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Recent precision medicine initiatives have led to the expectation of improved clinical decision-
making anchored in genomic data science. However, over the last decade, only a handful of new 
single-gene product biomarkers have been translated to clinical practice (FDA approved) in spite of 
considerable discovery efforts deployed and a plethora of transcriptomes available in the Gene 
Expression Omnibus. With this modest outcome of current approaches in mind, we developed a 
pilot simulation study to demonstrate the untapped benefits of developing disease detection 
methods for cases where the true signal lies at the pathway level, even if the pathway’s gene 
expression alterations may be heterogeneous across patients. In other words, we relaxed the cross-
patient homogeneity assumption from the transcript level (cohort assumptions of deregulated gene 
expression) to the pathway level (assumptions of deregulated pathway expression). Furthermore, 
we have expanded previous single-subject (SS) methods into cohort analyses to illustrate the 
benefit of accounting for an individual’s variability in cohort scenarios. We compare SS and 
cohort-based (CB) techniques under 54 distinct scenarios, each with 1,000 simulations, to 
demonstrate that the emergence of a pathway-level signal occurs through the summative effect of 
its altered gene expression, heterogeneous across patients. Studied variables include pathway gene 
set size, fraction of expressed gene responsive within gene set, fraction of expressed gene 
responsive up- vs down-regulated, and cohort size. We demonstrated that our SS approach was 
uniquely suited to detect signals in heterogeneous populations in which individuals have varying 
levels of baseline risks that are simultaneously confounded by patient-specific “genome -by- 
environment” interactions (G×E). Area under the precision-recall curve of the SS approach far 
surpassed that of the CB (1st quartile, median, 3rd quartile: SS = 0.94, 0.96, 0.99; CB= 0.50, 0.52, 
0.65). We conclude that single-subject pathway detection methods are uniquely suited for 
consistently detecting pathway dysregulation by the inclusion of a patient’s individual variability. 
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1.  Introduction 

Recent precision medicine initiatives have led clinicians, patients, and investors to expect 
improved clinical decision-making anchored in genomic data science. Conventionally, precise 
prognostication and therapeutic decision-making relies on assays measuring the expression or 
activity of specific molecules driving a pathophysiological mechanism implicated in disease 
progression or drug response. To extend conventional biomarker discovery in the post-genome 
era, the NIH has invested more than $2.5 billion/year in hypothesis- and data-driven “biomarker” 
grants (>30,000 grants in 25 years) [1]. Yet, in the last decade, only a handful of new single-gene 
product biomarkers have been translated to clinical practice [2, 3] in spite of considerable 
discovery efforts deployed and a plethora of transcriptomes available in the Gene Expression 
Omnibus. This may be due, in part, to the challenging FDA requirements for biomarker 
qualification, which has conventionally required a high level of evidence on the degree of 
biological understanding between a qualified biomarker and the predicted pathophysiology or drug 
response [4]. Perhaps, the community has exhausted the reductionist approach for identifying one 
gene product expression associated to the prognosis or therapeutic response of complex diseases. 
Further, could it be that, as anticipated by statistical geneticists a decade and a half ago [5] and 
newly rediscovered [6], diseases of complex genetic inheritance (complex diseases) are not often 
amenable to the single gene biomarker reductionism that has worked so well for Mendelian 
diseases? Rather than modifying the FDA evidentiary criteria for biomarker qualification, we and 
others postulate that a paradigm shift is required for integrative or systems biology approaches to 
enable new types of biomarker discovery [7-10]. To address this biomarker dilemma, we propose 
to use two strategies jointly: (1) the discovery of pathway-level composite biomarkers consisting 
of multiple gene products that are combined in a stated algorithm to reach a single interpretive 
readout**, and (2) the use of single-subject (SS) (isogenic) analytics to recover an effect size and 
statistical significance and thereafter aggregating these signals across subjects. 

Why utilize SS analytics rather than DNA sequencing for pathway-level biomarkers? In 
practice, a single-subject transcriptome or proteome may be easier to interpret as it provides the 
downstream additive effects of genomes and proteomes, and thus there could, in principle, be 
more similarities between transcriptomes than genomes of distinct individuals suffering from a 
complex disease and responding similarly to a drug. Precision medicine has advanced primarily 
through DNA sequencing. Unsurprisingly, most DNA sequences remain uninterpretable: Snyder’s 
group identified >130,000 very rare or private single nucleotide variants not previously observed 
in HAPMAP [11]. However, gene product expression cannot easily be annotated as normal or 
dysregulated on a single subject; therefore, a personal reference transcriptome or proteome should 
be designed ideally in isogenic conditions with a specific cell type in a specified environmental 
and known epigenetic context. Fortunately, the biomedical informatics and bioinformatics 
research community is responding to this growing need for identifying the best prognosis and 
therapeutic response for a specific individual with a paradigm shift in gene product analyses.  

