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Investigating the association between biobank derived genomic data and the information of linked 
electronic health records (EHRs) is an emerging area of research for dissecting the architecture of 
complex human traits, where cases and controls for study are defined through the use of electronic 
phenotyping algorithms deployed in large EHR systems. For our study, cataract cases and controls 
were identified within the Marshfield Personalized Medicine Research Project (PMRP) biobank and 
linked EHR, which is a member of the NHGRI-funded electronic Medical Records and Genomics 
(eMERGE) Network.  Our goal was to explore potential gene-gene and gene-environment interactions 
within these data for 527,953 and 527,936 single nucleotide polymorphisms (SNPs) for gene-gene and 
gene-environment analyses, respectively, with minor allele frequency > 1%, in order to explore higher 
level associations with cataract risk beyond investigations of single SNP-phenotype associations. To 
build our SNP-SNP interaction models we utilized a prior-knowledge driven filtering method called 
Biofilter to minimize the multiple testing burden of exploring the vast array of interaction models 
possible from our extensive number of SNPs. Using Biofilter, we developed 57,376 prior-knowledge 
directed SNP-SNP models to test for association with cataract status. We selected models that required 
6 sources of external domain knowledge.  We identified 13 statistically significant SNP-SNP models 
with an interaction with p-value < 1×10-4, as well as an overall model with p-value < 0.01 associated 
with cataract status.  We also conducted gene-environment interaction analyses for all GWAS SNPs 
and a set of environmental factors from the PhenX Toolkit: smoking, UV exposure, and alcohol use; 
these environmental factors have been previously associated with the formation of cataracts. We found 
a total of 782 gene-environment models that exhibit an interaction with a p-value < 1×10-4 associated 
with cataract status.  Our results show these approaches enable advanced searches for epistasis and 
gene-environment interactions beyond GWAS, and that the EHR based approach provides an 
additional source of data for seeking these advanced explanatory models of the etiology of complex 
disease/outcome such as cataracts.  

* This work supported by the following grants: U19 HL0659625, R01 LM010040, U01 HG006389 
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1.  Introduction 

DNA biobanks coupled to electronic health records (EHR) have become a valuable resource 
for investigating the genetic architecture of complex traits, as EHR contain a wide array of 
medical information including billing codes and clinical laboratory measurements, often 
yielding a large sample size. Through carefully defining phenotypes, and using deployable 
algorithms that combine multiple sources of information in the EHR, cases and controls can be 
defined for association studies, such as defining age-related cataract cases and controls [1,2]. 
The Marshfield Personalized Medicine Research Project biobank (Marshfield PMRP) and 
linked EHR, used for the study described herein, is one such resource [3]. The Marshfield 
PMRP is a member of the NHGRI-funded electronic Medical Records and Genomics 
(eMERGE) Network, a network of similar biobanks coupled with EHR based data [4].  
Cataracts are a leading cause of blindness globally [5], and are believed to arise from a 
combination of age, environmental factors, and heritable factors [6]. Thus, understanding the 
genetic etiology of cataracts, coupled with the effect of environment as a modifier, could have 
a profound impact on human health.  For our study, algorithms proven for age-related cataract 
case identification [2] were deployed in the Marshfield PMRP EHR to identify 2580 cataract 
cases and 1367 controls, with further study details presented in Table 1. A total of 527,953 
(gene-gene interactions) and 527,936 (gene-environment interactions) single nucleotide 
polymorphisms (SNPs) were available after PMRP genotyping coupled with quality control 
filtering and selection for SNPs with a minor allele frequency > 1%.  

