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Next generation sequencing of the RNA content of single cells or single nuclei (sc/nRNA-seq) has become a 
powerful approach to understand the cellular complexity and diversity of multicellular organisms and 
environmental ecosystems.  However, the fact that the procedure begins with a relatively small amount of 
starting material, thereby pushing the limits of the laboratory procedures required, dictates that careful 
approaches for sample quality control (QC) are essential to reduce the impact of technical noise and sample 
bias in downstream analysis applications.  Here we present a preliminary framework for sample level quality 
control that is based on the collection of a series of quantitative laboratory and data metrics that are used as 
features for the construction of QC classification models using random forest machine learning approaches.  
We’ve applied this initial framework to a dataset comprised of 2272 single nuclei RNA-seq results and 
determined that ~79% of samples were of high quality.  Removal of the poor quality samples from 
downstream analysis was found to improve the cell type clustering results.  In addition, this approach 
identified quantitative features related to the proportion of unique or duplicate reads and the proportion of 
reads remaining after quality trimming as useful features for pass/fail classification.  The construction and 
use of classification models for the identification of poor quality samples provides for an objective and 
scalable approach to sc/nRNA-seq quality control. 
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1.  Introduction 

Single cell genomic analysis is poised to revolutionize our understanding of the diversity and 
complexity of multicellular organisms. One of the key applications of single cell genomics is the 
determination of transcriptional profiles using next generation sequencing of amplified cDNA 
synthesized from the RNA content of single cells or single nuclei (sc/nRNA-seq).  By avoiding the 
averaging phenomenon inherent in the analysis of bulk cell populations, sc/nRNA-seq is revealing 
a level of cell type complexity and dynamics that is unprecedented in comparison with previous 
technologies.   

sc/nRNA-seq has now been applied to explore a wide range of biological questions.  It has been 
used to understand the heterogeneity of somatic mutations acquired in cancer subclones arising 
from the same progenitor [Patel 2014][Min 2015], providing insights into therapeutic responses 
and disease progression.  sc/nRNA-seq has been used to track cell state transition dynamics during 
normal tissue differentiation [Nestorowa 2016], cell cycle progression [Scialdone 2015], and in 
vitro trans-differentiation induced using direct reprogramming methodologies [Treutlein 2016].  It 
has also been used to investigate the dynamics of X chromosome inactivation in preimplantation 
embryos [Petropoulus 2016], lineage determination during blastocyst development [Blakeley 
2015], T cell receptor repertoires in antigen-specific immune responses [Eltahla 2016], T cell 
progressive cell states [Proserpio 2016], variability in cellular responses to viral infections [Ciuffi 
2016], and the similarities between induced pluripotent stem cell-derived neurons and cells from 
primary tissue and cortical layers [Handel 2016].  And at its most basic level, sc/nRNA-seq is 
being used to understand the complexity of steady state cell type distributions in normal human 
tissues [Zeisel 2015][Wang 2016][Lacar 2016][Li 2016], and abnormal tissue disorders 
[Ramsköld 2012][Glaublomme 2015][Tirosh 2016]. 
RNA-seq from single nuclei (Grindberg, 2013) provides transcriptomes that strongly reflect those 
obtained from whole cells.  Nuclei can be used in place of cells to assess cell type and state, as 
well as revealing mRNAs and non-coding RNAs that are differentially enriched in the nucleus.  
The use of nuclei as a starting material also has the advantage of providing individual 
transcriptomes without the harsh proteolytic treatment required to disperse single cells from intact 
tissue specimens, which is known to alter gene expression and damage sensitive cell types.  
snRNA-seq has enabled single neuron studies even from postmortem human brain tissue 
(Krishnaswami, 2016).  Use of nuclei for RNA-seq enabled the first single neuron analysis of 
immediate early gene expression associated with memory formation in the mouse hippocampus, 
whereas proteolytic dissociation of neurons yielded artifactual expression in most cells (Lacar, 
2016).  In this study we use data from single nuclei RNA-seq, however, the QC analysis proposed 
should be equally applicable to single cell data.    
While the promise of sc/nRNA-seq is enormous, the methods used to isolate and specifically 
amplify the RNA target material in a manner that preserves the molecular structures and 
abundance levels pushes the limits of these technologies.  As a result, the impact of contaminating 
nucleic acid templates (e.g. chromosomal and other contaminating DNAs, rRNA, mtDNA), 
technical variability in laboratory reagents and procedures (e.g. variability in the efficiencies of 
enzymatic reactions, quality of oligonucleotide reagents, plate position effects, reagent stability), 
biological variability (e.g. eQTL effects) can introduce noise and bias into the resulting sequence 
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read data that can be difficult to control.  Thus, the combination of technical noise and intrinsic 
biological variability makes the detection of and control for technical artifacts challenging.  For 
this reason, the development and implementation of rigorous quality control procedures 
throughout the entire laboratory and informatics workflow is essential in order to assess, improve 
and optimize both the wet lab and dry lab component steps in order to obtain optimal transcript 
expression values for downstream analysis. 

