


Basic Physical Modeling Concepts
Cyrille Henry 

IN T RO D U C T I O N

A computer processing unit (CPU) is a device able to perform mathematical operations with
data stored as electrical voltage. It can only perform simple operations, but so many of them
can be done in a second that it is possible to create a program (a defined combination of oper-
ations) to perform complex tasks. However, the processing unit of a computer is limited to
processing virtual information that is electrically coded inside the computer. This information
can be connected to the real world through an interface (a keyboard, a screen, etc.) but the
main processing unit is not subject to physical rules like human being is. It is obvious that
gravity has no effect on the way a computer performs its task; this also means that the comput-
er has no idea what gravity is.

If you want your computer to move a fader like you do, you have to teach it how to do so. You
must also teach your computer how gravity, the fader, and your muscles interact with each
other in order to change the position of the fader.

First, we will compare and analyze the way a human moves a single fader (such as a mixer
fader) with the simplest way a computer moves a virtual fader. Then we will explore certain
physical modeling tools as a solution to teach a computer the basics of physical notions and
will give a short overview of the possibilities of such tools. This article is not a complete math-
ematical or physical justification of particular physical modeling; rather it introduces basic
ideas in order to allow anyone to use these tools.

HU M A N / CO M P U T E R DI F F E R E N C E S

Unlike computers, human beings live in a world with physical rules. Gravity, forces, and ener-
gy control their movements. The difference can be shown by studying the movement of a sim-
ple fader over time. A mixer fader can be used to change the amplitude of a sound, its frequen-
cy, or any other audio synthesis factor. We will focus only on the position of the fader and not
on the effect of this movement on the synthesis.

49



Figure 1. Human fader movement over time

Figure 1 is a typical example of a fader movement over time. The fader is moved by a human.

In this simple example, we can compute the velocity of the fader (how fast the position of the
fader changes) and then its acceleration (how fast the velocity of the fader changes).

Figure 2. Human fader movement: the velocity and acceleration of the fader over time

Notice in Figure 2 that the velocity of the fader gradually increases from 0 to a maximum
velocity, after which the velocity is almost stable for a short time before returning to zero. The
acceleration is positive during the first part of the movement (while the velocity increases),
almost null in the second part, then negative during the last part of the movement (when the
velocity returns to zero). The movement is composed of these three periods.

Figure 3 represents the position, velocity, and acceleration of a virtual fader moved by a com-
puter using pure-data.

The position of the fader changes instantaneously from one value to another. This very fast
movement is highly unnatural. We will try to slow down this movement using a [line] object.
This object slows to a specified target over a given time. It offers a linear variation of its out-
put.

The movement in Figure 4 still looks different than the one made by a human.

Cyrille Henry

50



Figure 3. Switch from one value to another with a computer

Figure 4. Computer fader movement: the velocity and acceleration of a fader over time

In the example in Figure 4, the fader has neither an acceleration nor deceleration period. The
velocity changes almost instantaneously. This movement looks very “robotic” because the
fader acceleration or deceleration is concentrated at the beginning and at the end of the move-
ment. In a real movement, this acceleration and deceleration continues throughout almost the
entire movement. To compensate for this very short acceleration and deceleration time, the
acceleration is very great. The computer does not have any problems moving the fader in this
unusual way because it only moves a virtual fader. Unlike human movement, no energy is
involved in this virtual motion.

Basic Physical Modeling Concepts

51



SI M P L E P M P D DE S C R I P T I O N

Aim of pmpd 

pmpd provides objects for the simulation of physical behaviors such as basic energetic and
movement related objects. These are mass and link, allowing particle-based physical modeling.
They simulate the behaviors of a single mass or link (a link is, for example, a spring between
two masses) and react like ideal objects in a physical world. Just as a CPU performs complex
tasks with simple instructions, assembling this small “physical” element can generate complex
behaviors due to interactions. pmpd allows the user to create a network of masses and links, to
simulate the behaviors of this system, and to interact with it in real time while sending forces
or changing a physical parameter.

Mass

Masses are objects that react like a virtual mass. They are defined only by their position in
space and their weight. The only thing a mass can do is to move according to Newtonian
dynamics. This means that applying a force to this mass will change its velocity. The [mass]
object has one inlet to receive forces and one outlet for its position (another outlet provides
information not essential for the simulation). The pmpd mass is punctual, which means that it
has no volume and cannot rotate. Although this does not exist in the physical world, it can still
be a good approximation. We will see later how to simulate massive objects.

The physical notation of Newton’s law is F = ma where:

F = the sum of all forces applied to a specific mass 
m = the weight of the mass
a = the acceleration of the mass

This physical law means that the acceleration of any mass is proportional to the force applied
to it, but it also depends on the weight of the mass. This equation rules all non-relativistic
physics and is the only equation for the movement of mass.