Table 1. Marshfield Cataract Study Description 
 Gene-Environment Analysis Gene-Gene Analysis 

Age > 50 > 50 
Ancestry European American European American 
Total Samples 2,033 3,377 
   Cases 1,242 2,192 
   Controls 791 1,185 
Males 821 1,408 
Females 1,212 1,969 
SNPs 527,936 527,953 

Single SNP-phenotype associations are a dominant study design used in most genome-wide 
association studies (GWAS), however, more complex models that include interactions may 
more accurately describe the relationship between genetic variation and complex outcomes. 
Investigating all gene by gene (GxG), and in extension, all SNP by SNP (SNPxSNP) pairwise 
models is possible depending on the number of SNPs that have been genotyped. 
Unfortunately, the multiple hypothesis testing burden and risk of Type I error is inflated when 
investigating all pairwise models. A different approach can be used, utilizing prior biological 
knowledge methods directing model development. Thus, to investigate more complex models 
beyond single SNP-Phenotype associations for the Marshfield PMRP cataract dataset, we used 
the prior knowledge accessible through Biofilter 1.0 (a new implementation of Biofilter after 
the original description in [7]) to direct the investigation of pairwise GxG interaction models 
based on the following resources: the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
[8], Reactome [9], Gene Ontology (GO) [10], the Protein families database (Pfam) [11], 
NetPath [12], Biological General Repository for Interaction Datasets (BioGrid) [13], and the 
Molecular INTeraction Database (MINT) [14]. Using the Biofilter, we developed 57,376 prior-
knowledge directed SNPxSNP models to test for association with cataract status.  
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In addition, for this study we investigated gene-environment interactions (GxE), as there are 
clearly known environmental exposures that increase cataract risk, and when incorporated into 
analyses, may provide new models for the contribution of both environment and genetic 
architecture to cataracts. The Marshfield PMRP collected standardized Phenotypes and 
eXposures (PhenX) measures as a member of the PhenX Real-world, Implementation, 
SharingING (PhenX RISING) project.  PhenX has the goal of defining standard phenotypic 
measures through a framework of measurement protocols via a web-based toolkit [15]. 
Environmental exposures such as smoking, sun exposure, and alcohol use, have been 
associated with increased cataract rates [16]. Thus we used 12 PhenX defined environmental 
exposures to investigate GxE interactions for the Marshfield PMRP cataract data focused on 
smoking, UV exposure, and alcohol use measures.  

Through integrating EHR data, advanced bioinformatics tools, and PhenX, we can pursue 
advanced searches for epistasis and gene-environment interactions in genome-wide studies of 
common disease.  

 

2.  Methods 

2.1.  Marshfield EHR and Age-Related Cataract Case Identification 

The Marshfield PMRP is a population based biobank with ~20,000 subjects, aged 18 years and 
older, enrolled in the Marshfield Clinic healthcare system in central Wisconsin [3]. DNA, 
plasma, and serum samples are collected at the time the enrollee completes a written informed 
consent document, with allowance for ongoing access to the linked medical records.  PMRP 
participants also complete questionnaires, including responses regarding smoking history, 
occupation, and diet.  

To identify cataract surgery cases aged 50 years and older within the PMRP, Current 
Procedural Terminology (CPT) codes in the Marshfield Clinic EHR were used. A research 
coordinator manually abstracted additional information to identify the eye affected, the type 
and severity of the cataract, and the level of visual acuity prior to the cataract surgery.  This 
was also done to remove any cases with non-age related cataracts. 
To identify individuals with diagnosed cataracts but without surgery, and to identify the type 
of cataract, International classification of diseases, 9th revision (ICD-9) codes and CPT codes 
were used, coupled with Natural Language Processing (NLP) and Intelligent Character 
Recognition (ICR) of free-text in the EHR.  NLP and exclusion criteria were used to identify 
individuals with congenital and traumatic cataracts for omission from the study. Further details 
of the identification of cataract cases and controls and the efficacy of the EHR defined 
phenotyping can be found in Waudby et al., 2011 [2]. All total, the procedures used on the 
EHR identified 2,192 cases and 1,185 controls for gene-gene analysis and 1,242 cases and 791 
controls for gene-environment analysis.  

