownership
 - copy_grants
 - truncate_table
 - skip_no_pkey_tables
 - skip_create_index_error
 - skip_create_extension_error
 - skip_load_errors
 - skip_create_foreign_key_error
 - skip_create_role_error
 - skip_copy_grants_error
 - skip_copy_ownership_error
 schemas:
 - name: public
 all: false
 tables:
 - name: tab1
 type: sharded
 partitions: 6
 distributedby: id
 priority: 3
 - name: tab2
 type: global
 - name: tab3
 type: sharded

174

Shardman Reference

 partitions: 6
 distributedby: field_id
 colocatewith: tab1
 - name: table4
 type: global
 source: schema.view
 source_pk: field_id
 - name: table5
 type: global
 source: schema.func(arg)
 source_pk: field_id
 - name: schema2
 all: false
 default_type: sharded
 default_partitions: 6
 tables:
 - name: table1
 distributedby: field_id
 priority: 2
 - name: table2
 type: global
 - name: table3
 source: schema.view
 distributedby: field_id
 priority: 3
 - name: table4
 distributedby: field_id
 source: schema.func(arg)
 - name: table5
 source: schema."complex.""table.name"
 distributedby: field_id
 - name: schema3
 all: true
 skip_tables: [table1, table2, table3]
 roles:
 - name: test_user1
 password: test_password
 - name: test_user2

The migrate.jobs value defines the number of parallel data loader processes.

The migrate.batch value is the number of rows in one batch (recommended value is 1000).

The migrate.schemas section defines an array of source database schemas that you are working with. All other schemas will
be skipped.

If the all value is set to true, then all tables from the current schema will be migrated (with global type by default). If a table is
listed in the migrate.schemas.tables array, then the target table type must be explicitly specified for it. Two types of tables
are currently supported: global and sharded. Global tables are loaded first, then sharded tables and at the end sharded
tables with the colocatedwith parameter. The order of loading tables of the same type can be changed using priority option.

The migrate.schemas.skip_tables section defines an array of table names that will be skipped when the schema is loaded
even if the all parameter is set to true.

For sharded tables, the following attributes must be set: distributedby (specifies the name of the column to use for the table
partitioning) and partitions (number of partitions that will be created for this table). Optionally, for sharded tables colocate-
with attribute can be set (name of the table to colocate with). Shardman will try to place partitions of the created table with the
same partition key on the same nodes as the corresponding partitions of the table specified by colocatewith.

175

Shardman Reference

You can specify the table default_type option for a schema: global or sharded (default: global). For the sharded
type you can also specify the default_partitions option (default: 20). If you set default_type to sharded, you need
to specify the distributedby option for each table.

The source option for a table should include the schema and table source: schema.source. The source can be a table, view or
function. For example: public.table, public.view, public.func(arg). If you set the source view or function for a
global table, you should specify source_pk to set the primary key for this table. If source is not specified or contains the name
of a table, you can also specify source_pk to create a primary key or override the existing one.

The priority option for table determines the order in which the tables of the same type are loaded. Tables with higher priority
are loaded earlier. Default priority value is 0.

The migrate.roles section defines an array of role names and passwords that will be copied from the source database if cre-
ate_role is specified.

The schema supports the following options:

• create_schema — create database schemas if they do not exist.

• create_table — create tables if they do not exist.

• create_index — create indexes after creating tables.

• create_sequence — create sequences if they do not exist.

• create_foreign_key — create foreign keys after creating tables.

• truncate_table — truncate tables before data load.

• create_role — create global roles defined in migrate.roles and copy role parameters from the source database.

• copy_grants — copy access privileges from the source database.

• copy_ownership — change of table owners to the owner in the source database.

• skip_no_pkey_tables — skip tables without primary keys.

• skip_create_index_error — skip index creation errors.

• skip_create_extension_error — skip extension creation errors.

• skip_load_errors — continue loading if errors occur.

• skip_create_foreign_key_error — skip foreign key creation errors.

• skip_create_role_error — skip role creation errors.

• skip_copy_ownership_error — skip table owner changing errors.

• skip_copy_grants_error — skip errors when copying access privuleges from the source database.

Initialization and Running Benchmarks

To initialize a benchmark via shardmanctl using pgbench with the shardman schema, scale=1000, partitions=40, run:

$ shardmanctl bench init --schema-type=shardman --scale=1000 --partitions=40

To run an initialized benchmark for the same shardman schema, number of jobs=4, number of clients=10, duration in seconds=60
and full pgbench output, use:

$ shardmanctl bench run --schema-type=shardman --jobs=4 --client=10 --time=60 --full-
output

To initialize a benchmark with the custom schema from file schema.psql with scale=1000 run:

$ shardmanctl bench init --schema-type=custom --schema-file=schema.psql --scale=1000

To run an initialized benchmark with the custom schema and custom transaction script from script.psql with the number of
jobs=4, number of clients=10, duration in seconds=60, use:

176

Shardman Reference

$ shardmanctl bench run --schema-type=custom --file=script.psql --jobs=4 --client=10 --
time=60

To clean up a PostgreSQL database of tpc-b tables, use:

$ shardmanctl bench cleanup

Benchmark Generation Scripts

To generate a benchmark sequence via shardmanctl from the config file=cfg.yaml and output the result to file=script.sh, run:

$ shardmanctl bench generate --config=cfg.yaml --output-file=script.sh

Configuration file example:

 benches:
 - schema_type: single
 init_flags: "-s 3"
 run_flags: "-n -P 10 -c 10 -j 4 -T 10"
 - schema_type: simple
 init_flags: "-s 4"
 run_flags: "-n -P 10 -c 20 -j 4 -T 10"
 partitions: 100
 - schema_type: shardman
 init_flags: "-s 5"
 run_flags: "-n -P 10 -c 20 -j 4 -T 10"
 - schema_type: custom
 init_flags: "-s 6"
 schema_file: "schema.psql"

See Also
sdmspec.json , shardmand

177

Shardman Reference

sdmspec.json

sdmspec.json — Shardman initialization file

Synopsis
 sdmspec.json

Description

shardmanctl uses the sdmspec.json configuration file during Shardman cluster initialization. A shardman-utils package
provides a sample configuration file.

sdmspec.json file contains basic filesystem paths used by Shardman, global settings of the cluster, database-related settings, i.
e., administrative and replication user logins and authentication method, FDW parameters and shard configuration (ShardSpec).

Note that there is a number of the internal Shardman parameters that, if modified by user, can result in the total cluster failure.
These parameters are:

• shardman.cluster_uuid defines the version of a running cluster that the node belongs to.

• shardman.config_uuid defines the config version. Ignored if set via shardmanctl config update or shardmanctl
init.

• shardman.manual_execution controls the consistent work with the global objects.

• shardman.silk_never_restart prohibits the multiplexer workers restart in case of an error.

• shardman.pre_promote_mode applies the consistent promotion mechanism (from standby to primary).

List of Parameters

Repfactor

Integer determining how many replicas shardmanctl should configure for each DBMS. This setting can only be changed for a
Shardman cluster with a manual-topology mode.

PlacementPolicy

String determining the policy of placing DBMS instances. Currently, cross and manual placement policy is only supported.
The former value clover is used as an alias for cross policy.

With cross placement policy, nodes are grouped in clovers, where each node is running the master DBMS server and replicas
for all other nodes in the clover. The number of nodes in a clover is determined by Repfactor and equals Repfactor + 1.

manual placement policy allows you to manually add/remove the required number of replicas to/from the specified replication
groups. In this case, R#pfactor is only used for recommendation purposes and does not impose restrictions.

DataDir

Allows you to specify a directory other than the default one (/var/lib/pgpro/sdm-14/data) for storing data. This
parameter cannot be changed after the cluster has been initialized.

PGsInitialPort

Ports starting with this integer are assigned to PostgeSQL instances. This parameter cannot be changed after the cluster has
been initialized.

SilkInitialPort

Ports starting with this integer are assigned to Silk (Shardman InterLinK) instances. This parameter cannot be changed after
the cluster has been initialized.

178

Shardman Reference

AuthMethod

Authentication method used by the administrative user to connect to the DBMS. Can be any authentication method supported
by PostgreSQL. scram-sha-256 is currently recommended. md5 is currently allowed but not recommended. This parameter
cannot be changed after the cluster has been initialized. Located under a separate Users block for each array element.

Default: trust.

Groups

An array that can have two possible values, su for superuser or repl for replication.

HTTP

Defines settings for the secure HTTP/HTTPS connection, with Port being an API port, and PortMetrics being a port for
the metrics. If these ports are the same, then API and metrics listen to the same port.

Default: 15432.

Name

Name of the user. Created on cluster initialization. Defaults to the name of the effective user running shardmanctl init.
This parameter cannot be changed after the cluster has been initialized. Located under a separate Users block for each array
element.

Password

Password for the user. Can be changed using shardmanctl config update credentials. Located under a separate
Users block for each array element.

PgSuSSLCert

Client certificate for the administrative DBMS user.

PgSSLRootCert

Location of the root certificate file for the DBMS user connection.

PgSuSSLKey

Client private key for the administrative DBMS user.

PgSSLMode

SSL mode for the DBMS user. Allowed values: verify-ca and verify-full.

PgReplSSLCert

Client certificate for the replication DBMS user.

PgReplSSLKey

Client private key for the replication DBMS user.

ShardSpec

Shard cluster specification. For more details, see ShardSpec Parameters. Can be changed using shardmanctl config up-
date.

FDWOptions

This object contains FDW settings.

These settings can be changed using shardmanctl config update (with the exception of settings related to authorization,
server connection, SSL and Kerberos, as well as the service, target_session_attrs options).

Foreign servers corresponding to Shardman replication groups will also get extended_features setting automatically
enabled. Never set this parameter for postgres_fdw foreign servers which you define for your own purposes (for example, to
load data into Shardman cluster).

179

Shardman Reference

ShardSpec Parameters

The ShardSpec specification can include all usual stolon options described in Stolon Cluster Specification. However, the following
options should be carefully tuned for a Shardman cluster.

pgHBA

JSON array of pg_hba.conf strings. The default value allows user from the su group access from anywhere with Auth-
Method authentication method. If the value of defaultSUReplAccessMode is strict, pg_hba.conf strings must
explicitly allow users from the groups su or repl access from all Shardman cluster nodes.

forceSuUserLocalPeerAuth

When enabled, it sets a peer authentication via unix socket for the postgres user, if strictUserHBA is not set to true.

Default: false.

synchronousReplication

Determines whether replicas should use synchronous replication. Should be true in a Shardman cluster.

Default: true.

maxSynchronousStandbys

Maximum number of required synchronous standbys when synchronous replication is enabled. Should be >= Repfactor in a
Shardman cluster. Default: Repfactor.

strictUserHBA

Prohibits adding automatically generated lines to pg_hba.conf file. Default: false.

automaticPgRestart

Determines whether a DBMS instance should be automatically restarted after a change of the pgParameters hash table that
requires a restart. Should be enabled in a Shardman cluster.

Default: true.

masterDemotionEnabled

Enable master demotion in case the replica group master has lost connectivity with etcd. The master attempts to connect to each
of its standby nodes to determine if any of them has become the master. If it discovers another master, it shuts down its own
DBMS instance until the connectivity with etcd is restored. If the master fails to connect to one of its standby nodes for a long
time, a DBMS instance shutdown occurs.

Default: false.

masterDemotionTimeout

The timeout during which the master attempts to connect to its standbys in cases where connectivity with etcd is lost. Works
only if the masterDemotionEnabled parameter is set to true.

Default: 30s.

minSyncMonitorEnabled

Enable the monitor for the MinSynchronousStandbys value for every replica group. If a node loses connection with the
cluster (all keepers are unhealthy: a keeper does not update its state longer than minSyncMonitorUnhealthyTime-
out), the monitor decreases the MinSynchronousStandbys value for every replica group related to the disconnected node
to the maximum available value. This allows preventing the read-only condition caused by the fake replica. The maximum
available value is always less than or equal to the value specified in the cluster configuration. If all keepers related to the
disconnected node become healthy, the monitor changes MinSynchronousStandbys value for the replica group to the
value specified in the cluster configuration.

Default: false.

180

https://github.com/sorintlab/stolon/blob/master/doc/cluster_spec.md

Shardman Reference

minSyncMonitorUnhealthyTimeout

Time interval after which the node (and all keepers related to this node) will be considered in an unhealthy condition. Works
only if the minSyncMonitorEnabled parameter is set to true.

Default: 30s.

syncPointMonitorEnabled

Enable the monitor that creates a syncpoint every minute, ensuring the Shardman can restore to a consistent LSN. At each
syncpoint, the cluster's state is consistent, meaning that all transactions are complete. If this parameter is set to true, PITR will be
guaranteed to work. If set to true, it saves the syncpoint history in etcd with the key shardman/{cluster_name}/da-
ta/cluster/syncpoints.

Default: false.

dbWaitRewindTimeout

Before full resync of a replica, the cluster software first tries to do pg_rewind. Because the rewind operation is significantly
faster than other approaches when the database is large and only a small fraction of blocks differs between the clusters. The
dbWaitRewindTimeout parameter specifies the maximum working time for pg_rewind (examples of values: 5m, 30s,
1m30s).

Default: 7m.

additionalReplicationSlots

Array of names of physical replication slots that are created on the master. Each slot name must begin with the stolon_ prefix.

createSlotsOnFollowers

If true, physical replication slots are also created on standby nodes.

additionalSlotsLagLimit

The limit of the volume by which replication slots defined by the additionalReplicationSlots configuration parame-
ter can lag behind. If this value is exceeded, the slot is recreated. Specify the value as a number followed by a unit of measure-
ment. Possible units: B, kB, kiB, MB, MiB, GB, GiB, TB, TiB, PB, PiB, EB, EiB, ZB, ZiB, YB, and YiB. For example: 100MB.

pgParameters

Hash table that determines PostgreSQL settings, including Shardman-specific settings. Supports the following placeholders for
postgres parameters: {{dataDir}} for data directory, {{keeperDir}} for keeper data directory under dataDir,
{{keeperName}} for keeper name, {{keeperID}} for keeper ID, {{cluster}} for cluster name, {{shard}}
for shard name, {{host}} for host with the working postgres instance.

Shardman-specific PostgreSQL Settings

The following settings in pgParameters are Shardman-specific:

enable_csn_snapshot (boolean)

Enables or disables Commit Sequence Number (CSN) based tracking of the transaction visibility for a snapshot.

PostgreSQL uses the clock timestamp as a CSN, so enabling CSN-based snapshots can be useful for implementing global
snapshots and global transaction visibility.

When this parameter is enabled, PostgreSQL creates the pg_csn directory under PGDATA to keep track of CSN and XID
mappings.

Default: off.

enable_custom_cache_costs (boolean)

Enables estimation logic for plan costs. It helps the planner choose generic plans more often considering the runtime pruning.

Default: off.

181

Shardman Reference

enable_sql_func_custom_plans (boolean)

If enabled, custom plans can be created to execute statements inside SQL functions. These plans depend on the parameter values.

Query plans can be cached within one query. First, the plan is built five times with different parameter values, then a generic
plan is created regardless of the values. If custom and generic plan price is slightly different, then the generic plan is cached
and is set to be used in the future. However, custom plans allow a more effective way of excluding queries to the sharded table
partitions if the choice of these partitions depends on the query parameter.

Default: off.

enable_merge_append (boolean)

Enables the use of MergeAppend plans by the query planner.

Default: on.

enable_async_merge_append (boolean)

Enables or disables the query planner's use of async-aware merge append plan types. The default is on.

csn_snapshot_defer_time (integer)

Specifies the minimal age of records that are allowed to be vacuumed, in seconds.

All global transactions must start on all participant nodes within csn_snapshot_defer_time seconds after start, other-
wise, they are aborted with a “csn snapshot too old” error.

Default: 15.

csn_commit_delay (integer)

Specifies the maximum possible clock skew (in nanoseconds) in the cluster. Adds a delay before every commit in the system to
ensure external consistency. If set to 0, external consistency is not guaranteed. Value suffixes ns, us, ms and s are allowed.

Default: 0.

csn_lsn_map_size (integer)

Size of CSNLSNMap.

The commit record of each completed transaction in Shardman contains the assigned CSN for this transaction. This value,
together with the LSNof this record, forms a pair of values (CSN, LSN). Each of the cluster nodes stores a certain number
of such pairs in RAM in a special structure - the CSNLSNMap. This map is used to get the syncpoint. See the “Syncpoints and
Consistent Backup” section of the Internals chapter for more information.

Default: 1024.

csn_max_shift_error (boolean)

When checked against the csn_max_shift value, raises an error if the csn_max_shift value is exceeded.

Default: off.

csn_max_shift (integer)

Maximum CSN shift in seconds for distributed queries and imported snapshots. If the shift exceeds the csn_max_shift
value, an error or warning will occur. If the value is set to 0, no check is run.

Default: 15 (seconds).

foreign_analyze_interval (integer)

Specifies how often foreign statistics should be gathered during autovacuum, in seconds. If the value of foreign_ana-
lyze_interval is less than autovacuum_naptime, foreign statistics will be gathered each autovacuum_naptime
seconds.

182

https://postgrespro.com/docs/postgresql/14/runtime-config-autovacuum#GUC-AUTOVACUUM-NAPTIME

Shardman Reference

Default: 60.

foreign_join_fast_path (boolean)

Turns on a fast path for foreign join planning. When it is on, foreign join paths for SELECT queries are searched before all other
possible paths and the search stops for a join as soon as a foreign join path is found.

Default: off.

optimize_correlated_subqueries (boolean)

Enables or disables the query planner's logic of transforming correlated subqueries into semi-joins.

Default: on.

port (integer)

A TCP port the server listens on. For a Shardman cluster, the port is assigned automatically by the system and is based on
the PGsInitialPort parameter. If changed manually, the value will be overwritten by the configuration parameter that is
automatically assigned.

enable_partition_pruning_extra (boolean)

Enables the extended partition pruning for the prepared queries with a known partitioning key. If turned on, the partition-wise
join plans can be pruned.

Default: off.

crash_info (boolean)

When set to on, Shardman will write diagnostic information about a backend crash into a file.

Default: on.

crash_info_dump (text)

Specifies a comma-separated list of character strings that contain data sources to provide data for a crash dump. Possible values
of the strings are as follows:

• queries — query texts

• memory_context — memory context

• system — information on the OS

• module — information on modules loaded to the postgres process

• cpuinfo — information on the processor

• virtual_memory — information on virtual memory regions

Default: system,module,queries,memory_context

crash_info_location (string)

Specifies the directory where information about a backend crash is to be stored. The value of stderr sends information about
the crash to stderr. If this parameter is set to the empty string '', the $PGDATA/crash_info directory is used. If you wish
to keep the files elsewhere, create the target directory in advance and grant appropriate privileges.

Default: ''.

shardman.context_log (bool)

Logs the remote contexts. If enabled, in case of an error, displays a field Remote CONTEXT. Note that if the standart log level
is set to log_verbosity=terse, the shardman.context_log will be disabled automatically.

Default: on.

183

Shardman Reference

postgres_fdw.enforce_foreign_join (boolean)

Turns on alternative estimations for foreign join costs, which highly increases chances for join of several foreign tables referring
to the same server to be pushed down. The cost of original join is estimated as (1 - 1/(cost + 1)), where cost is an
originally estimated cost for this remote join.

Default: off.

postgres_fdw.foreign_explain (enum)

Defines how to include the EXPLAIN command output from the remote servers if the query plan contains ForeignScan
nodes. The possible values are: none to exclude the EXPLAIN output from the remote servers, full to include the EXPLAIN
output from the remote servers, collapsed to include the EXPLAIN output only for the first ForeignScan node under
its Append/MergeAppend.

Default: collapsed.

postgres_fdw.optimize_cursors (boolean)

Sets postgres_fdw to try fetching the first portion of cursor data immediately after declaration and delay the cursor closing.

This postgres_fdw parameter forces it to avoid closing cursors after the end of scan. Cursors are closed at the end of transaction.

Default: off.

postgres_fdw.subplan_pushdown (boolean)

Enables or disables postgres_fdw logic of pushing down subqueries referencing only foreign server tables to this foreign server.

Default: off.

postgres_fdw.use_twophase (enum)

Sets postgres_fdw to use the two-phase commit (2PC) protocol for distributed transactions.

This postgres_fdw parameter forces it to use a two-phase commit if the transaction touches several nodes. When set to auto,
a two-phase commit is only used in transactions with enable_csn_snapshot=true and isolation level equal to or higher
than REPEATABLE READ.

Temporary tables cannot be used in 2PC transactions.

Default: auto.

postgres_fdw.estimate_as_hashjoin (boolean)

When enabled, the planner estimates a foreign join cost in a way similar to a cost of a hash-join whenever possible. This cost is
compared to the default cost (which is similar to nested loops) and the smaller cost is selected for the path.

Default: off.

postgres_fdw.additional_ordered_paths (boolean)

When enabled, sorting on the remote server is considered if it allows performing MergeJoin or MergeAppend operations.
This parameter is enabled by default in new installations but must be explicitly enabled in upgraded clusters.

shardman.broadcast_ddl (boolean)

Sets Shardman extension to broadcast DDL statements to all replication groups.

