
 
 

USING BIOBIN TO EXPLORE RARE VARIANT POPULATION STRATIFICATION* 

CARRIE B. MOORE† 
Center for Human Genetics Research, Vanderbilt University, 519 Light Hall 

Nashville, TN 37232, USA 
Email: carrie.c.buchanan@vanderbilt.edu 

JOHN R. WALLACE‡ 
Center for Systems Genomics, Pennsylvania State University, 512 Wartik Laboratory 

University Park, PA 16802, USA 
Email: jrw32@psu.edu 

ALEX T. FRASE 
Center for Systems Genomics, Pennsylvania State University, 512 Wartik Laboratory 

University Park, PA 16802, USA 
Email: atf3@psu.edu 

SARAH A. PENDERGRASS 
Center for Systems Genomics, Pennsylvania State University, 512 Wartik Laboratory 

University Park, PA 16802, USA 
Email: sap29@psu.edu 

MARYLYN D. RITCHIE 
Center for Systems Genomics, Pennsylvania State University, 512 Wartik Laboratory 

University Park, PA 16802, USA 
Email: marylyn.ritchie@psu.edu 

Rare variants (RVs) will likely explain additional heritability of many common complex diseases; however, 
the natural frequencies of rare variation across and between human populations are largely unknown. We 
have developed a powerful, flexible collapsing method called BioBin that utilizes prior biological knowledge 
using multiple publicly available database sources to direct analyses. Variants can be collapsed according to 
functional regions, evolutionary conserved regions, regulatory regions, genes, and/or pathways without the 
need for external files.   We conducted an extensive comparison of rare variant burden differences (MAF < 
0.03) between two ancestry groups from 1000 Genomes Project data, Yoruba (YRI) and European descent 
(CEU) individuals.  We found that 56.86% of gene bins, 72.73% of intergenic bins, 69.45% of pathway bins, 
32.36% of ORegAnno annotated bins, and 9.10% of evolutionary conserved regions (shared with primates) 
have statistically significant differences in RV burden.  Ongoing efforts include examining additional 
regional characteristics using regulatory regions and protein binding domains.  Our results show interesting 
variant differences between two ancestral populations and demonstrate that population stratification is a 
pervasive concern for sequence analyses.
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1.  Introduction and Background 

In the field of human genetics research, there has been increasing interest in the role of rare 
variation in complex human disease.   This is in many ways a response to changing technology, 
but more importantly a response to the inability to completely explain heritability in common 
complex diseases and recognition of the true multifactorial mechanisms of genetic inheritance. It 
is believed that rare variants (RVs) likely have a larger effect size (compared to genome-wide 
association study (GWAS) findings) and can act alone, in concert with other RVs, or together with 
common variants.  There is increasing evidence to support a role for RVs to contribute to 
common, complex disease.  Recent studies on obesity, autism, schizophrenia, 
hypertriglyceridemia, hearing loss, complex I deficiency, age-related macular degeneration, 
kabuki syndrome, and type-1 diabetes implicate RVs with moderate effect sizes.1–6  

Because of the frequency of RVs and thus the necessary sample size to gain reasonable power, 
association signals for RVs in a simple SNP-phenotype association study are harder to detect.  
Methods can be used to group the RVs and test for group association with disease status.  
Grouping, also known as binning or burden testing, better accounts for genetic heterogeneity and 
the possibility for multiple RVs to act in concert, which would have otherwise been overlooked in 
GWAS.  Collapsing methods are popular for many reasons: to reduce the degrees of freedom in 
the statistical test, easy application to case-control studies (not limited to family transmission 
filtering), applicability to whole-genome data, and an accessible way to enrich association signals 
by combining RVs (often otherwise undetectable).  Several collapsing methods have been 
published in the past five years.2,7–14  

Our BioBin approach meets a critical need for an improved binning algorithm through the 
advantage of prior biological knowledge and potential cumulative effects of biologically 
aggregated RVs. BioBin requires the Library of Knowledge Integration (LOKI), which contains 
diverse prior knowledge from multiple collections of biological data.  BioBin can be used to apply 
multiple levels of burden collapsing/testing, including: regulatory regions, evolutionary conserved 
regions, genes, and/or pathways without a need for an external feature file. Users can define the 
boundaries of a feature based on a specific hypothesis of interest; for example, is there a 
difference in RV burden in regions with known transcription factor binding sites between two 
groups? The adaptable design of BioBin and incorporation of prior biological knowledge provides 
the user with a flexible binning system and the opportunity to test a range of hypotheses. 