2.2.  Genotyping 

The eMERGE network and the Center for Inherited Disease Research (CIDR) at Johns 
Hopkins university performed the genotyping of the Marshfield PMRP samples, using the 
Illumina Human660W-Quadv1 A platform with total of 560,635 SNPs and 96,731 intensity-
only probes.  Bead Studio version 3.3.7 was used by CIDR for the genotyping calls.  The total 
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cohort genotyped included 3947 samples from the Marshfield PMRP, 21 blind duplicates, and 
85 HapMap controls. The HapMap concordance rate was 99.8% and the blind duplicate 
reproducibility rate was 99.99%.  For quality control and data cleaning the eMERGE quality 
control (QC) pipeline developed by the eMERGE Genomics Working Group [17] was used. 
Any SNPs with a minor allele frequency > 1%, SNP call rate > 99%, Sample Call Rate > 99% 
were used in further analysis. After QC and allele frequency filtering using PLINK [18], a total 
of 527,953 and 527,936 SNPs were used for further gene-gene and gene-environment 
analyses, respectively. 

2.3.  PhenX 

The standardized phenotypic and environmental consensus measures for Phenotypes and 
eXposures (PhenX) [15] were used to capture the environmental variables used in this study. 
The PhenX Toolkit (https://www.phenxtoolkit.org/) offers high-quality, well-established, 
standard measures of phenotypes and exposures for use in epidemiological studies. 
The Marshfield PRMP is part of the PhenX RISING consortium, which is comprised of seven 
groups funded by the National Human Genome Research Institute (NHGRI) and the Office of 
Behavioral and Social Sciences Research (OBSSR) to incorporate PhenX 
(https://www.phenxtoolkit.org/) measures into existing population-based genomic studies.  
For this initiative, Marshfield PRMP subjects with GWAS data who were alive with known, 
non-institutionalized addresses and who had given consent for re-contact were mailed a 32-
page self-administered questionnaire that contained 35 PhenX measures across a range of 
phenotypic domains including alcohol and tobacco use questions (McCarty et al. 2012, in 
preparation).  For this study, we considered 12 of these measures, shown in Table 2. !

2.4.  BioFilter 1.0 

For the SNPxSNP analysis, Biofilter 1.0 was used. Biofilter has been upgraded from the initial 
Biofilter 0.5 [7], with the addition of more data sources, improved the handling of data, and 
the development of an eternal database for prior knowledge called the Library of Knowledge 
Integration (LOKI).  Biofilter 1.0 and LOKI are freely available for non-commercial research 
institutions. For full details see: http://ritchielab.psu.edu/ritchielab/software. 
Biofilter 1.0 utilizes prior biological knowledge through accessing the data of several 
publically available biological information databases, all compiled within the LOKI database 
developed specifically for Biofilter. The data sources selected for Biofilter contain information 
on networks, connections, and/or pathways that establish relationships between genes and gene 
products. Biofilter is a “gene based” approach, thus all the region information (such as genes) 
and position information (such as SNPs) are mapped to genes within LOKI. 
The following sources that are compiled within LOKI were used for the Biofilter model 
building: the Kyoto Encyclopedia of Genes and Genomes (KEGG) [8], Reactome [9], Gene 
Ontology (GO) [10], the Protein families database (Pfam) [11], and NetPath [12], Biological 
General Repository for Interaction Datasets (BioGrid) [13], and the Molecular INTeraction 
Database (MINT) [14]. The database source used in LOKI solely for the purpose of mapping 
SNPs to genes is the National Center for Biotechnology (NCBI) dbSNP [19] database.!!
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Table 2.  The PhenX measures used for this study!

PhenX Measure  Survey Question 

PX030301 Alcohol 30Day Frequency During the past 30 days, on how many days did you drink one or 
more drinks of an alcoholic beverage? 

PX030301 Alcohol 30Day Quantity During the past 30 days, how many drinks did you usually have each 
day?  

PX030602 Cigarette Smoking 100 Have you smoked at least 100 cigarettes in your entire life? 
PX030602 Cigarette Smoking Current Do you now smoke cigarettes every day, some days, or not at all? 
PX030602 Cigarette Smoking Everyday 
6Month 

Have you EVER smoked cigarettes EVERY DAY for at least 6 
months? 

