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With the rapid increase in the quality and quantity of data generated by modern high-throughput
sequencing techniques, there has been a need for innovative methods able to convert this tremendous
amount of data into more accessible forms. Networks have been a corner stone of this movement, as
they are an intuitive way of representing interaction data, yet they offer a full set of sophisticated
statistical tools to analyze the phenomena they model. We propose a novel approach to reveal and
analyze pleiotropic and epistatic effects at the genome-wide scale using a bipartite network composed
of human diseases, phenotypic traits, and several types of predictive elements (i.e. SNPs, genes, or
pathways). We take advantage of publicly available GWAS data, gene and pathway databases, and
more to construct networks different levels of granularity, from common genetic variants to entire
biological pathways. We use the connections between the layers of the network to approximate the
pleiotropy and epistasis effects taking place between the traits and the predictive elements. The
global graph-theory based quantitative methods reveal that the levels of pleiotropy and epistasis are
comparable for all types of predictive element. The results of the magnified “glaucoma” region of the
network demonstrate the existence of well documented interactions, supported by overlapping genes
and biological pathway, and more obscure associations. As the amount and complexity of genetic
data increases, bipartite, and more generally multipartite networks that combine human diseases and
other physical attributes with layers of genetic information, have the potential to become ubiquitous
tools in the study of complex genetic and phenotypic interactions.
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1. Introduction

Genetic diseases and propensities have been at the center of the biomedical world for decades.
From simple Mendelian diseases that obey the one-gene-one-phenotype paradigm, to complex
genetic disorders, geneticists are working on developing novel methods to diagnose, treat, cure,
and even prevent these diseases. At the center of prevention lie the information and education
of patients on their personal genetic risk landscape. Because of the sheer number and com-
plexity of genetic interactions within any given organism, and with its environment, genetic
disorders and traits cannot be studied in isolation of one another or of external factors. The
cascading effects of genomic mutations can extend to entire organisms, and having a global un-
derstanding of the ramifications of these mutations, including all the affected phenotypes and
diseases, is becoming crucial. Two phenomena flawlessly illustrate the underlying complexity
of genetic variations: pleiotropy, when a single mutation affects several traits, and epistasis,
when multiple mutations in distant parts of the genome have synergetic, usually non-linear,
effects on a single phenotype. From a system’s biology perspective, the preferred visualiza-
tion methods for these interactions are networks of human diseases and traits. Networks offer
an intuitive representation of phenotypic and genotypic interactions, while at the same time



allowing sophisticated quantitative statistical analysis of their intrinsic properties.
Although the concepts of epistasis and pleiotropy are over a 100 years old, they are widely

under-appreciated due to their perceived rarity. State-of-the-art genome-wide association stud-
ies (GWAS) most often look for individual genes with large impacts on a single phenotype.
The impact of genetic mutation cannot be studied in isolation, even if the attempt is to
bridge the gap between a single gene and a single phenotype. Predictive elements, such as
single nucleotides (SNPs), loci, genes, or entire biological pathways interact at all levels of
granularity. The pervasiveness and strength of biomolecular interactions require a step back
from reductionist biology and an acknowledgement of the importance of biological networks
and pathways.

In this work, we propose to go beyond the gene as a unit of mutation, and use SNPs as a
smaller unit, and biological pathways as a larger unit. We take a bird’s eye view of the effect
of genetic mutations on human phenotypes. It is often arduous to distinguish between certain
types of pleiotropy and epistasis. The effect of a single mutation rippling though a pathway
can be confused with the combined effect of distinct mutations. We therefore decide to study
these phenomena in unison. We propose to use bipartite networks made of both phenotypes
and predictive elements, constructed with GWAS data and other publicly available genetic
databases. These networks allow us to identify the pleiotropic and epistatic interactions at
the system’s level. By studying several types of human phenotype networks (HPNs) based on
predictive elements of different scales, we quantify the fundamental structural differences of
these networks, as well as the amount of pleiotropic and epistatic information they contain.
Finally, we magnify a specific phenotypic region of the HPN: the “glaucoma” region, which
groups the disease and all its first and second neighbors. We offer a close up view of pleiotropic
and epistatic interactions within a specific sub-network.