Here we describe an approach to quality control (QC) for sc/nRNA-seq assays in which we 
capture over 70 different quantitative laboratory and data metrics and use these quality metrics to 
construct QC classification models that can be used to filter out poor quality samples from 
downstream analysis.  We’ve applied this QC approach in the context of a project to define the 
cell type complexity of the human brain neocortex in a collaboration involving the Allen Institute 
for Brain Science, the J. Craig Venter Institute, and Illumina, Inc. 

2.   Methods and Results 

 Laboratory and Informatics workflows 

Our standard laboratory workflow for single nuclei RNA-seq is summarized in Figure 1 and is 
based on the detailed protocol described previously [Krishnaswami 2016].  Single nuclei are sorted 
into 96- or 384-well plates containing 2 µL 0.2% Triton X-100, 2 Units/µL RNase inhibitor, 
1:2000000 dilution of ERCC spike-in RNAs (Life Technologies) per well and frozen immediately 
in an ethanol/dry ice bath. The ERCC external RNA control, consisting of 92 transcripts derived 
from NIST-certified plasmids that mimic natural eukaryotic mRNAs, is used to measure limits of 
detection and dynamic ranges, and can also be used to help quantify differential gene expression. 
Amplified cDNA is prepared using a Smart-Seq2 modification [Ramsköld 2012, Krishnaswami 
2016] to our previous method [Grindberg 2013] to improve amplification of transcript 5’ ends. 
cDNA quality is evaluated using Taqman qPCR for selected housekeeping (ACTB), ERCC, and 
sample-specific genes. Using the single nuclei amplified cDNA, bar coded libraries are prepared 
and 60 sample pools are used for next generation sequencing using paired end 2 x 150 chemistry 

 
Figure 1.  Single cell RNA-seq laboratory workflow – See text and [Krishnaswami 2016] for details.  
Abbreviations used: External RNA Controls Consortium RNA spike-in control (ERCC), RNase inhibitor (RNase-
In), template switching oligonucleotide (TSO), Dithiothreitol (DTT), and beta-actin (ACTB).  For Research Use 
Only.  Not for use in diagnostic procedures. 
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on an Illumina NextSeq® 500 instrument. In each of our pools we also include a small number of 
positive (diluted, purified human RNA from bulk samples) and negative controls (water only, 
ERCC only).  Sequencing results are quality controlled (QC) as described below, including the use 
of the laboratory-derived ACTB and ERCC Ct qPCR values, Bioanalyzer length distribution 
metrics, and picogreen cDNA concentration values. 

Our standard operating procedure (SOP) for data processing includes steps for primer and quality 
trimming, read alignment, transcript assembly, and expression quantification as summarized in 
Figure 2, and has been described in detail in a recent Nature Protocol publication [Krishnaswami 
2016].  After demultiplexing, cDNA, PCR, and library/bar code primer sequences and low quality 
reads are removed from the primary read-level data using Trimmomatic, producing the input reads 
for downstream steps.  The input reads are fed into several downstream pipelines - RSEM 
(Bowtie2/EM) for transcript quantification, and TopHat (Bowtie2/Cufflinks), fastQC, MEONCA 
and SCavenger for quality control metric assessment.  MEONCA and SCavenger are in-house 
developed methods that will be described elsewhere.   

 
 
 
 

 
 
Figure 2.  Single cell RNA-seq data processing workflow – Our standard operating procedure is based on the 
use of the Bowtie2/RSEM combination for sequence alignment, assembly, and transcript quantification.  In 
addition, the ouput of a variety of additional workflows produce quantitative metrics used for assessment of 
sample and sequence quality.  See text for details.  
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For the data included here, the following software and database versions were used:  

• GENCODE fasta and gtf files (http://www.gencodegenes.org/releases/current.html) 
Release 21 (GRCh38.p5);  
• FASTX Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/download.html) v0.0.14;  
• fastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) v0.10.1;  
• Picard toolkit (http://rseqc.sourceforge.net/) v1.137;  
• Trimmomatic (http://www.usadellab.org/cms/?page=trimmomatic) v0.35;  
• Bowtie2 (http://sourceforge.net/projects/bowtie-bio/files/bowtie2/) v2.2.7;  
• SAM tools  (http://sourceforge.net/projects/samtools/files/samtools/) v1.3;  
• RSEM: (http://deweylab.biostat.wisc.edu/rsem/) v1.2.28;  
• Tophat (https://ccb.jhu.edu/software/tophat/index.shtml) v2.1.0;  
• Cufflinks (https://cole-trapnell-lab.github.io/cufflinks/) v2.2.1. 