PX030802 Everyday Smoker Quantity 1Day On the average, about how many cigarettes do you now smoke each 
day? 

PX030802 Someday Smoker Days 1Month On how many of the past 30 days did you smoke cigarettes? 
PX030802 Someday Smoker Quantity 1Day On the average, on those days, how many cigarettes did you usually 

smoke each day? 
PX030802 Former Smoker Smoking 6Month Have you EVER smoked cigarettes EVERY DAY for at least 6 

months? 
PX030802 Former Smoker Quantity 1DayA When you last smoked every day, on average how many cigarettes 

did you smoke each day? 
PX030802 Former Smoker Quantity 1DayB When you last smoked fairly regularly, on average how many 

cigarettes did you smoke each day? 

PX061301 Weekend Sun Hours Last Decade On a typical weekend day in the summer, about how many hours did 
you generally spend in the mid-day sun in the past ten years? 

 
The following process was used within Biofilter 1.0 to develop the SNPxSNP models used in prior 
knowledge directed association testing. Figure 1 shows a simplified example of how the Biofilter 
1.0 model generation process works. First, the input list of SNPs are mapped to genes within 
Biofilter. Next, comprehensive pairs of genes that are all terminal leaves of the graph for Pathway 
1 in Source 1, and Pathway 2 in Source 1 are generated, only for genes that contain SNPs in the 
input list of SNPs.  
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Figure 1. Simplified model for one Biofilter 1.0 database source with 2 pathways, 5 genes, and 8 SNPs!
 
Implication scores are used in Biofilter to give each pairwise model a “score” indicating how 
many sources have that connected pair of genes represented, the higher the implication score, the 
more sources have indicated a connection between a pair of genes. The implication index is a 
measure of the number of data sources providing evidence of an interaction, a sum of the number 
of data sources supporting each of the two genes and the connection between them. In the case of 
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our simplified example, for Genes 1-5, that all contain SNPs within the input list, the following 
pairwise Gene-Gene models would result, each with an implication score of 1: 

Gene1 – Gene 2 
Gene1 – Gene 3 
Gene 2 – Gene 3 
Gene 4 – Gene 5 

This process continues through all other sources used for Biofilter. Each time a pairwise 
combination of genes is found in another source (such as the pair Gene1-Gene2), the implication 
score for that pairwise model will be increased by 1. Lastly, the G-G models are broken into all 
pairwise combinations of SNPs across the genes, within P1 or P2.  The SNP-SNP models would 
look like the following: 

SNP1-SNP3  
SNP1-SNP4  
SNP1-SNP5 
SNP2-SNP3 
SNP2-SNP4 
SNP2-SNP5 
SNP3-SNP5 
SNP3-SNP4 
SNP6-SNP7 
SNP6-SNP8 

This same process was used within Biofilter 1.0 to develop the SNPxSNP models used for our 
prior knowledge directed association testing.  First, the 527,953 SNPs were mapped to their 
corresponding genes. Next, the genes corresponding to the SNPs of the dataset were mapped 
to the gene-relationship graphs for each LOKI source used. After this mapping process, gene 
pairs were exhaustively generated for each occurrence of two genes within a single pathway 
and single source. Implication scores were calculated for the pairwise models. After the gene-
gene models were developed in Biofilter, the models were divided into exhaustive SNP-SNP 
pairs for association testing.  
Table 3 indicates the number of models that were found at each implication score cutoff. An 
implication index cutoff of 4 actually incorporates all possible pairwise models for all SNPs 
we had for this study, a total of 603,032 models. We found an implication score cutoff of 6 
resulted in a balance between a large group of models for exploration (57,376 models), but still 
maintained a very computationally feasible set of associations to investigate, limiting our type 
1 error rate more than using all exhaustive pairs of SNP-SNPs or some of the less stringent 
implication score cutoffs. With a requirement for an implication index of 6, as we had in this 
study, the gene-gene relationship or known interaction had to be found in nearly all of the data 
sources we used within LOKI. 

