

Why Do People Develop Free Software?
Susanne Schmidt

Every year around the time of German finals at school, I get some emails concerning a howto I
wrote a few years ago. It is a short “anti-slacking howto for young nerds”, written after my
experiences working as a project manager, when I saw some young nerds and geeks quitting
school due to the enticements of the “new economy” and its job offerings. The emails I get are
(mostly) grateful and friendly. Every time I read one of them, I think: “Well, it was worthwhile
writing it.” If I ask myself why I published the howto instead of just emailing it to friends who
could possibly benefit from some hints against slacking around, well – I don’t know. I never
even considered anything other than publishing it. After 12 years with Linux and Open Source
software I have become very used to the idea of publishing for free and for everyone. Share-
ware? Freeware? Well, why bother with half of the cake, if I can have all of it – the complete
source? The phenomenon of Open Source has crept into everyone’s computer and Internet
behavior: It is not just software and source code, published freely, it is also projects like
Wikipedia and more and more scientists publishing their research results and theories, making
them available to everyone on the net. The main issue here is familiarity with the idea of creat-
ing Open Source software and sharing it with others. Why do people do that?

It is obvious that people need and use Open Source – not just a small howto, but documenta-
tion, information, raw data, software, icons and pictures, algorithms, patterns, sounds and
music, and they like it, value it and sometimes they are even truly grateful. This is very moti-
vating. We sometimes call it “fame and glory through Open Source” – more in an ironic sense,
but all the developers I have ever met are rather flattered if someone tells them their software
really is used and valued. It is also sometimes amazing to see what people do and create with
the developer’s software – especially if your software facilitates a very immediate, direct experi-
ence like music applications, sound, graphics, pictures or movies do. You might say that one
motivation could be to make users happy. Or, in dry, passionless words: “In the world of Open
Source software development, actors have one more degree of freedom in the proactive shap-
ing and modification of technologies, both in terms of design and use.”1

Why do developers spend hours, weeks, months and even years programming a piece of Open
Source software in their spare time? Well, it’s fun. You may call it more sophisticated “intrinsic
motives” and wrap an intimidating theory all around it, but there is the pure joy of craftsman-
ship. Just as I like – maybe love – writing, they have a passion for hacking and coding. It is sat-
isfying to look at a final piece of code, checked in into the source code repository, and see peo-

1 Brent K. Jesiek, “Democratizing Software: Open Source, the Hacker Ethic, and Beyond”, First Monday,
Volume 8, Number 10 (October 2003), <http://firstmonday.org/issues/issue8_10/jesiek/index.html>

67

ple using and adopting it. Even if people start to nitpick about your style, your code or your
programming language of choice, you can still remain happy with the project. A student of
graphical design took my howto one day and made a print version to be distributed freely as a
students’ brochure at the university. In this way, the effort that one person makes may lead to
an interesting project or idea from another person – we all are happy, if someone actually uses
our library, our patch or our piece of code and finds something useful to do with it. For my
part, I was rather proud and flattered – who wouldn’t be? The satisfaction of craftsmanship
and puritanical, Protestant “usefulness” can be very forceful: making things work, because you
can, making things work even better, because you give all your ability and perfectionism into it
– that can be very rewarding. Having hacked a small tool or having written a nice piece of doc-
umentation feels the same way as looking onto a freshly painted wall in your apartment: one
can see one’s work and one can see if it is well done. Sometimes, writing Open Source software
is truly a labor of love, and in a way it is the geek’s way to express political engagement rather
than walking a protest march through Washington – Berlin – Paris – Tokyo.