When this parameter is on, Shardman extension broadcasts supported DDL statements to all replication groups if it does make
sense for those statements. You can enable/disable this behavior anytime. This parameter is not honored when set in configu-
ration file.

Default: off.

184

Shardman Reference

shardman.enable_limit_pushdown (boolean)

Enable pushing down limit clauses through the underlying appends. When on, Shardman optimizer will try to push down a limit
clause to the subpaths of the underlying Append/MergeAppend plan node if they reference postgres_fdw foreign tables. This
optimization works only for SELECT plans when limit option is represented as a constant or a parameter. It is also restricted
for Append paths, corresponding to a partitioned table. The optimization does not work for SELECT with locking clauses
(SELECT FOR UPDATE/NO KEY UPDATE/FOR SHARE/KEY SHARE).

Default: on.

shardman.num_parts (integer)

Specifies the default number of sharded table partitions.

A sharded table has this default number of partitions unless num_parts is specified in CREATE TABLE.

To allow scaling, shardman.num_parts should be larger than the expected maximum number of nodes in a Shardman
cluster.

Possible values are from 1 to 1000.

Default: 20.

shardman.rgid (integer)

Specifies the replication group ID of a Shardman node.

This parameter is set by Shardman utilities when the node is added to the cluster and should never be changed manually.

Default: -1.

shardman.sync_schema (boolean)

Sets Shardman to propagate all DDL statements that touch sharded and global relations to all replication groups.

When this parameter is on, Shardman broadcasts all supported utility statements touching sharded and global relations to all
replication groups. It is not recommended to turn this off. This parameter is not honored when set in configuration file.

Default: on.

shardman.sync_cluster_settings (boolean)

Enables cluster-wide synchronization of configuration parameters set by user. The configuration parameters are propagated
with each remote query.

Default: on.

shardman.sync_cluster_settings_blacklist (boolean)

Excludes the options not to be propagated to a remote cluster.

Default: local system configuration parameters that are never synchronized.

shardman.query_engine_mode (enum)

Switches between modes of query planning/execution. Possible values are none and text.

none means that query planning/execution will not use the Silk transport.

text means that the text query representation is transferred via Silk transport for remote execution.

Default: none.

shardman.silk_use_ip (string)

Silk transport uses IP address specified by this parameter for node identification. If the host name is specified, it is resolved and
the first IP address corresponding to this name, is used.

185

Shardman Reference

Default: node hostname.

shardman.silk_listen_ip (string)

The Silk routing daemon listens for incoming connections on this IP address. If the host name is specified, it is resolved and
the first IP address corresponding to this name, is used.

Default: node hostname.

shardman.silk_use_port (integer)

The Silk routing daemon listens for incoming connections on this port. This setting should be the same for all nodes in the
Shardman cluster.

Default: 8888.

shardman.silk_tracepoints (bool)

Enables tracing of queries passing through the Silk pipeline. The tracing results can be accessed by running the EXPLAIN
command with ANALYZE set to ON.

Default: off.

shardman.silk_num_workers (integer)

Number of background workers allocated for distributed execution. This setting must be less than max_worker_processes
(including auxilary postgres worker processes).

Default: 2.

shardman.silk_stream_work_mem (integer)

Sets the base maximum amount of memory to be used by a Silk stream (as a buffer size) before writing to the temporary disk
files. If this value is specified without units, the default is kilobytes.

Note that most queries can perform multiple fetch operations at the same time, usually one for each remote partition of a sharded
table, if any. Each fetch operation is generaly allowed to use as much memory as this value specifies before it starts to write
data into temporary files. Also, several running sessions can execute such operations concurrently. Therefore, the total memory
used by Silk for buffers could be many times the value of shardman.silk_stream_work_mem and is correlated with
shardman.num_parts. Thus, mind this fact when choosing the value.

Default: 16MB.

shardman.silkworm_fetch_size (integer)

Number of rows in a chunk that the silkworm worker extracts and sends to the multiplexer as a result, per one reading iteration.

Default: 100.

shardman.silk_unassigned_job_queue_size (integer)

Size of queue for jobs that have not yet been assigned to the silkworm multiplexer workers, in case all the workers are busy.

Default: 1024.

shardman.silk_max_message (integer)

Maximum message size that can be transfered with Silk, in bytes. Note that this parameter does not limit the maximum size of the
result returned by the query. It only affects messages sent to workers. Increasing this parameter value will result in a proportional
memory increase consumed by Shardman. It is strongly recommended to use the default value unless there is an urgent need.

Default: 524288.

shardman.silk_hello_timeout (integer)

Handshake timeout between multiplexers of different nodes, in seconds.

186

Shardman Reference

Default: 3.

shardman.silk_scheduler_mode (enum)

Enables additional CPU scheduling settings for multiplexer processes (silkroad and silkworm).

When this parameter is fifo, Shardman assigns scheduling policy SCHED_FIFO for processes silkroad and each of silk-
worm. It assigns the static schediling priority (sched_priority) to values shardman.silkroad_sched_priority and
shardman.silkworm_sched_priority respectively.

This setting improves silk transport performance while it operates under heavy CPU load.

Note that postgres binary need to have CAP_SYS_NICE capability to use this option. If no appropriate capability was assigned
to the process, enabling this setting will have no effect. The capability must be assigned to postgres binary before starting
postgres. Postgres (i.e. processes silkroad and silkworm) will apply scheduling options once during service start. You need
restart postgres service if you want to change scheduling options.

Default: none.

To set capability you need execute following command once after postgres installed:

 $ sudo setcap cap_sys_nice+ep /opt/pgpro/sdm-14/bin/postgres

Replace /opt/pgpro/sdm-14/bin/postgres to the correct path to your postgres binary if needed.
Also note that your filesystem should support extended file attributes. You need set this for each node in the
cluster to take the full effect.

In the Linux kernel, there is a mechanism called real-time throttling, which is designed to prevent tasks with
real-time scheduling policies (like SCHED_FIFO) from monopolizing CPU resources. This ensures that other
tasks with lower priorities, typically scheduled under the SCHED_OTHER policy, still get some amount of
the CPU time. This mechanism is controlled by two parameters, exported into the proc filesystem or the
sysctl interface:

• /proc/sys/kernel/sched_rt_period_us sets the duration of a scheduling period in mi-
croseconds. During this period, both real-time and non-real-time tasks share CPU time.

• /proc/sys/kernel/sched_rt_runtime_us specifies how much of the scheduling period is
allocated to real-time tasks (with SCHED_FIFO). The remainder of the time is left for non-real-time
tasks (SCHED_OTHER).

A typical and acceptable configuration for Shardman might set these parameters as follows:

cat /proc/sys/kernel/sched_rt_period_us
1000000
cat /proc/sys/kernel/sched_rt_runtime_us
950000

This configuration allows real-time tasks to use up to 950 milliseconds of each second, leaving 50 milliseconds
for non-real-time tasks.

However, in some Linux distributions, the default values for these parameters might be set so low (or even
to zero) that real-time tasks receive very little or no CPU time. This can make real-time scheduling ineffec-
tive or prevent the configuration from being applied. For example, attempting to manually set a task to the
SCHED_FIFO priority using chrt might result in an error like:

$ sudo chrt -f -p 2 $(pgrep -f silkroad)
chrt: failed to set pid 1897706's policy: Operation not permitted

This error indicates that the kernel parameters are not configured correctly. In such cases, run the following:

echo 1000000 > /proc/sys/kernel/sched_rt_period_us
echo 950000 > /proc/sys/kernel/sched_rt_runtime_us

187

Shardman Reference

Or add the corresponding values into /etc/sysctl.conf and reload the settings using sysctl -p:

kernel.sched_rt_period_us = 1000000
kernel.sched_rt_runtime_us = 950000

shardman.silkroad_sched_priority (integer)

Value of static scheduling priority (sched_priority) for silkroad process. It only makes sense if shardman.silk_sched-
uler_mode equals to 'fifo'.

Default: 2.

shardman.silkworm_sched_priority (integer)

Value of static scheduling priority (sched_priority) for silkworm processes (the same value for each of them). It only makes
sense if shardman.silk_scheduler_mode equals to 'fifo'.

Default: 1.

shardman.silk_set_affinity (bool)

Enables pinning of multiplexer processes (silkroad and silkworm) to CPU cores to eliminate negative effects of thread's
cross-cpu migration.

When this parameter is true, silkroad process will be pinned to the first available CPU core and silkworm processes
(all of them) will pinned to all available CPU cores except the first one.

This setting improves silk transport performance while it operates under heavy CPU load.

Note that postgres binary need to have CAP_SYS_NICE capability to use this option. If no appropriate capability was assigned
to the process, enabling this setting will have no effect. The capability must be assigned to postgres binary before starting
postgres. Postgres (i.e. processes silkroad and silkworm) will apply affinity options once during service start. You need restart
postgres service if you want to change affinity options.

To set capability you need execute following command once after postgres installed:

 $ sudo setcap cap_sys_nice+ep /opt/pgpro/sdm-14/bin/postgres

Replace /opt/pgpro/sdm-14/bin/postgres to the correct path to your postgres binary if needed.
Also note that your filesystem should support extended file attributes. You need set this for each node in the
cluster to take the full effect.

Default: false.

shardman.silk_flow_control (boolean)

Controls the mode of handling read events. It has three possible values: none, round_robin, and shortest_job_first.

The none mode means no control nor additional overhead. Yet in this case, the channel may become occupied by just one
distributed query.

The round_robin mode means the events created earlier are the first ones to be processed, for each event loop. If enabled,
all the backends are grouped, and the client backends are prioritized over the other.

The shortest_job_first mode means full control over the traffic. If enabled, all the backends are grouped, and the client
backends are prioritized over the others, along with the workers with the least session traffic.

Default: round_robin.

shardman.silk_track_time (boolean)

Enables or disables the metrics with prefix transferred_ and time-based metrics (with prefixes read_efd_,
write_efd_, and sort_time_). If disabled, these metrics have 0 values.

188

Shardman Reference

Default: off.

shardman.silk_tracelog (bool)

Enables or disables Silk logging.

Default: off.

shardman.silk_tracelog_category (string)

Defines the Silk message categories to be traced.

Default:streams, routing, events.

shardman.database (string)

Name of the database that all Silk workers connect to.

Default: postgres.

shardman.monitor_interval (integer)

shardman.monitor_interval is deprecated and acts as noop.

Use shardman.monitor_dxact_interval instead.

shardman.monitor_dxact_interval (integer)

Interval between checks for outdated prepared transactions.

The Shardman monitor background process wakes up every shardman.monitor_dxact_interval seconds and at-
tempts to check and resolve any prepared transactions that did not complete and became outdated for some reason. To resolve
these transactions, the Shardman monitor process determines the coordinator of the transaction and requests the transaction sta-
tus from the coordinator. Based on the status of the transaction, Shardman monitor will either roll back or commit the transaction.

To disable the prepared transaction resolution logic, set shardman.monitor_dxact_interval to 0.

Default: 5 (seconds).

shardman.monitor_trim_csnxid_map_interval (integer)

Each cluster node freezes its own xmin value for csn_snapshot_defer_time seconds to support global transactions.
Large csn_snapshot_defer_time values can negatively impact the performance. Shardman monitor has a routine that
every shardman.monitor_trim_csnxid_map_interval seconds updates xmin on all nodes to the minimum possi-
ble value (taking into account active transactions).

The background routine will run on only one node in the Shardman cluster. Note that this will give an additional load on this node.

To disable such updates, set shardman.monitor_trim_csnxid_map_interval to 0.

Default: 5 (seconds).

shardman.monitor_dxact_timeout (integer)

Maximum allowed age of prepared transactions before a resolution attempt.

During the resolution of a prepared transaction, Shardman monitor determines whether the transaction is outdated or not. A
transaction becomes outdated if it was prepared more than shardman.monitor_dxact_timeout seconds ago.

Default: 5 (seconds).

shardman.trim_csnxid_map_naptime (integer)

Specifies the minimum delay between xmin updates on all nodes. See shardman.monitor_trim_csnxid_map_interval for more
information.

189

Shardman Reference

Possible values are from 1 to 600.

Default: 5.

shardman.monitor_deadlock_interval (integer)

Interval between checks for distributed deadlock conditions.

The Shardman monitor background process wakes up every shardman.monitor_deadlock_interval seconds and
searches for distributed deadlocks in the cluster. It gathers information about mutual locks from all nodes and looks for circular
dependencies between transactions. If it detects a deadlock, it resolves it by canceling one of the backend processes involved
in the lock.

To disable the distributed deadlock resolution logic, set shardman.monitor_deadlock_interval to 0.

Default: 2 (seconds).

postgres_fdw.remote_plan_cache (boolean) — EXPERIMENTAL

Enables remote plan caching for FDW queries produced by locally cached plans.

Default: off.

shardman.plan_cache_mem (integer) — EXPERIMENTAL

Specifies how much memory per worker can be used for remote plan caches.

Default: 0 (caches are disabled).

shardman.gt_batch_size (integer) —

Specifies the buffer size for INSERT and DELETE commands executed on a global table.

Default: 64K.

postgres_fdw.enable_always_shippable (boolean) — EXPERIMENTAL

Always allow some expressions to be evaluated on a remote. Right now this is limited to just a few functions. All nodes should
have identical timezone settings for this feature to work correctly.

Warning
Do not turn this on unless all postgres_fdw remotes are Shardman-managed.

Default: false.

track_fdw_wait_timing (boolean)

The statistics for the network latency (wait time) for inter-cluster operations, in milliseconds. It can be accessed by running the
EXPLAIN command with the network parameter enabled, and via the pgpro_stats view pgpro_stats_sdm_statements.

Default: on.

track_xact_time (boolean)

Enables or disables statistics collection for time spent on a transaction.

Default: off.

enable_non_equivalence_filters (boolean)

Enables the optimizer to generate additional non-equivalence conditions using equivalence classes.

190

Shardman Reference

Default: off.

optimize_row_in_expr (boolean)

Enables the optimizer to generate additional conditions from the IN () expression.

Default: off.

Examples

Spec File for a Cluster with Enabled scram-sha-256 Authentication

Note
The initial configuration file should be generated with the following command:

 shardmanctl config generate > sdmspec.json

The example below is for educational purposes only and may lack the latest updates.

This is the contents of an example sdmspec.json configuration file:

{
 "ConfigVersion": "1",
 "Repfactor": 1,
 "PlacementPolicy": "manual",
 "PGsInitialPort": 5432,
 "SilkInitialPort": 8000,
 "HTTP": {
 "Port": 15432,
 "PortMetrics": 15432
 },
 "Users": [
 {
 "Name": "postgres",
 "Groups": ["su"],
 "AuthMethod": "scram-sha-256",
 "Password": "changeMe"
 },
 {
 "Name": "repluser",
 "Groups": ["repl"],
 "AuthMethod": "scram-sha-256",
 "Password": "changeMe"
 }
],
 "ShardSpec": {
 "synchronousReplication": true,
 "usePgrewind": true,
 "pgParameters": {
 "csn_snapshot_defer_time": "300",
 "enable_csn_snapshot": "on",
 "enable_csn_wal": "true",
 "shardman.query_engine_mode": "text",
 "shardman.silk_num_workers": "8",
 "max_connections": "600",
 "max_files_per_process": "65535",
 "max_logical_replication_workers": "14",

191

Shardman Reference

 "max_prepared_transactions": "200",
 "max_worker_processes": "24",
 "shared_preload_libraries": "postgres_fdw, shardman"
 },
 "pgHBA": [
 "host replication postgres 0.0.0.0/0 scram-sha-256",
 "host replication postgres ::0/0 scram-sha-256"
],
 "automaticPgRestart": true,
 "masterDemotionEnabled": false
 },
 "FDWOptions": {
 "async_capable": "on",
 "batch_size": "100",
 "connect_timeout": "5",
 "fdw_tuple_cost": "0.2",
 "fetch_size": "50000",
 "tcp_user_timeout": "10000"
 }
}

From that configuration file, you can see that a Shardman cluster initialized with this spec file has Repfactor equal to 1 (one
replica for each master). The configuration file also shows that two special users are created in this cluster — superuser postgres
and replication user repluser with ChangeMe passwords. They can be authenticated using the md5 or scram-sha-256 au-
thorization method. One postgres_fdw fetch operation will get up to 50000 rows from the remote server. The cost of fetching one
row is set to a reasonably high value to make PostgreSQL planner consider conditions pushdown-attractive. pg_hba.conf settings
allow postgres user access from anywhere using a replication protocol; all other users can access any database from anywhere.
Since defaultSUReplAccessMode is not set to strict, utilities will automatically add entries that allow PgSuUsername
user's (postgres) access to any database from anywhere and PgReplUsername user's (repluser) replication access from
anywhere.

Several important Shardman-specific parameters are set in the pgParameters hash table. These are:

wal_level

Should be set to logical for Shardman to work correctly.

shared_preload_libraries

Should include postgres_fdw and shardman extensions in the specified order.

max_logical_replication_workers

Should be rather high since the rebalance process uses up to max(max_replication_slots, max_logical_repli-
cation_workers, max_worker_processes, max_wal_senders)/3 concurrent threads.

max_prepared_transactions

Should be rather high since Shardman utilities use the 2PC protocol. If postgres_fdw.use_twophase is true, post-
gres_fdw also uses 2PC.

enable_csn_snapshot

Should be enabled to achieve a true REPEATABLE READ isolation level in a distributed system.

csn_snapshot_defer_time

All global transactions must start on all participant nodes within csn_snapshot_defer_time seconds after start, otherwise
they will be aborted.

enable_partitionwise_aggregate
enable_partitionwise_join

Set to on to enable optimizations for partitioned tables.

192

Shardman Reference

Spec File for a Cluster with Enabled Certificate Authentication

This is the contents of an example sdmspec.json configuration file:

 {
 "ConfigVersion": "1",
 "HTTP": {
 "Port": 15432,
 "PortMetrics": 15432
 "SSLKey": "/pgpro/ssl/server.key",
 "SSLCert": "/pgpro/ssl/server.crt"
 },
 "Users": [
 {
 "Name": "postgres",
 "SSLKey": "/var/lib/postgresql/.ssh/client.key",
 "SSLCert": "/var/lib/postgresql/.ssh/client.crt",
 "Groups": ["su"],
 "AuthMethod":"scram-sha-256"
 },
 {
 "Name": "repluser",
 "SSLKey": "/var/lib/postgresql/.ssh/repluser.key",
 "SSLCert": "/var/lib/postgresql/.ssh/repluser.crt",
 "Groups": ["repl"],
 "AuthMethod":"scram-sha-256"
 }
],
 "ShardSpec": {
 "synchronousReplication": true,
 "usePgrewind": true,
 "pgParameters": {
 "ssl": "on",
 "ssl_cert_file": "/var/lib/postgresql/.ssh/server.crt",
 "ssl_key_file": "/var/lib/postgresql/.ssh/server.key",
 "ssl_ca_file": "/var/lib/postgresql/.ssh/ca.crt",
 "csn_snapshot_defer_time": "300",
 "enable_csn_snapshot": "on",
 "enable_csn_wal": "true",
 "log_line_prefix": "%m [%r][%p]",
 "log_min_messages": "INFO",
 "log_statement": "none",
 "maintenance_work_mem": "1GB",
 "max_connections": "600",
 "max_files_per_process": "65535",
 "max_logical_replication_workers": "9",
 "max_prepared_transactions": "200",
 "max_wal_size": "4GB",
 "max_worker_processes": "16",
 "min_wal_size": "512MB",
 "postgres_fdw.subplan_pushdown": "off",
 "shardman.query_engine_mode": "text",
 "shardman.silk_num_workers": "8",
 "shared_buffers": "4GB",
 "shared_preload_libraries": "postgres_fdw, shardman"
 },
 "strictUserHBA": true,
 "pgHBA": [
 "hostssl all postgres 0.0.0.0/0 cert clientcert=verify-full",

193

Shardman Reference

 "hostssl all repluser 0.0.0.0/0 cert clientcert=verify-full",
 "hostssl replication postgres 0.0.0.0/0 cert clientcert=verify-full",
 "hostssl replication postgres ::0/0 cert clientcert=verify-full",
 "hostssl replication repluser 0.0.0.0/0 cert clientcert=verify-full",
 "hostssl replication repluser ::0/0 cert clientcert=verify-full",
 "hostnossl all all 0.0.0.0/0 reject",
 "local postgres postgres scram-sha-256",
 "local replication repluser scram-sha-256"
],
 "automaticPgRestart": true,
 "masterDemotionEnabled": false
 },
 "FDWOptions": {
 "async_capable": "on",
 "batch_size": "100",
 "connect_timeout": "5",
 "fdw_tuple_cost": "0.2",
 "fetch_size": "50000",
 "tcp_user_timeout": "10000"
 }
 }

pgpro_stats parameters

pgpro_stats.track_sharded (boolean)

Specifies whether the sharded statements are tracked and aggregated by pgpro_stats.

Default: on.

pgpro_stats.pgss_max_nodes_tracked (integer)

Sets the maximum number of nodes that are tracked by pgpro_stats for query fragments.

It actually sets the maximum amount of the status entries that pgpro_stats can store for the pgpro_stats_sdm_stats_up-
dated function. It does not affect the statistics tracking itself.

Default: 2048.

pgpro_stats.transport_compression (string)

Sets algorithm for transport compression during statistics transferring between nodes.

