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Abstract Threat detection is a challenging problem, 

because threats appear in many variations and differences 

to normal behaviour can be very subtle. In this paper, we 

consider threats on a parking lot, where theft of a truck’s 

cargo occurs. The theft takes place in very different forms, 

in the midst of many people who pose no threat. The 

threats range from explicit, e.g., a person attacking the 

truck driver, to implicit, e.g., somebody loitering and then 

fiddling with the exterior of the truck in order to open it. 

Our goal is a system that is able to recognize a threat 

instantaneously as they develop. Typical observables of 

the threats are a person’s activity, presence in a particular 

zone, and the trajectory. The novelty of this paper is an 

encoding of these threat observables in a semantic, 

intermediate-level representation, based on low-level 

visual features that have no intrinsic semantic meaning 

themselves. The semantic representation encodes the 

notions of trajectories, zones and activities. The aim of 

this representation is to bridge the semantic gap between 

the low-level tracks and motion and the higher-level 

notion of threats. In our experiments, we demonstrate that 

our semantic representation is more descriptive for threat 

detection than directly using low-level features. We find 

that a person’s activities are the most important elements 

of this semantic representation, followed by the person’s 

trajectory. The proposed threat detection system is very 

accurate: 96.6% of the tracks are correctly interpreted, 

when considering the temporal context. 
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1. Introduction 

In this paper, we consider the detection of threats. Threats 

may occur in many areas and applications [21,24-26], 

among others, security (e.g., stealing), safety (e.g., 

crowded area) and military (e.g., trespassing). Detecting 

threats is relevant, because it enables professionals to 

mitigate an unwanted situation at an early stage. It is an 

interesting research area, because threat detection is a 

challenging problem, for several reasons which are 

discussed below.  

 The first challenge is that threats appear in many 

variations. For some threats, the key characteristic is the 

walking pattern, e.g., loitering. For other threats, the cue is 

the presence in a particular zone, which is considered 

suspicious, e.g., being present in a place where other 

people usually do not be present. Another category of 

threats is characterized by the current activity by the 

person posing the threat, e.g., trying to open a door. In this 

paper, the objective is to recognize a wide range of 

threats, by representing a variety of aspects of human 

behaviour. The novelty is our intermediate-level 

representation including a person’s trajectory, presence in 

particular zones, and activities.   

 The second challenge is that complex threats are a 

high-level semantic concept. A threat is an interaction 

between on the one hand the person or group of persons 

posing the threat, and the threatened person(s) or object on 

the other hand. The person posing the threat will try to 

limit exposure to a minimum. This leads to a complex 

interaction and the differences of the behaviour compared 

to other people, who pose no threat, may be very subtle. 

Together with the variations in which threats may occur, a 

thorough interpretation of the observed cues is required, 

beyond simple rules on simple cues. Yet, the popular 
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approach in computer vision for recognizing human 

behaviour is to start with low-level entities, the most 

common ones are trajectories resulting from tracking, e.g., 

[1], and hand-crafted features, e.g., STIP [2]. Such low-

level features are very useful, because they capture 

essential details about trajectories, local shape, motion, 

and they are localized in space and/or time. However, they 

are not directly associated with persons, zones in the 

scene, a person’s activities, and what happens during a 

person’s trajectory. Such associations are not trivial: many 

of the well-performing methods consider the low-level 

features in the whole video [3], the whole scene [4], or in 

sub-volumes without making explicit associations [5]. 

Recent attempts for complex behaviours in complex 

scenes have not been successful yet [6], although 

reasonable performance have been reported for simple 

activities [7]. For threat detection, this is not sufficient: 

our aim is to identify who is posing the threat and when 

that happens. Clearly, there is a huge semantic gap 

between threat detection and low-level features. Our 

contribution is that we exploit the advantages of low-level 

features and bridge the semantic gap to threat detection by 

an intermediate-level representation of the person’s 

trajectory and activities. 

 The third challenge is to recognize the threat as soon 

as possible, while in the midst of many other people who 

pose no threat. The cue for the threat will be more explicit 

and distinctive at a later stage, while the early cues may be 

less distinctive. At the beginning of a threat, the behaviour 

may look very similar to the behaviour of other people, 

e.g., just loitering is not really suspicious. Our objective is 

to distinguish between threats and normal behaviour, as 

soon as possible while the threat is building up, ideally 

from the moment that the person who is posing the threat 

starts to show the first cues with acceptable false alarm 

rate.  

