Pd provides at least four objects for doing conditioonal
computations. The "select" object tests its input against
its argumt(s), and outputs "bang" when they match. The
"route" object works similarly but also copies data. In
other wors, "route" takes a list, tests its first element,
and conditionally passes on the rest of list.

select 1 2

Erint select—ﬂ

Erint select—2|

rint select-ll

You also get "spigot" which turns a flow of messages on and
off (like the Gate object in Max, but with the inputs
reversed) :

m {—— nonzero to open

m if open, messages coming in at left are sent to output.

And finally, "moses" sends numbers to the left if they're
less than the argument, right otherwise:

moses 5

updated for Pd wversion 0.26

Two Rooms
A Short Conversation with Miller Puckette

Christian Scheib: In a discussion during the first Pd-convention in Graz you described Pd as
having a kind of white canvas ideology. What was on the canvas before Pd was invented?

Miller Puckette: Your first question made me think a long while, because the question of what
comes before Pd is something like, “everything I knew by the year 1996”. And it’s hard, even in
retrospect, to know what was important and what was not. I think one central thing was a wish
that computer music could be made in an even less constraining, and more open-ended, way
than was made possible by Max, Pd’s predecessor. I avoided re-creating the Max objects at first,
and focussed instead on graphing arrays of numbers, which I needed to do anyway to make
figures for a paper I was writing at the time. I thought a lot about how to visualize complicated
arrangements of data that a composer might use to represent a musical idea. But although I
wanted to make it possible to make complicated structures within Pd, I wanted Pd itself to be
as simple as possible.

Another aspect of the blank canvas that preceded Pd, was my desire to make a unified way of
handling sound recordings (“samples”), images, and control data. I started Max with the
IRCAM computer music production scene in mind, but Pd’s mental beginnings were more
abstract. The unified approach to data storage, not making reference to specific media, was
one of my strategies for making Pd as flexible as possible. The one thing I did give Pd ideas
about was time and scheduling; and this is perhaps unavoidable, but time passes in the same
way (from a physical point of view at least), regardless of what one is doing. But everything
else about the structure of a work of art in Pd looks like undifferentiated data.

A third, and more social, aspect was the intellectual property situation. IRCAM made it clear
that they didn’t want me involved in the further development of Max/FTS (the branch of Max
they maintained) — this was one reason I left IRCAM in 1994. There were many changes I
wanted to make in Max/FTS, but in the end, I was forced to start from scratch. I made Pd an
open source program so that people would want to use it, and sure enough, Pd soon had many
more users than Max/FTS. In an odd twist of fate, soon after I started releasing versions of Pd,
IRCAM released Max/FTS on the GNU General Public License (much to the happiness of the
maintainers). If they had done this before I started Pd, I might never have started it. But by
that time (1998, I think) it was too late; Max/FTS was already marginalized and Pd was com-
ing into wide use.

Christian Scheib: If I understand you correctly, something “constraining” must have been on

the canvas, before you started whitening it by developing Pd. Constraining in a social way as
far as copyright is concerned, constraining in a technical way as far as the difficulty with differ-

165

Christian Scheib / Miller Puckette

ent tools for different media is concerned and constraining in an artistic way as far as pre-pro-
duced clichés are concerned. Since there are three reasons, there are three questions.

MANUAL DIGITALISATION

Christian Scheib: Observing the outcome of Pd-usage: How has Pd worked artistically so far
and is there another development you would still wish for it? Has music become less con-
straining and more open-ended than before Pd was available?

Miller Puckette: It’s hard to describe this, but I keep hoping the computer will be able to func-
tion more like a musical instrument (less like a computer) than it has before. The usual mode
of doing computer music is still very much like working in a studio (that culture lies at the
root of computer music after all). I'd like to see more time-sensitive ways of responding to
real-time inputs that would allow human control over the way sounds evolve. But I think this
is likely to be a hard research problem.