Transport compression is used to compress statistical entries passed from the shard nodes to the coordinator. The possible values
are pglz, zlib, lz4, zstd or off.

Default: pglz.

pgpro_stats.enable_wait_counters (boolean)

Enables or disables statistics collection for wait counters by enabling or disabling functions that calculate metrics of wait events.

Default: off.

pgpro_stats.enable_inval_msgs_counters (boolean)

Enables or disables statistics collection the invalidation messages by enabling or disabling functions that calculate metrics of
invalidation messages.

If disabled, the pgpro_stats_inval_status view is empty.

Default: off.

194

Shardman Reference

pgpro_stats.enable_rusage_counters (boolean)

Enables or disables statistics collection for resource usage counters by enabling or disabling functions that calculate metrics
of OS resource usage.

Default: off.

pgpro_stats.track_shardman_connections (enum)

Enables or disables Shardman-specific statements processing. This parameter has three possible values. none with no process-
ing, normalized (default) with generalized statements being processed, and all with all statements being processed.

See Also
shardmanctl

195

Shardman Reference

shardmand

shardmand — Shardman configuration daemon

Synopsis
shardmand [common_options] [--system-bus] [--user user_name]

Here common_options are:

[--cluster-name cluster_name] [--log-level error | warn | info | debug] [--retries retries_num-
ber] [--session-timeout seconds] [--store-endpoints store_endpoints] [--store-ca-file
store_ca_file] [--store-cert-file store_cert_file] [--store-key client_private_key] [--
store-timeout duration] [--version] [-h | --help] [--log-format]

Description

shardmand is a Shardman configuration daemon. It runs on each node in a Shardman cluster, subscribes for changes of shard-
man/cluster0/data/ladle and shardman/cluster0/data/cluster keys in the etcd store (cluster0 is the de-
fault cluster name used by Shardman utils) and manages Shardman processes on the node where it is running according to the con-
figuration described in these JSON documents.

shardmand manages integrated keepers and sentinels. On startup and when one of the monitored etcd keys changes, shard-
mand reconfigures them as follows:

• It calculates the expected node configuration, i. e., the list of keepers and sentinels expected to run and their configura-
tions, from the shardman/cluster0/data/ladle and shardman/cluster0/data/cluster values.

• It receives the list of running keepers and sentinels with their configurations from the internal process manager.

• It stops processes that are not expected to run. This can be a process that belongs to a cluster with the same name, but a dif-
ferent UUID, or a process whose description is no longer present in the expected node configuration. For keeper processes,
shardmand purges their data directory.

• If a process should be running, but its settings are different from the expected ones, shardmand updates the configuration and
restarts the process. If a process should be running, but it is not running, shardmand starts it.

Also, a separate thread of shardmand periodically updates the shardman/cluster0/data/shardmand/NODENAME etcd
key with the ClusterUUID of the last cluster to which the configuration was applied. So, before the shardmanctl nodes add
command tries to initialize new stolon clusters for a clover, the command can ensure that no alive stolon threads from a previous
cluster configuration are left on all nodes in the clover.

Additionaly, shardmand starts two http servers in separate threads. If servers ports match, a single server running
both roles is started. The first server provides following metrics: shardmand_etcd_unavailable_time_seconds,
shardmand_healthy_keepers, shardmand_sentinels, shardmand_uptime, shardmand_etcd_errors_to-
tal, shardmand_reconfigurations_number_total, shardmand_demotions_number_total. Also server pro-
vides a /healthz endpoint for shardmand health-check. The second server provides the following endponts:

• /shardmand/v1/replica — returns 200 status code if a secondary instance is running on node , 500 status code if a
master instance is running on node, /shardmand/v1/master — returns 200 status code if a master instance is running on
node , 500 status code if a secondary instance is running on node. If node both master and secondary instances are running on
node /shardmand/v1/replica and shardmand/v1/master endpoints return 404 status code.

• /shardmand/v1/status — getting information about shardmand status.

All Shardman services are managed by shardmand@cluster0.service, so when it is started, stopped or restarted, it also
starts, stops or restarts all other Shardman processes (including DBMS instances).

Command-line Reference

This section describes shardmand-specific command-line options. For Shardman common options used by the commands, see
the section called “Common Options”.

196

Shardman Reference

--log-format

Specifies the log output format, json or text. The default is text.

--system-bus

Not used. Left for compatibility. Ignored.

--user user_name

Not used. Left for compatibility. Ignored.

Common Options

shardmand common options are optional parameters that are not specific to the utility. They specify etcd connection settings, cluster
name and a few more settings. By default shardmand tries to connect to the etcd store 127.0.0.1:2379 and use the cluster0
cluster name. The default log level is info .

-h, --help

Show brief usage information.

--cluster-name cluster_name

Specifies the name for a cluster to operate on. The default is cluster0.

--log-level level

Specifies the log verbosity. Possible values of level are (from minimum to maximum): error, warn, info and debug.
The default is info.

--retries number

Specifies how many times shardmanctl retries a failing etcd request. If an etcd request fails, most likely, due to a connectivity
issue, shardmanctl retries it the specified number of times before reporting an error. The default is 5.

--session-timeout seconds

Specifies the session timeout for shardmanctl locks. If there is no connectivity between shardmanctl and the etcd store for the
specified number of seconds, the lock is released. The default is 30.

--store-endpoints string

Specifies the etcd address in the format: http[s]://address[:port](,http[s]://address[:port])*. The de-
fault is http://127.0.0.1:2379.

--store-ca-file string

Verify the certificate of the HTTPS-enabled etcd store server using this CA bundle.

--store-cert-file string

Specifies the certificate file for client identification by the etcd store.

--store-key string

Specifies the private key file for client identification by the etcd store.

--store-timeout duration

Specifies the timeout for a etcd request. The default is 5 seconds.

--monitor-port number

Specifies the port for the shardmand http server for metrics and probes. The default is 15432.

--api-port number

Specifies the port for the shardmand http api server. The default is 15432.

197

Shardman Reference

--version

Show shardman-utils version information.

Environment

A shardmand service reads the environment from /etc/shardman/shardmand-cluster0.env. The following environ-
ment variables affect the behavior of shardmand.

SDM_CLUSTER_NAME

An alternative to setting the --cluster-name option

SDM_LOG_LEVEL

An alternative to setting the --log-level option

SDM_RETRIES

An alternative to setting the --retries option

SDM_SYSTEM_BUS

An alternative to setting the --system-bus option

SDM_STORE_ENDPOINTS

An alternative to setting the --store-endpoints option

SDM_STORE_CA_FILE

An alternative to setting the --store-ca-file option

SDM_STORE_CERT_FILE

An alternative to setting the --store-cert-file option

SDM_STORE_KEY

An alternative to setting the --store-key option

SDM_STORE_TIMEOUT

An alternative to setting the --store-timeout option

SDM_SESSION_TIMEOUT

An alternative to setting the --session-timeout option

SDM_USER

An alternative to setting the --user option

Examples

Configuring a shardmand Service

shardmand settings are usually specified in the /etc/shardman/shardmand-cluster0.env file. If you want shardmand
to connect to an etcd cluster at hosts n1-n3 using port 2379 and all Shardman services to use the debug log level, you can use
the following env file:

SDM_STORE_ENDPOINTS=http://n1:2379,http://n2:2379,http://n3:2379
SDM_LOG_LEVEL=debug

Note that you need to restart shardmand@cluster0 service to apply new settings from the env file.

Showing shardmand Logs

To look at shardmand logs, you can use a journalctl command:

198

Shardman Reference

$ journalctl -u shardmand@cluster0.service

Restarting Shardman Services

You can restart all Shardman services on a node using a systemctl command:

$ systemctl restart shardmand@cluster0.service

See Also
shardmanctl , sdmspec.json

199

Chapter 7. Shardman Internals
The Shardman software comprises these main components: PostgreSQL core with additional features, shardman extension, man-
agement services and utilities. This section considers Shardman cluster as a group of PostgreSQL instances or shards. Each shard
may also have one or more replicas and to emphasize this the term replication group is used. The support for highly available con-
figurations is currently done on the level of tools and services and will be covered in the Management section.

7.1. Table Types
In a distributed database managed by Shardman the following special table types are used: sharded tables and global tables.

7.1.1. Sharded Tables
Sharded tables are just usual PostgreSQL partitioned tables where a few partitions, making up a shard, are regular local tables
and the other partitions are foreign tables available from remote servers via postgres_fdw. Sharded tables are registered in the
shardman.sharded_tables dictionary. Use the CREATE TABLE statement with the distributed_by parameter to create
a sharded table. Several sharded tables can be created as colocated. This means that they have the same number of partitions and that
their partitions corresponding to the same sharding key should reside together. During a rebalance, Shardman management utilities
ensure that corresponding partitions of colocated tables are moved to the same node. (Such a rebalance happens, for example, when
a new node is added to the cluster). Colocation is necessary to ensure that joins of several tables are propagated to the node where the
actual data resides. To define one sharded table colocated with another one, first, create one table and then use the colocate_with
parameter of the CREATE TABLE statement while creating the second table. Chains of colocated tables are not supported, all related
tables should be marked as colocated to one of the tables instead. Note that colocate_with property is symmetric and transitive.

7.1.1.1. Partitions

A sharded table consists of several partitions. Some of them are regular tables, and others are foreign tables. By default, the number
of partitions is determined by the shardman.num_parts parameter, but it can be overwritten by the num_parts CREATE
TABLE parameter. Most of DDL operations are restricted on partitions of a sharded table. You should modify the parent table instead.

The number of partitions in a sharded table is defined when it is created and cannot be changed afterwards. When new nodes are added
to the cluster, some partitions are moved from existing nodes to the new ones to balance the load. So, to allow scaling of clusters,
the initial number of partitions should be high enough, but not too high since an extremely large number of partitions significantly
slows down query planning. For example, if you expect the number of nodes in your cluster to grow by 4 times at a maximum, create
sharded tables with the number of partitions equal to 4 * N, where N is the number of nodes. A cluster becomes unable to scale
when the number of cluster nodes reaches the number of partitions in the sharded table with the minimal number of them.

7.1.1.2. Subpartitions

Partitions of a sharded table can be partitioned by range. In this case, each partition of a sharded table is a partitioned table con-
sisting only of regular or only of foreign subpartitions. All subpartitions of a partition are located on the same node. Use the par-
tition_by CREATE TABLE parameter to specify a column that should be used as a subpartition key column and the parti-
tion_bounds parameter to set bounds of the second-level table partitions. New subpartitions can be added or removed from a
table as necessary. So you can omit the partition_bounds parameter during table creation and create partitions later using
the shardman.create_subpart() function. Other subpartition management functions allow you to drop, detach or attach
subpartitions of a sharded table. Subpartition management is cluster-wide.

7.1.2. Global Tables
Global tables are available to all nodes of a cluster. Now a global table is a set of regular tables synchronized by triggers. The main
use case for a global table is to store a relatively rarely updated set of data that is used by all cluster nodes. When a sharded table
is joined to a global table, joins between sharded table partitions and the global table can be performed on nodes where individual
partitions reside. The implementation of trigger-based replication requires a non-deferrable primary key on a global table to be
defined. Currently when a global table is modified, an after-statement trigger fires and propagates changes to other nodes of the
cluster via foreign tables. When new nodes are added to a cluster, global table data is transferred to the new nodes via logical
replication. When some nodes are removed from a cluster, global tables get locked for writes for a brief time. Use the global
CREATE TABLE parameter to create a global table. Global tables are registered in the shardman.global_tables dictionary.
Partitioned global tables are not supported.

200

https://postgrespro.com/docs/postgresql/14/postgres-fdw

Shardman Internals

7.1.3. Distributed DDL
Shardman extension allows creating several kinds of global objects. These are sharded and global tables, roles and tablespaces. The
list of operations allowed on global objects is limited particularly to protect consistency of a global schema. For the same reason,
most operations on global objects are cluster-wide. The list of cluster-wide operations includes:

• CREATE for sharded and global tables, global roles and tablespaces or indexes on sharded or global tables.

• DROP for sharded and global tables, global roles and tablespaces or indexes on sharded or global tables.

• ALTER TABLE for sharded and global tables.

• ALTER TABLESPACE for global tablespaces.

• ALTER ROLE for global roles.

• RENAME for sharded and global tables or indexes on them.

• SET CONSTRAINTS ALL inside a transaction block.

These configuration settings control execution of the distributed DDL: shardman.broadcast_ddl and shardman.sync_schema. The
first one can be used for a cluster-wide broadcast of all regular DDL operations (for example, creating schemas or functions). The
second one controls broadcasting of statements related to global objects and should never be turned off without consulting the
Postgres Pro Shardman support team.

7.2. Query Processing
Shardman uses the standard PostgreSQL query execution pipeline. Other nodes in the cluster are accessed via the modified post-
gres_fdw extension.

Shardman query planner takes the query abstract syntax tree (AST) and creates a query plan, which is used by the executor. While
evaluating query execution methods, the planner operates with so-called paths, which specify how relations should be accessed.
While processing a query join tree, the planner looks at different combinations of how relations can be joined. Each time it examines
a join of two relations, one of which can be a join relation itself. After choosing the order and strategies for joining relations the
planner considers the group by, order by and limit operations. When the cheapest path is selected, it is transformed to a query plan.
A plan consists of a tree of nodes, each of which has methods to get one next result row (or NULL if there are no more results).

7.2.1. Push-down Technique

7.2.1.1. Joins

The efficiency of query execution in a distributed DBMS is determined by how many operations can be executed on nodes that
hold the actual data. For Shardman, a lot of effort is devoted to pushing down join operations. When the planner finds a relation
that is accessible via a foreign data wrapper (FDW), it creates ForeignPath to access it. Later, when it examines a join of two
relations and both of them are available via ForeignPath from the same foreign server, it can consider pushing down this join to
the server and generating a so-called ForeignJoinPath. The planner can fail to do it if the join type is not supported, if filters
attached to the relation should be applied locally, or if the relation scan result contains fields that cannot be evaluated on the remote
server. An example of a currently unsupported join type is anti-join. Local filters attached to the relation should be applied locally
when remote execution can lead to a different result or if the postgres_fdw module cannot create SQL expressions to apply some
of the filters. An example of fields that cannot be evaluated on a remote server are attributes of semi-join inner relation that are
not accessible via an outer relation. If the foreign_join_fast_path configuration parameter is set to on (which is the default value),
the Shardman planner stops searching for other join strategies of two relations once it finds a foreign join possible for them. When
the postgres_fdw.enforce_foreign_join configuration parameter is set to on (which is also the default), the cost of a foreign join is
estimated so as to be always less than the cost of a local join.

When several sharded tables are joined on a sharding key, a partitionwise join can be possible. This means that instead of joining
original tables, we can join their matching partitions. Partitionwise join currently applies only when the join conditions include all the
partition keys, which must be of the same data type and have exactly matching sets of child partitions. Partitionwise join is crucial to
the efficient query execution as it allows pushing down joins of table partitions. Evidently, to push down a join of several partitions,
these partitions should reside on the same node. This is usually the case when sharded tables are created with the same num_parts
parameter. However, for a rebalance process to move the corresponding partitions to the same nodes, sharded tables should be

201

https://postgrespro.com/docs/postgresql/14/query-path

Shardman Internals

marked as colocated when created (see Section 7.1.1). Partitionwise join is enabled with the enable_partitionwise_join
configuration parameter, which is turned on by default in Shardman.

When a sharded table is joined to a plain global table, asymmetric partitionwise join is possible. This means that instead of joining
original tables, we can join each partition of the sharded table with the global table. This makes it possible to push down a join of
sharded table partitions - with a global table to the foreign server.

7.2.1.2. Aggregations

After planning joins, the planner considers paths for post-join operations, such as aggregations, limiting, sorting and grouping. Not
all such operations reach FDW pushdown logic. For example, currently partitioning efficiently prevents the LIMIT clause from
being pushed down. There are two efficient strategies for executing aggregates on remote nodes. The first one is a partitionwise
aggregation — when a GROUP BY clause includes a partitioning key, the aggregate can be pushed down together with the GROUP
BY clause (this behavior is controlled by the enable_partitionwise_aggregate configuration parameter, which is turned
on by default in Shardman). Alternatively, the planner can decide to execute partial aggregation on each partition of a sharded table
and then combine the results. In Shardman, such a partial aggregate can be pushed down if the partial aggregate efficiently matches
the main aggregate. For example, partial sum() aggregate can always be pushed down, but avg() cannot. Also the planner refuses
pushing down partial aggregates if they contain additional clauses, such as ORDER BY or DISTINCT, or if the statement has the
HAVING clause.

7.2.1.3. Subqueries

Generally, subqueries cannot be pushed down to other cluster nodes. However, Shardman uses two approaches to alleviate this
limitation.

The first is subquery unnesting. In PostgreSQL, non-correlated subqueries can be transformed into semi-joins. In the following
example, ANY subquery on non-partitioned tables is transformed to Hash Semi Join:

EXPLAIN (COSTS OFF) SELECT * FROM pgbench_branches WHERE bid = ANY (SELECT bid FROM
 pgbench_tellers);
 QUERY PLAN

 Hash Semi Join
 Hash Cond: (pgbench_branches.bid = pgbench_tellers.bid)
 -> Seq Scan on pgbench_branches
 -> Hash
 -> Seq Scan on pgbench_tellers

When optimize_correlated_subqueries is on (which is the default), Shardman planner also tries to convert correlated subqueries (i.e.,
subqueries that reference upper-level relations) into semi-joins. This optimization works for IN and = operators. The transformation
has some restrictions. For example, it is not considered if a subquery contains aggregates or references upper-level relations from
outside of a WHERE clause. This optimization allows transforming more complex subqueries into semi-joins, like in the following
example:

EXPLAIN (COSTS OFF) SELECT * FROM pgbench_branches WHERE bid = ANY (SELECT bid FROM
 pgbench_tellers WHERE tbalance = bbalance);
 QUERY PLAN

--
 Hash Semi Join
 Hash Cond: ((pgbench_branches.bid = pgbench_tellers.bid) AND
 (pgbench_branches.bbalance = pgbench_tellers.tbalance))
 -> Seq Scan on pgbench_branches
 -> Hash
 -> Seq Scan on pgbench_tellers
(5 rows)

After applying subquery unnesting, semi-join can be pushed down for execution to a remote node.

The second approach is to push down the entire subquery. This is possible when the optimizer has already figured out that the
subquery references only partitions from the same foreign server as the upper-level query and corresponding foreign scans do not

202

https://postgrespro.com/docs/postgresql/14/runtime-config-query#GUC-ENABLE-PARTITIONWISE-JOIN
https://postgrespro.com/docs/postgresql/14/runtime-config-query#GUC-ENABLE-PARTITIONWISE-AGGREGATE

Shardman Internals

have local conditions. The optimization is controlled by postgres_fdw.subplan_pushdown (which is off by default). When a decision
to push down a subquery is made by postgres_fdw, it has to deparse this subquery. A subquery that contains plan nodes for which
deparsing is not implemented will not be pushed down. An example of a subquery pushdown looks as follows:

EXPLAIN (VERBOSE ON, COSTS OFF)
SELECT * FROM pgbench_accounts a WHERE a.bid=90 AND abalance =
 (SELECT min(tbalance) FROM pgbench_tellers t WHERE t.bid=90 and a.bid=t.bid);
 QUERY PLAN

--
 Foreign Scan on public.pgbench_accounts_5_fdw a
 Output: a.aid, a.bid, a.abalance, a.filler
 Remote SQL: SELECT aid, bid, abalance, filler FROM public.pgbench_accounts_5
 r2 WHERE ((r2.bid = 90)) AND ((r2.abalance = ((SELECT min(sp0_2.tbalance) FROM
 public.pgbench_tellers_5 sp0_2 WHERE ((sp0_2.bid = 90)) AND ((r2.bid = 90))))))
 Transport: Silk
 SubPlan 1
 -> Finalize Aggregate
 Output: min(t.tbalance)
 -> Foreign Scan
 Output: (PARTIAL min(t.tbalance))
 Relations: Aggregate on (public.pgbench_tellers_5_fdw t)
 Remote SQL: SELECT min(tbalance) FROM public.pgbench_tellers_5 WHERE
 ((bid = 90)) AND (($1::integer = 90))
 Transport: Silk

Note that in the plan above there are no references to SubPlan 1.

7.2.2. Asynchronous Execution
When a sharded table is queried, the Shardman planner creates Append plans to scan all partitions of the table and combine the
result. When some of partitions are foreign tables, the planner can decide to use an asynchronous execution. This means that when
an Append node for the first time after initialization is asked for the tuples, it asks asynchronous child nodes to start fetching the
result. For postgres_fdw async ForeignScan nodes, it means that a remote cursor is declared and a fetch request is sent to the
remote server. If Silk transport is used, this means that the query is sent for execution to the remote server as an MT_SPI message.

After sending a request to the remote servers, Append returns to fetching data from synchronous child nodes — local scan nodes or
synchronous ForeignScan nodes. Data from such nodes is fetched in a blocking manner. When Append ends getting data from
synchronous nodes, it looks if async nodes have some data. If they do not, it waits for async nodes to produce results.