                                                             
** Guidance for Industry and FDA Staff Qualification Process for Drug Development Tools. 1/2014 U.S. Department 

of Health and Human Services. Food and Drug Administration. Center for Drug Evaluation and Research (CDER). 
https://www.fda.gov/downloads/drugs/guidances/ucm230597.pdf 
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Fig. 1. Pathway dysregulation across various biological conditions. Each graph represents a patient 
(within three cohorts of three subjects), illustrating the same biological pathway for each patient. The 
nodes are the genes in a pathway. The colored nodes are responsive genes in each subject, and their color 
denotes the direction of dysregulation. The three rows represent various scenarios we examined in this 
simulation study to define a cohort. 

Statistical and clinical frameworks are being developed for single-subject (n-of-1) 
interpretation of transcriptomes and transcriptomic responses, such as single sample pathway 
transformations [12, 13], and comparing their results to pathways expressed in differentially 
expressed genes discovered by conventional statistics. Newer studies have been designed to 
discover differentially expressed features in a single subject (gene products and pathways) and are 
based on reference transcriptome-based interpretations [14, 15], two paired samples [16, 17], or  
individual time expression series [18, 19]. None of these studies, nor related ones we recently 
reviewed††, attempted to quantify how well the discovered single-subject gene set/pathway signal 
could aggregate across distinct subjects without an underlying assumption of having the same 
gene products differentially expressed. 

Implicitly, these single-subject (SS) methods differ from conventional cohort-based (CB) 
statistics as they are devoid of cross-subject assumptions and could provide the framework for a 
common pathway-level biomarker across subjects stemming from the summative effect of distinct 
polymorphisms, distinct epigenetics, and distinct transcriptomes in each subject. We hypothesized 
that we could conduct a proof-of-concept simulation to establish that conditions of operations for 
discovery of a common biomarker are feasible in practice. Therefore, we designed a simulation 
                                                             
†† Vitali F, Li Q, Schissler AG, Berghout J, Kenost C, Lussier YA*. Developing a ‘personalome’ for precision 

medicine: emerging methods that compute clinically interpretable effect sizes from single-subject omics. Brief 
Bioinform, Accepted. 
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study to identify pathway-level effect size and statistical significance within subject and then used 
descriptive statistics across-subject to find common pathways. We utilize the n-of-1-pathways 
kMEn method on two paired samples for its simplicity. Our goals are i) to understand the 
robustness of single-subject methods in heterogenic and heterogeneous expression scenarios 
across subjects that are ill-suited for conventional cohort-level discovery methods (e.g., paired T-
test as a control), and ii) to demonstrate the benefit of including biological pathways as part of 
what constitutes a reference systems-level biomarker. As Figure 1 shows, in dysregulated 
pathways, patients with the same condition may have different genes responsive to a stimulus 
when compared to paired samples (e.g., before and during therapy; cancer vs control tissue), 
making conventional differential expression or classification tasks inherently difficult when 
searching for a common gene product signal across subjects. 

2.  Methods 

2.1.  Datasets 

An RNA-seq dataset was downloaded from GTEx‡‡ and filtered to include only brain tissue 
samples. The resulting dataset contained 1,632 brain samples of distinct human individuals and 
18,327 measured genes. This dataset was used to estimate average gene expression for patients in 
our simulation. Since donors had varying numbers of replicates, only donors with at least 8 
replicates were kept to reliably estimate their sampling distributions (see Section 2.2). This 
criterion resulted in a reduction from 97 to 87 distinct patients. Gene Ontology Biological 
Processes (GO-BP)[20, 21] groups genes into their respective pathways (gene sets). The GO-BP 
dataset was downloaded in June 2015 using the org.Hs.eg.db package from Bioconductor[22]. 