By and large, Pd is at least as good as any other environment I know of for making computer
music, and lots of really excellent work is being done in Pd. I think the limitations that now
confront us are more fundamental than just a choice of software (Pd vs. Supercollider, for
instance).

Christian Scheib: Hasn’t the development of graphic surfaces been the “fall from grace” (in the
biblical sense) of computer work anyway? Betraying understanding of what one does by pseu-
do-analogies that have been invented under the pretext of making everything easier or even
more understandable? In other words: hasn’t — on a totally different level, but still — a wish for
“reacting in a more sensitive way of responding to real-time inputs with more human control”
just produced the opposite in the past already? What is the difference in hope and Pd’s
approach rooted in? (I, too, think it is about more than just a choice of software like Super-
collider, yes or no.)

Miller Puckette: 1 think there are two things going on. The first is that computers are tools for
automation. They allow humans to work in patterns, instead of working in details. This makes
it very easy to do certain kinds of things (making hundreds of sinusoids, for instance, or draw-
ing fractal trees). But the elementary operation, the putting of a dab of paint on a canvas, for
instance, is easier to do by hand than with a computer. So computer art naturally looks differ-
ent from manual art. Perhaps this is paradoxical, but I hope Pd is less automated, and more
“manual’, than, say, a purely prescriptive programming language. It’s got the right level of
automation for making banks of sinusoids without too much trouble, but doesn’t encourage
making top-down, completely pre-planned compositions, and instead encourages moving for-
ward through experiment.

166

An exciting journey of research and experimentation

The second thing is graphical interfaces, and the feeling of intimacy that they give with the
computer’s workings — a feeling that is, as you suggest, purely illusory. I think the answer is
that a graphical interface can be honest or dishonest. An example of a dishonest interface is
Microsoft’s desktop, on which you don’t actually see your files, but only those certain files that
happen to be placed so that they’re visible there (and aren’t hidden). On the other hand, lots of
things show up which aren’t files at all, and might not even live on your own computer. GUI
people call this a “metaphor” and hide behind that word when offering the user things which
look alike, but which don’t have the same functionality. The result is that you never really
know what you are doing.

In contrast, I hope that people who use Pd actually “see” what they are really doing, with noth-
ing hidden and nothing aliased to look like something different. And perhaps that allows a
more intimate control of the actual making of computer music or art in Pd than is offered by
more metaphor-laden systems.

TRANSGRESSING MEDIA

Christian Scheib: To what extent has the unifying approach changed the way people use differ-
ent media? In which directions are the needs, wishes, developments of the community going
in this respect? Does this have aesthetic consequences?

Miller Puckette: I think that in the last couple of decades many artists and composers have
become quite fluent at mixing audio and image production and passing controls and informa-
tion between media. There are some pitfalls (for instance, it’s easy to make things that are too
predictable or pedantic), but good artists can see and avoid them with experience. I've seen
some wonderful work recently, particularly at the Pd convention itself. I think it’s really the
artistic community which is driving this more than Pd itself, which just happens to be a good
way to realize these sorts of things.

Christian Scheib: So the old antagonism between artist and tool/media/instrument is reap-
pearing in some new form? In other words, aesthetically it has been one of the core functions
of the range of instruments and/or material to define and provoke what the artist is doing or
can be doing or might be trying in order to transgress. What if you were successful in provid-
ing the idea of the technologically imagined metaphor of the white canvas? What is left to
transgress? Should we just abandon the concept of transgressing? But then look at or listen to
the Pd-community’s work in Graz: Some kind of transgression has been involved in all the
convincing examples. So if the medium inevitably plays such a central role in the production
of art, what would you — as an artist and as a programmer — think Pd’s role is in this respect?