2.5.  Statistical Analysis  

For the SNPxSNP models generated through the use of Biofilter, PLATO [20] was used to 
determine the significance of the interaction via likelihood ratio test (LRT) of the full versus 

Table 3.  Number of Resulting Models for Each Implication Score Cutoff 

Implication Index Cutoff Number of Models 
4            603,032 
5            337,113 
6 57,376 
7             2479 

!
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reduced models, using logistic regression, where the full model was: SNP1 + SNP2 + 
SNP1*SNP2 and the reduced model was: SNP1 + SNP2 for all of the pairwise sets of SNPs 
generated by Biofilter with an implication index of 6.  For the GxE (SNPxE) models, the same 
methods were employed using PLATO; however the full model was: SNP1 + ENV1 + 
SNP1*ENV1 and the reduced model was: SNP1 + ENV1 for all the possible unique SNPxE 
pairs, from the set of 527,936 SNPs and the PhenX variables described earlier in methods.  
Again, the outcome was case control status for cataracts. The GGPlot2 [21] package in R was 
used for Figure 2.  

3.  Results 

3.1.  GxE Results 

Figure 2 shows a Manhattan plot of the association results for the PhenX GxE models that had 
interaction with LRT p-values ≤ 1 × 10-4, a total of 782 models exhibited an interaction with a 
p-value ≤ 1 × 10-4 associated with cataract status.  The top five GxE interaction results for each 
PhenX measure are also presented in Table 4, sorted by chromosome to highlight results 
similar across SNPs and regions for multiple PhenX measures. The measurement “Weekend 
Sun Hours Last Decade” a survey question asking “On a typical weekend day in the summer, 
about how many hours did you generally spend in the mid-day sun in the past ten years?” with 
the SNP rs6447541, located in an intron of GABR1 on chromosome 4, with an association LRT 
p-value of 2.35 × 10-8

, was the most significant interaction found when compared to the other 
12 PhenX measurements we used in our GxE analysis. 
!

 
Figure 2. Manhattan plot of the association results for the GxE interaction models. Displayed are the results for the 12 
PhenX measures that had interaction p-values < 1×10-4. Two PhenX variables did not have an interaction p-value less 

than 1×10-4. 
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Table 4. Five most significant results for each PhenX measurement, sorted by chromosome and position 
RSID PhenX Variable Chr:BP P-value Gene 

rs7529518 PX030602_Cigarette_Smoking_100 1:200718422 1.71x10-6 CAMSAP2 

rs2292097 PX030602_Cigarette_Smoking_100 1:200843768 9.23x10-7 GPR25* 

rs10800745 PX030602_Cigarette_Smoking_100 1:200849676 4.06x10-7 GPR25* 

rs11117581 PX061301_Weekend_Sun_Hours_Last_Decade 1:216613761 5.70x10-6 USH2A* 

rs11117582 PX061301_Weekend_Sun_Hours_Last_Decade 1:216622208 3.48x10-6 USH2A* 

rs10495409 PX061301_Weekend_Sun_Hours_Last_Decade 1:238255679 4.84x10-6 MTND5P18 

rs607949 PX030602_Cigarette_Smoking_Current 1:43695708 1.12x10-5  WDR65 

rs581503 PX030802_Former_Smoker_Smoking_6Month 1:61329593 4.03x10-6 NFIA* 

rs11803470 PX030301_Alcohol_30Day_Frequency 1:95117783 1.42x10-5 ABCD3* 

rs2587695 PX030802_Former_Smoker_Quantity_1DayA 2:120321817 4.62x10-6 PCDP1 

rs262302 PX030301_Alcohol_30Day_Frequency 2:180931461 1.34x10-5 CWC22* 

rs5994737 PX030602_Cigarette_Smoking_Current 22:33804804 3.07x10-5  LARGE 

rs3846094 PX030602_Cigarette_Smoking_Everyday_6Month 3:101601159 2.40x10-6  NFKBIZ * 

rs11720478 PX030602_Cigarette_Smoking_Everyday_6Month 3:101637806 4.10x10-7 NFKBIZ* 