While BioBin was specifically developed to investigate RV burden in traditional genetic trait 
studies, this tool is useful for exploring the natural distribution of RVs in ancestral populations. 
Rapid population growth and weak purifying selection has allowed ancestral populations to 
accumulate low frequency variants, many of which are deleterious and potentially causal to human 
disease.15,16 These RVs exhibit ancestral heterogeneity and can be completely unique to a single 
population.  To demonstrate the magnitude of population stratification in RVs, Tennessen et al. 
identified more than 500,000 single nucleotide variants (SNVs) using 15,585 protein-coding genes 
from 2,440 individuals.  Of these SNVs, 86% had a MAF < 0.5% and 82% were population 
specific (European American or African American).16 Others have documented differences 
between ancestral populations using gene drug targets15 and ENCODE data.9,17 A thorough 



 
 

understanding of the distribution of RVs across populations will help uncover unknown 
demographic and evolutionary forces acting on the genome.  Since RVs are likely essential in 
understanding the etiology of common complex traits, it is also critical to understand population 
stratification for the sake of sequence data analysis.  The magnitude of population stratification 
(and consequential inflation of type I error) is not yet known and adequate methods to correct for 
stratification have not been developed.18,19 

Herein we present the methodology of BioBin and the structure of LOKI that provides the 
prior knowledge for assignment of bins in BioBin.  We have tested BioBin using data simulations 
specifying RVs and applied BioBin to European descent (CEU) and Yoruba (YRI) individuals 
from 1000 Genomes Project Phase I data.  Our tests show BioBin is a flexible and effective 
method for biological knowledge directed binning of RV data and highlight the importance of 
investigating RV distribution differences across diverse populations. 

2.  Methods 

2.1.  General framework 

The rare variant analysis occurs in two steps: first, BioBin generates bins based on user-defined 
parameters and information from LOKI; second, the user applies an appropriate statistical 
association test.  To bin, the user can change options in the configuration file to select certain 
database sources, adjust feature types, and/or configure the minor allele frequency (MAF) binning 
threshold.  The MAF binning threshold determines the allele frequency limit under which variants 
are binned.  For example, if the threshold is 0.03, a locus with MAF 0.04 would not be included in 
a bin but a locus with a MAF of 0.029 would be included.  The minor allele at a given locus is 
determined from the second most frequent allele in the control group.  For a biallelic locus, this is 
always the rarer allele.  For a triallelic locus, the MAF reported by BioBin is calculated from the 
second most frequent allele, but all rare alleles are binned.  Common alleles (including loci with 
low frequency variants above the binning threshold) are not binned and are not considered in this 
analysis, but could be combined with RV bins in subsequent statistical analyses. An example of 
major and MAF inclusion/exclusion from a single group is shown in Table 1. 
 

Table 1. Variant binning with a MAF binning threshold < 0.05 

Major Allele (AF) Minor Allele(s) (AF) MAF Variants Binned 
C: 0.97 T: 0.03 0.03 T 
T: 0.80 A: 0.16, G: 0.04 0.16  
G: 0.95 C: 0.03, T: 0.02 0.03 C, T 

 
Although the major and minor alleles are designated by frequency in the control group, RVs in the 
case group also contribute to the variants binned. To simplify, “rareness” is calculated separately 
for cases and controls.  If a variant is considered rare (allele frequency less than the MAF bin 
threshold) in either group, it will contribute to the bin.  In this way, we are not only accumulating 
risk variants (higher frequency in cases than controls) but also potentially protective variants 
(lower frequency in cases than controls).  This reduces the number of false positive bins and 
reduces the correlation between bin size and significance. 



