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Abstract

The objective of this thesis is to develop new methodologies for formal verification of

nonlinear analog circuits. Therefore, new approaches to discrete modeling of analog

circuits, specification of analog circuit properties and formal verification algorithms

are introduced.

While the design flow for digital circuits is mostly automated and formalized, the

analog design flow still contains several manual steps. This particularly applies to the

area of verification, which is the process of systematically assuring specification confor-

mance of all design steps. There are two global classes of verification approaches, rep-

resented by conventional non-formal verification and formal verification. Non-formal

test bench-based simulation is the state of the art in the area of analog verification in

industrial design flows. Due to the experimental character of this approach, critical

specification-violating corner-case behavior can remain unreached by the simulation

runs and therewith undiscovered by the designer.

Formal approaches to verification of analog circuits are not yet introduced into in-

dustrial design flows and still subject to research. Formal verification proves speci-

fication conformance for all possible input conditions and all possible internal states

of a circuit. Automatically proving that a model of the circuit satisfies a declarative

machine-readable property specification is referred to as model checking. Equivalence

checking proves the equivalence of two circuit implementations.

Starting from the state of the art in modeling analog circuits for simulation-based

verification, discrete modeling of analog circuits for state space-based formal verifica-

tion methodologies ismotivated in this thesis. The up to nowmost capable approach to

discrete modeling partitions the state space into paraxial hyperboxes of homogeneous

behavior of the state space dynamics. Due to the paraxial slicing, the non-paraxial

vector field dynamics representing the state space dynamics cannot be sufficiently cap-

tured. Hence, the hyperbox-approach is not rotation invariant with respect to the struc-

ture of the state space dynamics which results in a massive over-approximation of the

successor relation of the discrete transition model. In order to improve the discrete

modeling of analog circuits, a new trajectory-directed partitioning algorithm was de-

veloped in the scope of this thesis. This new approach determines the partitioning of

the state space parallel or orthogonal to the trajectories of the state space dynamics.

iii



Abstract

Therewith, a high accuracy of the successor relation is achieved in combination with a

lower number of states necessary for a discrete model of equal accuracy compared to

the hyperbox-approach. Themapping of the partitioning to a discrete analog transition

structure (DATS) enables the application of formal verification algorithms.

Formal property specification for the initial approaches tomodel checking of analog

circuits was strongly related to temporal logic specification approaches in the digital

domain. However, specification of analog properties such as slew rate and oscillation

is fundamentally different from digital properties such as fairness and liveness. Addi-

tionally, already in the digital domain, specification by using temporal logics such as

the Computation Tree Logic (CTL) was considered not to be designer-friendly. Hence,

specifying analog properties with CTL cannot be considered as suitable for analog de-

signers that, in general, do not have a background in computer science. By analyzing

digital specification concepts and the existing approaches to analog property specifi-

cation, the requirements for a new specification language for analog properties have

been discussed in this thesis. On the one hand, it shall meet the requirements for for-

mal specification of verification approaches applied to DATS models. On the other

hand, the language syntax shall be oriented on natural language phrases. By syn-

thesis of these requirements, the analog specification language (ASL) was developed

in the scope of this thesis. ASL includes a natural language encapsulation of tempo-

ral logic operations, advanced operations for determination of transition paths and

oscillations, as well as arithmetic calculations on state space variable values. Hence,

a combination of high expressiveness with a designer-oriented syntax was achieved.

An extended variable concept, parameterized macros and an assertion-layer allow to

develop reusable specifications for complex analog properties. The verification algo-

rithms for model checking, that were developed in combination with ASL for appli-

cation to DATS models generated with the new trajectory-directed approach, offer a

significant enhancement compared to the state of the art.

In order to prepare a transition of signal-based to state space-based verification

methodologies, an approach to transfer transient simulation results from non-formal

test bench simulation flows into a partial state space representation in form of a DATS

has been developed in the scope of this thesis. As has been demonstrated by exam-

ples, the same ASL specification that was developed for formal model checking on

complete discrete models could be evaluated without modifications on transient sim-

ulation waveforms.

An approach to counterexample generation for the formal ASL model checking

methodology offers to generate transition sequences from a defined starting state to a

specification-violating state for inspection in transient simulation environments. Based

on this counterexample generation, a new formal verification methodology using com-

plete state space-covering input stimuli was developed. On a DATS model of the ana-

log circuit, an input stimulus is determined such that all reachable states and tran-

iv



Abstract

sitions of the modeled circuit are visited at least once from a defined starting state.

The generated sequence of tuples of value and time for the input variables represent

piecewise linear input stimuli for each input of the circuit. By conducting a transient

simulation with these complete state space-covering input stimuli, the circuit adopts

every state and transition that were visited during stimulus generation. An alterna-

tive formal verification methodology is given by retransferring the transient simula-

tion responses to a DATS model and by applying the ASL verification algorithms in

combination with an ASL property specification.

Moreover, the complete state space-covering input stimuli can be applied to de-

velop a formal equivalence checking methodology. The new approach introduced in

the scope of this thesis replaces the user-defined input stimuli from conventional non-

formal equivalence checking approaches with complete-coverage stimuli. Therewith,

the equivalence of two implementations can be proven for every inner state of both

systems by comparing the transient simulation responses to the complete-coverage

stimuli of both circuits.

In order to visually inspect the results of the newly introduced verification method-

ologies, an approach to dynamic state space visualization using multi-parallel particle

simulation was developed. Due to the particles being randomly distributed over the

complete state space and moving corresponding to the state space dynamics, another

perspective to the system’s behavior is provided that covers the state space and hence

offers formal results.

The prototypic implementations of the formal verification methodologies devel-

oped in the scope of this thesis have been applied to several example circuits. The

acquired results for the new approaches to discrete modeling, specification and verifi-

cation algorithms all demonstrate the capability of the new verification methodologies

to be applied to complex circuit blocks and their properties.
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Zusammenfassung (German Abstract)

Gegenstand dieser Dissertation ist die Entwicklung neuer Methodiken zur formalen

Verifikation nichtlinearer analoger elektronischer Schaltungen. Dazu werden im Rah-

men dieser Arbeit entstandene neue Ansätze in den Bereichen verifikationsgerechte

diskrete Modellierung analoger Schaltungen, Spezifikation analoger Schaltungseigen-

schaften und formale Verifikationsalgorithmen vorgestellt.

Während der Entwurfsprozess digitaler Schaltungen weitgehend automatisiert

und formalisiert ist, sind zum Entwurf analoger Schaltungen noch viele manuelle

Schritte notwendig. Insbesondere im Bereich der Sicherstellung, dass ein Entwurf die

in einem Lastenheft spezifizierten Eigenschaften zu jeder Zeit erfüllt, stehen wesent-

lich weniger Verfahren zur Verfügung als im Bereich digitaler Schaltungen.

Die systematische Sicherstellung der Spezifikationseinhaltung von Entwurfsschrit-

ten wird als Verifikation bezeichnet. Aufbauend auf Analysewerkzeugen, wie der

Simulation von Schaltungsverhalten im Zeitbereich unter Berücksichtigung sich

verändernder Eingangsgrößen, wird für die Verifikation eine Systematik der durch-

zuführenden Analysen benötigt. Es gibt zwei Klassen von Verifikationsverfahren, wel-

che durch die Bereiche der konventionellen, nicht-formalen Verifikation und der for-

malen Verifikation gebildet werden.

Der Stand der Technik im Bereich der Analogverifikation in industriellen Ent-

wurfsprozessen ist die Testbench-basierte Simulation. Dieser nicht-formale Ansatz

charakterisiert das Schaltungsverhalten anhand von Simulationsläufen mit einer be-

grenzten Zahl von benutzerdefinierten Eingangssignalen. Abhängig von der Erfah-

rung des Schaltungsentwicklers decken diese Signale einen Teil der zukünftigen realen

Eingangssignale der Schaltung nach ihrer Fertigung ab. Durch den experimentellen

Charakter der Verifikation können kritische nicht-spezifikationsgerechte Verhaltensei-

genschaften der Schaltung durch die Simulationen unerreicht und so durch den Schal-

tungsentwickler unentdeckt bleiben. Das Ausbleiben des Entdeckens weiterer Fehler

wird im Bereich der nicht-formalen Verifikation als Erfüllen der Spezifikation betrach-

tet. Wie bereits erläutert, ist dies aber nicht hinreichend für den Nachweis, dass die

Schaltung unter allen zukünftigen Umständen die Spezifikation erfüllt. Diese Proble-

matik wird in dieser Arbeit anhand eines einführenden motivierenden Beispiels dar-

gestellt, bei dem eine Oszillatorschaltung erst nach ihrer Fertigung kritisches Verhal-
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Zusammenfassung (German Abstract)

ten offenbart hat und so nicht einsetzbar war. Während die Simulationsläufe im Ent-

wurfsprozess die Schaltung als voll funktionsfähig darstellten, zeigte sich später, dass

bestimmte Startbedingungen, sogenannte
”
Initial Conditions“ diese Schaltung repro-

duzierbar daran hindern können, in eine Oszillation zu laufen. Die im Rahmen dieser

Arbeit entwickelten formalen Verifikationsmethodiken können derartige Fehler iden-

tifizieren.

Formale Verifikationsverfahren für analoge Schaltungen sind noch Gegenstand der

Forschung. Formale Verifikation beweist, dass für alle möglichen Eingangssignale und

für alle möglichen internen Zustände einer Schaltung die Spezifikation eingehalten

wird. Formale Verfahren, die ein Modell einer Schaltung automatisiert auf die Ein-

haltung einer deklarativen maschinenlesbaren Eigenschaftsspezifikation überprüfen,

werden als
”
Model Checking“ bezeichnet. Vergleicht man formal die Äquivalenz zwei-

er Implementierungen, stellt dieser Prozess das Verfahren des
”
Equivalence Checking“

dar.

Ausgehend vom Stand der Technik der Modellierung analoger Schaltungen für die

simulationsbasierte Verifikation wird im Rahmen dieser Arbeit die diskrete Modellie-

rung analoger Schaltungen für zustandsraumbasierte formale Verifikationsverfahren

betrachtet. Der leistungsfähigste bestehende Ansatz zur diskreten zustandsraumba-

sierten Modellierung teilt den Zustandsraum in achsenparallele Hyperboxen homoge-

nen Verhaltens der Zustandsraumdynamik auf. Hierbei besteht eine Problematik bei

der Abbildung nicht-achsenparalleler Vektorfelddynamik, die die Zustandsraumdy-

namik repräsentiert. Da der bestehende Ansatz nicht rotationsinvariant im Bezug auf

die Vektorfeldstruktur ist, findet eine massive Überabschätzung der Nachfolgerrela-

tion des diskreten Transitionsmodells statt. Um dieser Problematik entgegenzutreten

wurde im Rahmen dieser Arbeit ein neuer Ansatz zur diskreten Modellierung ent-

wickelt, der die Aufteilungsstruktur anhand der Trajektorien der Vektorfelddynamik

bestimmt. So wird eine hohe Genauigkeit der Nachfolgerrelation ermöglicht, woraus

eine niedrigere Zahl an Zuständen für ein diskretes Modell gleicher Genauigkeit im

Vergleich mit dem Hyperbox-Ansatz folgt.

Der neue Ansatz zur Trajektorien-gesteuerten Partitionierung basiert auf der Be-

stimmung eines initialen transienten Simulationsschritts von einem Startpunkt im

Zustandsraum. Um den Transitionsvektor wird unter Einsatz des Gram-Schmidt-

Orthogonalisierungsverfahrens ein Orthogonalsystem erzeugt, dessen Addition und

Trajektorienflussrichtung-korrigierte Subtraktion mit dem initialen Startpunkt neue

Startpunkte für transiente Schritte mit nachfolgender Orthogonalsystem-Erzeugung

bildet. Eine Skalierung der Vektoren stellt die Homogenität eingeschlossener Zu-

standsraumpartitionen sicher. Mit diesem neuen Diskretisierungsverfahren werden

die Eckpunkte geometrischer Objekte bestimmt, die den Zustandsraum bis zu nut-

zerdefinierten Ausdehnungsgrenzen partitionieren. Während die Topologie des Gra-

phen der Ecken und Kanten der Partitionsobjekte isomorph zum entsprechend kon-
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Zusammenfassung (German Abstract)

struierten Graph eines Hyperwürfels ist, gibt es sonst keine Regularität zur einfachen

Beschreibung der Partitionen durch Objekte, wie z.B. Polytope. Eine vorgeschlagene

Approximation der Grenzflächen der Partitionsobjekte durch eine gewichtete Kombi-

nation von Hyperebenen erlaubt dennoch die Bestimmung von Punkt-Einschlüssen in

den Partitionsobjekten. Die Abbildung der Partitionierung auf eine diskrete analoge

Transitionsstruktur (DATS) erfolgte auf einer dualen Darstellung der Partitionsobjek-

te, sodass die von transienten Simulationsschritten repräsentierten Kanten der Parti-

tionen als Zentren von Zustandsraumgebieten betrachtet werden können. Dies erlaubt

eine effiziente Bestimmung des diskreten Modells mit hoher Genauigkeit der Transiti-

onsrelation, die so direkt durch transiente Simulationsschritte bestimmt wird.

Da automatisierte Verifikationsmethodiken im analogen Bereich noch nicht eta-

bliert sind, ist in der Praxis die Formalisierung der Spezifikation ebenfalls noch nicht

weit fortgeschritten. Als nächster Entwicklungsschritt ist eine verbreitete Anwendung

von Verfahren zur Assertion-basierten Simulation im Analogbereich zu erwarten. Ei-

genschaftsspezifikationen für dieses Verfahren, bei dem Simulationsergebnisse auto-

matisiert mit einer maschinenlesbaren Spezifikation verglichen werden, stellen einen

ersten Schritt zur Formalisierung analoger Eigenschaftsspezifikation dar. Die hierbei

eingesetzte signalbasierte Eigenschaftsformulierung ist allerdings nicht für die zu-

standsraumbasierte Verifikation einsetzbar.

Die formale Spezifikation von Eigenschaften in ersten Ansätzen zum Model

Checking analoger Schaltungen hat sich stark an den bestehenden Verfahren aus dem

Bereich digitaler Hardware orientiert. Eine Erweiterung der Temporallogik
”
Computa-

tion Tree Logic“ (CTL) um einen analogen Operator und die Spezifikation von Zeitbe-

schränkungen erlaubten nur eine sehr begrenzte Formulierung analoger Systemeigen-

schaften. Analoge Eigenschaften wie z.B. Flankensteilheit und Oszillation sind grund-

legend anders zu spezifizieren als digitale Eigenschaften wie
”
Fairness“ und

”
Leben-

digkeit“. Zudem ist die temporallogische Spezifikation bereits im digitalen Bereich als

nicht anwenderfreundlich betrachtet worden. Analoge Eigenschaften mit CTL zu spe-

zifizieren ist somit für die nicht aus dem Bereich der Informatik stammenden Analog-

entwickler nicht zielführend.

Ausgehend von einer Analyse digitaler Spezifikationskonzepte und der bestehen-

den Ansätze für analoge Eigenschaften wurden Anforderungen an eine neue Spezifi-

kationssprache für analoge Eigenschaften abgeleitet. Sie soll den formalen Spezifikati-

onsansprüchen für Verifikationsverfahren auf diskreten analogen Transitionsstruktu-

ren genügen und dabei eine Sprachsyntax besitzen, die an natürlichsprachliche For-

mulierungen angelehnt ist. Die aus diesen Anforderungen im Rahmen dieser Arbeit

entwickelte analoge Spezifikationssprache
”
Analog Specification Language“ (ASL) ba-

siert auf einer natürlichsprachlichen Kapselung temporallogischer Operationen, die

mit erweiterten Algorithmen zur Transitionspfadbestimmung, Durchführung von Be-

rechnungen auf Zustandsparametern und Oszillationsbestimmung eine hohe Aus-
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drucksstärke analoger Eigenschaften mit einer anwenderfreundlichen Syntax kombi-

nieren konnte. Ein erweitertes Variablenkonzept, Kapselung in parametrisierte Ma-

kros und eine Assertionen-Ebene erlauben es, wiederverwendbare Spezifikationen

für komplexe Eigenschaften zu erzeugen. Die zusammen mit ASL entwickelten Mo-

del Checking-Verifikationsalgorithmen zur Auswertung von ASL-Spezifikationen auf

einem mit dem Trajektorien-gesteuerten Diskretisierungsverfahren erzeugten DATS-

Modell bilden eine wesentliche Erweiterung zum Stand der Technik. Die neuen Spe-

zifikationsmöglichkeiten konnten anhand von neuen Spezifikationsmethodiken für

Überschwingen, erweiterte Oszillationseigenschaften wie Eingangsspannungssensi-

tivität von spannungsgesteuerten Oszillatoren und Startverhalten von autonomen

Schaltungen demonstriert werden.

Um einen Übergang der Verifikation von signalbasierten zu zustandsraumbasier-

ten Methodiken zu ermöglichen, wurde im Rahmen dieser Arbeit ein Ansatz entwi-

ckelt, der die Übertragung von transienten Simulationsergebnissen aus nicht-formalen

Testbench-Simulationsumgebungen in eine partielle DATS-Zustandsraumdarstellung

erlaubt. Damit kann, wie anhand von Beispielen gezeigt werden konnte, die gleiche

ASL-Spezifikation für Eigenschaften eines vollständigen diskreten Modells ohne Mo-

difikation auch auf Simulationsergebnissen ausgewertet werden.

Ein für das formale ASL-basierte Model Checking entwickelter Ansatz zur Erzeu-

gung von Gegebenbeispielen für als spezifikationsverletzend identifizierte Zustands-

raumgebiete erlaubt es, Transitionsfolgen von einem definierten Startzustand zu ei-

nem spezifikationsverletzenden Zustand zu ermitteln. Diese Transitionsfolgen ent-

sprechen auf einer DATS stückweise-linearen analogen Signalverläufen, die das in den

ungewünschten Zustand führende Schaltungsverhalten in Signalform repräsentieren.

Neben der Möglichkeit der direkten Beurteilung aller Zustandsraumparameter auf Si-

gnalebene bietet dieser Ansatz die Möglichkeit, den Gegenbeispiel-Signalverlauf auch

für die Eingangsvariablen der Schaltung zu exportieren. Diese stückweise-linearen

Eingangsstimuli können in einer herkömmlichen Testbench-Umgebung verwendet

werden, um das spezifikationsverletzende Verhalten in einer gewohnten Verifikations-

umgebung per Simulation mit diesen Eingangsstimuli zu reproduzieren.

Auf Basis des Gegenbeispiel-Verfahrens wurde eine neue formale Verifikationsme-

thodik mittels vollständig den Zustandsraum einer Schaltung abdeckenden Eingangs-

stimuli entwickelt. Die zugrundeliegende Motivation war es, formale Verfahren in die

bislang nicht-formalen Testbench-basierten Simulationsumgebungen zu integrieren.

Dazu wird auf einem diskreten Modell der analogen Schaltung ein Eingangsstimulus

so ermittelt, dass von einem Startzustand aus alle im Modell vorhandenen Zustände

und Transitionen mindestens einmal besucht werden. Die dabei entstehende Folge von

Wert-Zeit-Paaren für die Eingangssignale stellen wiederum stückweise-lineare Ein-

gangsstimuli für jeden Eingang der Schaltung dar. Führt man eine transiente Simu-

lation der Schaltung mit diesen vollständig den Zustandsraum abdeckenden Stimuli
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durch, wird die Schaltung während der Simulation alle Zustände und Transitionen an-

nehmen, die bei der Traversierung des diskreten Modells aufgezeichnet wurden. So-

mit kann eine Simulation in einer konventionellen Testbench-Umgebung durchgeführt

werden, die im Gegensatz zu anwenderdefinierten Stimuli jeden möglichen erreichba-

ren Zustand der Schaltung annimmt. Mit der Gültigkeit der Simulationsergebnisse für

jeden Zustand der Schaltung ist somit ein effizientes Verfahren zur vollständig den Zu-

standsraum abdeckenden und somit formalen Simulation gegeben. Überträgt man die

mit diesem Verfahren ermittelten Simulationsergebnisse wieder in ein DATS-Modell

und führt darauf ASL-Verifikationsalgorithmen aus, ist eine formale Assertion-basierte

Verifikation möglich, die eine alternative Verifikationsmethodik zum Model Checking

darstellt.

Die vollständig den Zustandsraum abdeckenden Eingangsstimuli bieten noch ei-

ne weitere Anwendungsmöglichkeit im Bereich des Äquivalenzvergleichs. Nur weni-

ge existierende Ansätze im Bereich der Forschung bieten die Möglichkeit, für nichtli-

neare analoge Schaltungen die vollständige Verhaltensäquivalenz bezüglich einer de-

finierten Fehlergrenze zu beweisen. Aufgrund komplexer Algorithmen ist der Anwen-

dungsbereich limitiert auf den Vergleich von Implementierungen, die keine wesentli-

chen Unterschiede in ihrem Abstraktionsgrad besitzen. Im industriellen Einsatz wird

Äquivalenzvergleich nicht-formal durch den Vergleich von Simulationsergebnissen

durchgeführt, diemittels anwenderdefinierten Eingangsstimuli berechnet wurden. Die

im Rahmen dieser Arbeit entwickelte Methodik zum formalen Äquivalenzvergleich

auf Basis der vollständig den Zustandsraum abdeckenden Eingangsstimuli ersetzt die

anwenderdefinierten Eingangsstimuli durch die vollständig den Zustandsraum abde-

ckenden. So kann die Äquivalenz für jeden möglichen Zustand der zu vergleichenden

Implementierungen anhand eines automatisierten Vergleichs der Simulationsergebnis-

se beider Implementierungen gezeigt werden. Eine vollständige Verifikationsaussage

kann getroffen werden, wenn Stimuli für jede der zu vergleichenden Implementierun-

gen generiert werden und die Simulation jeder Implementierung mit allen Stimuli der

eigenen und der anderen Implementierung erfolgt. Der Abstraktionsgrad zwischen

den Implementierungen ist hierbei irrelevant.

Um die Ergebnisse der neu eingeführten formalen Verifikationsmethodiken visu-

ell zu untersuchen, wurde ein Verfahren entwickelt, das den Zustandsraum und seine

Dynamik mittels eines Partikel-Simulationsansatzes visualisiert. Da die Partikel über

den gesamten Zustandsraum randomisiert verteilt werden und sich dann gemäß der

Vektorfelddynamik fortbewegen, kann auch hier ein Einblick in das Systemverhal-

ten gewonnen werden, der eine weitestgehend vollständige und somit formale Re-

präsentation des Zustandsraums bietet.

Die prototypische Implementierung der im Rahmen dieser Arbeit entwickelten for-

malen Verifikationsmethodiken wurde auf zahlreiche Beispielschaltungen angewen-

det. Ein modifizierter Ringoszillator wurde mittels ASL-Model Checking und Parti-
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kelsimulation auf Startbedingungen untersucht, die eine Oszillation verhindern. Das

Überschwingen eines aktiven Sallen-Key Tiefpassfilters wurde mittels ASL-Model

Checking mit Gegenbeispielgenerierung untersucht. Eine transiente Simulation dieser

Schaltung mit einem vollständig den Zustandsraum abdeckenden Eingangsstimulus

wurde wiederummit der ASL-Spezifikation verifiziert. Ein Vergleich der neuen diskre-

ten Modellierung mittels des Trajektorien-gesteuerten Ansatzes mit dem Hyperbox-

Diskretisierungsverfahren konnte eine wesentliche Steigerung der Modellierungsge-

nauigkeit des neuen Verfahrens dokumentieren. Für eine Charge-Pump-Schaltung

wurde das Startverhalten per Model Checking verifiziert und die ASL-Spezifikation

zudem auf die Ergebnisse einer konventionellen transienten Simulation angewendet.

Das Model Checking der Eingangsspannungssensitivität eines spannungsgesteuerten

Oszillators konnte sowohl die Fähigkeit des neuen Diskretisierungsverfahrens wie

auch der Spezifikations- und Verifikationsmethodik zeigen, erfolgreich auf komplexen

Zustandsraumstrukturen zu operieren. Schließlich wurde das neue Stimuli-basierte

Äquivalenzvergleichsverfahren anhand einer Bandpass-Schaltung, eines Delta-Sigma-

Modulators zweiter Ordnung und weiterer Schaltungen demonstriert und mit einem

bestehenden Verfahren verglichen.

Trotz der in der Arbeit diskutierten bestehenden Herausforderungen, die bis zu

einem industriellen Einsatz der neu vorgestellten Methodiken noch bearbeitet werden

müssen, konnten mehrere neue Methodiken zur Formalisierung analoger Verifikation

motiviert und erfolgreich prototypisch umgesetzt werden.
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1
Introduction

The impact of electronic devices on our everyday life is inevitable. With the depen-

dency on electronics increasing continuously, the consequences of errors in such elec-

tronic systems are increasing just as well. There are several levels of severity from just

being disconnected during a phone call to possible airplane crashes due to errors in the

electronic components. Even for non-safety-critical cases, errors in electronic systems

have an economic dimension, where the cost of missed design flaws is determining

whether a company can stay competitive or not.

Due to the increasing system complexity and decreasing time to market, design

verification has become a more and more crucial part of the electronic circuit design

flow. While formal verification methods are established in the digital domain, indus-

trial analog circuit design flows are lacking formal or at least formalized verification

methodologies. Analog circuit verification still depends on the designer’s experience

and expertise to manually define appropriate test benches for simulation-based design

flows and to select the right input signals in order to detect possible design errors.

In contrast to the common perception of digital circuits dominating today’s elec-

tronic devices, the importance of analog circuits and especially of analog circuit design

is increasing. This is due to the fact that most electronic circuits are nowadays mixed-

signal systems, using analog interfaces to the external environment in combination

with a digital core. Moreover, with decreasing feature sizes, not only the relative per-

centage of the not equally-scaling analog part of mixed-signal designs increases, but

also the analog behavior of digital circuit components becomes more and more critical.
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Finally, important parts of digital systems such as clock generators have always been

designed on the analog level.

Hence, driven by the perennial demand for higher design efficiency, new method-

ologies offering more automation of the analog verification process are of vital impor-

tance.

While approaches to assertion-based simulation are emerging, which are mainly

automating previously manual efforts, they are not targeting the fundamental prob-

lem of analog circuit verification: verification coverage. Today’s established common

verification methodology is analyzing the circuit’s behavior by simulation using test

benches. Specification conformance is checked by performing several transient sim-

ulations with input signals which are considered to be representative for the future

operating conditions of the circuit. Although this approach to discover design errors

has beenworking for decades, redesigns have occurred frequently due tomissing some

critical behavior of the circuit during simulation.

There has been significant progress in several areas of electronic design automation

(EDA) for analog circuits. Some complex tasks such as sizing, placement and design

centering have been addressed by EDA-vendors, now being available as automated

tools which are fully integrated into the design flow. These tools are exploiting algo-

rithmic concepts which by far outperform manual approaches. By contrast, the area of

analog design verification is not yet systematically covered by existing tools.

Therefore, the goal of this thesis is to advance the field of formal verification

methodologies for analog circuits in order to contribute to the development and fu-

ture productive application of analog formal verification methodologies.

1.1 Analog Circuit Design Flow

The objective of the design flow for analog circuits is to transfer a functional specifica-

tion of the design into a physical implementation satisfying the specification. Between

the initial specification and the final implementation, several design steps are required

in order to hierarchically partition the complex tasks into solvable portions.

For a classification of the design abstraction levels and the design domains, the

application of the Y-chart to the analog design task offers a structured approach to

this hierarchy [GDWL92, HBKK94]. The Y-chart consists of three views which build

the functional domain, the structural domain and the physical domain. Different lev-

els of abstraction range from the top-level concept layer to the low-level component

layer. Descending from higher abstraction levels to lower levels by increasing the over-

all complexity of the design is regarded as synthesis. Comparing the conformance of

lower levels of abstraction with higher levels or different domains is regarded as anal-

ysis. Figure 1.1 shows the Y-chart for the analog design flow with a possible top-down
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Figure 1.1: Y-chart for hierarchical analog design with exemplary synthesis steps.

design flow from the functional specification to the physical implementation, which

will be explained in the following.

Starting in the functional domain with a specification on the concept layer, the algo-

rithms describing the circuit’s behavior are determined by descending to the algorithm

layer in the functional domain. For the selected algorithms, the top level building

blocks are allocated by a transition to the structural domain and the topology of these

analog blocks has to be generated or is selected from existing libraries. The functional

design of the analog blocks is determined by the transfer functions on the macro layer,

altogether forming the desired behavior of the previously selected analog system al-

gorithms. The transition back to the structural domain maps the transfer functions to

circuit structures, which are then represented by devices on the component layer. The

topology of the circuit structures in conjunction with the parameters of the component

devices determine the behavior of the circuit. The selection of device parameters in or-

der to meet the specification for a given topology is referred to as circuit sizing. Finally,

the devices and their topology have to be transferred to polygons in the physical do-

main. This process is the layout generation, determining the geometry of the physical

structures in silicon for production of the resulting integrated circuit.

From the design synthesis point of view, three main steps characterize the design

flow: topology selection or generation, circuit sizing and layout generation. On the

other hand, for each synthesis step, it must be assured that the design still satisfies
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the specification. Hence, a functional equivalence between abstraction level changes

or domain changes is mandatory for a successful design flow, which by definition is

provided by analysis. Therefore, analysis is the central tool for assuring the validity of

every design step.

1.2 Analog Circuit Analysis and Verification

Within the terminology of the Y-chart design flow, the term analysis describes the

checking of the synthesis steps to retain functional equivalence with higher abstrac-

tion levels and hence with the specification. While in abstract theory this definition is

sufficient, in practice, circuit analysis is a multi-faceted issue.

The central tool for circuit analysis is simulation. By simulation, for a given circuit

in form of its mathematical representation, the reaction to input excitations is calcu-

lated. Different types of simulations offer direct current (DC), alternating current (AC)

and transient (TR) analysis.

For DC-analysis the system reaction in its steady state (t → ∞) is observed. Hence,

the steady state characteristics of a circuit can be analyzed by a DC-analysis sweep

over an input interval. AC-analysis considers the frequency response of linear systems

at the linearized operating points of nonlinear systems. Being the most complex and

therewith computationally intensive analysis, TR-simulation calculates the dynamic

transient response of the circuit to a piecewise linear input stimulus over time. For this

purpose, the implicit nonlinear differential equation system describing the circuit is

transferred to a system of difference equations by numerical integration. This system

of difference equations in correlationwith the input values at the specific time point can

then be solved by the Newton-Raphson method. Implementing the described analysis

methods, the ancestor of most modern analog circuit simulators is SPICE (Simulation

Program with Integrated Circuit Emphasis) [Nag75].

While the capability of analyzing the behavior of analog circuits is the basis of ana-

log circuit verification, methodologies that systematically apply simulations are nec-

essary in order to meet the verification tasks arising from the transitions within the

design flow. Thus, in this context, verification can be considered as the systematic

application of simulations in order to detect behavioral differences of the abstraction

levels or design domains. Figure 1.2 illustrates the relationship between synthesis and

analysis in the design flow.

1.3 Formal Verification

In order to detect design errors, non-formal verification procedures try to analyze the

design under verification (DUV) whether it corresponds to a specification or a refer-
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Specification

Implementation

Synthesis/

Design

Analysis/

Verification

Figure 1.2: The synthesis steps in the design flow transfer a specification to an imple-

mentation. Every implementation step needs to be analyzed for specification confor-

mance by verification methods.

ence design with a finite number of verification test cases with external conditions of

the DUV defined in a test bench.

In contrast, formal verification does not search for deviations between DUV and

specification but proves the absence of any deviations for all possible states and input

conditions of the DUV. Depending on the verification task, there are two major ap-

proaches to formal verification: model checking (MC) and equivalence checking (EC).

Model checking algorithms prove that the model M of the DUV is correct for every

possible input stimulus and internal state of the system with respect to a property

specification Pspec specified in a machine-readable specification language. In MC ter-

minology, the model then satisfies the property specification: M � Pspec. If the model

does not satisfy the specification, all erroneous states are detected and counterexam-

ples in form of state transitions to these erroneous states can be returned.

Equivalence checking proves the general functional equality of two implementa-

tions of a design. The implementations can be of different abstraction levels and dif-

ferent description methods such as transistor netlists and hardware description lan-

guages.