The second reason is the insistent, nagging feeling of “But someone has to!”. Dissatisfaction
with existing projects, sometimes the unaffordable price of commercial software for a small
library one needs right now, badly written software crashing and leaking your memory, the
non-existence of something that would be really useful or is needed for another project – these
are just a handful of reasons why developers spend so much time on Open Source software. All
this may lead to an effort of “ok, I will just do it now”, and it can be rather simple: If you don’t
start with it, maybe no one ever will. The Italian economists Andrea Bonaccorsi and Cristina
Rossi just put it in economic terms of “incentives” and filling a gap in the market.2

Sometimes it is the sheer lack of a tool you need that leads to a new project. Sometimes it is the
vast of existing tools that another operating system offers, but yours does not, and sometimes
it is the poor quality of an existing piece of software that leads to many weeks with short nights
and bad food – and a new tool. Sometimes it may even be a feeling (or simply imagining) that
“I can do better!” that results in a new project.

The amazing thing with Open Source software is that if you have the ability to program, in a
way the world is yours. You may compare it to someone who is a great manager and has the
skills to organize and manage huge exhibitions or establish a political movement. With the
development of software, we have the ability to change circumstances and environments – at
least from time to time. Sometimes, the idea of making software Open Source can be very
powerful – just look at projects like the former StarOffice or Netscape, which changed into
Mozilla which leads us to Firefox. See the revolving influence of any peer-to-peer software and
the fights around DeCSS, and you get an idea of what is possible today with the right software
project.

Susanne Schmidt

68

2 Andrea Bonacorsi and Cristina Rossi, “Altruistic individuals, selfish firms? The structure of motivation in
Open Source software.” First Monday, Volume 9, Number 1 (January 2004),
<http://firstmonday.org/issues/issue9_1/bonaccorsi/index.html>

The tendency of some industries to consider their customers as too stupid to handle a tool of
any complexity often hampers the capabilities a program could have, and suddenly you are
limited solely by marketing decisions in what you can do with your application and what is no
longer possible. Years ago, I found an interesting marketing study somewhere on the web
about “Lego” and why there is so much “theme-oriented” Lego, like Star Wars-Lego, Lord of
the Rings-Lego, Harry Potter-Lego and Biff and Bim-Lego, and not much basic Lego bricks
anymore, as I remember from my childhood: Because “the customer is too overwhelmed by
the flexible choices and isn’t able to develop the creativity needed to build really cool things”.
In other words, your spaceship does not look as cool as that stylish “bird of prey” superfighter
on the wrapper and never will. This is exactly the same for many applications, which are
intended to be “more smart” than the user, “make things convenient” for the user, and don’t
make it too difficult for me! I’m not talking about a very well developed user interface to
improve the handling of application X – by all means, using it should be as fast and easy as
possible – I am talking about hiding capabilities. The price one pays is always vanishing capa-
bilities and the disappearance of flexibility in the application: what you can do is suddenly
limited by design and industry, not by your ideas and – let’s say – physical laws. There is the
wonderful German term of “Volksverdummung” (brainwashing of the people) which applies
perfectly here. Or, even worse, software overzealously hides certain capabilities due to possible
copyright frauds or legal problems somewhere in some country on this planet. Don’t mess
with business.

Open Source software may give you (back) that freedom and choice. That is another reason
why people hack Open Source. One may argue that this freedom is a liberty for a few initiates,
those developers who are capable of handling complex and demanding applications – but it is
the principle that counts here. In principle, you can change the code. I still agree with Eric
Raymond’s optimistic view on Open Source, even if some people see a barrier for “ordinary
people” because of the complexity of large Open Source projects: Nikolai Bezroukov wrote in
“First Monday” that “[...] Open Source, in Raymond’s view, is just source code, not all of the
complex infrastructure and implicit knowledge that are used in large software projects.”3

Nevertheless, in principle, you can build any kind of application on your own to suit your per-
sonal needs. It is like arguing that certain philosophers can no longer be read, because they are
too demanding and customers cannot be expected to learn a foreign language. “Dear citizen,
due to the fact that Marx is too demanding to understand, and his ideas are not compatible
with the existence of the Department of Trade and may lead to license and copyright fraud
and can cause a revolution, and you cannot be expected to consider learning German, we offer
you our new product PaterNal 2.0, now with a superior decisionless graphical interface!” The
steep learning curve of software sometimes asks for much effort on the part of the user, but
most of the time the effort leads to a deeper knowledge and understanding of the inner world
of computer software – an ability much needed and very useful in a thoroughly networked

Why Do People Develop Free Software?