Shardman can execute several types of plans asynchronously. These are asynchronous ForeignScans, projections and trivial
subquery scans (select * from subquery) over asynchronous plans.

The asynchronous execution is turned on by default on the level of a foreign server. This is controlled by async_capable
postgres_fdw option. For now, only Append plans support asynchronous execution. MergeAppend does not support asynchronous
execution.

While examining query plans, pay attention to the presence of non-asynchronous ForeignScan nodes in the plan. Asynchronous
execution can significantly increase query execution time.

Examples:

EXPLAIN (COSTS OFF) SELECT * FROM pgbench_accounts;
 QUERY PLAN

 Append
 -> Seq Scan on pgbench_accounts_0 pgbench_accounts_1
 -> Async Foreign Scan on pgbench_accounts_1_fdw pgbench_accounts_2
 -> Async Foreign Scan on pgbench_accounts_2_fdw pgbench_accounts_3
 -> Seq Scan on pgbench_accounts_3 pgbench_accounts_4

203

Shardman Internals

 -> Async Foreign Scan on pgbench_accounts_4_fdw pgbench_accounts_5
 -> Async Foreign Scan on pgbench_accounts_5_fdw pgbench_accounts_6
 -> Seq Scan on pgbench_accounts_6 pgbench_accounts_7
 -> Async Foreign Scan on pgbench_accounts_7_fdw pgbench_accounts_8
 -> Async Foreign Scan on pgbench_accounts_8_fdw pgbench_accounts_9
 -> Seq Scan on pgbench_accounts_9 pgbench_accounts_10
 -> Async Foreign Scan on pgbench_accounts_10_fdw pgbench_accounts_11
 -> Async Foreign Scan on pgbench_accounts_11_fdw pgbench_accounts_12
 -> Seq Scan on pgbench_accounts_12 pgbench_accounts_13
 -> Async Foreign Scan on pgbench_accounts_13_fdw pgbench_accounts_14
 -> Async Foreign Scan on pgbench_accounts_14_fdw pgbench_accounts_15
 -> Seq Scan on pgbench_accounts_15 pgbench_accounts_16
 -> Async Foreign Scan on pgbench_accounts_16_fdw pgbench_accounts_17
 -> Async Foreign Scan on pgbench_accounts_17_fdw pgbench_accounts_18
 -> Seq Scan on pgbench_accounts_18 pgbench_accounts_19
 -> Async Foreign Scan on pgbench_accounts_19_fdw pgbench_accounts_20

Here we see a typical asynchronous plan. There are asynchronous foreign scans and local sequential scans, which are executed
synchronously.

EXPLAIN (COSTS OFF) SELECT * FROM pgbench_accounts ORDER BY aid;
 QUERY PLAN

 Merge Append
 Sort Key: pgbench_accounts.aid
 -> Sort
 Sort Key: pgbench_accounts_1.aid
 -> Seq Scan on pgbench_accounts_0 pgbench_accounts_1
 -> Foreign Scan on pgbench_accounts_1_fdw pgbench_accounts_2
 -> Foreign Scan on pgbench_accounts_2_fdw pgbench_accounts_3
 -> Sort
 Sort Key: pgbench_accounts_4.aid
 -> Seq Scan on pgbench_accounts_3 pgbench_accounts_4
 -> Foreign Scan on pgbench_accounts_4_fdw pgbench_accounts_5
 -> Foreign Scan on pgbench_accounts_5_fdw pgbench_accounts_6
 -> Sort
 Sort Key: pgbench_accounts_7.aid
 -> Seq Scan on pgbench_accounts_6 pgbench_accounts_7
 -> Foreign Scan on pgbench_accounts_7_fdw pgbench_accounts_8
 -> Foreign Scan on pgbench_accounts_8_fdw pgbench_accounts_9
 -> Sort
 Sort Key: pgbench_accounts_10.aid
 -> Seq Scan on pgbench_accounts_9 pgbench_accounts_10
 -> Foreign Scan on pgbench_accounts_10_fdw pgbench_accounts_11
 -> Foreign Scan on pgbench_accounts_11_fdw pgbench_accounts_12
 -> Sort
 Sort Key: pgbench_accounts_13.aid
 -> Seq Scan on pgbench_accounts_12 pgbench_accounts_13
 -> Foreign Scan on pgbench_accounts_13_fdw pgbench_accounts_14
 -> Foreign Scan on pgbench_accounts_14_fdw pgbench_accounts_15
 -> Sort
 Sort Key: pgbench_accounts_16.aid
 -> Seq Scan on pgbench_accounts_15 pgbench_accounts_16
 -> Foreign Scan on pgbench_accounts_16_fdw pgbench_accounts_17
 -> Foreign Scan on pgbench_accounts_17_fdw pgbench_accounts_18
 -> Sort
 Sort Key: pgbench_accounts_19.aid
 -> Seq Scan on pgbench_accounts_18 pgbench_accounts_19
 -> Foreign Scan on pgbench_accounts_19_fdw pgbench_accounts_20

204

Shardman Internals

Here merge append is used, and so the execution cannot be asynchronous.

7.2.3. Fetch-all Fallback
There are a lot of cases when operations on data cannot be executed remotely (for example, when some non-immutable function is
used in filters, when several sharded tables are joined by an attribute that is not a sharding key, when pushdown of a particular join
type is not supported) or when the planner considers local execution to be cheaper. In such cases different operations (selection, joins
or aggregations) are not pushed down, but executed locally. This can lead to inefficient query execution due to large inter-cluster
traffic and high processing cost on a coordinator. When this happens, you should check if an optimizer has fresh statistics, consider
rewriting the query to benefit from different forms of pushdown or at least check that the suggested query plan is reasonable enough.
To make DBMS analyze data for the whole cluster, you can use shardman.global_analyze function.

7.3. Distributed Transactions

7.3.1. Visibility and CSN

7.3.1.1. CSN — Commit Sequence Number

A Shardman cluster uses a snapshot isolation mechanism for distributed transactions. The mechanism provides a way to synchronize
snapshots between different nodes of a cluster and a way to atomically commit such a transaction with respect to other concurrent
global and local transactions. These global transactions can be coordinated by using provided SQL functions or through postgres_fdw,
which uses these functions on remote nodes transparently.

Assume that each node uses the CSN-based visibility: the database tracks the counter for each transaction commit (CSN). With such
a setting, a snapshot is just a single number — a copy of the current CSN at the moment when the snapshot was taken. Visibility
rules are boiled down to checking whether the current tuple's CSN is less than our snapshot's CSN.

Let's assume that CSN is the current physical time on the node and call it GlobalCSN. If the physical time on different nodes is
perfectly synchronized, then such a snapshot obtained on one node can be used on other nodes to provide the necessary level of
transaction isolation. But unfortunately physical time is never perfectly sync and can drift, and this should be taken into account.
Also, there is no easy notion of lock or atomic operation in the distributed environment, so commit atomicity on different nodes with
respect to concurrent snapshot acquisition should be handled somehow. This is addressed in the following way:

1. To achieve commit atomicity of different nodes, intermediate step is introduced: at the first run, a transaction is marked as
InDoubt on all nodes, and only after that each node commits it and stamps with a given GlobalCSN. All readers that ran into
tuples of an InDoubt transaction should wait until it ends and recheck the visibility.

2. When the coordinator is marking transactions as InDoubt on other nodes, it collects ProposedGlobalCSN from each par-
ticipant, which is the local time on those nodes. Next, it selects the maximal value of all ProposedGlobalCSNs and commits
the transaction on all nodes with that maximal GlobalCSN even if that value is greater than the current time on this node due
to clock drift. So the GlobalCSN for the given transaction will be the same on all nodes. Each node records its last generat-
ed CSN (last_csn) and cannot generate CSN ≤ last_csn. When a node commits a transaction with CSN > last_csn,
last_csn is adjusted to record this CSN. Due to this mechanism, a node cannot generate a CSN, that is less than CSNs of
already committed transactions.

3. When a local transaction imports a foreign global snapshot with some GlobalCSN and the current time on this node is smaller
than the incoming GlobalCSN, then the transaction should wait until this GlobalCSN time comes to the local clock.

The two last rules provide protection against time drift.

7.3.1.2. Commit Delay and External Consistency

The rules above still do not guarantee recency for snapshots genereted on nodes that do not participate in a transaction. A read
operation that originates from such a node can see stale data. The probability of the anomaly directly depends on the system clock
skew in the Shardman cluster.

Particular attention should be paid to the synchronization of system clocks on all cluster nodes. The size of the clock skew must be
measured. If an external consistency is required, then the clock skew can be compensated with a commit delay. This delay is added

205

Shardman Internals

before every commit in the system, so it has a negative impact on the latency of transactions. Read-only transactions are not affected
by this delay. The delay can be set using the configuration parameter csn_commit_delay.

7.3.1.3. CSN Map

The CSN visibility mechanism described above is not a general way to check the visibility of all transactions. It is used to provide
isolation only for distributed transactions. As a result, each cluster node uses a visibility checking mechanism based on xid and
xmin. To be able to use the CSN snapshot that points to the past, we need to keep old versions of tuples on all nodes and therefore
defer vacuuming them. To do this, each node in a Shardman cluster maintains a CSN to xid mapping. The map is called CSNS-
napshotXidMap. This map is a ring buffer, and it stores the correspondence between the current snapshot_csn and xmin
in a sparse way: snapshot_csn is rounded to seconds (and here we use the fact that snapshot_csn is just a timestamp), and
xmin is stored in the circular buffer where rounded snapshot_csn acts as an offset from the current circular buffer head. The
size of the circular buffer is controlled by the csn_snapshot_defer_time configuration setting. VACUUM is not allowed to clean up
tuples whose xmax is newer than the oldest xmin in CSNSnapshotXidMap.

When a CSN snapshot arrives, we check that its snapshot_csn is still in our map, otherwise, we will error out with “snapshot
too old” message. If the snapshot_csn is successfully mapped, we fill backend's xmin with the value from the map. That way
we can take into account backends with an imported CSN snapshot, and old tuple versions will be preserved.

7.3.1.4. CSN Map Trimming

To support global transactions, each node keeps old versions of tuples for at least csn_snapshot_defer_time seconds. With
large values of csn_snapshot_defer_time, this negatively affects performance. This is because nodes save all row versions
during the last csn_snapshot_defer_time seconds, but there may not be more transactions in the cluster that can read them.
A special task of the monitor periodically recalculates xmin in the cluster and sets it on all nodes to the minimum possible value.
This allows the vacuuming routine to remove a row version that is no longer of interest to any transaction. The shardman.moni-
tor_trim_csnxid_map_interval configuration setting controls the worker. The worker wakes up every monitor_interval sec-
onds and performs the following operations:

1. Checks if the current node's repgroup ID is the smallest among all IDs in the cluster. If this condition is not met, then the work
on the current node is terminated. So only one node in the cluster can perform a horizon negotiation.

2. From each node of the Shardman cluster, the coordinator collects the oldest snapshot CSN among all active transactions on the
node.

3. The coordinator chooses the smallest CSN and sends it to each node. Each node discards its csnXidMap values that are less
than this value.

7.3.2. 2PC and Prepared Transaction Resolution
Shardman implements a two-phase commit protocol to ensure the atomicity of distributed transactions. During the execution of a
distributed transaction, the coordinator node sends the command BEGIN to participant nodes to initiate their local transactions.

The term "participant nodes" herein and subsequently refers to a subset of cluster nodes that participate in the
execution of a transaction's command while the node is engaged in writing activity.

Additionally, a local transaction is created on the coordinator node. This ensures that there are corresponding local transactions on
all nodes participating in the distributed transaction.

During the two-phase transaction commit, the coordinator node sends the command PREPARE TRANSACTION to the participant
nodes to initiate the preparation of their local transactions for commit. If the preparation is successful, the local transaction data
is stored in a disk storage, making it persistent. If all participant nodes report successful preparation to the coordinator node, the
coordinator node will commit its local transaction. Subsequently, the coordinator node will also commit the previously prepared
transactions on the participant nodes using the command COMMIT PREPARED.

If a failure occurs during the PREPARE TRANSACTION command on any of the participant nodes, the distributed transaction
is considered aborted. The coordinator node then broadcasts the command to abort the previously prepared transactions using the
ROLLBACK PREPARED command. If the local transaction was already prepared, it is aborted. However, if there was no prepared
transaction with the specified name, the command to rollback is simply ignored. Subsequently, the coordinator node rolls back its
local transaction.

206

Shardman Internals

After a successful preparation phase, there will be an object prepared transaction on the each of participant nodes. These
objects are actually disk files and records in the server memory.

It is possible to have a prepared transaction that was created earlier through a two-phase operation and will never be completed.
This can occur, for example, if the coordinator node fails exactly after the preparation step but before the commit step. It can also
occur as a result of network connectivity issues. For instance, if the command COMMIT PREPARED from the coordinator node to
a participant node ends with an error, local transactions will be committed on all participant nodes except for the one with the error.
The local transaction will also be committed on the coordinator node. All participants, except for the one with the error, believe that
the distributed transaction was completed. However, the one participant still waiting for COMMIT PREPARED will never receive
it, resulting in a prepared transaction that will never be completed.

A prepared transaction consumes system resources, such as memory and disk space. An incomplete prepared transaction causes
other transactions that access rows modified by that transaction to wait until the distributed operation completes. Therefore, it is
necessary to complete prepared transactions, even in cases where there were failures during commit, to free up resources and ensure
that other transactions can proceed.

To resolve such situations, there is a mechanism for resolving prepared transactions that is implemented as part of the Shardman
monitor. It is implemented as a background worker that wakes up periodically, acting as an internal “crontab” job. By default, the
period is set to 5 seconds, but it can be configured using the shardman.monitor_dxact_interval configuration parameter.
The worker checks the presence of prepared transactions that were created earlier by a certain amount of time, specified by the
shardman.monitor_dxact_timeout configuration parameter (which is also set to 5 seconds by default), on the same node
where the Shardman monitor is running.

When the PREPARE TRANSACTION command is sent to a participant node, a special name is assigned to the prepared transaction.
This name encodes useful information, which allows identifying the coordinator node and its local transaction.

If the Shardman monitor finds outdated prepared transactions, it extracts the coordinator's replication group ID and transaction ID
of the coordinator's local transaction. The monitor then sends a query to the coordinator

SELECT shardman.xact_status(TransactionId)

which requests the current status of the coordinator's local transaction. If the query fails, for example, due to network connectivity
issues, then the prepared transaction will remain untouched until the next time when the monitor wakes up.

In the case of a successful query, the coordinator node can reply with one of the following statuses:

committed

The local transaction on the coordinator node was completed successfully. Therefore, the Shardman monitor also commits this
prepared transaction using the COMMIT PREPARED command.

aborted

The local transaction on the coordinator node was aborted. Therefore, the monitor also aborts this transaction using the ROLL-
BACK PREPARED command.

unknown

The transaction with such an identifier never existed on the coordinator node. Therefore, the monitor aborts this transaction
using the ROLLBACK PREPARED command.

active

The local transaction on the coordinator node is still somewhere inside the CommitTransaction() flow. Therefore, the
monitor does nothing with this transaction. The monitor will try again with this transaction at the next wake-up.

ambiguous

This status can be returned when CLOG's truncating is enabled on the coordinator node. The CLOG is a bitmap that stores the
status of completed local transactions. When a transaction is committed or aborted, its status is marked in the CLOG. However,
the CLOG can be truncated (garbage collected) by the VACUUM process to discard statuses of old transactions that do not affect
the visibility of data for any existing transaction.

When the CLOG is truncated, there is a possibility that the shardman.xact_status() function may not be able to unam-
biguously decide if a transaction exists in the past (with some status) or if it never existed. In such cases, the function returns

207

Shardman Internals

an ambiguous status. This can lead to uncertainty about the actual status of the transaction and can make it difficult to resolve
the prepared transaction.

When the shardman.xact_status() function returns the ambiguous status for a prepared transaction, the monitor
node logs a warning message indicating that the status could not be determined unambiguously. The prepared transaction is
left untouched, and the monitor will try again with this transaction at the next wake-up. It is important to properly configure
the min_clog_size parameter with the value of 1024000 (which means "never truncate CLOG") to avoid ambiguity in
the status of prepared transactions.

In situations where the prepared transaction resolution mechanism is unable to resolve prepared transactions due to constant errors
or ambiguous status, the administrator will need to manually intervene to resolve these transactions. This may involve examining
the server logs and performing a manual rollback or commit operation on the prepared transaction. Note that leaving prepared
transactions unresolved can lead to resource-consumption and performance issues, so it is important to address these situations as
soon as possible.

7.4. Silk

7.4.1. Concept
Silk (Shardman InterLinK) is an experimental transport feature. It is injected at the point where postgres_fdw decides to transmit
deparsed piece of query through libpq connection to the remote node, replacing libpq connection with itself. It is designed to de-
crease the count of idle postgres_fdw connections during transaction execution, minimize latency and boost overall throughput.

Silk implementation uses several background processes. The main routing/multiplexing process (one per PostgreSQL instance),
called silkroad, and a bunch of background workers, called silkworms. While postgres_fdw uses libpq, it spawns
multiple libpq connections from each backend to the remote node (where multiple backend processes are spawned accordingly).
But if silk replaces libpq - every silkroad process is connected to only one remote silkroad. In this scheme, remote
silkworms play the role of remote backends otherwise spawned by postgres_fdw.

Silkroad wires local backend with remote node's workers this way:

1. Backend process uses regular postgres_fdw API to access remote data as usual. But postgres_fdw, when silk is enabled,
writes the query into shared memory queue instead of libpq connection;

2. Silkroad process parses incoming shared memory queue from that backend and routes the message to appropriate network
connection with remote silkroad process.

3. Remote silkroad process grabs incoming message from network and (if it is a new one) redirects it to available worker's
shared memory queue (or in a special "unassigned jobs" queue if all of the workers are busy).

4. At last, remote worker gets the message through its shared memory queue, executes it and sends back the result tuples (or an
error) the same way.

Silkroad acts here like a common network switch, tossing packets between backend's shared memory and appropriate network
socket. It knows nothing about content of a message relying only on the message header.

7.4.2. Event Loop
Silkroad process runs an event loop powered by the libev library. Each backend's shared memory queue is exposed at the event
loop with the eventfd descriptor, and each network connection - with a socket descriptor.

During startup, the backend registers itself (its eventfd descriptors) at a local silkroad process. Silkroad responds by
specifying which memory segments to use for the backend's message queue. From this moment silkroad will respond to events
from the queue associated with this backend. Network connections between local and remote silkroads will be established at
once on the first request from the backend to the remote node and stay alive until both of participants (silkroad processes) exist.

7.4.3. Routing and Multiplexing
For each subquery, we expect a subset of tuples, and therefore represent the interaction within the subquery as a bidirectional data
stream. Silkroad uses an internal routing table to register these streams. A unique stream ID (within the Shardman cluster) is
formed as a pair of "origin node address, target node address" and a locally (within the node) unique number. Each particular subquery

208

Shardman Internals

from a backend to remote nodes will be registered by silkroad as such a stream. So, any backend can be associated with many
streams at the time.

When a local silkroad process got a message with a new stream ID from backend, it registers it in a local routing table and then
redirects this message to an appropriate socket. If the connection with the remote silkroad does not exist, it is established using
a handshake procedure. The original message that initiated a handshake is placed into a special internal buffer until the handshake
succeeds. The remote silkroad process receiving a packet with the new ID registers it in its own table, then assigns a silkworm
worker from a pool of available workers and places the message into the worker's shared memory queue. If all of the silkworm
workers are busy at the moment, the message will be postponed, i.e., placed into a special "unassigned jobs queue" (note that the
configuration parameter shardman.silk_unassigned_job_queue_size is 1024). If there is no free space in the queue,
an error message will be generated and sent back to the source backend. A job from this queue will be assigned later to the first
available worker when it gets rid of the previous job.

When the worker got a new “job”, it executes it through SPI subsystem, organizing result tuples into batches and sends them back
through shared memory to the local silkroad process. The rest is trivial due to the whole route is known. The last resulting packet
with tuples in a stream is marked as “closing”. It is an order to silkroads to wipe out this route from their tables.

Note that backend and remote workers stay “subscribed” to their streams until they are explicitly closed. So the backend has the
opportunity to send an abort message or notify the remote worker to prematurely close the transaction. And it makes it possible to
discard obsolete data packets, possibly from previous aborted transactions.

To observe the current state of the silkroad multiplexer process, Silk diagnostics views are available, as explained in Section 6.4.2.

7.4.4. Error Handling and Route Integrity
Besides the routing table silkroad tracks endpoints (backends and network connections) that were involved in some particular
stream. So when some connection is closed, all the involved backends (and/or workers) will be notified of that event with a special
error message, and all routes/streams related to this connection will be dismissed. The same way, if the backend crashes, its shared
memory queue become detached and silkroad reacts by sending error messages to remote participants of every stream related to
the crashed backend. So remote workers are not left doing useless work when the requester has already died.

7.4.5. Data Transmitting/batching/splitting Oversized Tuples
The resulting tuples are transmitted by silkworm in a native binary mode. Tuples with external storage attribute will be
deTOASTed, but those that were compressed stay compressed.

Small tuples will be organized in batches (about 256k). Big tuples will be cut into pieces by the sender and assembled into a whole
by the receiving backend.