2. Background

In this section, we offer a cursory overview of the concepts of pleiotropy and epistasis. Fur-
thermore, we define the fundamental concepts of HPNs, how they are constructed, and how
they differ from one another (Section 2.2);

2.1. Concepts of Pleiotropy and Epistasis

Ludwig Platt and William Bateson first introduced the concepts of pleiotropy and epistasis,
respectively, to explain observed inconsistencies in Mendelian inheritance and in the one-gene-
one-phenotype paradigms.1,2 To adapt with progress with genetics, the definition of pleiotropy
has changed since it was first coined in 1910, and remains somewhat loose. A thorough history
of pleiotropy in the past 100 year can be found in Stearns’ 2010 review.3 It refers to the general
phenomenon in which a single gene dictates two or more seemingly unrelated phenotypic traits.
In some cases, the definition is limited to a single mutation in a locus that affects multiple
traits. It is however widely accepted that there is more than one type of pleiotropy. Grüneberg4

in 1938 correctly distinguished between two major types he called “genuine” and “spurious”
pleiotropy. Genuine pleiotropy refers to a single locus responsible for the production of two
distinct gene products, whereas spurious involves a single gene product utilized in two different



ways. Furthermore, he distinguished a second form of spurious pleiotropy in which the single
primary product initiates a cascade of events with different phenotypic consequences. Spurious
pleiotropy can be said to perturb the biological pathways. Since then, more refined subdivisions
have emerged. To help us navigate the various types of pleiotropy, Hodgking’s survey offers
classifications, descriptions, and examples of seven types of pleiotropy5 (Table 1).

Table 1. A classification of different types of pleiotropy. Adapted form Hodgkin’s study5

Type Situation
Artefactual Adjacent but functionally unrelated genes affected by the same mutation
Secondary Simple primary biochemical disorder leading to complex final phenotype
Adoptive One gene product used for quite different chemical purposes in different tissues
Parsimonious One gene product used for identical chemical purposes in multiple pathways
Opportunistic One gene product playing a secondary role in addition to its main function
Combinatorial One gene product employed in various ways, and with distinct properties, depend-

ing on its different protein partners
Unifying One gene, or cluster of adjacent genes, encoding multiple chemical activities that

support a common biological function

Actual genetic mechanisms of pleiotropy are extremely diverse. Genuine pleiotropy encap-
sulates pleiotropy at the mRNA-processing level, multiple or overlapping loci reading frames,
alternative splicing, and multifunctional proteins, to mention only a few. Spurious pleiotropy
covers single loci mutations that produce deviation in the gene product affecting other genes or
regulatory elements located further down the biological pathways. Indeed, new gene products
may promote or repress the expression of other genes. They may initiate alternate gene-gene
and protein-protein interactions and alternate mRNA and microRNA productions, which may
in turn affect seemingly unrelated phenotypes. Pleiotropic genes offer a unique insight into
the complexities of biomolecular interaction networks.

In epistasis, on the other hand, the phenotypic contribution of a gene and its gene products
depends on the specific genotype of a locus at a different genomic position. From the origin
of the word, “standing upon”, we can derive the modern definition of epistasis, or epistatic
gene effects, in which the expression of an allele at one locus masks the expression of an allele
at another locus.6 Epistasis is therefore usually the result of multiple genetic mutations at
different loci. In this age of Genome-Wide Association Studies (GWAS), epistatic studies can
be conducted at the genome level, quantitatively studying the masking and combined effect
of single point mutations (SNPs).

