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A wide range of patient health data is recorded in Electronic Health Records (EHR). This data includes diagnosis, 
surgical procedures, clinical laboratory measurements, and medication information. Together this information reflects 
the patient’s medical history. Many studies have efficiently used this data from the EHR to find associations that are 
clinically relevant, either by utilizing International Classification of Diseases, version 9 (ICD-9) codes or laboratory 
measurements, or by designing phenotype algorithms to extract case and control status with accuracy from the EHR. 
Here we developed a strategy to utilize longitudinal quantitative trait data from the EHR at Geisinger Health System 
focusing on outpatient metabolic and complete blood panel data as a starting point. Comprehensive Metabolic Panel 
(CMP) as well as Complete Blood Counts (CBC) are parts of routine care and provide a comprehensive picture from 
high level screening of patients’ overall health and disease. We randomly split our data into two datasets to allow for 
discovery and replication.  We first conducted a genome-wide association study (GWAS) with median values of 25 
different clinical laboratory measurements to identify variants from Human Omni Express Exome beadchip data that 
are associated with these measurements. We identified 687 variants that associated and replicated with the tested clinical 
measurements at p<5x10-08.  Since longitudinal data from the EHR provides a record of a patient’s medical history, we 
utilized this information to further investigate the ICD-9 codes that might be associated with differences in variability 
of the measurements in the longitudinal dataset. We identified low and high variance patients by looking at changes 
within their individual longitudinal EHR laboratory results for each of the 25 clinical lab values (thus creating 50 groups 
– a high variance and a low variance for each lab variable). We then performed a PheWAS analysis with ICD-9 diagnosis 
codes, separately in the high variance group and the low variance group for each lab variable. We found 717 PheWAS 
associations that replicated at a p-value less than 0.001.  Next, we evaluated the results of this study by comparing the 
association results between the high and low variance groups. For example, we found 39 SNPs (in multiple genes) 
associated with ICD-9 250.01 (Type-I diabetes) in patients with high variance of plasma glucose levels, but not in 
patients with low variance in plasma glucose levels. Another example is the association of 4 SNPs in UMOD with 
chronic kidney disease in patients with high variance for aspartate aminotransferase (discovery p-value: 8.71x10-09 and 
replication p-value: 2.03x10-06). In general, we see a pattern of many more statistically significant associations from 
patients with high variance in the quantitative lab variables, in comparison with the low variance group across all of the 
25 laboratory measurements. This study is one of the first of its kind to utilize quantitative trait variance from 
longitudinal laboratory data to find associations among genetic variants and clinical phenotypes obtained from an EHR, 
integrating laboratory values and diagnosis codes to understand the genetic complexities of common diseases.  

                                                             
* This work is supported by funds from Geisinger Health System and the Regeneron Genetics Center. Supplementary 

material can be found at: http://ritchielab.psu.edu/publications/supplementary-data/psb-2017/CBC-Met-Labs. 
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1. Introduction 

In this era of personalized medicine, emphasis is on preventive care facilitated by integration of a 
patient’s medical and genomic information. De-identified electronic health records (EHR) and bio-
repositories represent significant resources of information that have been widely used for 
association studies in past decade1. Electronic health record (EHR) data is primarily designed for 
clinical care and is represented in both structured (such as ICD-9 codes, medication information, 
clinical laboratory values) as well as unstructured (physician notes) forms. Many association studies 
have utilized ICD-9 codes as well as clinical lab variables (structured forms of EHR data) to identify 
variants associated with EHR-derived phenotypes that might be of clinical relevance2–4.  The 
number of association studies using EHR-derived phenotypes (both structured and unstructured 
data) has been increasing rapidly5.  
 