7.4.6. Streams Flow Control
It may happen that when the next message is received from a backend, it will not fit the target network buffer. Or the message
received from the network does not fit into the target shared memory queue. In such a case, the stream that caused this situation will
be “suspended”. This means that the silkroad pauses the reaction to events from the source endpoint (connection or backend) until
the target endpoint drains their messages. The rest backends and connections not affected by this route are kept working. Receiving
modules of backends are designed to minimize these situations. The backend periodically checks and drains the incoming queue
even when the plan executor is busy processing other plan nodes. Received tuples are stored in backend's tuplestores according the
plan nodes until the executor requests the next tuple for a particular plan node execution.

When enough space is freed on the target queue, the suspended stream gets resumed, endpoint's events get unblocked and the process
of receiving and sorting packets continues.

7.4.7. Implementation details

7.4.7.1. State Transferring and CSNs

When postgres_fdw works over Silk transport, only one connection between silkroad routing daemons is used to transfer user
requests to silkworm workers and get their responses. Each request contains a transaction state, a replication group ID of the node
where the request is formed (coordinator), a query itself and query parameters (if present). A response is either an error response
message with a specific error message and error code or a bunch of tuples followed by “end of tuples” message. This means that
silkworm has to switch to the transaction state coming with the request prior to executing the request.

209

Shardman Internals

For now, Silk transport is used only for read-only SELECT queries. All modifying requests are processed via a usual libpq connection
and handled mostly as all other DML requests in PostgreSQL postgres_fdw. The only distinction is that when a DML request is
processed by postgres_fdw, it resets the saved transaction state for the connection cache entry corresponding to the connection where
this request is sent. Also a read-only flag is set to false for such a connection cache entry. When a request is sent over Silk transport,
Shardman extension asks for the transaction state for a pair of serverid and userid from postgres_fdw. If such a connection cache
entry is found in the postgres_fdw connection cache, it is not a read-only cache entry and transaction state is present in this entry, the
state is returned. If it is not present, postgres_fdw retreives a full transaction state from the remote server, saves it in the connection
cache entry and returns to the Shardman extension.

The full transaction state is similar to the parallel worker transaction state and contains:

• information related to the current user (uid, username)

• pid of the current backend

• transaction start timestamp

• current snapshot CSN

• flags indicating that invalidation messages are present

• backend private state:

• array of ComboCIDs

• internal transaction state (full transaction ID, isolation level, current command ID, etc.)

• information about reindexed indexes

If the connection is not found in the postgres_fdw connection cache (i.e., it is a new connection) or the entry in the connection cache
is marked as read-only, only these characteristics form the transaction state:

• information related to the current user (username)

• transaction start timestamp

• current snapshot CSN

• flags indicating that invalidation messages are present

Using such transaction states, silkworm can attach to a running transaction or start a new read-only transaction with the provided
snapshot CSN and retreive the result.

Note that the full transaction state can be imported only on the server that exported it. Also note that due to this transaction state
transferring method, you cannot use Silk transport without enabling CSN snapshots.

7.4.7.2. Integration with Asynchronous FDW Engine

In the Section 7.2.2, asynchronous ForeignScan plan nodes were presented as a way to optimize data retrieval from multiple
hosts while these plan nodes were located under a single Append node. In the standard PostgreSQL architecture, the execution of
ForeignScan plan nodes is implemented using the network protocol based on libpq. To improve the system performance during
data transfer and reduce resource consumption, Shardman employs a different method for exchanging data with remote hosts. The
mechanism for executing ForeignScan nodes is implemented using the Silk protocol.

To incorporate Silk transport into the asynchronous executor, modifications were made to the postgres_fdw extension. A pluggable
transport was implemented as a set of interface functions included as part of the Shardman extension. During execution of callbacks
that interact with remote hosts, these functions are called by the postgres_fdw extension. The pluggable Silk transport is activated if
the Shardman extension is preloaded and if the foreign server has the attribute extended_features (applicable for any FDW
server in the Shardman cluster). For all other cases, the postgres_fdw extension uses the standard exchange protocol based on libpq.

To disable the pluggable Silk transport in the Shardman cluster, it is necessary to set the query_engine_mode configuration
parameter to the value of ENGINE_NONE.

In the current implementation, the pluggable Silk transport is only used for read-only queries, specifically during the execution of
the ForeignScan node. The standard exchange protocol based on libpq is used for modifying queries.

When receiving query execution result rows using the Silk transport, the data is stored in a TupleStoreState storage as a
complete result set, which is the same size as that returned by the remote host. The TupleStoreState is implemented as a

210

Shardman Internals

data structure that can spill data to the disk in case of memory shortage. If the remote host returns a large result set, it does not
lead to an out-of-memory (OOM) condition. Once the result set is received in the TupleStoreState, the data is copied into
the ForeignScan executor's in-memory buffer. The size of this buffer is defined by the fetch_size attribute of the foreign
server. The default value of 50000 rows can be adjusted to find a balance between the performance (number of ForeignScan
node calls) and memory consumption.

Utilizing the pluggable Silk transport for the asynchronous FDW engine results in an increase of the network exchange performance
and a reduction of the system resource consumption due to better utilization of system resources, including the number of network
connections.

7.5. Distributed Deadlock Detection
Distributed deadlocks may occur during the processing of distributed transactions. Let us consider the following example:

 create table players(id int, username text, pass text) with (distributed_by='id');
 insert into players select id, 'user_' || id, 'pass_' || id from
 generate_series(1,1000) id;

Assume that the record with id=2 belongs to node1 and the record with id=3 belongs to node2.

Let us execute the following commands on different nodes:

 node1=# begin;
 node1=# update players set pass='someval' where id=3;

 node2=# begin;
 node2=# update players set pass='someval' where id=2;

 -- it should stuck because transaction on node1 locked record with id=3
 node2=# update players set pass='someval2' where id=3;

 -- it should stuck because transaction on node2 locked record with id=2
 node1=# update players set pass='someval2' where id=2;

A distributed deadlock situation arises when transactions are mutually locked by each other. PostgreSQL has an internal mechanism
for deadlock detection, which detects mutual locking between child processes of a single PostgreSQL instance (backend) and resolves
it. However, this mechanism is not applicable to the discovered situation because mutual locking is distributed, i.e., backends from
different nodes are involved. From the point of view of the PostgreSQL lock manager, there is no deadlock condition because
processes of the single instance are not locking each other. Therefore, Shardman has its own mechanism for distributed deadlock
resolution.

We can represent the interaction between processes in the entire cluster as a graph. A graph vertex represents a process (backend),
which we can identify with a couple of attributes {rgid; vxid}, where rgid is the replication group ID, and vxid is the
virtual transaction ID of the currently executed transaction. Graph edges represent directional connections between vertices. Each
connection is directed from the locked process to the locking process.

It is obvious that any process can be locked by only one process. In other words, if the backend is waiting for a lock, it can only
wait for a specific lock. On the other hand, a locking process can acquire multiple locks, meaning that it can lock multiple backends
simultaneously.

With that said, the lock graph acts as a singly linked list. If this list contains a closed loop, then here is a deadlock condition. To
detect a deadlock, it is necessary to build such a list and detect closed loops in it.

The distributed deadlock detector in Shardman is implemented as a separate task inside the Shardman monitor. If a process is un-
able to acquire a lock within a specified amount of time (which is one second by default, but can be adjusted using the dead-
lock_timeout configuration parameter), the internal PostgreSQL deadlock detector attempts to detect a local deadlock. If no
local deadlock is found, the distributed deadlock detector is activated.

The distributed deadlock detector builds a graph (list) of locks in the cluster. It queries views pg_locks and pg_stat_activity
on the local node and on each of the remote cluster nodes.

211

Shardman Internals

The process of building the list of locks involves sequentially querying nodes in the cluster, and it is not atomic, so the list is not
consistent. This means that the distributed deadlock detector may produce false positives. During the building of the list, we can
store a lock that can disappear before the end of the list building process. To guarantee the reliability of deadlock detection, after the
detection of a closed loop, it is necessary to re-query the nodes involved in the closed loop.

After finding the closed loop, the distributed deadlock detector chooses the process belonging to the local node and cancels it. The
user process served by the cancelled backend will receive a message:

 canceling statement due distributed deadlock was found

A verbose message about the detected deadlock will be recorded in the server logs:

 LOG: distributed deadlock detected
 DETAIL: repgroup 1, PID 95264 (application 'psql'), executed query 'update
 players set pass='qqq' where id=2;' is blocked by repgroup 1, PID 95283 (application
 'pgfdw:2:95278:9/2'), executed query 'UPDATE public.players_0 SET pass = 'qqq'::text
 WHERE ((id = 2))'
 repgroup 1, PID 95283 (application 'pgfdw:2:95278:9/2'), executed query 'UPDATE
 public.players_0 SET pass = 'qqq'::text WHERE ((id = 2))' is blocked by repgroup 2,
 PID 95278 (application 'psql'), executed query 'update players set pass='qqq' where
 id=3;'
 repgroup 2, PID 95278 (application 'psql'), executed query 'update players
 set pass='qqq' where id=3;' is blocked by repgroup 2, PID 95267 (application
 'pgfdw:1:95264:8/4'), executed query 'UPDATE public.players_1 SET pass = 'qqq'::text
 WHERE ((id = 3))'
 repgroup 2, PID 95267 (application 'pgfdw:1:95264:8/4'), executed query 'UPDATE
 public.players_1 SET pass = 'qqq'::text WHERE ((id = 3))' is blocked by repgroup 1,
 PID 95264 (application 'psql'), executed query 'update players set pass='qqq' where
 id=2;'

7.6. Global Sequences
Global sequences in Shardman are implemented on top of regular PostgreSQL sequences with some additional cluster-wide metadata,
which among other things holds the interval of globally unused sequence elements.

When CREATE SEQUENCE is issued, an ordinary PostgreSQL sequence with the same name is created on every cluster node. The
range of this local sequence is a bounded sub-interval of the global sequence (as defined by MINVALUE and MAXVALUE parameters),
and it contains at most block_size elements. The nextval function returns values from the local sequence until it runs out,
then a new sub-interval with block_size elements is allocated from the global sequence using a broadcast query involving all
cluster nodes. So, smaller block size values make the generated numbers more monotonic across the cluster, but incur a performance
penalty since the broadcast query may be rather expensive. Another way to describe the block size parameter is to say that it controls
the size of the second cache level, similarly to how the CACHE parameter works, except at the level of an entire Shardman cluster.

Also note, that every time a new sub-interval is allocated the underlying local sequence is modified (as in ALTER SEQUENCE), which
will lock it for the transaction duration, preventing any other local concurrent transactions from obtaining next sequence values.

7.7. Syncpoints and Consistent Backup
To ensure that cluster binary backup is consistent, Shardman implements the syncpoints mechanism.

To achieve consistent visibility of distributed transactions, the technique of global snapshots based on physical clocks is used.
Similarly, it is possible to get a consistent snapshot for backups, only the time corresponding to the global snapshot must be mapped
to a set of LSN for each node. Such a set of consistent LSN in a cluster is called a syncpoint.

In a Shardman cluster, each node can generate its own independent local CSN, which does not guarantee the global ordering of
values in time. Therefore, we cannot take this arbitrary local CSN as the basis for a syncpoint. Instead, Shardman chooses only
those CSNs that match distributed transaction commit records as the basis of the syncpoint. These CSNs have the property of global
ordering and can be used to obtain a syncpoint. The main points of this mechanism are described below.

The commit record of each completed transaction in Shardman contains the assigned CSN for this transaction. This value, together
with the LSN of this record, forms a pair of values (CSN, LSN). Each of the cluster nodes stores a certain number of such pairs in

212

Shardman Internals

RAM in a special structure - the CSNLSNMap. CSNLSNMap is a circular buffer. Each element of the map is a (CSN, LSN) pair.
The map size is set by the configuration settings csn_lsn_map_size. A (CSN, LSN) pair can be added to the map only if there
are no transactions on the node that can receive a CSN less than the one added. This important condition guarantees monotonous
growth of CSN and LSN in CSNLSNmap, but does not guarantee that every commit record will get into the map.

When a user submits a request to create a syncpoint, a search by every CSNLSNMap is made for a largest possible CSNg for which
there is an entry (CSN n, LSN) in each node and the condition CSNn <= CSNg is true. The monotonic growth property of every
CSNLSNMap ensures that each found pair (CSNn, LSN) corresponds to the state of the global data at the time corresponding to
CSNg. If no such value of CSNg is found, the get syncpoint operation fails and can be retried later. If such a value CSNg is found,
then a syncpoint is generated as a special type of WAL record, which is duplicated on all nodes of the cluster.

By getting a syncpoint and taking the LSN for each node in the cluster from it, we can make a backup of each node, which must
necessarily contain that LSN. We can also recover to this LSN using the point in time recovery (PITR) mechanism.

7.8. Collecting Distributed Statement Statistics Using the pgpro_s-
tats Extension

During execution of distributed queries, Shardman sends derived SQL queries to remote nodes that hold data partitions involved in
the query execution. Let's call these SQL queries query fragments. Shardman sends such queries using the postgres_fdw extension.
The node that queries the sharded table is called the coordinator, while the nodes that accept query fragments are called shards.

When the pgpro_stats extension is enabled on a Shardman cluster node, it collects statistics about local and distributed queries. The
information about distributed queries initiated by this node is incomplete because it misses data about remote query fragments. The
statistics concerning queries initiated by other nodes is also ambiguous because there is no simple way for a user to determine the
distributed query to which the fragment corresponds.

To address these issues, pgpro_stats for Shardman introduces an aggregation of statistics for the distributed queries. These aggregated
statistics can be accesses with the pgpro_stats_sdm_statements view. However, each Shardman node collects statistics for
all the statements, so that the pgpro_stats_statements view can work the way it did before.

When a node receives a query fragment, it saves its statistics to a separate shared hash table. Periodically and asynchronously, each
node sends this information from a separate table to the coordinator corresponding to the query. The coordinator aggregates the
statistical data obtained from the query fragments with the statistics of its parent query, which is the query initiated by the client.

The pgpro_stats extension starts a separate background worker. This worker is responsible for sending the accumulated statistics
to the coordinator nodes either every 5 seconds or when triggered by the guard latch. The collecting function sets this latch when
the hash table is almost full.

To reduce the network traffic initiated by a statistics sender, compression is applied to the statistics data sent. The compression
method can be selected by the pgpro_stats.transport_compression configuration parameter.

Each node stores the total number of statistics entries received from the shard node and the timestamp of when they were last
received. When a coordinator node receives a statistics message, it updates the appropriate values, which are accessible using the
SQL interface.

There are additional pgpro_stats SQL functions introduced by Shardman additions described in Section 6.2 and configuration para-
meters described in the section called “pgpro_stats parameters”.

7.9. Advisory Locks
PostgreSQL provides ways of creating locks that have application-defined meanings. These are cluster-wide advisory locks because
the system does not enforce their use. Advisory locks and global locks work simultaneously and do not conflict with each other.
Both these locks can be viewed with the pg_locks view and have the shradman value in locktype.

To see the advisory lock functions, refer to Advisory Lock Functions.

213

https://postgrespro.com/docs/postgresql/14/view-pg-locks

Appendix A. Release Notes
A.1. Postgres Pro Shardman 14.17.2

Release date: 2025-04-14

This release is based on PostgreSQL 14.17 and Shardman 14.17.1 and provides new features, optimizations and bug fixes. Major
changes are as follows:

A.1.1. Core and Extensions
• Added the csn_max_shift and csn_max_shift_error configuration parameters to work with CSN snapshots for the distributed

queries and imported snapshots.

• Added the shardman.context_log configuration parameter that allows the coordinator to see the error context on a worker.

• Deleted the csn_max_commit_shift and csn_max_snapshot_shift configuration parameters.

• Forbade access to global views from standby servers.

• Updated the ABORT command output for workers that now shows a detailed information about the abort reasons on a coordi-
nator.

• Optimized the MergeAppend behavior to consider the cheapest sorted total path. Previously the most efficient path could not
be chosen by the planner.

A.1.2. Management Utilities
• Fixed the GO-2025-3553 vulnerability.

• Fixed the invalid shardmanctl nodes command behavior. Now the same node cannot be specified more than once in the shrad-
manctl nodes start, shradmanctl nodes stop, and shradmanctl nodes restart commands.

• Added cluster configuration parameters related to replication slots: additionalReplicationSlots to specify an array
of names for replication slots to be created on the master, createSlotsOnFollowers to also create replication slots on
standby nodes, and additionalSlotsLagLimit to limit lagging behind for additional replication slots.

• Added placeholder support for pgParameters.

• Optimized the pgwaldump adapter to avoid sending the entire pg_waldump output to the buffer.

A.2. Postgres Pro Shardman 14.17.1
Release date: 2025-03-17

This release is based on PostgreSQL 14.17 and Shardman 14.15.4 and provides new features, optimizations and bug fixes. Major
changes are as follows:

A.2.1. Core and Extensions
• The shardman.silk_shmem_size, shardman.silk_netbuf_size shardman.silk_sus-

pend_shmqe_limit, shardman.silk_resume_shmqe_limit, shardman.silk_suspend_netqe_limit,
shardman.silk_resume_netqe_limit parameters now cannot change their values and are only kept for compatibility
purposes.

• Added a detailed description for the following configuration parameters: shardman.silk_unassigned_job_queue_size, shard-
man.silk_max_message, shardman.silkworm_fetch_size, and shardman.silk_hello_timeout.

• Optimized mechanisms to result in receiving of a consistent syncpoint.

• Improved error messages for temporary sharded or global tables creation failures.

• Updated the CREATE USER MAPPING, ALTER USER MAPPING, and DROP USER MAPPING commands that are now
prohibited when applied to mappings for foreign servers from the Shardman cluster.

214

Release Notes

• Updated the shardman.users and pg_user_mapping catalogs that are now not stored in plain-text.

• Fixed an issue with the processing of ALTER INDEX commands for the sharded tables.

• Fixed a bug related to the Silk transport that previously resulted in a recursive error and the postmaster crash.

• Fixed the BDU:2025-01601 vulnerabilitiy.

A.2.2. Management Utilities
• Added a new parameter --lock-lifetime to the probackup backup command to allow setting the maximum time that

pg_probackup can hold the lock, in seconds.

• Updated the shardmanctl forall, shardmanctl load, and shardmanctl history commands so they can run concurrently and do not
block other processes.

• Added a new option -n|--node to the commands shardmanctl shard stop and shardmanctl shard start to specify the node to
start or stop.

• Improved error messaging for the pg_probackup-related tools.

• Implemented safe restoration of the etcd cluster from the dump for the cold backup by adding a shardmanctl store restore
command.

• Optimized the backup validation process by adding new options --data-validate, -remote-port, --re-
mote-user, and --ssh-key to the shardmanctl probackup restore command.

• Added a new filter restart_required_params to the shardmanctl status command that checks that all the postgres
parameters requiring a postgres instance restart are applied. The successful output shows no pending restart parameters.

• Implemented the automatic confirmation of the restart for the shardmanctl probackup archive-command add and the proback-
up backup commands with the -y|--yes option.

• Updated the shardmanctl history output to show whether the listed commands succeeded or failed.

• Implemented the automatic confirmation of the restart necessary for the parameters to take effect for the shardmanctl config
update and shardmanctl config set command with the -y|--yes option. If this option is not specified, and the parameters up-
date requires a restart, the manual confirmation will be requested. If not confirmed, the cluster will continue to work, yet the
new parameter values will only take effect after the restart.

• Fixed an issue that previously resulted in the pg_hba.conf row duplicates.

• Fixed a bug that previously resulted in the shardmanctl status command failure.

• Updated the supported version of pg_probackup to 2.8.8.

A.3. Postgres Pro Shardman 14.15.4
Release date: 2025-02-19

This release is based on PostgreSQL 14.15 and Shardman 14.15.3 and provides optimizations and bug fixes. Major changes are
as follows:

A.3.1. Core and Extensions
• Fixed a bug that previously resulted in the incorrect reusing of the tracepoint memory while executing a prepared statement

with shardman.silk_tracepoints enabled.

A.3.2. Management Utilities
• Fixed an issue that previously resulted in the backup failure after the primary nodes were switched.

• Updated the supported version of pg_probackup to 2.8.7.

A.4. Postgres Pro Shardman 14.15.3
Release date: 2025-02-10

215

Release Notes

This release is based on PostgreSQL 14.15 and Shardman 14.15.2 and provides new features, optimizations and bug fixes. Major
changes are as follows:

A.4.1. Core and Extensions
• Added the shardman.pg_indoubt_xacts view that displays information about transactions that are currently in the InDoubt

state.

• Added the global views for the system catalog and statistics-related views.

• Added new fields to the shardman.silk_connects, shardman.silk_backends, and shardman.silk_rout-
ing views that show time from the last reading or writing event of a connect or a backend.

• Added a new error message for the coordinator if the MT_SPI message size exceeds the silk_max_message value, if a
query is executed via Silk.

• Added new diagnostic messages for the scenarios where the exported transaction state size is more than half of shard-
man.silk_max_message.

• Updated the maximum values of the shardman.silk_num_workers, shardman.silk_unas-
signed_job_queue_size, shardman.silk_max_message, shardman.silk_shmem_size,
shardman.silk_netbuf_size, shardman.silk_suspend_shmqe_limit, shardman.silk_re-
sume_shmqe_limit, shardman.silk_suspend_netqe_limit, and shardman.silk_resume_netqe_lim-
it parameters.

