
LOCATION OF REPETITIVE REGIONS IN SEQUENCES BY

OPTIMIZING A COMPRESSION METHOD

O. DELGRANGE

Universit�e de Mons-Hainaut

Avenue du champ de Mars 6, 7000 Mons, Belgique

Email: Olivier.Delgrange@umh.ac.be

M. DAUCHET

Laboratoire d'Informatique Fondamentale de Lille

CNRS URA 369, 59655 Villeneuve d'Ascq, France

�E. RIVALS

Deutsches Krebsforschungzentrum (DKFZ)

Im Neuenheimer Feld, 280, 69120 Heidelberg, Germany

Suppose that a biologist wishes to study some local property P of genetic sequences.

If he can design (with a computer scientist) an algorithm C which e�ciently com-

presses parts of the sequence which satisfy P , then our algorithm TurboOptLift

locates very quickly where property P occurs by chance on a sequence, and where

it occurs as a result of a signi�cant process. Under some conditions, the time

complexity of TurboOptLift is O(n log n). We illustrate its use on the practical

problem of locating approximate tandem repeats in DNA sequences.

1 Introduction

A compression method tries to reduce the size of a sequence (a text or a DNA
sequence for example) by exploiting a property P of the sequence. The more
relevant P is, the more compressed the sequence can be. For example, if the
property P is "having duplicated regions", a DNA sequence consisting of two
copies of the same segment can be compressed to nearly half its length. The
compression gain measures the reduction in size. If a sequence cannot be
compressed (i.e. the compression gain is less than or equal to 0), the property
is irrelevant for the sequence.

The use of compression algorithms in the framework of pattern discovery
works like hypothesis tests 1: the hypothesis of the presence of a pattern is an
\acceptable hypothesis" if the modelling of the data using this pattern leads to
an e�ective compression. This principle is known as inductive inference and has
its mathematical foundations from the works of Solomono� 2, Kolmogorov 3,
Chaitin 4 and Wallace and Boulton 5.

A sequence can be viewed as the description of an object (for example, the
description of a DNA fragment) and each of its compressed versions is another

Pacific Symposium on Biocomputing 4:254-265 (1999) 



description of the same object. The Kolmogorov Complexity of a sequence is
the length of its shortest description. If the length of a sequence is the length
of its shortest description, it is incompressible. It has been proved 6 that a
sequence is not random if it is compressible. The Kolmogorov Complexity is
generally non-computable! a It is thus not possible to prove that a sequence
is random. However, it is possible (but di�cult) to prove that a sequence is
not random: it is not random if we can compress it without prior knowledge.
Practical compression algorithms are related to some speci�c properties and
provide approximations of the Kolmogorov Complexity.

Common �le compression programs perform poorly on DNA sequences
and thus available prior knowledge or expertise in the biological domain is re-
quired 1. For example, the use of approximate repeats in compression methods
takes its inspiration from biological models of evolution.

There are some known compression methods for genetic sequences. In 7,
a Lempel-Ziv like model is used to compute the algorithmic signi�cance of a
sequence. Such a method was also presented in 8 with the improvement of
considering also inverted repeats. The authors of 9 extend a �le compression
algorithm to DNA by allowing mismatches to occur in \contexts". The paper10

concerns the problem of �nding the optimal compression of a sequence thanks
to the encoding of its exact repeats. It present a heuristic approach to the
problem. The paper 11 does not really present a compression method but it
gives de�nitions of \compositional complexity" of strings. Recently, in 1, has
been presented a loosely compression method based on the Lempel-Ziv model
in which a repeated substring can be an approximate match of the original
substring.

All these methods consider the compression gain as the global relevance
of the exploited property. However, they do not help us to locate precisely, in
the sequence, where the property is true and where it is not. In this paper,
we present a new algorithm that does exactly that. The algorithm is called
TurboOptLift. It takes, as input, the result of an already known compres-
sion method, applied to a sequence s, and provides a precise location of the
regions of s where the property exploited by the method is true. It is not a
new compression method at all! It requires the existence of a modular b

compression method which exploits the property we want to study. It can be
applied, for example to some of the above compression methods.