2.2.  Parameter estimation: modeling heterogenic human paired samples  

Each gene’s expression distribution parameters for each patient were estimated using the method 
of moments technique [23]. Our model assumes the Negative Binomial – NB(µ,θ) – distribution, 
and the GTEx dataset was used to estimate each gene’s mean expression, µ, and its dispersion 
parameter, θ, where the dispersion parameter connects the mean to the variance as follows: 

 σ 2 = µ +µ 2 /θ  (1)  
When the variance was less than the mean and its distribution was consequently under-

dispersed compared to the Poisson, we conservatively defined the gene expression to follow a 
Poisson(µ) distribution. A fold-change multiplier, K, was used to generate the responsive genes in 
dysregulated pathways, and K followed a Uniform(3,5) distribution to ensure separation between 
responsive and non-responsive genes. For non-responsive genes, K=1. Equations (2) and (3) show 
that the updated NB distribution for a gene, Gi , is actually a discrete mixture distribution where 
(2) is the underlying sampling distribution if the dysregulated gene is up-regulated with 

                                                             
‡‡ https://gtexportal.org/home/datasets: RNA-Seq Data: GTEx_Analysis_v6_RNA-seq_RNA-

SeQCv1.1.8_gene_reads.gct 
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probability p, and (3) is the sampling distribution if it is down-regulated with probability 1-p, 
where p ϵ [0,1].  

 Gi ,  up-regulated ~ p * NB (µi *K ,  θi )  (2)  

 Gi ,  down-regulated ~ (1-p) * NB (µi *K
−1,  θi )  (3)  

Equations (4) and (5) show the Poisson distribution for an under-dispersed gene, Gi.  

 Gi ,  up-regulated ~ p * Poisson (µi *K )  (4)  

 Gi ,  down-regulated ~ (1-p) * Poisson (µi *K
−1)  (5)  

To establish heterogeneity, we assumed each patient as a distinct population with its own 
patient-specific population parameters. Therefore, for any given subject j, eqs. (2-5) become: 

 
Gij~ p * NB (µij *K ,  θij )+ (1-p) * NB (µij *K

−1,  θij )  (6-7)  

 
Gij  ~ p * Poisson (µij *K )+ (1-p) * Poisson (µij *K

−1)
 (8-9)  

This results in N=87 distinct distributions from which we sample n patients without 
replacement, ensuring patient-specific baseline expression levels and modeling a heterogeneous 
population.  

2.3.  Simulation Parameters 

Table 1 shows the different conditions of interest (54 combinations) that span our study. The gene 
set size parameter was chosen to analyze how the fraction of responsive genes within the gene set 
affects the detection ability in small gene sets (e.g., 5% responsive results in 2/40 genes 
responsive) vs. large gene sets (5% responsive results in 10/200 genes responsive). The fraction 
responsive within the gene set parameter was chosen to model the effect of randomly selecting r 
genes to be responsive in a dysregulated pathway in each patient. Clearly, when the fraction 
increases, the chances of the same gene being responsive across all patients increases. Similarly, 
the fraction responsive up-regulated was conceived to model the effect of randomly choosing the 
direction of dysregulation for the responsive genes in that pathway, such that even if the same 
gene is responsive across patients, their direction of dysregulation might not be. Finally, the 
number of patients in the cohort parameter was chosen to examine the needed size of a cohort for 
detecting a dysregulated pathway when its signal is reflected via the summative effect of the genes 
within it. The graphs in Fig. 1 illustrate how varying the parameters affects dysregulated pathways 
across patients in a cohort.   

Table 1.  Simulation Parameters generating 54 distinct scenarios (1000 simulations/scenario) 
Parameter Notation Values 
Gene Set Size m 40      200 
Fraction Responsive within gene set  r 5%     10%     25% 
Fraction Responsive up regulated p 25%   50%    100% 
Number of patients in cohort n 10      20        30 
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2.4.  Pathway dysregulation detection methods  

Table 2 details the workflow of this simulation study (Fig. 2). We generate n heterogenic 
transcriptomes, each corresponding to one subject (heterogenic conditions between patients). We 
then generate from each patient distribution a paired transcriptome thus creating noise in isogenic 
conditions, in which we further modify a pathway as follows. First, we randomly select a gene set 
from a real GO-BP pathway of size m, randomly select which annotated genes among this gene set 
will be responsive according to parameters of Table 1, and we sample from their dysregulated 
distributions (Eq. 6-9) to generate a positive (dysregulated) pathway. Then, we select a second 
gene set from a distinct existing GO-BP, of size m as well, as an unaltered pathway to use as our 
control. Finally, we apply the SS and CB pathway detection pipelines, and then compare and 
evaluate them. We note that the single-subject approach aggregates the p-values by taking the 
sample median, as the sample median provides a simple yet robust location estimator in small 
sample sizes, which provided us with the flexibility of experimenting with sample sizes of n < 10 
[24]. Furthermore, Benjamini and Yekutieli’s (FDR_BY) approach is used for false discovery rate 
correction[25].  