Link

A [link] object creates a connection between two masses. It allows the masses to interact with
each other, i.e. to exchange energy.

A link needs the position of two masses in order to compute the two different forces to be
applied to the two masses. Since the forces depend on both the position and the velocity of
each mass, the [link] object has two inlets and two outlets.

Cyrille Henry

52



A link can be elastic if forces depend only on the distance between the two masses. The force of
an elastic link is proportional to the elongation of the link. The elastic link does not introduce
any energy loss but can convert kinetic energy (energy related to movement) and potential
energy (energy related to a deformation).

The viscosity link is related to energy loss. The forces, proportional to the damping, are oppo-
site to the movement of the mass.

pmpd links are all visco-elastic, the sum of an elastic and a viscous link.

The equation of a link is F = KL + DdL where:

F = force generated by a link
K = rigidity factor
L = elongation of the link
D = damping factor
dL = elongation variation of the link

This link is symmetric, so the forces sent to the two masses are opposing.

Metronome

Due to computer specifications, it is not possible to compute the position of a mass at all
times. The position of a mass is therefore computed at a specific time, and a time reference is
needed to perform a simulation. pmpd uses an “external” scheduler (a metronome). This
metronome corresponds to the time discretization of the physical equations. This is another
approximation of real behavior. To be accurate, this time discretization should be the smallest
possible. The speed of the metronome depends on the velocity of the movement you want to
simulate. The metronome should be faster than the highest frequency of the movement: the
faster the metronome, the faster the simulation. Of course, the faster it is, the more positions
need to be computed for each mass, resulting in more computing time.

Units

Just like Gem, the Pure Data OpenGL extension, pmpd does not use specific units; you can
choose your own. If you must use units, you should try to use consistent ones, i.e. if you chose
inches for the distance unit, then the unit of rigidity should be the unit of force divided by
inches. Since everything is relative, a mass weighting “10” will react the same way to a force of
“1” as a mass of “200” to a force of “20”.

Basic Physical Modeling Concepts

53



One, two, or three dimensional network

A pmpd physical model is composed of virtual objects (masses and links) that do not have any
specific representations. In order to visualize the physical model, a mass can be represented by
a circle or sphere and a line by a link. This is just a representation of the physical model, but
another representation can be chosen for any system.

Figure 5. Visualization of a 1D membrane

Figure 5 is a representation of a physical model of an elastic membrane, like in a drum. This is
a 1D system: the masses can move in only one dimension, but the representation of the system
is in 3D space.
In order to model a massive “elastic” object, you can discretize it into small particles. Each par-
ticle can be modeled as an elementary pmpd mass connected to the rest of the objects by
visco-elastic links.
pmpd does not allow the simulation of rigid bodies. Anyway, all objects can be seen as elastic
bodies, with high rigidity.

Figure 6. Example of 3D rigid body discretization

Cyrille Henry

54



Figure 6 is a representation of a cube in 3D space. Many masses are needed in this example to
model massive objects, but they also model the deformation of these objects .

Interactor

An interactor object acts as a link object but provides a patching facility. In effect, a single
object can create an interaction with an entire class of masses.

Figure 7. Sending forces to a class of masses

In Figure 7, all masses are subject to a constant ambient force. This force can be viewed as the
force of gravity applied to each mass. Different interactor objects provide interactions with a
point, a line and other simple primitives.

Test Objects

These objects test the position (as well as the distance, speed from a point, a line, orientation,
etc.) of a mass. Thereby, Pd has access to much information regarding the state of the system.
This allows interactions with the rest of the patch. Another test object gives information about
the link (deformation, speed of deformation, orientation, etc.).

Limitation

The most commonly encountered problem when using this kind of physical modeling is insta-
bility. Instability comes from the approximations made with the discretization of the equa-
tions. To reduce the risk of instability, the model should be slowed down (increasing the
metronome speed can be necessary to keep the desired speed of the simulation). This is usual-
ly not a problem due to the relatively low frequency of the simulation. Unlike physical model-
ing based audio synthesis, the structure usually doesn’t need to be computed at audio rate but
only at a few hundred hertz. This kind of simulation can thus be calculated for real time appli-
cations by a low-cost computer or laptop.

It is possible to choose non-physical values for pmpd parameters. For example, you can set

Basic Physical Modeling Concepts

55



damping to a negative value, which means the creation of energy. This is not physical and can
lead to instability or saturation of the model; nevertheless, it can be useful for artistic reasons.