Both epistasis and pleiotropy are exceptions to the one-gene-one-phenotype Mendelian
rules of genetics. They are, however, far from being rare deviations.7 Epistasis and pleiotropy
are ubiquitous inherent properties of biological systems, and they are necessary byproducts of
biomolecular networks.8 Most phenotypes are the result of interactions between thousands of
genes, as well as between genes and their environment. Because of the widespread connectivity
within networks, the effects of a single mutation or variation can spread through thousands
of gene-gene interactions, resulting in multiple phenotypes, or pleiotropy. The connections
through which a variant’s effects propagate define the molecular basis for epistatic interactions
and how they translate into an observed phenotype. Because of their close relatedness, it is



not unreasonable to conclude that a similar set of quantitative tools can be applied to study
both phenomena, sometimes simultaneously. In the present study, these tools are Bipartite
Human Phenotype Networks.

2.2. Human Phenotype Network (HPN)

In recent years there has been a trend toward studying disease through network based analysis
of various systems of connections between diseases. The result is the Human Disease Network
(HDN). The nodes in the HDN represent human genetic disorders and the edges represent
various connections between disorders, such as gene-gene or protein-protein interactions, to
name only a few. The underlying connections of the HDN contribute to the understanding of
the basis of disorders, which in turn leads to a better understanding of human disease.

One study by Goh, et al.,9 explored the Human Disease Network (HDN), limiting its
analysis to the genes shared by different diseases. Another study by Li et al.10 traced the
SNPs connecting disease traits. In 2009, Silpa Suthram et al.11 found that when diseases were
analyzed by disease-related mRNA expression data in combination with the human protein
interaction network, there were significant genetic similarities between certain diseases, and
some of the correlated diseases shared drug treatments, as well. This could help us target
certain genes for treatment. In 2009, Barrenas et al.12 further studied genetic architecture of
complex diseases by doing a GWAS, and found that complex disease genes are less central
than the essential and monogenic disease genes in the human interactome.

GWAS identify common genetic variants, such as SNPs, found in the genotype of dif-
ferent individuals in association with phenotypical traits. Using GWAS data, we extend
the HDN to include not only diseases, but also general phenotypes, encompassing behav-
ioral traits and physical attributes, such as hair color, and explore large portions of non-
coding variations in the human genome. We call this more complete representation the Hu-
man Phenotype Network.13 We rely on the catalog of published GWAS maintained by the
National Human Genome Research Institute (NHGRI) at the National Institute of Health
(http://www.genome.gov/gwastudies/) as a primary source of phenotypic data. It aggre-
gates studies that report SNP(s)-to-phenotype(s) and gene(s)-to-phenotype(s) associations.
The NHGR catalog used in this study, downloaded in June 2013, reports 646 phenotypes
associated with 2,000+ genes and 6,000+ SNPs.

Over 90% of risk-associated SNPs (raSNPs) identified by the GWAS fall outside of coding
regions,14 stressing the requirement for a more global assessment of phenotypic associations.
In this work we explore methods of building the HPN that go beyond previously mentioned
gene-centric HDN approaches. An interesting side-effect of all the methods presented below
is that before obtaining a HPN, the algorithm produces a bipartite network (see Section 3),
which is the property that allows us to study the pleiotropic and epistatic information in the
genetic association data. The HPN is obtained by projecting the bipartite network onto the
phenotype space.

The following sections present our methods for building the HPNs based on different
predictive elements. We start at the smallest predictive element, the SNP, then move on to
SNP clusters, to genes, and finally to complete biological pathways. These offer varying density



of the information contained with both the bipartite network and the projected HPN.

2.2.1. Genetic Variations based HPN

For each phenotype in the catalog (Fig. 1, Step 1), we define its risk-associated variome (RAV)
as the complete set of its associated raSNPs (Step 2). To address the low genomic coverage
provided by GWAS, we associate each raSNP with all SNPs found in linkage disequilibrium
(ldSNPs) using the HapMap project data15 (Step 3). SNPs in linkage disequilibrium form
clusters of variants that statistically tend to appear in the same patient.16 The HapMap project
aims at building a repository of describing the common patterns found in human genetic
variations (http://hapmap.ncbi.nlm.nih.gov/). The resulting imputed variome (iRAV) will
allow us to establish connections between diseases/traits that share blocks, i.e. that have
overlapping iRAVs (Step 4).
iRAV-based HPN. In a previous study, we presented a model of iRAV-based HPN which
included the phenotype-to-raSNPs association from GWAS, and added the HapMap project
data to build clusters of variants for each phenotype (iRAVs).13 Phenotypes in the iRAV-
HPN are linked when they share overlapping iRAVs. The algorithm (in Figure 1) produces a
bipartite network of phenotypes and iRAVs.
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Fig. 1. Step-by-step description of the method to obtain the HPN. The circled numbers correspond to the
steps of the method description above.