 
 

2.2.  Software 

2.2.1.  BioBin 

BioBin is a standalone command line application written in C++ that uses a prebuilt LOKI 
database. Source distributions are available for Mac and linux operating systems and require 
minimal prerequisites to compile. Included in the distribution are tools that allow the user to create 
and update the LOKI database by downloading information directly from source websites. The 
computational requirements for BioBin are quite modest; for example, during testing, a whole-
genome analysis including 185 people took just over two hours using a single core on a cluster 
(Intel Xeon X5675 3.06 GHz processor).  However, because the vast amount of data included in 
the analysis must be stored in memory, the requirements for memory usage can be high; the 
aforementioned whole-genome analysis required approximately 13 GB of memory to complete. 
Even with large datasets, BioBin can be run quickly without access to expensive and specialized 
computer hardware or a computing cluster.  The number of rare variants is the primary driver of 
memory usage. 

2.2.2.   Library of Knowledge Integration (LOKI) Database 

Harnessing prior biological knowledge is a powerful way to inform collapsing feature boundaries.  
BioBin relies on the Library of Knowledge Integration (LOKI) for database integration and 
boundary definitions.   LOKI contains resources such as: the National Center for Biotechnology 
(NCBI) dbSNP and gene Entrez database information,20 Kyoto Encyclopedia of Genes and 
Genomes (KEGG),21 Reactome,22 Gene Ontology (GO),23 Protein families database (Pfam),24 
NetPath - signal transduction pathways,25 Molecular INTeraction database (MINT),26 Biological 
General Repository for Interaction Datasets (BioGrid),27 Pharmacogenomics Knowledge Base 
(PharmGKB),28 Open Regulatory Annotation Database (ORegAnno),29 and information from 
UCSC Genome Browser about evolutionary conserved regions.30 

LOKI is used as a means to provide a standardized interface and terminology to disparate 
sources each containing individual means of representing data. The three main concepts used in 
LOKI are positions, regions and groups. The term position refers to single nucleotide 
polymorphisms (SNPs), single nucleotide variants (SNVs) or RVs. The definition of region can be 
applied to a broader scope of biology.  Any segment with a start and stop position can be defined 
as a region, including genes, copy number variants (CNVs), insertions and deletions, and 
evolutionary conserved regions (ECRs). Sources are databases (such as those listed above) that 
contain groups of interconnected information, thus organizing the data in some way.   

LOKI is implemented in SQLite, a relational database management system, which does not 
require a dedicated database server.  The user must download and run installer scripts (python) 
and allow for 10-12 GB of data from the various sources.  The updater script will automatically 
process and combine this information into a single database file (~ 6.7 GB range).  A system 
running LOKI should have at least 50 GB of disk storage available.  LOKI runs locally wherever 
needed. 



 
 

2.3.  Binning approach 

We chose NCBI dbSNP and NCBI Entrez Gene as our primary sources of position and regional 
information due the quality and reliability of the data, and clearly defined database schema. 
Intergenic regions are bins generated by BioBin to catch variants that do not fit into the user-
defined feature types.  For example, if one were testing RV burden differences between cases and 
controls across genes, all variants in genes would be collapsed into respective gene bins, and 
variants outside of gene boundaries would be binned corresponding to the intergenic regions. 
BioBin provides an option to generate intergenic bins of a user-specified size to catch intergenic 
variants.  Figure 1 shows an example of RV binning strategies; different knowledge applied to the 
same variants produces alternate bins. 

 
Figure 1. Binning strategies for three example burden analyses. 

