


A Divide Between ‘Compositional’ and ‘Performative’ Aspects of Pd *

Miller Puckette 

In the ecology of human culture, unsolved problems play a role that is even more essential
than that of solutions. Although the solutions found give a field its legitimacy, it is the prob-
lems that give it life. With this in mind, I’ll describe what I think of as the central problem I’m
struggling with today, which has perhaps been the main motivating force in my work on Pd,
among other things. If Pd’s fundamental design reflects my attack on this problem, perhaps
others working on or in Pd will benefit if I try to articulate the problem clearly.

In its most succinct form, the problem is that, while we have good paradigms for describing
processes (such as in the Max or Pd programs as they stand today), and while much work has
been done on representations of musical data (ranging from searchable databases of sound to
Patchwork and OpenMusic, and including Pd’s unfinished “data” editor), we lack a fluid
mechanism for the two worlds to interoperate.

1 EX A M P L E S

Three examples, programs that combine data storage and retrieval with realtime actions, will
serve to demonstrate this division. Taking them as representative of the current state of the art,
the rest of this paper will describe the attempts I’m now making to bridge the separation
between the two realms.

1.1 CSound 

In CSound2, the database is called a score (this usage was widespread among software synthesis
packages at the time Csound was under development). Scores in Csound consist mostly of
‘notes’, which are commands for a synthesizer. The ‘score’ is essentially a timed sequence. A
possible score might be as shown:

i1 0 1 440
i1 1 1 660
i1 2 1 1100
e

* Reprinted from the 1st International Pd~convention, Graz, 2004:
<http://puredata.info/community/projects/convention04/>

143



Figure 1: A Csound performance: (a) score and orchestra; (b) using real-time control via MIDI.

A Csound performance works as shown in Figure 1. Part (a) shows the “classical” performance
configuration, in which parameters in the notes update synthesis control values, each note act-
ing at an effective time also calculated from the note’s parameters.

Part (b) of the figure shows how to use real-time inputs (here from MIDI messages) in a
Csound performance. The real-time inputs are simply merged with the (pre-scheduled) notes.
In effect, there is no facility for intercommunication between the two control streams; they
simply affect different variables in the orchestra, and the orchestra’s audio output is controlled
by the union of the two sets of variables.

1.2 Patchwork and OpenMusic 

Michael Laursen’s Patchwork program4 and its descendant, OpenMusic, by Carlos Agon and
Gérard Assayag1, offer a much tighter integration of data. Figure 2 shows a simple OpenMusic
patch.

The semantic of OpenMusic (and Patchwork) is one of demand-driven dataflow. Each object
is essentially a function call, which recursively evaluates its inputs, precisely as a Lisp form is
evaluated. Compared to Pd, the relationship between data and process is reversed. There is no
notion of real-time events or even of real time itself; rather, the contents of a patch are static

Miller Puckette

144



data. The paradigm gets its richness from the fact that the data types (which in the pictured
example are just numbers) can in general be any lisp data structure, and so can easily describe
whole sequences such as a Csound score.

OpenMusic supplies a sequencing function which, given a sequence as an argument, plays the
result out the machine’s MIDI port or sends it to a software synthesizer. The data managed in
the patch itself are all entirely out-of-time; the sequencer’s function of putting the data in time
is a primitive operation. The lisp object or objects which hold rhythms, pitches, and even tim-
bres are queried by the sequencer which does the data mining as a black box.

This is ideal from the composer’s point of view, since the creation of a musical score is essen-
tially an out-of-time activity. But performers will have little use for OpenMusic since, in live
performance, the instrument doesn’t query the 

Figure 2: An OpenMusic patch (borrowed from IRCAM’s documentation).

performer, but rather, the performer sends messages to the instrument. This is the Pd (and
Max) organization, the reverse of that of OpenMusic.

1.3 Max and Pd 

In Pd (the third example), the fundamental transaction goes in the direction favored by the
performer. This idea goes back to Max, and that orientation might have been the most impor-
tant single reason that Max and Pd are in wide use today. But as noted before3, 5, the message-
sending paradigm does not fundamentally lend itself well to storing and retrieving data. One
is almost forced to set data aside in containers – databases, essentially – and to use a coterie of
accessor objects to store and retrieve data under real-time, message-passing control.

