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Computational efficiency is important for learning algorithms operating in the “large p, small n”
setting. In computational biology, the analysis of data sets containing tens of thousands of features
(“large p”), but only a few hundred samples (“small n”), is nowadays routine, and regularized
regression approaches such as ridge-regression, lasso, and elastic-net are popular choices. In this
paper we propose a novel and highly efficient Bayesian inference method for fitting ridge-regression.
Our method is fully analytical, and bypasses the need for expensive tuning parameter optimization,
via cross-validation, by employing Bayesian model averaging over the grid of tuning parameters.
Additional computational efficiency is achieved by adopting the singular value decomposition re-
parametrization of the ridge-regression model, replacing computationally expensive inversions of
large p×pmatrices by efficient inversions of small and diagonal n×nmatrices. We show in simulation
studies and in the analysis of two large cancer cell line data panels that our algorithm achieves
slightly better predictive performance than cross-validated ridge-regression while requiring only a
fraction of the computation time. Furthermore, in comparisons based on the cell line data sets, our
algorithm systematically out-performs the lasso in both predictive performance and computation
time, and shows equivalent predictive performance, but considerably smaller computation time,
than the elastic-net.

Keywords: ridge-regression, Bayesian model averaging, predictive modeling, machine learning, cancer
cell lines, pharmacogenomic screens

1. Introduction

Analysis of high-throughput “omics” data sets to infer molecular predictors of cancer phe-
notypes is a common type of problem in modern computational biology research. The use of
genomic features such as from gene expression, copy number variation, and sequence data, in
the predictive modeling of anticancer drug response is a particularly relevant example, which
holds the potential to speed up the emergence of “personalized” cancer therapies.1,5 A common
theme of such high-dimensional prediction problems is that the number of genomic features,
p, is usually much larger than the number of available samples, n, and regularized regression
approaches such ridge-regression,2 lasso,3 and elastic-net4 are popular methodological choices
in this context.1,5 Computational efficiency is of key importance for any learning algorithm
operating in this “large p, small n” setting; a method that improves computational efficiency
without sacrificing prediction accuracy could enable such models to be readily applied across
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a large number of phenotype prediction problems, such as inferring genomic predictors for
large panels of anticancer compounds.

In this paper we propose a novel Bayesian formulation of ridge-regression, which executes
in a fraction of the time required by the most efficient current implementations of regularized
regression methods, while achieving comparable prediction accuracy. We refer to our approach
as Stream (Scalable-Time Ridge Estimator by Averaging of Models). First, Stream replaces
cross-validation by Bayesian model averaging6 (BMA) over the grid of tuning parameters.
For each tuning parameter in the grid, we interpret the corresponding ridge-regression fit as
a distinct model, and average all models, weighted by how well each model fits the data.
Second, it replaces the computation of large p × p matrix inversions by efficient inversions of
small and diagonal n × n matrices derived from the singular value decomposition7 (SVD) of
the feature matrix. Note that the use of SVD re-parameterization is a practice to improve the
computational efficiency of ridge-regression model fit.8

We point out that both improvements are allowed by the analytical tractability of the
Bayesian hierarchical formulation of ridge-regression, where the marginal posterior distribution
of the regression coefficients and the prior predictive distribution of the data are readily
available, leading to a fully analytical expression for the BMA estimate of the regression
coefficients. Furthermore, the quantities that need to be evaluated, namely, model specific
posterior expectations and marginal likelihoods, can be efficiently computed under the SVD
re-parametrization.

The rest of the paper is organized as follows. In Section 2.1 we present the Stream algo-
rithm, and, in Section 2.2, we present its re-parametrization in terms of the singular value de-
composition of the feature data matrix. Section 3.1 presents a simulation study comparing the
predictive performance and computation time of Stream against the standard cross-validated
ridge-regression model. Section 3.2 presents real data illustrations using two compound screen-
ing data sets performed on large panels of cancer cell lines. Finally, in Section 4 we discuss
our results, and point out strengths and weaknesses of our proposed algorithm.