RAV-based HPN. Linking phenotypes that share at least one raSNP, we build the RAV-
PHPN. This approach is similar to that of Li et al.10 The phenotypes are linked based only on
shared risk variants, i.e. overlapping RAVs, not including ldSNPs/iRAVs. This approach pro-
duces a HPN that is less dense than the iRAV-HPN, identifying fewer phenotype associations.
The algorithm is similar to that described in Figure 1, omitting Step 3.



2.2.2. Gene-based HPN

Leveraging the gene(s)-to-phenotype(s) associations contained in the GWAS catalogue, we
construct the gene-only based HPN (gHPN). Indeed, the GWAS catalog reports for each
phenotype both the associated and the mapped genes in which the SNPs fall. This approach
is analogous to that of Goh et al.9 To increase the genetic coverage of each phenotype, we
use the Broad Institute’s GeneCruiser (genecruiser.broadinstitute.org) to identify the
gene closest to a SNP, or for which SNPs fall in a known regulatory region. If this gene is
not already associated with the SNPs phenotype, we include it in the study. This method
increases the number of genes by 138, from 2,339 genes to 2,477. The algorithm is similar to
that shown in Figure 1, omitting Step 3, and white star symbols are now genes, not raSNPs.

2.2.3. Biological Pathways based HPN

Expanding on the gHPN, we build a pathway-based HPN (pHPN).17 Biological pathways
represent elaborate series of cascading biochemical reactions occurring within the cell, and
possibly receiving external signals.18 Pathways govern all major cellular functions, such as
cell cycle, cell respiration, and apoptosis (programmed cell death). Biochemical compounds,
(e.g. nucleic acids, proteins, complexes and small molecules) participating in reactions form a
network of biological processes and are grouped into pathways. KEGG Pathway (kegg.jp) is
an open-access collection of manually curated and peer-reviewed pathway database, containing
the structured information about the elements, enzymes, and genes (via their gene products)
within many known pathways.

Relying on the gene(s)-to-phenotype(s) data used to construct the gHPN, genes were
further linked to enriched pathways using KEGG. By building these associations, we were
able to link phenotypes associated with genes involved in the same pathways in the pHPN.
The algorithm is analogous to that in Figure 1, except that the white star symbols represent
genes, and the grey stars are pathways.

3. Pleiotropy and Epistasis in the Bipartite HPNs

The HPN resulting from either method described in Section 2.2 can be represented as a
mathematical object: a graph.19 In this work, the terms “graph” and “network” are used
interchangeably. Formally, a network is a collection of nodes and edges connecting them. The
degree, k, of a node is the number of edges incident upon the node. The average degree of the
network is the average of all k. The degree distribution function, P (k), of the network describes
the fraction of nodes within the network with degree k. The clustering coefficient (CC) of a
network measures the degree to which nodes tend to form closely knit communities with a
higher than average connectivity.20 The CC of networks found in nature, in particular social
and biological networks, show a higher degree of clustering than that observed in randomized
networks of identical size. The average path length of a network (APL) represents the average
of the minimum number of edges separating any two vertices. Finally, the network’s diameter
is defined as the greatest distance between any pair of vertices.