Max’s approach to data is both simple and evasive: special data-container objects such as table,
qlist, etc. are provided; the data are essentially hoarded inside the container objects, and for

A Divide Between ‘Compositional’ and ‘Performative’ Aspects of Pd

145



each kind of container object, a particular ad-hoc approach is taken to its storage, its editing,
and its interfacing with the rest of the patch.

Retrieval (the great majority of database transactions!) is the worst fit with Max because mes-
sages don’t have return values; the retrieved data must be sent as a separate return message.
This leads to much misery for Max users.

Figure 3: Incrementing an array element. The receive object can be sent integers to specify which element to
increment.

Pd faithfully recreates the data-storage paradigms of Max, but in addition the design of Pd
includes a more advanced paradigm that might eventually replace the Max one.

The original, defining idea behind Pd was to remove the barrier between eventdriven real-time
computation (as in Max-style message passing) and data (as in points of an array or notes in a
score). In Pd the two (object boxes and data structures) can easily coexist in a single window.
This promiscuity, however, does not in itself make the functional objects and the data inti-
mately connected. In fact, in the present design, data access still has to be done through a suite
of accessor objects. It is far from certain that Pd will, in the end, relieve the Max user’s misery.

2 DATA-PLU S-AC C E S S O R-OB J E C T DE S I G N MO D E L

An example of Pd’s data-plus-accessor arrangement is that maintained by floatingpoint arrays
(either graphical or via the table object), and the suite of objects tabread, tabwrite, and all their
relatives. For example, Figure 3 shows how to use accessor objects to increment a variable ele-
ment of an array (you would do this to make a histogram of incoming indices, for example.)
Here the task is straightforward, and the separation of the storage functionality of the actual
“array1” from the accessor objects is not particularly troublesome.

Moving to a more interesting case, we now build a patch to do something corresponding to
this using the (still experimental) “data” feature of Pd6. For completeness we give a short sum-
mary here, which will serve also to introduce the central example of this paper.

Miller Puckette

146



Figure 4: Two data structures in Pd.

Figure 5: Possible structure for the objects in Figure 4.

Pd’s “data” are objects that have a screen appearance; many such objects can be held in one Pd
canvas. The canvas holds a linked list of data. A datum belongs to some data structure, which
is defined by a patch called a template. The template also defines how the data will look on the
page. Lists of data are heterogeneous; a canvas in Pd can hold data with many different struc-
tures. Figure 4 shows a canvas with three data objects. They belong to two types: two triangles
and one rectangle.

As data structures, this list could appear as shown in Figure 5. The elements of the list need not
all have the same structure, but they have a “class” field that determines which of the several
possible data structures the element actually belongs to.

Figure 6: Pd definitions of the data structure for the triangles in Figure 4.

The data structures are defined by struct objects. Figure 6 shows the struct object correspond-
ing to the triangles in Figure 4. The canvas containing the struct object may also contain draw-
ing instructions such as the drawpolygon object. This object takes three creation arguments to
set the interior and border colors and the border width (999, 0, and 2), and then any number
of (x, y) pairs to give vertices of the polygon to draw; in this example there are three points and
the structure element h gives the altitude of the triangle.

A Divide Between ‘Compositional’ and ‘Performative’ Aspects of Pd

147



For clarity, and for the sake of comparison, we’ll consider C and Pd approaches to defining and
accessing the data in parallel. In C, the definitions of the two data structures might be as
shown in Figure 7. In order to be able to mix the two structures in a single linked list, a com-
mon structure sits at the head of each. This common structure holds a whichclass field to indi-
cate which structure we’re actually looking at, and a next field for holding a collection of these
structures in a linked list.

Now we define a task that might correspond to that of Figure 3. Suppose, given an integer n
and a linked list of data structures, we wanted to find the nth occurrence of struct1 in the list
and increment its h slot. (Note that incrementing the h slot of an instance of class2 wouldn’t
make sense.) A C function to do this is shown in Figure 8. This is an inherently more compli-
cated problem than that of Figure 3; there, a corresponding piece of C code might simply be:

array[n] += 1; 

Instead, we have to make a loop to search through the heterogeneous list, checking each one if
it belongs to struct1, maintaining a count, and when all conditions line up, incrementing the h
field.