2. Statistical model

In the next subsections we present the Stream-regression model and its re-parametrization in
terms of the SVD of the feature data matrix. First, we introduce some notation. Throughout
the text we consider the regression model y = Xβ + ϵ, where y represents the n× 1 vector of
responses, X corresponds to the n× p matrix of features, β corresponds to the p× 1 vector of
regression coefficients, and ϵ represents a n×1 vector of independent and identically distributed
gaussian error terms with expectation 0 and precision τ . The notation Ga(a, b) represents a
gamma distribution with shape and rate parameters a and b, respectively; U(a, b) stands for the
uniform distribution on the interval [a, b]; DU(a, b) represents the discrete uniform distribution
with support in the range {a, . . . , b}; Ber(ϕ) corresponds to the Bernoulli distribution with
success probability ϕ; Nk(µ , Σ) represents a k-dimensional multivariate normal distribution
with mean vector µ and covariance matrix Σ; and Stk(µ , Σ , v) corresponds to a k-dimensional
multivariate t-distribution with mean vector µ, scale matrix Σ, and v degrees of freedom. We
represent the k-dimensional identity matrix by Ik, the indicator function assuming values 0



or 1 by 11, and the determinant of a matrix A by det(A).

2.1. Stream regression model

Consider the Bayesian hierarchical form representation of ridge-regression (a special case of
the Bayesian formulation for the linear regression model with a normal-gamma prior9):

y | X,β, τ ∼ Nn(Xβ , τ−1In) ,

β | τ, λ ∼ Np(0 , τ
−1λ−1Ip) ,

τ ∼ Ga(aτ , bτ ) ,

where the precision parameter λ plays the role of the tuning parameter in ridge-regression.
Under this analytically tractable model we have that the marginal posterior distribution of
the regression coefficients is

π(β | X,y) = Stp

(
β ; β̂ ,

2 bτ + (y −Xβ̂)ty

2 aτ + n
(XtX + λIp)

−1 , 2 aτ + n

)
,

where the expectation, β̂ = (XtX + λIp)
−1Xty, corresponds to the usual (frequentist) ridge-

regression estimator, and the prior predictive distribution is given by

f(y | X) =

∫
τ

∫
β
Nn(y ; Xβ , τ−1In)Np(β ; 0 , λ−1τ−1Ip)Ga(τ ; aτ , bτ ) dβ dτ

= Stn

(
y ; 0 ,

bτ
aτ

(In −X(XtX + λIp)
−1Xt)−1 , 2 aτ

)
, (1)

Now let λk, k = 1, . . . ,K represent the grid of ridge-regression tuning parameters, and let
Mk represent a ridge-regression model that uses λ = λk. The BMA estimate of β is then

E[β | X, y] =

K∑
k=1

E[β | X, y, Mk] pr(Mk | X, y) , (2)

where

E[β | X, y, Mk] = (XtX + λkIp)
−1Xty

and the posterior distribution of model Mk, given the data, is computed as

pr(Mk | X, y) =
f(y | X, Mk) pr(Mk)∑K
k=1 f(y | X, Mk) pr(Mk)

.

Here, f(y | X,Mk) corresponds to the prior predictive distribution in (1) with λ replaced by
λk, and we adopt a discrete uniform prior for the models, so that pr(Mk) = K−1, k = 1, . . . ,K.

In regression based predictive modeling, one is generally interested in making a prediction,
ŷ = Xtest β̂train, of the response vector ytest, where Xtest represents the feature data on the
testing set, and β̂train represents the regression coefficients estimate learned from the training
set. In our Bayesian model, we are interested on the the expectation of the response’s posterior
predictive distribution,

E[ytest | Xtest , Xtrain , ytrain] = Xtest E[β | Xtrain , ytrain] ,

where E[β | Xtrain , ytrain] is given by equation (2).