The complete blood count (CBC) panel and comprehensive/basic metabolic panel (CMP/BMP) are 
part of routine medical care for all medical practices. These panels are comprised of tests that help 
clinical practitioners identify underlying causes for conditions like weakness and fatigue, as well as 
to identify chronic illnesses (e.g., kidney failure, heart disease). These tests are generally conducted 
on patients that show some signs of illness, but these routine measurements are conducted from time 
to time on healthy individuals as well. Thus, utilizing these panels can help us understand overall 
health of patients by comparing these measurements across all patients in an EHR.  These tests are 
recorded as quantitative variables for which units of measurements can be standardized across 
multiple clinical practices. ICD-9 codes and clinical measurements go hand in hand for a patient’s 
medical record as a diagnosis code may either initiate the lab test which confirms the code or the 
code may be entered as a result of the test. Thus, integrating both clinical laboratory measurements 
and diagnosis codes present powerful approaches for understanding genetic variants that show 
similar associations with both data types obtained from an EHR3. The majority of association studies 
that use quantitative traits derived from an EHR as phenotypes use either mean/median values3,6 or 
most recent measurements7. While this approach has been successful, utilizing only mean/median 
values limits the understanding of these traits by neglecting the variability over time that may be 
present in an individual patient’s clinical history. This can be captured for analysis by using unique 
longitudinal information from EHR. Longitudinal data provides a better picture of the patient’s 
health by actually pinpointing the time of disease onset, or time in which the quantitative trait 
became out of the normal range, which is especially important for the diseases that are more 
heterogeneous in nature and progress over time/age. A strategy such as this has been applied to 
family-based studies, using a mixed effects model to find associations among candidate genes and 
longitudinal data8. Utilizing the longitudinal data in some way other than considering one value also 
provides the opportunity to consider not just the average, but also the variability in these traits over 
time. In this study, our goal was to develop a strategy to embrace the longitudinal data in a 
population-based dataset, using trait variance, rather than a measure of central tendency approach 
such as median values, by binning patients in high and low variance groups separately to then test 
for associations.  This strategy allows for the integration of clinical lab measurements as quantitative 
traits, embracing the variability in the traits, along with ICD-9 code PheWAS associations as well 
as SNPs.  
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2. Materials and Methods 

2.1 Genotype Data 

The MyCode® Community Health Initiative is a research initiative to engage Geisinger Health 
System patients in research and integrate their clinical EHR data along with genetic information to 
make discoveries in health and disease9. Over 109,000 Geisinger patients have consented to 
participate in MyCode and approximately 50,000 participants have whole exome sequencing and 
genome-wide genotype data generated. For this study, we used participants that have been 
genotyped using the Illumina Human Omni Express plus Exome beadchip. This dataset contains 
45,899 samples and ~600K variants after some initial quality control procedures. For this analysis, 
after sample QC (removing one sample from pairs of highly related samples up to 1st cousins and 
removing any samples that did not pass a sample call rate filter of 90%), we divided the total dataset 
into two random sets to perform discovery and replication analyses. We included only European 
American samples with age >18 years. Our discovery dataset consisted of 17,347 samples and our 
replication dataset consisted of 17,348 samples (see Supplementary Table 1 for demographic 
information on these samples). We also filtered the variants that did not pass a genotype call rate 
filter of 99% to keep only high quality SNP data. To test common variants only, we applied a minor 
allele frequency (MAF) filter of 1%. This resulted in a total of 629,274 variants that were considered 
for association testing in the discovery dataset and 629,016 variants tested in the replication dataset. 

2.2 Phenotype Data 

Twenty-five clinical laboratory variables were extracted from EHR outpatient data and checked for 
consistency of unit measurements. A list of all 25 variables is provided in Table 1, along with 
information on the panel from which they were obtained. The phenotype data is extracted from the 
EHR as longitudinal data for all patients across their clinical history. Thus, each sample has multiple 
entries for each variable. The first step in conducting our GWAS analysis was to obtain median 
values for all 25 variables across patients’ longitudinal data. We wanted to be able to compare the 
GWAS on median values with the analyses in the high-variance and low-variance groups.  We 
visually inspected the clinical lab variable distributions to determine which variables needed a 
natural log transformation. We also removed all outliers that were more than 2.5 standard deviations 
from the mean. While this could lose some very interesting data points, for this pilot analysis, we 
wanted to be sure to remove gross errors in lab variable coding/data entry. Supplementary Figure 1 
and 2 show the distribution of discovery and replication datasets, respectively, after removing 
outliers and performing natural log transformation wherever necessary. Table 1 lists the name of the 
variable, how the sample is collected (i.e. Blood or Serum/Plasma), which panel the variable is 
obtained from (i.e. Complete Blood Count (CBC) or Comprehensive Metabolic Panel (CMP) or 
Basic Metabolic Panel (BMP)), the total sample size for each phenotype in both discovery and 
replication datasets, and whether or not the data were transformed. 
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Table 1. List of 25 clinical laboratory measurements that are used in the analysis.  
 