2.4.  Statistical analysis 

BioBin is a bioinformatics tool used to create new feature sets that can be analyzed in subsequent 
statistical analyses.  We believe that statistical tests can and should be chosen according to the 
hypothesis being tested, the question of interest, or the type of data being tested. There are explicit 
situations that require the use of regression analysis (linear, logistic, polytomous), Fisher’s exact 
test, permutation of unique statistical test, etc.  For this reason, no specific statistical test is 
implemented into BioBin.  Unless otherwise noted, the results presented herein were calculated 
using a Wilcoxon 2-sample rank sum test implemented in the R statistical package.31 There was no 
need for adding covariates to the model and Wilcoxon provides simple implementation and 
interpretation.  All individuals (CEU and YRI) are ranked according to number of variants they 
individually contribute to a bin (variants must be under binning threshold).  Using a simple model, 
we assume the genotypes are independent and normally distributed. 



 
 

2.5.  Data simulation strategy to assess type I error 

To test BioBin, genetic data was simulated using a forward time simulator, simuPOP.32 We used a 
constant distribution for the selection coefficient and a mutation rate of 1.8 x 10-8 per nucleotide 
per generation.  The population sizes were Ne = 8100, 8100, 7500, and 10000 with 5000 
generations, 10 generations, and 370 generations respectively.  A 10kb region and 50kb of genetic 
data were simulated using the standard parameters in the simuRareVariants.py script for simuPOP.  
This script simulates introduction and evolution of RVs and can allow complex fitness and 
selection modeling (http://simupop.sourceforge.net/cookbook/). 

To generate a sample data set evaluating type I error, all individual’s genotypes were 
generated by randomly choosing two haplotypes from a haplotype pool.  This process was 
repeated for three different scenarios: 1) sample size of 1000 individuals (500 cases and 500 
controls) on a 10kb region, 2) sample size of 4000 individuals (2000 cases and 2000 controls) on a 
10kb region, 3) sample size of 4000 individuals (2000 cases and 2000 controls) on a 50kb region.  
Phenotypes were randomly assigned to each individual to test the null hypothesis of no association 
between variants and disease status.  The type I error was calculated as the proportion of the 
10,000 replicates with a p-value <= 0.05.  In this case, an error rate above 5% would indicate a 
higher false-positive test and an error rate lower than 5% would indicate a conservative test. 

2.6.  1000 Genomes Project data: CEU and YRI comparison 

In a recent resequencing study of 202 drug targets, Nelson et al. reported the abundance of rare 
variants to be approximately 1 every 17 bases and most often population specific.15  To further 
investigate population stratification, we used 1000 Genomes Project data. The project was started 
in 2008 with the mission to provide deep characterization of variation in the human genome.  As 
of October 2011, the sequencing project includes whole-genome sequence data for 1094 
individuals, and aims to sequence 2,500 individuals by its completion.33  

We conducted a pairwise comparison of RV burden differences between two ancestry groups 
(YRI and CEU) of the 1000 Genomes Project (October 2011 release ftp://ftp-
trace.ncbi.nih.gov/1000genomes/ftp/release/20110521/).  The data includes 87 CEU samples and 
88 YRI samples.  We implemented a minimum bin size of two variants and set the binning 
threshold to 0.03. We performed the following feature specific analyses:  
 

A. Gene and intergenic regions 
B. Pathways 

C. Regulatory regions 
D. Evolutionary conserved regions (ECRs) 

The NCBI Entrez source provided gene start and stop positions to form gene bin boundaries for 
the gene and intergenic region analyses (A). Intergenic bins (50kb) were generated to “catch” 
variants not collapsed into other source-informed bins; in this case, intergenic bins collapsed 
variants not binned into gene region bins.  For the pathway-based analysis (B), pathway and group 
information came from many LOKI sources and collapsed variants from all genes/regions in a 
specific pathway together in a bin.  The regulatory region analyses (C) bin boundaries used in this 
analysis were from ORegAnno, a database of regulatory region annotations.  For the evolutionary 
conserved region analysis (D), boundaries were calculated from PhastCons score output 