2.2. SVD re-parametrization

Consider the SVD of the n× p feature data matrix X of rank n. One possible representation
of X is given by X = UDV t, where U is a n × n orthogonal matrix of left singular vectors;
D is a n × n diagonal matrix of singular values dj; and V is a p × n matrix of right singular
vectors. An alternative representation is X = U∗D∗V

t
∗ where U∗ is a n × p matrix obtained

by augmenting U with p − n extra columns of zeros, U∗ = (U ,0); D∗ is a p × p diagonal
matrix with the first n diagonal entries given by the singular values and the remaining p− n

diagonal entries set to zero; and V ∗ is a p × p orthogonal matrix obtained by augmenting V

with p−n additional right singular vectors. Exploring these re-parametrizations we can, after
some algebra, re-express β̂ in the computationally more efficient form,

E[β | X, y, Mk] = V ∗ (D
2
∗ + λkIp)

−1D∗U
t
∗y = V (D2 + λkIn)

−1DU ty .

In addition to the efficient computation of β̂, we can also explore the SVD reparame-
terization for efficient computation of the prior predictive distribution, which involves two
computationally expensive steps; namely, evaluation of the quadratic form yt(In −X(XtX +

λkIp)
−1Xt)y, and of det

(
(In − X(XtX + λkIp)

−1Xt)−1
)
. Starting with the quadratic form,

observe that

In −X(XtX + λkIp)
−1Xt = In −U∗D∗(D∗ + λkIp)

−1D∗U
t
∗ = In −U(In + λkD

−2)−1U t ,

so that we replace a p × p matrix inversion by a n × n diagonal matrix inversion in the
computation of the quadratic form. Next, consider the determinant. From the application of
the Woodbury matrix inversion formula10 we have that

In −U(In + λkD
−2)−1U t = (In + λ−1

k UD2U t)−1 ,

and from standard properties of the determinant and the orthogonality of the U matrix we
have that

det
(
(In −X(XtX + λkIp)

−1Xt)−1
)
= det(In + λ−1

k UD2U t) =

n∏
j=1

(
1 +

d2j
λk

)
.

Hence, the prior predictive distribution can be efficiently computed as

f(y | U , D, Mk) = C

(
1 +

yt(In −U(In + λkD
−2)−1U t)y

2 bτ

)−
2 aτ + n

2

with the normalization constant, C, given by

C =

Γ

(
2 aτ + n

2

)
Γ

(
2 aτ
2

)
(2 aτ π)

n

2

(
bτ
aτ

)−
n

2

 n∏
j=1

(
1 +

d2j
λk

)−
1

2
.



3. Illustrations

Before we present our simulation study and real data illustrations, we provide a few model
fitting details relevant to the next subsections. Throughout this paper we evaluate predictive
performance using the RMSE statistic,

√
(ytest − ŷ)t(ytest − ŷ)/ntest, where ŷ = Xtestβ̂train.

For ridge-regression, lasso, and elastic-net, we adopted 10 fold cross validation. We adopted
a data-driven approach, described in detail in the appendix, for the determination of the
tuning parameter grid for ridge-regression and Stream. Each simulated or real data set used
a different grid, composed of K = 100 values. For each data set we used the same grid in the
ridge-regression and Stream model fits. For the lasso and elastic-net algorithms, we adopted
the tuning parameter grids generated by default by the glmnet R package.11 Both response
and feature data are scaled prior to analysis. In both simulation studies and real data analysis
illustrations we tested whether the difference in RMSE between two methods is statistically
significant using the Wilcoxon paired-sample test.12

3.1. Simulation study

We performed a simulation study illustrating how Stream achieves slightly better predictive
performance than ridge-regression (when we adopt non-informative priors for the residual
precision parameter τ), while requiring only a fraction of the computation time.

In order to evaluate the method’s performance under widely heterogenous conditions, we
simulated 5,000 distinct data sets, each one generated with a unique and random combination
of sample size (n), number of features (p), model sparsity (ϕ), residual noise (σ), and strength
of feature correlation (ρ), sampled according to: n ∼ DU(100 , 500); p ∼ DU(501 , 10000); ϕ ∼
U(0.1 , 0.9), σ ∼ U(0.1 , 5); and ρ ∼ U(0.1 , 0.9).