As will be motivated in this thesis, the concept of formal verification can be gen-

eralized from specific algorithmic approaches such as model checking or equivalence

checking to the idea of verification coverage. Therewith, any verification approach that

obtains results that hold for any input signal and any state of the DUV are considered

as formal verification, as they cover the complete possible behavior a DUV can exhibit.

1.4 Motivating Example

The following motivating example will illustrate that conventional analog circuit sim-

ulation within a test bench setup can lead to wrong verification assumptions and how,

in contrast, a complete formal verification using some of the methodologies developed

in this thesis can identify hidden design errors.

5



1 Introduction
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Figure 1.3: Modified ring oscillator with an even number of inverter stages and cross-

coupling.

When a finite number of simulations with input stimuli or initial conditions is con-

ducted and the expected behavior of the circuit is validated by the simulations, in

today’s industrial verification applications the circuit is assumed to be successfully

verified due to the lack of formal verification tools. However, as pointed out in the pre-

vious section, not finding a specification violation with simulation runs cannot prove

that the specification is satisfied under any circumstances.

The example circuit illustrated in Figure 1.3 is a modified ring oscillator with an

even number of inverter stages and cross-coupling [JKK08]. Due to the bridges β, the

circuit oscillates if there is a ratio α/β of the transistor sizes in the feedback chain to

those of the bridges within the interval [0.4, 2.0].

This circuit has in fact been considered as successfully verified by transient simu-

lation with a set of predefined initial conditions and went into production. What was

discovered only after the tapeout of the circuit is its crucial property of being prone

to certain initial conditions that prevent it from oscillating when the α/β ratio reaches

or exceeds the interval boundaries. These particular initial conditions have not been

covered by the simulation runs during verification. For two different initial conditions,

the simulation runs are illustrated in Figure 1.4.

The critical behavior with certain initial conditions could have been detected by

applying the formal verification approaches developed in the scope of this thesis. In

order to demonstrate this, a formal property verification of the circuit was performed

using the ASL verification methodology (introduced in Section 5.2) on a discrete state

space model generated with the trajectory-directed approach (introduced in Section

2.4.4). Therewith, for transistor ratio 1.05, 1.35 and 1.65, no initial conditions violating

the oscillation behavior are reported by the verification algorithms.

In contrast to the oscillation starting from every initial condition with transistor

ratios 1.05 to 1.65, for transistor ratio 1.95, initial conditions are detected by the formal

verification method for which the circuit will not run into an oscillation. This area of

nontrivial bad initial conditions is illustrated in Figure 1.5, projected to the state space
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Figure 1.4: Transient responses for the node voltage VI I of the ring oscillator for tran-

sistor ratio α/β = 1.95. With initial conditions VI ,VI I,VI I I = 0 V and VIV = 0.5 V,

the circuit oscillates (a). With the initial conditions VI = 3.33444 V, VI I = 1.49605 V,

VI I I = 3.16195 V, VIV = 0.207917 V detected by formal verification, the circuit does not

oscillate (b).

variables VI , VI I and VI I I. The non-oscillating behavior shown in Figure 1.4(b) was

identified by transient simulations starting from the set of these initial conditions.

1.5 Contributions

With the objective of advancing the state of the art in the field of analog formal verifi-

cation, this thesis presents a framework of new formal verification methodologies for

the analog circuit design flow. The contributions will be outlined in the following.

In order to formalize specifications of analog circuit properties for automated ver-

ification approaches, a new Analog Specification Language (ASL) is introduced with

a designer-oriented syntax but also with semantics satisfying the demands of formal

property verification algorithms. Therefore, the model checking tool ASL-MCT (Ana-

log Specification Language model checking tool), implementing the ASL verification

algorithms, was developed to build an ASL-based model checking framework for ana-

log complex property verification based on models obtained by a discrete modeling

approach. ASL model checking offers a syntax much easier understandable than CTL-

based temporal logic specification and the expressiveness of ASL for analog circuit

properties is significantly higher. A state space-based specification methodology de-

veloped in conjunction with ASL offers specification reuse by building up a library

of parameterizable macros. Regression verification is offered by a high level asser-

tion layer, allowing the combination of several property verifications to an automated

verification run with a detailed verification report. For identified design errors, coun-

terexamples in form of piecewise linear input stimuli can be automatically generated in
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VI
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Figure 1.5: State space trajectories of initial conditions leading into the non-oscillating

steady states for transistor ratio α/β = 1.95.

order to give the circuit designer the possibility of conducting a conventional transient

simulation that leads to the error state.

ASL model checking increases the possible analog properties that can be speci-

fied and verified on discrete state space models. Nevertheless, the state-of-the-art dis-

crete modeling approach [HHB02a] based on hyperbox binary space partitioning of the

modeled circuit’s state space limits the complexity of the circuits that can be modeled.

Therefore, a new approach for improving the discrete model generation is developed

in the scope of this thesis, increasing modeling precision and therewith reducing the

number of state computations necessary for the generated model. The new approach

is based on trajectory partitioning of the state space, letting the flow of the state space

dynamics define the boundaries of the state space partitions forming the system states.

In order to apply ASL-based specifications to today’s non-formal test bench-based

simulation flows, a method to transfer conventional simulation waveforms to a state

space representation was developed. Therewith, profiting from formalized property

specification and verification is possible within the established non-formal industrial

design flows, transferring the ASL specification methodology to assertion-based veri-

fication. As will be presented, ASL property specifications can be exchanged without

modifications between formal ASL model checking and transient simulation wave-

form evaluation.

In conjunction with the counterexample generation algorithms for ASL verifica-

tion, a new method of complete state space-covering input stimuli generation was

developed. On the discrete state space, a traversal algorithm efficiently visits every
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reachable state of the state space, recording the piecewise linear input stimulus that is

necessary to bring the circuit into this state during a transient simulation. Therewith, a

transient simulation with complete coverage of the circuit’s state space is obtained and

the benefits of a complete, hence formal, verification approach can be provided within

a conventional transient simulation-based verification flow. By evaluating these tran-

sient simulation results with the aforementioned ASL verification on transient simula-

tion results, an alternative to the model checking approach for formal analog property

verification is given.

Moreover, based on the complete state space-covering input stimuli generation, an

analog equivalence checking methodology has been developed. By generating such

stimuli for each of the two systems under verification A and B and simulating each

systemwith the stimuli generated for A and B, the level of equivalence of both systems

can be determined by the deviation of the transient responses. Due to the complete

state space-covering input stimuli bringing each of the systems to all of its reachable

states, a formal equivalence checking methodology is given. As an advantage over

other approaches, the level of abstraction between the two systems under verification

is not restricted.

A tool for visualization of the state space and its dynamics by application of a par-

ticle simulation algorithm was developed for visually exploring the state space prop-

erties verified with the aforementioned formal verification approaches.

1.6 Publications

Parts of this thesis have been published in [SJH06, SH08a, SH08b, SPH09, SH09,

SH10b]. The analog model checking approach based on the development of the analog

specification language (ASL) is detailed in [SJH06, SH08b]. The applicability of ASL

specifications to transient simulation waveforms transformed to a state space repre-

sentation has been demonstrated in [SH09]. The foundations of state space-directed

transient simulation for verification with complete-coverage input stimuli have been

introduced in [SH08a] and their extension to an analog equivalence checking approach

is presented in [SH10b]. Supporting the verification insight, state space visualization

and visualized particle simulation is introduced in [SPH09].

1.7 Overview

The remainder of this thesis is organized as follows. Chapter 2 discusses approaches

to system representation for verification with emphasis on discrete modeling of analog

circuits which is essential for application of the verification algorithms developed in

this thesis. In Chapter 3, approaches to property specification are analyzed with the

9



1 Introduction

goal of finally developing an analog specification language. The existing approaches

to non-formal and formal system verification are described in Chapter 4 in order to in-

troduce newmethodologies for formal verification of analog circuits in Chapter 5. The

experimental results obtained by application of the new verification methodologies to

example circuits are discussed in Chapter 6. In Chapter 7, conclusions and suggestions

for future work are given.
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2
System Representation for Verification

Electronic systems can be hierarchically divided into several classes. The most gen-

eral distinction is made between discontinuous and continuous systems, commonly

referred to as digital and analog systems. While digital systems are characterized by

discrete time steps with a clocked or event-based time domain, analog system classes

are distinguished by the type of differential equation system required for describing

their continuous behavior in time and values.

In contrast to experiment-based static or transient dynamic network analysis, ana-

log formal verification techniques require a state space representation of the system

dynamics which cannot be acquired in an analytical way. Hence, discrete modeling

approaches for nonlinear analog systems are mandatory.

This chapter introduces the basic representations of electronic systems and the

modeling methods for applying analysis and verification techniques. Emphasis is put

on developing a new trajectory-directed discrete modeling approach for nonlinear ana-

log circuits.

2.1 System Description

Starting with a more general system concept, the definition of analog circuits and their

relevant characteristics is developed based on the classification of general system char-

acteristics. Therefore, fundamentals such as the definition of signals and signal types,

system types and the state space of a system will be introduced.
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Definition 2.1.1 (System)

A system S maps a vector of inputs u and inner variables x to a vector of output vari-

ables y with the operator relation

y = S(u, x) (2.1)

as illustrated in Figure 2.1. The inputs represent the system excitation and the outputs

represent the system reaction.

u1
u2

unu

y1
y2

yny

x

System S

Figure 2.1: General illustration of a system S with input variable vector u =

(u1, u2, . . . , unu)
T, output variable vector y = (y1, y2, . . . , yny)

T and the vector of inner

variables x = (x1, x2, . . . , xnx)
T.

While this definition of a system defines the basic relation of system variables, a

more detailed definition is needed for quantifying their characteristics in form of in-

formation. The information of the inputs and outputs of a system, as well as the inner

variables, are in the following defined by signals.

Definition 2.1.2 (Signal)

A signal is the variation of information over another quantity such as time. Signals can

be of time-continuous or time-discontinuous form, which means that the time domain

of the signal function f is either defined as f (t) with t ∈ R or f [n] with integer-valued

n ∈ Z. An analog electrical signal is the continuous variation of an electrical quantity

over time.

An important characteristic of a system is whether there is a dependency between

the time when an input signal occurs and the reaction the system exhibits. For this

purpose, the class of time-invariant systems has to be defined.

Definition 2.1.3 (Time-Invariant System)

The output of a time-invariant system does not depend on the absolute time of the

occurrence of an input signal. If the input is shifted by time δ, a time shift of δ of the

output occurs:

y(t) = S(u(t)) ⇔ y(t+ δ) = S(u(t + δ)) (2.2)
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With the previous definition of time-invariant systems, it is now possible to distin-

guish two major classes of systems: static and dynamical systems.

Definition 2.1.4 (Static / Dynamical System)

If the output of a time-invariant system at each point in time is only depending on the

current input at that time, it is a static (memoryless) system:

y(t) = S(u(t)) (2.3)

If a system is depending on internal states that are part of the vector of inner vari-

ables x determined by previous input values, it is a dynamical system:

y(t) = S(u(t), x(t)) with x(t) = f(u(τ), x(τ)) for 0 ≤ τ ≤ t (2.4)

The concept of a dynamical system is closely related to the idea of internal states

of a system that will be further detailed in Section 2.3.6. Hence, there is a set of inner

variables which are controllable by the input variables but depending on the previous

evolvement of the inputs over time. The system reaction is therefore a function of the

input variables and the configuration of these inner variables determining the state of

the system within a state space as defined in the following.

Definition 2.1.5 ((Extended) State Space)

The state space of a system is spanned by a subset of its inner variables. This subset

is the vector z ⊆ζ x of nz linear independent state space variables. The subset relation

“⊆ζ” is defined by:

z ⊆ζ x ⇔ ∀ i ∈ {1, ..., nz} : zi = xζ(i) (2.5)

A valid assignment of values to the state space variables represents a state of the sys-

tem. The extended state space z(e) of a system is spanned by its state space variables z

and the input variables u.

Preparing the terminology of analog circuits, the distinction between linear and

nonlinear systems has a great impact on the problem complexity of circuit analysis

techniques. Hence, the definition is as follows:

Definition 2.1.6 (Linear / Nonlinear System)

A system is linear if the linear combination of the system’s reaction to input signals

u1(t) and u2(t) equals the system’s reaction to the linear combination of the input sig-

nals:

S(k1u1(t) + k2u2(t)) = k1S(u1(t)) + k2S(u2(t)) (2.6)

hence

S(ku(t)) = kS(u(t)) (2.7)

If this property does not apply, the system is considered as nonlinear.
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2.2 Digital Systems

Although digital systems are not in the focus of this thesis, the state of the art in dis-

crete modeling and specification for verification of analog circuits is based on the ideas

developed for digital circuits. Therefore, a brief introduction into digital systems and

their representation is given in order motivate the transfer of digital verification meth-

ods to the analog domain at a later stage.

A digital system is operating on discrete values internally and on its inputs and

outputs. Digital refers to a finite number of input and output values and in the fol-

lowing digital systems are considered as binary digital systems with two signal levels

abstracted by 0 and 1. The fundamental benefit of this binary approach is the possi-

bility of a rigorous formulation of all digital system behavior by mathematical logic

[Men01] for reasoning about the truth of a formula and Boolean algebra [Whi95] for

combining and manipulating logic statements.

Every Boolean formula can be transferred into a representation of the basic Boolean

operators AND, OR and INVERT. Hence, an arbitrary Boolean logic formula can be

implemented as a digital circuit consisting of the hardware implementation of this ba-

sic operators called logic gates. Digital circuits can be distinguished into combinato-

rial and sequential circuits. A combinatorial circuit has a direct mapping of the input

values to the outputs by the logic function implemented by the circuit. Hence, it repre-

sents a static system. A sequential circuit contains internal memories called flip-flops

which in the most basic form can store one Boolean signal level and propagate it to its

output until a new Boolean value is stored. Moreover, a feedback of the internal states

through logic functions causes the internal states being dependent on the input sig-

nals and the previous internal state. Therewith, sequential circuits represent dynamic

systems. Clocked sequential circuits only propagate signals when an external trigger

called clock signal event occurs. Due to the internal states and the time behavior, se-

quential circuits are the more complex and powerful digital circuit class [KB05].

The behavior of sequential circuits can be modeled by finite state machines where

the states represent an unique configuration of the internal state variables of the circuit

and the transitions are labeledwith the input combinations that cause a transition from

a state to its successor state. Boolean functions representing sequential circuits can be

easily transferred into finite state machines and vice versa via state transition tables.

The example circuit shown in Figure 2.2(a) is a two-bit down counter. Triggered

by the clock signal clk, the outputs Q1 and Q0 of the two flip-flops cyclically count the

binary values 11, 10, 01, 00 when the input enable is set to 1. If enable is set to 0, the

circuit remains in its current state. The state transition table for this behavior is shown

in Table 2.1 with Q1 and Q0 being the outputs of the flip-flops and the next states of

the counter denoted as Q+
1 and Q+

0 .
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Table 2.1: State transition table for the two-bit down counter.

enable Q1 Q0 Q+
1 Q+

0

0 1 1 1 1

0 1 0 1 0

0 0 1 0 1

0 0 0 0 0

1 1 1 1 0

1 1 0 0 1

1 0 1 0 0

1 0 0 1 1

From the state transition table, the Boolean functions for Q+
1 and Q+

0 can be di-

rectly read by finding the Boolean function of Q1 and Q0 with the result Q+
1 and Q+

0 ,

respectively:

Q+
1 = enable ∧ (Q1 ⊕ Q0) ∨ enable ∧Q1 (2.8)

Q+
0 = enable ∧Q0 ∨ enable ∧Q0 (2.9)

The corresponding state transition graph is illustrated in Figure 2.2(b), with the

edge labels representing the value of the input enable. The states are labeled with the

values for Q1 and Q0 .

This state transition graph can, with some additions, directly serve as a circuit

model which can be processed by digital formal verification tools using temporal logic

property specifications [Pnu77, CE82] that will be described in Section 3.3. In the do-

main of discrete state system modeling for formal verification approaches, the Kripke

structure [CGP99] is a common model combining a transition graph structure and a

labeling of the states with atomic propositions for identifying sets of states where a

certain proposition is true. The following definition of the Kripke structure is the the-

oretical model to which temporal logic property verification is applied.

Definition 2.2.1 (Kripke Structure)

For a set of atomic propositions AP, the Kripke structure M over AP is a four tuple

M = (Σ,Σ0, R, L) where

• Σ is a finite set of states of the system.

• Σ0 ⊆ Σ is the set of initial states.

• R ⊆ Σ × Σ is a total transition relation, hence for every state σ ∈ Σ there exists a

state σ′ such that (σ, σ′) ∈ R.
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Figure 2.2: Circuit schematic for the two-bit down counter (a) and the corresponding

state transition graph (b).

• L : Σ → 2#AP is a labeling function that labels each state with the set of atomic

propositions that are true in that state.

Within the structure M, a path π beginning at state σ is a sequence of states π =

σ0, σ1, σ2, ..., σn with σ0 = σ and (σi, σi+1) ∈ R for 0 ≤ i < n.

However, the explicit representation of the states of a digital hardware system

quickly exceeds what is efficiently manageable by computer memories. Consider a

sequential system containing 64 flip-flops. The state machine describing this system

can be estimated to contain 264 states which corresponds to several exabytes of data

even if it was possible to require only one byte of information per state for its represen-

tation. This problem was solved by an implicit state representation. Using a symbolic

representation based on binary decision diagrams (BDDs), the state space can be de-

scribed by a symbolic transition relation on which the verification algorithms can be

evaluated [McM92]. This leads to a logarithmic decrease in state space representation

complexity for digital systems.

2.3 Analog Systems

Analog systems are characterized by their continuous value and time domain. In the

scope of this thesis, analog electronic circuits are nonlinear dynamic analog systems

that are defined by the connection of the physical device models of the circuit elements

via Kirchhoff’s circuit laws [Kir47]. The methodology of computer-supported analog

circuit analysis is based on the idea that there is an appropriate mathematical model of
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the physical system which can be analyzed using mathematical methods. The results

of the analysis then correspond to the behavior of the real system.

The physical device models are mathematically described by differential equations.

These differential equations of the circuit elements and their connection via Kirchhoff’s

laws form a differential algebraic equation (DAE) system describing the analog elec-

tronic circuit. To obtain a differential equation system from a circuit topology modeled

by a network of circuit elements, network analysis techniques such as the modified

nodal analysis are applied (see Section 2.3.2). The type of differential equation sys-

tem set up for analysis of analog electronic circuit is defined by the equations of the

physical device models of the circuit. Depending on the accuracy of the model and

therewith affecting the accuracy of the analysis, several levels of model complexity can

be available.

2.3.1 Device Models

Modeling the physical devices of an electronic circuit in form of mathematical equa-

tions is a basic necessity for analyzing analog circuits using mathematical methods.

Therefore, depending on the purpose, compact models for circuit design or physical

device models for device design can be distinguished. For electronic circuit simula-

tion, only compact models are considered due to the fact that a large number of devices

within a circuit has to be simulated simultaneously within a tolerable time frame. In

contrast, for designing devices for fabrication processes, substantially more complex

device models are required for simulation of subtle physical effects of one single de-

vice.

The main devices for integrated circuit design are resistors, capacitors, inductors,

independent and controlled voltage and current sources, diodes and transistors. The

most complex device behavior in integrated circuits is exhibited by transistors for

which several compact model families exist. Due to its well-suited characteristics for

integrated circuits, the metal-oxide-semiconductor field-effect transistor (MOSFET) is

of great importance. Depending on the type of analysis to conduct and the trade-off

between accuracy and simulation complexity, different types of compact models exist

in form of physical models, empirical models and table models [Tsi03]. Table models

are generated using measurements of real transistors by capturing the behavior at dis-

crete parameter steps. Therewith, fast models are generated but for each combination

of the width and length of the transistors, new tables have to be measured. Empirical

models describe the captured characteristics by mathematical functions using curve

fitting approaches.

The most flexible approach is given by physical models that can be adjusted in

their level of complexity. This is achieved by setting up equations for the basic physical

behavior and addingmore andmore physical parameters in each level. For a n-channel
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MOSFET transistor, the drain-source current IDS for the DC case has three regions of

operation, dependent on the gate-source voltage VGS, the threshold voltage VTH and

the drain-source voltage VDS: cutoff (VGS ≤ VTH), saturation (0 < VGS − VTH ≤

VDS) and linear (0 < VDS < VGS − VTH). These three regions of operation can be

quadratically approximated by the following equations [Vla94]:

IDS =







0 for VGS ≤ VTH

KP
2

W
Le f f

(VGS −VTH)
2(1+ LAMBDA ·VDS) for 0 < VGS −VTH ≤ VDS

KP
2

W
Le f f

VDS(2(VGS −VTH)−VDS)(1+ LAMBDA ·VDS)

for 0 < VDS < VGS −VTH

(2.10)

The parameters W and Le f f are the width and effective length of the transistor and

KP and LAMBDA are the MOSFET parameters of transconductance factor and output

conductance factor in saturation.

This is a basic level 1 model for the static operation of the transistor which can be

refined to a higher level model by addingmore physical effects [CJL+97]. Formodeling

the dynamic behavior, additionally the charge effects of the gate capacitance have to be

considered, resulting in more complex equations [CHHK98] that improve the accuracy

of the solutions of AC and TR analysis.

2.3.2 Network Analysis using the Modified Nodal Approach

In order to obtain a mathematical model for nonlinear analog circuits, modified nodal

analysis (MNA) [HRB75] is used by most circuit analysis tools to set up the circuit

equations as a DAE system. The MNA is based on three basic fundamentals:

• Kirchhoff’s current law (KCL), stating that the sum of the currents flowing into a

circuit node must equal the currents flowing out of this circuit node. Hence, their

sum must be zero at any time.

• Kirchhoff’s voltage law (KVL), stating that the sum of voltages around any closed

loop of the circuit must be zero at any time.

• Branch constitutive equations (BCE), defining the mathematical model of the be-

havior of the physical circuit elements. For application of the MNA, the current

of each BCE has to be described by a function of the connected node voltages and

the device model of the respective circuit element.

Consider the circuit illustrated in Figure 2.3. It is a simple nonlinear analog circuit

example with input voltage Vin, resistor R1, diode D1 and capacitor C1. The KCL and

the BCEs for the circuit elements are sufficient for setting up the network equations for

nodes n1 and n2. The node voltages of the circuit represent the vector x = (Vn1 ,Vn2)
T
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R1

D1Vin C1

n1 n2
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Figure 2.3: Simple nonlinear analog circuit example with input voltage Vin, resistor R1,

diode D1 and capacitor C1.

of unknowns of the equation system and the vector u = (Vin) contains the inputs. The

goal is to obtain a general formulation as a first-order nonlinear DAE system in form

of:

f(ẋ, x,u) = 0 (2.11)

For node n1, according to KCL, the sum of the input current iin and the current

through resistor R1 has to be zero:

fn1 : iin −
Vn1 −Vn2

R1
= 0 (2.12)

For node n2, the ingoing current is the current through resistor R1 and outgoing cur-

rents run through the parallel diode D1 and the capacitor C1. By filling in the device

equations, the following node equation is set up:

fn2 :
Vn1 −Vn2

R1
− Is

(

e
Vn2
uT − 1

)

− C1 ·
d

dt
Vn2 = 0 (2.13)

Finally, the voltage source sets the voltage Vn1 of node n1 to Vin, resulting in:

Vn1 = Vin (2.14)

Application of the MNA results in implicit equations for each circuit node with the

system variables usually being the node voltages, some device currents and additional

variables resulting from device equations or behavioral description of parts of the ana-

log circuit. Another characteristic of the MNA is the high occurrence of algebraic equa-

tions and the occurrence of only some differential equations.

2.3.3 Numerical Simulation

By having set up the DAE system for the circuit, different numerical simulation tech-

niques can be applied in order to analyze its behavior. The basic type of analysis is the

19



2 System Representation for Verification

DC-analysis, where the operating point for a given constant input vector is calculated.

Due to changes over time not being considered for the solution of the system in its

steady state, the vector ẋ is zero. Hence, the equation system f(x,u) = 0 for given u

has to be solved. Due to the nonlinearity of the equation system in the general case,

this is a mathematically challenging task.

The common algorithm used for numerically solving the nonlinear equation system

is the Newton-Raphson (NR) iteration [Rap90, Ypm95]. Starting with a guess of an

initial solution x0, this initial solution is iteratively refined until it falls below a specified

error bound. However, there has to be a limit on the number of iterations as there is no

guarantee that the NR-algorithm will succeed in finding a solution. On the other hand,

in the neighborhood of a solution, the convergence is quadratic. For the NR-algorithm,

the Jacobian matrix J containing the derivatives of the node equations for the system

variables is needed:

J =







d fn1
dx1

· · ·
d fn1
dxn

...
. . .

...
d fnn
dx1

· · ·
d fnn
dxn







(2.15)

The NR-algorithm is based on the idea that the evaluation of f for an approximated

x(a) is related to the correct x by an amount ∆x given by:

∆x = −J−1(x(a))f(x(a)) (2.16)

Equation 2.16 can be solved using linear equation system approaches such as LU fac-

torization [GVL96], which is a modification of the Gaussian elimination method in

order to obtain a triangular system. Finally, the goal of the NR-algorithm is improv-

ing the initial guess for x in every iteration by xi = xi−1 + ∆x until the norm of the

evaluated f(x) falls below the error bound and hence a sufficient solution is found.

For TR-analysis, a time domain solution for the circuit’s transient response to ar-

bitrary piecewise linear input stimuli has to be calculated [Nag75, Vla94]. This is

achieved by dividing the simulation over time into a sequence of quasi-static solu-

tions at time points tn, tn+1, .... Consider a solution x(tn) for the initial time point tn
obtained by the DC solution. The idea is to express the solution at tn+1 by a Taylor

series approximation around the previous time point tn and time step h either by the

explicit forward Euler (FE) integration formula

x(tn+1) = x(tn) + hẋ(tn) (2.17)

or by the implicit backward Euler (BE) integration formula

x(tn+1) = x(tn) + hẋ(tn+1) (2.18)

Depending on the size of the chosen time step, the accuracy of the numerical integra-

tion is affected by the approximation of the first term of the Taylor series. Hence, the
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local truncation error (LTE) can be approximated by evaluating the second term of the

Taylor series. Therewith, the LTE for the FE integration is given as:

LTE =

∣
∣
∣
∣

h2

2
ẍ(tn)

∣
∣
∣
∣

(2.19)

A combination of the FE and BE formula in form of

x(tn+1) = x(tn) +
1

2
h(ẋ(tn) + ẋ(tn+1)) (2.20)

results in a better approximation, which can be proven by calculating the LTE. By eval-

uating the LTE, an adaptive time step control algorithm can be applied by calculating

h according to a specified upper error bound [Vla94].

2.3.4 DAE Index

The differentiation index of a differential equation system determines its solvability.

While ordinary differential equations (ODEs) have no algebraic variables and are of

index 0, DAE systems contain algebraic variables and their index is of at least 1. Index-

1-DAEs can be directly targeted by the numerical solution approach described in the

previous subsection, while systems with an index greater than 1 have to be prepro-

cessed by advanced techniques that are still subject to research [Tis96, ES00]. Due to

only special cases of analog circuits being of index greater 1, the presented simulation

approach is used in most circuit analysis tools. Nevertheless, approaches for higher

index systems can be applied in the numerical simulation algorithms used in the re-

mainder of this thesis.

2.3.5 Analog Behavioral Modeling and Hardware Description Lan-

guages

The description of analog circuits by a netlist containing the physical circuit compo-

nents is directly transferable to a real physical design, as well as into a mathematical

model for design analysis. Due to the abstraction hierarchy of the circuit design flow,

dealing with transistor netlists is not appropriate at higher abstraction levels. Hence,

building hierarchical entities of such low-level circuits allows a structuring of the de-

sign in higher levels. However, due to the large number of transistors, the representa-

tion on transistor level in conjunction with the complex mathematical analysis efforts

described in the previous subsections render a transistor-level system analysis impos-

sible for practical design flows.

Therefore, an abstraction of the structurally modeled low-level circuits in form of

behavioral models is needed. Such behavioral models enable a higher-level analysis,
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capturing the important characteristics of the system building blocks with less compu-

tation time. In mathematical terms, behavioral modeling abstracts from the detailed

complex equations of the BCEs and replaces them by simplified equations. These sim-

plified equations capture the characteristics necessary for initial evaluation of the de-

sign on high abstraction levels. Of course, the abstractions cause the system based

on behavioral models not to be transferable to a physical circuit level directly. How-

ever, the entities modeled on BCE level and those using behavioral descriptions can be

interchanged.

Replacing structural modeling using BCEswith behavioral modeling, two common

approaches are available. On the one hand, behavioral models can be created by de-

scribing more complex circuits with simplified structures that are still implemented

on transistor level using BCEs. As an example, a charge pump circuit as illustrated in

Figure 2.4(a) is considered. The transient startup behavior of the transistor netlist can

be abstracted by a circuit as illustrated in Figure 2.4(b). While the transient response of

the abstracted model retains the main behavior, the ripple originating from the clock

switching is not present as illustrated in Figure 2.5. This approach, sometimes referred

to as macromodeling, is often incorporated in higher level modeling in order to use the

transistor netlist environment without invoking another circuit description approach.

C1
clk

V
DD

Cload Rload

TP1

TN1

TN2

TN3

Vout
VC1

Vclk

(a)

VoutCload

R1

VDD

Rload

Vup

(b)

Figure 2.4: Schematic of the CMOS implementation of the charge pump circuit (a) and

simplified macro model (b).

On the other hand, specific analog hardware description languages are available

in order to efficiently describe analog circuit behavior using a programming-language

like concept. Such hardware description languages have very sophisticated descrip-

tion methodologies. Depending on the complexity of the language syntax, simulation

of the descriptions is possible by setting up a differential equation system from the

code which then again can be numerically processed directly by the simulation algo-

rithm detailed in Section 2.3.3. Popular analog hardware description languages are

VHDL-AMS [APT03] and Verilog-AMS [KZ04], which both are extensions to the dig-
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Figure 2.5: Transient startup response of the transistor netlist charge pump (solid line)

and the simplified model (dashed line).

ital versions of the languages for description of analog and mixed analog/digital sys-

tem behavior. The VHDL-AMS behavioral model for the charge pump is described in

Listing 2.1, using an implicit differential equation for defining the startup-behavior of

the output voltage.

Listing 2.1: VHDL-AMS implementation modeling the charge pump behavior.

LIBRARY DISCIPLINES;
USE DISCIPLINES.ELECTROMAGNETIC_SYSTEM.ALL;

ENTITY chargepumpmodel IS
GENERIC( r1 :real := 1.0e5;

rload :real := 1.0e9;
c :real := 5.0e-8;
vdd :real := 3.0);

PORT(TERMINAL outp, gnd : ELECTRICAL );
END chargepumpmodel;

ARCHITECTURE behavior OF chargepumpmodel IS
QUANTITY vout ACROSS iout THROUGH outp TO gnd;

BEGIN
(1.6*vdd-vout)/r1 - c*vout’dot - vout/rload == 0.0;

END behavior;
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2.3.6 State Space Representation

Based on the idea of a system’s state space in Definition 2.1.5, the linear independent

state space variables z = (z1, ..., znz)
T of the implicit DAE system with z ⊆ζ x span

a subspace of R
n, representing the state space of an analog system. The number of

independent state variables is not always clear, e.g. due to capacitor loops [ES00]. Ad-

ditionally, extracted netlists have lots of resistor-capacitor paths leading to many state

variables which may not all be of interest for the main input-output behavior. The

state space variables of the analog circuit are given by the representation of the linear

independent energy storing elements of the circuit such as capacitors and inductors in

the differential equation system set up for the circuit by network analysis. Depending

on the level of modeling abstraction, additionally, parasitic capacitances can be consid-

ered.

Candidates z(all) ⊆ζ x for state space variables can be identified in the DAE system

by their occurrence as first-order time derivatives. This is due to the BCEs of the cir-

cuit elements containing first-order time derivatives such as the current ICap through

a capacitor Cap with capacity C is given by ICap = C · d
dtVCap. Similarly, inductors

introduce inductor currents as a state space variable. Capacitor loops and their dual

equivalent of inductor nodes lead to linear dependencies, reducing the number of lin-

ear independent state space variables. The linear independent state space variables z

are a subset of z(all), hence z ⊆ζ z(all) ⊆ζ x.