Clinical Laboratory Measurement Panel type Discovery 
Sample Size 

Replication 
Sample Size 

Transformation 

ALANINE 
AMINOTRANSFERASE (ALT) - 

SERUM/PLASMA 

CMP 15527 15393 Yes 

ALBUMIN - SERUM/PLASMA CMP 15519 15439 Yes 
ALKALINE PHOSPHATASE - 

SERUM/PLASMA 
CMP 15189 15088 Yes 

ANION GAP - SERUM/PLASMA BMP/CMP 15954 15849 No 
ASPARTATE 

AMINOTRANSFERASE (AST) - 
SERUM/PLASMA 

CMP 15406 15310 Yes 

BILIRUBIN - SERUM/PLASMA CMP 15224 15141 Yes 
CALCIUM (CA) - 
SERUM/PLASMA 

BMP/CMP 16164 16098 No 

CARBON DIOXIDE (CO2) - 
SERUM/PLASMA 

BMP/CMP 16309 16203 No 

CHLORIDE (CL) - 
SERUM/PLASMA 

BMP/CMP 16235 16130 No 

CREATININE - 
SERUM/PLASMA 

BMP/CMP 16403 16323 Yes 

Erythrocyte Distribution Width 
(RDW) - BLOOD 

CBC 16032 15974 Yes 

GLUCOSE - SERUM/PLASMA BMP 16184 16137 Yes 
Hematocrit (HCT) - BLOOD CBC 16213 16184 No 
HEMOGLOBIN - BLOOD CBC 16234 16186 No 

Mean Corpuscular Hemoglobin 
(MCH) - BLOOD 

CBC 16175 16120 No 

Mean Corpuscular Hemoglobin 
Concentration (MCHC) - BLOOD 

CBC 16166 16114 No 

Mean Corpuscular Volume (MCV) 
- BLOOD 

CBC 16220 16161 No 

PLATELET - BLOOD - COUNT CBC 16122 16099 No 
Platelet Mean Volume (MPV) - 

BLOOD 
CBC 16281 16247 No 

POTASSIUM (K) - 
SERUM/PLASMA 

BMP/CMP 16255 16165 No 

PROTEIN - SERUM/PLASMA CMP 15002 14932 No 
RBC-COUNT-BLOOD CBC 16187 16142 No 

SODIUM (NA) - 
SERUM/PLASMA 

BMP/CMP 16222 16144 No 

UREA NITROGEN - 
SERUM/PLASMA 

BMP/CMP 16147 16049 No 

WBC-COUNT-BLOOD CBC 16478 16455 Yes 
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For the variance based analysis, we first calculated the variance for each sample across their 
longitudinal clinical data from EMR. For each clinical lab variable, we visually inspected 
scatterplots of the variance distribution and determined a threshold for discovery and replication 
datasets separately (Supplementary Table 2). Next, samples were divided into high and low 
variance groups. For the high-variance/low-variance PheWAS analyses, we extracted all ICD-9 
codes from the EHR. Participants were defined as cases if they had 3 or more instances of a 
particular ICD-9 code; less than 3 instances per participant were set to missing; and for no 
occurrence of an ICD-9 code, participants were designated control status. This resulted in testing a 
total of 541 ICD-9 codes.  

2.3 Analysis Methods 

We performed the analysis for this study as a two-step process.  First we performed a GWAS on 
median values for 25 different clinical lab variables (Figure 1).  Next, we took the SNPs associated 
with the median trait values and performed an ICD-9 code PheWAS after grouping the participants 
into high-variance and low-variance groups for each clinical lab variable (Figure 2).  Each of these 
analyses is described in more detail in the following sections.   

2.3.1 Genome wide association analysis for 25 median clinical laboratory measurement 

We performed a genome-wide association study (GWAS) to identify associations among all variants 
from the data (after quality control data cleaning) with median lab values for each of the 25 
phenotypes. Linear regression analysis was performed using PLATO10 
(http://ritchielab.psu.edu/software/plato-download). All models were adjusted for age, sex and first 
4 principal components to control for confounding influences in the analysis. Approximately 15M 
(~600,000 SNPs and 25 variables) tests were performed for each patient for both discovery and 
replication datasets. This analysis was repeated for both discovery and replication datasets 
separately and then we identified p-values for all variant and clinical lab combinations that were 
below genome-wide significance (p-value 5x10-8) in both datasets (discovery and replication). 