 In this paper, we consider the theft of cargo from a 

truck, when the truck is parked. This is an interesting case, 

because there is a wide variety of threats, and there are 

many other people present. The threats range from 

explicit, e.g., a person attacking the truck driver, to 

implicit, e.g., somebody loitering and then fiddling with 

the exterior of the truck in order to open it (see Fig. 1 for 

two illustrations).  

 A graphical outline of the proposed system is 

displayed in Fig. 2. In our experiments, we demonstrate 

that our intermediate representation (i.e., trajectories, 

zones, activities) is more distinctive for threat detection 

than directly using low-level features (i.e., tracks and 

STIP). We will show that each element in our 

representation contributes to the overall discriminative 

power. The proposed threat detection system is very 

accurate: 96.6% of the tracks are correctly interpreted, 

when temporal context is considered. 

 

 

Fig. 1. Two examples of threats to a truck: somebody fiddles 

with the truck (top) and the truck driver is attacked (bottom). The 

goal of this paper is to detect such threats, in the midst of other 

people who pose no threat, as soon as possible. The novelty is 

that we detect a wide variety of threats based on a semantic, 

intermediate level representation that describes the state of a 

person (see bounding boxes) by the trajectory, presence in zones, 

and activities (see text boxes). 

 

The paper is organized as follows. Section 2 discusses 

other research on threat detection. In Sect. 3, we introduce 

the low-level features. In Sect. 4, we propose the 

intermediate-level representation. Section 5 defines the 

experimental setup, followed by the threat detection 

results in Sect. 6. Section 7 concludes the paper with our 

findings.  

2. Related work 

Recently, researchers started targeting a wider variety of 

threats, such as unwanted behaviours inside a train [8]. 

Detection of multiple threat models is the focus of our 

paper, where threats range from explicit, e.g., a person 

attacking the truck driver, to implicit, e.g., somebody 

loitering and then fiddling with the exterior of the truck in 

order to open it. 

 Threats may have a short duration (e.g., an instant 

attack) or a long duration (e.g., loitering and fiddling with 

the exterior of the truck). Many approaches have 

investigated longer-term behaviours [9]. When longer-

term behaviours are composed of several short-term 

actions in a particular sequence, the temporal structure can 

be exploited in sequential models such as hand-crafted 

grammars [10], or statistical, graphical models [11]. 
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Fig. 2. Graphical outline of the proposed system. 

 

The merit of temporal structure has been demonstrated for 

behaviours such as ‘two people meet, then depart’ [10] 

and ‘having a snack’ inside a small living room [11]. 

These behaviours have a small spatial extent. In more 

complex scenes, where behaviours spread to more spatial 

extent (e.g., loitering and then attacking), track breaks are 

common (e.g., obstructions cause non-visible areas 

resulting in temporary occlusions). There is yet no widely 

accepted methodology to recognize longer-term 

behaviours in complex scenes where obstructions and 

track breaks are common. The temporal structure can also 

be exploited by simpler approaches, where recent history 

is encoded in the representation itself [8,12]. We include 

this notion that recent history is an important queue as 

described in Section 4.4.  

 A threat may appear by a multitude of observable 

properties, ranging from a trajectory (e.g., a specific 

interest to the truck driver) to a particular activity (e.g., 

trying to open the truck). Many previous approaches have 

considered one particular observable property, such as 

trajectories [13], motion features [4], or group interactions 

[7]. Multimodal fusion has been an active research topic, 

in particular to detect specific video concepts [14]. Our 

approach will also comprise various observables, which 

can be derived from the visual source of a camera feed as 

this is the most commonly available sensor in 

surveillance. Our focus is on those observables that are 

indicative of threats: trajectories, activities and presence in 

particular zones in the scene.  