Miller Puckette: In any form of art-making there has to be tension. However, I would rather see
the tension lie in the artistic imperatives than in a contest between the artist and the limita-

167

Christian Scheib / Miller Puckette

tions of his or her tools. This is an aesthetic stance, by the way: plenty of artists actually seek
tension in the difficulty of the realization (Iannis Xenakis often did this). But somehow, I think
that an artist who really needs difficulty of realization can always find it, and it’s not my role to
supply difficulties.

A favourite metaphor of mine is to compare two rooms, one tiny one and one large one. If you
live in the tiny one, you might want to move to the larger one in order to have fewer bound-
aries. But of course the larger room simply has a larger surface, and hence more boundaries
than the small one had. In the same way, the more transparent, malleable, and powerful the
tool is that you use, the more ways you can hit the wall with it. So perhaps, even though Pd
tries to give you the most freedom, it ends up giving you the richest possibilities for frustra-
tion.

OPEN SOURCE

Christian Scheib: You mentioned that the reason for the decision for open source was “so that
people would want to use it”. This is a very practical way of putting something that is also
heavily loaded with lots of ideology. Does a more theoretical or ideological thinking have some
(hidden or intentional) influence on your work?

Miller Puckette: Well, I hate seeing big corporations rob people, so yes, to that limited extent. I
see in particular the increasing use of patents as tools for keeping small players out of the
game, and I think we should all resist that. But as for Pd itself, I don’t see it as a political act,
just as the best way I can see to navigate the situation and get tools in the hands of people who
need them.

Christian Scheib: Okay, so let’s stay practical instead of ideological here. Getting tools into the
hands of as many people as possible may not be, but may well end up soon becoming a mar-
keting concept. Linux for Munich or so. Are you concerned with that? (Sorry, I know this is
not practical, but pseudo-ideological.)

Miller Puckette: 'm very excited by the movement toward open source in general, because I see
it as breaking the strangle-hold that software corporations have over their users. It’s simply
unconscionable to prohibit a person from knowing how something he or she owns (a comput-
er) actually works inside. It’s also unconscionable for any democratic government to allow
itself to be locked into a private vendor in order to carry out essential functions; this endan-
gers the populace needlessly. The situation is different for artists; they aren’t in charge of keep-
ing the trains from crashing into each other. So there’s nothing immoral about an artist using
a proprietary piece of software. However, an artist who thinks carefully about preserving his or
her work will naturally prefer the open source solution, because it’s much easier to keep run-
ning than a proprietary one can ever be.

168

Two Rooms. A Short Conversation

AUTOMATED METAPHORS (CONCLUSION)

Christian Scheib: 1 just love your metaphor about the tiny and the large room with its widening
and enlarging of boundaries at the same time. This seems to sum up pretty exactly what the
potential of Pd is in the sense of possibilities as well as frustration. This leads to two closely
related questions: from your observation and judging from questions and feedback you get,
has the community pushed the development of Pd unambiguously into this direction of more
and more “manual” openness, or are there also some tendencies to “serialize” or automate?
And again from your personal observation, has art/music been developed in recent years that
owes its essential quality to these characteristics of the metaphorical large room?

Miller Puckette: Hmmm....

1. Ithink most people attracted to computers in the first place (including most Pd users) have
a tendency to like to automate things. The fact that Pd users are computer artists or musicians
in the first place means the population has already been selected for that trait. So I think it nat-
ural that one sees more of a tendency to automate Pd usage than to de-automate it. But there
are a couple of interesting counter-examples. In particular, the small fringe of people who are
actually using the experimental graphical data editing functions of Pd seem to like it for its
very explicit, even tedious, detail. So my best answer is, “both”.

2. I don’t know any examples myself... since it’s really the artist, not the viewer, who experi-
ences the possibility/limitation of the software, if he or she wanted to incorporate that, itself,
into an artwork, he or she would have to somehow portray or offer an experience of using Pd.
Running a camera while the artist works on Pd and showing the video as the artwork, for
example. It might be hard to figure out how to make a convincing artwork out of that idea.

169