 
 

downloaded from UCSC Genome Browser (http://genome.ucsc.edu/).  There are three groups of 
ECRS available within the UCSC Genome Browser, the first group is derived from multiple 
alignments of 45 vertebrate genomes to the human genome, the second group is a set of placental 
mammals (32 placental Mammal genomes) aligned to the human genome, and the third group is a 
set of nine primates aligned with the human genome (http://hgdownload.cse.ucsc.edu/goldenPath/ 
hg19/phastCons46way/).  For each group, we calculated segments of the genome with 70% 
identity, a minimum length of 100bp, and allowed for 50bp gaps.  These ECRs were clustered in 
bands according to the PhastCons output, which corresponded to an average of 13 ECRs per band.  
This was necessary since a single ECR is not large variable enough to generate a viable bin.  In 
this paper, reported p-values have been corrected for multiple testing using a Bonferroni 
correction (number of generated bins in each analysis). 

3.  Results 

3.1.  Type I error calculation 

It is important to investigate the level of type I error that might be present in any novel approach.  
Thus, using the script simuRareVariants.py from the simuPOP simulation algorithm, we simulated 
a 10kb genomic region with 31 RVs and 50kb genomic region with 154 RVs using the parameters 
described above in the methods section. Overall, 10,000 individuals were simulated, each with 
two haplotypes.  We created populations by sampling the haplotypes, and generated 10,000 
replicates of 1000 or 4000 individuals with balanced numbers of cases and controls.  The 
threshold for significance was p≤ 0.05.  We calculated the type I error rate as the number of 
replicates with Wilcoxon p-value less than or equal to 0.05 divided by the total number of 
replicates.  The Wilcoxon 2-sample rank sum test seems to control the type I error in BioBin, but 
the false positive rate nominally increases as the sample size or bin size increases (see Table 2). 

 

Table 2. Type I error calculation results. 

Population Size Simulated Region Size Type I Error Rate 
1000 10kb 0.0479 
4000 10kb 0.0533 
4000 50kb 0.0564 

3.2.  1000 Genomes Project data: CEU and YRI comparison 

We tested BioBin using whole-genome ancestral data from 1000 Genomes Project using 87 
CEU and 88 YRI individuals.   There are considerably more variants in the YRI samples than 
in the CEU samples.  Table 3 provides the total number of variants according to the Phase I 
generation of 1000 Genomes Project data for both populations.  Of note, while there is only 
one more YRI individual compared to the number of CEU individuals, there is almost a 7 
million variant difference between the two groups.  Figure 2 shows a density function, which 
indicates the density of variants at each MAF; overall, there is a higher density of low 
frequency variants in YRI.   
 



 
 

Table 1.  1000 Genomes Project Phase I data characteristics for CEU and YRI 

Population Number of Variants Number of People 
CEU 11,198,921 87 
YRI 18,022,152 88 

Using a MAF binning threshold of 0.03, we binned genes and intergenic regions, pathways, 
regulatory regions, and evolutionary conserved regions as described above in the methods.  
The top result from each feature in these four analyses (labeled A-D) is shown in Table 4.34   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Table 2. Top result from each feature across the four analyses (A-D) 

 Feature Top Bin Adj. 
p-val 

Annotation/ 
Location Function 

A 
Genes CTXN2 7.18x10-29 Chr5:48483867-

48495951 Cortexin 2-Integral to membranes 

Intergenic 
regions chr15.638 5.13x10-28 Chr15:31900000

-31950000 
3’ to OTUD7A, a protease that cleaves 
ubiquitin 

B Pathways PF11057 1.76x10-29 Cortexin protein 
family 

Expressed in kidney and brain, involved in 
intra and extracellular signaling 

C ORegAnno OREG0003872 1.83x10-32 Chr5:142124712
-142125230 

Transcription Factor Binding site, 
expressed in the heart 

D 

ECR-
vertebrates 

Chr5:33951654
-33951791 3.24x10-33 SLC45A2 Melanocyte differentiation antigen. 