US E O F AU TO N O M O U S S T RU C T U R E S F O R R E A L T I M E C O N T RO L

OV E R AU D I O S Y N T H E S I S

Controllers are physical devices used to send information to a computer. A controller can be a
joystick, a keyboard, a midi fader box or any other human interface device which sends infor-
mation such as the position of a fader, a key press, or any kind of data coming from sensors.
Mapping between the control parameters and the audio synthesis algorithm parameters is an
important part of the “instrument”.

One of the applications of physical modeling simulation is to create a mapping between a
musician and the audio synthesis. A dynamic structure modified, moved, and distorted by the
user can then be used to control audio synthesis. With the help of sensors, a user can create a
virtual structure linked to his or her movements, to the real. The user can then play with a vir-
tual yet “physical” instrument, allowing a natural comportment to digital audio synthesis.

Figure 8. Using physical modeling between the musician and audio synthesis 

Figure 8 shows a physical model of a structure used for the mapping of user action and audio
synthesis. Such mapping has interesting specifications. For example, a few input parameters
can generate many different data flows (a musician can play with only a few control parame-
ters on the whole structure and then generate lots of data to control any audio synthesis).
Moreover, the control parameters are intuitive because they correspond to physical values.
Playing with such a system can be very intuitive. Certain control parameters can change the
way the structure evolves within a time period, allowing the control of the synthesis evolution
over time. Another important specification is that all data coming out of the physical model
are not independent. The relation between them can be adjusted in regard to the topology of
the structure.

Using data generation from a physical model shows the relative importance of audio synthesis.

Cyrille Henry

56



For example, using simple additive synthesis as in Figure 9 can produce very different sounds
depending on the shape and the physical parameters of the structure.

Figure 9. Bouncing ball used for additive synthesis 

In Figure 9, forces applied to each mass control the amplitude of the sinusoid which performs
additive synthesis. The sound produced by the structure can be controlled while moving the
structure, making it bounce, etc. The evolution of the sound over time (the musical structure)
can be run with a few parameters that describe the global behavior of the structure, such as
rigidity or dampening of link. The physical model offers a user-friendly yet rich and complex
interaction with the musical instrument.

A simple physical model can generate a non-linear interaction: the system will react in differ-
ent ways to the same input solicitation depending on the state (position/velocity) before this
solicitation.

Figure 10. Non-linear system

Figure 10 represents time evolution of X, Y and Z forces of a single mass linked to a fixed
point. The same force is sent to the masses in the X direction three times. The displacement
depends on the position of the mass when the force is sent. In this example, a sound is pro-
duced with an additive synthesis: the amplitude of three sinusoids depends on the force over
the link in X, Y, or Z. This instrument offers a rich playing technique due to its behaviors.

Basic Physical Modeling Concepts

57



Linking this patch to a force feedback joystick permits the user to feel the force it sends to this
virtual mass, allowing for more precise control over the synthesis, like with a real (physical)
instrument.

Another example of using a physical object to control audio synthesis is scan synthesis, where
the shape of a structure is used as an audio waveform.

Figure 11. Example of scan synthesis 

In the example in Figure 11, the user can interact with an elastic string. This string moves too
slowly (only a few hertz) to generate audio sound, yet its shape is recorded in an array that can
be looped at audio rate.

EX A M P L E S

pmpd has been used to model many different kinds of physical phenomena such as sand, fluid
mechanics, and elastic objects. It is also possible to create the behavior of non-physical objects,
or objects that cannot be physically built. In fact, structures can be made depending on the
kind of behavior you wish. For example, Figure 12 is a snapshot of the “Threads” performance
by Ben Bogart where each “word” is a physical modeling structure.

pmpd is not the only set of physical modeling objects for Pure Data. The msd object suite
allows the creation of structures inside a single object. msd objects are more optimized than
pmpd, but less intuitive.

Cyrille Henry

58



Figure 12. “Threads” by Ben Bogart Figure 13. Simulation of the movement of a tree and its leaves

Figure 13 is an example of a simulation of a tree and its leaves. This simulation was made with
a Lindenmayer system and the [msd3D] object.

CO N C LU S I O N

Altogether, only a few simple equations are needed for a complex physical simulation.
However, computers deal with digital values at a discrete time, unlike the physical rules that
deal with analogue values in continuous time. An approximation must then be found to allow
for realistic simulations.

pmpd offers objects for basic physical modeling simulations, and its integration with pure data
allows for its use in a wide range of different applications. Many applications still have to be
explored, for example haptic devices, which use the sense of touch to better control electronic
instruments, and physical models in more than three dimensions. It is hardly possible to rep-
resent such a space, but it is possible after all to make “physical” simulations of masses and
links.

Basic Physical Modeling Concepts

59