69

3 Nikolai Bezroukov, “Open Source Software Development as a Special Type of Academic Research
(Critique of Vulgar Raymondism)”, First Monday, Volume 4, Number 10 (October 1999),
<http://firstmonday.org/issues/issue4_10/bezroukov/index.html>

and computerized society. As Open Source developers seek to make their project the best one
in the sense of what the application can do, rather than in terms of being easy to use, many
projects in turn give users the flexibility they demand. An Open Source developer is not
required to meet the demands of a marketing department, and that can be very liberating.

Nevertheless, Open Source is not healing the planet and it is not happy faces everywhere. If
one takes a look at Sourceforge or Freshmeat, it sometimes looks like a huge graveyard with
tombstones of alpha-versions dedicated to unfinished and abandoned software projects. One
may also ask if we really need 36 web servers (search string “httpd”) instead of developing four
or five for different purposes and scenarios. Freshmeat even lists over 1000 projects with the
search string “editor” – well, if that isn’t freedom of choice! Things have changed during the
last 12 years and so has the type of personality of the developers programming Open Source
software. Today, even 10-year-olds have the possibilities and technical resources to start devel-
oping a new operating system and can rely on the large amount of code examples available on
the Internet. Open Source software today has some tendency to be focused more on cute, neat
and funny things, rather than on solving boring or difficult problems or bothering with neces-
sary clean-ups of some projects. This is the other side of the coin that everyone can write code
they like – it is not that easy to convince a young developer to engage in projects that are more
necessary than “cool”. Many developers of the first generation of Linux tools, Internet applica-
tions or device drivers are disappointed, over-worked or simply have other things to do.
Therefore, the world of Open Source is changing rapidly.

Open Source software development is also still a male-dominated business, I am sad to say –
and this is not due to the fact that an Open Source project is not the ideal environment for
curious girls to take their first lessons in computer programming. Even with all the possibili-
ties and freedom and access for everyone, women still are a very small minority in the free
software business. I can offer no explanation for that phenomenon – obviously even the
impact of Open Source software and the public recognition it has reached in the last decade is
still not enough to attract (many) women. Here and there we can see a few female developers,
and I’m glad to see them, but we are still far away from taking half of the cake.

Yet even though the history of free software and the last decade have been very bright and
promising, things are changing rapidly, and there are some clouds in the sunny sky of free soft-
ware: software patents, for example, just to mention one problem that can throw projects into
serious trouble with one legal stroke. One might remember the legal issues of distributing
strong encryption - we now face legal issues forcing programmers to find a way to creatively
bypass patented graphical algorithms or mechanisms to perform a search. It is not just the
Department of Defense giving computer enthusiasts a hard time “in times of terror” – it is the
movie and music industry and the World Trade Organization’s demands that developers face
today.

The cultural battle in the software business is fought along the lines of legal issues of Digital
Rights Management, software patents, privacy and civil rights. Now and then, on an IRC-

Susanne Schmidt

70

channel, you can more and more often hear a developer talking quietly about not releasing
code or hesitating to publish an idea, because he is afraid of legal issues. And this is not the
bright future where young developers may eagerly start new Open Source software projects
that the world still needs.

FU RT H E R RE A D I N G S :

ER I C RAY M O N D . The Cathedral and the Bazaar. 09 Jan. 2006
<http://www.catb.org/~esr/writings/cathedral-bazaar/>.

ER I C RAY M O N D . Homesteading the Noosphere. 09 Jan. 2006
<http://www.catb.org/~esr/writings/cathedral-bazaar/>.

BRU C E ST E R L I N G . A Contrarian View of Open Source. 09 Jan. 2006
<http://www.oreillynet.com/pub/a/network/2002/08/05/sterling.html>

MI C H E L L E LE V E S Q U E. Fundamental Issues with open source software development. 09 Jan. 2006
<http://www.firstmonday.org/issues/issue9_4/levesque/>

Why Do People Develop Free Software?

71