rs12495970 PX030802_Everyday_Smoker_Quantity_1Day 3:194928138 1.10x10-6  XXYLT1 

rs11735349 PX030602_Cigarette_Smoking_Everyday_6Month 4:16506826 8.61x10-7 LDB2 

rs157606 PX030301_Alcohol_30Day_Frequency 4:16699795 5.05x10-6 LDB2 

rs283018 PX030301_Alcohol_30Day_Frequency 4:16740168 6.61x10-6 LDB2 

rs6447541 PX061301_Weekend_Sun_Hours_Last_Decade 4:47215939 2.35x10-8 GABRB1 

rs16888770 PX030802_Former_Smoker_Smoking_6Month 5:21586180 2.41x10-6 GUSBP1 

rs13183503 PX030602_Cigarette_Smoking_Current 5:81515885 4.04x10-5 ATG10 

rs9376419 PX030802_Everyday_Smoker_Quantity_1Day 6:139801295 1.36x10-6 TXLNB 

rs3798756 PX030802_Former_Smoker_Smoking_6Month 6:152529260 1.56x10-6 SYNE1 

rs3094549 PX030802_Former_Smoker_Quantity_1DayB 6:29355148 5.91x10-7 OR12D2* 

rs4712006 PX061301_Weekend_Sun_Hours_Last_Decade 6:52245415 8.61x10-6 PAQR8 

rs3889488 PX030802_Former_Smoker_Quantity_1DayB 8:141544748 3.96x10-7 AGO2 

rs6987670 PX030602_Cigarette_Smoking_Current 8:9883177 3.18x10-5 MSRA* 

rs10968388 PX030602_Cigarette_Smoking_Everyday_6Month 9:28210699 2.11x10-6  LINGO2 

rs9783135 PX030802_Everyday_Smoker_Quantity_1Day 10:129937722 8.90x10-7  MKI67* 

rs12360020 PX030802_Former_Smoker_Quantity_1DayB 10:15264322 1.57x10-6 FAM171A1 

rs2820100 PX030802_Former_Smoker_Quantity_1DayA 10:84491173 1.84x10-6  NRG3 

rs6592528 PX030802_Everyday_Smoker_Quantity_1Day 11:73377350 4.22x10-6 PLEKHB1* 

rs4944859 PX030802_Everyday_Smoker_Quantity_1Day 11:73424135 4.22x10-6 RAB6A 

rs7977795 PX030802_Former_Smoker_Quantity_1DayB 12:132096632 1.59x10-6 SFSWAP* 

rs7972947 PX030602_Cigarette_Smoking_Everyday_6Month 12:2170433 2.64x10-6 CACNA1C 

rs775474 PX030602_Cigarette_Smoking_Current 12:70075933 2.60x10-5 BEST3 

rs680711 PX030602_Cigarette_Smoking_100 13:101814804 1.11x10-6  NALCN 

rs4772995 PX030802_Former_Smoker_Smoking_6Month 13:109410933 3.15x10-6 MYO16 

rs7983958 PX030802_Former_Smoker_Quantity_1DayB 13:96473682 1.90x10-6 UGGT2 

rs1957480 PX030802_Former_Smoker_Quantity_1DayA 14:44397890 6.59x10-7  X10IF4BP1* 
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rs11644531 PX030802_Former_Smoker_Smoking_6Month 16:6008824 5.72x10-7 RBFOX1* 

rs8075882 PX030301_Alcohol_30Day_Frequency 17:55469362 6.01x10-6 MSI2 

rs1443269 PX030802_Former_Smoker_Quantity_1DayA 17:55894564 3.35x10-6 MRPS23* 

rs9911607 PX030802_Former_Smoker_Quantity_1DayA 17:55895539 3.35x10-6 MRPS23* 

rs7210514 PX030602_Cigarette_Smoking_100 17:67793814 1.99x10-7 KCNJ16* 

Table Abbreviations: Chr = Chromosome; BP = Base pair location of SNP; RSID = SNP ID; P-value = P-
value of the interaction; Gene = Gene symbol of gene is within or nearest to (*indicates nearest gene is listed) 

3.2.  GxG Results 

The top Biofilter 1.0 derived GxG models are presented in Table 5. A total of 13 models had an 
LRT p-value < 1 × 10-4 and full model p-value < 0.01. A total of 9 genes were in the thirteen 
models.  Of these models, the most significant was for a model with SOS1, which encodes a 
guanine nucleotide exchange factor for RAS proteins, and FYN, which is a member of the protein-
tyrosine kinase oncogene family.  
  