The algorithm proceeds by analyzing the result of the compression in order
to locate the segments of s where the compression was not worthwhile. It is
thus preferable to copy these segments as they are instead of compressing them.

aA compression algorithm cannot take into account all possible properties of the sequence.
bIt means that some segments of the compressed sequence can be moved or deleted.

Pacific Symposium on Biocomputing 4:254-265 (1999) 



However, when a segment is copied, additional informations must be coded to
allow the deciphering. Among other things, the length of the segment must be
coded.

TurboOptLift solves the problem of �nding the decomposition of s into
"copy" segments and "compressed" segments, in order tomaximize the com-

pression gain. In "compressed" segments, the property is said to be relevant
but in "copy" segments, it is said not to be so. This optimization problem
is not obvious. Provided some conditions on the self-delimiting code SD used
for the length of copied segments, TurboOptLift solves the problem in time
O(n jSD(n)j) where n is the length of the sequence. In practice, the code
Fibo

12 satis�es the conditions and thus the problem can be solved in time
O(n jFibo(n)j) = O(n log n).

At the end of the paper, we illustrate the use of TurboOptLift to lo-
cate Approximate Tandem Repeats (ATRs) of a given motif in DNA se-
quences. We also present the initial modular compression method which uses
the Wraparound Dynamic Programming (WDP) technique 13. Our algorithm
selects ATRs that are signi�cant at the scale of the whole sequence (an exam-
ple is presented on the whole chromosome 11 of yeast). Moreover, the method
seems able to distinguish between random ATRs and ATRs generated

by a speci�c process.

The remaining of the paper is organized as follows. After preliminary
notations, next section de�nes the notion of a compression curve and the new
concepts of modular coding scheme. Section 3 shows how a compression curve
can be improved and optimized if the compression method is modular. Rapid
optimization of the compression is achieved by the algorithm TurboOptLift

(section 5). Last section concerns the application to the identi�cation of ATRs.

2 Preliminaries

We present here some basic de�nitions and properties concerning sequences,
compression methods and codes (more details can be found in14). We introduce
two new concepts: the modular coding scheme and the compression curve that

are needed by our location algorithm.

Let A be a nonempty alphabet. This is a �nite set of letters (or symbols).
A sequence (or word) s over A is a �nite sequence of symbols of A. Its length is
denoted jsj, it is the number of its symbols. The ith symbol of s is denoted si,
the subword (or factor) of s starting at position i and ending at position j is
denoted si::j = sisi+1 : : : sj . A pre�x u of s is a factor starting at the beginning
of s: u = s1::k is the pre�x of length k of s. The nth power of s, noted s

n, is
the word s concatened n � 1 times to itself. In this paper, B = f0; 1g stands

Pacific Symposium on Biocomputing 4:254-265 (1999) 



for the binary alphabet, its symbols are called bits. N = fA; C; G; Tg stands for
the alphabet of nucleotides. For example, s = AGACTGG may represent a DNA
sequence.

Given an input sequence s, a lossless compression method (more simply
a compressor) C computes the compressed sequence s

0 = C(s) such that the
entire sequence s can be reconstructed from s

0. In other words, there exists a
decompression method (or decompressor) D such that s = D(s0). In practice,
the output alphabet is B.

Usually, a compressor achieves its work in two steps: the analysis step and
the coding step. During the analysis step, informations are collected about
the presence of a speci�c kind of pattern in the sequence. The goal of the
coding step is the construction of the compressed sequence using a coding

scheme, which is a set of rules for coding the input sequence using the patterns.
It de�nes the syntax of a compressed sequence: a hypothetical compressed
sequence s0, written over B, has a valid syntax for the compressor C if and only
if it can be processed by the decompressor D without error.