 Hierarchical models [11,13] and models with an 

intermediate level [8,15] have gained interest for 

automated recognition of complex behaviours. These 

models facilitate machine learning, by reusing the low-

level actions [11]. Further, multi-level approaches 

decrease the semantic gap between low-level features and 

complex behaviours [8]. An intermediate-level 

representation with dedicated components for the complex 

behaviours of interest has been successful for highly 

semantic phenomena such as the TRECVID MED 

competition [14,16]. We follow this approach for threat 

detection and design a dedicated intermediate-level 

representation that captures semantic observables related 

to threats. 

 An important design choice is whether the system is 

constructed by manual design [9,10,13] or trained 

[8,12,16]. The advantage of hand-crafted models is that 

expert knowledge can be included and that limited or no 

training data is required [9]. This has proven to be very 

effective for modelling trajectories through a scene [13]. 

Our representation constitutes more than trajectories only: 

we also represent activities and presence in particular 

zones. Our representation has a much higher 

dimensionality, and to the best of our knowledge, hand-

crafted models have not been applied successfully to such 

representations. Therefore, we adopt the two-stage 

methodology by [8] which decomposed the learning 

problem from low-level features to high-level concepts 

into two steps: from low-level features to the intermediate 

level representation, and from this representation to threat 

detection. 

 In many approaches the scene is interpreted as a 

whole, for instance, for detection of actions [3] and video 

concepts [14]. A popular approach to have some spatial 

localization capacity, is to include a fixed segmentation of 

the scene, such as tiling by a so-called pyramid [17], or a 

weak segmentation incorporating many candidates [18]. 

For weak spatial and temporal localization, a spatio-

temporal layout model was proposed in [4]. For threat 

detection, we will exploit the fact that we know the object 

of interest: a person and its track through the scene. 

Ultimately, we aim to identify who is posing the threat 

and where that person is in the scene and at which time.  

 The contribution of this paper is that we propose a 

method that is able to detect threats in early stages, in a 

complex scene with obstructions and many other people 

who pose no threat. The novelty is that we detect and 

localize a wide variety of threats based on a semantic, 

intermediate level representation that (a) describes the 

state of a person by the trajectory, presence in zones, and 

activities, and (b) can be constructed from realistic, 

imperfect tracks. 
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3. Low-level features 

This section discusses the low-level features that are used 

in the proposed system, i.e., tracks and motion (STIP) 

features, see the bottom part of Fig. 2. 

3.1 Object detection 

Object detection is performed using a combination of 

motion and change detection. In a typical surveillance 

scene the objects of interest will generally be observed to 

move through the scene, and this motion allows objects to 

be detected either by explicitly detecting the motion using 

optical flow, or by learning the appearance of the static 

background and identifying when pixels change. Change 

detection often produces foreground masks that are highly 

accurate indications of the location of moving objects of 

interest, however the approach struggles to split 

foreground blobs for objects whose paths cross and will 

leave ghosts where objects linger long enough to become 

part of the background model. Optical flow determines the 

motion of pixels in the image in terms of both speed and 

direction, and foreground masks can be produced by 

thresholding based on the speed while ensuring the 

resulting detection regions have homogeneous direction. 

As such, optical flow based motion detection, can 

overcome the merging of objects that are travelling in 

different directions or at significantly different speeds and 

will not produce ghost regions as there is no background 

model. However, the resulting foreground mask  will not 

generally provide accurate silhouettes of the objects. This 

makes the two approaches highly complementary and as 

such, in this work, change and motion detection are 

combined together. The fusion process consists of a 

logical OR of the two approaches’ foreground masks and 

then the use of heuristic reasoning to permit the motion 

detector’s regions to split change regions that have 

inhomogeneous motion, while the regions of the change 

detector are permitted to merge motion regions that show 

homogeneous motion. For this work, change detection is 

performed using the Adaptive Gaussian Mixture Model of 

[1], while real-time optical flow is provided by OpenCV's 

GPU implementation of [19].  