Figure 1. Flow chart describing the analyses for median lab variable linear regression GWAS on 25 clinical labs 
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2.3.2 Variance-based analysis to identify associations with ICD-9 codes 

For all phenotypes from the median lab GWAS that has statistically significant replicating results 
(18 out of the 25 clinical lab variables, see Figure 1), we obtained longitudinal data for each patient 
across the EHR and calculated the trait variance for each lab variable. Next, for each of the 18 
variables, we created scatterplots of the variance to identify samples that can be categorized as high 

and low variance. Individual scatter plots for all of these variables are shown in Supplementary 
Figure 3 and 4 for the discovery and replication datasets. For each variable, we created high 
variance and low variance groups based on a user-defined threshold to allow for PheWAS analyses 
separately in groups with high variability or low variability in each of the clinical lab variables.  
Supplementary Table 2 lists the thresholds and samples sizes for low and high variance categories 
in both discovery and replication datasets. Participants below the chosen thresholds (based on 
looking at individual scatterplots) were categorized as low variance and above threshold were 
categorized as high variance.  
 
The genotype data was filtered to include only those variants (687 SNPs) that were significantly 
associated in both the discovery and replication datasets for one or more clinical lab variables in the 
GWAS of median clinical lab values. Here, we are interested in the following question: Are genetic 
variants that are associated with a median clinical lab variable, also associated with diagnosis codes 
in patients with high variability or low variability in that lab variable? In other words, are there 
diseases that show association with that SNP in patients who are highly variable in their lab values 
or perhaps have low variability in their lab values? To investigate diagnosis codes that are associated 
with these variants, we performed logistic regression analysis for ICD-9 codes using PLATO 

Figure 2. Flow chart describing the PheWAS analyses for high/low variance based datasets  
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(http://ritchielab.psu.edu/software/plato-download) by adjusting all models by age, sex and first 4 
principal components. We only considered ICD-9 codes that had at least 200 or more cases with the 
code to reduce any false positive associations. Thus, for each sample 371,667 tests were erformed 
(687 SNPs and 541 ICD-9 codes). Lastly, we report the PheWAS results below a p-value threshold 
of 0.001 that replicate in low variance and/or high variance categories. 

3. Results 

Genome-wide association studies for median values from 25 clinical laboratory variables produced 
935 SNP-phenotype associations that are present in discovery and replication sets at p-value less 
than 5x10-8. Association results below p-value 0.1 are shown in Figure 3 as Manhattan plots for 
both discovery and replication datasets. Among the top results are multiple variants in the UGT1A 
gene family associated with serum bilirubin levels, where p-values for both discovery and 
replication datasets is 3.29 x 10-83. This association has been identified and extensively reported by 
candidate gene and genome-wide association studies11. Hyperbilirubinemia results from a mutation 
in the UGT1A1 gene which causes the non- or slow elimination of bilirubin from the body. We also 
identified variants in SLCO1B1 associated with bilirubin levels, as suggested by previous GWAS 
studies 12–14 (rs4149081, Discovery p-value: 8.18x10-31 Replication p-value:3.81x10-22). 
Another association we identified is between missense variant, rs855791, on chromosome 22 in 

gene TMPRSS6 (Discovery p-value: 2.04x10-60 (beta=-0.27); Replication p-value: 1.73x10-51 
(beta=-0.25)). This association was identified by previous GWAS studies with hemoglobin levels 
as well as hemoglobin concentration15,16. It has been suggested that TMPRSS6 is essential for 
maintaining iron levels in blood as it is involved in the control of iron homeostasis 16,17. In addition, 
our GWAS analyses also identified many more previously reported associations, including variants 