The code enables to write items over B. A code c must be injective to allow
an unique deciphering. For example, we may want to code all letters of N or
all integers of IN. The coding of an item using a code is called a codeword,
this is a word over B. For example, let us de�ne the code NUC which maps
a letter of N to a word over B such that NUC(A) = 00; NUC(C) = 01;
NUC(G) = 10 and NUC(T) = 11. The sequence s = AACGTAGGACT can be
coded as NUC(s) = 00 00 01 10 11 00 10 10 00 01 11.

A code is a self-delimiting code (often called pre�x code) if no codeword
is a pre�x of another codeword. For example, NUC is a self-delimiting code.
Self-delimiting codes are useful in the area of compression because when sev-
eral codewords are concatened together, the obtained sequence is uniquely
decipherable 6;14;12.

A compression method C has a modular coding scheme (more simply, C is
a modular compression method) if each compressed sequence s0 = C(s) can be
decomposed into independent subwords which are the coding of corresponding
subwords of the initial sequence s. That is to say

s = (s1::i1)(si1+1::i2) : : : (sik+1::n)

s
0 = I code(s1::i1)code(si1+1::i2) : : : code(sik+1::n)

for some positions fi1; i2; : : : ikg. The pre�x I of s0 is the coding of the initial
informations needed by the coding scheme. Each codeword code(sij+1::ij+1)
is the subword of s0 obtained by the coding of the corresponding subword
sij+1::ij+1 of s. All such positions fi1; i2; : : : ikg are called separating positions.

Pacific Symposium on Biocomputing 4:254-265 (1999) 



Remark 1 Although most of the practical compression methods (Lempel-Ziv,

Hu�man, ...) are modular, it is quite restrictive. It imposes to the sequel of

items of the sequence to be well separated in the compressed sequence. This is

not the case, for example, for the arithmetic coding.

The global compression gain, de�ned as g = jsj � js0j, is a measure of the
reduction in size.
Remark 2 In the case of DNA sequences, the formula is g = 2jsj�js0j because
each letter of N must be coded over two bits before counting the number of

symbols.

For each separating position ij , we de�ne the partial compression gain

p(ij) as the reduction in size obtained by C on the pre�x s1::ij :

p(ij) = 2ij � jI code(s1::i1)code(si1+1::i2) : : : code(sij�1+1::ij )j

By extension, p(n) = g is the global compression gain and p(0) represents
the initial cost of the compression of s: p(0) = �jI j.

The compression curve of a modular compression method C applied to a
sequence of length n is the partial curve de�ned for 0; i1; i2; : : : ik; n, which
maps a position i to its partial compression gain p(i).

Example 1 Consider the 1000-bases long sequence of yeast chromosome 11

starting at position 63700. Suppose that there exists a modular compression

method, called CTTC, which tries to compress a DNA sequence by exploiting the

property of "being an Approximate Tandem Repeat (ATR) of TTC c" (such a

method exists, it is presented in Sec.7). The compression curve of CTTC, applied
to our 1000-bases long sequence is presented in Fig.1. The global compression

gain is negative because this 1000-bases segment is not close enough to an Exact
Tandem Repeat (ETR) of TTC. However a subword is very close to an ETR of

TTC. It corresponds to the unique increasing segment of the compression curve.

The other segments of the curve correspond to subwords that are not close to

ETRs of TTC.

3 Compression Curve Optimization

The goal of this section is to show how a modular compression method can be
improved in order to maximize the global compression gain for a sequence.

An increasing segment of the compression curve exhibits a subword of
the sequence for which the compression method is worthwhile: it produces a
local gain. On the contrary, a decreasing segment corresponds to a subword
which is lengthened by the compression method; the pattern does not occur
frequently enough to produce a gain. It is of course preferable to copy the

cAn ATR is a multiple copy, side by side, of the same motif with some mutations.