3.2 Object tracking 

Targets that are tracked are initialised from object 

detections. Each target maintains a model describing its 

RGB appearance and its spatial extents produced from a 

running average of the image and foreground mask pixels 

inside the target’s bounding box. Each frame, the optical 

flow determined during detection is used to predict target 

motion between frames, and this motion used to initialise 

a search for the target’s location. The search consists of 

minimising the difference between the target’s RGB 

appearance and the image for a given bounding box 

location. The difference is computed as the sum of RGB 

pixel differences, weighted by the magnitude of the pixels 

in the extents model to minimise the impact of 

background pixels. Tracks are associated to the detections 

in the current frame using heuristics to handle common 

detection issues such as fragmented detections and 

merged detections. Each tracking target “claims” a portion 

of the foreground image based on its extent mask, 

resulting in “atomic” regions – unclaimed detections, 

claimed detections, undetected claims. These atomic 

regions are associated to existing tracking targets based on 

region overlap. Association can be many atoms to one 

target, allowing for partial or fragmented detections to be 

handled. If multiple atoms associate to one target, the 

target tracks each of the atoms independently and as a 

whole – if they continue to have motion consistent with 

the whole, they are merged back into the target (basically, 

ignored), however, if they move away from the target, a 

splitting event occurs and two new targets are created 

from the original. Unclaimed detections become new 

targets. 

3.3 Localized motion features 

To capture the motion patterns of human actions, STIP 

features [2] proved to be very effective. They were found 

to be superior to track- and object-based features [15]. For 

each track and each bounding box, we associate the STIP 

features that are within the box, by comparison of (x,y) 

location and frame number and checking whether the 

location is inside the box at that frame [7]. An illustration 

is shown in Figure 3. The tracks and their STIP features 

are our starting point to represent human activities, 

trajectories and presences in zones (see Sect. 4). 

 

4. Threat detection based on a semantic 

representation 

In this section we propose the intermediate-level 

representation and high-level threat detection, see the 

middle and top parts of Fig. 2.  

4.1 Trajectory 

The intermediate-level representation includes a person’s 

trajectory, comprising the positions, kinematics and 

travelled distance. The kinematics are described by speed, 

orientation and travelled distance. The positions, travelled 

distance and kinematics are encoded in the feature vector, 

in image as well as world coordinates. Both have their 

advantages and disadvantages. Image coordinates are 

more robust but kinematics depend on the projection on 

the image plane, which has the disadvantage that it varies 

with distance. World coordinates are more or less 

invariant with respect to the projection, but are less 
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reliable. We represent these properties in both coordinate 

systems to be able to exploit the respective advantages. 

4.2 Meaningful zones in the scene 

The scene that will be considered in the experiments 

(Sect. 5) is shown in Fig. 3. The four zones are identified 

manually. The truck park area is the area of interest 

(middle right): threats involve the truck, its contents, or its 

driver. Typically, the person posing the threat arrives by 

car (middle left) or walks into the scene through the bus 

stop area (lower right). The driver often goes to the 

cafeteria (lower left) or stays close to the truck (e.g., to 

make a phone call or smoke a cigarette). These zones are 

important for an interpretation of the observed behaviour. 

In the representation, we store for each second a boolean 

indicating a person’s presence for each of the four zones. 

Presence in a zone is defined as at least one pixel overlap 

between a person’s bounding box and the zone area. 

 

bus

cafeteria

car

truck

 
Fig. 3. The four relevant zones in the scene, i.e., car park area 

(see yellow box), truck park area (red), bus stop area (green) and 

cafeteria (blue). 

4.3 Set of human activities 

The threats considered in the experiments (Sect. 5) range 

from explicit, e.g., a person attacking the truck driver, to 

implicit, e.g., somebody loitering and then fiddling with 

the exterior of the truck in order to open it. The threats 

generally involve particular activities. Clearly, the 

representation of human activities is valuable to interpret 

complex behaviours and to detect threats. We define a set 

of human activities that span both threat scenarios as well 

as normal behaviours that pose no threat, in order to 

disambiguate the two situations. The set of activities used 

is: {walk, run, loiter, turn, enter/exit vehicle, fiddle/check 

the vehicle, fight}.  

 The model for each activity is obtained by a bag-of-

features approach, which we describe in detail in our 

recent work [15]: For each one-second interval of the 

track, it transforms the STIP features into visual words 

and represents the track fragment as a frequency count of 

the words. The quantizer of choice is a random-forest 

[20]. It has a high discriminative power because it exploits 

the labels for each activity (further described in Section 

5.2) during the training phase. This way of quantization 

led to good performance in our recent experiments [4]. 