If there are capacitors within the circuit that are not connected to ground nodes,

the MNA generates two derived node voltages, one for each node the capacitor is

connected to. In order to obtain only one state variable for the capacitor, the nodal

analysis can be changed to a charge-oriented equation formulation [ST00].

The extended state space z(e) of an analog system is spanned by the linear indepen-

dent state space variables z and the input variables u with dimension nd = nz + nu:

z(e) =

[
z

u

]

(2.21)

2.4 Discrete Modeling of Analog Systems

The value and time continuous characteristics of analog circuits require a special rep-

resentation for application of formal methods. While in the digital circuit domain au-

tomata models are a common approach for system representation, analog circuits are

not easily transferable to such a discrete model. Digital systems have an enumerable

finite number of states which can be directly transferred into a finite state machine

automata representation. Formal verification algorithms can check this set of states

completely in order to identify whether there exist states that violate the specification.
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In contrast, the continuous state space of analog systems is not enumerable. Hence,

for completely checking their behavior, either an analytical approach reasoning on the

continuous model or a discretization to a state model is required at the cost of intro-

ducing a discretization error. Due to the difficult solution of nonlinear DAE systems,

analytical approaches are not feasible. Therefore, a discrete modeling based on numer-

ical sampling-based algorithms is necessary for state space-based formal verification of

analog circuits. In the following, the requirements of a discrete modeling will be dis-

cussed and after analyzing the only state-of-the-art approach operating on DAE sys-

tems [Har03], a newdiscrete modeling algorithmwill be introduced. Other approaches

from the domain of hybrid system analysis, operating on ODEs, that either do not offer

a complete representation of the state space or cannot automatically generate models

from circuit descriptions will be discussed in Section 4.5.1 and Section 4.5.2.

2.4.1 Discrete Analog Transition Structure

In the domain of discrete state systemmodeling for formal verification approaches, the

Kripke structure as described in Definition 2.2.1 is a commonmodel combining a timed

automaton and a labeling of the states with atomic propositions for identifying sets of

states where a certain proposition is true. In order to generate a discrete model of an

analog circuit for verification purposes, the Kripke structure can be extended to a dis-

crete analog transition structure (DATS) which incorporates the following additional

information needed for describing an analog system:

• The states of the DATS represent value combinations of the extended state space

variables of an analog system. Therefore, an extended labeling of the states has to

assign this extended state space variable value vector to each state. Additionally,

the values of the algebraic variables of the DAE system in this state are stored.

• As the structure of the DATS is determined by discretization algorithms de-

scribed in the following subsections, the transition times between states cannot

be considered equal like in transition systems for synchronous clocked digital

systems. Hence, the transitions of the DATS have to be labeled with real val-

ued transition times. As the discretization algorithms will only describe the start

and end points of the transitions with the intermediate behavior considered as

a linear trajectory, the transition time is considered as a linear change from the

variable vector of the initial state to its successor described by the transition rela-

tion. Therewith, a transition sequence within the DATS corresponds to the idea

of a piecewise linear trajectory obtained from transient analysis of analog circuits

where time steps represent the sampled state variable valueswhich are connected

by piecewise linear transitions.
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• The atomic propositions for states identify sets of states where these propositions

are true. In addition, a selection on the transitions will be necessary in order

to identify transitions not introduced by dynamic transitions in the state space

but from an input variable model. Therefore, a labeling of the transitions by

propositions is necessary for the DATS.

• The analog system model does not need to identify a set of initial states. The set

of initial states for an operation on the DATS will be determined by an atomic

proposition.

With these considerations, the DATS can be defined as follows.

Definition 2.4.1 (Discrete Analog Transition Structure (DATS))

For a set of atomic state propositions AP and a set of atomic transition propositions

TP, the DATS MDATS over AP, TP is a seven-tuple MDATS = (Σ, R, LA, LV , LX , T, LT)

where

• Σ is a finite set of states of the system.

• R ⊆ Σ × Σ is a total transition relation, hence for every state σ ∈ Σ there exists a

state σ′ such that (σ, σ′) ∈ R.

• LA : Σ → 2#AP is a labeling function that labels each state with the set of atomic

propositions that are true in that state.

• LV : Σ → R
nd is a labeling function that labels each state with the vector of nd

variables containing the values in this state of the extended state space variables

z(e) of the DAE system.

• LX : Σ → R
nx is a labeling function that labels each state with the vector of nx

variables containing the values in this state of the inner variables x of the DAE

system.

• T : R → R
+
0 is a labeling function that labels each transition from σ to σ′ with a

real valued positive or zero transition time that represents the time required for

the trajectory in the extended state space between these states.

• LT : R → 2#TP is a labeling function that labels each transition with the set of

atomic transition propositions that are true for that transition. This labeling will

be used in Section 2.4.4.4 for distinguishing between dynamic transitions and

those transitions that are introduced into the DATS by an input model.

Within the structure MDATS, a path π beginning at state σ is a sequence of states π =

σ0, σ1, σ2, ..., σn with σ0 = σ and (σi, σi+1) ∈ R for 0 ≤ i < n.
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Figure 2.6 illustrates a schematic graph structure representing a DATS with nine

vertices modeling an imaginary analog circuit. The DC-operating-points of the mod-

eled circuit, that can be identified by DC-analysis as introduced in Section 2.3.3, are

represented by vertices 1, 5 and 9. Thus, they have a loop transition to themselves stat-

ing that the circuit stays in this steady state infinitely until a change of input occurs.

These transitions have zero transition time. A transition induced by an input change is

modeled by a bidirectional edge, implying that this transition can only be taken if there

is an input variable change in the corresponding extended state space dimension. Any

non-steady state of the system has outgoing directed edges representing the dynamic

behavior of the circuit.
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Figure 2.6: Schematic illustration of a graph structure representing a DATS.

2.4.2 The Discretization Problem for Analog Circuits

Discrete model generation for analog circuits is the key to applying graph-oriented

verification algorithms that will be introduced in Section 3.4 and Chapter 5.

Definition 2.4.2 (Discrete State Space Modeling Task)

The task of discrete state space modeling is to transfer a continuous analog system

represented as a DAE system into a DATS:

f(ẋ, x,u) = 0
discrete modeling

−→ MDATS (2.22)

Therefore, the continuous vector field of the time derivatives of the state space vari-

ables that are representing the dynamics of the analog circuit has to be partitioned. As

will be detailed in the following, each partition is represented by a state of the DATS
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model with a transition relation connecting the states corresponding to the dynamic

behavior of the circuit. However, the quality of the discretization determines how

significant the verification results are. Therefore, there is an optimization problem con-

nected to the discrete modeling task which has to capture the continuous behavior of

the DAE system with a minimal discretization error.

Consider an infinite point set Z of points p in R
nd of the state space of the circuit

that is constrained to user-defined interval boundaries r = [r, r] for every of the nd
extended state space dimensions:

Z = {p | ri ≤ pi ≤ ri} for all 1 ≤ i ≤ nd (2.23)

On Z , the continuous vector field V : R
nd → R

nd is generated by the time derivatives

of the state space variables in the vector of extended state space variables

ż(e) =

[
ż

0

]

(2.24)

of the DAE system describing the circuit:

V(z(e)) = {ż(e) | f(ẋ, x,u) = 0} (2.25)

The vectors vi are defining a linearized trajectory in V from points pi to the points

p′
i with vi = p′

i − pi, calculated by a time step-controlled transient simulation, as

described in Section 2.3.3, starting in pi with integration time ∆t.

The goal is to generate a partitioning of Z to k non-overlapping partitions Rj with

⋃

1≤j≤k

Rj = Z (2.26)

such that the inhomogeneity of the vector field flow within each Rj is minimal. Each

Rj will represent a state σj of the DATS. The concept of inhomogeneity is defined by

two criteria which are for a given integration time

1. the difference in direction

2. and the length difference

of the infinite set of trajectory vectors in Rj.

Let θrs with

θrs = arccos

(
vr · vs

‖vr‖‖vs‖

)

(2.27)

be the angle between any of two sampled transition vectors vr and vs starting inRj.
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Definition 2.4.3 (Direction Error)

The maximum direction error ǫ
(Rj)

θ represented by the maximum angle between some

vr and vs is given by:

ǫ
(Rj)

θ = max(θrs : pr,ps ∈ Rj) (2.28)

The overall mean direction error over Z is then defined by:

ǫθ =
1

k ∑
1≤j≤k

ǫ
(Rj)

θ (2.29)

Let ∆rs with

∆rs = max

(
‖vr‖

‖vs‖
,
‖vs‖

‖vr‖

)

(2.30)

be the length difference ratio between any of two sampled transition vectors vr and vs
starting in Rj.

Definition 2.4.4 (Length Error)

The maximum length error ǫ
(Rj)

∆
between some vr and vs is given by:

ǫ
(Rj)

∆
= max(∆rs : pr,ps ∈ Rj) (2.31)

The overall mean length error over Z is then defined by:

ǫ∆ =
1

k ∑
1≤j≤k

ǫ
(Rj)

∆
(2.32)

While minimizing the overall mean length and direction error are optimization cri-

teria for obtaining an accurate discretization, for describing the optimization problem

of state space discretization, a third optimization criterion, which is the number of

partitions, has to be considered. Increasing the number of partitions and therewith

decreasing the size of the partitions has negative effects on the efficiency of the veri-

fication algorithms. Moreover, in a n-dimensional state space, decreasing the size of

every partition to half of its initial size in every dimension, the number of partitions

increases by the factor 2n. Therefore, keeping the number of partitions as small as

possible is critical for developing feasible discretization algorithms.

Another important part is the determinism of the successor relation between ad-

jacent partitions. If the partitions are perfectly enclosing homogeneous state space

dynamics, every trajectory starting in a partition ends in a single adjacent partition.

Hence, the out-degree deg(Rj) of dynamic transitions ending in other partitions shall

be minimal for each partition, ideally being 1. Additionally, by transferring the par-

titioning to a DATS, the successor relation between states representing the partitions

determines the paths in the DATS. As the state space variable vectors of the states in
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the DATS are determined by the centers of the partitions, a sequence of transitions in

the DATS corresponds to a trajectory in the state space. If the successor relation of the

DATS is determined inaccurately, the behavior of the model does not correspond to the

real state space trajectories. Therewith, a successor relation error has to be defined.

Consider two adjacent partitions Ri and Rj represented by states σi and σj, con-

nected by a transition (σi, σj) ∈ R with center points LV(σi) = p
(c)
i and LV(σj) = p

(c)
j

and the vectors

v
(c)
ij = p

(c)
j − p

(c)
i (2.33)

and

v
(tr)
i = p′(c)

i − p
(c)
i (2.34)

with v
(tr)
i determined by a transient step of length ‖v

(c)
ij ‖ starting in p

(c)
i .

Definition 2.4.5 (Successor Relation Error)

The successor relation error ǫ
(ij)
suc between two connected adjacent partitions Ri andRj

is defined by:

ǫ
(ij)
suc = arccos




v
(c)
ij · v

(tr)
i

‖v
(c)
ij ‖‖v

(tr)
i ‖



 (2.35)

The overall mean successor relation error for a given partitioning is then defined

by:

ǫsuc =
1

k ∑
1≤i≤k

max {ǫ
(ij)
suc |(σi, σj) ∈ R} with 1 ≤ j ≤ k (2.36)

Definition 2.4.6 (Optimization Problem for the Discrete Modeling Task)

Based on the definition of

• the direction error ǫ
(Rj)

θ ,

• the length error ǫ
(Rj)

∆
,

• the number of partitions k,

• the determinism deg (Rj) for all 1 ≤ j ≤ k of the successor relations,

• and the overall mean successor relation error ǫsuc,

the multi-objective optimization problem connected to partitioning Z into Rj with

1 ≤ j ≤ k can now be stated with user defined maximum error bounds rθ and r∆ and a

minimum number of partitions rk:

{R1, ...,Rj, ...,Rk} = arg min







1
k ∑
1≤j≤k

deg (Rj)

ǫsuc
k







s.t.







∀ 1 ≤ j ≤ k : ǫ
(Rj)

θ < rθ

∀ 1 ≤ j ≤ k : ǫ
(Rj)

∆
< r∆

k > rk







(2.37)
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This optimization problem illustrates which criteria have to be considered for algo-

rithmic approaches. Therewith, an algorithm that defines how the partitioning of the

state space vector field has to be constructed is needed to meet the challenge.

2.4.3 Hyperbox Discretization

The only state-of-the-art approach that can transfer a circuit represented by a nonlinear

DAE system into a discrete graph structure for application of verification algorithms is

presented in [Har03] and recapitulated in the following.

A paraxial binary slicing algorithm is used to partition the state space in form of

an infinite point set Z of the analog system. Z is constrained to user-defined interval

boundaries r for every of the nd extended state space dimensions:

Z = {p | ri ≤ pi < ri} for all 1 ≤ i ≤ nd (2.38)

The slicing algorithm determines partitionsRj with paraxial boundaries s representing

hyperboxes for each state space dimension:

Rj = {p | s
(j)
i ≤ pi < s

(j)
i } for all 1 ≤ i ≤ nd (2.39)

The algorithmic approach to obtain this partitioning is sampling the state space with

randomly distributed test points for which a transition step is calculated. By compar-

ing the transition vectors of the transient steps to predefined error margins for length

and direction, it is decidedwhether the vector field flow is homogeneous enough. If the

error margins are exceeded, the state space partition is split into two partitions using

a binary paraxial partitioning. For each of the two resulting partitions, the length and

direction error is again checked and, if above the error margin, split again. This process

is continued recursively until a predefined maximum recursion depth is reached. Each

resulting hyperbox is considered as a state of the discrete model representing the ana-

log system, and a tree structure with the hyperbox containing the complete state space

as root node and the binary partitions hierarchically forming the children is created.

The states of the analog system model are the leaf nodes of the tree structure.

In order to obtain a discrete transition system, the transition relation between the

created hyperboxes from the partitioning algorithm has to be determined. The exact

calculation of the geometric structure Rexact representing the successor of a hyperbox

Rtest would be obtained by a point-to-point mapping from points p to p′:

Rexact = {p′ | p ∈ Rtest} (2.40)

This exact mapping would result in the impossibility to create the simple state space

partitioning geometry of the hyperbox discretization. Hence, for each hyperbox, the

successors shall be those adjacent hyperboxes that enclose the exact geometric struc-

ture of the successor relation. This is achieved again by using transient simulation
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steps for a discrete number ntestpoints of test points pi within a box. All those neighbor-

ing boxes Rj which can be reached by transient simulation steps to points p′
i that start

in pi in the box Rtest for which the successors shall be determined, are a successor of

this investigated box:

Rsucc =
⋃

j

{Rj | p
′
i ∈ Rj ∧ pi ∈ Rtest} with 1 ≤ i ≤ ntestpoints (2.41)

Therewith, in general, an over-approximation of the analog transition relation is

generated due to the hyperboxes formingRsucc enclosing the more complex geometric

structure Rexact being the convex hull of all computed p′
i for ntestpoints → ∞. Due to

the number of test points being limited in order to reduce the computational effort, an

under-approximation of the transition relation is possible as well.

While this approach of state space discretization for analog circuits has proven to be

robust and algorithmically very manageable, there are some downsides that motivate

the search for an improved, yet algorithmically not too complex approach. The main

problem of the approach is due to the paraxial slicing of the state space. Therewith,

the discretization is not rotation invariant to the vector field which results in an insuf-

ficient capture of the vector field flow dynamics within the state space and in large

out-degrees deg(Rj).

Considering for example the flow in Figure 2.7(a) which is parallel to the axis x1.

A trajectory from point p1 to p2 in the continuous flow maps to the transition illus-

trated in Figure 2.7(b) from box d1 to d2 with a deterministic successor representing

a good discrete approximation of the vector field flow. By rotating the vector field

by 45 degrees in Figure 2.7(c), the trajectory from p3 to p4 maps to the massively over-

approximated nondeterministic transition paths illustrated in Figure 2.7(d) from box d3
to d4. Due to the paraxial slicing, the calculation of the subsequent boxes reports three

successors enclosing the exact successor geometry of each box. This leads to a large

number of possible paths and hence a substantial over-approximation of the reachable

area which is not accurately representing the dynamic system behavior for practical

verification purposes. While this over-approximation is considerable for pessimistic

reachability computation for safety verification in order to prove that a bad state will

never be reached, false negatives have to be expected.

2.4.4 Trajectory-Directed Discretization

In order to overcome the limitations of the hyperbox discretization approach described

in the previous section, the desired behavior of an improved discretization algorithm

has to be characterized.

The discretization shall be rotation invariant and therefore the state space inter-

sections for partitioning cannot be paraxial. As a massive over-approximation of the

32



2.4 Discrete Modeling of Analog Systems

x1x1

x1x1

x2x2

x2x2
p3

p4

p1 p2

d3

d4

d1 d2

(a) (b)

(c) (d)

Figure 2.7: Illustration of a vector field with paraxial flow (a) and the corresponding

discretization (b) including the transition path. In comparison, the vector field flow

rotated by 45 degrees (c) results in a massive over-approximation of the transition path

in the hyperbox discretization (d).

successor relation of the state space partitions significantly weakens the expressiveness

of the verification algorithms, the geometric structure of the state space partitions shall

follow the flow of the state space dynamics. Hence, the intersections dividing the state

space shall be either parallel or orthogonal to the state space trajectories enclosed by

the partitions. Therewith, the nondeterminism of the successor relation of the state

space partitions shall be minimized due to the uniqueness of the successor relation

being determined by the real trajectories between the preceding state space partition

and its successor. By using time step control algorithms for determining the acceptable

trajectory length which can be approximated by a straight line between two points in

state space, the homogeneity of the enclosed state space dynamics in the partitions

shall be guaranteed. Figure 2.8 illustrates a non-paraxial trajectory-directed state space

partitioning applied to the example flow from Figure 2.7(c).

2.4.4.1 Calculating the State Space Partitioning

The central idea for a new discretization algorithm is that the intersections of the state

space are no longer determined by paraxial slicing but by the trajectories of the state
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x1x1

x2x2
p3

p4

d3

d4

(a) (b)

Figure 2.8: Illustration of a non-paraxial vector field flow with a trajectory-directed

state space partitioning resulting in a transition path from d3 to d4 (b) matching the

initial trajectory between p3 and p4 (a).

space dynamics. Hence, starting from the infinite point set Z constrained to user-

defined interval boundaries r for each of the nd extended state space dimensions as

defined in Equation 2.23 representing the state space of the analog system, a slicing

structure into k non-overlapping state space regions Rj of the state space shall be con-

structed:
⋃

1≤j≤k

Rj = Z (2.42)

A linear transformation of Z is necessary in order to handle size differences of the

ranges of the state space variables. All ranges shall be translated and normalized to

the interval [0, 1]. Therefore, a translation vector v(t) has to be calculated to move the

lower bound of the nd extended state space variable ranges ri to 0 and to scale them to

the interval [0, 1] by factors λi:

λi = (ri − ri)
−1 (2.43)

v(t) =






−r1 · λ1
...

−rnd · λnd




 (2.44)

The transformation matrix T for the scaling vector λ and the translation vector v(t) in

homogeneous coordinates [Mir95] is then given by:

T =












λ1 0 · · · 0 v
(t)
1

0 λ2
. . .

... v
(t)
2

...
. . . . . . 0

...
...

. . . λnd v
(t)
nd

0 · · · · · · 0 1












(2.45)
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The linear transformation for a point p(orig) to p with

[
p

1

]

= T ·

[

p(orig)

1

]

(2.46)

is applied to all following coordinate calculations and reversed for determining the

final structure in the untransformed space. The 1-entry in position nd + 1 of the vectors

for using homogeneous coordinates is added or removed correspondingly.

After the preceding preparations, the actual partitioning can be described. The goal

of the partitioning algorithm is to determine the vertices and edges of the geometric

objects partitioning Z into the k Rj. Therefore, the algorithm starts from a random

starting point that is no DC-operating-point of the system by appending it to an ini-

tially emptywaiting listWL. DC-operating-points are detected by a threshold level rDC

where the ratio between the norm of the transient step vector and the used integration

time falls below this value.

For every point p in the waiting list, a step-length controlled transition vector v

to the point p′ with v = p′ − p is calculated using a transient simulation back-end.

In order to identify new starting points for transition vectors, across each vector v an

orthogonal basis vector set B is constructed:

B = {b1, ...,bnd : bi · bj = 0} for all 1 ≤ i, j ≤ nd; i 6= j; v ∈ B (2.47)

B is constructed using the Gram-Schmidt orthogonalization algorithm [GVL96]. The

input to the Gram-Schmidt algorithm

B = GramSchmidt(M) (2.48)

is the matrix

M =
[
v i1 · · · ij−1 ij+1 · · · ind

]
(2.49)

consisting of the vector v and nd − 1 of the nd column vectors of the unity matrix Ind
such that the eliminated vector ij has its 1-entry in the same dimension j where v has

its maximum absolute magnitude |vj|:

j = arg max
1≤j≤nd

|vj| (2.50)

The vectors returned by the algorithm are normalized to length 1. The resulting

orthogonal basis set is now scaled to the initial length of v. Additionally, in order to

control the discretization error, for each element bi of B a scaling factor β
(a)
i is cal-

culated. This β
(a)
i shall assure that the direction and length differences between two

transition vectors vr and vs, with vr being calculated starting from p+ β
(a)
i · bi and vs

35



2 System Representation for Verification

being the initial transient vector starting from p, are below predefined tolerance levels

rθ and r∆:

θrs < rθ ∧ ∆rs < r∆ (2.51)

Starting with β
(a)
i = 1, the scaling algorithm compares the two transition vectors vr

and vs and iteratively halves the length of β
(a)
i until the error criteria are satisfied.

Therewith, just as the time step control using the LTE for controlling the error of tran-

sient simulation that was discussed in Section 2.3.3, a state space step control is applied

for controlling ǫ
(Rj)

θ and ǫ
(Rj)

∆
within each state space partition Rj, determined by the

correspondingly scaled B and the adjacent orthogonal sets.

Satisfying rθ and r∆ in the state space area around singularities such as attractors

represented by DC-operating-points would cause the length of the vectors β
(a)
i · bi to

be decreased infinitely. Therefore, the previously mentioned threshold rDC controls the

minimum length of the vectors for obtaining a finite set of partitions.

Each of the scaled orthogonal basis set vectors added to p describes starting points

q(a) for a new transient step calculation for which in turn the orthogonal basis set is

calculated. By an additional point reflection of the vector set B across p by vector

subtraction, resulting in the point set q(b), the expansion into all trajectory-orthogonal

directions of the state space is obtained with correspondingly calculated error control

scaling factors β
(b)
i :

q
(a)
i = p+ β

(a)
i · bi for all 1 ≤ i ≤ nd (2.52)

q
(b)
i = p− β

(b)
i · bi for all 1 ≤ i ≤ nd (2.53)

For every new starting point put into theWL, the inclusion in the defined discretization

ranges of the extended state space has to be assured:

WL = WL ∪ {qi ∈ (q(a) ∪ q(b))|qi ∈ [0, 1]nd} (2.54)

Figure 2.9 outlines the described process of determining the set of trajectory-

orthogonal points q(a) and q(b) in a two-dimensional space.

The point q
(b)
1 generated by the point reflection of the initial transition vector v

across p is critical. Between q
(b)
1 and p shall be a transition in the direction of the

trajectory flow, which is not given by the reflection of v. Hence, the transition vector

obtained from a transient step starting in q
(b)
1 must not necessarily map to p. Therefore,

a correction has to be calculated such that a transient step starting in q
(b)
1 goes through

p. This can be iteratively resolved by determining the deviation vector

∆pi = p− q′
1i

(2.55)
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Figure 2.9: Schematic visualization of the process of determining the trajectory-

orthogonal point sets q(a) and q(b) in a two-dimensional space.

between p and the point q′
1i
with q′

1i
determined by a transient step starting in q

(b)
1i

.

The corrected q
(b)
1i+1

is then given by:

q
(b)
1i+1

= q
(b)
1i

+ ∆pi (2.56)

This correction algorithm that corresponds to the ideas in [DL09] is repeated either

up to a predefined number imax of times or until ∆pi is below a user-defined error

bound. If the algorithm terminates without ∆p being acceptable, the length of v being

projected to generate the initial guess for q
(b)
1 as well as of all transient step calculations

are halved and the process is repeated until the error bound is reached.

Another issue is posed by the set of new starting points to put into the waiting

list possibly containing points that are very close to points that have already been

processed. Hence, a proximity criterion has to control the structure of the new start-

ing points in order to avoid overlapping with existing points, giving priority to those

points generated by transition vectors over those generated by the orthogonal vectors.

If any of the new starting points qi from q(a) or q(b) is closer to an already calculated

existing point than 0.75 times the distance between p and qi, qi is considered as re-

dundant. In this case, qi is replaced by the existing point or vice versa, keeping points

originating from transient steps. The accepted points from q(a) and q(b) are appended

to the waiting list WL. Every point in WL that has been processed is removed from

WL and put into the list PL of accepted partitioning points.

The orthogonal sets to which an accepted point is connected to are stored, in order

to later reconstruct the topology of geometric objects from these points. These connec-

tions are either represented by transition step vectors or by those from the orthogonal

basis set. The coordinates of the accepted points in the untransformed state space can

be calculated by inversing the transformation from Equation 2.45. Figure 2.10 illus-

trates a subset of the intended trajectory-directed partitioning for a three-dimensional
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state space with starting points, transition vectors and their orthogonal basis vectors

forming the partitioning of the state space. The trajectory-directed partitioning algo-

rithm is summarized in Algorithm 1.

x1

x2

x3

Figure 2.10: Illustration of the orthogonal sets constructed around the transition vec-

tors in a three-dimensional state space.

2.4.4.2 Geometric Structure of the State Space Partitions

From the vertices and edges of the state space partitions calculated, geometric objects

can be formed in order to define enclosures of distinct subsetsRj of Z where for every

p ∈ Z can be decided in which Rj it is enclosed.

The geometric object, spanned by the orthogonal set across the initial transition

vector and constrained by those of neighboring transition vectors enclosing a region

of the state space dynamic flow, exhibits a very general structure. It does not offer a

regularity such as rectangular edges in order to be fitted into geometrical object classi-

fication. In the following, it will be referred to as hypercell in the n-dimensional case

using the terminology of hyperdimensional partitioning. However, it can be described

by the topology of its vertices and edges such that the undirected graph formed by the

vertices and edges of the hypercell is isomorphic to the graph constructed for a hy-

percube in the same manner. In two dimensions, the object is a general quadrilateral.

In three dimensions, the object is described of six of such quadrilateral facets, each of

them spanned by four non-coplanar points connected by straight lines which can be

imagined as a distorted cube. The hyperdimensional equivalent to the sides or facets

of the hypercell in the three-dimensional case will be referred to as hyperfacets which,

due to their non-planar form, are not (n-1)-hyperplanes.

The facets can be described by the mathematical concept of ruled surfaces which

require for every point on the surface that there exists a straight line through this point
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Algorithm 1: Trajectory-Directed Partitioning Algorithm.

Input: Waiting listWL = {p1}

Output: List of accepted partitioning points PL with geometric topology

1 apply transformation T to all following steps

2 foreach pj ∈ WL do

3 WL = WL \ pj

4 calculate transient step vector vj = p′
j − pj

5 generate orthogonal set B from vj

6 foreach bi ∈ B do

7 calculate error control scaling factors β
(a)
i and β

(b)
i

8 calculate points q
(a)
i and q

(b)
i

9 if i==1 then

10 calculate corrected q
(b)
1

11 end

12 end

13 foreach qi ∈ {q(a) ∪ q(b)} do

14 if qi ∈ [0, 1]nd then

15 if ¬∃ p(ex) ∈ (PL ∪WL) : ‖p(ex) − qi‖ < 0.75 · ‖pj − qi‖ then

16 WL = WL ∪ qi

17 end

18 end

19 end

20 PL = PL ∪ pj

21 end

22 reverse transformation T

with every point on this line again being a point on the ruled surface. This matches the

idea that the surface is a linearization between its spanning edges, which is adequately

approximating the behavior of imaginary flow trajectories in the state space. Figure

2.11 illustrates a hypercell in three dimensions with faces defined by ruled surfaces.

While offering high approximation accuracy, in higher dimensions, the concept of

non-planar hypersurfaces defining the faces of geometric objects makes it very difficult

to calculate for a given point in state space to which hypercell it is assigned. Never-

theless, the non-overlapping complete non-uniform irregular partitioning of the state

space into hypercells is the theoretical model for a high accuracy discretization with

the introduced linearization error between vectors controlled by step-size control.

The goal is to reduce the complexity of the hypercell description in order to obtain

a feasible description. The first observation is that, if the surface facets were hyperpla-
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x1

x2

x3

Figure 2.11: Illustration of a hypercell object in a three-dimensional space.

nar, the hypercell could be represented by n-polytopes due to the faces of n-polytopes

by definition being (n-1)-polytopes for which the decision of point-enclosure is easy.

However, transferring the hypercell to n-polytopes would destroy the accuracy of the

enclosures as this is a major simplification.

The inclusion of a point p within a hypercell can be decided by checking the posi-

tion of p relative to each of the 2n hyperfacets of the hypercell. If for every hyperfacet

of the hypercell p lies, relative to the hypercell, on the inner side of the hyperfacet, p

lies within the hypercell. Due to the edge-topology of the hypercell being isomorphic

to the one of a hypercube, the 2n−1 vertices spanning each facet of the hypercell can

be identified by graph traversal. A function f (p) describing the position of p to the

hyperfacet is needed such that:

f (p) =







> 0 if p lies on the inner side of the hyperfacet

0 if p lies on the hyperfacet

< 0 if p lies on the outer side of the hyperfacet

(2.57)

Such a function is given by the distance of the normal vector on the hypersurface point-

ing to p. Due to the hypersurface equation not being determinable analytically from

the set of its vertices, a nonlinear hypersurface function shall be developed, describing

the hypersurface by a weighted combination of (n-1)-hyperplanes, each spanned by

the n − 1 edges connected to each vertex of the hyperplane. As illustrated in Figure

2.12 for a facet of a three-dimensional cell, for each of the four vertices a1 to a4, a plane

is spanned by its adjacent edges. For vertex a1 the corresponding plane is spanned by

the edges e
(a)
14 = a4 − a1 and e

(a)
12 = a2 − a1.

If a point p is on this plane, it can be directly described by a linear combination

of both edge vectors representing a parametric formulation of the plane. In order to
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a1

a2

a3a4

p

x1

x3

x2

Figure 2.12: Basis vector sets for each vertex of a hypercell facet for determination of

the position of point p with respect to the facet.

identify the position of an arbitrary point relative to the plane, a normal vector n1 on

the plane is added to the linear combination. With the coefficient of n1 determining the

distance to the plane corresponding to Equation 2.57, the position of p relative to the

plane can be calculated.

For the n-dimensional case, a hypercell has 2n hyperfacets and each of the hyper-

facets is described by m = 2n−1 vertices a1 to am. Each vertex ai is connected to n

edges eij of the hypercell of which n− 1 span a hyperplane. The position of a point p

relative to such a hyperplane can be described by the linear combination of the edges

eij spanning the hyperplane and the normal vector n
(a)
i added to ai:

p = αi1ei1 + αi2ei2 + · · ·+ αin−1ein−1 + αinn
(a)
i + ai (2.58)

For a subset of the hyperplanes, the normal vectors already have been computed as

a member of the orthogonal set around the vertex connected to the hyperplane. How-

ever, due to the proximity criterion allowing vectors that are not in the direction of the

trajectories to be non-orthogonal to the vectors spanning the hyperplane, a calculation

of the normal vector can be mandatory for those hyperplanes. Unfortunately, the cal-

culation of the normal vector n
(a)
i is nontrivial in the higher dimensional case. While in

R
3 the cross product of the two spanning vectors yields the normal vector on the plane,

the general case in R
n is not directly accessible. The cross product v1 × v2 × ...× vn−1

of any ordered (n-1)-tuple of vectors can be computed by forming a matrix whose sub-

sequent rows are the vectors v1, v2, ..., vn−1. The k-th component of v1 × v2 × ...× vn−1

is (−1)k times the determinant of the submatrix obtained by deleting the k-th column

[Mas83]. As an alternative to the generalized cross product, the normal vector can

41



2 System Representation for Verification

again be computed by the Gram-Schmidt orthogonalization where the n − 1 vectors

spanning the edges of the hyperplane and the pseudo-orthogonal vector vn from the

initial point determination are used as input, resulting in an orthogonalization of vn to

the vectors spanning the (n-1)-hyperplane.