An equivalent Pd patch is shown in Figure 9. The loop is managed by the [until] object. The
top [trigger] initializes the [f] and [pointer] objects (corresponding to count and ptr in
the C code.) The messages, “traverse pd-list” and “next”, correspond to the initialization and
update steps in the C loop; the two possible exit conditions of the loop (the check on ptr and
the break in the middle) are the two patchcords reaching back to the right inlet of the [until]
object.

The [pointer struct1] object only outputs the pointer if it matches “struct1”

Figure 7: A C equivalent for the data structures of Figure 4.

Miller Puckette

148



Figure 8: A C function to increment ”h” for the nth occurrence of class1.

(corresponding to the first if in the C code.) The [sel] object in the patch corresponds to the
check whether count and n are equal in the C code. The remainder, below the second
[pointer] object, is much the same as in Figure 3.

3 DI S C U S S I O N

The Pd patch looks more complex than the C code. One possible reason for the complexity is
the difficulty of sequencing actions in Pd patches, which lack the natural sequentiality of a text
programming language like C. Another is the relative lack of names; only three names (other
than Pd class and message names) appear in the patch (“n”, “struct1”, and “h”), compared to
eight in the C code (thelist, n, ptr, count, c_next, c_whichclass, CLASS1, and
c1_h). Of these, two of the Pd names (“n”, and “pd-list”) might be considered to act as vari-
ables, compared to four of the C names.

The complexity of the patch needed to accomplish this task might be reduced somewhat if
either the [value] and/or [expr] objects were extended to deal with pointers. For instance, a
[value ptr] object (unsupported in the current version of Pd) could hold the output of the first
pointer object in readiness for the incrementing step at bottom. So far, though, mockups using
features such as this have not been observed to reduce the number of objects and lines in
patches equivalent to the one shown here.

The [expr] object could conceivably handle data structures and slots with the addition of a few
C-like constructs, and could also be fixed to set and retrieve the contents of value-style vari-
ables. This would cause the Pd and Max versions of [expr] to deviate from one another (they
currently share the same code, maintained by Shahrokh Yadegari7. In general, it seems prob-
lematic to lean in too fundamental a way on [expr] as the fundamental mechanism for getting
and retrieving data.

A Divide Between ‘Compositional’ and ‘Performative’ Aspects of Pd

149



Figure 9: Pd patch to search for the nth instance of class1 and increment its value of h.

On a more general plane, the relationship between the data and the code that accesses it is the
same in Pd as it is in C. One wishes that the functionality could somehow reference the look
and feel of the data themselves, or possibly even be built into the template patch (as methods
go with class definitions in C++.) So far no model has emerged that accomplishes this
smoothly.

Another aspect of the question, not touched on in this paper, is the utility of somehow catch-
ing user operation (with mouse and keyboard, perhaps among other ways) with the graphical
data. There should be a way to provide hooks to data when certain operations are carried out
on them. Perhaps this should be realized as a way of fielding Pd messages (via [pointer]
objects?) sent to objects to get or set their state.

The data structure accessor objects could easily be back-compatibly replaced or augmented
with others if a clean design can be found for getting and setting the data. This “data” feature
was the original motivating force behind Pd’s design; it is interesting that it now appears likely
to be the last aspect of Pd to be defined.

Miller Puckette

150



RE F E R E N C E S

1 G E R A R D A S S AYAG et al. Computer assisted composition at ircam: From patchwork to openmusic.
Computer Music Journal, 23(3):59-72, 1999.

2 RI C H A R D B O U L A N G E R , editor. The Csound book. MIT Press, Cambridge, Massachusetts, 2000.
3 P. D E S A I N and H H O N I G . Letter to the editor: the mins of max. Computer Music Journal, 17(2):3–11,

1993.
4 MI K A E L LAU R S O N and JAC Q U E S DU T H E N . Patchwork, a graphical language in preform. In Proceedings

of the International Computer Music Conference, pages 172-175, Ann Arbor, 1989. International Computer
Music Association.

5 MI L L E R S. PU C K E T T E . Max at 17. 26(4):31-43, 2002.
6 MI L L E R S. PU C K E T T E . Using pd as a score language. pages 184-187, 2002.
7 S H A H R O K H YA D E G A R I . A general filter design language with real-time parameter control in pd,

max/msp, and jmax. In Proceedings of the International Computer Music Conference, pages 345-348, Ann
Arbor, 2003. International Computer Music Association.

A Divide Between ‘Compositional’ and ‘Performative’ Aspects of Pd

151