The final step is the SVM classifier with a χ
2
 kernel. The 

classifier serves as the detector for each activity. For each 

one-second fragment of the track, we obtain a posterior 

probability for each of the activities.  

4.4 High-level classification: threat detection 

In Sections 4.1, 4.2 and 4.3 we have described the 

elements of our intermediate-level representation. For 

each one-second fragment of each track, we obtain 

features capturing trajectory, kinematics, presence in 

zones, and a set of activities.  

 The trajectory level provides information about the 

kinematics of the object, including the direction of 

movement, which is important for detecting 

threatening situations. For example, the action 

consisting of a person walking towards the truck 

could be related to a threatening situation depending 

on the direction of movement. That is, if the person is 

coming from the service area, it could well be the 

truck driver returning from having a meal (i.e., 

normal behavior), whereas if the person is coming 

from the car parking area it could well be a potential 

thief aimed at checking the truck (i.e., suspicious 

behavior). 

 The zone information helps determine where the 

action is taking place. This provides contextual 

information essential to determine threatening level in 

some situations. For example, loitering in the bus stop 

area can be considered normal behavior, whereas 

loitering in the truck parking area could be indicative 

of a threat. 

 Human activities provide the semantics about the 

instantaneous actions that are taking place, which 

complements both zone and trajectory information in 

determining the threats, as already discussed. 

Together the trajectory, kinematics, presence in zones and 

activities yield a feature vector, which together with the 

threat labels (further described in Sect. 5.2), are used to 

train another SVM (also with the χ
2
 kernel which showed 

best performance compared to radial basis function). The 

result of this classification is for each track a per-second 

assessment of the threat level. 

 We present a causal system that detects threats 

instantaneously based on one-second segments. This is a 

causal system, as no information about the future is used. 

As an alternative, we also present a variation of the 

method that assesses the complete track. This is a method 

that has a slightly delayed response, as it requires the track 

to be finished before the threat assessment can be done. 

We call this variation ‘fragments with context’, where the 

term context refers to temporal context. Contextual 

information is represented by the maximum and mean 

values of the included elements during the complete track. 

Both implementations will be compared in the 

experiments. 
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5. Dataset and set-up 

5.1 Videos of threat and normal scenarios 

We perform threat recognition experiments on a dataset 

recorded for EU project ARENA
†
. The ARENA project 

aims to detect threats to mobile assets from multiple 

affordable sensors. This dataset contains 23 videos that 

include many tracks that pose a wide range of threats, and 

almost thousand other tracks of normal behaviour in a 

parking lot. The total duration is 77.5 minutes. The 

average video has a duration of 3.4 ± 1.2 minutes.  

 To the best of our knowledge, our dataset is the first 

one about detection of complex threats in video that 

involve (combinations of) various human behaviours, and 

which is publically available to the research community. 

To enable other researchers to compare their methods to 

our method, we make our dataset available in the 

international renowned PETS2014 benchmark as the 

“ARENA dataset” to enable direct comparisons. We refer 

to the PETS2014 website: www.pets2014.net. 

 The threat scenarios are ‘aggression towards the truck 

driver’ (3 videos), ‘hostile take-over of the truck’ (3 

videos), ‘stealing from the truck cabin’ (1 video), 

‘inspecting the truck exterior’ (3 videos), ‘touching the 

truck’ (1 video), ‘trying to open the truck’ (1 video), 

‘normal behaviours’ (11 videos). The main activities that 

may be cues for a threat are ‘attack person’, ‘follow 

person’, ‘try to open truck’, ‘enter/exit truck’, ‘take over 

truck’. The main cues that can be derived from trajectories 

are ‘loiter’, ‘approach truck or person’, ‘stay in car park 

area’ (from which some threats originate), while going to 

the cafeteria or bus stop may be cues for normal 

behaviour. 

 In total, 11 volunteers were involved in the 

experiments. They entered the scene multiple times. The 

maximum number of people visible in the video was 7. 

For number of persons during threats ranged from one 

(one person posing a threat to the truck) to five (one 

person attacking the driver and the other person trying to 

enter the truck on one side of the scene and three neutral 

persons passing by on the other side of the scene). 