Figure 3. Manhattan plots for GWAS performed on all 25 clinical lab variables. X-axis represents the 
chromosome and base pair location of each SNP and Y-axis represent the –log10 of p-value from association 

analysis. The two colors represent p-value for discovery and replication datasets. Direction of effect (positive or 
negative) is shown by the direction of arrows. Results at p-value <0.1 are shown in the plot. Black line indicates 

genome-wide significance (5e-08) threshold. 
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in the ABO gene with alkaline 
phosphatase18 (rs505922, discovery 
p-value: 2.41x10-52, replication p-
value:8.48x10-65), the CASR gene 
with calcium levels19,20 
(rs17251221, discovery p-value: 
6.55x10-44, replication p-
value:2.31x10-51), and the TCF7L2 
gene with glucose levels21 
(rs7903146, discovery p-value: 
1.41x10-35,  replication p-
value:6.23x10-24). 
 
To explore pleiotropic associations 
among variants where one SNP is 
associated with multiple 
phenotypes, we generated a 
phenogram plot22 shown in Figure 
4. This plot shows, for example, 
multiple associations on 
chromosome 10 in gene JMJD1C to 
be associated with platelet mean 
volume as well as alkaline 
phosphatase (red box on Figure 4). 
Different GWAS studies performed 
separately on blood and metabolic 
panels have identified these 
associations23,24 and our study serves 
as confirmation for these 
associations when both panels are 
combined together and analysis is run on the same patients. In our analysis, we see opposite 
directions of effect for both of these associations, i.e. erythrocyte distribution width (discovery beta: 
-0.004 and replication beta: -0.004) and mean corpuscular hemoglobin (discovery beta: 0.09 and 
replication beta: 0.12) which confirms the relationship observed in anemic patients, where elevation 
in RDW and decrease in hemoglobin is observed. 
 
Among our novel associations are intronic variant rs8095374 in gene C18orf25 associated with 
erythrocyte distribution width known as RDW (discovery p-value: 8.79x10-10, and replication p-
value: 2.16x10-10) and mean corpuscular hemoglobin (discovery p-value: 3.57x10-9, and replication 
p-value: 1.84x10-13). Both laboratory measurements are for red blood cells and could be useful in 
understanding the etiology of anemia.  
 

Figure 4. Phenogram plot representing pleiotropic 
associations. Here each colored circle is a SNP and its location 
is represented on the chromosome. SNPs are color coded based 
on the phenotype colors as shown in the legend. SNPs are also 

pruned to LD threshold of 0.4. Here MCH is Mean 
Corpuscular Hemoglobin; MCHC is MCH is Mean 

Corpuscular Hemoglobin Concentration; AST is Aspartate 
Aminotransferase; RDW is Erythrocyte Distribution Width; 

ALT is Alanine Aminotransferase. 
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Our next approach was to integrate ICD-9 code data along with clinical lab variables to identify 
variants that we have found to be associated with median values of quantitative traits, and are also 
linked to diagnosis codes in the EHR. To perform this analysis, we wanted to utilize longitudinal 
data, rather than a measure from a single point in time. Hence, we divided patients into categories 
of high and low variance as described in Methods. Replication was observed based on the 
combination of SNP, clinical lab variable, ICD-9 code, and variance category (high or low). 
Replicated results are shown in form of a heat map in Figure 5. These heat maps show that in our 
study, the majority of our replicating associations occur in the low variance category. The primary 
reason for this is likely due to low sample size in the high variance groups gave us less statistical 
power to detect associations; although we would like to continue to explore this to determine 
whether there is a biological explanation for this.  In total, this analysis resulted in 717 replicated 
associations.  
 
We observed 39 SNPs on chromosome 6 that map to multiple genes (C6orf10, FKBPL, BAT3, 
BAT2, EGFL2, RDBP, MSH5, TNXB, C6orf27, CSNK2B and BAT1) are associated with Type 1 
Diabetes (ICD-9 code 250.01) when the samples with high variance glucose levels were evaluated. 
These associations were not seen in samples in the low variance glucose category. One of the most 
interesting associations identified is between four SNPs in the uromodulin (UMOD) gene and ICD-
9 code 585.3 (Chronic kidney disease) in patients with low variance for aspartate aminotransferase 
(discovery p-value: 8.71x10-9 and replication p-value: 2.03x10-6). It has been observed by previous 
studies that patients with chronic kidney disease usually have low levels of aminotransferase in 
serum25. This association was not replicated in the high variance aspartate aminotransferase group. 
Association of variants in the UMOD gene with chronic kidney disease, kidney stones, and end 