The parametric equation for the hyperplane is given by setting αin = 0 in Equa-

tion 2.58. In order to determine the coefficients αij for a given p, an equation system

consisting of m equations for every vertex of the hyperplane can be set up:

α11e11 + α12e12 + · · · + α1n−1e1n−1 + α1nn
(a)
1 + a1 − p = 0

α21e21 + α22e22 + · · · + α2n−1e2n−1 + α2nn
(a)
2 + a2 − p = 0

...
...

...
...

...
...

...
...

αm1em1 + αm2em2 + · · · + αmn−1emn−1 + αmnn
(a)
m + am − p = 0

(2.59)

Two out of four planes spanned by the edge vectors of a facet in a three-dimensional

space are illustrated in Figure 2.13.

x1

x3

x2

a1

a2

a3

a4

Figure 2.13: Curved surface in a three-dimensional space representing a facet of a cell.

Two of the four planes spanned by the edge vectors of the vertices a1 and a3 are illus-

trated. The weighting function uses one plane for each vertex of the facet in order to

obtain a nonlinear surface function describing the facet.

Finally, after calculating the coefficients αin of the m normal vectors n
(a)
i , the curved

surface function of the hypersurface can be approximated by a combination of the

planes spanned by the edge vectors of each vertex using a weighting of the coefficients
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αin corresponding to the distance of points p to each ai. This yields the function f (p)

determining the position of p relative to the hypersurface:

f (p) =
α1nc

−‖p−a1‖ + α2nc
−‖p−a2‖ + · · ·+ αmnc

−‖p−am‖

c−‖p−a1‖ + c−‖p−a2‖ + · · ·+ c−‖p−am‖
(2.60)

The basis c shall be chosen such that every other c−‖p−ai‖ evaluates to 0 if there is

an aj with ‖p − aj‖ below a threshold value. This ensures that the weight of other

hyperplanes goes towards zero when a point is near a vertex aj.

The hypersurface function describing the points on the facet is obtained by setting

f (p) = 0. The denominator scales the sum of theweights to 1. By using the exponential

function such that distance 0 results in a weight of 1 and by the normalization of the

distances, high approximation accuracy is guaranteed.

2.4.4.3 Transition Relation of the Hypercells

The paraxial hyperbox partitioning approach needed to calculate the trajectories of

sample points in a hyperbox in order to determine which hyperboxes are reached by

these trajectories for determining the nondeterministic over-approximated successor

relation. In contrast, the trajectory-directed approach guarantees by design that the

successor of a hypercell is the adjacent hypercell in the direction of the transition vec-

tors spanning the hypercell. The flow of the state space dynamics is considered to be

homogeneous within a partition enclosed by the transition vectors of the edges of the

partition. Due to the edges in flow direction being parallel to the flow, every point

within a hypercell maps to the same adjacent subsequent hypercell. This successor re-

lation can be directly obtained from the iterative partitioning algorithm that explores

the state space using the trajectory-orthogonal expansion.

The only exception arises when the partitioning algorithm is splitting the subse-

quent hypercell by insertion of additional points. This is due to an expansion of the

vector field flow or merging the flow of preceding hypercells into a single successor

caused by a contraction of the flow. In such cases, the proximity criterion maps one

successor to more than one predecessor or vice versa. Hence, more than one hyper-

facet can be adjacent to a larger facet of a hypercell if the flow contracts. If the flow

expands, one hyperfacet of a hypercell can be adjacent to more than one hyperfacet of

subsequent hypercells. In such a case, the successor relation has to be adapted to map

to the corresponding successors as illustrated in Figure 2.14. In order to calculate the

surface of the larger hyperfacet, the hypersurface formula, as introduced in Equation

2.59, can then be computed by taking into account all vertices of the adjacent smaller

hyperfacets.
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x1

x2

Figure 2.14: Schematic illustration of contracting and expanding vector field flow, with

the corresponding partitioning and the successor relation for the hypercells.

2.4.4.4 Mapping the Trajectory-Directed Partitioning to a DATS

With the vertices and edges of the state space partitioning determined by using the

trajectory-directed approach, a mapping onto a DATS has to be generated in order to

apply verification algorithms.

While the state space partitions, represented by hypercells, and the inherent suc-

cessor relation have been introduced in the previous subsections, it has to be defined

how a hypercell is represented by a state of the DATS. Moreover, defining the succes-

sor relation of the DATS connecting the states, as well as the rest of the parameters of

the DATS, is required to complete the discrete model.

Determining point inclusion in the hypercells is important for the completeness

of the theoretical model of the partitioning. It could for example be applied to de-

velop verification algorithms not operating on a discrete graph structure but directly

on symbolically determined point-to-point mappings within the finite set of hyper-

cells. In such a concept, the homogeneous flow in the hypercells, determined by the

transition vectors spanning the hypercells, could define the transition vector length

and direction of a point by taking into account the weighted position of the point to

the hypercell transition vectors.

However, for application of graph-based verification algorithms, each state σi of the

DATS is corresponding to one hypercell Ri with 1 ≤ i ≤ k. Hence, the cardinality of Σ

is k:

Σ = {σ1, ..., σk} (2.61)

The DATS is then constructed by the following mappings. The parameter vectors of

the states is given by the labeling

LV(σi) = p
(c)
i (2.62)
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with p
(c)
i being the center point of Ri, representing the extended state space variables

in this point. The center is calculated from the m = 2nd vertices aj that constrain a

hypercell:

p
(c)
i =

1

m ∑
1≤j≤m

aj (2.63)

A transition relation exists between those states where the state space trajectories start-

ing in a hypercell Ri reach the adjacent hypercell Rj. The adjacency is determined by

the intersection of the sets of vertices a(i) spanning Ri and a(j) spanning Rj not being

empty:

R = {
⋃

(σi, σj)| ∀ p ∈ Ri ∃ ∆t : p+ v · ∆t ∈ Rj} with a(i) ∩ a(j) 6= ∅ (2.64)

The transition times between σi and σj are determined by the trajectory time ∆t com-

puted by a transient step from p
(c)
i to p

(c)
j :

T(R(σi , σj)) = ∆t(p
(c)
i ,p

(c)
j ) (2.65)

Each transition with a transition time greater zero has an atomic transition proposition

of 0, marking it as dynamic transition created by a state space trajectory:

LT(R(σi , σj)) = 0 ⇔ T(R(σi , σj)) > 0 (2.66)

A trajectory starting in a DC-operating-point ends within this point, hence there is a

transition of a state representing a DC-operating-point to itself:

(σi, σi) ∈ R ⇔ {∀ p ∈ Ri : p+ v · ∆t ∈ Ri} for all ∆t ≥ 0 (2.67)

By definition, the transition time of such transitions shall be zero, as the circuit stays in

this loop state until an external excitation makes the circuit leave this state:

T(R(σi , σi)) = 0 and LT(R(σi , σi)) = 0 (2.68)

2.4.4.5 Duality of the Trajectory-Directed Partitioning

With the mapping of the trajectory-directed state space partitioning onto a DATS, ap-

plication of verification algorithms to the DATS modeling an analog circuit would be

possible. However, one observation can motivate an approach to decrease the model-

ing effort of determining the hypercells significantly without decreasing the discretiza-

tion accuracy for the DATS. This observation is the duality of the trajectory-directed

edges connecting the vertices of hypercells and the transition vectors between the cen-

ters of the hypercells. Figure 2.15 illustrates this duality where the transient steps be-

tween the vertices determining the edges of the hypercells exhibit the same transition
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behavior as the transitions connecting the centers of the hypercells, themselves approx-

imating the trajectories between adjacent centers of the hypercells. Moreover, while the

transition relation between two adjacent centers is an approximation calculated by the

connection of the centers of both hypercells, the transition steps creating the edges of

the hypercells are by design computed with the accuracy of transient analysis.

Therefore, for an implementation of the trajectory-directed partitioning, the vertices

and edges computed by the partitioning algorithm shall be directly defining the states

of the DATS and the corresponding transition relations.

When transferring the trajectory-directed partitioning to a DATS, only the parame-

ter vector for each state has to be changed compared to the mapping defined in Section

2.4.4.4:

LV(σi) = pi (2.69)

with pi representing the original sampled points in state space of the trajectory-

directed discretization algorithm. The transition relations are directly determined by

the transient step vectors vij computed during the initial state space sampling, result-

ing in a deterministic transition relation where each state has exactly one successor

state:

R = {
⋃

(σi, σj)| ∃ vij : pi + vij = pj} (2.70)

All other mappings defined in Section 2.4.4.4 apply correspondingly by replacing the

centers of the hypercells p
(c)
i with the initially sampled pi.

x1

x2

Figure 2.15: Illustration of a two-dimensional vector field with calculated transition

endpoints as boxes and the quadrilateral enclosed regions of the state space. The circles

represent the centers of the enclosed state space regions, connected corresponding to

the initially calculated transition relation. The regions enclosed by the quadrilaterals

of four region centers are dual to the regions bounded by the transition vectors.
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2.4.4.6 Handling Input Variables

The DATS obtained from the trajectory-directed discretization of the state space pre-

sented in Section 2.4.4.4 with the simplification from Section 2.4.4.5 models the dy-

namic behavior of an analog circuit. For systems without inputs or with constant in-

put values, this discrete model completely represents the system in order to be verified

using verification algorithms on the graph structure. However, for systems with input

variables determined by external input stimuli, this model has to be extended.

Therefore, an input variable model for the trajectory-directed discrete modeling has

to be developed. This model shall correspond to the idea of the transient simulation

algorithm for analog circuits, where in every time step the solution is computed con-

sidering constant input values and changes of the input variables are only considered

between the time steps. Hence, those dimensions of the extended state space repre-

sented by input variables are explored by the trajectory-orthogonal sampling just as

the other state space variables determined by energy-storing elements of the circuit.

In order to allow arbitrary input changes for transitions between states in the dis-

crete model, for each state and for each input dimension, an input transition for a state

to its successor and predecessor parallel to the axis of the corresponding input dimen-

sion has to be created in the DATS.

Fortunately, using the dual representation where the sampled points in the state

space correspond to the centers of the states LV(σi) = pi, the trajectory-directed dis-

cretization algorithm already generates the information about the two neighboring

states for σi parallel to the corresponding input axis dimension s due to the orthogonal-

ization algorithm. The input axis is described by the vector is, being the s-th column

vector of the identity matrix Ind . Calculated from the transition vector v starting in

pi, the orthogonal vector bs, generating the points q
(a)
s and q

(b)
s , is parallel to the in-

put axis. This is due to the trajectories being sampled with piecewise constant inputs,

and the inputs are only changed between sample steps. Hence, the dynamic transition

vectors have zero magnitude in the direction component of the input dimensions and

therefore, the normalized bs equals to is.

For a state σi, every identified neighboring state σj for every input dimension is

finally connected to σi by an undirected transition in the DATS, meaning that these

input edges can be traveled in both directions corresponding to any external input

variable change:

R = R ∪ (σi, σj) ∪ (σj, σi) (2.71)

By definition, the transition time of such transitions shall be zero:

T(R(σi , σj)) = 0 and T(R(σj, σi)) = 0 (2.72)
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Figure 2.16: Schematic illustration of a DATS with a possible input change-induced

transition path (a). The corresponding input signal (b) and output signal (c) is assumed

for this path.

Finally, these transitions have to be identified as input edges in the DATS for offering

the possibility of masking these states for verification algorithms such as oscillation

detection:

LT(R(σi , σj)) = 1 and LT(R(σj, σi)) = 1 (2.73)

Figure 2.16(a) illustrates an imaginary DATS with nine states with a highlighted input

change-induced transition path. The input signal that can be traced in the DATS lead-

ing to this path is illustrated in Figure 2.16(b) with the corresponding output signal

behavior illustrated in Figure 2.16(c). Consider the system to be in the DC-operating-

point represented by state 9. The circuit can stay there infinitely. However, the first

step of the input voltage brings the circuit to leave state 9 over an input edge into the

state corresponding to the new input voltage represented by state 6. This is a dynamic

state which means that immediately a dynamic timed transition to state 5 occurs which

again represents a DC-operating-point. The process is repeated for the next input step,

finally bringing the modeled circuit to stay in state 1. With the modeled input edges in

the DATS, all possible input connections between states can be considered for verifica-

tion.

A limitation of the edge steepness of input signal changes should be handled by the

verification algorithms on the DATS, assigning a nonzero transition time to these input

transitions when a limited input bandwidth has to be considered. Therewith, arbitrary

piecewise linear input stimuli can be represented on the transition paths.

2.4.4.7 Runtime Complexity

Considering the discretization of an analog circuit to a DATS with respect to the direct

mapping of the states to the sampled points in the state space as described in Sec-
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tion 2.4.4.5, the asymptotic worst-case runtime complexity of the trajectory-directed

discretization algorithm is correlated to the number of points np sampled in the state

space of the modeled circuit. This number of points increases exponentially with the

number of dimensions nd of the extended state space (variables of the energy storing

elements and input dimensions). The base κ of the exponential function represents the

average number of sampling points needed for covering an one-dimensional range,

which is determined by the step length control of the transient steps between the sam-

pled points in the state space:

np = κnd (2.74)

For every sampled point, the trajectory-directed discretization algorithm computes the

transient simulation step contributing ttr, the Gram-Schmidt orthogonalization con-

tributing tgs and the distance information contributing tpr for the proximity criterion.

The remaining parts of the algorithm with subordinate contribution to the complexity

of the algorithm are summed up in tre. An exact asymptotic complexity for transient

analysis depends on the applied set of algorithms. However, the transient analysis

algorithm contains parts with cubic asymptotic worst-case complexity with respect to

the matrix of the circuit equations and the number of variables being related to nd. The

Gram-Schmidt algorithm has a complexity of O(n3d) [GVL96]. The proximity neighbor

search conducted by a Kd-tree consumes O(np log np) to be created and O(log np) for

the query [Ben90]. Hence, the runtime td of a discretization run can be estimated by:

td = κnd · (ttr + tgs + tpr + tre)
︸ ︷︷ ︸

tp

(2.75)

The overall computation time of a single sample point tp is dominated by the large

factor of transient analysis ttr, with tpr only becoming dominant for high state numbers.

Anyhow, with respect to np, the asymptotic runtime complexity of the discretization

algorithm is dominated by the proximity computation as it is the only component with

direct dependency on np:

Cnp = O(np log np) (2.76)

However, changing the perspective of complexity considerations to be relative to

the number of state space dimensions, the asymptotic worst-case runtime complex-

ity of the trajectory-directed discretization algorithm is dominated by the exponential

growth of sample points with respect to the number of state space dimensions:

Cnd = O(κnd) (2.77)

While this exponential runtime complexity in the number of extended state space di-

mensions is common to all discrete modeling approaches for analog circuits, relevant

analog circuit blocks usually do not exceed a system order of eight, which can be han-

dled well by this approach. Moreover, by application of an eigenvalue-based model
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order reduction of the DAE system [HKH04], an extension to circuits with parasitic

capacitances and full BSIM3 transistor models would be possible. The reduction can

be achieved by reducing the state space to the dominant state variables of a system and

separating the parasitic ones which are mathematically proven not to affect the system

behavior above a defined threshold.

2.4.4.8 Modeling Error Analysis

The goal of the previously introduced discrete modeling of analog systems is to ob-

tain a circuit model with minimal discretization error, corresponding to the criteria

presented in Section 2.4.2. In order to obtain an overall impression on the different

modeling errors of analog systems, three major classes of errors have to be distin-

guished when comparing a physical circuit implementation with any type of math-

ematical model.

Firstly, the error in the following referred to as “physical modeling error” will de-

scribe all differences between the physical implementation and the mathematical DAE

circuit model. Secondly, the results of transient analysis are affected by numerical com-

putation errors which are referred to as “simulation error”. This simulation error is

common for all contemporary circuit analysis tools. Thirdly, the error introduced by

the discrete modeling process will in the following be referred to as “discretization

error”. This discretization error distinguishes the different discretization approaches.

Physical Modeling Error The DAE model generated for transient circuit analysis by

MNA, as described in Section 2.3.2, introduces an error due to the simplified BCEs of

the circuit elements using device models not representing the complete physical effects

down to the quantum level. Especially for transistor models in sub-micron technolo-

gies, high effort of modeling is spent on capturing their behavior.

However, as discussed in Section 2.3.1, even the most exact models available do not

offer a complete model of the physical behavior. Often, modeling accuracy is traded

in for faster runtimes of the algorithms operating on the DAE model, as the number of

equations has a negative influence on the runtime of the analysis algorithms.

Simulation Error Not only the model itself contains an error but also the transient

analysis algorithm described in Section 2.3.3, which is based on numerical integration,

contributes an error when computing the system’s behavior on the DAE model. Al-

though the LTE of each step controls the time step length, in implementations of the

SPICE algorithms there are user defined error thresholds such as RELTOL and AB-

STOL which affect the accuracy of the transient analysis. However, by increasing the

accuracy, the number of computed time steps and the number of iterations of the nu-

merical integration in each step increases just as well.
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Discretization Error The discretization error is introduced by the representation of

the continuous dynamics of an analog circuit by a discrete transition system in which

the behavior of the circuit has to be captured.

As a general benchmark for a discrete model of a circuit, the comparison of state

space trajectories can be considered. On the one hand, they are computed by a tran-

sient analysis with the algorithm described in Section 2.3.3, on the other hand the tra-

jectory is determined by a discrete set of states in the modeled DATS. Such practical

evaluations will be made in Chapter 6 in order to compare the results of the imple-

mentation of the new trajectory-directed discretization to the state-of-the-art hyperbox

discretization algorithm and to transient analysis.

Based on the five criteria to evaluate a discretization approach defined in Section

2.4.2, the theoretical modeling quality of the trajectory-directed discretization approach

is discussed in the following in comparison to the hyperbox discretization approach.

Table 2.2 summarizes the characteristics of both approaches. Besides these theoretic

considerations, a comparison of experimental results for the successor relation error

and the determinism of the successor relation of the trajectory-directed discretization

compared to the hyperbox discretization will be discussed in Section 6.3.4.

Direction Error The direction error ǫ
(Rj)

θ within the partitionsRj of the trajectory-

directed approach is controlled by a user-defined maximum rθ . Hence, the algo-

rithm controls the size and structure of the partitions to be below this bound. How-

ever, around singularities such as the attractors in the state space introduced by DC-

operating-points, a threshold value controls the minimum partition size not be de-

creased infinitely. This comes at the cost of not meeting the error threshold in this

particular case.

In order to obtain a DATS model of a size that can be checked well by verification

algorithms, the integration time of the transient simulations used for computing the

transition vectors determining the partition size can be set to a user-defined minimum

and maximum. The same applies to the hyperbox discretization approach. Due to the

higher degree of freedom for deciding the partitioning of the state space, the trajectory-

directed approach can be expected to create less partitions for the same ǫθ compared

to the hyperbox discretization.

Length Error Just like the direction error, the length error ǫ
(Rj)

∆
within the parti-

tions Rj is controlled by a user-defined maximum r∆. The same considerations as for

the direction error apply correspondingly.

Number of Partitions The number of partitions k of the trajectory-directed ap-

proach is indirectly determined by the user-defined bounds rθ and r∆. This is due to
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the size of the partitions within a selected part of the state space to be discretized being

correlated to the allowed direction and length errors or the minimum and maximum

allowed partition size.

Determinism of the Successor Relation The trajectory-directed discretization

creates the successor relation parallel to the flow of the state space dynamics. There-

with, the out-degree of the states in the DATS is mostly 1. The only possible exception

was discussed in Section 2.4.4.3. Moreover, the dual representation of the partitioning

assures the out-degree to be exactly 1 when no borders of the state space are reached

that cause the determination of successors to be stopped.

In contrast, the hyperbox discretization can over-estimate the angle of the successor

relation up to 90 degrees. Therewith, depending on the number nd of dimensions of

the state space, the out-degree can be up to 2nd − 1. This is due to the paraxial slicing

and therewith, in a worst-case scenario as previously illustrated in Figure 2.7(d), in all

dimensions all adjacent boxes within an angle of 90 degrees can be selected as succes-

sors. Those nondeterministic paths are weakening the expressiveness of the model as

an over-approximated set of possible trajectories is reported.

Successor Relation Error With the arguments given in the previous paragraph,

the successor relation error ǫsuc of the trajectory-directed discretization is almost 0 de-

grees as most of the successors shall be directly determined by transient steps when

using the initially sampled points as center vectors of the states of the DATS. Even

when using the centers of the hypercells for the center vectors, the possible successor

relation error between two states is bounded by the user defined rθ . This is due to the

enclosing vectors of the hypercell, that have been calculated by transient analysis, are

controlled not to have an angle difference above rθ . Corresponding to the previous

considerations, the only exception applies to states representing DC-operating-points.

For the hyperbox discretization approach, ǫsuc can be up to 90 degrees. This can

again be concluded from the example shown in Figure 2.7(d).
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Table 2.2: Comparison of the trajectory-directed discretization and the hyperbox dis-

cretization approaches.

Criterion Trajectory-directed Hyperbox

Direction error < rθ < rθ

Length error < r∆ < r∆

Partitions determined by rθ , r∆ determined by rθ , r∆

Successor determinism ≈ 1 ≤ 2nd − 1

Successor relation error ≈ 0◦ < 90◦
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3
Property Specification for Verification

In the previous chapter, the system representation for verification with emphasis on

developing a DATS model of analog systems has been presented. Based on this intro-

duced discrete system representation, property specification approaches will be intro-

duced in the following. Starting with a definition of the three elementary concepts of

property, performance and specification, an advanced approach for analog property

specification is systematically developed by discussing existing approaches.

3.1 Basic Definitions

A set of properties can be defined for a system that are relevant to evaluate the system

behavior.

Definition 3.1.1 (Property)

A system’s property can be any function that can be calculated on the system’s vari-

ables. All properties of a system span the property space P.

Within the property space, the system exhibits a characteristic behavior that con-

strains the property space to nominal performances that the system can exhibit by

system analysis.

Definition 3.1.2 (Performance)

A system performance f(S, P) is the result of an evaluation of system properties and

hence represents a point in the property space.
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p1

p2

Pspec(p1, p2)
f(S, P) /∈ Pspec(p1, p2)
f(S, P) ∈ Pspec(p1, p2)

Figure 3.1: Property space for properties p1, p2 with specification Pspec(p1, p2) and per-

formances satisfying and violating the specification.

Definition 3.1.3 (Specification)

A specification Pspec ⊂ P defines a subspace of the property space by constraining it

to required system performances. Figure 3.1 illustrates a property space with a system

performance satisfying and a performance violating the specification.

3.2 Operational and Declarative Specification

In order to verify a system, it is mandatory to define under which performance con-

straints it will be considered as fully functional. The property specification used to

evaluate these performance constraints has several aspects. While definition 3.1.3 de-

scribes the abstract characteristics of a specification, practical requirements to specifi-

cations are complex.

Initially, the functional requirements are often defined informally in a natural lan-

guage specification in the system design process. Based on these requirements, a tech-

nical specification is created which then has to be transferred into a property specifi-

cation that can be evaluated during the design process. For automated approaches,

this specification has to be formalized to be machine-readable and therewith can be

evaluated by verification algorithms. Moreover, the property values not only have to

be specified. Additionally, a formal and well-defined specification of how these prop-

erties are evaluated within the verification environment has to be made. This can be

achieved by defining consistent verification semantics for the available measurements.

With the level of formality of the verification approach, the requirements in the formal-

ity of the specification are increasing as well.
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Formal specifications can either be operational or declarative [Lam00]. An opera-

tional specification describes a model of the system to be designed as a collection of

processes that the system shall incorporate. In the area of digital system specification,

an operational specification would be in form of a finite state machine describing the

desired operation of an implementation of this machine. While operational specifica-

tions are common in the area of software design using a component model, operational

models for specification of digital systems quickly grow in complexity and hence are

not widely used.

Operational specification in analog hardware design is applied when a top down

system design flow is specified by a set of simplified behavioral models to specify the

high-level design of the system. By checking the functional equivalence between such

operational behavioral specifications and a lower abstraction level implementation,

much of the design flow verification is accomplished.

Declarative specification uses a logic-based reasoning on elementary properties of

a system from which more complex relations are specified in a recursive approach. For

digital systems, declarative property specification can be connected with Boolean logic

that is enhanced by a temporal reasoning layer. In contrast, analog declarative speci-

fication needs a translation from the complex analog system properties to a consistent

specification language with a logic foundation for a well-defined semantic definition.

There is a wide gap between declarative temporal logic-based specification that will be

discussed in the following section and the designer’s intent of informal specification of

analog circuit properties. Hence, the characteristics of existing logic-based formal spec-

ification approaches have to be analyzed in order to develop a formal specification and

verification methodology for analog circuit properties in Section 5.

3.3 Property Specification for Discontinuous Systems

The foundations of formal system property specification have been developed in con-

junction with the application of temporal logic reasoning to program verification. Lin-

ear Temporal Logic (LTL) [Pnu77] and Computation Tree Logic (CTL) [CE82] specifi-

cations are evaluated on transition systems represented as Kripke structures which are

directed labeled graphs. This proof-based verification of system properties formulated

in temporal logics on system models is called model checking.

Temporal logic specification applied to models of digital circuits enabled CTL-

based model checking approaches. The breakthrough was marked by the introduction

of symbolic approaches of modeling transition systems and transition relations using

Binary Decision Diagrams (BDDs), solving the problem of state space explosion due

to its explicit representation, handling up to 1020 states [BCM+90] and introducing the

Symbolic Model Verifier (SMV) [McM92]. In order to overcome the problem of very

abstract specification formulation, approaches to classification of common property
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patterns in CTL [DAC98] and application of natural language specification by trans-

lating English natural language specifications to SMV code [Hol99] attempted to align

formal property specification and verification engineers’ thoughts.

With formal verification gaining more and more importance, a consortium of IC-

design and EDA-companies developed the proposal of the Property Specification Lan-

guage (PSL), finally becoming IEEE standard 1850 in 2005 [FMW05].

3.3.1 Linear Temporal Logic (LTL)

Linear temporal logic (LTL) [Pnu77] has a linear, non-branching time model with tem-

poral modal operators operating on propositional variables as atomic propositions

connected by the logical connectives negation, and, or and implication. The syntax

of well-formed LTL formulas is defined by the following context-free grammar:

φ = a | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2

| ⋄ φ | φ1 U φ2
(3.1)

An explanation of the placeholders for the language symbols of LTL is given in

Table 3.1 and Figure 3.2 visualizes the semantics of the temporal operators of LTL. The

semantics of LTL are defined as follows with respect to a path π = σ0, σ1, σ2, ..., σn in

the Kripke structure M and properties φ and ψ of atomic propositions a:

M, σ0 � a ⇔ a ∈ L(σ0) (3.2)

M, σ0 � ¬φ ⇔ logical negation of (σ0 � φ) (3.3)

M, σ0 � φ ∧ ψ ⇔ σ0 � φ and σ0 � ψ (3.4)

M, σ0 � φ ∨ ψ ⇔ σ0 � φ or σ0 � ψ (3.5)

M, σ0 � X φ ⇔ σ1 � φ (3.6)

M, σ0 � G φ ⇔ ∀ i ≥ 0 : σi � φ (3.7)

M, σ0 � F φ ⇔ ∃ i ≥ 0 : σi � φ (3.8)

M, σ0 � φ U ψ ⇔ ∃ i ≥ 0 : σi � ψ and ∀ 0 ≤ j < i : σj � φ (3.9)

The temporal operators of LTL allow to specify important system characteristics

such as safety and liveness. Safety assumes that something bad never happens, which

maps to the following LTL formula when considering the states with the atomic propo-

sition φ as bad: G ¬φ. This specification states that generally, i.e. for all future states of

the design under verification (DUV), states labeled with φ will never be reached. Live-

ness assumes that something good, represented by states where the atomic proposition

ψ is true, keeps happening, which maps to the LTL formula GFψ.
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Table 3.1: Explanation of LTL syntax.

a atomic proposition

⋄ temporal operator F = eventually

G = generally

X = next

U U = until

σ0

φ φ φ

φ

φ φ φ φ

φ

ψ

M, σ0 � F φ

M, σ0 � G φ

M, σ0 � X φ

M, σ0 � φ U ψ

Figure 3.2: Illustration of the LTL operation semantics.

3.3.2 Computation Tree Logic (CTL)

Computation Tree Logic (CTL) [CE82] is branching time logic where, in contrast to the

linear non-branching time domain of LTL, path quantifiers specify the validity of for-

mulas on a branching infinite computation tree of future states obtained from unwind-

ing the Kripke structure into this tree. The semantics of the LTL temporal operators

remain unchanged but for each temporal operator, an associated path quantifier de-

fines whether the expression shall hold on all possible paths of the computation tree

or whether one path of the computation tree for which the temporal operator holds

is sufficient for satisfying the CTL formula. The universal path quantifier “A” defines

the former and the existential path quantifier “E” the latter requirement. A CTL for-

mula can be a nested expression of operations as shown in the following CTL syntax

grammar.
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ψ

ψ

φ

φ

φ

φ

φ

φ

φ

φ

E ψ U φ EF φ EG φ EX φ

A ψ U φ AF φ AG φ AX φ

Figure 3.3: Illustration of the CTL operation semantics.

The syntax of a formula φ in CTL with atomic propositions a is defined by:

φ = a | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2

| ⊲ ⋄ φ | ⊲ φ1 U φ2
(3.10)

An explanation of the placeholders for the language symbols of CTL is given in Table

3.2, and Figure 3.3 describes the operations visually such that the respective formula is

satisfied for the root node.

Table 3.2: Explanation of CTL syntax.

a atomic proposition

⊲ path quantifier A = on all paths (universal quantifier)

E = on at least one path (existential quantifier)

⋄ temporal operator F = eventually

G = generally

X = next

U U = until

Due to the logical duality of the universal and the existential quantifier, the uni-

versally quantified CTL-operations can be composed from the operations EX, EG and

EU.
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The universal quantifier postulates the validity of a proposition with respect to the

temporal operator on all paths. The dual statement is that there exists no path, on

which this proposition is not valid:

∀a ≡ ¬∃¬a ⇒ AGφ ≡ ¬EF¬φ (3.11)

3.3.3 Property Specification Language (PSL)

Property specification of concurrent systems using CTL paved the way for introduc-

tion of formal methods in system design. Especially in the area of digital circuit design,

model checking approaches using CTLwere applied at the end of the 1990s. Following

the first verification successes, the demand for a more designer friendly specification

emerged. CTL turned out to be hard to write and read by non-specialists and an im-

proved syntactic layer on top of CTL was introduced by IBMwith their in-house speci-

fication language called “sugar” [BBDE+01]. In addition to CTL operations, sugar was

extended by sequential extended regular expressions (SEREs) to reason about more

complex state transitions within Kripke structures. LTL was added as a basic temporal

foundation, as digital simulation traces are strictly linear in time. Sugar was exten-

sively used in verification of these simulation traces.

An industry consortium selected IBM’s sugar to be the basis for a new standard-

ized property specification language (PSL) and in 2005 PSL became IEEE standard

1850 [FMW05]. PSL builds a common specification and verification layer for direct

interfacing with digital hardware description languages (HDLs) such as VHDL, Ver-

ilog, SystemVerilog and SystemC. PSL expressions are composed from a Boolean layer,

a temporal layer and a verification layer.

The Boolean layer forms the atomic propositions using simple Boolean expressions

interfaced with variables of the underlying HDL. In addition, local temporal operators

are introduced in the Boolean layer for further refining propositions using operations

such as rose(a) and fell(a), which are true if in the previous step the variable a

was 0 and now is 1 for rose() or vice versa for fell().

The temporal layer defines behavior over time, forming properties from timed rea-

soning about Boolean layer expressions. Temporal operators can be the extended LTL

semantics resulting in always, never, eventually, next, before and until. In

addition, SEREs allow to specify more complex timed behavior. The expression a; b; c

for example specifies the non-overlapping sequence of b directly following to a and

c directly following to b. For a detailed explanation of the expressiveness of SEREs

please refer to [Con04] or [EF06].