5.2 Annotations 

Threats. For each video, for each track, an annotation 

threat vs. normal is obtained. There are in total 998 tracks 

found by processing the videos, with a total time span of 

6,842 s (on average 6.9 s per track), of which 86 tracks are 

annotated as threats, with a total time span of 1,170 s (on 

average 13.6 s per track). Tracks that are associated with 

threats have a longer duration, because typically such 

persons wait until the right moment to approach, attack, 

break in, etc. In Fig. 1, two example threats are shown. 

                                                           
†
 www.arena-fp7.org 

 Human activities. For each video, for each track, per 

one-second interval, a human activity label is annotated: 

walk (478 annotations), run (14), loiter (100), turn (133), 

enter/exit vehicle (123), fiddle/check the vehicle (26), 

fight (31). The one-second track intervals that span less 

than 10 frames, that have less than five bounding boxes, 

or that have less than seven STIP features, are discarded 

for training. Results of the annotations are illustrated in 

Fig. 4. It shows the difficulty of recognizing human 

activities: low contrast (people do not wear colourful 

clothes), large viewing angle variations (caused by the 

large field of view), and partial tracks (due to occlusions 

and track breaks). Other issues complicating automated 

analysis are as follows: due to low resolution (when the 

person is far away from the camera) and large variations 

of scale (persons can be close to or far from the camera). 

The most frequent activities are walking, loitering, and 

standing somewhere and turning around. The interesting 

activities occur only several times, which makes this 

dataset very challenging and relevant for surveillance.  

 

 

Fig. 4. Examples of annotations of human activities, in one 

second windows of the tracks on people (shown by the masks). 

5.3 Performance measure and cross-validation 

As a test framework, we consider a leave-one-video-out 

setup for cross-validation. We exclude 1 video for testing, 

and learn the activity models and threat model on the 

remaining 22 videos. This is repeated for all 23 videos. 

Leave-one-out cross-validation is commonly accepted in 

action recognition from video, see e.g. [22] and the 

ICPR’10 action detection benchmark [23].  

 Since we aim at instantaneous, early threat detection, 

we evaluate the performance per one-second fragment of 

all tracks in all videos. Note that this does include 

assessment of track fragments where up to its time no 

observable threat evidence has been seen, i.e. this 

performance measure will for causal systems never reach 

a perfect score. The performance measure is the average 
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classification accuracy, i.e., the average of the diagonal of 

the confusion matrix. Each video is a new recording with 

a different threat or normal behaviour, and also the people 

in the scene are varied. Therefore we believe that the 

leave-one-video-out is a sound evaluation of 

discriminative power and generalization capabilities or the 

intermediate-level representation and threat detection 

method.  

6. Threat detection results 

The experiments include three assessments: a comparison 

between the semantic intermediate-level representation 

and low-level features (Sect. 6.1); the quality of the 

representation of human activities (Sect. 6.2); the merit of 

each element of the representation, i.e., trajectories, zones 

and activities (Sect. 6.3). 

6.1 Semantic representation vs. low-level features 

To evaluate the merit of our semantic, intermediate-level 

representation, we compare against an approach based 

only on the low-level features (i.e., the STIP features in 

the one-second fragments of tracks). In both cases, we 

consider the high-level classification, i.e., threat vs. 

normal, but with different input features. For 

intermediate-level features, we perform this classification 

using the features that encode trajectories, zones and 

activities, using the classification as described in Sect. 4.4. 

For low-level features, we perform this classification by 

using the track-localized STIP features in the same bag-

of-features approach as described in Sect. 4.3. As this 

approach is a common practice in action recognition, e.g., 

[3,4,7], this is our baseline. 

 The results are shown in Fig. 5. The intermediate-level 

representation improves the threat detection significantly. 

With low-level features only, an accuracy of 69.0% is 

achieved. The accuracy is better when the intermediate-

level representation is used: 85.1%. With our 

representation, the threat detection has less false negatives 

(16% vs. 28%) and less false positives (13% vs. 34%). 

 

 
           

   Low-level features (69.0%)        Semantic representation (85.1%) 

Fig. 5. Confusion matrices of the threat detection accuracy for 

the low-level features (left) vs. semantic representation (right). 