Substance transport for melanin 
biosynthesis. ECR-placental 

Mammals 
Chr5:33951651
-33951791 3.24x10-33 SLC45A2 

ECR-primates Chr15:4842644
4-48426724 1.94x10-33 SLC24A5 Cation exchanger involved in 

pigmentation, melanosome ion transport 
  

Next, we evaluated the prevalence of significant RV differences between CEU and YRI 
data.  Using the Bonferroni corrected threshold of significance specific for each analysis, we 
calculated the proportion of bins that were significant.  The results are shown in Figure 3.34 

Figure 2. Minor allele frequency density distribution for CEU (red) and YRI (green) 



 
 

The height of each bar represents the total number of bins in each feature type; the dark blue 
indicates the proportion of significant bins.  For example, 9.10% of the bins generated from 
ECR-primate multiple alignment comparison was significant after correction for multiple 
testing (which accounted for all tests performed in analysis D).  

There are a surprising number of significant bins in each feature, but this can be explained by 
the difference in total number of variants between CEU and YRI.  The total number of variants 
binned by BioBin using a MAF-binning threshold of 0.03 was 16,145,128 variants.  Of these, 
65.5% were private to YRI ancestral population.    

  
 

4.  Discussion 

4.1.  Type I error calculation 

As shown in Table 2, the Wilcoxon 2-sample rank sum test is slightly anticonservative in large 
population sizes and seems to worsen when more RVs are binned together. This is interesting 
since Li et al. reported that increasing the number of variants binned in a type I error simulation 
decreased the type I error rate using a collapsing approach and a Pearson χ2 statistical test and 
others have reported conservative type I error rates using asymptotic statistical tests on relatively 
small sample sizes.8,35These methods were tested on simulated data with controlled RV allele 
frequencies and used different statistical tests, but highlights the importance and perhaps 
limitations of simulation testing.  Although, the type I error seems to be well-controlled in this 
experiment, further investigation should be done to assess strictly how the RV allele frequency 
distribution affects type I error, calculate the type I error using additional sample population sizes 
and alternative statistical tests, and examine if the number of variants in a bin consistently inflate 
the false positive rate. 

Figure 3. CEU-YRI pairwise comparison.  Dark blue indicates the proportion of significant bins. 



 
 

4.2.  1000 Genomes Project data: CEU and YRI comparison 

Using 1000 Genomes Project whole-genome data, we used BioBin to identify features (genes, 
intergenic regions, pathways, regulatory regions, and ECRs) with significant differences in rare 
RV burden between two ancestral populations. A population-genetics approach retains natural 
qualities of data (compared to simulated data) and incorporates case/control status according to 
ancestry group.  Comparable approaches have been used by other groups.9,17 

We compared multiple feature types between two ancestral populations from 1000 Genomes 
Project to highlight a known issue in genomic studies, population stratification. BioBin explored 
RV burden differences between CEU and YRI ancestral populations.  In each RV burden test, 
there were a considerable number of statistically significant bins (after Bonferroni multiple testing 
correction).  Table 4 shows the most significant bins for each feature type.  The gene burden top 
result and the pathway burden top result corresponded to a Cortexin-2 gene and Cortexin pathway 
respectively.  According to PFAM, this group of proteins is important for intracellular and 
extracellular signaling in the kidney and brain (http://pfam.sanger.ac.uk/family/PF11057).  To our 
knowledge, Cortexin-2 has not been acknowledged in ancestry comparison studies.  However, 
another protein in the Cortexin family was identified as a candidate gene for non-diabetic forms of 
end-stage renal disease in African Americans.36 This is interesting since studies with admixed 
populations could contain a higher incidence of false positives due to RV population stratification 
and mixed ancestry.   

We could not find biological interpretation for the significant intergenic RV burden 
differences on chromosome 15 or the transcription factor-binding site on chromosome 5.  
However, the ECR analyses highlighted SLC45A2 and SLC24A5; both participate in pigmentation.  