• Added a feature to pushdown the type conversion operations to a remote server.

• Added a new limitation for the self-referencing sharded tables that are allowed only if a foreign key is referencing the same
partition of the sharded table.

• Upgraded etcd to version 3.5.18.

A.4.2. Management Utilities
• Added a new subcommand show-config to the shardmanctl probackup command. It displays all the current pg_probackup con-

figuration settings, including those that are specified in the pg_probackup.conf, and those that were provided on a com-
mand line.

• Updated the backup retention policies with the new parameters of the sharmanctl probackup delete and shardmanctl probackup
backup subcommands: --retention-redundancy, --retention-window, --wal-depth, --delete-expired, and --merge-expired.

• Fixed the CVE-2024-24790 and CVE-2024-45337 vulnerabilities.

A.5. Postgres Pro Shardman 14.15.2
Release date: 2024-12-16

This release is based on PostgreSQL 14.15 and provides new features, optimizations and bug fixes. Major changes are as follows:

A.5.1. Core and Extensions
• Added the in_queue_used and out_queue_used fields to the shardman.silk_backends view that show the number of

queued data bytes in the incoming or outgoing queue in the shared memory between the backend and multiplexer.

• Added a new shardman.silk_routing function along with the corresponding views shardman.silk_routing and
gv_silk_routing. They show information about the current active routes.

• Added a new shardman.silk_rbc_snap function that retrieves a consistent snapshot of all the connects, backends and routes that
can be used by silk_connects, silk_backends, and silk_routes functions.

• Added shardman.silk_state and shardman.silk_statinfo views, the shardman.silk_statinfo_re-
set() function and the shardman.silk_track_time configuration parameter that cover the multiplexer process state.

• Added two new configuration parameters, shardman.silk_tracelog configuration parameter that enables or disables Silk tracing
and debug logging, and shardman.silk_tracelog_category that defines the Silk message categories to be traced.

216

Release Notes

• Added two new configuration parameters, enable_non_equivalence_filters that enables the optimizer to generate additional
non-equivalence conditions using equivalence classes, and optimize_row_in_expr that enables the optimizer to generate addi-
tional conditions from the IN () expression.

• Added a new configuration parameter track_xact_time, the shardman.pg_stat_xact_time view, and the shardman.gv_s-
tat_xact_time global view for showing statistics for the time spent on transactions.

• Added the attached field to the shardman.silk_backends view and the silk_backends function that shows the actual at-
taching of a backend to the multiplexer.

• Added a new shardman.silk_stream_work_mem configuration parameter that sets the base maximum amount of memory to be
used by a Silk stream before writing to the temporary disk files.

• Updated the EXPLAIN command output to show server and transport blocks in one row, if set to verbose.

• Updated the supported version of pgpro_pwr to 4.8.

• Updated the supported version of pg_query_state to 1.1.

• Updated the supported version of pgpro_stats to 1.8-sdm4.

• Updated the supported version of pg_probackup to 2.8.5.

• Sped up planning for the queries field = ANY (ARRAY[values]) for the arrays with a big number of records.

• Updated the postgres_fdw.foreign_explain configuration parameter type from boolean to enum, the default value being
collapsed. Also updated the EXPLAIN command output to comply with the new values.

• Fixed a bug that previously resulted in the multiplexer hanging.

• Updated the nextval function that can be used to generate next sequence values that are unique across the entire cluster.

A.5.2. Management Utilities
• Fixed a bug that previously resulted in the command line key being ignored if a corresponding environment variable was set.

• Fixed a bug that previously resulted in shardmanctl bench run failure due to its memory buffers overflow.

• Fixed a bug that previously resulted in shardmanctl bench failure if the command wasn't executed under the postgres user.

• Fixed a bug that previously resulted in the full resync of a replica and was caused by saving invalid data to the post-
gresql.auto.conf file.

• Fixed a bug that previously resulted in the PANIC-level error when calling any commands that modify configurations of a
cluster that was not yet initialized.

• Updated the shardmanctl bench run command flag -f|--file file_name to add a transaction script read from file-
name to the list of scripts to be executed and to write an integer weight for each file.

• Updated the shardmanctl bench run command with -P|--progress, -R|--rate, and -M|--protocol flags.

A.6. Postgres Pro Shardman 14.15.1
Release date: 2024-11-25

This release provides new features, optimizations and bug fixes. Major changes are as follows:

A.6.1. Core and Extensions
• Added a new metric to the shardman.pg_stat_csn view that counts transactions with an exceeded time in the inDoubt

state.

• Added new fields to the shardman.silk_pending_jobs view: query, pending_queue_bytes, and pend-
ing_queue_messages for the first queued message, the pending queue size, in bytes, and the number of pending queue
messages.

• Added tracing for the queries processed via the Silk transport and added a new configuration parameter shardman.silk_trace-
points that enables it.

217

Release Notes

• Updated the function current_date that now can be pre-evaluated locally on coordinator. timestamp and time-
stamptz comparisons are now considered safe for the remote execution.

• Added pg_query_state support.

• Introduced cluster-wide advisory locks which are recommended locks that have application-defined meanings. Also added ad-
visory lock functions.

• Fixed a bug that previously resulted in uncontrolled memory usage and allocation by silkworm while processing messages.

• Fixed a bug that previously resulted in unstable Silk connectivity and potential queries hanging in case shard-
man.silk_flow_control was enabled.

A.6.2. Management Utilities
• Added a new shardmanctl history command that shows history of the commands that updated the cluster. By default, they are

sorted from the most recent to the oldest ones.

• Updated etcd version to 3.5.13.

• Added the normalization for the rebalance process. It allows properly resuming it if it was interrupted.

• Added a new feature for the shardmand application that allows configuring a port in sdmspec.json with encryption option.

• Updated the PostgreSQL parameter validation mechanism that now uses data returned by PostgreSQL instance.

A.7. Postgres Pro Shardman 14.13.4
Release date: 2024-11-13

This release provides new features, optimizations and bug fixes. Major changes are as follows:

A.7.1. Core and Extensions
• #dded support for asynchronous execution of ForeignScan operations under MergeAppend, controlled by the enable_a-

sync_merge_append parameter, which is enabled by default. If the operations under MergeAppend support asynchronous
execution, requests are sent asynchronously at the start of the MergeAppend operation, and the results are cached as they are
received. These cached results are then used, just as they would be in synchronous MergeAppend, for merge sorting.

• Implemented the ability to use sorting on the remote server if it allows performing MergeJoin or MergeAppend opera-
tions. This is controlled by the postgres_fdw.additional_ordered_paths parameter, which is enabled by default in new installa-
tions but must be explicitly enabled in upgraded clusters.

• Added support for the limit clause pushdown under Appendand MergeAppend when there is a Sort plan node between
LIMIT and Append. It is possible when rows in subplans of Append/MergeAppend are already sorted in the necessary or-
der.

• Sped up INSERT, UPDATE, and DELETE operations with global tables. Added the shardman.gt_batch_size configuration pa-
rameter that specifies the buffer size for INSERT and DELETE commands executed on global tables.

• Added a limitation on creating sharded and local partitioned tables based on the same attribute.

• Added a new shardman.broadcast_query function that returns an executed SQL statement results.

• Added a new field CSNXidMap_last_trim to the shardman.pg_stat_csn view that shows the last time when the
shardman.trim_csnxid_map() function was called.

• Improved the state consistency checks for the shardman application.

• Fixed an issue with inappropriate resource allocation, which could cause errors in some corner cases when tuples were spilled
to disk.

• Fixed a bug in pg_rewind that previously resulted in the former primary server full resync on replica promotion.

• Upgraded supported version of pgpro_pwr to 4.7.

A.7.2. Management Utilities
• Added logging of the updated parameters in case it results in postgresql restart.

218

Release Notes

• Improved the logic for obtaining the state of the PostgreSQL instance.

• Improved shardmand log messaging.

• Fixed a bug that previously resulted in the shardmanctl psql command failure.

• Added support for compression level values depending on the compression algorithm when creating a backup with shard-
manctl probackup backup.

• Updated the shardmanctl benchmark with a new dependency between the pgbench_branches number of records and the
number of nodes. This allows a better distribution of data between nodes.

• Added the shardmanctl shard reset command that resets nodes of a replication group if they are in a state of hanging.

• Added the shardmanctl daemon set command that allows updating the log parameters without restart.

A.8. Postgres Pro Shardman 14.13.3
Release date: 2024-10-28

This release provides new features, optimizations and bug fixes. Major changes are as follows:

A.8.1. Core and Extensions
• Added configuration parameters to enable getting information on crashes of a backend. The crash_info parameter turns on this

functionality, while crash_info_dump and crash_info_location specify the contents and location of crash information files, re-
spectively.

A.8.2. Management Utilities
• Fixed a bug that affected switching from primary to replica server in cases when attempts to receive server configuration para-

meters failed.

A.9. Postgres Pro Shardman 14.13.2
Release date: 2024-10-22

This release provides new features, optimizations and bug fixes. Major changes are as follows:

A.9.1. Core and Extensions
• Added a new configuration parameter shardman.silk-flow-control that controls the mode of handling read events.

It has three possible values: none, round_robin, and shortest_job_first.

• Added the shardman.pg_stat_foreign_stat_bytes view that shows the amount of statistics for foreign relations transferred over
the network between Shardman cluster nodes. Also added the corresponding global view shardman.gv_stat_for-
eign_bytes.

• Added a new configuration parameter shardman.sync_cluster_settings that enables cluster-wide synchronization
of configuration parameters set by user.

• Added a new configuration parameter shardman.sync_cluster_settings_blacklist that excludes the options
not to be propagated to a remote cluster.

• Added a new configuration parameter enable_sql_func_custom_plans. If enabled, custom plans can be created to
run SQL functions. Enabled by default for the new clusters and disabled for the old ones.

• Fixed a bug that previously resulted in shardmand hanging in case an etcd cluster looses quorum.

• Allowed ALTER COLUMN SET STATISTICS for global and sharded tables.

• Introduces the limitation for the privilege management per columns that is not supported for global tables.

• Introduced a limitation that global tables cannot inherit other tables.

• Removed the limitation for using of DEFERRABLE constraints for global tables that is now allowed.

219

Release Notes

• Added a new field CSNXidMap_last_trim to the shardman.pg_stat_csn view that shows when the most recent
shardman.trim_csnxid_map() function was called.

A.9.2. Management Utilities
• Added the shardmanctl psql command that creates a connection to the first available master node if no options are specified. If

--shard is specified, the connection is installed with the shard current master.

• Enabled the lz4 compression method for the default_toast_compression.

• Fixed a bug that previously resulted in a failure of the shardmanctl probackup checkdb command when a custom port was
specified in Shardman configuration.

• Fixed a shardmand bug that previously resulted in the application failing with PANIC-level error in case of insufficient access
rights to the DataDir directory.

• Fixed a bug that previously resulted in primary server switching to a replica after restart. Also, added a new option --no-
wait to the shardmanctl restart command (disabled by default).

A.10. Postgres Pro Shardman 14.13.1
Release date: 2024-09-12

This release provides new features, optimizations and bug fixes. Major changes are as follows:

A.10.1. Core and Extensions
• Added a possibility to push down the joins like JOIN UNIQUE INNER to a remote server.

• Added the shardman.pg_stat_monitor view showing metrics of the Shardman monitor; shardman.pg_stat_net_usage view
showing the cumulative network traffic between Shardman cluster nodes; and shardman.gv_lock_graph view that dis-
plays a graph of locks between processes on Shardman cluster nodes including external locks.

• Added the shardman.oldest_csn view that shows tuple csn, xid, and rgid containing CSN and XID of the oldest transaction
in the cluster, along with transaction's replication group number.

• Added the csn_max_snapshot_shift configuration parameter that enables checking the imported snapshots in pg_c-
sn_snapshot_import().

• Introduced new limitations on the types of tables that can be included in logical replication.

• Upgraded supported version of pg_probackup to 2.8.3.

A.10.2. Management Utilities
• Updated the text of the messages sent when trying to get the topology configuration sent by the shardmanctl cluster

topology command on an uninitialized cluster, as well as lowered the logging level for this case.

• Fixed the shardmanctl bench run command to avoid long delays before its execution.

• Added the shardmanctl config update credentials command that updates password or certificate/key of a user
to connect to a Shardman cluster.

• Added the shardmanctl config revisions, shardmanctl config rollback, shardmanctl config
revisions rm, and shardmanctl config get commands, and added to the console output the information about the
host from which the appropriate command was executed and the user who executed it.

• The shardmanctl config rollback command makes a rollback of Shardman to one of the previous states of
Shardman cluster configuration. This command has the replicas reinitialized when rolling back to the config revision that
has max_connections, max_prepared_transactions, or max_worker_processes parameters.

• The shardmanctl config revisions command outputs revision_id that is the timestamp of the command
that resulted in the Shardman configuration change, host that is the host from which the appropriate command was exe-
cuted, user that is the user who executed the command, and command that is the command itself.

• The shardmanctl config revisions set command allows setting the length of the configuration revision his-
tory. Added a hard lower limit on the revision history length of a Shardman cluster configuration. This value cannot be

220

Release Notes

lower than 5. For clusters where the configuration revision history was not tracked, the length is automatically set to the
default value of 20.

• The shardmanctl config get command outputs the current full cluster specification or the configuration of the
specified revision. The --choose-revision option enables an interactive mode of choosing the configuration of the
specified revision.

• The shardmanctl config revisions rm command deletes a specified configuration revision from the history.

• Modified the role description in sdmspec.json.

A.11. Postgres Pro Shardman 14.12.2
Release date: 2024-08-01

This release provides new features, optimizations and bug fixes. Major changes are as follows:

A.11.1. Core and Extensions
• Added a possibility to create a global or sharded table like another global, sharded or local table. Creation of a table like a lo-

cal table currently has certain limitations.

• Fixed processing of the IF NOT EXISTS parameter of the CREATE TABLE command for sharded and global tables. Ear-
lier a table with an incorrect structure could be created if a partitioned table with the same name existed on one of the cluster
nodes.

• Changed the default value of the num_parts storage parameter to 24 to achieve a more even data distribution for 2, 3, 4, 6, and
8-node clusters.

• Added enable_merge_append configuration parameter that enables or disables the use of MergeAppend plans by the query
planner. Specifically, this allows disabling the use of these plans when they are too expensive.

• Added the pgpro_stats.track_shardman_connections configuration parameter that enables or disables Shardman-specific state-
ment processing.

• Enabled pushing down join queries with VALUES to a remote server.

• Removed a limit of about 64K on the number of tables in a query.

• Added the shardman.pg_stat_monitor view that provides statistics on the work of the distributed deadlock detector
and of the prepared transaction resolution services.

• Added the shardman.gv_stats_sdm_statements global view that allows accessing the aggregated statistics for the
distributed queries.

• Updated the pgpro_stats pgpro_stats_sdm_statements view to only contain statistics on queries involving sharded ta-
bles.

• Upgraded supported version of pg_probackup to 2.8.2.

A.11.2. Management Utilities
• Implemented the ability to backup clusters with tablespaces. Now the tablespaces are located under the backup directory.

• Enabled shardmanctl probackup restore a fully/partially working cluster from a backup made on a partially working
cluster.

• Added the --no-wait option for the shardmanctl shard add command that sets shardmanctl not to wait for the
shard to start and lifts the lock on other commands.

• Added the s|--scale option for the shardmanctl bench run command. It multiplies the number of generated rows
by the scale factor.

• Added the shardmanctl script command that executes non-transactional commands from a file or from the com-
mand-line on the specified shards.

• Updated the sdmspec.json configuration file generated by the shardmanctl config generate command to ex-
clude the parameters that depend on the hardware resources and the workload on the cluster node. These parameters are now

221

Release Notes

set to their default values. Previously, cluster initialization could fail on nodes with lower capacity due to setting these values
too high.

• Enabled restoring other clusters from a cluster backup if they have the same topology. Added the shardmanctl config
update ip command that updates the specified node IPs in the cluster.

• Added the --log-format option to shardmand that specifies the log output format, json or text.

A.12. Postgres Pro Shardman 14.12.1
Release date: 2024-06-06

This release provides new features, optimizations and bug fixes. Major changes are as follows:

A.12.1. Core and Extensions
• Added the new REMOTE parameter of EXPLAIN, enabled by default, which allows the EXPLAIN output for queries executed

on foreign servers.

• Implemented a Shardman-specific estimation logic for plan costs. It may help the planner choose generic plans more often
when the overall shape of a generic plan is similar to that of a custom plan.

• Added support for initial pruning of foreign aggregate plan nodes.

• Added cumulative metrics for the network traffic between Shardman cluster nodes in the shardman.pg_stat_netusage
view.

• Updated the pg_stat_activity view to show the status of the monitor's worker processes.

A.12.2. Management Utilities
• Prevented the CVE-2023-45288 and CVE-2023-44487 vulnerabilities.

• Fixed a bug in the shardmanctl cleanup command that could make it impossible to delete replication groups.

• Improved the output of the shardmanctl forall command in the cases where the result is empty.

• Fixed shardmand failures that could occur when the Shardman cluster was underconfigured.

A.13. Postgres Pro Shardman 14.11.2
Release date: 2024-04-18

This release provides new features, optimizations and bug fixes. Major changes are as follows:

A.13.1. Core and Extensions
• Added the foreign_analyze_interval setting, in seconds, indicating how often to gather foreign statistics during autovacuum.

• Added a possibility to create a foreign key between a sharded and a global table or between two global tables with the ON
DELETE CASCADE action.

• Added support for MergeAppend node pruning in generic plans.

• Added support for a pushdown (remote execution) of to_timestamp() functions.

• Implemented global views. Fetching from a global view returns a union of rows from the corresponding local views with the
rows fetched from each of the local view cluster nodes.

• Added a description of Silk multiplexer diagnostics views.

• Improved error messages related to updating cluster parameters.

A.13.2. Management Utilities
• Added the --no-validate and --skip-block-validation flags to the shardmanctl probackup restore

command.

222

Release Notes

• Improved the process of restore to a cluster compatible with the source one.

• Added the shardmanctl probackup checkdb command to verify the Shardman cluster correctness by detecting phys-
ical and logical corruption.

• Enabled shardmanctl set and config update commands to work on a cluster that was stopped using shardmanctl
stop.

• Added the --all flag to the shardmanctl getconnstr command to add information on replicas to the command out-
put.

• Added new commands nodes start, nodes restart and nodes stop for nodes, as well as start and stop for
shards to shardmanctl.

• Extended permissions for the shardmand data directory.

A.14. Postgres Pro Shardman 14.11.1
Release date: 2024-03-14

This release provides new features, optimizations and bug fixes. Major changes are as follows:

A.14.1. Core and Extensions
• Enhanced the pgpro_stats extension to give a better understanding of what system resources are used for distributed queries.

Now the regular pgpro_stats_statements view shows the gathered statistics for individual statements on the current
Shardman node (they can be part of some distributed query), while the pgpro_stats_sdm_statements view shows the
gathered statistics for the distributed queries originating from the current node, that is, aggregated from all the participating
nodes.

• Added the pgpro_pwr package compatible with Shardman. This allows Shardman users to build workload reports.

• Improved the EXPLAIN output. If a query plan contains ForeignScan nodes, the EXPLAIN output for queries executed on
the remote server can now be included.

• Added a new configuration parameter enable_partition_pruning_extra that enables extended subplan pruning log-
ic when building and executing generic plans where the set of useful partitions depends on the prepared query parameters. This
allows Shardman to do initial pruning of complex subplans, joins and partial aggregates, in particular.

• Added metrics to the shardman.pg_stat_csn view that show delays of the global horizon and the transaction that may
cause that delay. They may be useful to research autovacuum issues.

A.14.2. Management Utilities
• Considerably improved backup and restore with the shardmanctl probackup command. Notable changes are as fol-

lows:

• Added support of backups to an S3-compatible object storage.

• Implemented selective WAL archiving on the specified shards by the probackup subcommand.

• Added two new commands shardmanctl probackup delete and shardmanctl probackup merge. The
delete command deletes a backup with a specified ID and the archived WAL files that are no longer in use. The merge
command merges the backups that belong to a common incremental backup chain.

• Added new shardmanctl probackup set-config command that adds the specified settings to the
pg_probackup.conf or modifies the existing ones.

• Added a new option log-to-console for the validate subcommand. Set the log rotation file size to 20 MB. If this
value is reached, the log file is rotated once a validate or backup subcommand is launched.

• Increased the number of retries for some subcommands to avoid backup failures caused by large database sizes.

• Added topology compatibility checks between the current Shardman cluster and the one in the backup directory to back-
up and restore subcommands.

• Set the default value for the number of concurrent pg_probackup processes to the number of logical CPUs of the system.

223

https://postgrespro.com/docs/enterprise/14/pgpro-pwr

Release Notes

• Fixed data cleanup after a failure of a backup subcommand. Previously, some data of a failed backup could still remain
in the repository.

• Fixed hanging that could occur during metadata-only restore of a Shardman cluster.

• Fixed the pg_probackup issue that could occur during the schema recovery process.