Pacific Symposium on Biocomputing 4:254-265 (1999) 



-500

-450

-400

-350

-300

-250

-200

-150

-100

-50

0

0 200 400 600 800 1000

P
ar

tia
l g

ai
n

Position

 

Figure 1: Compression curve of CTTC applied

to the 1000-bases segment of Chr.11

-50

0

50

100

150

200

250

300

0 200 400 600 800 1000

P
ar

tia
l g

ai
n

Position

 

Figure 2: Compression curve of Fig.1 after the

application of two liftings

corresponding subword of the sequence as it is instead of compressing it. To
ensure that the resulting compressed sequence has still a valid syntax, we
can only do such a copy between two separating positions ij and ik. In the
compressed sequence, the encoding of the copy of the segment sij+1::ik will
be [aR SD(ik � ij)NUC(sij+1::ik )] with aR being the rupture 
ag, telling to
the decompressor that the usual coding scheme has been broken (we speak
about a rupture of the coding scheme), and SD(ik� ij) being the self-delimited
encoding of the length ik � ij of the segment. A few bits are then lost before
the beginning of the factor copy.

We say that the rupture of the coding scheme induces a lifting of the
compression curve because the right part of the curve is lifted up. If we apply
this process on each decreasing segment of the curve of Fig.1, we obtain the
curve showed in Fig.2. Each segment of the curve, corresponding to a copied
subword, is replaced by a �xed rupture curve. It gives, for each position, the
encoding cost of aR and the length of the rupture if this position represented
the end of the rupture.

Notice that, in this example, the choice of these two ruptures is optimal:
the resulting improved compression curve has the maximal global compression
gain.

Remark 3 The rupture 
ag aR must be a codeword unused by the coding

scheme. Sometimes, the coding scheme must be adapted to provide such a

subword. For example, for the Hu�man coding, one of the codeword must be

lengthened to create a new leaf in the Hu�man tree. The initial compression

method will su�er from this adaptation. The more shorter aR is, the longer will

be other codewords. This is thus a critical parameter. A choice must be made

between favouring the initial compression method or favouring the application

of ruptures.

Pacific Symposium on Biocomputing 4:254-265 (1999) 



We can now make more precise the optimization problem we want to solve.

Given:
1. a modular compression method C whose coding scheme provides a rup-

ture 
ag aR;

2. an initial sequence s of length n that we compress using C. The compres-
sion of s produces the compression curve as well the separating positions;

3. a �xed rupture curve which is completely speci�ed by the length jaRj of
the rupture 
ag and the code SD used for rupture lengths;

we want to �nd the optimal decomposition of the sequence into

subwords that must be compressed and subwords that must be

copied as they are (rupture subwords) in order to maximize the global

compression gain.

It is not an easy problem since the number of possible decompositions is
an exponential expression of n.

4 ICL Codes and DCL Rupture Curves

In the preceding section, we mentioned that the code SD used for the rup-
ture length must be self-delimiting. Moreover, we require that SD be ICL

(Increasing, Concave and Limited). We show how this property helps us to
choose rapidly among several possible ruptures. We give an example of a
self-delimiting ICL code: the Fibonacci code.

Let SD be a self-delimiting code which allows to write all integers over B.
It is ICL if it has the following three properties:

1. The length of the codewords is increasing: for all integers a; b with a < b,
we have jSD(a)j � jSD(b)j.

2. The length of the codewords is concave: for all codeword lengths l1; l2,
with l1 < l2 : #fi : jSD(i)j = l1g � #fi : jSD(i)j = l2g.

3. The increase of the codeword length is limited to 1 between two consec-
utive integers x and x+ 1: jSD(x + 1)j � jSD(x)j + 1.

When the self-delimiting code used for the length of the ruptures is ICL,
the associated rupture curve is DCL (Decreasing, Concave and Limited). A
DCL curve is a decreasing stair-like curve in which all "steps" are of height 1
except the �rst one which carries the cost of the coding of the rupture 
ag aR.
Moreover, the "steps" of the curve are longer and longer.

The main interest of DCL rupture curves is that two curves do not have
more than one crossing point (see Fig.3). Therefore, at the right of their
crossing point, the one being below the other will never be the greatest one
anymore.