Each simulated data set was generated as follows: (i) we first draw a single value of n, p, ϕ,
σ, and ρ, from their respective uniform distributions; (ii) given the sampled values of n, p, and
ρ, we simulate the feature data matrix, Xn×p = (Xn×p1

, . . . ,Xn×pL
), as L separate matrices,

Xn×pl
, generated independently from Npl

(0 , Σl) distributions, where Σij,l = 1, for i = j, and
Σij,l = ρ|i−j|, for i ̸= j. The number of features, pl, in each of these matrices were randomly
chosen between 20 and 100 under the constraint that p =

∑L
k=1 pl; (iii) given the sampled

values of p and ϕ, we computed each regression coefficient, βj, j = 1, . . . , p, as βj = β∗
j 11βj

,
where β∗

j ∼ N(0, 1), and 11βj
∼ Ber(ϕ) (note that, by defining βj as above, we have that, on

average, ϕ p regression coefficients will be non-zero); and (iv) given the sampled value of σ and
the computed feature matrix and regression coefficients vector, we computed the response
vector as y = Xβ + σ ϵ, where ϵ is a vector of standard gaussian error variables. We note
that for each simulated data set we actually generated 2n data samples, and used the first n

samples as the training set, and the second half as the test set. Figure 1 present the results.
Panel (a) in Figure 1 shows that the predictive performance of Stream is quite similar to

ridge-regression when the RMSE values are small, but Stream tends to slightly outperform
ridge when RMSE values are larger, as suggested by the increased number of points below the
diagonal for RMSE values closer to 1. Application of the Wilcoxon paired-sample test shows
that, overall, Stream achieves statistically significant increased performance over ridge (p-value
= 2.501 × 10−5). We note that the results in Figure 1 were computed using an uninformative
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Fig. 1. Simulation results: comparison of Stream and ridge-regression in terms of predictive performance and
computation time.

gamma prior distribution (hyper-parameters aτ = bτ = 0.001). As expected, the adoption of
informative gamma priors led to decreased predictive accuracy (results not shown).

Panel (b) in Figure 1 shows the comparison of computation times between Stream and
ridge-regression. Overall, Stream was approximately 10 times faster than ridge. In general,
Stream is approximately f times faster than ridge-regression, where f represents the number
of cross-validation folds used by ridge.

3.2. Cancer cell line panels

In this section we compare the predictive performance and computation time of the Stream,
ridge-regression, lasso, and elastic-net algorithms in inferring molecular predictors of com-
pound sensitivity based on the Sanger5 and CCLE1 data sets, which contain compound screen-
ing data performed on large panels of molecularly characterized cancer cell lines.

In Sanger we have 535 cell lines and a total of 30,765 features comprised of 4 distinct
feature data types, including gene expression measurements on 12,024 genes, copy number
variation measurements on 18,601 genes, cell line tumor type classifications according to 93
distinct tumor lineages, and mutation profiling on 47 genes. In CCLE we have 411 cell lines and
41,911 features comprised of 5 distinct feature types, including gene expression measurements
on 18,897 genes, copy number measurements on 21,217 genes, cell line tumor type classifica-
tions on 97 tumor lineages, mutation profiling on 33 genes using the oncomap 3.0 plataform,13

and mutation profiling of 1,667 genes using hybrid capture sequencing. Mutation data was
summarized to gene-level binary calls, with 1 representing a somatic mutation observed at any
base pair within the gene. Gene expression, copy number, and mutation data were summa-
rized to gene-level features. The Sanger dataset tested 138 compounds and summarized the
sensitivity of each cell line based on IC50 values. The CCLE dataset tested 24 compounds and
summarized the sensitivity of each cell line based on the area over the dose response curve
(where response values at each compound dose are scaled with -100 representing complete
growth inhibition and 0 representing no growth inhibition).