In our study, we start by building a bipartite network,21 consisting of two disjoint sets
of nodes. The nodes are connected in such a way that the nodes of one set will have no



connections between them, but can only be connected to nodes of the other set. The use
of a bipartite network is natural when dealing with two different types of data sets (Figure
2b), in our case phenotypes (e.g. the rectangles) and RAVs, iRAVs, genes, or pathways (e.g.
the circles). This type of network gives us three distinct degree distributions, one for each
projection, and one for the bipartite network. Each degree distribution shows how many links
each node has. Nodes in a projection of a bipartite network are connected if they share at
least one node in the other group. This gives us the ability to see the interactions within each
set.
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Fig. 2. Bipartite Network schematic. A bipartite network (b) made of 2 data sets the “circles”, and the
“rectangles”. Projections in the “circle” space (a) and in “rectangle” space (c).

The data from the bipartite network can be projected onto either data space (Figure
2a,c). In both cases, the nodes are connected to one another through a vertex of the other
space. By ignoring the different types of data, all network properties described above remain
valid on the bipartite network (as a single data set network) and on either projection. We
illustrate the iRAV-HPN resulting from the projection onto the phenotype space in Figure 3.
In the context of this study, the qualitative nature of the projected HPN does not contain
much information about the phenotypic pleiotropy and epistasis. Therefore, we only show one
example of projected HPN to give a sense of the complexity of the data and the necessity for
quantitative methods.

4. Characterizing and Quantifying Pleiotropy and Epistasis in the HPNs

Early studies have made use of network theory in studying both pleiotropy and epistasis.
Global statistical properties of networks, such as the “shape” of the degree distribution and
an above average CC place gene expression networks in the small-world20 or scale-free19 family
of networks.22 This indicates that most of the nodes (genes) in the network are of a low degree
k. However, a small minority of the vertices are highly connected (hubs). Put in the context
of the present work, a few genes have extensive pleiotropic/epistatic effects, but most genes
only affect/are affected by a small number of phenotypes. The quantitative structural analyses
of the protein interaction networks of model organisms have highlighted the importance of
properties such as the diameter and the APL. Li et al.23 determined that the diameter was
∼ 4 − 5 edges, meaning that each gene in the genomes studied affected on average four or
five proteins. This finding also corroborates the conjecture that pleiotropy and epistasis are
confined to genomic modules, and cannot generally affect any pairs/set of loci in the genome.24
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Fig. 3. iRAV based Human Phenotype Network. In order to increase the readability, we have filtered out
nodes with a degree smaller than 5 (i.e. connected to less than 5 other nodes), showing only 137 nodes (about
30%) and about 45% of the actual edges. To further facilitate the readability, we have manually merged a
number of clearly redundant nodes. The nodes and labels sizes are proportional to the original degree of the
phenotype (before filtering). The edge width is proportional to the number of overlapping iRAVs.

In this work, we propose to use the information beyond the projected HPN, which is
limited as it does not contain the actual interactions between the phenotypes and the predictive
elements (SNPs, iRAVs, genes, or pathways). Instead, we will analyze the interactions between
the two layers of the bipartite networks. Because of the density and complexity of the HPNs,
the following section presents the results of a quantitative overview of pleiotropy and epistasis
as properties of the entire network. In addition, Section 5 reports the clinical implications
and the specific effects observed in a region of the HPNs centered on the “glaucoma” vertex
and its neighboring phenotypes.The variable degrees of granularity offered by the different
construction methods above result in slightly different definitions of pleiotropy and epistasis.
The SNP level provides the most detailed degree, and it defines the strictest pleiotropy and
epistasis: the same SNP is associated with multiple phenotypes, or a single phenotype is
influenced by multiple SNPs, possibly shadowing each other’s effects. At the SNP-clusters
level, we use the iRAV-HPN. The most common definition of pleiotropy and epistasis will be
used on the gHPN, where the predictive elements are complete genes. Finally, at the highest



level, we will study the pHPN and use biological pathways to quantify pleiotropy and epistasis.
Admittedly, these interpretations of pleiotropy and epistasis may somewhat stray from the
commonly accepted definitions, but they are in line with the loose nature of the phenomena,
where both have sub-types that relate to all degrees of granularity.