One of the primary objectives of our 
informatics pipeline is to identify 
poor quality samples for possible 
exclusion, to determine the causes of 
poor quality for sample preparation 
process improvement, and to identify 
marginal quality samples for 
downstream bioinformatics 
“normalization”. Because the 
determination of transcriptional 
profiles at a single cell level pushes 
the limits of next generation 
sequencing technologies, the rigorous 
approach we use for quality control is 
perhaps the most important aspect of 
the Single Cell Genomics Lab at 
JCVI.   

Between the laboratory and data 
processing workflows described 
above, we collect 79 different 
quantitative measures that may reflect 
the quality of the input samples, 
processing steps, and resulting 
primary read-level data, which can be 
used to help address these objectives.  
Our approach is to use machine 
learning strategies, specifically 
random forest approaches, to classify 
individual sample data as either pass 

 
Figure 3.  fastQC results used to identify pass and fail samples 
– Quality statistics produced by fastQC for representative Pass (A, 
C, E, G) and Fail (B, D, F, H) samples include average Phred 
score across the length of the read (A, B), average Phred score for 
the entire read (C, D), GC per read (E, F), and Kmer distribution 
across the length of the read (G, H). 
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or fail for specific downstream analysis applications.  In order to illustrate our approach, we 
describe the preliminary results from our work to develop a pass/fail classification model for a 
collaborative project between the JCVI Single Cell Genomics Lab, the Lein Group at the Allen 
Institute for Brain Science, and Illumina, Inc. to determine the transcriptional profiles for 2272 
nuclei isolated from specific neo-cortex regions of post-mortem human brain. 
 

Manual evaluation of fastQC 
results for QC model training 

The first step in the development 
of machine learning classification 
models is to produce training data 
for model construction.  For our 
purposes, we used a set of high 
confidence pass/fail calls for 
individual samples based on the 
qualitative assessment of data 
produced by fastQC, which 
includes quality Phred scores, GC 
content, Kmer distributions, and 
sequence over-representation 
information, for a random set of 
selected samples.  Examples of 
these distributions are shown in 
Figure 3.  Pass samples generally 
exhibit high average quality per 
read across the entire length of 
the sequenced fragment (Figure 
3A & C).  In contrast, Fail 
samples exhibit a significant 
number of reads with low mean 
quality, and quality scores that 
fall off down the length of the 
fragments (Figure 3B and D).  
High quality Pass samples also 
show an average GC content 
around 40%, reflecting the GC 
content of the expressed human 
transcriptome (Figure 3E).  In 
contrast, some Fail samples show 
a second peak in the GC content 
distribution with a mean around 
48% GC (Figure 3F); this peak 
appears to be generated from 
ERCC reads, which are derived 
from bacterial genome sequences.  

 
Figure 4.  QC metrics in Pass and Fail samples – Single nuclei 
samples were annotated as Pass (P), Fail-ERCC (F-E), Fail-Phred (F-
P), and Marginal (M) based on subjective evaluation of the fastQC 
results (see text for details).  The quantitative levels of three different 
QC metrics for these four classes of samples are shown.  P-values were 
calculated using a 2-sided student’s t-test.  NN – NeuN-; NP – NeuN+ 
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Since we find that some Fail samples show reasonable Phred quality scores but over-
representation of ERCC reads and vice versa, we distinguish between Fail samples due to low 
quality scores (Fail-Phred) and Fail samples due to ERCC over-representation (Fail-ERCC).  
Finally, Pass samples show a Kmer content distribution in which distinct polyA and polyT peaks 
can be observed toward the beginning of the read due to the use of oligo-dT priming in 1st strand 
cDNA synthesis (Figure 3G), whereas Fail sample often show a more random pattern (Figure 3H). 