Mutation rates vary across the genome.  They can vary according to specific sequence 
contexts, within regions on a chromosome, and between chromosomes.37 While mutation rates are 
commonly studied between orthologous sequences, polymorphisms collapsed by regions within 
species can also provide interesting insight into evolutionary history and mutation.  BioBin does 
not provide detailed sequence output to investigate mutation rate variation between CEU and YRI, 
but it does provide some information about higher rates of variation in regions (genes, intergenic 
regions, pathways, regulatory regions, and ECRs) and between chromosomes.  The results in 
Figure 3 show an interesting trend between functional regions of the genome and variant 
tolerance.  Approximately 57% of the gene bins had significant differences in RV burden, whereas 
approximately 73% of the intergenic region bins had significant differences in RV burden.  There 
is some weak evidence that genes undergo adaptive evolution, which explains why regions in the 
genome with potential for highly deleterious mutations evolve lower mutation rates.  There are 
two potential explanations: 1) additional level of repair of DNA damage in transcriptional active 
regions by transcription coupled repair (TCR), 2) approximately 3% of the genome is subject to 
negative selection, however it is estimated that functionally dense regions contain up to 20% sites 
under selection.37,38 In this analysis, gene bins are inclusive of intronic regions, thus it would be 
interesting to break down the gene bins into intronic and exonic bins to see how the variant 
tolerance differs between coding and noncoding regions.   



 
 
There are far fewer regulatory region bins, but there appears to be smaller proportion of 

significant differences between CEU and YRI compared to genes or intergenic regions.  Again, 
perhaps mutations are less tolerated in these regions and we see overall less variability.  ECRs 
have been long known to be conserved among species, and in this analysis they are also the 
features least likely to have variation between CEU and YRI.  There is some debate about 
selection and functional significance in these regions.  It is unknown what factors have the largest 
effect on mutation rates,37 but it is possible that consistently low mutation rates in these sections 
have generated conserved regions throughout evolution.38   

We found that over 65% of the variant loci in dataset were fixed in CEU individuals.  This is 
not surprising since it is well known that individuals of African descent have more variation than 
individuals of other ancestral groups (see Table 3).  This difference in rare variation is driving the 
high percentages seen in Figure 3.   We should further investigate the effects of stratification in 
other ethnicities, and evaluate correction methods such as PCA and mixed models.18,19 

5.  Conclusion 

There is a global health, scientific, and financial motivation for understanding the genetic etiology 
of common complex disease.  It is imperative to consider genetic variants beyond common single 
nucleotide polymorphisms, as RVs may have larger phenotypic effects and can help us better 
comprehend the biology of a disease process.  BioBin is a novel collapsing method that uses allele 
frequency data and biological information to bin RVs.  It is unique because it is packaged with 
LOKI and is not coupled with any statistical method.  Access to integrated biological knowledge 
(pathways, groups, interactions, ECRs, regulatory regions, etc.) is valuable to researchers that do 
not want to spend considerable effort to combine this knowledge manually.  Freedom from 
implemented statistical methods provides users with the ability to apply association tests most 
appropriate for their data analysis.  In general, for any given bin, statistical tests from other 
published collapsing methods can be applied to BioBin output.  However, these other methods do 
not incorporate feature selection; therefore, the user must provide boundaries for each bin. 

In this paper, we evaluated RV burden differences between CEU and YRI populations.  
Although population stratification is often considered in genomic analyses, to our knowledge, no 
previous studies have quantified the magnitude of RV burden differences across multiple features.   
From the ancestry comparison results, we learned RV burden differences among features showed 
a pattern consistent with current mutation rate theory but also highlighted the magnitude of RV 
stratification between CEU and YRI populations from 1000 Genomes Project data.   

In summary, our results suggest that BioBin will be a useful tool to analyze sequence data.  
While no one can unequivocally guess the role RVs will play in uncovering hidden heritability for 
common complex disease, it seems that testing them in aggregate can provide valuable knowledge 
about the biology. Prerequisites for installation and running of BioBin and LOKI are documented 
in the manual, which is publicly available with the software and example statistical association 
scripts in R at https://ritchielab.psu.edu/ritchielab/software. 
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