6.2 Quality of human activities recognition 

The proposed representation includes human activities as 

one of the most important properties of a threat. Here we 

evaluate the classification of the seven activities from 

Sect. 4.3. The classification of these activities are 

described in more detail in recent work [7]; here we 

summarize these results. Fig. 6 shows the confusion 

between the activities. The average classification accuracy 

is 70.8%. For this seven-class problem the average 

performance by chance is 14%, so our performance is 

reasonable, especially since our setup for early threat 

detection is to estimate the activities from very short track 

fragments of one second only. The good performance of 

‘walk’, ‘loiter’ and ‘enter/exit vehicle’ (around 80%) can 

be explained from their prominent spatiotemporal 

appearance, whereas other activities are more subtle, and 

their duration is shorter. Hence it is harder to distinguish 

between ‘turn’, ‘run’, ‘check vehicle’, and ‘fight’ (around 

65%). The challenges are: tracks compromised due to the 

speed (‘run’), interaction with the vehicle (‘check 

vehicle’), or with another person (‘fight’). These results in 

misaligned bounding boxes which has a negative impact 

on the activity classification. 

 

 

Fig. 6. Confusion matrix for the human activities that are part of 

the semantic representation (average classification accuracy: 

70.8%). 

6.3 Merit of each element of the semantic representation 

The final experiment is to assess the merit of representing 

trajectories, presence in zones, and activities. We evaluate 

the threat detection accuracy for each element, and also 

when all elements are combined into our representation. 

Table 1 shows the results, where the columns indicate the 

elements included in the representation (left), the obtained 

accuracies when using only the track fragment itself 
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(middle), and when adding contextual information from 

the complete track (right). Context information is 

represented by the max and mean values of the included 

elements during the complete track. This gives an 

indication how well the method performs if we would 

allow the whole track to be analysed. In actual 

applications on streaming video, the system needs to be 

causal, and in case of temporal context the system would 

need to wait with the potential alert until the track is 

finished.  

 The findings are as follows. The full representation, on 

the one-second track fragments results in a 85.1% 

accuracy (this is the accuracy from the confusion matrix 

from Sect. 6.1 and Fig. 5). The activities are the most 

important element in the representation, when considering 

the fragments (78.2%). The zones and trajectories are less 

important (they perform approximately 15% less). 

Interestingly, the accuracy of threat detection based on 

human activities is better (78.2%) than the actual 

recognition of human activities themselves (70.8%). This 

implies that for threat detection, the selected activities are 

probably redundant. From this result we learn that the 

chosen set of activities may be too fine-grained for the 

purpose of threat detection.   

 The accuracy can be increased by considering the 

context of the complete track. Interestingly, for fragments 

combined with context, the trajectories are the most 

important element of the representation. This implies that 

when observing a complete track, its trajectory and 

kinematics are a very rich description already. Adding 

activities and zones to the trajectory and kinematics makes 

the representation much more powerful: the threat 

detection accuracy increases to 96.6%. We expect that a 

large portion of this increase is due to track fragments at 

the beginning of the video with up to that moment no 

observable threat evidence being correctly classified as 

threat when adding complete track context, i.e. this 

change is mainly due to the available granularity of the 

treat annotations, at the whole track only. 

 We have also evaluated the pairs of representations, 

see the middle part of Table 1. Interestingly, for the track 

fragments of one second, the pairs perform less than the 

best of the constituting representations. When including 

temporal context, the results for the combination 

trajectories and activities and the combination zones and 

activities are very good. These combinations perform 

almost as good as the combination of all three 

representations. The combination trajectories and zones 

does not perform well; the performance is less than either 

trajectories or zones. The least valuable representation, in 

case of including context, are the zones. There are not 

much zone transitions, so in a larger temporal context, this 

representation by itself is not very valuable. Yet, together 

with the complementary representation of activities, it has 

a strong additional value. Zones and activities are the best 

pair of representations and perform just 0.4% less than the 

combination of all three representations.  

 
Table 1. The threat detection accuracy (%) for each element of 

the semantic representation, for detection based on a track 

fragment of one second, and when adding temporal context. 