Table 2. Algorithm 
For each parameter combination, replicate the following 1000 times. 

1. Dataset Generation: Simulate N Paired-Transcriptomes (representing normal, tumor) using heterogenic 
gene distributions described above.  
a. For each normal transcriptome, simulate gene expression levels by randomly sampling from each 

patient's baseline distribution. 
b. For each tumor transcriptome, first generate a normal transcriptome, then generate the positive 

dysregulated pathway as follows: 
i. Choose a gene set size, m, and randomly sample a pathway of size m from GO-BP.  

ii. Randomly choose r genes from the selected pathway.  
iii. For each of the r genes, sample from its dysregulated distribution such that, each r 

dysregulated genes, Gi follows a discrete mixture distribution where   
1. Gij  ~ p* NB(µij * K, θij) + (1-p) * NB(µij * K-1, θij), or 
2. Gij  ~ p* Poisson(µij * K) + (1-p) * Poisson(µij * K-1) if the gene is under-dispersed 

iv. For all remaining genes (i.e. genes not in the gene set), these genes remain unaltered and 
follow the patient’s baseline distribution.  

c. For each tumor transcriptome generate a control pathway by randomly sampling a pathway of size m 
(from GO-BP) and leave its expression values unaltered such that the genes in the control pathway 
follow the patient’s baseline distribution.  

2. Cohort-Based Analysis: Compute a paired t-test for the paired samples across each gene product and detect 
differentially expressed genes (DEGs), labeling a gene DEG if nominal p < .05. Using the DEGs and GO-
BP, conduct an enrichment test using Fisher's Exact Test (FET)[26] to obtain the FET pathway prediction 
for the positive and control pathways, respectively. Adjust p-values for multiple hypothesis testing using 
FDR_BY [25]. 

3. Single-Subject Analysis: Perform an N-of-1-pathways kMEn analysis to obtain a pathway prediction (a 
pair of p-values – one for the positive and one for the control pathway) for each patient. Utilize the median 
of the positive and control pathway predictions to serve as an aggregate cohort-level result. Adjust p-
values for multiple hypothesis (FDR_BY[25]).  
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2.5.  Precision recall calculations 

In this study, we evaluate the SS and CB approaches using precision-recall plots. Provided a given 
threshold, the equations for precision and recall are: 
  

 
Fig. 2. Workflow: Single-subject (SS) and cohort-based (CB) pipelines. (SS; top) Given the simulated values as 
input, the transcript expression measurements for each of the N paired transcriptomes are used to calculate the fold 
change (K) between paired samples. Next, the genes are clustered into three groups to define responsive transcripts 
(RTs), and then an enrichment test is conducted using Fisher’s Exact Test (FET). This produces N p-values (one for 
each patient in the cohort), and the median p-value is taken as the kMEn-cohort prediction. (CB; bottom) Using the 
same simulated data, alternatively examined CB approach employs a paired t-test to find differentially expressed 
genes (DEGs) followed by an enrichment test using FET, resulting in a single pathway prediction utilizing all 
samples. Both approaches are then compared by inspecting their precision-recall curves.  
 

 precision = tp
tp+ fp   

recall = tp
tp+ fn

 (10-11) 

Each of the 54 combinations results in a pair of precision-recall curves that are used to compare 
SS to CB approaches. The R ggplot2 package[27] was used to construct the precision-recall plots.  