Table 5. The 13 SNPxSNP models with an interaction p-value  < 1×10-4 after 
association testing of the Biofilter derived pairwise models. 
SNP1 Gene 1 SNP2 Gene 2 Interaction P-value 
rs2888586 SOS1 rs706885 FYN 1.29x10-6 
rs2888586 SOS1 rs17072912 FYN 2.14x10-6 
rs2888586 SOS1 rs11964650 FYN 2.97x10-6 
rs2888586 SOS1 rs9372313 FYN 6.32x10-6 
rs17446875 CDH2 rs6121791 CDH4 2.64x10-5 
rs9384805 FYN rs11017910 DOCK1 2.67x10-5 
rs11083252 CDH2 rs6121791 CDH4 4.39x10-5 
rs13135792 KIT rs10515074 PIK3R1 4.74x10-5 
rs631428 COL4A1 rs3803231 COL4A2 6.67x10-5 
rs613116 COL4A1 rs3803231 COL4A2 6.99x10-5 
rs17704348 FYN rs4751282 DOCK1 8.85x10-5 
rs17446875 CDH2 rs1110359 CDH4 8.85x10-5 
rs809193 FYN rs11594969 DOCK1 9.64x10-5 

 

4.  Discussion 

The results presented herein are an exploration of the use of multiple novel approaches for 
investigating gene and phenotype associations within EHR based data. We performed an analysis 
with PhenX derived measures, seeking GxE interaction models for the Marshfield Cataract data 
set. The majority of the significant interactions were found for smoking related measures. We did 
find some highly correlated PhenX measures with significant interactions for SNPs within similar 
regions, such as the results on chromosome 1 for SNPs rs2292097 and rs7529518, for smoking 
related phenotypes. Through searches in the NCBI catalog [22], as well as the National Center for 
Biotechnology (NCBI) dbSNP [19], these two SNPs, as well the SNP in our most significant GxE 
model, did not show previous GWA level significant associations for any phenotypes.  
 
We also performed an exploratory analysis with Biofilter 1.0, an updated and improved 
implementation of the originally published Biofilter. The results are intriguing, and provide the 
basis for hypotheses that can be investigated further, highlighting how Biofilter results have a 
biological context that provide additional information for resulting models. Interestingly, three of 
the models that passed our significance cutoff contained two of the same genes, FYN, a member of 
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the protein-tyrosine kinase oncogene family implicated in cell growth, and DOCK1, dedicator of 
cytokinesis 1. These models as a whole implicate genes related to cell growth, the cell cycle, and 
epidermal growth. 
 
We are currently developing Biofilter 2.0 which will be include additional database sources and 
allow for the use of other position and region based information beyond SNPs and genes, such as 
copy number variation (CNV) data, evolutionary conserved regions, and regulatory regions, 
allowing users to incorporate additional sources of prior knowledge as well as utilize other sources 
of genetic variation measurement data, with a more user-friendly interface.  
!
Our results provide more complex models for an association between genetic variation and 
cataract outcome, moving beyond the more standard SNP-phenotype associations.  The models 
found we intend to investigate further and warrant additional investigation of the environment and 
genetic variables contributing to these more complex models. These bioinformatics approaches 
can be used with other datasets, to expand the investigation of the relationship between genetic 
architecture and phenotypic outcome. With these approaches that consider the complexity of the 
data and harness the power of novel bioinformatics tools, we will elucidate the missing heritability 
of complex traits. 
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