The verification layer finally consists of directives specifying how the properties

specified on the temporal layer should be evaluated by the verification back-end. The

main verification layer directives are:
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• assert for telling the verification back-end that a temporal layer expression

shall hold,

• assume for constraining the verification to those states where the temporal layer

expression is true,

• restrict for constraining design input sequences to get to a specific state before

checking assertions,

• cover for directing the verification back-end to check if a specified path was

covered by the verification and

• fairness for assumptions corresponding to liveness properties.

3.4 Existing Approaches to Specification of Analog Sys-

tem Properties

In contemporary analog design flows, verification is not formalized and so is the spec-

ification. Test bench-based characterization of circuit properties is comparing an infor-

mal specification, often given in form of a table, of allowed ranges of certain circuit

properties such as maximum power consumption, slew rate, startup time, etc. to ex-

perimental evaluation of the DUV in a circuit test bench. Hence, there is no machine

readable formalized specification methodology that guarantees a standardized verifi-

cation approach. In fact, the incomplete and indirect specification of circuit properties

leaves considerable freedom of interpretation to transfer the designer’s intent into a

circuit design as well as how to verify the specified properties. While in modern test

benches, a set of simulation measurements is predefined in order to quickly charac-

terize a given circuit, global quality management of the specification and verification

is not yet widely introduced into design flows. Nevertheless, without a formalized

detailed specification, several sources for design errors exist.

There are two fundamental domains of property specification which have a high

impact on how the verification of the properties can be performed. On the one hand,

for today’s design flows, a signal-oriented temporal property specification is needed in

order to describe the desired behavior of simulation results. On the other hand, formal

verification methodologies for analog circuits consider circuit behavior to be analyzed

in the circuit’s state space. Therefore, specification of dynamic temporal analog prop-

erties for application in formal verification flows is required to consider the state space

domain.

In the following, existing approaches to formalizing property specification of ana-

log circuits in the signal domain as well as in the state space domain are discussed. In

the subsequent section a synthesis of the findings will lead to the development of a new
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Analog Specification Language (ASL) which is capable of specifying analog behavior

in both the signal and the state space domain of the circuit.

3.4.1 Specification of Assertions within Analog Hardware Descrip-

tion Languages

Property specification and property verification are closely linked as the verification

can be considered to be the evaluation of the specification. In the context of this the-

sis, a property specification is a stand-alone definition of desired system behavior that

is created independently from the implementation to be verified. A possible applica-

tion of hardware description languages (HDLs) for operational analog property spec-

ification is to have a specifying system set up for a circuit implementation and then

comparing both implementations using an analog equivalence checking approach.

However, in the terminology of formal verification, declarative property specifica-

tions in a machine-readable language are distinguished from operational specifying

implementations, as the former shall be more formal and lightweight. Moreover, the

property specification shall define properties in a specific but sufficiently abstract way

that the type of implementation is not restricted by the property specification. In gen-

eral, these requirements are not satisfied by specifying implementations in HDLs.

While HDLs hence cannot be applied to formal specification of analog circuit prop-

erties directly, they incorporate internal concepts to specify properties of implemented

behavioral description code blocks using assertions [Syn03, CVK05]. Therewith, state-

ments can be inserted into the behavioral modeling code that can monitor internal

properties of the design whether they comply with specified values [KZ04]. While

this does not satisfy the requirement of independent specification, a set of assertions

inserted into the HDL is a step towards property checking of the system during simu-

lation runs. For example in VHDL-AMS the assert statement allows to have Boolean

conditions trigger events controlled by a level of severity ranging from “note” to “fail-

ure” to which the simulator can react [APT03]. Moreover, information can be reported

to the user giving debug information.

As the Boolean conditions can be generated from logical combinations of the com-

parison of time or signal values to specified constraints, complex assertions can be

formulated. However, while motivating the development of assertion evaluations

for analog circuits, the VHDL-AMS approach does not target an independent formal

property specification of analog circuits. In Section 4.4.3 the verification part of the

assertion-based approaches will be discussed in detail.

63



3 Property Specification for Verification

3.4.2 PSL for Analog Signal Property Specification

With the growing acceptance of PSL in the digital domain, approaches to apply the

PSL specification methodology to analog signals for developing automated evaluation

tools have emerged.

A syntax extension called Signal Temporal Logic (STL) to PSL was developed in

order to verify properties on transient simulation waveforms [NM07, MNP08]. STL

connects to the Boolean layer where threshold crossings of an analog signal represent

Boolean events. Hence, the expressiveness of PSL/STL is mostly directed to timing

verification and was demonstrated on a flash memory case-study [JKN10]. Another

approach formulating analog specifications in form of recurrence equations directly by

incorporating PSL sequential extended regular expressions as proposed in [SZDT07]

can again express only very abstract, timing-oriented specifications.

3.4.3 CTL Specification of Analog Properties in the State Space

In order to have a rigorous specification of analog circuit properties to be formally

checked on a discrete state space representation, an analog extension to CTL has been

introduced in [HHB02a]. For application of the temporal methodology of CTL specifi-

cations to such discrete state space models of analog circuits, the atomic propositions

have to be generated as they are not given by the modeling process. In the first ap-

proach to CTL-based analog specification, state sets are selected by constraining state

space variable values to intervals using the operators “<” and “>”. The inclusion of a

state in a set is described by the Boolean variable labels which form the atomic propo-

sitions. If a state is a member of a set, its labeling by the Boolean variable of the set is

true and otherwise false. For example, an atomic proposition can be generated from

Vin > 0.75. Hence, all states for which the extended state space variable Vin has a value

greater 0.75 are selected. The temporal logic CTL, extended by the operators “<” and

“>”, is defined as CTL-A in [HHB02a]. In order to specify explicit timed behavior

for CTL-A operations, CTL-AT was introduced as an extension, offering to constrain

the validity of CTL-formulas to a time interval[GPHB05]. This refined specification of

temporal properties is derived from the concepts of Real-TimeCTL (RTCTL) [EMSS92],

where, for example, AF[1, 3](φ) selects only those states from the result of the opera-

tion that run into the set φ within the time interval [1, 3]. The syntax of formulas φ in

CTL-AT is described in Equation 3.12 with the placeholders defined in Table 3.3.

φ = a | z ∗ v | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2

| ⊲ ⋄ φ | ⊲ φ1 U φ2

| ⊲ ⋄−1 φ | ⊲ φ1 U
−1 φ2

| ⊲ ◦ � φ | ⊲ φ1 U� φ2

| ⊲ ◦−1 � φ | ⊲ φ1 U
−1 � φ2

(3.12)
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Another important feature is the possibility to reverse the direction in which paths

in the state space are processed by the CTL algorithms. Therefore, the syntax of a

temporal logic expression can be extended by “−1” which implies the reversal of all

edge directions for this operation. With the additional labelings of the edges remaining

unchanged, the temporal logic expression is then evaluated on the inverted transition

relation R−1:

∀ (σi, σj) ∈ R : R−1 =
⋃

(σj, σi) (3.13)

Table 3.3: Explanation of CTL-AT syntax.

a atomic proposition

z continuous state space variable

v number in R

∗ analog operator < = smaller

> = greater

⊲ path quantifier A = on all paths (universal quantifier)

E = on at least one path (existential

quantifier)

⋄ temporal operator F = eventually

G = generally

X = next

◦ F = eventually

G = generally

U U = until
−1 time reversal paths are traveled in reverse direction

� time interval [tlow, thigh] = continuous time interval

with tlow ∈ R
+
0 , thigh ∈ R

+
0 ∪∞, tlow ≤

thigh

3.5 Analog Specification Language (ASL)

Property specification for analog circuits is fundamentally different to property spec-

ification for digital circuits. While in the digital domain logic functions and abstract

properties like fairness have to be verified, in the analog domain properties such as

slew rate, oscillation, startup times, etc. have to be considered. Temporal logics are not

sufficient to express such properties.
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Although analog operators in CTL-AT in combination with time constraints allow

to specify some basic properties such as reachability of states from DC-operating-

points, advanced specifications for analog properties cannot be formulated in a sys-

tematic way. This is on the one hand due to CTL-AT not allowing to acquire additional

information about the execution of the operations. Therewith, intermediate results of

the operations cannot be taken into account. This leads to the impossibility of sequen-

tial specification with operating on values measured during the evaluation of preced-

ing operations. On the other hand, the solely temporal specification methodology itself

is not suited for specifying complex analog behavior, where additional operations are

needed to determine state space sets more sophisticatedly.

Therefore, a specification language is necessary that on the one hand allows to spec-

ify complex analog properties in a designer-oriented way and on the other hand can be

mapped to formal verification algorithms that operate on a discrete state space model

of the analog circuit under verification.

Due to its origin in temporal logics, CTL is not capable of offering a designer-

oriented specification methodology. In order to gain acceptance for formal approaches

in analog verification, a newmethodology of property specification is necessary. While

PSL offered this step towards designer-oriented specification in the digital domain, the

first approaches to analog specification with PSL, as discussed in Section 3.4.2, are only

covering signal-based properties for assertion-based verification. Hence, they are not

suited for describing properties of analog systems in the state space.

In the following, a new Analog Specification Language (ASL) for state space-based

property specification of analog systems is introduced, which, in combination with

the corresponding ASL verification algorithms, will allow to extend the complexity of

analog circuit properties specifiable for formal property verification.

ASL syntax shall be designed to be semantically deductive and therewith it shall

reduce the time needed for understanding existing specifications in comparison to

temporal logic specification. This is achieved by providing the possibility of creating

parameterized macro functions involving a macro preprocessor. Hence, specification

code can be sourced out to macro libraries allowing encapsulation and reuse of specifi-

cation code. As will be presented, the application of ASL specifications and algorithms

is not restricted to state space models generated with the approaches described in Sec-

tion 2.4, so it can be adopted to other finite state machine-based modeling approaches

like [FSS06]. Moreover, as will be shown in Section 5.3, ASL can be used to specify

and verify properties on conventional transient simulation waveforms by transferring

them to a state space representation.
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3.5.1 Language Concept

From the point of view of analog circuit developers, analog properties are represented

by continuous physical values and their alteration over time. Thus, it is necessary to

select states by calculations on their state space parameter values. Whether a state

belongs to a set is decided by comparing the result of an arithmetic calculation to a

specified interval. Extended path operations abstract from the reachability analysis

concept of temporal logics and allow examination of more complex properties on paths

within the state space. Assigning measured values of the operations such as maximum

and minimum path times to number variables allows to sequentially specify complex

properties.

A high level assertion layer shall allow to evaluate a verification run without in-

terpretation effort, additionally generating a verification report where all intermediate

results can be inspected.

Based on the previously introduced concept, the following subsection defines a con-

densed Extended Backus Naur Form (EBNF) grammar for the syntax of ASL. Terminal

symbols are printed in bold capital letters, user-defined variables are printed italic.

Some epsilon-productions are omitted for the purpose of clarity. In Section 3.5.3, the

semantics of the operations will be described.

3.5.2 EBNF Grammar of ASL

ASL Specification :=

Spec Sequence QUIT; | QUIT;

Spec Sequence :=

Spec Expression | Spec Sequence Spec Expression

Spec Expression :=

SETVAR Set Variable;

| NUMVAR Number Variable; | Set Variable = Set Expression;

| Number Variable = Number;

| CALCULATION Calc Name ( Calc Expression );

| FOR Set Expression ASSERT Set Expression;

| FOR Number ASSERT Interval;

| Number Variable = FOR Set Expression ASSERT Set Expression;

| Number Variable = FOR Number ASSERT Interval;

Set Expression :=
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ON Base Set Operation Set | Operation Set

Base Set :=

Elementary Set | Set Variable | State Space Variable Interval

| ( Base Set ) | NOT Base Set | Base Set AND Base Set

| Base Set OR Base Set

Operation Set :=

Elementary Set | Set Variable | State Space Variable Interval

| ( Operation Set ) | NOT Operation Set

| Operation Set AND Operation Set

| Operation Set OR Operation Set

| Calc Name ( calc parameters ) Interval

| VALUE ( State Space Variable ) Interval

| ASSIGN ( Number Variable, Assign Type ) Operation Set

| SELECT Operation Set

| OSCILLATION | Temporal Logic Expression Operation Set

| DELTA COMPARE ( State Space Variable ) Interval FROM Operation Set TO Opera-

tion Set

| DELTA COMPARE ( State Space Variable 1, State Space Variable 2 ) Interval FROM Op-

eration Set TO Operation Set

| TRANSITION FROM Operation Set TO Operation Set

| COUNTEREXAMPLE FROM Operation Set TO Operation Set

| INPUTSTIMULI FROM Operation Set

Elementary Set :=

ALL | DCPOINTS

Interval :=

[Number, Number] | [< Number] | [<= Number] | [> Number] | [>= Number] | ε

Temporal Logic Expression :=

Temporal Logic Operator Interval Direction Operation Set

| ALWAYS Direction Operation Set UNTIL Interval Operation Set

| A Direction Operation Set U Interval Operation Set
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| EXISTS Direction Operation Set UNTIL Interval Operation Set

| E Direction Operation Set U Interval Operation Set

Temporal Logic Operator :=

UNIVERSALLY | AG | EVENTUALLY | AF

| STAY | EG | REACH | EF

Direction :=

ε | FROM | ˆ -1

Calc Expression :=

Number | calc parameter N | ( Calc Expression )

| Calc Expression Math Operator Calc Expression

Number :=

Floatingpoint Constant | Number Variable

| ( Number ) | Number Math Operator Number | ABS ( Number )

Assign Type :=

MAX | MIN | AVERAGE | RANGE

Math Operator :=

+ | - | * | /

3.5.3 Semantics of ASL Operations

In the following, the semantics of the main ASL operations are described. The method-

ology descriptions of Section 5.2 will provide additional insights into the application

of ASL specifications.

There are two types of sets that influence the evaluation of ASL operations: Base Set

and Operation Set. A Set Expression in ASL can either be evaluated on all states of the

DATS or the evaluation can be constrained to operate only on a subset of the states of

the DATS which is then selected by a Base Set. Hence, a Set Expression that has the

Syntax “ON Base Set Operation Set” will determine the results of the Operation Set

only on the set of states identified by Base Set. The keyword “SELECT” has no seman-

tic function and is only used for syntax beautification.

VALUE: With the operation “VALUE”, a set of states φ can be selected on the whole

state space or on another set by a state space variable constrained to a specified in-

terval. Algorithmically, for each state σi is decided whether it is included within the
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given interval by a comparison of the actual value p
(s)
i of the entry in position s in the

state space variable value vector pi = LV(σi) and the interval boundaries r and r:

σi ∈ φ ⇔ p
(s)
i ∈ [r, r] (3.14)

The worst-case runtime complexity of the value operation is O(n) with n being the

number of states in the Base Set the operation is applied to. This is due to a single loop

iterating over the set of states and deciding the inclusion in the interval boundaries.

Temporal logic expressions: Although the temporal logic operations of CTL-AT can

be used in ASL, as a language convention, their natural language equivalents shall

be used for better understandability of the ASL syntax. Therefore, for the six basic

combinations of path quantifiers and temporal operators in CTL, a natural language

equivalent has been selected in order to correspond to the syntax style of ASL. The

ASL syntax grammar in the previous section introduces the natural language oper-

ation syntax, each followed by its CTL equivalent. For example, the ASL operation

“UNIVERSALLY” maps to its CTL equivalent “AG”.

The worst-case runtime complexity of the temporal logic operations is closely con-

nected to graph traversal algorithms such as depth-first search or breath-first search

used for implementing the temporal logic operations in ASL. In the worst-case, for

every state, every path to all other states in the graph has to be checked. Due to

a marking of visited states and edges with the already acquired information, in the

worst-case due to the reuse of information, a quadratic runtime complexity O(n2)

with n being the maximum of the number of states and edges is given. A nesting

of operations introduces an addition of the complexities of the single operations and

hence does not increase the asymptotic complexity. For using time intervals in the

operations, the semantics of CTL-AT apply.

TRANSITION: Previous approaches to property specification of analog systems were

directly derived from temporal logics and mostly perform some kind of reachability

analysis. Although CTL-AT operations are still possible in ASL, the abstract reacha-

bility operation of ASL is called “TRANSITION” and selects states on paths between

two state areas. It determines the minimum, maximum, average and the range of the

transition times detected on the transition paths. These values can be assigned to nu-

meric variables using the “ASSIGN” command. The sum of edge weights on a path

between two vertices i, j is defined as distance and is calculated by Dijkstra’s algo-

rithm once as shortest path and once as longest path by inversion of the edge weights.

The longest path computation is possible efficiently as the path algorithms are mod-

ified to consider the DATS to be a directed acyclic graph where a labeling function

assures not to travel loops. A pseudocode definition is given in Algorithm 2 and an il-

lustration of the states identified by the transition operation is shown in Figure 3.4(a).
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Algorithm 2: ASL Transition Algorithm: ON Base Set TRANSITION FROM

Start Set TO Dest Set

foreach vertex i in (Start Set ∩ Base Set) do

foreach vertex j in (Dest Set ∩ Base Set) do

if shortest and longest distance(i → j) < ∞ then
add shortest and longest distance(i → j) to transition times;

add vertices on paths between i → j to Transition Set;

end

end

report minimum, maximum, average and range of the detected transition

times.
end

Algorithm 3: ASL Oscillation Algorithm: ON Base Set SELECT OSCILLATION

foreach vertex i in Base Set do

if (shortest and longest distance(i → i) > 0 and < ∞) then
add shortest and longest distance(i → i) to oscillation periods;

add vertices on paths i → i to Oscillation Set;

end

report times of minimum, maximum, average and range of the detected

oscillation periods.

end

When considering the edges to be all labeled with a transition time of 1, the minimum

transition time is 4 and the maximum transition time is 6.

As can be concluded from Algorithm 2, the worst-case runtime complexity of the

transition operation is dominated by the all-pairs shortest path problem which can be

computed in O(n3) with n being the number of vertices of the DATS.

OSCILLATION: The operation “OSCILLATION” identifies states on cycles in the state

space and calculates the corresponding minimum, maximum and average oscillation

period. The pseudocode definition is presented in Algorithm 3. In Figure 3.4(b) a

schematic illustration of a set of states of an oscillation cycle is shown with an shortest

oscillation period of 11 and longest period of 12 when considering the edges all to

be labeled with a weight of 1. The cycle detected from state i is identified due to i

being reachable from i with a path length greater zero and less than infinity when

a single self-transition is ignored using a modified path traversal algorithm. The

worst-case runtime complexity of the oscillation detection algorithm is O(n3) with n

being the number of states in the Base Set the operation is applied to. This is due

to the oscillation operation relying on distance information generated by a modified
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Algorithm 4: ASL Delta compare Algorithm: ON Base Set DELTA COMPARE (

State Space Variable ) Interval FROM Start Set TO Dest Set

foreach vertex i in (Start Set ∩ Base Set) do

foreach vertex j in (Dest Set ∩ Base Set) do

if shortest and longest distance(i → j) < ∞ then
add vertices on paths i → j to Transition Set;

end

end

end

foreach vertex pair i, j with (σi, σj) ∈ R in (Transition Set) do

if
∆value(State Space Variable)ij

∆timeij
∈ Interval then

add i, j to Result Set;

end

end

report minimum, maximum, average and range of
∆value(State Space Variable)

∆time

path traversal algorithm such as Dijkstra’s with, in the worst case, n calls to the path

algorithm with a quadratic runtime complexity. Corresponding to the explanation for

the transition operation, the longest path detection operates on inversed edge weights

and does not travel loops due to a labeling of visited edges. However, closing a loop

from vertex i along a path to i is allowed by a modification of the algorithm.

DELTA COMPARE: The operation “DELTA COMPARE” evaluates ∆value
∆time between all

pairs of consecutive states of detected paths within a given transition area. Hence,

it is possible to measure the rate of change of a state space variable value over time

on paths. This is of particular use for determining slew rates on transition paths. A

pseudocode definition is introduced in Algorithm 4. Considering the two state space

variables a and b in Figure 3.4(c). For variable b, the algorithm calculates b2−b1
2 and

b3−b2
3 .

The worst-case runtime complexity is dominated by the computation of the transition

set with O(n3). The calculation of the derivative only takes linear time, hence its

worst-case runtime complexity is O(n).

Moreover, by passing two variables to the operation, the partial derivative ∆variable1
∆variable2

between the two variables can be measured. Referring again to Figure 3.4(c), the al-

gorithm calculates b2−b1
a2−a1

and b3−b2
a3−a2

.

CALCULATION: By defining a calculation formula, a set of states can be selected by

evaluating an arithmetic property on the state space variable values of each state in the

Base Set. Additionally, the numerical calculation results can be used by subsequent
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Figure 3.4: States in the transition set between sets “Start” and “Dest” (a). States

of an oscillation set identified by the oscillation algorithm (b). Illustration of the

delta compare operation (c).

operations. Algorithmically, the formula is calculated on the variable values of each

state and therewith decided if it meets the given value constraint while recording

the calculation results. A definition of a calculation contains placeholders for each

parameter which will later be passed on to the calculation.

For example, the calculation formula

calculation fraction (calc_parameter2 / calc_parameter1 )

can be defined. An application in the body of the ASL specification could be:

result_set = on test_set fraction(V_C1,V_C2)[0.2,0.5]

In this code line, for the two state space variables VC1 and VC2 for every state in the set

test set, the division as presented in the definition of the formula is computed. If the

result for a state is within the exemplary interval [0.2, 0.5], the state is inserted into the

result set. With such calculations, complex properties can be defined.

The call to a calculation has a worst-case runtime complexity ofO(n)with n being the

number of states in the Base Set as the evaluation of the calculation formula can be

computed by a single loop iterating over the set of states.

DCPOINTS: The operation “DCPOINTS” returns the steady states represented by

DC-operating-points of the state space. For different input values, the corresponding

DC-operating-points determine the set φDC of steady states of the system. This set is

directly identified by the discretization process. The DATS represents DC-operating-

points with a self-transition and no other outgoing dynamic edges:

σi ∈ φDC ⇔ (σi, σi) ∈ R ∧ deg(σi) = 1 (3.15)
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ASSIGN: The operation “ASSIGN” allows to assign a numerical value returned by

another ASL operation to a number variable. The possible values are minimum, max-

imum, average and range of the set of single values determined on a set of states.

ASSERT: To complete the verification of a property, it is necessary to include asser-

tions in the specification code. These assertions evaluate to either the Boolean result

true (1) or false (0), which is always printed to the verification report and in addi-

tion can be optionally assigned to a number variable for further evaluation. For sets,

the operation “ASSERT” checks whether a given set is the subset of the reference set.

Hence, “FOR φ ASSERT ψ” reports true if the following equation holds:

φ ∩ ψ = φ (3.16)

Numeric assertions check values determined during the verification process with re-

spect to a given interval. Therewith, the assertion returns true if the number variable

in the expression is within the specified interval boundaries.

The worst-case runtime complexity of assertions is O(n) with n being the number of

states in the Base Set for the evaluation of set assertions and O(1) for the evaluation

of number assertions.

COUNTEREXAMPLE: The operation “COUNTEREXAMPLE” starts the counterex-

ample generation algorithm which will be detailed in Section 5.4.

INPUTSTIMULI: The operation “INPUTSTIMULI” starts the complete state space-

covering input stimulus generation algorithm which will be detailed in Section 5.5.
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Verification of Systems

The goal of electronic circuit design is to create an implementation that completely sat-

isfies the circuit specification. Therefore, at several stages within the design process,

the current state of the design has to be checked whether it satisfies the initial specifi-

cation for the circuit. This task can be accomplished in different ways.

After presenting the general definitions and methods that distinguish verification

concepts, existing approaches to analog non-formal and formal verification are dis-

cussed in this chapter.

Definition 4.0.1 (Verification)

Verification of a system compares the performances of a model of the system with

specified properties either in order to detect design errors (non-formal verification) or

to prove the correctness of the system with regard to the specified properties (formal

verification). The general term verification refers to non-formal verification.

The level of formality of the specification as well as of the conducted verification ef-

forts ranges from informal and incomplete with experimental character to proof-based

formal approaches with absolute certainty of the verification results. Consequently, a

classification of the different verification approaches is necessary, distinguishing non-

formal from formal verification and introducing the corresponding approaches and

terminologies.

In the following, definitions and existing methodologies are discussed in order to

develop a hierarchy of verification approaches to prepare the introduction of new ana-
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log formal verification methodologies in the next chapter that allow formal and analog

design-oriented verification.

4.1 Non-Formal Verification

Under the notion of non-formal verification all those approaches to verification are

summarized that do not guarantee completeness of the verification.

Definition 4.1.1 (Non-Formal Verification)

Non-formal verification of a circuit conducts a finite number of simulations in order to

detect circuit performances that do not meet the specification. A successful verification

only holds for the specific input conditions and internal states of the circuit that were

covered by the n simulation runs:

¬∃ fi(S, P) 2 Pspec for all 1 ≤ i ≤ n (4.1)

A successful verification using a non-formal approach does not prove the absence

of errors as it is only a sequence of incomplete experiments. Experiments can remain

for which the investigated property causes the verification to fail.

4.1.1 Simulation-Based Verification

The most common way to check whether a system conforms to its specification is to

simulate test cases in order to obtain performances that are considered representative

for its future operation. A set of simulation test benches is set up and by conducting

the simulations, the system behavior is compared to a specification. While design er-

rors can be detected by this approach, it is never known when enough test cases have

been simulated to consider a system as error free. Moreover, the evaluation of simu-

lation results and comparison with specified properties is a manual task. Because of

the specification not necessarily being conformant to any specification standard, there

is a high level of uncertainty whether the specification is interpreted correctly by the

designer. The simulation flow is illustrated in Figure 4.1.

4.1.2 Assertion-Based Verification

In contrast to simulation-based verification using test benches with manual inspection

of the results, assertion-based verification tries to overcome some downsides of the

previous approach. This is accomplished by introducing formalization of the specifi-

cation and the evaluation of simulation runs in order to reduce the manual effort and

to increase standardization of the verification approach. The automation is achieved

by having system properties defined in a machine readable specification which can
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Figure 4.1: Simulation-based verification flow. The system is simulated using simula-

tion algorithms with user-defined input stimuli. The designer compares the simulation

results with the property specification of the system and either considers the specifica-

tion as satisfied or not.

be processed by an evaluation tool on the simulation waveforms. This evaluation can

be directly linked to the simulation environment, resulting in incrementally online-

monitoring the simulation results. In the case of specification violations, the simu-

lation can be interrupted immediately. Therewith, time can be saved by not finish-

ing long simulation runs when an error is detected early during the simulation. The

offline-monitoring approach receives the complete simulation results after finishing

the simulation. While the advantage of online-monitoring is obvious, algorithmically,

some propositions about the simulation results can only be checked when the com-

plete results are available. This applies for example to averaged values or the number

of crossings of a given threshold.

While the assertion-based verification approach does not cover all possible states

of a system due to incorporating incomplete experiment-based simulation, using a

machine-readable specification approach and automated evaluation improves the veri-

fication quality significantly. Figure 4.2 illustrates the assertion-based verification flow.

4.2 Verification Coverage

One common challenge among all non-formal verification approaches is verification

coverage. The question when a verification is complete and a design can be consid-

ered as error-free cannot be answered confidently. As test bench-based simulation

approaches are based on a finite set of simulation cases, the number of detected de-

sign errors should decrease with the number of simulations performed. The decision
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Figure 4.2:Assertion-based verification flow. The system is simulated using simulation

algorithms with user-defined input stimuli. The assertion-evaluation tool compares

the simulation results with the machine-readable property specification of the system

and reports whether the specification is satisfied by the simulation results.

when enough simulation runs have been conducted depends on the designer’s experi-

ence, and deducing that a design considered to be simulated sufficiently can be taken

as error free is a common misconception. It can still contain numerous critical design

errors that just have not been covered by the test cases designed by the verification

engineer. For digital as well as for analog hardware verification, exhaustive simulation

is considered not to be possible efficiently and therefore verification coverage of test

bench-based approaches is not complete.

Theoretically, digital designs have a finite set of states that can be enumerated and

test cases could be constructed that cover every possible state the system can adopt.

However, even for very small designs this effort is infeasible due to the combinatorial

explosion. Hence, measures for verification coverage are mandatory in order to rate

the verification quality and actively control which parts of a design are not covered

sufficiently.

Besides the aforementioned challenge of never knowing whether or not a given

specification is completely satisfied by the DUV, another challenge even valid for for-

mal verification approaches using declarative property specifications exists. It is posed

by the question, whether the formal property specification is sufficient for capturing

the design intent. Even a perfectly formally verified system can contain errors if the

specification did not cover them. This problem is called specification coverage and will

not be considered in the following as we assume that a verification is complete when

the specification is satisfied by the DUV under any circumstances.

Analog verification coverage has not yet been subject of extensive research and

only few approaches exist that try to transfer some of the digital coverage measures
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to mixed digital-analog verification [BCMP06, HLSS08], or in the area of hybrid sys-

tems using sensitivity analysis for coverage-directed simulation [DM07]. In the digital

hardware domain, a taxonomy of verification coverage already exists. Tools support-

ing verification management methodologies, subsumed under the heading “coverage-

driven verification”, have emerged for handling the verification of large designs. Lan-

guages such as OpenVera [Syn03] and SystemVerilogAssertions [CVK05] include as-

sertion management and coverage assistance and tools like Cadence Incisive Enter-

prise Specman [Cad07] offer a systematic verification coverage management within

the verification flow. The corresponding ideas will be outlined in the following in or-

der to motivate an analog verification coverage concept.

In the field of non-formal verification, there are two main coverage metrics: struc-

tural/code coverage and functional coverage [GRW05]. The main observation of these

metrics is that only a subset is connected to direct specification checking and most of

the coverage metrics are indirect, which means that they do not conclude specification

conformance from their results but help to decide whether one can be confident in the

verification results.

4.2.1 Structural Coverage

Structural coverage describes the implementation coverage of a verification. The ob-

jective is to measure which parts of the implementation have been covered by verifi-

cation. Depending on the type of implementation, this can be performed in different

ways. Structural coverage can vary from code statement coverage, including branch

coverage and path coverage for HDL-like implementations, to finite state machine cov-

erage, including state coverage and transition coverage in order to identify states and

transitions visited by the verification.

While an automated evaluation of structural coverage can be obtained by applying

simple algorithms, the results are not always very meaningful. Checking that every

part of the implementation has been covered by a verification run does not mean that

critical interactions of the parts have been covered. As an example, an abstract system

consisting of four parts with directed edges representing a signal flow is illustrated in

Figure 4.3. In a first simulation run labeled “a”, parts 1, 3 and 4 are covered. The second

run “b” covers parts 1, 2 and 4. However, the connection between part 2 and 3 was not

covered by the verification. Although 100% of the parts have been covered, a possible

problem in the interoperation of parts 2 and 3 would not have been detected by this

verification. On the other hand, simulating all possible combinations is not feasible

for larger designs. Therefore, coverage of corner cases cannot be concluded from high

structural coverage metrics.
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Figure 4.3: Illustration of structural coverage.

4.2.2 Functional Coverage

In contrast to the non-specific structural coverage, functional coverage is measured

by checking whether predefined functional aspects have been part of the verification

run. Therefore, explicit coverage points have to be specified that represent critical cor-

ner cases or requirements of the design, based on the knowledge of the verification

engineer. Revisiting the example presented in the previous subsection, a verification

engineer could consider the combination of parts 2 and 3 as important. Hence, a func-

tional coverage measure is specified that reports whether this path has been covered

by the verification. By covering user-defined functional requirements, the confidence

in the verification results is improved.

Functional coverage measures are closely related to the assertions specified for

assertion-based verification approaches. By specifying the functional requirements

using such assertions and having all those assertions covered by the verification, a

successful assertion-based verification is obtained. On the other hand, passing of as-

sertions may not be confused with covering of assertions. While an assertion can pass

without ever being triggered, a covered assertion has to be evaluated and either passes

or fails. Moreover, additional information can be gathered by counting the evaluation

of assertions and the internal value combinations leading to these evaluations.

4.3 Formal Verification

Formal verification describes the verification methods that are based on formal con-

cepts allowing to prove that propositions made about a system model are valid. Such

propositions can be in form of a declarative specification or an operational specifying

system model as discussed in Section 3.3.