• Changed the behavior of metadata-only restore to avoid losing a cluster. Now the cluster is stopped before such a restore
and restarted after it, a cluster that has no nodes cannot be restored from the etcd dump, and if cluster IDs of the dump and
the current cluster are different, the user is asked whether restoring the cluster with the changed ID is OK.

• Added new options for archive-command: --compress, --compress-algorithm, --compress-level, --
batch-size, and -j|--jobs. This helps to reduce the WAL size.

• Improved the show subcommand output. Added new flags -archive to output the log information, -instance and -
i|--backup-id to output information for the specified backups and instances.

• Updated the getconnstr and cluster topology commands so that they do not issue a lock on other processes. Previ-
ously, some commands failed to receive a connection string because of the locks.

• Fixed a panic that could occur on a Shardman cluster configured with PlacementPolicy = manual when a user executed
the command shardmanctl cluster repfactor set.

• Hid uninformative warnings that pg_dump displayed during execution of shardmanctl nodes add and shardmanctl
probackup backup commands.

• Removed a lock that was required by the shardmanctl status command. Previously shardmanctl status did not
provide any useful information in case a process hung as it was waiting for the lock from that process.

• Added the forceSuUserLocalPeerAuth configuration parameter. When enabled, it sets a peer authentication via unix
socket for the postgres user unless strictUserHBA is set to true. See sdmspec.json for details.

• Added a URL for Prometheus automatic service discovery metrics to shardmand.

A.15. Postgres Pro Shardman 14.10.3
Release date: 2024-02-02

This release is based on Shardman 14.10.2 and provides optimizations and bug fixes. Major changes are as follows.

• Fixed an issue that prevented Shardman from working with pg_probackup when PostgresSQL ran on port different from
5432.

• Fixed Shardman to enable pg_probackup run on a node that is not in the Shardman cluster.

• Fixed hanging of shardmanctl probackup restore that took place in some cases.

• Added cleanup of the backup directory in case of a shardmanctl probackup init failure.

• Improved error handling of probackup backups. Now if a backup fails on one shard, it gets terminated on the others.

• Improved the behavior of shardmanctl probackup show to display a message informing of no backups when the
backup_info file is missing.

A.16. Postgres Pro Shardman 14.10.2
Release date: 2024-01-25

This is the first public release of Shardman software. It is shipped as packages with Shardman DBMS and management utilities.

Shardman DBMS is based on PostgreSQL with additional patches where most of the functionality is implemented in shardman and
postgres_fdw extensions.

Major features are as follows:

• Distributed ACID transactions.

• Distributed DDL to manage cluster-wide objects, including sharded and global tables, sequences and users.

224

https://postgrespro.com/docs/postgrespro/14/app-pgprobackup
https://postgrespro.com/docs/postgresql/14/postgres-fdw

Release Notes

• Efficient multiplexing transport for intercluster communication.

• Efficient distributed query planning and execution.

• Automatic resolution of prepared transactions and distributed deadlock detection.

• Aggregation of distributed statement statistics and internal network metrics in pgpro_stats extension.

• Support for global tablespaces and Compressed File System (CFS).

Management utilities are implemented as shardmand service and shardmanctl tool. They use third-party etcd service to store
global cluster configuration and exchange information.

Major features are as follows:

• Initial cluster configuration and setup.

• Managing and displaying the current configuration of shards and replicas.

• Updating and setting parameters in the cluster.

• Ensuring fault tolerance and high availability of shards.

• Consistent data backup and restore (pg_basebackup and pg_probackup support).

• Fast data load and automatic schema migration.

• Benchmarking tools.

• Updating database metadata on DBMS updates.

225

https://postgrespro.com/docs/postgrespro/14/pgpro-stats
https://postgrespro.com/docs/postgrespro/14/app-pgbasebackup
https://postgrespro.com/docs/postgrespro/14/app-pgprobackup

Appendix B. Glossary
This is a list of terms and their meaning in the context of Shardman. For terms that are used in this document in the general context
of PostgreSQL and relational databases, see PostgreSQL Glossary.

ACID Atomicity, Consistency, Isolation and Durability. This set of properties of database transactions
is intended to guarantee validity in concurrent operation and even in event of errors, power
failures, etc. For more information, see PostgreSQL Glossary.

Clover A set of nodes where each node holds a PostgreSQL instance that is the master for one of the
replication groups and PostgreSQL instances that are replicas for all the other replication groups.
The total number of nodes in a clover is equal to the replication factor.

etcd A distributed reliable key-value store for the most critical data of a distributed system. For more
information, see etcd home page.

Global role A role such that operations on it are always performed on all replication groups simultaneously.

Global user A user such that operations on it are always performed on all replication groups simultaneously.

Replication group A stolon cluster with one master and one or more replicas. Replication groups are organized in
Clovers. Shardman utilities often refer to replication groups as "repgroups".

Shard In Sharding, some table partitions located on one node being the master for them.

Sharded table A partitioned table where some partitions are regular local tables that make up a Shard and the
other partitions are foreign tables available from remote servers via postgres_fdw.

Sharding A database design principle where rows of a table are held separately in different databases that
are potentially managed by different DBMS instances.

Silk (Shardman InterLinK) Experimental transport that can be used in a Shardman cluster for communication between
nodes.

stolon A cloud native PostgreSQL manager for PostgreSQL high availability. For more information,
see stolon on github.

syncpoint A set of consistent LSNs in a cluster corresponding to a global snapshot.

226

https://postgrespro.com/docs/postgresql/14/glossary
https://postgrespro.com/docs/postgresql/14/glossary#GLOSSARY-ACID
https://etcd.io
https://github.com/sorintlab/stolon

Appendix C. FAQ
C.1. General Questions

C.1.1. What is Shardman?
Shardman is a PostgreSQL-based distributed database management system (DBMS) that implements sharding. Sharding is a database
design principle where rows of a table are held separately in different databases that are potentially managed by different DBMS
instances. The main purpose of Shardman is to make querying sharded distributed databases efficient and ease the complexity of
managing them.

C.1.2. What does Shardman consist of?
Shardman is composed of several software components:

• PostgreSQL 14 DBMS with a set of patches.

• Shardman extension.

• Management tools and services, including built-in stolon manager to provide high availability.

C.1.3. When to use Shardman?
• The working volume of data does not fit in the RAM of one server, but several shards can fit (or at least reading is paral-

lelized).

• Number of sessions is too large for one instance of PostgreSQL.

• Intensive writing to WAL takes place.

• Complex logic consuming too much CPU, and one server is not enough.

C.1.4. When is Shardman not appropriate?
• If the memory, session, CPU load can be pulled by a single PostgreSQL server, this will be both faster and simpler. (This ap-

plies to testing too!)

C.1.5. How many nodes does it take to deploy Shardman?
A minimum of three nodes are required to deploy Shardman. One node is required for an etcd cluster (single-node etcd cluster),
and a minimum of two nodes is required for the RDBMS cluster. It is possible to reduce the minimum deployment to two nodes by
placing etcd on one of the RDBMS cluster nodes. The minimal deployment is described in section Get Started with Shardman.

C.1.6. Does Shardman support fault tolerance?
Yes, Shardman is fault-tolerant at the level of each shard. Each shard is a fault-tolerant cluster.

C.1.7. How is sharding structured?
In Shardman, tables are divided into partitions, and the partitions are distributed between shards.

C.1.8. Is it possible to change the number of partitions?
No, the number of partitions of sharded tables is set when creating them and remains unchanged. If you expect that the amount of
data you have will grow significantly, you should create the necessary number of partitions (by default - 20) in advance.

C.1.9. Does Shardman support resharding?
No, Shardman currently does not support automatic change of a sharding key. In order to change the sharding key, you need to create
new tables with a new sharding key and migrate data from old tables to new ones.

227

FAQ

C.1.10. Is it possible to convert an unsharded (local) table to a sharded one?
No, Shardman currently does not support this feature.

C.1.11. Does Shardman support adding and removing shards?
Minimally a Shardman cluster can consist of a single node without fault tolerance, but such a configuration makes little sense. You
can add or remove shards, Shardman will automatically (by default, this is adjustable) redistribute data between nodes. Replicas can
be added to Shardman, then shards will be fault-tolerant.

C.1.12. What is the status of data balancing?
When adding new shards, data will be redistributed between all shards, including new ones.

C.1.13. How is a Shardman cluster accessed?
Shardman can be accessed through any node in the cluster, all nodes in the cluster are equal. Use the shardmanctl getconnstr command
to get the cluster connection string.

C.1.14. How is balancing between cluster nodes implemented?
There is no built-in balancing solution at the moment. But you can organize balancing at the application level, for example, see
JDBC driver options (loadBalanceHosts). For libpq, this functionality will be implemented in PostgreSQL 16 release.

C.1.15. Is mass data loading supported in Shardman?
Yes, this functionality is built in the management utility, see shardmanctl load.

C.2. Databases

C.2.1. Is it possible to create multiple databases in a Shardman cluster?
For now, sharding works only for a database named postgres (default), creating other databases is in development.

C.3. Tables

C.3.1. What kind of tables are there in Shardman?
In addition to local table types Shardman supports distributed tables: global and sharded.

C.3.2. What are global tables?
A global table in Shardman is a table that has the same schema and contents on all shards in the cluster. Global tables are created
as follows:

CREATE TABLE g(id bigint PRIMARY KEY, t text) WITH(global);

A copy of such a table is created on each shard. Data replication of global tables is based on triggers. When data is inserted into
such a table on any node of the cluster, data replication to other nodes occurs. When creating a global table, it is necessary to specify
non deferrable primary key.

C.3.3. What are global tables suitable for?
Global tables are suitable for directories and other relatively small and infrequently modified tables. Global tables are NOT suitable
for storing large amounts of data and for intensive INSERT/UPDATE/DELETE workload, especially with highly competitive access
(storefronts, queues, etc.)

C.3.4. What are sharded tables?
Sharded tables are tables whose parts are hosted on different shards. Each shard stores its own piece of data from such a table. A
sharded table can be created as follows:

228

https://jdbc.postgresql.org/documentation/use/

FAQ

CREATE TABLE ... WITH(distributed_by = 'column_name', num_parts =
 number_of_partitions);

Where:

distributed_by — table field being the sharding key,

num_parts — (default = 24) number of partitions into which the table is initially divided.

These parts are then distributed to shards.

C.3.5. Which partitioning parameters are optimal when creating a sharded table?
The number of partitions should be not less than the number of shards including the shards that can be added later. In general it may
be a number with quite a few divisors like 12 or 24, so you can evenly divide the table into 2, 3, 4 or 6 shards. Large amount of
partitions adds overhead on planning and execution, so it is preferable to keep it reasonable.

C.3.6. What are colocated tables?
Colocated tables are used when a table is often joined with another sharded table (usually by foreign keys) and therefore it is better
to physically place their parts on the same shards.

C.3.7. How to create a colocated table?
CREATE TABLE ... WITH(distributed_by = 'column_name', num_parts = number_of_partitions,
 colocate_with = 'distributed_table');

Here:

distributed_by = 'column_name' — the name of the sharding key as it is called in the colocated table (not the colocating
table) being created,

colocate_with = 'distributed_table' — the name of the table with which you want to colocate parts of the colocated
table.

C.3.8. What are local tables?
A local table is a table only hosted on the shard where it was created.

C.3.9. Are foreign keys supported in Shardman?
Foreign keys are allowed in Shardman but with some limitations:

• On global tables, both from sharded tables and from other global tables

• Between sharded colocated tables.

Foreign keys are NOT allowed:

• From global to sharded tables

• Between sharded tables if they are not colocated.

C.4. Sequences

C.4.1. Are global sequences supported in Shardman?
Yes, they are supported. However, there are specifics of their work that should be taken into account. Under the hood of global
sequences, there are regular sequences on each shard, and they are allocated by sequential blocks (of 65536 numbers by default).
When numbers are passed to the sequence, the local sequential block is given to the local sequential block on the shard. I.e., numbers

229

FAQ

from the global sequences are unique, but there is no strict monotony (unlike in PostgreSQL). Well, there may be "holes" in the
values given by the sequencer.

C.4.2. How to create a global sequence?
CREATE SEQUENCE ... WITH (GLOBAL);

The nextval function can be used to fetch the next value of a sequence:

SELECT nextval('acl_id_seq'::regclass);

Data types bigserial, smallserial, and serial (for automatic creation of sequences and output of default values from
it) are implemented and work for both sharded and global tables. It is recommended to use bigserial unless there are special
requirements.

C.5. User Management

C.5.1. Does Shardman support global user roles?
Yes, global user roles are supported.

C.5.2. How do I create a global user in Shardman?
postgres=# create role my_user with login password 'my_user123' in role global;
CREATE ROLE

C.5.3. How do I grant permissions to a global user?
The following commands can be run on one shard and will be cascaded to the other shards automatically:

GRANT\REVOKE
CREATE ROLE ... IN ROLE GLOBAL / ALTER ROLE (for global role)

postgres=# grant CONNECT on DATABASE postgres TO my_user;
GRANT ROLE
postgres=# grant pg_monitor TO my_user;
GRANT ROLE
postgres=# \du
 List of roles
 Role name | Attributes | Member of
-----------+--+--------------
 my_user | | {pg_monitor}
 postgres | Superuser, Create role, Create DB, Replication, Bypass RLS | {}
 repluser | Replication | {}

The list of cascadable commands is being finalized and will be changed in future versions of Shardman.

C.6. Useful Functions and Tables

C.6.1. How do I see which tables and sequences are distributed?
Here are lists of some useful internal Shardman tables.

• shardman.sequence — the list of global sequences

• shardman.sharded_tables — the list of sharded tables

230

FAQ

• shardman.global_tables — the list of global tables

For example:

postgres=# select * from shardman.sequence;
 seqns | seqname | seqmin | seqmax | seqblk
--------+---------+--------+---------------------+--------
 public | s | 1 | 9223372036854775807 | 65536
(1 row)

postgres=# select * from shardman.sharded_tables;
 rel | nparts | colocated_with | relname | nspname
-------+--------+----------------+---------+---------
 16648 | 20 | | d | public
 16741 | 20 | 16648 | c | public
(2 rows)

postgres=# select * from shardman.global_tables;
 relid | main_rgid | relname | nspname
-------+-----------+---------+---------
 16636 | | g | public
(1 row)

C.6.2. How do I execute some SQL command on all nodes in the cluster?
To do this, use the shardman.broadcast_all_sql function and shardmanctl forall option. For example:

postgres$ shardmanctl forall --sql "select name,setting from pg_settings where name =
 'max_connections'"
SQL: select name,setting from pg_settings where name = 'max_connections'
Node 1 says:
[max_connections 90]
Node 2 says:
[max_connections 90]

C.6.3. How do I get Shardman configuration parameters on a selected node?
The standard SHOW command can be used to obtain Shardman-specific parameters that are listed in the section.

Besides, you can use shardmanctl config get command to obtain cluster configuration from etcd. You can view the parameters,
but it is better to customize them after consulting with Posgres Pro engineers.

C.6.4. How do I update Shardman configuration parameters?
You can use shardmanctl config update functionality, see an example.

C.7. Disaster Recovery Cluster Requirements
The underlying functionality is under development. For the production usage contact Support.

C.7.1. Terms and Abbreviations
DB — Database.

DBMS — Database management system.

DC — Data center.

MDC — Main data center.

231

FAQ

BDC — Backup data center.

HaC — Hight availability cluster.

DRC Disaster — recovery cluster.

C.7.2. High-level Description of the DRC
MDC hosts the main cluster shards and the etcd cluster. Shards are high-availability clusters that consist of two nodes with Postgres
Pro DBMS instances, one as a primary node, one as a synchronous standby. Every shard has the shardmand service running that
checks the Postgres Pro DBMS instances and exchanges the information with the etcd cluster, thus providing Shardman clustering.
The etcd cluster consists of three nodes that ensures a quorum.

To ensure disaster recovery, the customer’s BDC must host an identical cluster with the identical configuration and set of components.
By default, the standby Shardman cluster nodes are disabled. A continuous logs delivery from MDC to BDC is asynchronous and
uses the physical replication mechanisms. It is based on the standart Shardman utility pg_receivewal. It writes WALs to the default
instance directory $PGDATA/pg_wal. This utility is managed by the cluster software. When a syncpoint is detected under the
standby etcd cluster, a standby Shardman cluster nodes are started by shardmand. It results in WAL update till LSN received from
the syncpoin. In different DCs the etcd clusters are isolated, therefore, to distribute the syncpoint updated information, a script is
periodically run from the MDC to BDC etcd.

C.7.3. Replication Topology
Streaming physical replication is provided:

• From the Postgres Pro DBMS shard nodes to MDC (synchronous)

• From the Postgres Pro DBMS shard nodes to BDC (synchronous)

• From the Postgres Pro DBMS shard nodes to DC (asynchronous)

C.7.4. Hardware and Network Requirements
MDC and BDC hardware must have identical system resources and configuration for all the DRC components.

DCs must be connected with fiber optic network with the capacity not less than 20 Gbit per second. A backup channel is also required.

C.7.5. Replication Mechanisms
To provide high-availability and disaster recovery clusters Shardman uses the Postgres Pro built-in streaming physical replication
mechanism, for BDC it is also asynchronous.

Automatic recovery of a high-availability Shardman cluster is ensured by the cluster software.

DRC cluster recovery is only provided in manual semi-automatic mode.

C.7.6. Monitoring and Management
Shardman cluster monitoring and management is provided within one DC with the shardmanctl utility.

C.7.7. Security

C.7.7.1. Encrypting Data Across A Network (TLS/SSL)

A secure channel between DCs is required.

C.7.7.2. Inter-nodes Authentication and Authorization

Inter-nodes authentication and authorization is ensured by the built-in Postgres Pro DMBS tools.

C.7.7.3. Protection from Unauthorized Access to Standby Servers

Protection from unauthorized access to standby servers is provided by the operation system and network tools.

232

FAQ

C.7.8. QA and Rollback
It is recommended to do periodical switchovers.

C.7.8.1. Data Integrity Check After Failover

Data integrity check after a failover is provided by the backup utility shardmanctl probackup.

C.7.8.2. Switchover to BDC

Should the MDC fail, the administrator must make sure it is, indeed, unavailable and initiate the promote of the standby nodes.
The standby cluster upgrades its state from standby to master. This process is only initiated and managed by the shardmanctl
utility, no other procedures required.

C.7.8.3. MDC Recovery

To recover remote nodes to the MDC, create a backup of the main cluster and restore it on these nodes. The backup can be either
created as a cold backup or with the pg_probackup repository. Both options require a backup recovery to the MDC. Once the DB is
restored from the backup, run pg_receivewal that connects to a special primary or standby shard replication slot in the BDC, then it
receives WAL segments asynchronously and writes to the $PGDATA/pg_wal directory of the main node.

In the BDC cluster, a script creates a syncpoint each specified period of time. It is written to the BDC etcd and sent to the MDC
etcd. Once a syncpoint is in etcd, the MDC stanby cluster nodes check if a WAL with this record is received. If it is received by all
the MDC standby cluster nodes, the cluster software initiates the DBMS server startup in the recovery with WAL mode until the
syncpoint. Once the syncpoint is reached, no more WALs are applied. If all nodes successfully applied the WAL records, the DBMS
server is stopped, followed by another cycle of receiving WAL, syncpoint check and recovery mode.

C.7.8.4. Switching Back to MDC

To switch back to the MDC, create and transfer a cluster backup from BDS to MDC, run the nodes in the standby node mode. Once
the lacking WALs are received, the BDC cluster nodes are stopped, and the MDC cluster nodes are promoted.

C.7.9. Backup in Geografically Distributed System
Within the GDS (Geografically distributed systemt), BDC cluster must have the storage for the backups identical to one of the MDC.
Regular syncing between the main and backup storage is also required.

C.7.9.1. Storing Backups in Geographically Distributed Storages

The period of time the backups are stored is defined by the backup policy.

C.7.10. Documentation and Regulations
For more information on disaster failover and normal switchover to MDC instructions, contact Prostres Pro Support.