In the present analysis we discarded samples and features with missing data, and we filtered



out genomic features with variance smaller than 0.01, and with non-significant correlation
with the response (p-value > 0.1). After filtering we obtained, on average, 5,588.80 ± 2,046.48
genomic features in Sanger, and 12,512.12 ± 3,345.16 in CCLE. We evaluated predictive
performance by splitting the data into five parts, using four parts as the training set and
the left out part as the testing set. In each of the 5 splits, we trained the ridge, lasso, and
elastic-net models using 10 fold cross validation and adopted aτ = bτ = 0.01 for the Stream
model. At each split we obtained a prediction vector ŷj, j = 1, . . . , 5, and we computed a single
RMSE using the concatenated vector of predictions, ŷt = (ŷt

1, . . . , ŷ
t
5), and the full observed

response data, y, as
√

(y − ŷ)t(y − ŷ)/n.
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Fig. 2. Predictive performance and computation time for the Sanger cell line panel. Results for each com-
pound.

Figures 2 and 3 depict the results for the Sanger data. Figure 2(a) shows the RMSE scores
across the 138 drugs sorted according to the elastic-net RMSE. Overall, Stream seems to
perform slightly better than ridge and elastic-net, especially for compounds with high RMSE,
consistent with results on the simulated data. Figure 3(a) confirms this result, showing that



the median RMSE of Stream (horizontal blue line) is in fact slightly smaller than those of
ridge and elastic-net. Furthermore, application of the Wilcoxon paired-sample test shows that
the slight advantage of Stream is statistically significant (p-values equal to 0.004611 and
0.02147 for the comparisons of Stream against elastic-net and ridge, respectively). The lasso
performance, on the other hand, is considerably worse than all other methods. Figures 2(b)
and 3(b) show considerably smaller computation times for Stream than the other methods.
The elastic-net is the most expensive, followed by ridge and then the lasso. Note that the
results are shown in the log10 scale. In the original scale, Stream was, on average, 2.46± 0.74,
9.06± 0.09, and 47.30± 14.23 times faster than the lasso, ridge, and elastic-net, respectively.
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Fig. 3. Predictive performance and computation time for the Sanger cell line panel. Overall results.

Figure 4 depicts the results for the CCLE data. Panels (a) and (c) show that Stream
performs slightly better than ridge and similarly to elastic-net, although, in both cases, the
differences are not statistically significant (p-values equal to 0.16 and 0.1074, respectively).
Once again, the lasso performance is considerably worse than the other methods. Panels (b)
and (d) show, again, smaller computation times for Stream than the other methods. Stream
was, on average, 1.9± 0.2, 9.16± 0.08, and 38.04± 4.54 times faster than the lasso, ridge, and
elastic-net, respectively.

A particularly attractive feature of Stream is the ability to perform feature selection by
estimating the posterior distribution of regression coefficients. In the context of compound
sensitivity prediction, previous studies have demonstrated that such feature selection may
provide the basis for identifying functional biomarkers underlying compound sensitivity or
resistance.1,5 We compiled a list of known biomarkers of sensitivity (gold standards) for 8
compounds represented in both the Sanger and CCLE panels (first column of Table 1) and
evaluated the rank of each biomarker (based on the absolute value of the regression coeffi-
cients) in the model generated by Stream, ridge, lasso, and elastic-net for the corresponding
compound.

Table 1 present the results. Overall, the relative performance of all four methods tended
to be similar in the sense that the gold standard biomarkers tended to be either well ranked
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Fig. 4. Predictive performance and computation time for the CCLE cell line panel. Results for each compound
(top panels) and overall (bottom panels).

Table 1. Genomic feature ranks. Entries present the rank position followed by the feature
type: copy number variation (C), expression (E), mutation from the oncomap platform (Mo),
and mutation from hybrid capture sequencing (Mh). Missing entries (-) represent features
that had ranks higher than 1,000, were not represented in the data, or were filtered-out from
the analysis.