Pacific Symposium on Biocomputing 4:254-265 (1999) 



p(x)
p(x’)

x’ x

Crossing point

Figure 3: Two potential rupture curves that cross themselves

Because it is very di�cult to satisfy the three ICL constraints at the same
time, there are very few self-delimiting ICL codes. The Fibonacci code, de�ned
in 12, is self-delimiting and ICL (the proof is in 15). It codes integers using
Fibonacci numbers. We denote by Fibo(`) the Fibonacci coding of integer `.
It codes ` using O(log `) bits. In the remaining of the paper, we use Fibo to
code the length of a rupture d.

5 The algorithm TurboOptLift

The goal of this section is to present the principle of our optimization algo-
rithm and its time complexity. The algorithm is technical and the proofs are
complicated. Interested readers may �nd more details in 15.

The TurboOptLift algorithm provides the unique optimal curve,

minimal in ruptures among all optimal curves e, in time O(n logn)
where n is the length of the sequence.

To do this, the curve is processed from left to right. At step i, the curve
is optimized over the interval [0; i]. Potential rupture curves whose have their
starting position less than i are considered. Since the rupture curve is DCL,
it is possible to prove 15 that the greatest rupture at position i can be selected
in time O(log n). If this rupture improves the curve on [0; i], it is applied. In
fact, when a rupture is applied, the corresponding lifting is made formally:
we only have to store the starting position and the length of the rupture.
Thus, the application of a rupture is done in constant time. Since there are at
most n steps (one step for each separating position), the time complexity of

TurboOptLift is O(n log n).
Remark 4 Miller, Myers 16on one hand and Galil, Giancarlo 17 on the other

hand have developed a dynamic programming algorithm to compute an align-

ment when the cost function is concave. The time complexity of their algorithm

dWe have developed another ICL self-delimiting code, called PrefF ibo. It is moreover

asymptotically optimal (see 15) but its construction is very technical. Since jFibo(`)j �

jPrefF ibo(`)j for ` < 100000, we do not consider it in this paper
eIt is the only one for which the number of points that are on rupture curves is minimal.

Pacific Symposium on Biocomputing 4:254-265 (1999) 



is also O(n log n) but the log operator comes from a dichotomical resolution of

the problem. This is very di�erent from our case where the log is related to

the use of Fibo to code the length of a rupture.

6 Use of TurboOptLift Algorithm to Locate Repetitive Regions

It is now possible to use TurboOptLift as a \black box tool" to locate a
speci�c kind of subword in DNA sequences. Such subwords are character-
ized as repetitive because they can only be located if they contain redundant
informations that can be used to compress them.

We must have at our disposal a modular lossless compression method C
which tries to compress a sequence s by exploiting this particular kind of
repetitive subword. Thus the choice of the compression method is very

important. Moreover, the compression scheme must provide a �xed rupture

ag aR (see Rem.3). If these two conditions are satis�ed, the compression curve
of s0 = C(s) can be constructed. The length jaRj of the rupture 
ag together
with the code Fibo used for the rupture length determine the DCL rupture
curve. An example of an optimized curve is presented in Fig.4. In this exam-

x0 y x’ y’ n

Figure 4: Example of an optimized compression curve

ple, three repetitive regions have been located: the subwords s1::x�1; sy+1::x0�1
and sy0+1::n, and two non repetitive regions: sx::y and sx0::y0 .

The fact that TurboOptLift takes into account the cost O(log `) of
a rupture of length ` is important because it makes the di�erence between
signi�cant repetitive subwords and the others: if a repetitive subword is not
signi�cant enough at the scale of the whole sequence, its local gain will
be absorbed in a longer rupture and thus it will not be classi�ed as repetitive.
This is why the optimality of the solution is so important: all O(log `) items
are taken into account for the optimal location.

Notice that after the optimization, we may apply another compression
method to non repetitive regions. This enables the use of more than one
compression method to make a classi�cation between several types.