233

Index
A
ALTER SEQUENCE, 104
ALTER TABLE, 105

C
colocate_with storage parameter, 111
crash_info configuration parameter, 183
crash_info_dump configuration parameter, 183
crash_info_location configuration parameter, 183
CREATE SEQUENCE, 108
CREATE TABLE, 110
CREATE TABLESPACE, 114
csn_commit_delay configuration parameter, 182
csn_lsn_map_size configuration parameter, 182
csn_max_shift configuration parameter, 182
csn_max_shift_error configuration parameter, 182
csn_snapshot_defer_time configuration parameter, 182

D
distributed_by storage parameter, 111

E
enable_async_merge_append configuration parameter, 182
enable_csn_snapshot configuration parameter, 181
enable_custom_cache_costs configuration parameter, 181
enable_merge_append configuration parameter, 182
enable_non_equivalence_filters configuration parameter, 190
enable_partition_pruning_extra configuration parameter, 183
enable_sql_func_custom_plans configuration parameter, 182

F
foreign_analyze_interval configuration parameter, 182
foreign_join_fast_path configuration parameter, 183

G
global storage parameter, 107, 111
Global Views for Statistics, 96
Global Views for System Calalog, 100

N
NETWORK EXPLAIN ANALYZE parameter, 78
num_parts storage parameter, 111

O
optimize_correlated_subqueries configuration parameter, 183
optimize_row_in_expr configuration parameter, 191

P
partition_bounds storage parameter, 111
partition_by storage parameter, 111
pgpro_stats.enable_inval_msgs_counters configuration parame-
ter, 194
pgpro_stats.enable_rusage_counters configuration parameter,
195

pgpro_stats.enable_wait_counters configuration parameter, 194
pgpro_stats.pgss_max_nodes_tracked configuration parameter,
194
pgpro_stats.track_sharded configuration parameter, 194
pgpro_stats.track_shardman_connections configuration parame-
ter, 195
pgpro_stats.transport_compression configuration parameter, 194
port configuration parameter, 183
postgres_fdw.additional_ordered_paths configuration parameter,
184
postgres_fdw.enable_always_shippable configuration parameter,
190
postgres_fdw.enforce_foreign_join configuration parameter, 184
postgres_fdw.estimate_as_hashjoin configuration parameter, 184
postgres_fdw.foreign_explain configuration parameter, 184
postgres_fdw.optimize_cursors configuration parameter, 184
postgres_fdw.remote_plan_cache configuration parameter, 190
postgres_fdw.subplan_pushdown configuration parameter, 184
postgres_fdw.use_twophase configuration parameter, 184

R
REMOTE EXPLAIN parameter, 78

S
shardman-spec-config, 178
shardman.am_coordinator() , 86
shardman.attach_subpart , 85
shardman.broadcast_all_sql , 84
shardman.broadcast_ddl configuration parameter, 184
shardman.broadcast_query , 84
shardman.broadcast_sql , 84
shardman.context_log configuration parameter, 183
shardman.create_subpart , 85
shardman.database configuration parameter, 189
shardman.detach_subpart , 85
shardman.drop_subpart , 86
shardman.enable_limit_pushdown configuration parameter, 185
shardman.get_partition_for_value , 85
shardman.global_analyze , 85
shardman.gt_batch_size configuration parameter, 190
shardman.gv_global_tables, 90
shardman.gv_sharded_tables, 90
shardman.monitor_deadlock_interval configuration parameter,
190
shardman.monitor_dxact_interval configuration parameter, 189
shardman.monitor_dxact_timeout configuration parameter, 189
shardman.monitor_interval configuration parameter, 189
shardman.monitor_trim_csnxid_map_interval configuration pa-
rameter, 189
shardman.num_parts configuration parameter, 185
shardman.oldest_csn, 89
shardman.pg_indoubt_xacts, 88
shardman.pg_stat_csn, 87
shardman.pg_stat_foreign_stat_bytes, 89
shardman.pg_stat_monitor, 89
shardman.pg_stat_netusage, 89
shardman.pg_stat_xact_time, 88
shardman.plan_cache_mem configuration parameter, 190

234

Index

shardman.query_engine_mode configuration parameter, 185
shardman.rgid configuration parameter, 185
shardman.silkroad_sched_priority configuration parameter, 188
shardman.silkworm_fetch_size configuration parameter, 186
shardman.silkworm_sched_priority configuration parameter, 188
shardman.silk_backends, 92
shardman.silk_connects, 91
shardman.silk_flow_control configuration parameter, 188
shardman.silk_hello_timeout configuration parameter, 186
shardman.silk_listen_ip configuration parameter, 186
shardman.silk_max_message configuration parameter, 186
shardman.silk_num_workers configuration parameter, 186
shardman.silk_pending_jobs, 94
shardman.silk_rbc_snap , 86
shardman.silk_routes, 90
shardman.silk_routing , 86, 92
shardman.silk_scheduler_mode configuration parameter, 187
shardman.silk_set_affinity configuration parameter, 188
shardman.silk_state, 96
shardman.silk_statinfo, 95
shardman.silk_statinfo_reset() , 86
shardman.silk_stream_work_mem configuration parameter, 186
shardman.silk_tracelog configuration parameter, 189
shardman.silk_tracelog_category configuration parameter, 189
shardman.silk_tracepoints configuration parameter, 186
shardman.silk_track_time configuration parameter, 188
shardman.silk_unassigned_job_queue_size configuration para-
meter, 186
shardman.silk_use_ip configuration parameter, 185
shardman.silk_use_port configuration parameter, 186
shardman.sync_cluster_settings configuration parameter, 185
shardman.sync_cluster_settings_blacklist configuration parame-
ter, 185
shardman.sync_schema configuration parameter, 185
shardman.trim_csnxid_map_naptime configuration parameter,
189
shardmanctl, 118
shardmand, 196
storage parameters, 107, 111

T
track_fdw_wait_timing configuration parameter, 190
track_xact_time configuration parameter, 190

235

	Postgres Pro Shardman 14.17.2 Documentation
	Table of Contents
	Chapter 1. Get Started with Shardman
	1.1. What is Shardman
	1.2. When to use
	1.3. Quickstart Guide
	1.3.1. Cluster Configuration
	1.3.2. Preparation
	1.3.2.1. Add host names to /etc/hosts
	1.3.2.2. Time Synchronization

	1.3.3. Deploy an etcd One-Node Cluster
	1.3.4. Deploy Shardman Nodes
	1.3.5. Initialize the Shardman Cluster
	1.3.6. Add Nodes to the Shardman Cluster
	1.3.7. Check the Shardman Cluster Status
	1.3.8. Connect to the Shardman Cluster
	1.3.9. Create Sharded Tables
	1.3.10. Example: Deploy a Multi-Node etcd Cluster

	Chapter 2. Manage
	2.1. Cluster Services
	2.2. Scaling the Cluster
	2.2.1. Adding and Removing a Node
	2.2.1.1. Cross Replication
	2.2.1.2. Manual Topology

	2.3. Rebalancing the Data
	2.3.1. Automatically Rebalancing the Data
	2.3.2. Manually Rebalancing the Data

	2.4. Analyzing and Vacuuming
	2.5. Access Management
	2.5.1. Cluster Initialization Settings Related to Access Management
	2.5.2. Managing Users and Roles
	2.5.3. Managing Permissions on Sharded Tables
	2.5.3.1. Examples

	2.6. Backup and Recovery
	2.6.1. Cluster Backup with pg_basebackup
	2.6.1.1. Requirements
	2.6.1.2. basebackup Backup Process

	2.6.2. Cluster Recovery from a Backup Using pg_basebackup
	2.6.3. Cluster Backup with pg_probackup
	2.6.3.1. Requirements
	2.6.3.2. pg_probackup Backup Process

	2.6.4. Cluster Restore from a Backup with pg_probackup
	2.6.5. Merging Backups with pg_probackup
	2.6.6. Deleting Backups with pg_probackup

	2.7. Configuring Secure Communications with etcd
	2.7.1. Generating SSL Certificates
	2.7.2. Configuring etcd and shardmand Services
	2.7.3. Using Shardman Tools

	2.8. Upgrading a Cluster
	2.8.1. Upgrade Packages
	2.8.1.1. APT-based Systems
	2.8.1.2. RPM-based systems

	2.8.2. Restart Shardman Services and Database Instances
	2.8.3. Upgrade the Extension

	2.9. Fault Tolerance and High Availability
	2.9.1. Timeouts

	2.10. Logging
	2.10.1. PostgreSQL Logs
	2.10.2. shardmand Logs
	2.10.3. Getting Information on Backend Crashes

	Chapter 3. Develop
	3.1. Migration of a Database Schema
	3.1.1. Database Source Schema
	3.1.2. Shardman Cluster Configuration
	3.1.3. Selecting the Sharding Key
	3.1.3.1. Naive1 Approach — ticket_no Sharding Key
	3.1.3.1.1. Creating the Schema Distributed by ticket_no

	3.1.3.2. Complex Approach — book_ref Sharding Key
	3.1.3.2.1. Modifying the Source Schema
	3.1.3.2.2. Creating a Schema Distributed by book_ref

	3.2. Data Migration
	3.2.1. Naive Approach
	3.2.2. Complex Approach

	3.3. Queries
	3.3.1. q1 Query
	3.3.2. q2 Query
	3.3.3. q3 Query
	3.3.4. q4 Query
	3.3.5. q5 Query
	3.3.6. q6 Query
	3.3.7. q7 Query
	3.3.8. q8 Query
	3.3.9. q9 Query

	3.4. Connecting and Working with a Shardman Cluster
	3.4.1. SQL
	3.4.1.1. Listing Global Tables
	3.4.1.2. Listing Sharded Tables
	3.4.1.3. Listing Global Sequences
	3.4.1.4. Finding the Shard Number from the Sharding Key Value
	3.4.1.5. Understanding How Partitions of Sharded Tables Are Distributed Across Shards
	3.4.1.6. Collecting Statistics

	3.4.2. psql/libpq
	3.4.3. Python
	3.4.4. Java
	3.4.5. Go

	Chapter 4. Additional Features
	4.1. AQO (Adaptive Query Optimization)
	4.2. CFS (Compressed File System)
	4.3. pgpro_stats (Planning and Execution Statistics)
	4.4. pgpro_pwr (Workload Reporting)
	4.5. pg_query_state

	Chapter 5. Performance Tuning
	5.1. Examining Plans
	5.1.1. EXPLAIN Parameters

	5.2. DML Optimizations
	5.2.1. DML Optimizations of Global Tables

	5.3. Time Synchronization
	5.4. Distributed Query Diagnostics
	5.4.1. Displaying Plans from the Remote Server
	5.4.2. Network Metrics and Latency
	5.4.3. Query Tracing for Silk Transport

	Chapter 6. Shardman Reference
	6.1. Functions
	6.2. pgpro_stats Functions
	6.3. Advisory Lock Functions
	6.4. Views
	6.4.1. Shardman-specific Views
	6.4.1.1. shardman.pg_stat_csn
	6.4.1.2. shardman.pg_indoubt_xacts
	6.4.1.3. shardman.pg_stat_xact_time
	6.4.1.4. shardman.oldest_csn
	6.4.1.5. shardman.pg_stat_monitor
	6.4.1.6. shardman.pg_stat_netusage
	6.4.1.7. shardman.pg_stat_foreign_stat_bytes
	6.4.1.8. Shardman-specific Global Views
	6.4.1.8.1. shardman.gv_sharded_tables
	6.4.1.8.2. shardman.gv_global_tables

	6.4.2. Multiplexor Diagnostics Views
	6.4.2.1. shardman.silk_routes
	6.4.2.2. shardman.silk_connects
	6.4.2.3. shardman.silk_backends
	6.4.2.4. shardman.silk_routing
	6.4.2.5. shardman.silk_pending_jobs
	6.4.2.6. shardman.silk_statinfo
	6.4.2.7. shardman.silk_state
	6.4.2.8. Notes

	6.4.3. Global Views
	6.4.3.1. Global Views for Statistics
	6.4.3.2. Global Views for System Calalog

	6.5. SQL Commands
	ALTER SEQUENCE
	Description
	Examples
	See Also

	ALTER TABLE
	Description
	Parameters
	Storage Parameters

	Examples
	See Also

	CREATE SEQUENCE
	Description
	Parameters
	Notes
	Examples
	See Also

	CREATE TABLE
	Description
	Parameters
	Storage Parameters

	Examples
	See Also

	CREATE TABLESPACE
	Description
	Parameters
	Examples
	See Also

	6.6. SQL Limitations
	6.6.1. ALTER SYSTEM Limitations
	6.6.2. ALTER TABLE Limitations
	6.6.3. CREATE TABLE Limitations
	6.6.4. DROP TABLE Limitations
	6.6.5. CREATE INDEX CONCURRENTLY Limitations
	6.6.6. UPDATE Limitations
	6.6.7. INSERT ON CONFLICT DO UPDATE Limitations
	6.6.8. Limitations of Managing Global Roles
	6.6.9. Limitations of User Mappings
	6.6.10. ALTER SCHEMA Limitations
	6.6.11. DROP SERVER Limitations
	6.6.12. Limitations of Using Custom Databases
	6.6.13. CREATE COLLATION Limitations
	6.6.14. Logical Replication Limitations
	6.6.15. Other Limitations

	6.7. Shardman CLI Reference
	shardmanctl
	Description
	Command-line Reference
	backup
	cleanup
	config update credentials
	cluster repfactor set
	cluster start
	cluster stop
	cluster topology
	daemon check
	forall
	getconnstr
	init
	intcheck
	load
	nodes add
	nodes rm
	probackup
	List of subcommands:
	init
	archive-command
	backup
	checkdb
	delete
	merge
	restore
	show
	show-config
	validate
	set-config

	rebalance
	recover
	restart
	shard add
	shard master set
	shard master reset
	shard add
	shard rm
	shard switch
	shard start
	shard stop
	shard replicas reinit
	nodes start
	nodes restart
	nodes stop
	status
	status transactions
	store dump
	store restore
	store lock
	store get
	store keys
	store set
	tables sharded info
	tables sharded list
	tables sharded norebalance
	tables sharded partmove
	tables sharded rebalance
	config get
	config revisions rm
	config update
	config rollback
	config revisions
	config revisions set
	config update ip
	set
	upgrade
	bench init
	bench run
	bench cleanup
	bench generate
	script
	psql
	daemon set
	history

	Common Options
	Environment
	Usage
	Adding Nodes to a Shardman Cluster
	Performing Cleanup
	Displaying the Cluster Topology
	Checking shardmand Service on Nodes
	Removing Nodes from a Shardman cluster
	Getting the Status of Cluster Subsystems
	Outputting the List of Unresolved Distributed Transactions
	Dumping All Keys from the Store to Debug Error Configuration
	Getting the Current stolon Specification
	Getting the Cluster and Ladle Key Names For the Current Cluster
	Output Current Cluster Meta Lock Information
	Setting a New Spec for the Cluster
	Backing up a Shardman Cluster
	Registering a Shardman Cluster
	Restoring a Shardman Cluster
	Backing up a Shardman Cluster Using probackup Command
	Restoring a Shardman Cluster using probackup command
	Reinitializing Replicas

	Examples
	Initializing the Cluster
	Getting the Cluster Connection String
	Getting the Cluster Status
	Rewriting stolon Specification
	Adding Nodes to the Cluster
	Removing Nodes from the Cluster
	Executing a Query on All Replication Groups
	Performing Rebalance
	Updating PostgreSQL Configuration Settings
	Performing Backup and Recovery
	Performing Backup and Recovery with probackup Command
	Loading Data from a Text File
	Loading data from PostgreSQL table
	Loading Data with a Schema from PostgreSQL
	Initialization and Running Benchmarks
	Benchmark Generation Scripts

	See Also

	sdmspec.json
	Description
	List of Parameters
	ShardSpec Parameters
	Shardman-specific PostgreSQL Settings
	Examples
	Spec File for a Cluster with Enabled scram-sha-256 Authentication
	Spec File for a Cluster with Enabled Certificate Authentication

	pgpro_stats parameters
	See Also

	shardmand
	Description
	Command-line Reference
	Common Options
	Environment
	Examples
	Configuring a shardmand Service
	Showing shardmand Logs
	Restarting Shardman Services

	See Also

	Chapter 7. Shardman Internals
	7.1. Table Types
	7.1.1. Sharded Tables
	7.1.1.1. Partitions
	7.1.1.2. Subpartitions

	7.1.2. Global Tables
	7.1.3. Distributed DDL

	7.2. Query Processing
	7.2.1. Push-down Technique
	7.2.1.1. Joins
	7.2.1.2. Aggregations
	7.2.1.3. Subqueries

	7.2.2. Asynchronous Execution
	7.2.3. Fetch-all Fallback

	7.3. Distributed Transactions
	7.3.1. Visibility and CSN
	7.3.1.1. CSN — Commit Sequence Number
	7.3.1.2. Commit Delay and External Consistency
	7.3.1.3. CSN Map
	7.3.1.4. CSN Map Trimming

	7.3.2. 2PC and Prepared Transaction Resolution

	7.4. Silk
	7.4.1. Concept
	7.4.2. Event Loop
	7.4.3. Routing and Multiplexing
	7.4.4. Error Handling and Route Integrity
	7.4.5. Data Transmitting/batching/splitting Oversized Tuples
	7.4.6. Streams Flow Control
	7.4.7. Implementation details
	7.4.7.1. State Transferring and CSNs
	7.4.7.2. Integration with Asynchronous FDW Engine

	7.5. Distributed Deadlock Detection
	7.6. Global Sequences
	7.7. Syncpoints and Consistent Backup
	7.8. Collecting Distributed Statement Statistics Using the pgpro_stats Extension
	7.9. Advisory Locks

	Appendix A. Release Notes
	A.1. Postgres Pro Shardman 14.17.2
	A.1.1. Core and Extensions
	A.1.2. Management Utilities

	A.2. Postgres Pro Shardman 14.17.1
	A.2.1. Core and Extensions
	A.2.2. Management Utilities

	A.3. Postgres Pro Shardman 14.15.4
	A.3.1. Core and Extensions
	A.3.2. Management Utilities

	A.4. Postgres Pro Shardman 14.15.3
	A.4.1. Core and Extensions
	A.4.2. Management Utilities

	A.5. Postgres Pro Shardman 14.15.2
	A.5.1. Core and Extensions
	A.5.2. Management Utilities

	A.6. Postgres Pro Shardman 14.15.1
	A.6.1. Core and Extensions
	A.6.2. Management Utilities

	A.7. Postgres Pro Shardman 14.13.4
	A.7.1. Core and Extensions
	A.7.2. Management Utilities

	A.8. Postgres Pro Shardman 14.13.3
	A.8.1. Core and Extensions
	A.8.2. Management Utilities

	A.9. Postgres Pro Shardman 14.13.2
	A.9.1. Core and Extensions
	A.9.2. Management Utilities

	A.10. Postgres Pro Shardman 14.13.1
	A.10.1. Core and Extensions
	A.10.2. Management Utilities

	A.11. Postgres Pro Shardman 14.12.2
	A.11.1. Core and Extensions
	A.11.2. Management Utilities

	A.12. Postgres Pro Shardman 14.12.1
	A.12.1. Core and Extensions
	A.12.2. Management Utilities

	A.13. Postgres Pro Shardman 14.11.2
	A.13.1. Core and Extensions
	A.13.2. Management Utilities

	A.14. Postgres Pro Shardman 14.11.1
	A.14.1. Core and Extensions
	A.14.2. Management Utilities

	A.15. Postgres Pro Shardman 14.10.3
	A.16. Postgres Pro Shardman 14.10.2

	Appendix B. Glossary
	Appendix C. FAQ
	C.1. General Questions
	C.1.1. What is Shardman?
	C.1.2. What does Shardman consist of?
	C.1.3. When to use Shardman?
	C.1.4. When is Shardman not appropriate?
	C.1.5. How many nodes does it take to deploy Shardman?
	C.1.6. Does Shardman support fault tolerance?
	C.1.7. How is sharding structured?
	C.1.8. Is it possible to change the number of partitions?
	C.1.9. Does Shardman support resharding?
	C.1.10. Is it possible to convert an unsharded (local) table to a sharded one?
	C.1.11. Does Shardman support adding and removing shards?
	C.1.12. What is the status of data balancing?
	C.1.13. How is a Shardman cluster accessed?
	C.1.14. How is balancing between cluster nodes implemented?
	C.1.15. Is mass data loading supported in Shardman?

	C.2. Databases
	C.2.1. Is it possible to create multiple databases in a Shardman cluster?

	C.3. Tables
	C.3.1. What kind of tables are there in Shardman?
	C.3.2. What are global tables?
	C.3.3. What are global tables suitable for?
	C.3.4. What are sharded tables?
	C.3.5. Which partitioning parameters are optimal when creating a sharded table?
	C.3.6. What are colocated tables?
	C.3.7. How to create a colocated table?
	C.3.8. What are local tables?
	C.3.9. Are foreign keys supported in Shardman?

	C.4. Sequences
	C.4.1. Are global sequences supported in Shardman?
	C.4.2. How to create a global sequence?

	C.5. User Management
	C.5.1. Does Shardman support global user roles?
	C.5.2. How do I create a global user in Shardman?
	C.5.3. How do I grant permissions to a global user?

	C.6. Useful Functions and Tables
	C.6.1. How do I see which tables and sequences are distributed?
	C.6.2. How do I execute some SQL command on all nodes in the cluster?
	C.6.3. How do I get Shardman configuration parameters on a selected node?
	C.6.4. How do I update Shardman configuration parameters?

	C.7. Disaster Recovery Cluster Requirements
	C.7.1. Terms and Abbreviations
	C.7.2. High-level Description of the DRC
	C.7.3. Replication Topology
	C.7.4. Hardware and Network Requirements
	C.7.5. Replication Mechanisms
	C.7.6. Monitoring and Management
	C.7.7. Security
	C.7.7.1. Encrypting Data Across A Network (TLS/SSL)
	C.7.7.2. Inter-nodes Authentication and Authorization
	C.7.7.3. Protection from Unauthorized Access to Standby Servers

	C.7.8. QA and Rollback
	C.7.8.1. Data Integrity Check After Failover
	C.7.8.2. Switchover to BDC
	C.7.8.3. MDC Recovery
	C.7.8.4. Switching Back to MDC

	C.7.9. Backup in Geografically Distributed System
	C.7.9.1. Storing Backups in Geographically Distributed Storages

	C.7.10. Documentation and Regulations

	Index