Relying on the data in the bipartite HPNs, we calculate the number of phenotypes con-
nected to each predictive element. We use the average connectivity of the predictive element
as a proxy for measuring the global pleiotropy (Table 2). We also present the degree distribu-
tion of the of the predictive element subset, showing the effect of pleiotropy at each predictive
element level (Figure 4). Inversely, the average epistatic effect of predictive elements on phe-
notypes can be calculated as the average degree of the phenotype subset in the bipartite HPN
(Table 2). The degree distribution of the phenotype subset conveys the distribution of epistatic
effects that different predictive elements have on the phenotypes (Figure 4).
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Fig. 4. Pleiotropy and Epistasis Distributions. The pleiotropy distributions shows the distribution of the
number of phenotypes (PT) for each predictive element, i.e. the distribution of predictive elements influencing
multiple phenotypes (see inset). The epistasis distribution shows the number of predictive elements for each
phenotype, i.e. the distribution of phenotypes ruled by multiple predictive element (see inset).

Both pleiotropy and epistasis distributions are right-skewed with a heavy tail, which de-
notes the presence of hubs. The pleiotropy distributions show that most predictive elements
only influence a few phenotypes, however, a small minority of predictive elements influence a
large number (50+) phenotypes. Similarly, the epistasis distribution depicts that most phe-
notypes can be associated with only a few predictive elements. However, a small number of
phenotypes rely on the signaling of a large number of predictive elements. Although somewhat
simplistic, these results are, for all models, in line with the findings of Featherstone et al.22 We
acknowledge that the manner in which the average effects are computed may capture more
than just the pleiotropic and epistatic effects. However, these results, due to the their ubiquity,
reflect a biologically plausible property of the system. We run a full array of quantitative sta-
tistical analysis of the different HPNs, including the average pleiotropic and epistatic effects
(Table 2).

As the models increase in granularity, the networks become denser with more edges, de-
creasing APL and diameter. This is to be expected: as the network has more connections,



Table 2. Quantitative Properties of the different HPNs. (PT : phenotype, GE: predictive element.)

RAV-HPN iRAV-HPN gHPN pHPN
LCC size (%nodes) 295 (45%) 401 (62%) 430 (67%) 396 (61%)
#edges 932 2845 2556 40K
avg. degree / weighted 6.31 / 10.03 14.19 / 37.54 11.88 / 16.85 204.1 / 497.6
APL / diameter 3.7 / 10 2.96 / 8 2.96 / 6 1.48 / 3
avg. CC 0.58 0.59 0.57 0.79
modularity / communities 0.62 / 26 0.55 / 24 0.49 / 10 0.10 / 4
isolate vertices 351 245 216 250
avg. pleiotropy (#PT/#GE) 1.12 1.12 1.58 27.06
avg. epistasis (#GE/#PT) 11.11 285.64 6.07 5.69

the distance between nodes decreases. The values agree with Li et al.23 findings. The above
average CC and the shape of the degree distributions (not shown here for space reasons) put
the HPNs in the scale-free region of the network topology spectrum. Additionally, we note
that the modularity and number of communities drops with increasing granularity and net-
work density. The number of isolated nodes provides an insight into how many phenotypes
have no detected genetic connection to any other phenotype. Finally, we see that the average
pleiotropy remains relatively constant until we look at the pHPN, which biological pathways
tend to affect ∼ 27 phenotypes in average. Otherwise, predictive elements do not in general
impact more than 1-2 phenotypes. This proves the necessity to apply a biologically relevant
filter to the pHPN in order to extract the “backbone” of the network, containing the most rel-
evant genetic influences.17 The average epistatic effect is also reasonably steady, except when
ldSNPs are included in the iRAV-HPN. This is due to the fact that now both raSNPS and
ldSNPs are directly associated to the phenotypes.

5. Clinical Implications: the Example of Glaucoma

As previously stated, each HPN differs in terms of the number of edges branching from each
phenotype node. Moving from the gHPN to the pHPN provides a great deal more information,
but the network itself becomes extremely complex and difficult to analyze visually. The pHPN
can help to explain the shared etiology of glaucoma and other diseases by revealing a sub-
stantial number of interactions unseen in the gHPN. Ultimately, studying predictive elements
from a global perspective, using networks, could contribute to novel discoveries in pleiotropic
drug therapies.