Definition 4.3.1 (Formal Verification)

Formal verification of a system proves that the performances satisfy the property spec-

ification for every possible input signal and internal state of the circuit:

∀ f(S, P) : f(S, P) � Pspec (4.2)
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Figure 4.4: Model checking flow. The machine readable property specification is

checked against the system model using a model checking tool. The result is either

true, i.e. the specification is satisfied, or a counterexample is returned.

Historically grown, two classes of algorithmic approaches to formal verification

are distinguished. The algorithmic approach of proving that a system model satisfies

a specified declarative specification is called model checking. Proving the functional

equivalence of a system model under verification and an operational specifying sys-

tem model is referred to as equivalence checking. In the terminology of the coverage

aspects of the previous section, formal verification has complete structural and func-

tional coverage with respect to the specification.

4.3.1 Model Checking

Model checking is an approach to formal verification where a system model is com-

pared with a functional specification [CGP99]. Hence, the task of model checking is to

verify whether a finite state system model represented by a type of Kripke structure M

as defined in Section 2.2.1 and 2.4.1 satisfies a given specification Pspec. The declarative

languages for denoting the specification have been introduced in Chapter 3. There-

with, the verification problem to be solved can be stated as:

M, σ � Pspec for all σ ∈ Σ (4.3)

The model checking algorithm reports true if Pspec holds for every state of the system

model. Otherwise, states not satisfying the specification are identified. A transition

path πce from a defined initial state to a state identified as not satisfying the specifica-

tion is called counterexample. Figure 4.4 illustrates the model checking approach.

While the foundations of using propositional temporal logics for specifying system

behavior originated in philosophy long before their application to algorithmic system
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verification, the combination of CTL property specification and a system model repre-

sented as an explicit state transition system in form of a Kripke structure made possible

the first automated model checking of an abstract system model [CE82]. Before these

algorithms for model checking have been proposed, all verification proofs were con-

ducted by manual calculations and hence were infeasible for real world applications.

4.3.2 Equivalence Checking

While model checking is applicable to prove that a machine-readable specification of

system properties is satisfied by a model of the system implementation, the task of

equivalence checking is to compare two implementations of a system whether they are

functionally equivalent. Hence, equivalence checking does not verify that a system

conforms to a set of properties, but instead complete behavioral equivalence is proven.

In the digital domain, equivalence checking has a long history and there is a

very strict formal definition for functional equivalence of static combinatorial circuits

[MM04]:

Definition 4.3.2 (Boolean Equivalence of Combinatorial Circuits)

Given two representations d f and dg of two Boolean functions f , g: {0, 1}n → {0, 1}m,

decide whether the Boolean functions f and g are equal, i.e. whether f (α) = g(α)

holds for all α ∈ {0, 1}n.

The general case of the Boolean equivalence checking problem is co-NP hard [GJ79]

as it represents the complemented Boolean formula satisfiability problem which is

known to be NP hard. The advances in the field of digital equivalence checking were

made by finding representations of Boolean formulas such as reduced ordered binary

decision diagrams (BDDs) [Ake78] ormultiplicative binarymoment diagrams (*BMDs)

[CB95] that reduce the actual equivalence checking problem down to constant time, at

the cost of creating the underlying representations.

For dynamic sequential circuits, the equivalence checking problem is related to

checking the equivalence of the finite automata representations of the circuits. Hence,

a state space traversal approach has to compare the reachable sequences of states of

both automata for defined starting states [MM04].

In the scope of this thesis, the concept of functional equivalence of static and dy-

namic systems is generalized towards equal input/output behavior of analog systems

with the following definition.

Definition 4.3.3 (Input/Output Equivalence of Static/Dynamic Systems A and B)

Two systems A and B are considered as input/output-equivalent if for every possible
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input signal u(t), the outputs of system A and B are equivalent with respect to the

dynamic output behavior defined in Definition 2.4 in Section 2.1:

A ≡ B ⇔ yA(t) ≡ yB(t) for all u(t) (4.4)

with

yA(t) = SA(u(t), xA(t)) ; yB(t) = SB(u(t), xB(t)) (4.5)

In addition to the question whether two systems are equal, which is a Boolean result

of true or false, equivalence metrics have to be developed for equivalence checking of

analog circuits. This is due to the fact that there is no total equivalence in real analog

circuits as it exists for the Boolean equivalence of digital systems. Hence, equivalence

of analog circuits is assumed when a given equivalence measure, reported by a metric

to be defined, is above a given magnitude.

4.4 Existing Approaches to Non-Formal Analog Circuit

Verification

While the presented general verification concepts for non-formal verification apply to

analog circuits, there are several differences that have to be discussed. Especially the

availability of automated tools for analog verification is significantly reduced com-

pared to digital circuit verification. While there are mature verification methodologies

for digital circuits that are already introduced in industrial design flows, analog verifi-

cation is mainly done by manual investigation of simulation runs. Due to the complex

properties of analog circuits, not only the specification of the desired behavior of the

circuit is much more difficult than in the digital domain, but also the verification algo-

rithms are far more complex due to operating on continuous systems represented by

DAEs. Therefore, circuit simulations are the major tool for verification of analog cir-

cuits, nowadays partially augmented by automated evaluation of verification results.

This section addresses the concepts of formalizing non-formal verification of analog

circuits, followed by a discussion of existing approaches to analog formal verification

in the subsequent section.

4.4.1 Assertion-Based Approaches to Analog Verification

The first approaches to overcome the manual evaluation of analog simulation results

were introduced in the area of automated circuit characterization [HGT91, EGG98].

Therewith, by developing reusable templates for circuit class specific properties, auto-

mated performance evaluations have been introduced into the analog design flow.

An emerging verification approach attempts to formalize the property specifica-

tion and evaluation of conventional simulation results introducing assertions. Derived
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from the digital domain, assertion-based verification automates the evaluation of sim-

ulation results and hence enables regression testing. A recent approach to include ana-

log assertion-based verification on commercial platforms proposes property specifica-

tion implemented either as an analog extension to SystemVerilog Assertions (SVA) or a

library of analog assertion objects for the Open Verification Library (OVL) [MPDG09].

The tool AMT proposed in [NM07] uses STL/PSL in order to verify properties on

transient simulation waveforms offline and online. However, due to the limited ex-

pressiveness of STL/PSL, only timing oriented verifications are possible.

In Section 5.3 a new assertion-based verification methodology for complex analog

properties such as slew rate, oscillation and overshoot by application of the Analog

Specification Language (ASL) to transient simulation waveforms will be introduced.

Due to the global evaluation methodology making possible the verification of complex

properties on the waveforms, online monitoring is only reasonable for local properties.

4.4.2 Analog Verification Coverage

While formal verification methodologies automatically deliver complete coverage of

the investigated state space of the designs under verification, the verification gap of

today’s design flows can simply be characterized by the idea of verification cover-

age. Test bench-based simulation approaches try to find critical input stimuli and

external parameters that bring the circuit in as many critical states as possible, but

the real verification coverage of the state space is uncertain. Therefore, in the area of

post-production testing of analog circuits, several approaches to automatic test pattern

generation (ATPG) have emerged for a systematization of the test procedure. Their

common method is to start with a set of given faults and trying to compute a test stim-

ulus that covers every element of the fault set using either sensitivity analysis [Bur01],

controllability and observability computation [SHZ+01], or statistical distance compu-

tation [VdPG97]. In the area of hybrid systems, coverage-guided test generation is

emerging for linear systems, but applications to nonlinear analog circuits are not yet

available [DN09].

Shifting the perspective back to design-time verification, automated approaches

are very rare. An approach [BCMP06] of generating constrained randomized stimuli

cannot guarantee to cover the complete state space of the design under verification

(DUV). The same applies to another approach that simulates the system behavior with

statistical chaotic excitation signals [MZXA08].

In the scope of this thesis, analog verification coverage can be connected to state

space coverage. If every state of a system was investigated during a verification, the

verification coverage is complete. Hence, in Section 5.5, an approach to complete state-

space covering input stimuli generation will be proposed, allowing transient simula-
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Figure 4.5: Comparison of verification coverage in the state space by test bench-based

transient simulation and formal verification.

tion of nonlinear analog circuit blocks with guaranteed coverage of the reachable state

space of the system under verification.

Figure 4.5 compares the state space coverage-characteristics of incomplete test

bench-based non-formal verification to those of complete formal verification.

4.4.3 Formalizing the Analog Verification Flow

With the growing need for formalizing analog verification in industrial design flows

and analog formal verification tools not yet being available, approaches that give up

formality in favor of delivering practical solutions have emerged. Systematic verifi-

cation based on verification plans that introduce a hierarchy of behavioral modeling

and verification-oriented test benches target the problem in a conventional way by

changing the methodology how existing tools are used [CK07]. On block level, for-

mal methodologies could be introduced into industrial flows quickly with the support

of EDA-vendors. However, increasing the complexity of the system under verifica-

tion is continuously decreasing the applicability of formal methods, as presented in

[BGG+09]. In the RF-domain, sophisticated behavioral modeling and therewith mak-

ing possible more simulations within a given verification time is already considered as

formalizing the verification in this domain [WJWH09].
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As analog circuit simulators are the central tool all verification flows are based on,

in [TGP+09] a satisfiability (SAT) solver-based approach to SPICE-type circuit simula-

tion for formal simulation results is presented in order to target the verification prob-

lem from a different perspective. By formulating the simulation problem as an input

for a SAT-solver, the simulator can discover all possible solutions for a given simulation

task. Due to the NP-completeness of the SAT-problem, the approach can exhibit expo-

nential worst-case runtime complexity which is targeted by abstraction refinement.

4.5 Existing Formal Approaches to Analog Verification

In this section, existing formal approaches to analog verification are discussed in order

to obtain an overview over the state of the art.

Depending on their scientific origin, the approaches to formal verification of ana-

log circuits have very opposing basic principles. On the one hand, methods that have

been developed within the theory of logic reasoning and abstract system theories are

extended to the area of analog verification. These approaches feature a consistent log-

ical and formal foundation but they share the problem of being far away from appli-

cability to real world analog circuit verification problems. Often, complicated man-

ual modeling to abstract representations is necessary in order to apply the verification

algorithms. Property specification is forcing logic theory upon analog property spec-

ification instead of aligning to the semantical terminology of existing analog circuit

properties.

On the other hand, approaches coming from the background of electrical engineer-

ing and analog EDA-research are very practical and straight forward but often lack

formality, soundness and structuredness.

4.5.1 Reachability Analysis and Verification of Analog Circuits

Reachability-based verification approaches use state space exploration techniques in

order to formally compute the conservatively approximated reachable area in the state

space of a system represented by ODEs. In contrast to the discrete modeling presented

in Section 2.4, verification approaches incorporating reachability analysis do not gen-

erate a complete model of the state space of the circuit that can be checked for more

complex properties. Therefore, compared to model checking, these approaches do not

offer a property evaluation methodology exceeding the question whether a specified

state is reachable from a given starting state.

Originating from the theory of hybrid systems, first reachability verification ap-

proaches targeted simple nonlinear control systems by linearization [HH95]. Reach-

ability analysis development towards nonlinear analog circuit verification introduced

calculation of hybrid polyhedral outer approximations enclosing the flow derived from
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differential equation systems [GKR04] using the tool “Checkmate”. Investigated cir-

cuits were a simple tunnel diode oscillator and a Matlab model of a third-order delta-

sigma modulator.

Another hybrid system verification approach for analog systems is based on the

“d/dt” tool, applied to different analog circuit examples such as a biquad lowpass

filter and the model of a delta-sigma modulator [DDM04, ADG07, DN09]. Specializing

on oscillator reachability verification and stability computation without emphasis on a

structured specification, approaches were presented in [FKR06, GY08].

4.5.2 Analog Model Checking

The first approach to model checking of analog circuits introduced a discrete state

space model of the circuit to be checked against a property specification given as ω-

automata. The circuit investigated was a transistor level representation of a digital in-

terlock, described using simplified transistor models implemented by a capacitor and

a voltage controlled current source [KM91]. Although the discretization into a finite

automaton is very rough, this is the first approach to discrete modeling of the state

space of analog systems with application of an automata-based property verification.

Derived from the successful property specification of digital and software systems

with the Computation Tree Logic (CTL) [CE82], the first approaches to CTL-based

model checking of analog systems applied CTL extended with an analog operator to

a discretized state space model of nonlinear analog circuits [HHB02a, HHB02b]. With

an adaptive state space discretization that controls the size of the enclosures of state

space regions depending on the level of homogeneity of the state space dynamics, as

described in Section 2.4.3, properties of nonlinear circuits such as the oscillation of a

tunnel diode oscillator, overshooting of a second-order lowpass filter and the switch-

ing behavior of a Schmitt-trigger circuit have been verified. The addition of time con-

straints to the CTL specification allowed to first time formally verify timed behavior of

analog circuits [GPHB05].

Weakening the formality of the approach, in [DC05, DC07] a verification system ap-

plying an extended CTL derivative called AnaCTL to the transient response of analog

circuits is proposed. By higher level modeling of analog circuits using labeled hy-

brid petri nets, verification of AMS-systems is introduced in [LSW+06, MHW+06], not

offering an automated translation of transistor level circuits to the petri net represen-

tation. The same limitation applies to the approach presented in [ASZT07], where a

stability verification of a symbolic mathematical representation of a delta-sigma mod-

ulator using recurrence equations is introduced.

In contrast to the industrial application of model checking of digital hardware sys-

tems, the approaches to model checking of analog systems have not yet been intro-

duced into industrial flows. There are several challenges that need to be solved in
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order to develop analog model checking towards industrial applicability. These chal-

lenges will be outlined in the following.

• The continuous system description originating from the differential equation sys-

tem of the analog BCEs can not be evaluated by direct theorem proving ap-

proaches. Therefore, abstractions have to be made that have to balance between

model complexity and model accuracy.

• The discretization of an analog system to a state model suffers from the state

space explosion problem. Due to the exponential growth of the number of states

with the number of state space variables, only block-level analog circuits can be

handled.

• The hyperbox discretization, which is part of the up to now most capable model

checking approach, is not rotation-invariant and massively over-approximates

the transition relation of the system. Hence, it does not deliver reliable results for

complex state space dynamics structures.

• Up to now, approaches to model checking of analog circuits are based on prop-

erty specifications closely related to the digital specification with CTL syntax and

semantics. Even for digital specification, approaches like PSL have been nec-

essary to facilitate the access to formal property specification for the designers.

Moreover, the semantics of branching time temporal logics used in analog model

checking are not expressive enough for the precise specification of complex ana-

log behavior.

• Corresponding to the lack of specification expressiveness of analog CTL specifi-

cation, the algorithmic evaluation of formal analog specifications needs a differ-

ent methodology compared to the digital domain. Digital specifications are very

time-oriented with abstract properties such as fairness and liveness that are easy

to specify and evaluate on digital state models. In contrast, analog properties

such as slew rate, oscillation, overshoot, etc. are based on the complex relation of

different internal state variables and specifications have to reason on the discrete

representations of their continuous magnitudes and their alteration over time.

Some of these challenges will be targeted by the ASL model checking approach pre-

sented in Section 5.2.

4.5.3 Analog Equivalence Checking

The basic goal of formal equivalence checking of nonlinear analog circuits is to verify

if both systems have the same input-output behavior for every possible input signal,
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corresponding to Definition 4.3.3. The existing approaches are discussed in the fol-

lowing. Moreover, in order to obtain a benchmark for the new equivalence checking

approach proposed in Section 5.6, the up to now only automated formal approach to

analog equivalence checking for nonlinear analog circuits that can directly operate on

transistor netlist representations and behavioral models in VHDL-AMS is outlined.

An approach to equivalence checking for linear analog circuits with parameter tol-

erances is proposed in [HB98]. Based on the computation of outer bounds of the trans-

fer functions using complex interval arithmetics, the over-estimated implementation

of the circuit is compared with the inner bounds of a therewith underestimated spec-

ification function. Hence, sound results are obtained. Another approach dealing with

linear circuits described by their frequency domain transfer functions considering pa-

rameter variations is presented in [SA01]. The phase and magnitudes over a defined

frequency range are equivalence-checked using an envelope for the response compar-

ison. A restriction to linear circuits is however not suited for an universal application

to real-world problems.

Based on the PVS theorem prover, in [GV99] the functional equivalence of behav-

ioral descriptions in VHDL-AMS and their synthesized analog circuits is checked by

evaluating piecewise linear approximations of the analog behavior in the DC and low

frequency domain. Due to the simplifications, this approach is not a complete verifica-

tion methodology.

A state space sampling based approach for equivalence checking of nonlinear ana-

log circuits was initially introduced in [HB95] with application to different CMOS in-

verters and extended in [HKH04] for application to a Schmitt-trigger, implemented as

transistor netlist and behavioral description, as well as to a bandpass transistor cir-

cuit. An extension to improve handling of strongly nonlinear circuits by introducing

structural recognition and mapping of eigenvalues to circuit elements and a reachabil-

ity analysis was presented in [SH10a]. This allowed to additionally apply equivalence

checking to the analog behavior of a NAND gate and a mixer circuit.

For both system implementations under verification, using a local linear transfor-

mation for each sample point to a canonical representation (Kronecker’s canonical

form) and by numerically integrating these linear local transformations, an approx-

imation of the nonlinear transformation for the system is obtained. The numerical

differences between both internal transformed dynamics and the output variables give

a direct measure for the equality/difference of both systems.

While this approach can be successfully applied to behavioral models with an in-

ternal structure not too different from the modeled transistor block, strong abstraction

of the behavioral model can result in reporting complete inequality. This is due to

the need for an internal mapping of state variables which is only possible with certain

similarities in the systems’ structure.
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In the following subsection the VERA equivalence checking method from [HB95,

HKH04, SH10a] is outlined, as it is the benchmark the new equivalence checking

methodology developed in Section 5.6 will be compared to in Section 6.6.

4.5.3.1 The VERA Equivalence Checking Algorithm

The VERA equivalence checking algorithm focuses on circuit descriptions based on

a system of implicit differential algebraic equations (DAEs) as introduced in Section

2.3.2.

In order to verify the equivalence of two circuits A and B represented as a DAE

system, the following approach is conducted by the VERA algorithm:

• Sample the state space of both systems iteratively and perform the following

transformation on each sample point.

• Transform the dynamics f in the variable space spanned by x and u of each sys-

tem into a canonical state space spanned by a vector z(c)(t) of nc canonical state

variables z
(c)
i (t) with 1 ≤ i ≤ nc. The transformation is defined by:

x = F(z(c))

z(c) = F−1(x)
(4.6)

• The dynamics will then be transformed according to:

h(z(c)(t), ż(c)(t),u(t)) = f(F(z(c)(t)), ∂F(z(c)(t))
∂t ,u(t)) (4.7)

If the transformation is well chosen, the resulting system h will have only nz
nontrivial dynamic equations describing the system behavior. The remaining

algebraic equations should be trivial (e.g. 0 = 0).

Canonical State Space Comparison After obtaining a canonical state space repre-

sentation of both systems A and B, the transformed system functions hA and hB have

to be compared in the canonical state space z(c). This assumes that both circuits A

and B are transformed to canonical state space variables z
(c)
A and z

(c)
B with equal size

n
z
(c)
A

= n
z
(c)
B

= nc using dominant pole order reduction for the system with more state

space variables. The dynamics of the system functions can be compared by checking

the values of the state derivatives ż
(c)
A , ż

(c)
B to be equal for each state in the state space.

This comparison is performed numerically, resulting in an error value with an appro-

priate norm:

ǫż = ‖ż
(c)
A − ż

(c)
B ‖ (4.8)

Obviously, this error will never be zero for analog circuits. Therefore, the user has to

define an error value limit. If the error is below this limit in the whole reachable state
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space, the circuits are regarded as equivalent. This error is very sensitive to differences

in the circuits under verification. For example, a relative error limit of 10% can be

considered as appropriate. Besides the internal dynamics, using a selection matrix R,

the output variables of the systems

xoA = RA · FA(z
(c)
A )

xoB = RB · FB(z
(c)
B )

(4.9)

can be compared with a similar error measure:

ǫy = ‖xoA − xoB‖ (4.10)

Comparing the dynamics of the systems, as well as their output variables, assures

that the dynamic and static behavior of the systems under verification have been con-

sidered for equivalence checking, resulting in high confidence in the obtained results.

The described VERA equivalence checking methodology is summarized in Figure 4.6.

Behavioral

Description

Systems

under verification

State space

sampling

Transformation to

canonical state spaces

Determination of error by

comparison of canonical

state spaces

System A System B

Figure 4.6: Structure of the VERA equivalence checking methodology.
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5
Analog Formal Verification

Methodologies

A framework of new analog formal verification methodologies has been developed

around the newly introduced specification language ASL and the corresponding ver-

ification algorithms. As will be described in this chapter, fundamental formal veri-

fication methods such as model checking and equivalence checking are enhanced by

the ASL verification algorithms and the improved discrete model generation using the

newly introduced trajectory-directed discretization approach. Moreover, new verifi-

cation concepts such as transient simulation with complete state space-covering in-

put stimuli will be introduced. In combination with the counterexample generation,

the application of ASL specifications to conventional transient simulation waveforms

and new visualization approaches for the verification results, a set of new verification

methodologies has been developed which will be combined into an analog verification

framework (AVF).

5.1 New Verification Methodologies for the Analog De-

sign Flow

Figure 5.1 illustrates the possibilities of the new AVF, offering several combinations

of different modeling and verification approaches. The possible verification method-
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Figure 5.1: Analog verification framework for different verification methodologies.

ologies are outlined in the following and detailed in the subsequent sections of this

chapter.

5.1.1 Verification Methodology Perspective

Starting from a behavioral or transistor netlist representation of an analog circuit, a

discrete state spacemodel for each circuit under verification is generated using the new

approach presented in Section 2.4.4. Alternatively, conventional transient simulation

results from test bench-based verification can be transferred into a partial state space

representation which then can be processed by the verification algorithms accordingly,

as will be described in Section 5.3. To the discrete state space model of the circuit, the

following verification methodologies can be applied:

• The state space model can be checked against an ASL property specification

which is the method of property checking or model checking (see Section 5.2).

• From identified state space regions that violate the specification, counterexample

stimuli can be generated, which then in turn can be used in a test bench sim-

ulation environment to analyze the specification-violating behavior (see Section

5.4).

• By a systematic traversal of the DATS model, complete state space-covering

piecewise linear input stimuli can be generated (see Section 5.5). Based on these

complete-coverage input stimuli (CCIS), three sub-methodologies are available:
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– The CCIS can be used in test bench-based simulation environments for man-

ual analysis of the transient response to these stimuli that guide the simula-

tor into every reachable state of the analog circuit.

– The transient simulation response to the CCIS can be re-transferred into a

state space representation for evaluation of assertions specified in ASL. This

is an alternative model checking approach with the advantage of not intro-

ducing a discrete modeling error due to directly operating on the results of

the transient simulation, providing high accuracy of measured values (see

Section 5.5.1).

– By generating CCIS for two circuits under verification and then comparing

the deviation of the transient responses to the stimuli of both circuits using

a specific ASL specification, a formal equivalence checking methodology is

given due to the transient responses of both circuits being directed to every

reachable state (see Section 5.6).

In order to interactively explore the state space dynamics of an analog circuit, an ap-

proach to multi-parallel particle simulation will be introduced in Section 5.7 which

complements the insight into acquired verification results of the verification examples

in Chapter 6.

5.1.2 Design Flow Perspective

Another perspective to application of the new verification methodologies in the analog

circuit design flow is presented by considering a top-down design flow consisting of an

ASL property specification that is transferred into an abstract behavioral model for the

circuit design. Subsequently, a transistor circuit implementation for the circuit blocks

is developed. Finally, after layout, an extracted version of the circuit can be considered.

Within this flow, the three major verification concepts can be applied to different

design levels as illustrated in Figure 5.2. These concepts are assertion-based verifica-

tion (ABV) by evaluating ASL specifications on transient simulation waveforms that

can either be generated by user-defined input stimuli or CCIS, ASL model checking

and equivalence checking with CCIS. A connection between two abstraction levels in

the illustration corresponds to the possibility to apply the verification methodology.

ASL evaluation on transient simulation waveforms can be used to automatically

check an ASL property specification against every level of abstraction. ASL model

checking again can be applied to every level with the limitation that extracted blocks

have to be processable by the discrete modeling approach. If too many parasitic ca-

pacitances occur, an approach to constrain the state space variables by an eigenvalue-

based model order reduction, as discussed in Section 2.4.4.7, has to be applied. Equiv-

alence checking using the methodology of automatically comparing transient simula-
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Figure 5.2:New verification methodologies in the analog design flow.

tion waveforms that have been generated using CCIS can be applied to compare any

two levels of abstraction. However, at least one has to be modeled as a DATS for stim-

uli generation and both have to be processable by transient simulation.

5.2 ASL Property Specification and Verification Method-

ology

With the introduction of the trajectory-directed discretization generating DATS mod-

els of analog circuits with higher accuracy in Section 2.4.4 and the definition of ASL

in Section 3.5, a property specification methodology for ASL shall be introduced in

the following. Therewith, methodologies for circuit overshoot, advanced oscillation

properties and for the startup time of autonomous circuits will be described. With

these specification methodologies, the verification algorithms can automatically com-

pute themodel checking results without user interaction, reporting the acquired results

in a verification report which will be demonstrated in Chapter 6.

5.2.1 Specification of Circuit Overshoot

For many types of circuits, the range of the output signal shall be constrained for a

defined input range. However, there are circuits such as active filter circuits that tend

to overshoot. This means that, depending on the input signal shape and frequency,

output values higher than the expected output range can occur. Such a behavior is

illustrated in Figure 5.3 where the dotted trajectory starting in a DC-operating-point of
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Figure 5.3: Overshoot of the output voltage caused by a trajectory in the state space.

the circuit exceeds the output range of the DC transfer function for the defined input

voltage range. In the following, an ASL specification methodology for identifying such

overshoot in a circuit’s state space andmeasuring the overshoot ratio will be described.

All verification steps shall be conducted on the reachable states of the circuit under

verification. Hence, the set of states reachable from DC-operating-points is identified:

reachable = on all reach from DCpoints;

On this set reachable of reachable states, the minimum and maximum of the input

and output voltages is assigned to number variables:

on reachable assign(%min_V_in,min) assign(%max_V_in,max) value(V_in);
on reachable assign(%min_V_out,min) assign(%max_V_out,max) value(V_out);

With these data, the overshoot ratio can be calculated by the division of the output

voltage range by the input voltage range:

%overshoot_ratio = (%max_V_out-%min_V_out)/(%max_V_in-%min_V_in);

Finally, an assertion can be formulated that checks that the overshoot ratio stays be-

tween user defined specification values %min_spec_value and %max_spec_value:

for %overshoot_ratio assert [%min_spec_value, %max_spec_value];

The result of the assertion as well as the measured voltage ranges are printed into the

verification report for easy evaluation of the verification run.
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5.2.2 Specification of Oscillation and Voltage Controlled Oscillator

Gain KVCO

For oscillator circuits, a specification methodology for verification of oscillation will be

introduced in the following. Additionally, for voltage controlled oscillators (VCOs), a

specification methodology for verification of the VCO gain KVCO will be presented.

In the time domain, oscillation is represented by a periodic behavior of a circuit

variable as shown in Figure 5.4(a). Transferred to the continuous state space, a cyclic

path between at least two state space variables can be identified as illustrated in Figure

5.4(b). This results in a set of states connected to a cycle in the DATS as shown in Figure

5.4(c).

(a) (b) (c)

Figure 5.4: Oscillation in the time domain (a), in the continuous state space (b) and in

the DATS (c).

The simple check whether there is an oscillation within a defined oscillation period

range between %spec_min and %spec_max in the considered circuit model can be

formulated in ASL as follows:

assign(%oscillation_period_min, min) oscillation;
assign(%oscillation_period_max, max) oscillation;

for %oscillation_period_min assert [>= %spec_min];
for %oscillation_period_max assert [<= %spec_max];

Now, a systematic methodology for verifying the oscillator gain KVCO, represented by

the sensitivity relation between the control input voltage and the oscillation frequency

of a VCO, is introduced. Thus, the input voltage has to be constrained to different

values and at each of these input voltages the oscillation frequency is determined as
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Figure 5.5: Schematic illustration of oscillations for different input voltages V1, V2, V3

and V4.

illustrated in Figure 5.5. Comparing each two oscillation frequencies fosc of consecutive

input values to their input voltage difference, the sensitivity

KVCO =
∂ fosc
∂Vin

(5.1)

can be determined. In the following methodology, only two different input values are

considered for the purpose of clarity. Considering more than two input values, the

deviation between the calculated local factors KVCO provides information about the

linearity of the VCO.

At first, the constrained input voltage areas in the state space have to be assigned

to set variables as follows:

inp_set_1 = value(V_in)
[%inp_voltage_1 - %range_size/2, %inp_voltage_1 + %range_size/2];

%inp_voltage_2 = %inp_voltage_1 + %inp_step;

inp_set_2 = value(V_in)
[%inp_voltage_2 - %range_size/2, %inp_voltage_2 + %range_size/2];

On the selected state space slices, oscillation periods are determined. Although the

average oscillation period for a given input voltage is considered, this approach is

valid for the minimum or maximum oscillation period just as well:
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osci_set_1 = on inp_set_1 assign(%osci_period_1, average) oscillation;

osci_set_2 = on inp_set_2 assign(%osci_period_2, average) oscillation;

Subsequently, the factor of change of the oscillation frequencies and the input voltages

are determined:

%frequency_delta = (1/%osci_period_2) - (1/%osci_period_1);

%input_delta = %inp_voltage_2 - %inp_voltage_1;

In the final step, for the VCO gain property %K_VCO, calculated according to Equation

5.1, an assertion is specified. The gain is asserted to be within a percental range speci-

fied by the number variable %tolerance around the specified value %K_VCO_spec:

%K_VCO = %frequency_delta / %input_delta;

for %K_VCO assert [%K_VCO_spec - %tolerance/2, %K_VCO_spec + %tolerance/2];

5.2.3 Specification of the Startup Time of Autonomous Circuits

The startup time of a circuit is defined as the time from applying the supply voltage

until the circuit reaches a desired output behavior, which is in the following considered

equivalent to reaching a certain output voltage range.

In the state space, the maximum startup time is defined by the longest transition

time among all possible paths leading from the initial state area to the destination area.

Figure 5.6 illustrates the startup transition paths in a state space.

For a systematic specification of the startup time property in ASL, we define the

initial conditions of the circuit. Hence, the corresponding start area in state space is

selected by constraining the considered state space variables V_out, X1 and X2. This

resulting start area is assigned to the set variable startarea:

startarea = value(V_out)[< 0.1] and value(X1)[< 0.1] and value(X2)[< 0.1];

The area reachable from the start area represents all possible system states for the given

initial condition. The states reachable from the set startarea are assigned to the set

variable reachable:

reachable = reach from startarea;

In practical applications, the minimum required output voltage for the destination area

could be directly assigned with a specification parameter. For a worst-case analysis of

the startup time, 90% of the maximum output voltage within the reachable state space

area are assigned to the number variable %max_voltage instead. This is considered

as the worst-case upper bound for the steady state output behavior:
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Figure 5.6: Schematic illustration of startup transition paths.

on reachable assign(%max_voltage, max) 0.9*value(V_out);

By calculating the maximum time needed for the transition from the start area to the

area with the maximum output voltage, an upper bound for the startup time of the

examined circuit is acquired:

assign(%startup_time, max) transition from startarea
to value(V_out)[>= %max_voltage];

The final step asserts that the required output voltage is reached and that the startup

time for reaching this area never exceeds the specified upper bound:

for %max_voltage assert [>= %spec_parameter1];
for %startup_time assert [<= %spec_parameter2];

5.3 ASL Property Verification on Transient Simulation

Waveforms

In order to obtain a wider field of application for ASL property specification and evalu-

ation, and to develop another formal property verification methodology in Section 5.5,
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evaluation of ASL property specifications shall be extended from discrete state space

models to analog transient simulation waveforms. Therefore, the simulation wave-

forms have to be transferred into a state space representation as DATS to be introduced

into the ASL verification toolchain.

Transient simulation data consists of data tuples containing a sequence of signal

values and their corresponding time points for every investigated node voltage or

branch current of the circuit under verification. A transient waveform for such a single

signal si is a sequence si(t0), si(t1), ..., si(tn).