Representation Track 
fragment 

Track fragment + 
Context 

Trajectories 62.8 91.6 

Zones 64.7 65.1 

Activities 78.2 85.7 
Trajectories + Zones 67.8 66.9 

Trajectories + Activities 75.3 95.8 

Zones + Activities 76.7 96.6 
All 85.1 96.6 

 

6.4 Generalization to a new environment and other 

situations 

In order to demonstrate that our system generalizes well to 

unseen data, recently, our system was used to perform a 

live demonstration using completely unseen data from 

another parking lot in Paris. This is a different 

environment with different cameras, different viewpoints, 

different actors and different threats. The zones were re-

defined for this new environment; the other parameters of 

the method were not changed (no re-learning). Due to 

privacy reasons, it is not allowed to make the new 

demonstration data publicly available. Below we show the 

quantitative as well as qualitative results. 

 Fifteen scenarios were recorded, respectively: five 

normal, five posing a threat to the truck, five posing a 

threat to the driver. The maximum five threat confidences 

for each of the fifteen scenarios are shown in the chart in 

Fig. 7. It shows the scenario names horizontally, where 

prefix 01 refers to normal scenarios and prefixes 02 and 

03 refer to the threatening scenarios. Vertically the chart 

shows the threat confidences, where for each scenario the 

maximum 5 are shown by the blocks of coloured bars. 

Clearly the threatening scenarios have in general larger 

threat confidences than the normal scenarios. With a 

threshold of 0.15, no threats are missed, at the cost of one 

false positive (scenario 01_04).  

 To provide some insights in the video data and the 

threat detections, we visualize several outcomes in Fig. 8, 

at the top a normal scenario, and in the middle and at the 

bottom, a threat to the truck and a threat to the driver. In 

our visualization, the tracks are summarized in one image 

by means of insets of the tracks, where each track is 

shown by five boxes including the image content inside 

that particular box and frame. The normal scenarios 

include friendly interaction with the driver. The system 

was able to identify that friendly interactions such as 

walking towards, or walking next to the driver, or talking 

to him, were not a threat (Fig. 8, top). 

 



Signal, Image and Video Processing 

page 9 / 10 

 

 

Fig. 7. The five maximum threat confidences for fifteen 

scenarios, of which the first five scenarios are normal and the 

last ten scenarios are threatening. For threats, i.e., scenarios with 

prefixes 02 and 03, the confidences are in general much higher. 

 

The reason that such a scenario is well interpreted by our 

method, is that there are many friendly interactions 

between people (although not with the driver) in the 

learning set. The person with the pink shirt walks up to the 

driver (with yellow jacket) and a third person joins the 

conversation (with white shirt). Figure 8, in the middle 

and at the bottom, shows two detections of threats posed 

against the truck and the driver. 

7. Conclusions 

In this paper, we have proposed a threat detection system 

based on an intermediate-level representation that captures 

semantic descriptions including a person’s trajectory, 

activities and presence in particular zones. We have 

described how this representation can be constructed from 

simple, low-level features, such as automated, imperfect 

tracks and common, localized motion features. We have 

shown how the intermediate-level representation 

outperforms the low-level features for threat detection. 

The activities and trajectories are very important elements 

of this representation. We envision that the proposed 

intermediate-level representation is also beneficial for 

explaining why the system has detected a threat, which is 

an important component of a surveillance system [21]. 

The representation consists of descriptions that have a 

meaning, like ‘a person was present in the car park area’ 

and then ‘loiters around the truck area’. Such descriptions 

may help the operator to assess the threat. Further, it helps 

to get insight into system’s decisions and errors. The latter 

is important for fine-tuning the system for optimal 

performance. The proposed system reliably detects 

threats. In 23 challenging videos, the average accuracy is 

85.1% with just one-second track intervals. This is a very 

reasonable performance, given the small temporal extent 

of the analysis. When the total track is available for 

analysis, the performance is very good: the threat 

detection accuracy increases to 96.6%. 
 

 

 

Fig. 8. (Top) Friendly interaction between a person and the 

driver, as part of an independent test set. This scenario was not 

in the training dataset. It resulted in a correct detection ‘normal’. 

(Middle and Bottom)These threat scenarios were similar to 

samples in the training dataset, but with different cameras, 

viewpoint and actors. These two and the remaining threats all 

resulted in a correct detection ‘threat’. 
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