3.  Results 

Fig. 3 depicts the precision-recall curves, grouping them by their parameters to highlight the 
effects of each the parameters individually and holistically. The greatest difference in performance 
between the SS approach and the CB technique occurs when responsive genes are fully bi-
directional (i.e., equally expressed in both directions; Fraction Responsive up-regulated, p = 50%) 
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or when the same genes are not consistently responsive across pathways (fraction responsive with 
in gene set = 5%). The smallest gap in performance between these methods occurs when the 
fraction responsive within gene set is high (as genes are more likely to be responsive consistently 
across patients) and, in some cases, when the precision-recall curves are overlapping. Increasing  

 
Fig. 3. Cross-subject aggregation of single-subject pathway predictions (kMEn) robustly detects 
signals while cohort-based method (Student’s paired t-test) fails on heterogeneous conditions. SS 
kMEn method applied to paired samples of one subject works in isogenic conditions by design, which 
explains how pathway signals can thereafter be aggregated across subjects in spite of heterogenic noise 
confounding the conventional cohort-based method. Each subject simulation comes from a distinct 
transcriptome sampled from GTEx, creating heterogenic conditions between subjects. Each seed sample 
from GTEx is modified according to parameters in Table 1 generating distinct scenarios. The four sets 
of panels characterize distinct scenarios in the simulation and are organized in blocks. Within each 
block, there are various levels of ‘signal quality’ and across blocks there are different combinations of 
cohort and pathway sizes. The 9 precision-recall curves (PR), within each block, represent the 
performance of the SS (black) and CB (red) approaches at various levels of genes responsive in a 
pathway as well as at various levels of bi-directionality. PR area under the curve (AUC) of SS surpasses 
that of CB (1st quartile, median, 3rd quartile: SS = 0.94, 0.96, 0.99; CB= 0.50, 0.52, 0.65). Each block 
represents how both methods perform when varying the gene set size or the cohort size. Omitted are the 
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results for N=20 to promote visualization and they are highly similar to the N=30 scenarios. Using GO-
BP2017, we simulated test cohorts (n=3 subjects) and obtained comparable accuracies. 

the pathway size and the sample size also improves the detection-ability of both approaches 
though the marginal benefit of increasing each parameter is much larger for the CB approach.  

The panels in Fig. 3 allow for visually assessing the effects of varying multiple parameters 
simultaneously. For example, increasing the number of responsive genes in the pathway 
compensates for adding bi-directionality into the mix (and vice versa), although the SS approach 
still detects the signal at a much higher rate than the CB approach. Furthermore, increasing the 
pathway size and/or the cohort size improves the performances of both approaches in most cases. 
The simulation settings where the CB method is comparable to the SS approach is when the signal 
is strongest (% responsive = 25%), N is large, and there is little or no bi-directionality in gene 
expression levels. This shows that outside of this specific condition, even CB approaches that can 
handle bi-directionality will still be underpowered (in varying levels) vis-à-vis an SS approach.  

4. Discussion

As mentioned in Section 3, two of the biggest indicators of whether the t-test would fail are 
pathways with different genes responsive across patients (Fraction responsive within gene set = 
5%) and pathways with genes equally expressed in both directions (Fraction responsive up 
regulated = 50%). Not surprisingly, one of the biggest differences in performances occurs with full 
bi-directionality with a method like the t-test, and methods like DEGSeq address this [28]. 
However, as illustrated in Fig. 1, when the signal lies at the pathway-level, different genes are 
responsive in different patients (as well as potentially their direction of dysregulation). This means 
that in a cohort of three patients, the same gene in a dysregulated pathway could be (responsive, 
up-regulated) in Patient 1, (responsive, down-regulated) Patient 2, or non-responsive in Patient 3, 
rendering a CB approach nearly unusable. Therefore, decreasing the fraction responsive within 
gene set parameter shows how a CB approach greatly underperforms when the true signal lies at 
the pathway level and it attempts detecting it through genes not consistently responsive across 
patients. In addition, heterogeneous baseline risks add an extra layer of complexity that CB 
approaches are not equipped to handle since an up-regulated responsive gene in Patient A might 
have a lower expression level than the same gene, non-responsive in Patient B. These factors, 
individually and in aggregate, make an SS method uniquely suited for detecting diseases in 
individuals when patient-specific factors harm CB approaches and when we allow biological 
pathways to represent a reference systems-level biomarker. Finally, taking a consensus of the SS 
predictions results in a robust cohort prediction that can consistently detect converging gene set 
signals in heterogenic populations via the summative effect of altered gene expression.  