Figure 5. Heat map representing p-values (on left) and beta (on right) from variance based analysis for 
the combination of a SNP, ICD-9 code and clinical lab measurement in both high and low variance 

categories. Each point is the replicating SNP with the color gradient showing the range of p-value and 
beta. The results are only shown for replicating results at p-value<0.001 for both discovery and 

replication datasets in both high variance and low variance categories. X-axis lists all the ICD-9 codes 
and Y-axis lists the corresponding clinical lab variable for which replicating association is observed. 
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stage renal diseases has been previously established26,27 but an association with aspartate 
aminotransferase levels has not been identified by previous studies.  Next, to integrate both the 
GWAS results and variance-based grouping PheWAS results, we generated networks of all genome-
wide significant results from GWAS analysis and replicated results from variance based PheWAS 
analysis using Cytoscape28 as shown in Figure 6. We explored the integrated results for SNP-
Clinical lab variable- ICD-9 code in order to identify the three-way associations that are indicative 
of disease diagnosis. This figure shows the three top integrated networks from our analysis where 
both ICD-9 codes and clinical lab variables are linked via a SNP. One thing to note here is that all 
these networks resulted from the low variance groups only. 
 
From the network visualization, we determined three variants in gene TCF7L2 are associated with 
Type 2 Diabetes (T2D) and glucose levels. This association is expected because these variants have 
been reported by many previous studies to be associated with T2D21,29,30.  Similarly, from this 
network analysis we also observed variants in the UMOD gene associated with chronic kidney 
disease and creatinine levels obtained from serum which has been previously reported by 
GWAS26,27,31.  Lastly, a novel network obtained from this analysis is a link between rs3132941 
(mapped to gene, EGFL8) with WBC count and Type I Diabetes. A high WBC has been observed 
in a few studies in T1D patients32,33. The EGFL8 gene maps near the MHC region (Major-
histocompatibility complex) on chromosome 6 and thus its association with T1D can be easily 

established34,35 but its association with WBC has not been found in any previous studies. Our study 
presents this novel result which warrants further investigation. 

Figure 6. Network visualization generated by Cytoscape using replicated results from both GWAS 
and variance based analysis. Here, triangles represent ICD-9 code description, rectangles represent 
clinical lab variable, and ovals represent SNP. Darker edges represent more significant associations.  

TCF7L2 gene network 

EGFL8 gene network 

UMOD gene network 
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4. Discussion 

Genome-wide association studies have been tremendously successful in unravelling the etiologies 
of common complex diseases and the use of EHR in conducting such genome-wide and phenome-
wide studies has shown resounding progress. Many researchers are now working on approaches to 
incorporate longitudinal information from the EHR into these studies. As a proof of concept, in this 
study we aimed at advancing the use of longitudinal information from laboratory values by looking 
at the variance for each outpatient clinical lab value rather than just mean/median or most recent 
value. We first conducted a GWAS for 25 clinical lab median values and then, based on variance, 
we divided participants into high and low variance groups. Next, we conducted a PheWAS to 
identify which SNPs are associated with median clinical lab variable and ICD-9 codes. This study 
represents a proof-of concept approach for utilizing trait variance and the longitudinal data as we 
successfully identified and confirmed many previously known associations. We also described 
several novel associations observed from our study. Variance, rather than mean/median may better 
capture the richness of the longitudinal data.  In this pilot analysis, we demonstrate that this approach 
can be used to identify networks which reveal trends of associations among SNPs, laboratory 
measurements, and diagnosis codes. In the future, we plan to replicate this analysis with a larger 
sample size and in an independent EHR system. We also plan to use variance as the outcome for an 
association study in all 50,000 patients from Geisinger MyCode dataset and replicate in an 
independent dataset. One limitation of our approach here is that the use of longitudinal data in the 
way shown in this study ignores the fact that in an EHR, the duration of longitudinal information 
varies from patient to patient. Future approaches should also focus on developing methods which 
adjust for the duration of longitudinal information. Developing approaches, such as the one 
described in this manuscript, to explore the longitudinal nature of EHR data will provide greater 
opportunities for discovery and understanding of the genetic and clinical architecture of common 
diseases. 
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