Definition 5.3.1 (Path πtr in State Space generated from Transient Simulation Wave-

forms)

From a set of transient simulation waveforms for different signals, the sequence of

states is a path πtr in the DATS state space model determined by the vector of the m

signal values si(tj) with 1 ≤ i ≤ m for each time point tj:

πtr = σt0 , σt1 , ..., σtn with LV(σtj) =








s1(tj)

s2(tj)
...

sm(tj)








for all 0 ≤ j ≤ n (5.2)

The transition relation is connecting consecutive states and the transition times are

determined by the time steps of the transient simulation waveforms:

T(R(σtj , σtj+1
)) = tj+1 − tj (5.3)

The generation of a path πtr in the DATS is illustrated in Figure 5.7. Due to the

transition times now being defined by the labels of the graph transitions, a time axis is

obsolete but plotted for better understanding.

As illustrated in Figures 5.8(a) and 5.8(b) for two periodic signals, their combined

state space representation in Figure 5.8(c) forms a circle by mapping both signals to a

plot over axis s1(t) and s2(t). For the state space representation of transient signals,

a detection of periodic behavior is necessary for creating closed cycles for oscillation

detection. With a defined tolerance interval ǫ, for each vertex σtr it is checked whether

its coordinate vector p(tr) = LV(σtr) maps to the coordinate vector of another vertex

p(ts) = LV(σts):

σtr ≡ σts ⇔ ∀ 1 ≤ i ≤ m : |p
(tr)
i − p

(ts)
i | < ǫ (5.4)

In this case, the transitions from predecessors and to successors of σts are connected to

σtr :

R = R ∪ {(σts−1
, σtr), (σtr , σts+1

)} (5.5)

Finally, the transitions connecting σts are removed as well as σts :

R = R \ {(σts−1
, σts), (σts , σts+1

)} ∧ Σ = Σ \ σts (5.6)
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Figure 5.7: Graph structure obtained by transient simulation waveforms.
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Figure 5.8: Periodic transient signal waveforms s1(t) (a) and s2(t) (b). State space rep-

resentation of periodic signals s1(t) and s2(t) (c).

Figure 5.9 illustrates the ASL assertion-based verification flow for usewith transient

simulation waveforms.

As will be demonstrated by application to practical examples in Chapter 6, a joint

ASL property specification can be used for automated transient signal evaluation as

well as for a formal verification of the circuit’s properties, sharing the same verification

algorithms. For analog designers, this offers the possibility to get used to formalized

property specification without changing their familiar design environment, increasing

understanding and acceptance of a future application of formal verification.

5.4 Counterexample Generation for Model Checking

The specification of analog circuit properties using the ASL methodology introduced

in Section 5.2 allows to identify regions in the state space of an analog circuit that

violate the specification. In order to understand how the circuit behavior reaches such

a region, a counterexample can be generated corresponding to the general concept of

counterexample paths in model checking as defined in Section 4.3.1.
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Figure 5.9:ASL assertion-based verification flow for transient simulation results trans-

ferred to a state space representation.

Definition 5.4.1 (Counterexample on a DATS)

A counterexample for the analog circuit model represented as DATS is a path πce from

a defined starting state σ0 to the set of states φ violating the specification:

πce = σ0, ..., σi : ∃ i ≥ 0 with σi ∈ φ (5.7)

On such paths, for every extended state space variable, the values of this variable

and the corresponding transition times can be recorded for every state transition on the

path due to the structure of the DATS. This yields a piecewise linear signal trace over

time which can then be visually inspected by the verification engineer. Moreover, by

generating such a signal trace for every input variable of the circuit, piecewise linear

input stimuli are obtained which can be directly simulated in a circuit test bench.

The starting state for the counterexample input stimulus should be an initial con-

dition that can be easily implemented in the simulation test bench, which for most

circuit applications is provided by DC-operating-points. Given that the verification al-

gorithms already checked the reachability of the states violating the specification from
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DC-operating-points, any transition path starting in a DC-operating-point and ending

in the destination set can be used for determining the piecewise linear signal trace. In

the DATS, more than one path between the starting state and the destination set can

exist. However, as the runtime of transient simulation increases with the time length

of the input stimulus to simulate as the counterexample, an efficient counterexample

generation algorithm operating on the DATS should report the path with the shortest

overall path time. This path time is the sum of the individual transition times of the

transitions visited on the path.

The shortest path in the DATS can be determined by Dijkstra’s single source short-

est path algorithm [Dij59] which directly outputs the shortest path from the starting

state to every other reachable state of the graph structure. Hence, for every state of the

set of specification violating states, a counterexample stimulus is generated with an

overall worst-case runtime complexity of O(n2) where n is the number of vertices in

the DATS. Algorithm 5 denotes the method of counterexample waveform generation.

Algorithm 5: Counterexample Generation Algorithm.

Input: DATS modeling the analog circuit,

vertex σi representing a DC-operating-point,

set φ of vertices identified as violating the specification

Output: List of tuples (value, time) representing piecewise linear waveforms for

every input and state space variable of the circuit under verification

1 foreach vertex σj in φ reachable from σi do

2 calculate shortest path σi → σj using Dijkstra’s algorithm;

3 foreach vertex σk visited on path σi → σj do

4 store value vector LV(σk) and accumulated transition path time;

5 end

6 end

The introduced counterexample generation algorithm on the one hand directly al-

lows to visually inspect the signal traces leading from DC-operating-points to states

violating the specification. On the other hand, by using the piecewise linear wave-

forms for the input variables as input stimuli in a transient simulation test bench, the

results from model checking on an analog circuit modeled as DATS can be transferred

back into a conventional transient simulation-based verification flow. Therewith, the

confidence in the obtained formal verification results can be increased as they can be

examined in the framework the verification engineer is used to.
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5.4.1 Counterexample Generation in the ASL Verification Flow

In the ASL verification flow, the operation counterexample is used to generate a set

of piecewise linear signal traces. In the following example, the voltage over a capacitor

C1 shall be limited to 1 V. Hence, if there is an overshoot of the voltage, the input stim-

ulus shall be examined that leads to this set bad_states of states where the voltage

is above the specified value:

bad_states = select value(V_C1)[>1];

With this set, the counterexamples can now be generated by calling the operation

counterexample with the set DCpoints of DC-operating-points as starting set and

the set bad_states as destination set for the algorithm:

counterexample from DCpoints to bad_states;

5.5 Complete-Coverage Input Stimuli Generation

As has been discussed in previous sections, model checking proves the absence of

faults in every possible state of a system, regardless of the input conditions. However,

the need for a complete different way of thinking when dealing with model checking

and formal property specification is a challenge that can only be overcome step by

step. While the introduction of designer-oriented methodologies for model checking

using ASL can facilitate the access to formal methods, gaining acceptance will be an

incremental process.

Consequently, there is a need for formal approaches that seamlessly integrate in

existent simulation-based design flows. For this purpose, a novel algorithm for for-

mal automatic input stimuli generation will be proposed in this section. It is combin-

ing a formal approach and conventional transient circuit simulation into a verification

methodology that overcomes the incompleteness of experiment-based transient sim-

ulation and the expected difficulties of analog designers to adapt to model checking

approaches.

Derived from the counterexample generation approach introduced in the previous

section, input stimuli covering the complete reachable area of the state space of the

analog circuit can be computed by traversing the graph modeling an analog circuit

as a DATS. Basically, the idea is to visit every reachable state of the graph structure

and recording the input values and accumulated times of traveled edges during graph

traversal. This concept corresponds to efficiently generating a piecewise linear coun-

terexample input stimulus for every reachable state of the DATS model.

Definition 5.5.1 (Complete State Space-Covering Input Stimulus on a DATS)

A complete state space-covering input stimulus for the analog circuit model repre-
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sented as DATS is a path πis from a defined starting state σ0 that visits every state of

the set of reachable states φ of the DATS. The set Πis consists of all πis satisfying this

requirement.

Πis = {πis | ∃ n : πis = σ0, ..., σn ∧
⋃

0≤i≤n

σi = φ} (5.8)

πis ∈ Πis (5.9)

Moreover, depending on the verification methodology where the complete state

space-covering input stimuli will be applied, it can be necessary not only to cover ev-

ery state of the DATS but also to cover every transition of the DATS. This corresponds

to the idea not only conducting a subsequent transient simulation that brings the sys-

tem under verification into every reachable state but also allowing to simulate every

possibility how every state can be reached. In the following, the algorithm assumes

the goal of complete state and dynamic transition coverage. In order to do this more

efficiently than just generating a sequence of counterexamples, an algorithm is needed

which satisfies the following requirements:

• When the algorithm terminates, every reachable state and dynamic transition of

the circuit model, represented by the vertices and edges of the graph, must have

been visited at least once.

• The number of travelled edges on the paths covering the complete state space

shall be minimized as each timed transition taken between two vertices of the

graph results in an increment of the time length of the input stimulus and is

therefore affecting simulation time.

• During stimulus generation, if available, vertices representing DC-operating-

points shall be visited periodically. This ensures that the circuit can recover from

the traversal of corners of its dynamic behavior by starting and ending in its

steady states.

Combining the above requirements into an algorithm reveals the NP-hardness of the

optimization problem as it is a modification of the traveling salesperson problem

[GJ79]. Accordingly, a heuristic approach is necessary for efficient computation. Due

to the fact that any path that covers all reachable edges and states of the graph is a valid

solution, an efficient algorithm using a heuristic approach will produce a valid solu-

tion with an assumed suboptimal path length. Algorithm 6 shows a possible efficient

approach and is described in the following.

For a given DC-operating-point σi, the algorithm computes a list of tuples (value,

time) representing piecewise linear stimuli for every input variable covering the com-

plete state space. Initialization of variables includes setting the set open to all reachable

edges and initializing the set closed as empty in lines 1 and 2. Starting in line 3, for each
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Algorithm 6: Complete-Coverage Input Stimuli Generation Algorithm.

Input: DATS modeling the analog circuit,

vertex σi representing a DC-operating-point

Output: List of tuples (value, time) representing piecewise linear stimuli for

every input variable covering the complete state space

1 open = all reachable dynamic edges;

2 closed = ∅;

3 foreach edge j reachable from σi in open do

4 calculate path covering as many edges as possible from σi → j → σi avoiding

edges in closed;

5 foreach edge k visited on path σi → j → σi do

6 put k to closed;

7 remove k from open;

8 store value vector LV(σl) of visited vertices σl and path time;

9 end

10 end

edge j in the set open, a path covering as many edges as possible from σi → j → σi
is computed avoiding edges in the set closed in line 4. Line 5 iterates over each edge k

visited on the computed path σi → j → σi and puts k to the set closed in line 6, removes

it from set open in line 7 and stores the parameter tuple creating the piecewise linear

stimulus to a file in line 8.

The implicitly mentioned path finding algorithm in line 4 can be any form of a

modified longest path finding algorithm such as Dijkstra’s applied with negative edge

weights for longest path detection. Longest path detection is possible efficiently by

modifying the path detection algorithm not to travel loops more than once and hence

considering the DATS as an acyclic directed tree graph with the start vertex being

added as a leaf vertex for closing single loop runs. For obtaining the longest path with

respect to the number of vertices visited, edge weights have to be set to −1. Other

optimization criteria are possible, such as considering euclidean vertex distance or

the original edge weights containing transition time values. At first, computing the

shortest time path might seem like an obvious solution, but as the goal of the stimuli

generation algorithm is complete edge and vertex coverage, the number of inevitably

revisited edges during single closed loop runs has shown to be high, resulting in worse

overall stimuli time length.

In order to avoid revisiting edges, all edges in the set closed have to be assigned

with a positive value. Trying to minimize the sum of edge weights, the path finding

algorithm will automatically avoid those edges that are contrary to the optimization

criterion.
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The asymptotic runtime complexity of the stimuli generation algorithm for a graph

with n reachable edges is dominated by the loop over each edge in the set open and the

call to Dijkstra’s algorithm having quadratic complexity inside this loop. This results

in an asymptotic worst-case complexity of O(n3).

Figure 5.10(a) shows a possible traversal result generated by the stimuli generation

algorithm applied to the graph from Figure 2.6, starting from vertex 1. The first loop

1 → 4 → 7 → 8 → 9 → 6 → 3 → 2 → 1 is created due to vertex 9 being the

most distant vertex from 1, thus covering the most edges of the graph. Vertex 5 is still

unvisited, therefore a second loop run is needed, traveling vertices 1 → 4 → 5 →

2 → 1. In order to cover the last uncovered dynamic transition between vertices 6

and 5, a third run visits vertices 1 → 4 → 7 → 8 → 9 → 6 → 5 → 2 → 1. The

input-output behavior representing the stimulus and a possible transient response is

illustrated in Figure 5.10(b). While any traversal policy covering the complete graph

is valid, further investigation of better strategies is necessary as they directly result in

shorter simulation times. The input stimuli generation and verification flow based on

discrete state space modeling is illustrated in Figure 5.11.

(a) (b)

Figure 5.10: Path generated by the stimuli generation algorithm (a) and the corre-

sponding input/output behavior (b).

5.5.1 Verification Methodology

The experience of an analog circuit designer is not only necessary for developing the

circuit itself but for selecting the right test bench around the circuit for ensuring correct

future circuit behavior under all expected circumstances.

As there are no written rules for the selection of appropriate input stimuli for tran-

sient analysis, a DUV matching the specification might just have not been simulated
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Figure 5.11: Complete-coverage input stimuli generation and verification flow.

with the critical stimuli that would have taken it to violate the specification. Without

having any knowledge about state space coverage of the selected input stimuli, the

designer is searching for errors but can not be sure about how many are remaining

undiscovered.

With the input stimuli generation algorithm introduced in this section, a verifica-

tion methodology for a simulation-based design flow with guaranteed coverage of all

corner cases is given. The generated stimuli can now be processed by an analog cir-

cuit simulator, computing an output response for every internal state of the system

due to the special structure of the stimuli. With the system dynamics determining

the structure of the discretized state space, the stimuli are inherently covering the fre-

quency range of the system behavior at least up to the dynamics in the calculated state

space. A user-specifiable maximum edge steepness of the stimuli allows for lower-

ing the simulation effort caused by steep voltage steps. As assertion-based simulation

methods are emerging in the analog domain, the complete state space-covering stimuli

contribute to strengthen the significance of those approaches.

With the results from transient simulation using complete state space-covering in-

put stimuli combined with the ASL property evaluation on transient simulation wave-

forms that was presented in Section 5.3, an alternative complete and therewith formal

property verification methodology is given. The simulation results obtained from sim-

ulation with complete state space-covering input stimuli are representing the complete

dynamic behavior of the DUV.Hence, anyASL-specified assertion that holds during an
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evaluation on such waveforms is guaranteed to hold for any input condition and any

state the DUV can adopt. Therewith, a proof of correctness can be conducted which

makes the presented approach equally expressive as the ASL model checking on the

discrete state space model.

ASL verification on results obtained from complete state space-covering simula-

tion has the overhead of stimuli generation and transient simulation compared to ASL

model checking applied directly to the discrete state spacemodel. However, the advan-

tage of this approach is given by being an add-on to the conventional test bench-based

simulation approach instead of being a replacement. Moreover, this stimuli-based ASL

verification methodology is modular and it can be introduced incrementally into an ex-

isting design flow.

5.6 Equivalence Checking using Complete-Coverage In-

put Stimuli

The simulation of a single circuit using complete state space-covering input stimuli can

reveal corner case behavior not identified by user-defined input stimuli. However, an

equivalence checking methodology for analog circuits based on the new stimuli gener-

ation approach can be developed, giving certainty about the level of equality between

two circuit implementations. This new approach for equivalence checking of analog

circuits will retain formal completeness but, in contrast to previous approaches, will

work well with any kind of circuit abstraction. Due to the application of conventional

transient circuit simulation, each step of the equivalence checking process will be ob-

servable by the circuit designer and is mostly based on tools he already is used to.

The idea is to generate a stimulus for the system that covers the system’s complete

state space during a transient simulation. If another circuit is simulated using the same

input stimulus, the level of equivalence of the two systems is determined by the level

of deviation of the transient responses of the two circuits.

For each of the two circuits to compare, in the following referred to as circuit A and

circuit B, complete state space-covering input stimuli are generated for every input of

the circuit. Subsequently, four simulation runs are needed. Circuit A is simulated with

stimuli of A and B, followed by simulating circuit B with stimuli of A and B. The

simulation results are automatically compared using an error measure as described in

Section 5.6.1, reporting equivalence if a user-specifiable maximum error value is not

exceeded.

If circuits A and B show equivalent behavior when simulated with stimuli gener-

ated from circuit A, then the complete behavior of circuit A is included in circuit B:

A ⊆ B (5.10)
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If circuit A and B show equivalent behavior for simulation with stimuli generated from

circuit B, then the complete behavior of circuit B is included in circuit A:

B ⊆ A (5.11)

If both conditions (5.10) and (5.11) hold, circuit A and circuit B are considered as equiv-

alent with respect to the user-defined maximum error, corresponding to the analog

equivalence defined in Definition 4.3.3:

A ⊆ B ∧ B ⊆ A =⇒ A ≡ B (5.12)

Figure 5.12 illustrates the described equivalence checking methodology.

In practical applications, often only one direction of the proof is necessary. Es-

pecially for reduced models generated with model order reduction techniques, the

complete-coverage stimuli have to be generated only for the reduced model in order to

prove that the transistor netlist behaves equal for the limited state space of the model

during simulation. Of course, the other direction of the proof could fail as the reduced

model intentionally does not cover all aspects of the transistor netlist, such as behavior

above or below certain operating frequencies.

5.6.1 Error Measures for Waveform Comparison

For a complete automation of the equivalence checking flow, the differences between

the simulation results of the two circuits under verification have to be computed by

an error calculation algorithm. While there are several measures to calculate the error

between two waveforms like Frechet distance [HA92], modified Hausdorff distance

[PHHB98], etc., the most intuitive measure is the generation of a difference waveform

of the signals. Therefore, for each time point of the two waveforms A and B, the value

at this time point of the other waveform is calculated and the difference value is stored.

The maximum difference between the waveforms is the reported error value and the

results can be inspected by plotting the difference waveform. The difference error mea-

sure ǫdifference is defined as:

ǫdifference = max

{
sA(ti)− sB(ti)

r

}

for all (sA(ti), sB(ti))

with:
r - maximum signal value range

sA(ti), sB(ti) - values at time point ti for each waveform

The error can be normalized with the range of all values to obtain a deviation be-

tween 0 and 1. As the time points of two simulation waveforms generated by different

simulation runs in general are not equal, an interpolation is necessary for obtaining the

error values of the corresponding waveform at an arbitrary time point.
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Figure 5.12: Equivalence checking flow using complete state space-covering input

stimuli.

5.6.2 Automation in the ASL Verification Flow

In order to include this new equivalence checking methodology completely into the

automated ASL verification flow, the waveform comparison can be performed by the

ASL verification algorithms, controllable from an ASL specification. Therefore, the

simulation waveforms of both circuits under comparison are transferred into a state

space representation as described in Section 5.3. Now, ASL can be used for an auto-

mated error determination with respect to an user-specifiable error bound. A calcula-

tion template is definedwhich corresponds to the desired error measure of the absolute

difference error between the values of both waveforms at every time point:

calculation error_calc("abs(calc_par1-calc_par2)");

The maximum error is determined by applying this calculation template to Wave-

form 1 andWaveform 2 and storing the maximum value of the calculation to the num-

ber variable %max_error:

assign(%max_error, max) error_calc(Waveform_1, Waveform_2);
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Finally, an ASL assertion determines whether the value assigned to %max_error is

below a specified maximum error %spec_error_max:

for %max_error assert [<= %spec_error_max];

5.7 Multi-Parallel State Space Particle Simulation

Another perspective to the verification methodologies presented in the previous sec-

tions which especially well suits periodic circuit analysis can be obtained by vi-

sual inspection of the state space dynamics. A visualization of the dynamics of a

n-dimensional vector field representing the analog circuit’s behavior has not yet been

considered as a possible approach to support circuit verification. However, this can

be another option to investigate the complete state space dynamics due to complete

coverage of the state space.

As dynamic structures can be difficult to identify in such high-dimensional vector

fields originating from state space representation of analog circuits, the application of

visual aids is mandatory. Approaches such as line integral convolution (LIC) [And04]

or anaglyph stereo vision [McA93] facilitate the understanding of 2-D and 3-D visual-

ization but are not covering dynamic transient behavior. Therefore, a novel methodol-

ogy to consider analog circuits in a state space representation using visualized multi-

parallel vector field particle simulation will be introduced in the following.

The dynamic behavior of a system under verification can be analyzed by visualiz-

ing the vector field of the system variable’s derivatives in the state space. Such a vector

field visualization is only possible with a restriction to three dimensions, while state

space dimensions of common analog circuits can vary between two and more than

four. Therefore, a selection of the main dimensions has to be made to project to the

three-dimensional view.

Particle simulation is a common approach for vector field visualization and mature

algorithms have been developed [DH96]. In contrast to a static approach such as line

integral convolution, time-dependent motion of the particles visualizes the transient

behavior of the circuit in an animation sequence.

Consider the vector field V : R
nd → R

nd that was defined in Section 2.4.2 on which

for the discrete setQ = {q1, ...,qm} ofm sample points qi in the state space, the discrete

vector field VD : qi → vi is defined:

VD(qi) = V(z(e) = qi) = vi (5.13)

In other words, the discrete vector field VD is represented by position vectors qi de-

termining the sample points in the state space and the direction vectors vi = VD(qi)

giving the motion direction and speed within V at position qi.
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Figure 5.13: Determining nearest sample point q2 in state space for particle p1 within

discrete vector field VD.

For the injected particles pi ∈ R
n, their direction vector V(z(e) = pi) has to be ap-

proximated with respect to the discrete vector field VD. Hence, a mapping is necessary

which assigns a nearest sample point qj ∈ Q to each point pi representing a particle

from the set of particles, as illustrated in Figure 5.13:

M(pi) = {arg min
qj∈Q

‖pi − qj‖} (5.14)

Therewith, for each particle pi, its next position can be calculated according to a time

step ∆t and the nearest direction vector vj = VD(M(pi)):

pi(t+ ∆t) = pi(t) + vj · ∆t (5.15)

When starting the particle simulation, an equally distributed amount of particles is

inserted into the vector field of the state space and for each particle, the nearest vector

regarding euclidean distance determines its direction and speed of movement as stated

above. Algorithm 7 recapitulates the introduced particle simulation algorithm.

Algorithm 7: Particle Simulation Algorithm.

while animation running do

foreach each particle pi in state space do
detect nearest sample point qj = M(pi) with respect to euclidean

distance;

get direction vector vj = VD(qj);

pi = pi + vj · ∆t

end

end

Each of the particles represents an independent simulation run with the starting

position indicating its initial condition. While the visualization is projected to a three-

dimensional representation, the motion vector of the particles is calculated with full
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dimensionality. Thus, the motion is determined by all dimensions of the state space,

revealing additional information exceeding the three-dimensional plot.

An exemplary particle animation is illustrated in four steps in Figures 5.14(a) to

5.14(d) for a two-dimensional vector field containing an oscillation.

x1

x2

(a)

x1

x2

(b)

x1

x2

(c)

x1

x2

(d)

Figure 5.14: Particle simulation for the two-dimensional state space of an oscillator

circuit with increasing time from (a) to (d).
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6
Experimental Results

In this section the algorithms altogether forming the proposed new formal verifica-

tion methodologies are applied to circuit examples. Different properties and circuits

are analyzed in order to present practical results for all methodologies presented in

Chapter 5.

6.1 Implementation

The trajectory-directed discrete modeling algorithm has been prototypically imple-

mented using GNUOctave for the control flow including the mathematical operations

such as the Gram-Schmidt orthogonalization. A prototypical implementation in C++

of a transient simulation back-end has been coupled with GNU Octave as a dynamic

library using the SWIG interface compiler.

The ASL syntax grammar was implemented by a C++ LEX/YACC parser. The ASL

verification algorithms as well as the other algorithms such as the complete state space-

covering input stimuli generation and the transfer of transient simulation waveforms

to a DATS have been coded in C++.

The multi-parallel particle simulation and visualization environment also used for

all the vector field pictures of the DATS models shown in this thesis has been imple-

mented in C++ using the open source 3D graphics engine (OGRE).

A common data interchange format serializing the DATS model including addi-

tional information such as state sets identified by the verification algorithms to a file

has been implemented, allowing to transfer DATSmodels between the discrete model-
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ing algorithm, the verification algorithms and the visualization tool. Additionally, an

exporter to a DATS has been implemented into the VERA equivalence checking tool

in order to apply the new equivalence checking methodology using complete state

space-covering input stimuli to the same model data for comparison.

The runtimes of the experimental examples analyzed in the following have been

computed on a single core of an Intel Core 2 Quad with 2.83 GHz and 8 GB of RAM.

6.2 Verification of Initial Conditions of a Ring Oscillator

Themodified ring oscillator with an even number of inverter stages and cross-coupling

[JKK08] was already presented in Figure 1.3 of Section 1.4 as a motivating example.

The critical property to be verified of this circuit is the existence of initial conditions

that cause the circuit not to run into an oscillation for certain ratios of the transistor

sizes between the inverter chain and the bridges. While first results of the ASL model

checkingmethodology were already demonstrated in themotivating example, the ASL

property specification methodology will be discussed in the following.

The properties to verify are the existence of oscillation and proving that the circuit

oscillates for every possible initial condition. Hence, the ASL specification shown in

Listing 6.1 was developed.

Listing 6.1: ASL specification for oscillator verification.

# Assert that the circuit oscillates

osci_set=on all select oscillation;
for is_empty(osci_set) assert false;

# Assert that circuit has no non−periodic steady states

for is_empty(DCpoints) assert true;

# Which initial conditions lead into DCpoints?

bad_initial_conditions = reach DCpoints;

The macro is_empty() is checking if a set is empty, wrapping the following ASL

statements for better understandability of the syntax:

#macro is empty(set) −> returns 1 if assertion holds, 0 if not

macro is_empty
{

parameter2 = for parameter1 assert not all;
}
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The simple property specification in Listing 6.1 first checks if there is a peri-

odic oscillation trajectory in the state space. The next assertion requires the oscilla-

tor’s state space not to contain any non-periodic steady states. If those exist, a set

bad_initial_conditions is assigned with the states that can reach these steady

states. Every state from the set bad_initial_conditions represents an initial con-

dition that causes the circuit to run into a steady state instead into the oscillation tra-

jectory. The transient simulation in the motivating example, started with such a bad

initial condition identified by the ASL model checking algorithms, showed that the

circuit in fact does not oscillate.

Furthermore, ASL model checking has been conducted for the α/β-ratios 1.05, 1.35,

1.65 and 1.95 in order to systematically check the circuit properties and to prove the

consistency of the ASLmodel checking on the DATSmodel generated by the trajectory-

directed discretization algorithm.

Table 6.1 summarizes the verification results including the oscillation periods re-

ported by the ASL model checking algorithms as well as by transient analysis for

VDD = 3.3 V. If bad initial conditions were detected by model checking, a transient

analysis run was conducted with these conditions in order to prove that the circuit

shows the expected behavior. Additionally, information about modeling and model

checking runtimes are denoted in the table.

Table 6.1:Verification results for themodified ring oscillator with results obtained from

ASL model checking (MC) and transient analysis (TRA).

α/β-ratio 1.05 1.35 1.65 1.95

MC reports bad init. cond. - - - X

# States DATS 16036 15810 14680 13288

Discretization Runtime 13 : 22 m 12 : 42 m 11 : 24 m 10 : 30 m

MC Runtime 7.5 s 7.1 s 6.0 s 5.4 s

Oscillation period MC 1.494 µs 1.224 µs 1.055 µs 0.961 µs

Oscillation period TRA 1.415 µs 1.159 µs 1.014 µs 0.936 µs

Figure 6.1(a) shows the transition vectors between states of the detected oscilla-

tion set and the non-periodic steady states identified by ASL model checking for an

α/β-ratio of 1.95 projected to the state space dimensions VI , VI I and VI I I. Figure 1.5,

presented in the motivating example, already illustrated the state space trajectories

leading into the non-periodic steady states. Additionally, a multi-parallel state space

particle simulation with the methodology introduced in Section 5.7 was executed. A

snapshot of the dynamic motion flow is shown in Figure 6.1(b), allowing to visually

obtain the same conclusions as from model checking.
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Figure 6.1: Transition vectors between states of the detected oscillation set and non-

periodic steady states of the modified ring oscillator detected by model checking for

α/β-ratio 1.95 (a). Particle simulation visualizing the oscillation trajectory and the non-

periodic steady states (b).

6.3 Verification of Active Lowpass Filter Overshoot

The Sallen-Key biquad lowpass filter shown in Figure 6.2 has a tendency to overshoot

beyond the designed passband gain of 1.05 which is the property to be verified in the

following. The overshoot around the cutoff frequency of 1 kHz may be a result of the

complex conjugate poles in the transfer function and could have been overlooked in

the design process. The parameters are C1 = 5 nF, C2 = 50 nF, R1 = R2 = R4 = 10 kΩ,

R3 = 500 Ω. The input voltage range is±1 V and the operational amplifier represented

by a behavioral model has a supply voltage of ±3 V.

The overshoot property shall be analyzed using the methodologies of:

1. ASL model checking with counterexample generation and

2. transient simulation controlled by complete state space-covering input stimuli

with the simulation results re-transferred to a DATS and evaluated by the ASL

verification algorithms using the same ASL property specification as used for

model checking.
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Figure 6.2: Circuit schematic of Sallen-Key biquad lowpass filter.

In order to apply the verification algorithms, a DATS model for the state space di-

mensions Vin, VC1
and VC2

has been generated using the trajectory-directed discretiza-

tion approach. The DATS model in the following used for the results was generated

with 3702 vertices and model generation requiring 142 seconds. While generating a

higher number of states further increases modeling accuracy for model checking, the

complete state space-covering stimulus covers all corners of the reachable area already

with a significantly lower number of states but at the cost of then decreasing the den-

sity of the internal trajectories. Table 6.2 summarizes the discretization runtimes for

different state counts. The number of states generated can be controlled in the dis-

cretization algorithm by constraining the length of transition vectors to a user defined

interval.

The transient simulation steps needed for state space sampling have a constant

runtime for a given circuit. Hence, the overall simulation runtime scales linearly with

the number of generated states. However, the checking of the proximity criterion for

the n sampled states, although consuming substantially less time than the transient

step computation, has a runtime of O(n log n) which can be identified in Table 6.2 by

the slow nonlinear growth of the runtimes.

Table 6.2: Runtimes of the trajectory-directed discretization algorithm for the Sallen-

Key lowpass filter.

Number of states 3702 6673 13288

Discretization Runtime 02 : 22 m 05 : 40 m 15 : 37 m

The set reachable of 1546 states reachable from DC-operating-points has been

identified using the ASL statement:

121



6 Experimental Results

reachable = on all reach from DCpoints;

The reachable transition vectors between states of the state space, spanned by the input

voltage Vin and the voltages over the two capacitances VC1
and VC2

, are visualized in

Figure 6.3.

Vin

VC1

VC2

Figure 6.3: Reachable state space of the Sallen-Key biquad lowpass filter.

6.3.1 Model Checking

The ASL specification for the overshoot property is denoted in Listing 6.2, calculating

the minimum andmaximum of the input and output values of the reachable states. For

the relation of the maximum and minimum output voltages to their respective input

voltages, the overshoot ratio is calculated and an assertion is formulated, allowing a

maximum overshoot ratio of 1.05 which represents the passband gain of the circuit.

The results calculated by the ASL model checking algorithms on the DATS are pre-

sented in Table 6.3, additionally giving the values forVC1
andVC2

that will be discussed

in connection with the verification using the complete state space-covering input stim-

ulus. An overshoot ratio of 1.734 has been calculated by the verification algorithms,

causing the assertion not to be satisfied. The overall runtime of the model checking

algorithms including reachability computation was 3.55 seconds.
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6.3 Verification of Active Lowpass Filter Overshoot

Listing 6.2: ASL specification for overshoot property.

on reachable assign(%max_V_in,max) value(V_in);
on reachable assign(%min_V_in,min) value(V_in);
on reachable assign(%max_V_out,max) value(V_out);
on reachable assign(%min_V_out,min) value(V_out);

%overshoot_ratio = (%max_V_out-%min_V_out)/(%max_V_in-%min_V_in);

for %overshoot_ratio assert [<= 1.05];

Table 6.3: Verification results calculated by the ASL model checking algorithms on the

DATS for the Sallen-Key lowpass filter.