QC metric correlation with QC training data 
In order to produce training data for machine learning in the 2272 nuclei study, we selected 196 
samples at random, including 169 single nuclei samples and 27 controls (positive and negative), 
and performed a blinded qualitative evaluation of the fastQC data, producing three classification 
labels – Pass (152 samples, including all positive controls), Fail-Phred (29 samples), and Fail-
ERCC (15 samples) (all negative controls we correctly classified into one of the two Fail 
categories). Qualitative fastQC evaluation was chosen to produce training data since this approach 
is independent from the quantitative QC metrics produced by our core data processing workflows 
described above.  A few examples of the correlation between fastQC Pass/Fail calls and the 
quantitative QC metrics is shown in Figure 4.  For Fail-ERCC samples, the “percent unique reads” 
are significantly lower (p = 6.8E-11) than for the Pass samples (Figure 4A), probably due to the 
fact that with a greater proportion of ERCC reads, more duplicate reads would result.  For Fail-
Phred samples, the “percent trimmed/raw reads” are significantly lower than for the Pass samples 
(Figure 4B, p = 3.2E-43), presumably due to the fact that Trimmomatic removes reads of poor 
quality.  For Pass samples, the number of transcript isoforms detected tends to be generally higher 
than the number of transcript isoforms detected in either type of failed sample (Figure 4C).  
However, we noted that there appeared to be a subset of Pass samples that had relatively low 
isoform counts, similar to what we observed in the Fail samples.  It turns out that during the nuclei 
isolation step, we stain for the expression of a neuron-specific protein, NeuN, to ensure that we get 
a selection of both neuronal and non-neuronal cell types for our study.  When we compared data 
for NeuN+ and NeuN- passed samples, we found that the isoform counts were significantly 
different between the two major cell type categories (p = 1.8E-10), with NeuN+ nuclei and NeuN- 
producing an average of 12,162 and 6,233 transcript isoforms with >1FPKM, respectively. 
Machine learning for high throughput QC processing 

These quality annotation labels and QC metric values were then used to train the Random Forest 
algorithm as implemented in KNIME v3.1.2.  We generated 100,000 decisions trees that could 
distinguish the three categories of samples.  An example of a high scoring tree is shown in Figure 
5 in which “percent trimmed over raw” is used at the first level and is effective at distinguishing 
Fail-Phred sample from both Pass and Fail-ERCC, and “percent unique reads” is used at the 
second level to distinguish Pass from Fail-ERCC, as also seen in Figure 4.  A summary of the QC 
features that score high across the entire 100,000 decision tree collection is shown in Figure 6.  
Using this Random Forest classification model, all 196 samples in the training set were classified 
correctly with high confidence scores: 

• Pass: average confidence = 0.9689; standard deviation = 0.0524 
• Fail-Phred (F-P): average confidence = 0.8828; standard deviation = 0.0703 
• Fail-ERCC (F-E): average confidence = 0.8286; standard deviation = 0.0959 
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To test the classification accuracy of the resulting random forest model, we used an independent 
test set of 185 single nuclei samples classified using the same fastQC evaluation criteria applied to 
the training data, with 135 determined to be Pass samples, 29 determined to be Fails and 21 
determined to be Marginals. Application of the random forest model to these test Pass and Fail 
samples resulted in only 8 misclassifications (4.9%), for a classification accuracy of 95%.  
Marginal samples were split between Pass and Fail classification by the random forest model, with 
8 Marginals classified as Pass and 12 classified as Fail. 

Using this random forest model applied to the entire dataset, 79% of 2272 single nuclei samples 
passed quality control.  For these samples, the average number of reads after trimming was 
16,335,055 (±19,771,224), percent of hg38 mapped read was 33.04 (± 15.50), number of ERCC 
transcripts detected was 42.43 (± 4.37), and the number of genes detected at a level of >1FPKM 
was 6794 (± 2131), giving an average coverage of 793 reads per human gene detected.  In contrast 
for Failed-ERCC samples, the average number of reads after trimming was 10,333,560 
(±8,589,613), percent of hg38 mapped read was 12.18 (± 13.32), number of ERCC transcripts 
detected was 42.11 (± 4.73), and the number of genes detected at a level of >1FPKM was 2784 (± 
1401), giving an average coverage of 452 reads per human gene detected. For Failed-Phred 
samples, the average number of reads after trimming was 6,763,387 (±6,167,257), percent of hg38 
mapped read was 14.87 (± 12.54), number of ERCC transcripts detected was 39.60 (±12.14), and 
the number of genes detected at a level of >1FPKM was 2903 (± 1897), giving an average 
coverage of 346 reads per human gene detected.  Removal of these poor quality samples was 
found to produce tighter cell type clusters in downstream PCA/biSNE analysis (data not shown). 