4.1.  Limitations and future studies 

One of the major challenges in simulation studies is the inclusion of noise and the effects 
introduced into the analysis; here we used a single model source. Of note, each patient of a cohort 
in the simulation is seeded by a distinct transcriptome distribution from GTEx and noise is 
generated implicitly by the algorithm on the entire transcriptome of each paired sample, creating 
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isogenic noise within patient as well as heterogenic noise across subject conditions ab initio.  In 
future studies, real data will be utilized to estimate the fraction responsive  (5%-25%) and 
fraction upregulated (25%-100%) parameters according to the type of diseases. Currently the wide 
range of simulation of these parameters likely spans multiple distinct unrelated biology and should 
be clarified (e.g. Mendelian diseases vs cancer vs diabetes)." 

The scope for this proof of concept was also limited to one single-subject and one cohort-
based approach. Since the kMEn algorithm and the enriched paired t-test are by no means the only 
SS and CB approaches, respectively, we foresee potential follow-up studies with multiple SS [3] 
and multiple CB methods [29] in order to find which techniques within these two frameworks are 
best suited to handle this type of data. A more comprehensive analysis would then allow us to 
make broader claims with respect to the feasibility of detecting diseases using biological pathways 
as biomarkers in heterogeneous patient populations.   

With this simulation study, we demonstrate the benefits of expanding the definition of a 
biomarker by illustrating biological conditions in which the ‘true’ signal is not detectable at the 
gene level, and must, therefore, be pushed upstream to the pathway level. As Fig. 3 shows, the CB 
method achieved comparable performance in only 6 out of the 36 simulation conditions. Unless an 
infrequent “niche” scenario is present, this (and potentially other CB methods with the same 
drawbacks) will fail to consistently detect diseases whose signals are found at the pathway level.  
Expanding SS methods into cohort studies and allowing for pathways to serve as a reference 
biomarker in disease detection have the potential to offer more tools for detecting diseases in cases 
where existing methods have failed to provide consistent success.  

Clearly, the exhaustive conventional biomarker discovery effort to identify a single gene 
product consistently dysregulated in each patient with complex disorders yields infrequent results 
at best. Moreover, the difficulty increases when within-subject biological replicates are not 
available either due to limited tissue availability or invasive tissue-sampling procedures among 
other cost-preventive limitations. Despite the decreasing costs associated with advancing RNA-seq 
technologies, the incentives still favor sequencing more subjects rather than obtaining multiple 
biological replicates per subject. Future studies should test in human datasets (both with and 
without subject-specific biological replicates) using various experimental conditions, mitigating 
geneset enrichment inflation due to inter-transcript correlations [32],  to understand the frequency 
of the proposed scenario of heterogeneous signal within a pathway across patients. While kMEn’s 
algorithm requires a large transcriptome, democratizing pathway-level biomarkers as an affordable 
qPCR assay can be attained with self-contained approaches [31,33]. 

5. Conclusion

As medicine continues to shift towards precision medicine and the n-of-1 framework, it will be 
necessary to consider novel approaches for effectively qualifying biological pathways for FDA 
approval as composite biomarkers[30]. We provide evidence via this proof-of-concept study that, 
under certain conditions, this may be the optimal way of detecting pathway mechanisms 
associated to the prognosis or drug response of complex diseases, as the signal may consistently 
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aggregate at the pathway level in each subject in spite of a distinct subset of transcript 
dysregulation across subjects.  

This simulation was developed to show the potential advantages of using a pathway as a 
biomarker using the ‘N-of-1-pathways’ framework [31] and that single-subject (SS) approaches 
(expanded into cohort studies) can provide certain advantages over conventional cohort-based 
techniques. We demonstrated that our SS approach was uniquely better suited to detect signals in 
heterogeneous populations in which individuals have varying levels of baseline risks that are 
simultaneously confounded by patient-specific “genome –by– environment” interactions (G×E).  

Finally, these approaches should, in principle, scale to other quantitative ‘omics measures such 
as proteomics or metabolomics. Future studies should consider aggregating pathway signals across 
multiple ‘omics measures in heterogeneous conditions across patients using strong systems 
biology modeling of a single subject for consistency of multiscale signal within patient (e.g., 
reverberation of a pathway-level signal from DNA to mRNA to protein). The success of precision 
medicine demands advancing genome-anchored clinical decision-making and having the courage 
to challenge failed or unproductive data analytics models. A handful of statistical geneticists has 
long anticipated that epistasis, pleiotropy, and systems biology principles be incorporated for 
effectively modeling genomics data. This proof of concept brings us closer to realizing their vision 
in transforming the biomarker discovery process. 
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