Pacific Symposium on Biocomputing 4:254-265 (1999) 



7 Location of Approximate Tandem Repeats in DNA Sequences

One of the mutational events of DNA sequences is the tandem duplication. It
produces one or more copies, side by side, of a motif. For example, ACTACTACT
is an Exact Tandem Repeat (ETR) of the motif ACT. Of course, because of
additional mutations, tandem repeats may not be exact. We speak thus of
Approximate Tandem Repeats (ATR). For example, AC GCTACT ACTATCT is an
ATR of ACT. ATRs are well studied because they are implicated in some human
diseases and they may play a signi�cant role in gene regulation. They belong
to a bigger class of interesting repetitive DNA which is called the dos-DNA 18.

We use the TurboOptLift algorithm to locate ATR regions of a given
motif m, of length p, in a DNA sequence s, of length n. Some preceding
algorithms were dedicated to the location of ETRs or to the location of ATRs
using heuristic methods 19;20;22. There were also exact methods preceded by
heuristics to eliminate a great amount of regions that could not contain any
ATR23. Other methods are dedicated to the location of ATRs with a restrictive
set of possible forms for each copy of the motif 20. We present here an exact
method which does not need any threshold value nor any restrictive de�nition
of an ATR to be given. Of course, without restriction, every sequence is an
ATR of every motif ! The compression of s, exploiting the property "being an
ATR of m", followed by the optimization using TurboOptLift will give us
an optimal location (from our compression point of view), of the ATRs in s.
However, the method requires the knowledge of the basic motif of the ATR
and can only provide the ATR locations. It does not provide any model of the
ATR regions like other methods do 23.

First, we need a modular compression method Cm which compresses s using
the fact that it is an ATR of m. For this, we use the Wraparound Dynamic

Programming (WDP) technique24;13. It computes the optimal alignment of the
sequence s with the in�nite ETR of m, i.e., m1. We use a simple cost function
for the alignment: a penalty of 1 for any point mutation and a penalty of 0
for a match but it is possible to use other cost functions to tune the penalties
given to the mutations. The time complexity of the alignment phase is O(np).

Given this alignment, the compression and the construction of the curve
are simple. We can see the alignment as a �nite sequel of elementary transfor-
mations (matches or point mutations) which constructs s when m

1 is known.
The encoding of the compressed sequence is the encoding of the motif m fol-
lowed by the encoding, from left to right, of the sequel of transformations:

Fibo(p� 1)NUC(m)Fibo(l1)t1Fibo(l2)t2Fibo(l3)t3 : : :

Pacific Symposium on Biocomputing 4:254-265 (1999) 



where: - Fibo(p� 1)NUC(m) is the encoding of the motif m,
- Fibo(l1) is the encoding of the �rst l1 consecutive matches,
- t1 is the encoding of the �rst point mutation,
- Fibo(l2) is the encoding of l2 consecutive matches, : : :

We code Fibo(0) if no match separates two consecutive point mutations.
This coding scheme favours consecutive matches. We proved that each muta-
tion t1; t2; : : : can be coded over 3 bits with one of the eight 3-bits codeword
being unused (see 15). This codeword can be used as the rupture 
ag aR.

The curve of example 1 was computed this way. After optimization, Tur-
boOptLift provides the optimal curve showed in Fig.2. A 393-bases long
ATR has been located.

Of course, the academic example presented here is obvious, we do not
need the help of TurboOptLift to optimize the curve. On the other hand,
if the whole sequence of chromosome 11 of yeast (666448 bases) is considered
with the same motif TTC, the resulting compression curve is the one given in
Fig.5. The details of the curve are completely invisible to the human eye.

-900000

-800000

-700000

-600000

-500000

-400000

-300000

-200000

-100000

0

0 100000 200000 300000 400000 500000 600000 700000

P
ar

tia
l g

ai
n

Position

 

Figure 5: Compression curve for the whole

chromosome 11 of yeast and the motif TTC

-50

0

50

100

150

200

250

300

0 100000 200000 300000 400000 500000 600000 700000

P
ar

tia
l g

ai
n

Position

 

Figure 6: Curve of Fig.5 optimized

The optimization of the curve using TurboOptLift takes about 12 seconds
on a Sparcstation 20 (96 MB main memory) and the resulting curve is the
one given in Fig.6. Four rupture curves have been applied and three repetitive
factors have been located (the three quasi-vertical wires of the curve). The �rst
one is exactly the same ATR as the one detected in the preceding

1000-base long window. Thus, this ATR is not only signi�cant in

the small window, but it is also signi�cant at the scale of the whole

chromosome. The two other signi�cant ATR regions are shorter (resp. 38
bases at position 519431 and 45 bases at position 525127).