CCLE Sanger

Drug Gold Stream Ridge Lasso Elastic-net Stream Ridge Lasso Elastic-net

17-AGG NQO1 2-E 2-E 1-E 2-E 1-E 1-E 1-E 1-E

AZD-0530 EGFR 1-Mo 1-Mo 1-Mo 1-Mo - - - -

Erlotinib EGFR 1-Mo 1-Mo 1-Mo 1-Mo - - 863-E -
10-Mh 9-Mh 73-Mh 38-Mh - - - -
36-C 39-C 347-E 258-C - - - -

Lapatinib ERBB2 8-E 8-E 1-E 5-E 6-E 2-E 1-E 2-E
1-C 1-C 2-C 2-C - - - -

PD-325901 BRAF 94-Mo 67-Mo 191-Mo 235-Mo 3-Mo 1-Mo 2-Mo 1-Mo

2-Mh 2-Mh 3-Mh 3-Mh 180-E 181-E 252-E 214-E

PF-2341066 MET 9-C 3-C 19-C 45-C - - - -
HGF 3-E 1-E 1-E 7-E - - - -

PHA-665752 MET - - - - - - - -
HGF 104-E 212-E 540-E 480-E - - - -

PLX4720 BRAF 1-Mo 1-Mo 1-Mo 1-Mo 1-Mo 1-Mo 1-Mo 1-Mo

2-Mh 2-Mh 6-Mh 3-Mh - - - -



by all methods or poorly ranked by all methods. For instance, in the CCLE panel, the gold
standard features usually showed up among the top ranking features for all methods for most
of the drugs. In the Sanger panel, on the other hand, we see that for several of the drugs, all
algorithms failed to rank the gold standards among their top ranking features.

4. Discussion

In this paper, we proposed a novel and highly efficient Bayesian version of ridge-
regression, which explores Bayesian model averaging and the singular value decomposition
re-parametrization for computational efficiency. Our analysis of two large cancer cell line
panels showed that the predictive performance of the Stream algorithm tends to be slightly
better than ridge-regression in terms of RMSE, suggesting that BMA might be slightly more
effective than cross-validation in noisy data sets. This finding was corroborated by our large-
scale simulation study, where Stream tended to slightly outperform ridge-regression in the
cases were both methods produced high RMSE scores, and showed quite similar performance
otherwise. This competitive predictive performance, combined with the considerably higher
computational efficiency of the Stream algorithm, suggests that this novel method should be
the preferred choice, over standard ridge-regression, in high-dimensional regularized regression
applications.

Furthermore, the analysis of cell line panels showed that the predictive performance of the
Stream algorithm is also competitive with the elastic-net algorithm, showing slightly better
average performance in the Sanger data, and similar performance on the CCLE data. In terms
of feature selection ability, Stream showed similar performance to the elastic-net, the current
state-of-the-art algorithm employed for the identification of functional biomarkers underlying
compound sensitivity or resistance in cancer cell lines.1 Most importantly, this competitive
performance of the Stream algorithm is achieved while requiring only a small fraction of the
computation time required by the elastic-net.

Even though, the application of elastic-net, the most time consuming algorithm in this
study, is still computationally feasible for the two data sets investigated in this work, we point
out that increased computational efficiency opens possibilities for much broader exploration
of pharmacogenomic modeling. For instance, in large scale exploration of modeling choices14,15

such as type of input data (e.g. gene expression, copy number variation, mutation) or method
of summarizing sensitivity values (e.g. IC50, ActArea), we need to build models for a large
number of possible combinations of input/output data. Additionally, the pharmacogenomic
data sets that computational biologists will need to analyze in the near future will only grow
bigger, and the use of highly efficient algorithms will likely become a practical necessity in
the near future. Efficient algorithms make it easier to infer models for much larger compound
screening collections, or even infer models for each of over 10,000 genes from genome wide
RNAi screens. The increased efficiency could even allow models to be applied both the whole
data set and different subsets of data (e.g. tumors from different tissue types).

