|U | In Pd, most objects carry out their functions when they get

messages in their leftmost inlets, and their other inlets
E. are for storing values that can modify the next action.

hot cold Here, the "+" object does its thing only when the left-hand

input changes.

m Here's the downside: drag this--->

In Pd you must sometimes think about what order an object
is going to get its messages in. If an outlet is connected
to more than one inlet it's undefined which inlet will get
the cookie first. I've rigged this example so that the
left-hand side box gets its inputs in the good,
right-to-left order, so that the hot inlet gets hit when
all the data are good. The "bad adder" happens to receive
its inputs in the wrong order and is perpetually doing its
addition before all the data are in. There's an object that
exists solely to allow you to control message order

explicitt?+1

trigger float floaﬂ

m first difference

Trigger takes any number of "bang" and "float" arguments
(among others) and copies its input to its outlets, in the
requested forms, in right-to-left order. Hook it to two
inputs without crossing the wires and you get the expected
result. Cross the wires and you get a memory effect.

updated for Pd wversion 0.33

An Exciting Journey of Research and Experimentation
Andrey Savitsky

One of the first things that becomes apparent upon the initial encounter with the Pure Data
(Pd) environment is its versatility and the unlimited possibilities of its utilization. It is not just
an audio file editor, not just a video mixer, a synthesizer, or a graphic design assistant. Pd is all
of these things simultaneously and much more. It is capable of handling virtually any type of
digital data, from prime numbers, audio-video sets, and MIDI signals up to web events. The
end “product’, resulting from the processing and manipulation of this vast array of data, is
even more variable and unpredictable. If a musician, for instance, wishes to use a computer’s
CPU or complex mathematical formulas as the data source for an audio synthesizer, Pd would
be indispensable for these purposes. On the other hand, exactly the same data sources can also
be used to create a video stream, since Pd allows for the control of the color characteristics of
the video image, the sequence of video fragments, the speed of their playback, or parameters
of 3D models. Thus, given the infinite variety of data sources available for manipulation and
the limitless array of possible end results, working with Pd becomes an exciting game: a game
where the rules are created and changed on the spot by the player; a game where the process of
playing may be much more thrilling than the outcome, while the outcome may be unpre-
dictable and quite surprising.

As a musician, I find these qualities of the Pd program very attractive. The past several years,
since I started using Pd, have been an exciting journey of research and experimentation with
methods of manipulating, interpreting, and transforming audio material. Here I will describe
several important concepts of Pd that are most crucial in my personal work with this program.

One of the most important features of Pd is its handling of the audio signal input/output
modules as autonomous objects, controlling the direction of the audio streams. Most of the
other currently available audio software programs provide only a limited number of possible
ways to utilize these basic modules, usually just for the recording (in) and playback (out) of
the audio data. Pd, on the other hand, allows for infinite variety of manipulation of input and
output modalities, creating a plethora of possible audio streams — parallel or series, discrete or
continuous. Most remarkably, the module of audio input in Pd can receive and interpret a sig-
nal from the audio output.

This Pd feature opens a vast field of possibilities for sound experimentation, especially useful
in real-time live performances. An initial external audio stream (input) can be combined with
the audio data resulting from the Pd processing (output). Then these two (or more) sources
can be used as a single object for even further manipulation. One can build various algorithms
to be utilized as effect processors of the input signal, or one can record audio fragments into
the memory buffer and then replay them parallel to the main audio stream. The audio stream

29

Andrey Savitsky

itself can be divided into discrete parallel branches, allowing control of each of them separate-
ly. These audio branches can be multiplied, divided, added, deleted, or repeated.

Simultaneous manipulation of the external audio stream and “internal” audio signal, created
and mutated within Pd, results in an infinite cycle of sonic transformations. Such audio-loops
may become a never-ending source of amusement and pleasure during the live performance. I
frequently resort to this method of sound production and manipulation during my own live
shows: sometimes one single tone signal played at the beginning of the performance, passed
through several virtual samplers and effect processors within Pd, may give rise to an all night
long exploration of every nook and cranny of the liquid-fractal aural space.

This possibility of simultaneously recording and replaying the sound generated by Pd without
slowing down or halting its other working processes is, in my opinion, the key factor rendering
this program so attractive for real-time sound design. Another major advantage is Pd’s ability
to represent a recorded audio sample as an array of numbers. This permits easy and precise
access to any time-point within the sample, by localizing its numerical value. In addition, an
audio recording represented by a number set may itself act as a controller of various events; for
instance, it may become a sequencer or a set of MIDI-signals. This mode of operative storage
of audio samples enables the realization of various refined yet simple ways of audio playback —
the sample can be fragmented to pieces of any length, played in any direction, at any speed, or
as a loop.

An ability to process MIDI signals is common among most currently available audio software
programs, and Pd is no exception. By using a set of modules for processing MIDI data, one can
create new MIDI programs that generate the audio output within Pd or receive and process
MIDI commands from a variety of external sources (from MIDI sequencers to serial port data
readers). Using the VST library, one can create a chain of VSTi synthesizers that are linked
together and process the MIDI commands, or VST plug-ins for sound transformation. The
number of modules one can employ is boundless. In fact, one of the main advantages of this
program is the fact that a musician is not limited by the defined set of modules designed to
solve a narrow circle of problems. On the contrary, a specific program module can be designed
and “built” to reach virtually any sonic objective of interest. The only limitations for one’s
imagination would be the computer’s performance.

As mentioned above, besides its most common application — audio signal processing —, Pd
offers numerous options for working with other types of data. For instance, one may experi-
ment with written texts, statistical data, or visual images, and create their sonic interpretations.
It is important to note that any operations occurring within the Pure Data program can be
automatized. If one desires to build a robot collaborator for a live performance or multimedia
installation — not a problem.

In conclusion, the Pure Data program has a universal modular collection of instruments and
offers limitless possibilities for solving nontrivial problems while working with any type of

30

An Exciting Journey of Research and Experimentation

digital data. Creatively using its various features, multimedia artists or musicians, even those
without special programming skills, can relatively easily build programs tailored for the real-
ization of their unique ideas. Pd makes the act of artistic creation an exhilarating game, per-
meated with a sense of adventure and discovery.

31