The HPNs confirm well-known interactions, such as between glaucoma and blood pres-
sure (BP). Studies have linked the two for years and drugs used to treat glaucoma, such as
beta-blockers and alpha-adrenergic agonists,25 are known to affect BP. In fact, patients with
cardiovascular problems are advised against taking beta-blockers, a treatment for the high
intraocular pressure (IOP) associated with glaucoma, because of its effect on heart rate and
BP.26 Moreover, many studies have shown that BP and ocular perfusion are important factors
in the pathogenesis of glaucoma. For example, studies have linked increases in blood pressure
to slight increases in IOP. Going further, the “Blue Mountains Eye Study” found that sys-
temic hypertension was significantly associated with an increased risk of primary open-angle
glaucoma (POAG), independent of the effect of BP on IOP. Systemic hypertension was the



greatest risk factor for POAG.26 Blood pressure is a first neighbor to Glaucoma in the pHPN,
suggesting the validity of the model. They are linked by the umbrella pathways in cancer. Di-
abetes mellitus is another well-documented disease known to interact with glaucoma.27 Type
1 diabetes is a direct neighbor and Type 2 diabetes is a second (indirect) neighbor. Type 1
diabetes and glaucoma are linked by the cell cycle and HTLV-I infection pathways. Type 2
diabetes and glaucoma share common gene: CDKN2B-AS. In the gHPN, on the other hand,
Type 2 diabetes is a first neighbor, but Type 1 diabetes and blood pressure are only second
neighbors to glaucoma. Additionally, the pHPN allows us to see connections that are not in-
cluded in the gHPN, which could lead to new advances in treatments for the linked diseases.
For instance, Alzheimers disease is a second neighbor of glaucoma. Both are neurodegenera-
tive diseases and their similarities have recently begun to receive significant attention. Inoue et
al. maintain that elevated levels of biomarkers for Alzheimers are more often found in patients
with open-angle glaucoma (OAG) than in patients with cataracts.28 In addition, Alzheimer’s
and OAG share pathways such as cell death mechanisms (apoptosis), reactive oxygen species
(ROS) production, mitochondrial dysfunction and vascular abnormalities .29 Apoptosis of the
neural ganglia cells is a major issue in glaucoma. In the gHPN, the link between Glaucoma
and Alzheimers disease is not readily apparent by looking at the graph – it becomes a third
neighbor. Another interesting link is to the “smoking behavior” phenotype, although this is
only readily apparent in the pHPN where it is a first neighbor to glaucoma. The two share
the umbrella pathways in cancer. Association studies have shown that smoking behavior is
correlated with central corneal thickness in OAG and might also be a risk factor for POAG.30

6. Conclusions & Future Work

The study of genetic diseases is progressing at an unprecedented pace, thanks to modern
high-throughput sequencing technology and to the development of modeling techniques at the
crossroads of bioinformatics and mathematics. Bipartite HPN models are capable of leverag-
ing the massive amount of GWAS and other readily-accessible genetic data, and collapsing
the information into a single, manageable source. The projection of the HPN helps analyze
phenotypic interactions.13,17 The overall structure of the connections between the layers of
the bipartite HPN, on the other hand, allows us to estimate in a quantitative manner the
pleiotropic and epistatic effect at a global level, for multiple types of predictive elements.
Finally, by magnifying regions of the HPN, we are able to highlight previously documented
phenotypic interactions, supported by genes and biological pathways evidence as a proof of
concept. The bipartite HPNs are flexible, scalable, and intuitive models. HPNs are potentially
useful to study phenotypic links, as well as uncover novel pleiotropy and epistasis effects at the
single variation level, at the gene level, and all the way to the biological pathway. Future work
will involve collapsing the multiple HPNs into an aggregated model. This step will however
require the information to be filtered in a biologically sensible manner. Further refinements of
the model will include the detection of different types of pleiotropy and epistasis. Finally, we
are working on statistical and cross-validation approaches to validate the E&P significance.
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