In the cancer cell line panels investigated in this work, the lasso performed significantly
worse than the other methods. Possible explanations include: (i) that the drug sensitivity
phenotype might behave as a complex trait, associated with a large number of predictors,



so that the sparseness assumption made by the lasso is violated in our applications; and (ii)
because many features tend to be clustered into highly correlated groups of predictors, the
lasso might be effectively selecting one feature randomly from each group, while methods
using L2 regularization can select more than a single feature from a group of highly correlated
predictors.

The feasibility of the Stream algorithm is due to the analytical tractability of the Bayesian
hierarchical formulation of ridge-regression. Even though Bayesian hierarchical formulations
for the lasso and elastic-net models have been proposed in the literature,16,17 they do not lead
to closed analytical forms for the marginal posterior distributions of the regression coefficients
and for the marginal likelihoods, so that BMA-based versions of these models are not readily
available. The development of model averaging approaches for these methods represents an
interesting topic for future research.

We note that, compared to frequentist implementations of penalized regression models,
the Bayesian formulation provides several advantages and opportunities for future extensions.
For instance, Bayesian approaches provide valid quantifications of the uncertainty associated
with the estimates of regression coefficients in the form of probability intervals, whereas even
the estimation of standard errors associated with the frequentist versions of penalized regres-
sion models is a non-trivial and often problematic task.17 Furthermore, Bayesian approaches
represent a natural framework for the incorporation of additional sources of prior informa-
tion, such as pathway-based relationships between genes, or prior knowledge of the functional
importance of a given gene. Such extensions are topics of active research.

In summary, Stream provides a Bayesian ridge-regression framework with significantly
increased computational efficiency without a trade-off of prediction accuracy or feature se-
lection ability. Thus we believe that Stream advances current state-of-the art approaches for
inferring molecular predictors of compound sensitivity, with natural extensions to other phe-
notype prediction problems or general predictive modeling applications in the “large p, small
n” setting.

5. Availability of code and data

We implemented the Stream algorithm in R,18 and the source code is available in
GitHub (https://gist.github.com/echaibub/6117763). The data and code necessary to re-
produce the simulation study and analysis of the cancer cell line panels presented
in this paper are available in Synapse (www.synapse.org) under the Stream project
(https://www.synapse.org/#!Synapse:syn2010337).
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Appendix A. Computation of the tuning parameter grid

In this section we describe the rationale behind the automatic/data-driven determination
of the tuning parameter grid for ridge-regression. It is a simple adaptation of the approach
adopted in the glmnet R package11 for the default determination of the λ grid in the lasso



and elastic-net algorithms. The basic idea is to: (i) determine λmax, as the λ value such that
the largest regression coefficient is equal in absolute value to a certain small constant κ; (ii)
determine the smallest λ value in the grid as λmin = ϵ λmax, where ϵ is another small constant;
and (iii) determine the λ grid as a sequence of K values of λ decreasing from λmax to λmin on
the log scale. Explicitly, we set the lambda grid as follows: (a) create a decreasing sequence of
K equally spaced values in the interval

[
log (λmax) , log (λmin)

]
; and (b) take the exponential

of each of value in the sequence.
Next, we describe the derivation of λmax. Considering the singular value decomposition

of X = UDV t, we can re-express the ridge estimator as β̂ = V (D2 + λIn)
−1DU ty, or

β̂j =
dj

d2j + λ
V j U

t y ,

for j = 1, . . . , n (and zero for i = n+ 1, . . . , p) where V j represents the jth row of V . Our goal
then is to find λ such that maxj(|β̂j |) = κ. Since

|β̂j | =
dj

d2j + λ
|V j U

t y| ≤ dj
λ
|V j U

t y|

for all dj, it follows that

κ = max
j

(
dj

d2j + λ
|V j U

t y|

)
≤ 1

λ
max

j

(
dj |V j U

t y|
)

so that λ ≤ maxj
(
dj |V j U

t y|
)
/κ and we take λmax = maxj

(
dj |V j U

t y|
)
/κ. In our simula-

tions and real data analysis we adopted κ = 10−3, ϵ = 10−6, and K = 100.
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