 
Figure 5.  One of the 100,000 decision trees constructed from Random Forest training – The tree shows the 
different branch point levels, the feature used to segregate the branches at each level, and the segregation of the 
Pass, Fail-ERCC and Fail-Phred samples at each branch point.  The tree was truncated after the first three levels. 
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Discussion/Conclusion 

Many groups using sc/nRNA-seq to identify and quantify cellular diversity in complex tissue 
samples have recognized the critical importance of quality control procedures to obtain optimal 
results in downstream data analysis, and have used qualitative and quantitative assessment of 
single quality metrics for this purpose.  These include abnormal expression of housekeeping genes 
(e.g. ACTB, GAPDH) [Ting 2014, Treutlein 2014], outlier clustering [Zeisel 2015, Jiang 2016], 
median expression value cutoffs [Pollen 2014], and number of genes detected or read mapping 
rate [Kumar 2014], each with their advantages and disadvantages. In this paper we have 
demonstrated the use of a machine learning approach, specifically random forest decision trees 
with a large combination of wet lab and dry lab quantitative metrics, to objectively perform this 
QC classification.  The advantage of this approach is that not only does it provide for an objective, 
high-throughput pass-fail classification, but it also identifies those quantitative metrics that are 
most useful in identifying problematic samples.  

In this study, we found that there appear to be at least two classes of failed samples, and that the 
metrics useful in identifying each are different.  Failed samples with a second peak in the %GC 
content plot apparently due to reads derived from the ERCC spike-in control are identified by 
metrics like the % of exact duplicates and % of unique reads, presumably due to the fact that a 
relatively small number of transcripts derived from the ERCC control are responsible for a 
significant proportion of the total reads obtained from those samples.  In contrast, failed samples 
with relatively poor quality scores (low Phred scores) are identified by metrics like the % of 
trimmed over raw reads, presumably due to the impact of poor quality data trimming by the 
Trimmomatic software.  While there are some metrics that appear to be effective at identifying 
both classes of failed samples, e.g. the number of transcript isoforms with FPKM values greater 
than 1, these do not rank as high as the class-specific metrics in the useful feature list.  This 
suggest that identifying and distinguish different types of failure modes may be useful for building 
QC classification models using machine learning approaches.  And while both the three class 
prediction model used here and a two class prediction model constructed by grouping both fail 
categories into one showed perfect classification of the training data, the prediction confidence 
values for calling pass samples were slightly higher using the three class model. 

In addition, we also find that the use of metrics related to the number of genes or transcript 
isoforms detected for quality control purposes should be approached cautiously since these may 

 
Figure 6.  QC features most useful in Pass/Fail classification trees – The top ten QC metrics found useful for 
Pass/Fail sample classification are listed together with the number of trees in which they were used for branching 
at levels 1, 2, and 3, and the number of times they were considered as candidates at that given level (due to the 
feature down-sampling used by the Random Forest algorithm.  For example, percentTrimmedOverRawReads was 
considered as a candidate feature in 10977 level 1 branches and was selected as the best feature 10932 times. 
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vary between different cell types, as we observed between our NeuN+ neurons and our NeuN- 
glial cells, or between different cellular states (e.g. cell cycle phase or activation state). 

Recently, Ilicic et al. reported the use of support vector machine modeling to identify 
stressed/broken/killed cells, empty capture sites and sites with multiple cells in Fluidigm C1 flow 
cells using microscopic visualization as the gold standard for model training [Ilicic 2016].  They 
found seven features that were useful for classification independent of cell type and protocol – 
cytoplasm and mitochondrially-localized proteins, mtDNA-encoded genes, mapped reads, multi-
mapped reads, non-exonic reads, and transcriptome variance.  Differences between these and the 
features reported here could be due to the use of different quality metrics as input, the use of 
nuclei versus whole cells, or that different sorting platforms give rise to different poor quality 
modes.  In any case, the approach reported here is advantageous because it does not require visual 
microscopic inspection to produce the gold standard results for model training and therefor can be 
applied in a high throughput fashion to data from any cell sorting platform.  While the random 
forest model developed here has yet to be applied to a completely independent dataset, the test 
samples used to assess classification accuracy were derived from separate cDNA synthesis, PCR 
amplification, and library preparation reactions and sequencing runs. The fact that the model gave 
a 95% classification accuracy on this semi-independent dataset suggests that the feature included 
in the model are at least robust to technical batch effects.   

In conclusion, the use of both wet lab and dry lab metrics for the production of a QC classification 
model using random forest machine learning appears to be an effective objective strategy for the 
quality control of sc/nRNA-seq samples, providing further insights into the data features that are 
most useful for identifying problematic samples. 
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