A very important property of TurboOptLift is that it seems able to

make the di�erence between random repetitive regions and signif-

Pacific Symposium on Biocomputing 4:254-265 (1999) 



icant repetitive regions f . We have applied the method to detect ATR
regions in random sequences (of lengths 500, 1000 and 1000000) for every mo-
tif until length 5. Except in very few cases where ATR regions are shorter than
10 letters, the method did not �nd any ATR! Thus the ATRs detected in
the chromosome do not seem to be caused by a random process.

References

1. L. Allison, T. Edgoose, and T.I. Dix. Proc. ISMB, pp. 8{16, Montreal 1998.

2. R. Solomono�. Inf. Control, 7:1{22 and 224{254.

3. A.N. Kolmogorov. Probl. Inf. Transmission, 1(1):1{7.

4. G.J. Chaitin. J. Assoc. Comp. Mach., 13(4):547{569.

5. C.S. Wallace, and D.M. Boulton. Computer J., 11(2):185{194.

6. M. Li and P.M. Vit�anyi. Springer-Verlag, 2nd edition, 1997.

7. A. Milosavljevic and J. Jurka. CABIOS, 9(4):407{411, 1993.

8. S. Grumbach and F. Tahi. Inform. Process. Management, 1993.

9. D.M. Loewenstern and P.N. Yianilos. Proc.IEEE Data Comp. Conf., 151{160.

10. �E. Rivals, M. Dauchet, J-P. Delahaye, and O. Delgrange. Proc. Genome

Informatics Workshop, Tokyo, 215{226, 1997.

11. J.C. Wotton. in DNA and protein sequence analysis, Bishop M.J. and Rawlings

C.J. editors, 169{183, 1997.

12. A.Apostolico and A.S.Fraenkel. IEEE Trans. Inform. Theory, 33(2):238-245,

1987.

13. V. A. Fischetti, G. M. Landau, J. P. Schmidt, and P. H. Sellers. In Proceedings

of CPM, 111{120, Tucson, 1992. Springer-Verlag.

14. J.A. Storer. Computer Sciences Press, 1988.

15. O. Delgrange. PhD thesis, UMH, 1997. Available at

http://sun1.umh.ac.be/~olivier/these.html.

16. W. Miller and E. Myers. Bull. Math. Bio., 50:97{120, 1988.

17. Z. Galil and R. Giancarlo. Theor. Comp. Sci., 64:107{118, 1989.

18. R.D. Wells and R.R. Sinden. In K.E. Davies and S.T. Warren, editors, Genome

Analysis, 7, Cold Spring Harbor Laboratory Press, 1993.

19. G. Benson and M.S. Waterman. Nuc. Acids Res., 22(22):4828{4836, 1994.

20. �E. Rivals, O. Delgrange, J.P. Delahaye, M. Dauchet, M.O. Delorme, A. H�e-

naut, and E. Ollivier. CABIOS, 13(2):131{136, 1997.

21. �E. Rivals, M. Dauchet, J.P. Delahaye, and O. Delgrange. Biochimie, 78(4):

315{322, 1996.

22. G. Benson. In Waterman and Pevzner 25, 20{29.

23. M.-F. Sagot and E.W. Myers. In S. Istrail, M. Waterman and Pevzner 25.

24. E.W. Myers and W. Miller. Bull. Math. Biol., 51:5-37, 1989.

25. S. Istrail, M. Waterman and P. Pevzner, ed. RECOMB 98. ACM Press, 1998.

fBy de�nition of an arbitrarily long random sequence, every �nite subword can appear.

Pacific Symposium on Biocomputing 4:254-265 (1999) 