Value Minimum Maximum

Vout −1.714 V 1.754 V

VC1
−1.630 V 1.663 V

VC2
−0.562 V 0.512 V

6.3.2 Counterexample

Subsequently, a counterexample input stimulus shall be generated in order to analyze

the erroneous behavior violating the specification in a transient simulation test bench

using the following ASL statement to create a piecewise linear waveform for Vin and

Vout:

counterexample from DCpoints to (reachable and V_out[< -1.5]);

While the piecewise linear signal forVin represents the input stimulus that has to be ap-

plied to the circuit to reach an output voltage < −1.5 V, the signal waveform generated

for Vout represents the expected behavior of the output voltage. Moreover, comparing

this expected output behavior, in the following referred to as V
expect
out , with the tran-

sient response Vsim
out to the counterexample input stimulus allows to rate the modeling

quality of the DATS and therewith the soundness of the verification results. As can

be seen in Figure 6.4, the expected behavior from the DATS model and the transient

response match quite well with the counterexample, reliably reaching the desired out-

put voltage. The generation of the counterexample stimulus on the DATS took 0.65

seconds.

123



6 Experimental Results

V
expect
out

Vsim
out

Vin

t [ms]

[V
]

1.61.41.210.80.60.40.20

1.5

1

0.5

0

−0.5

−1

−1.5

−2

Figure 6.4: Transient response Vsim
out to the counterexample input stimulus Vin of the

Sallen-Key biquad lowpass filter with the expected response V
expect
out predicted by the

counterexample algorithm on the DATS.

6.3.3 Complete-Coverage Input Stimulus

As an alternative to the model checking methodology with counterexample genera-

tion, a complete state space-covering input stimulus as introduced in Section 5.5 was

generated with a computation time of 3.93 seconds. The input stimulus consists of

31951 time and value tuples with an overall stimulus time length of 891 milliseconds.

Figure 6.5 provides an impression of the complete state space-covering input stim-

ulus and the transient response of the circuit.

Figure 6.5: Complete generated input stimulus and transient output response of the

Sallen-Key biquad lowpass filter.
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6.3 Verification of Active Lowpass Filter Overshoot

While the input stimulus generation algorithm is designed to cover every vertex of

the modeled circuit, which can easily be verified, it is necessary to prove that the gener-

ated stimulus really forces the circuit to adopt every reachable state of the system dur-

ing transient simulation. In order to prove complete coverage of the system variables,

in Figure 6.6 the transient circuit response to the input stimulus is plotted over VC1

and VC2
, showing that the trajectories completely cover the reachable coordinate pairs

for VC1
and VC2

. The differences in the concentration of the trajectories are caused by

the projection of the input variable’s axis into the two-dimensional plot. Additionally,

the number of sampled states of the state space discretization affects the density of the

trajectories. In Figure 6.7 an excerpt of the simulated transient response Vsim
out and the

signal V
expect
out computed on the DATS model generated by the new trajectory-directed

discretization approach is shown, clearly illustrating that the behavior computed on

the DATS model matches the transient response with high accuracy.
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V
C
2
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Figure 6.6: Transient response to the generated input stimulus of the Sallen-Key biquad

lowpass filter plotted over VC1
and VC2

.

6.3.4 Comparison to Hyperbox Discretization

For comparison of the discretization quality, a DATS model with 3333 states of which

2060 are reachable from DC-operating-points has been generated using the hyperbox

discretization approach [HHB02a] with a computation time of 87 seconds. On this

model, a complete-coverage input stimulus was generated with an overall stimulus

time length of 1.89 seconds. The transient response Vsim
out and the predicted behavior
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Figure 6.7: Excerpt of the transient response Vsim
out to the complete-coverage input stim-

ulus of the Sallen-Key biquad lowpass filter with the expected response V
expect
out pre-

dicted by the stimulus generation algorithm on the DATS, generated by the trajectory-

directed discretization approach.

V
expect
out , calculated on the DATS, are shown in Figure 6.8. In comparison to thematching

waveforms computed by the trajectory-directed discretization, the results obtained by

the hyperbox discretization show an over-approximation of the reachable area. More-

over, as all transition steps in the state space can only be either in the input direction

or paraxial, the rectangular shape of the expected waveform V
expect
out does not equally

well conform to the transient response. Model checking results of 2.915 for the over-

shoot ratio property correspondingly exhibit an over-approximation of the reachable

area due to not matching the state space dynamics with the discrete transitions in the

DATS.

A comparison of the successor relation error ǫsuc as defined in Section 2.4.2 supports

the conclusion of a large improvement of the trajectory-directed discretization over the

hyperbox discretization. For the trajectory-directed discretization, ǫsuc is 5.11
◦ with an

average out-degree of 0.94, compared to 29.58◦ for ǫsuc of the hyperbox discretization

with an average out-degree of 3.23.

6.3.5 ASL Verification on Simulation Waveforms

For application of the same ASL overshoot property specification that was introduced

in connection with application of the model checking approach in Section 6.3.1, the

transient simulation response to the complete state space-covering input stimulus was
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Figure 6.8: Transient response Vsim
out to the complete-coverage input stimulus of the

Sallen-Key biquad lowpass filter with the expected response V
expect
out predicted by the

stimulus generation algorithm on the DATS, generated by the hyperbox discretization

approach.

transferred back into a DATS state space representation with the approach described

in Section 5.3. The waveforms combined into a DATS model represent the signals Vin,

Vout, VC1
and VC2

. The transfer to a DATS model took 59 seconds, resulting in 126337

states of the model, created from the 159052 simulation time steps. Table 6.4 compares

the results of the ASL evaluation on the simulation waveforms after transferring them

into a DATS (Min Sim, Max Sim) to the ASL model checking results on the discrete

state space model generated by the trajectory-directed approach (Min MC, Max MC).

The model checking on the DATS slightly over-approximates the reachable area com-

pared to the transient simulation with the complete-coverage stimulus. Such differ-

ences can be the result of zero time input signal changes in the discrete model, while

the complete-coverage stimuli have been restricted regarding their maximum signal

edge steepness.

As the transient response covers the complete reachable state space of the circuit

under verification, another automated verification methodology is given that can de-

tect the overshooting behavior of the Sallen-Key circuit.
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Table 6.4: Verification results calculated by the ASL model checking (MC) algorithms

on the DATS for the Sallen-Key lowpass filter compared to the ASL evaluation on the

transient simulation results (Sim) using a complete-coverage input stimulus.

Value Min Sim Min MC Max Sim Max MC

Vout −1.636 V −1.714 V 1.64212 V 1.754 V

VC1
−1.558 V −1.630 V 1.563 V 1.663 V

VC2
−0.489 V −0.562 V 0.447 V 0.512 V

6.4 Verification of CMOS Charge Pump Startup Time

The charge pump circuit shown in Figure 6.9 is a clocked step-up voltage converter

allowing output voltages nearly twice the supply voltage. The parameters are VDD =

3 V, clk = 50 kHz, Rload = 1 MΩ, C1 = Cload = 1 nF.

C1
clk

V
DD

Cload Rload

TP1

TN1

TN2

TN3

V
VC1

Vclk cload

Figure 6.9: Circuit schematic of the CMOS charge pump.

A characteristic output waveform for VCload
, as shown in Figure 6.10, is calculated

by a transient analysis starting from the initial condition of VC1
= VCload

= 0 V, showing

the typical ripple of the clocked switching behavior.

6.4.1 Model Checking

A DATS model of the charge pump circuit shall be generated using the trajectory-

directed discretization method. The circuit has four state space dimensions: VC1
, VCload

and two additional dimensions for a behavioral model of a clock generator that has to

be included in the DATS model in order to obtain verification results for the defined

clock frequency. If the clock was considered as an input, all possible clock frequencies

would be contained in the model, not allowing to obtain expressive results.
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Figure 6.10: Transient output waveform of the CMOS charge pump circuit.

The generated DATS model selected for further analysis consists of 13055 states

which consumed a model generation time of 18 minutes and 39 seconds. Table 6.5

summarizes the discretization times for other state numbers for comparison. While

a higher number of states hardly improves the accuracy of the verified properties, a

lower number of states, although well capturing the startup behavior, is not sufficient

to model the periodic output ripple.

Table 6.5: Runtimes of the trajectory-directed discretization algorithm for the CMOS

charge pump.

Number of States 5533 13055 28892

Discretization Runtime [mm:ss] 05:08 18:39 61:07

On the DATS model, the ASL property specification methodology for startup time

verification of autonomous circuits presented in Section 5.2.3 is now applied. There-

fore, the start area for the startup time verification has to be selected:

startarea = (value(V_C_load)[<0.1]) and (value(V_C_1)[>-0.1]);

The states reachable from this start area contain the dynamic startup behavior of the

circuit on which the maximum output voltage can be measured and assigned to the

number variable %max_V_C_load:

reachable = reach from startarea;
on reachable assign(%max_V_C_load,max) value(V_C_load);

The value assigned to %max_V_C_load is 5.15885 V. Within the states reachable from

the start area, the minimum and maximum startup time is measured using the transi-

tion operation, assigning the computed states of the startup paths to the set startup:
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VCload

VC1

Vclk

Figure 6.11: Startup trajectory projected to VC1
, VCload

and Vclk, identified by evaluating

the ASL property specification on the DATS of the charge pump.

startup = assign(%startup_time_min,min) assign(%startup_time_max,max)
transition startarea to value(V_C_load)[>= 0.9 * max_V_C_load];

The set startup contains 648 states and the minimum startup time reported is 114 µs.

The maximum startup time assigned to the number variable %startup_time_max is

172 µs.

By applying the ASL algorithms to the circuit model, the set startup is acquired

as visualized in Figure 6.11.

The periodic steady states where the circuit reaches its maximum output voltage

over VCload
with a periodic signal ripple shall be analyzed. Therefore, these periodic

steady states, which form a cycle of transitions in the state space, are identified and

the minimum and maximum values of VCload
are measured by the following ASL state-

ments:

periodic_output_set = on reachable select oscillation;
on periodic_output_set

assign(%min_V_C_load_ripple,min) assign(%max_V_C_load_ripple,max)
value(V_C_load);

The oscillation detection algorithm reports a ripple period of 22.0234 µs which

slightly deviates from the clock cycle time of 20 µs. The number variable
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VCload

VC1

Vclk

Figure 6.12: Transient simulation waveforms of the charge pump forVC1
, VCload

andVclk

transferred into a DATS representation for application of ASL verification algorithms.

%min_V_C_load_ripple is assigned with 5.0889 V and %max_V_C_load_ripple

contains 5.15885 V.

The model checking algorithms for evaluating all the described properties have a

runtime of 18.28 seconds.

6.4.2 ASL Verification on Simulation Waveforms

A transient simulation for the startup process was conducted and the simulation wave-

forms for all four state space variables of the charge pump circuit were transferred into

a DATS model in order to apply the previously described ASL specification on these

waveforms. The transient simulation contains 8424 time steps for a simulation time

of 1 millisecond. The transfer to a DATS model consisting of 3528 vertices and 4539

transitions took 0.35 seconds. The lower number of states compared to the simulation

time steps is due to the ripple behavior at the maximum output voltage mapping to

a periodic cycle of states. Figure 6.12 illustrates the DATS model generated from the

transient simulation data, showing a similar structure compared to the startup trajec-

tory identified in the DATS generated by the trajectory-directed discretization method

in Figure 6.11. The application of the same ASL specification as used for model check-

ing takes 10.6 seconds and the ASL verification results for model checking and ASL

property checking on transient simulation waveforms are summarized in Table 6.6. As
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can be concluded from the comparison of the results, the model checking on a discrete

state space model can verify the specified properties with high accuracy.

Table 6.6: Comparison between ASL property evaluation on a DATS generated by

the trajectory-directed discretization (TDD) method and on simulation waveforms ob-

tained from transient analysis (TRA).

Property TDD TRA

Max. output voltage 5.1589 V 5.1503 V

Startup time [114 µs, 172 µs] 169 µs

Periodic output ripple [5.0889 V, 5.1589 V] [5.1008 V, 5.1503 V]

6.5 Model Checking of VCO Gain KVCO

The considered VCO circuit illustrated in Figure 6.13 is an opamp-based CMOS design

for demonstrating the ASL model checking methodology for verification of KVCO and

the linearity of the VCO that was introduced in Section 5.2.2. The circuit parameters

are VDD = 2.5 V, VSS = −2.5 V, g = 10−6, R1 = 20 kΩ, R2 = 1 MΩ, C1 = 100 nF, C2 =

1 nF. The oscillation of the circuit is caused by the inverter feedback loop alternately

charging C2. Thus, the oscillation period is controlled by the ideal voltage controlled

current source gVin determining the charge current of capacitor C2 via current mirrors.

gVin

C2 R2

R1

+

-

C1VC2 VC1

Figure 6.13: Circuit schematic of the voltage controlled oscillator.
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The considered input voltages for gain verification are 0.66 V, 0.83 V, 1.00 V and

1.17 V. Figure 6.14 shows the corresponding oscillation areas in state space isolated by

applying the methodology from Section 5.2.2 to the DATS circuit model generated by

the trajectory-directed discretization algorithm. The DATS model consisting of 15660

states was generated in 16 minutes and 57 seconds. Although the circuit only has a

three-dimensional state space, such a high number of states is necessary in order to

accurately capture the oscillation period for gain verification. The state space slices

contained in one single DATS with all state transitions for the four input voltage val-

ues are illustrated in Figure A.1 in Appendix A.1. From this transition structure, the

oscillation sets are identified by the ASL algorithms. The adaption of the trajectory-

directed discretization to the changed angles and dynamics of the transition structure

at the different input voltages can be registered clearly.

VC2

Vin

VC1

Figure 6.14: Oscillation areas of the voltage controlled oscillator at different control

voltages.

The ASL verification run takes 14 seconds and the acquired results for the oscilla-

tion period of the VCO at the specified input voltage steps are summarized in Table

6.7 with a comparison to transient analysis results. In Table 6.8, the results for the gain

property of the VCO are detailed in comparison to transient analysis results.
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Table 6.7: Comparison of the results between ASL model checking and transient anal-

ysis for the oscillation period of the VCO at different input voltages.

Vin ASLMC Transient Analysis

0.66 V 1391 µs 1394 µs

0.83 V 1139 µs 1147 µs

1.00 V 972 µs 969 µs

1.17 V 835 µs 840 µs

Table 6.8: Comparison of the results between ASL model checking and transient anal-

ysis for the gain KVCO of the VCO.

Vin Range ASLMC Transient Analysis

0.66 V, 0.83 V 959 Hz/V 931 Hz/V

0.83 V, 1.00 V 909 Hz/V 967 Hz/V

1.00 V, 1.17 V 1020 Hz/V 955 Hz/V

Compared to transient analysis, a small error of the values calculated by model

checking can be noticed. The deviation of the relative gain for the different input volt-

age tuples betweenmodel checking and transient analysis lies within the discretization

induced error range.

6.6 Equivalence Checking with Complete-Coverage

Stimuli

In this section, the new equivalence checking methodology based on complete-

coverage stimuli, in the following referred to as stimEC, is applied to example circuits

and corresponding behavioral models. Where possible, the obtained results for each

of the circuits are compared to a verification that has been performed using the VERA

equivalence checking methodology [HKH04] described in Section 4.5.3.1. The VERA

methodology directly compares the dynamic behavior in the state spaces of the sys-

tems under verification by mapping the state spaces using a nonlinear transformation

to a canonical representation for each system. This is only possible for implementa-

tions that do not differ substantially in their internal structure. Besides the comparison

of the two approaches with common circuit examples, the new stimEC approach will
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be applied to a delta-sigma modulator circuit that cannot be processed by the VERA

tool due to the comparison to a highly abstracted behavioral model.

The DATS models needed for application of the stimEC stimuli generation algo-

rithm are directly exported from the state space sampled by the VERA algorithms in

order to compare the verification methodologies based on equal input data. The DATS

export is implemented into VERA by exporting the sampled points in the state space.

The successor relation of the DATS is determined by a local search for each point pi

which selects an adjacent state pj as successor if a transient step vector vi starting in

pi points towards pj more than towards any other state. Although transition paths us-

ing this DATS modeling are not corresponding to state space trajectories equally well

as those generated by trajectory-directed discrete modeling, the transition structure is

sufficient for covering the reachable area of the circuits under verification.

The DATS model for complete-coverage input stimulus generation of the delta-

sigma modulator is generated using the trajectory-directed discretization approach.

The 8-dimensional state space is sufficiently captured to generate a stimulus that cov-

ers the reachable state space of the circuit.

6.6.1 Biquad Bandpass Filter

The first example circuit considered is a biquad bandpass filter illustrated in Figure 6.15

with C1 = C2 = 1 µF, R1 = R2 = R4 = 10 kΩ, R3 = 30 kΩ, R5 = 20 kΩ, VDD = 2.5 V,

VSS = −2.5 V, Vin = ±0.7 V. The used op-amp is a simple 8-transistor CMOS design.

This transistor netlist representation shall be compared with a VHDL-AMS behavioral

model partially illustrated in Listing 6.3 in order to show that the behavioral model

can be used for faster system simulation. Therefore, for the transistor netlist of this

circuit, a complete-coverage stimulus containing 8648 time and value pairs with a time

length of 300 ms is created and the circuit netlist as well as the behavioral model are

simulated with this stimulus. The input stimulus and the simulation results are shown

in Figure 6.16. Using the difference error measure, an error value of 11% is reported.

The VERA equivalence checking method reports 1.32% of difference. The higher error

reported by the stimEC method is due to the differing high-frequency behavior in the

beginning of the simulation not equally being captured by the VERAmethod.

The state space of the biquad bandpass circuit transistor netlist is spanned by the

input and the voltages over the capacitors. Hence, a complete coverage of the state

space can be proven by plotting the transient response to the input stimulus over VC1

and VC2
. As illustrated in Figure 6.17, the transient response is covering the reachable

states of the circuit.
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Figure 6.15: Circuit schematic of the biquad bandpass filter circuit netlist.

Listing 6.3: Excerpt from VHDL-AMS behavioral model of the bandpass filter.

ENTITY bandpass IS
GENERIC( den0 : real := ... );
PORT( terminal inp, outp, gnd : electrical );

end BANDPASS;

ARCHITECTURE behave OF bandpass IS
QUANTITY uout ACROSS iout THROUGH outp TO gnd;
...

BEGIN
uint == 1E-3*i_uint’dot+4E-7*i_uint;
uint == 1.0/den1*(-den0*0.001*i_uint-den2*uint’dot+num1*uin);
uout == uint+Rout*iout;
...

END behave;

6.6.2 Second-Order Delta-Sigma Modulator

Due to the high clock frequencies of delta-sigma modulators, they require plenty of

simulation time. Hence, for faster simulation of mixed-signal systems containing delta-

sigma modulators, behavioral models are used. With the new stimEC approach, the

comparison of a transistor netlist implementation of a second-order delta-sigma mod-

ulator versus a simple unclocked behavioral model using an allpass filter as a delay

component is performed. Due to the massive abstraction differences between the two

implementations, the VERA approach cannot be applied to this task as it cannot iden-

tify common state space characteristics for mapping the transformation.

Figure 6.18 shows the transistor netlist implementation of the second-order delta-

sigma modulator with C1 = C2 = 200 pF, R1 = R2 = R5 = R6 = 100 kΩ, R3 = R4 =

5 kΩ, VDD = 1 V, fclk = 1 MHz. The sequential bitstream is directed into a lowpass
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Figure 6.16: Complete generated input stimulus and transient output response of the

biquad bandpass filter transistor netlist (Output A) and VHDL-AMS behavioral model

(Output B).
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Figure 6.17: Transient response to the generated input stimulus of the biquad bandpass

filter plotted over VC1
and VC2

.

filter for further processing. A simple behavioral model for this circuit is implemented

by an allpass as a delay circuit followed by the same lowpass filter as illustrated in

Figure 6.19 with C1 = 10 nF, R1 = R2 = R3 = 1 kΩ.

The complete state space covering input stimulus generated for the transistor netlist

implementation of the delta-sigma modulator contains 32690 time and value pairs and

a system simulation time of 4.34 ms. After simulation of both circuit implementations

with the stimulus, the difference error measure is applied to the output voltage wave-

forms, reporting an output error of 10.67% when excluding the startup time of 0.1 ms

where the netlist implementation needs to lock to the feedback chain.

Although the model used for stimulus generation with 21001 states generated by

the trajectory-directed discretization algorithm in 3 hours and 29 minutes suffers from
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Figure 6.18: Circuit schematic of the second-order delta-sigma modulator.
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Figure 6.19: Simple behavioral model for the second-order delta-sigma modulator us-

ing an allpass filter for signal delay modeling.

the few states sampled for every of the 8 dimensions, the reachable state space of the

internal capacitors C1 and C2 of the netlist implementation is covered quite well. The

transient response to the input stimulus is plotted over VC1
and VC2

as depicted in

Figure 6.20. The trapezoidal appearance is caused by the correlation of the inverting

integrators, restricting the reachable value combinations of VC1
and VC2

.

6.6.3 Further Circuit Examples

Table 6.9 summarizes the equivalence checking results including runtime information,

the number of state space dimensions and the number of states in the graph struc-

ture used for stimuli generation of the aforementioned biquad bandpass and the delta-

sigma modulator, comparing the new stimEC approach to the VERA approach where

applicable. In addition, three other circuit examples have been processed with stim-

uli generated for the transistor netlists. The results for a log domain filter, a Schmitt-

trigger and a transistor switch with enable and power down functionality all indicate

the feasibility of the new stimEC approach, producing results very similar to the VERA

method. Runtimes of the stimEC approach on the VERA-generated DATS are domi-

nated by the transient simulation runs with the generated stimuli, while the stimuli
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Figure 6.20: Transient response to the generated input stimulus of the delta-sigma

modulator transistor netlist plotted over VC1
and VC2

.

generation and the error computation on the waveforms only require a small fraction

of the overall runtime.

In order to compare the runtime results to the new stimEC approach, approximated

runtimes of a conventional systematic simulation have been calculated for the five ex-

ample circuits. While systematic simulation cannot guarantee the complete coverage

of the circuits’ behavior, it is a common approach for circuit characterization. For the

delta-sigma modulator with a clock frequency of 1 MHz, a systematic simulation with

sine waves over three decades with 10 amplitude levels and 10 samples per decade

starting at 100 Hz could be performed. A single sine wave at 100 Hz already needs a

system time of 10 ms with time steps being very small due to the high clock frequency.

Without having performed the remaining simulations for higher frequencies, the 10

amplitude levels result in a system time of 100 ms, which is already over 20 times the

length of the transient response generated by the stimEC approach. However, the high

modeling time for the delta-sigma simulator dominates the runtime of 3 hours and

29 minutes while the stimulus generation, transient simulation and automatic error

calculation for both circuit implementations is only consuming less than 3 minutes.

For the remaining circuit examples, performing such systematic simulations leads

to higher simulation times than those of the stimEC approach. Table 6.10 summarizes

the number of input time steps, the transient response time steps and the runtimes

of the stimEC approach compared to the approximated runtimes of a conventional

systematic simulation.
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6.7 Assessment

The experimental results presented in this section showed the applicability of the for-

mal verification methodologies developed in the scope of this thesis. Although the cir-

cuit examples are limited to block level, complex circuit properties have been verified.

With the detection of the ring oscillator circuit’s bad initial conditions, the advantage

of state space-based complete verification methods could be emphasized. By applying

different methodologies to the same example circuit, the consistency and exchange-

ability of the new methodologies have been demonstrated. For property verification,

the presented methodologies were model checking, counterexample generation, appli-

cation of the ASL specification to transient simulation waveforms obtained by a sim-

ulation controlled by complete state space-covering input stimuli and multi-parallel

state space particle simulation.

The splitting of the verification process into a systematic ASL property specifica-

tion, followed by a completely automated formal verification using the new verifica-

tion algorithms, offers a structurized verification flow with minimal user interaction.

Hence, not only the formality of the verification process but also its automation can be

enhanced by the new methodologies.

The new trajectory-directed discretization algorithm significantly improves model-

ing accuracy, for the first time allowing to capture the dynamics of the state space in

a discrete model with an accuracy that deviates less than 10% from transient analysis.

The presented runtimes of the discretization can be considered as acceptable, due to

a model checking run on a discrete model replacing a large number of conventional

transient simulation runs. However, the exponential growth in states with the number

of state space dimensions for generating models with a constant accuracy still limits

the applicability to larger than block level circuits.

Equivalence checking using transient simulation with complete state space-

covering input stimuli has proven to compare well with the state-of-the-art approach

of transformed state space comparison. The wider area of application is a result of

the stimuli generation being possible even for abstraction levels where the previous

approach cannot be applied. This, however, comes at the cost of slightly higher verifi-

cation runtimes.
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7
Conclusions

Design verification of analog circuits is lacking formal methodologies in order to keep

up with customer needs such as reducing the occurrence of redesigns, safety and relia-

bility issues. Hence, this thesis has the goal of contributing new formal methodologies

for analog circuit verification to target this verification gap.

7.1 Summary

The analog formal verification methodologies for nonlinear analog circuits proposed

in this thesis consist of three areas:

• Discrete modeling

• Property specification

• Formal verification algorithms

To each of these areas, new approaches have been contributed in order to finally com-

pose a set of new formal verification methodologies with the design goals of increasing

accuracy and usability as well as back-propagation of formal verification results into

today’s test bench-based verification flows.

Discrete modeling Starting from the basics of system representation for verifica-

tion, discrete modeling of analog circuits has been motivated in order to apply for-

mal verification algorithms. The state of the art of state space discretization using a
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hyperbox-based state space partitioning exhibits downsides such as not being rotation

invariant to the state space dynamics flow and therewith lacking accuracy and over-

approximating the successor relation of the states. Hence, by analyzing these down-

sides, the requirements for a new discretization approach have been discussed. This

resulted in the proposal of a trajectory-directed discretization algorithm, where the tra-

jectories of the state space dynamics control the partitioning of the state space. While

the geometric objects of the partitions are complex structures, a mapping to a discrete

analog transition structure (DATS) was possible on a dual representation of the par-

titioning structure. To this discrete model, analog formal verification algorithms can

be applied, delivering results of higher accuracy than previous approaches. This has

been demonstrated by experimental evaluations, comparing the results of the new dis-

cretization approach to those of the hyperbox discretization and to transient analysis.

Property specification Property specification on discrete transition structures is orig-

inating from temporal logics which have been discussed in this thesis. Up to now,

there have been no approaches allowing to specify complex analog properties for for-

mal verification in the state space and only few approaches for signal-based analog

specification exist. In this thesis, after analyzing the existing approaches and develop-

ing requirements for improvements, this analog property specification gap has been

targeted by the development of the Analog Specification Language (ASL). ASL allows

new specification methodologies for property verification in the state space of ana-

log systems represented as a DATS. The feasibility of this model checking approach

has been demonstrated in the experimental results chapter by applying ASL specifica-

tions for properties such as advanced oscillation, startup time of autonomous circuits

and overshooting behavior to example circuits. Counterexamples can be generated

for specification-violating states and investigated in a transient simulation test bench.

Moreover, ASL specifications have been evaluated on transient simulation waveforms

without modification, building a bridge for applying formal property specification to

today’s simulation flows in preparation of the future introduction of formal model

checking.

Formal verification algorithms Besides the already mentioned model checking

methodology applying ASL specifications to a DATS generated by the new trajectory-

directed discretization algorithm, a set of additional formal verification methodologies

has been developed in the scope of this thesis. Motivated by the introduced approach

of counterexamples for analog model checking, the generation of complete state space-

covering input stimuli by complete traversal of a DATS was presented. This offered to

simulate analog circuit blocks in conventional transient simulation environments with

guaranteed complete coverage of every reachable state the circuit can adopt. Based

on the new stimuli generation algorithm, a methodology of formal assertion-based
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verification has been developed by evaluating ASL specifications on the waveform

results obtained from transient simulation with complete state space-covering input

stimuli. In addition, a formal equivalence checking methodology was introduced by

comparing the transient simulation responses of two circuit implementations to such

complete-coverage stimuli. The new state space particle simulation methodology aug-

mented the verification insights gained by the introduced property verification ap-

proaches.

7.2 Challenges and Future Work

While this thesis presents approaches how the analog verification gap can be targeted

by new formal verification methodologies, there are some challenges to solve until an

industrial application could be considered.

Enhancing the semantics of the discrete model The trajectory-directed discrete

modeling approach increased the accuracy of the state space discretization. However,

although this approach reduces the number of states needed for modeling a circuit

with equal discretization accuracy compared to previous approaches, the state space

explosion problem still persists. Hence, a higher circuit complexity than block level

could only be achieved by introducing modeling approaches that further decrease the

number of states and finally end up in a sub-exponential complexity with respect to

the number of state space variables. A possible approach could be giving up the ho-

mogeneity criterion for the state space partitioning and describing the flow of the state

space partitions with additional semantics such as simplified polynomial or differential

equations. While the partitions could be significantly larger due to more semantics put

into the symbolic description of a partition, such a symbolic approach would require

substantial changes to all verification algorithms operating on the enriched semantics

of the discrete structure that no longer could be represented by a graph-based DATS.

Merging ASL with an established specification language The introduction of ASL

showed how a minimal set of operations tailored to the purpose of analog prop-

erty specification can be sufficient for complex specification tasks in the circuit’s state

space. Especially with the possibility of ASL specification evaluation on transient sig-

nal waveforms, a future combination with established specification approaches by ad-

justing the syntax for example to PSL could increase the acceptance.

Coupling with commercial simulator back-ends In the area of verification algo-

rithms, the newly introduced verification methodologies based on complete state

space-covering input stimuli generation are well suited for application to block level
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verification in today’s non-formal verification flows without requiring the user to

adapt to the up to now unfamiliar state space-based specification of analog properties.

However, besides the already discussed modeling complexity, an one-click applica-

tion of complete-coverage stimuli equivalence checking could be only made possible if

the discrete modeling algorithms were closely coupled to commercial transient circuit

simulators such as Cadence Spectre, requiring cooperation of the vendors to disclose

interface internals.

Extension to mixed-signal verification While there are mature approaches to formal

verification of digital systems, a challenge is posed by combining these approaches

with the methodologies for the analog domain. Even on block level, there can be

closely coupled feedback loops of digital and analog circuit parts, as found in delta-

sigma converters or phase-locked loops. While the complexity of such blocks can still

be handled by the analog discrete modeling, an abstraction of the digital circuit parts

as proposed in [JH08] can further extend the applicability of the approaches presented

in this thesis.

Considering parameter tolerances Although design verification primarily targets

design flaws that can be identified by a discrepancy between a specified property and

the implemented nominal functionality, the formal verification methodologies could

be applied to verify implementations under consideration of parameter tolerances. On

the one hand, this could directly be achieved by the straightforward approach of sta-

tistically varying the circuit parameters using the Monte Carlo method [MU49] in ver-

ification runs after the nominal circuit has been successfully verified. On the other

hand, the parameter tolerances could be already introduced into the model to which

the verification algorithms are applied using the concepts introduced in [GOB08].

Device macro-modeling using the trajectory-directed discretization Due to the in-

creased accuracy of the discrete models generated with the trajectory-directed dis-

cretization approach, their application as device macro-models can be considered. As

has been demonstrated in Section 6.3 by comparing transient analysis results to the

corresponding expected waveforms calculated on the discrete model, the modeling er-

ror is very small. Hence, by implementing a wrapper that maps arbitrary input signals

to a state sequence on paths and returns the sequence of state space variables of the vis-

ited states, a macro model for transient circuit analysis is given. The simulation times

for piecewise linear input signals can be expected to be significantly lower than those

of a transient analysis due to a simple directed graph traversal needed to determine

the circuit response on the DATS model.
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A.1 VCO State Space Slices
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Figure A.1: State space slices with all state transitions for input voltages 0.66 V (a),

0.83 V (b), 1.00 V (c) and 1.17 V (d) showing the adaption of the trajectory-directed

discretization to the changed transition structure.
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