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Technology is driving the field of human genetics research with advances in techniques to generate high-throughput 
data that interrogate various levels of biological regulation. With this massive amount of data comes the important 
task of using powerful bioinformatics techniques to sift through the noise to find true signals that predict various 
human traits. A popular analytical method thus far has been the genome-wide association study (GWAS), which 
assesses the association of single nucleotide polymorphisms (SNPs) with the trait of interest. Unfortunately, GWAS 
has not been able to explain a substantial proportion of the estimated heritability for most complex traits. Due to the 
inherently complex nature of biology, this phenomenon could be a factor of the simplistic study design. A more 
powerful analysis may be a systems biology approach that integrates different types of data, or a meta-dimensional 
analysis.  For this study we used the Analysis Tool for Heritable and Environmental Network Associations 
(ATHENA) to integrate high-throughput SNPs and gene expression variables (EVs) to predict high-density 
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lipoprotein cholesterol (HDL-C) levels. We generated multivariable models that consisted of SNPs only, EVs only, 
and SNPs + EVs with testing r-squared values of 0.16, 0.11, and 0.18, respectively. Additionally, using just the SNPs 
and EVs from the best models, we generated a model with a testing r-squared of 0.32. A linear regression model with 
the same variables resulted in an adjusted r-squared of 0.23. With this systems biology approach, we were able to 
integrate different types of high-throughput data to generate meta-dimensional models that are predictive for the HDL-
C in our data set.  Additionally, our modeling method was able to capture more of the HDL-C variation than a linear 
regression model that included the same variables. 
 
1.  Introduction 

1.1.  A Case for Meta-dimensional Analysis 

Over the past decade, high-throughput technology has become considerably more efficient and 
less expensive1. The human genetics field has reaped the benefits of these advancements via 
extensive exploratory analyses largely in the form of GWAS. These studies have led to the 
discovery of thousands of SNPs that are significantly associated with hundreds of common, 
complex human traits2.  However, for many of these traits, a large proportion of the estimated 
heritability remains unexplained by these DNA variants3.   

One of the leading hypotheses regarding this “missing heritability” is that GWAS may not be 
robust to the inherent complexity of biological processes, and, therefore, may be missing large 
chunks of the underlying etiology4.  Two areas where this complexity might lie are in non-additive 
interactions (gene-gene or gene-environment) and within the different levels of biological 
regulation. First, because traditional GWAS specifically identify SNPs with large main effects, 
interactions without large main effects would be missed.  Next, complex phenotypes could be 
under the influence of more than one level of biological regulation.  Various types of –omic data 
(i.e. transcriptomic and methylomic) analyzed simultaneously could take into account trait 
variation that would be missed by SNP data alone5.  In order to account for complex etiology, a 
more powerful meta-dimensional analysis would have to be performed. A meta-dimensional 
analysis is one that integrates different types of high-throughput data while allowing for non-linear 
interactions in order to identify multi-variable prediction models that include data from from 
different levels of biological regulation6.  For example, analyzing microarray gene expression data 
and SNP genotypes data simultaneously to identify models that predict a complex human disease, 
such as breast cancer. 

In order to successfully perform a meta-dimensional analysis, computational tools need to be 
able to perform the following tasks successfully: sift through the high level of noise inherent to 
high-throughput data in order to identify true signals, simultaneously analyze continuous and 
categorical predictor and outcome variables, and identify main and interaction effects in order to 
generate a final predictive model.  Currently, no single analysis method performs all of these tasks 
at once.  Some candidates that may come together to create a successful analysis pipeline include 
tree-based methods (i.e. Random Forests7), Bayesian networks, computational evolution methods, 
and various types of clustering and correlation techniques.  For this paper, we propose a meta-
dimensional analysis tool called ATHENA that combines a tree-based filtering method with a 
computational evolution modeling method in order to integrate SNP genotypes and gene 
expression variables to predict HDL-C levels. 



 
 

 

1.2.  The Genetics of HDL Cholesterol 

HDL particles are small, dense lipoproteins that circulate throughout the body. Many anti-
atherogenic properties have been ascribed to HDL, and low HDL-C levels are strongly and 
independently associated with increased risk for cardiovascular disease8. HDL-C has a relatively 
large genetic component with heritability estimates between 40-80%8,9.     Many common variants 
have been found to be significantly associated with HDL-C in humans, but collectively they only 
explain a small proportion of the estimated heritability.  A recent study used significant GWAS 
SNPs to perform polygenic scoring and found that the best model only explained ~4.75% of the 
variation in the HDL-C trait10. Some groups have begun to examine a more complex genetic 
architecture to explain the missing heritability and several gene-gene interactions have been 
identified11–13.  In this study, we aim to go a step further by integrating SNPs and gene expression 
data to find complex models that predict HDL-C levels. 

2.  Methods 

2.1.  The Analysis Tool for Heritable and Environmental Network Associations (ATHENA) 

ATHENA is a multi-functional software package designed by our lab to analyze various types of 
high-throughput data in order to generate multi-variable models.  ATHENA has been tested 
extensively on simulated data and applied to biological data sets in order to demonstrate its utility 
on “noisy” data14–17.  Figure 1 shows the full current and future functionality of ATHENA. 
 

 
Fig.  1. Components of the ATHENA software package 

 
 



 
 

 

 
 

The main components of ATHENA are a filtering step and a modeling step.  The filtering step 
can be a statistical filter (Random Jungle18) or one that prioritizes variables based on their known 
biological functions (Biofilter19).  Currently, ATHENA has two different computational evolution 
modeling techniques--Grammatical Evolution Symbolic Regression (GESR) and Grammatical 
Evolution Neural Networks (GENN). For this analysis, we used Random Jungle (RJ) as the 
statistical filter and Grammatical Evolution Neural Networks (GENN) as the modeling technique. 

2.1.1.  ATHENA filtering: Random Jungle 

RJ is a faster, parallelized version of the tree-based variable selection method Random Forests 
(RF).  Briefly, RF uses a bootstrap sample of the data to grow a “forest” of decision or regression 
trees with no pruning.  The trees are then tested using the out-of-bag individuals not present in the 
bootstrap sample to determine which variables are most important for outcome prediction.   
Importantly, RF can identify main and interaction effects7.  We chose RJ as the statistical filter 
because of its capability to analyze millions of quantitative and categorical variables in a relatively 
computationally efficient manner. Also, the output is a list of variables ranked by an importance 
score. For this analysis, importance is defined as the percent increase in mean squared error after 
permuting the variable values while taking into account correlation patterns between the 
variables20.   This output lends itself nicely to selecting a subset of variables for input into a 
modeling technique that is less robust to noise.  

2.1.2.  ATHENA modeling: Grammatical Evolution Neural Networks 

GENN uses a variation of genetic programming (GP) called grammatical evolution (GE) to 
optimize artificial neural networks to identify a model that predicts a given outcome21–23.  GP is a 
computational technique that uses concepts of survival of the fittest in order to evolve a fit 
solution from an original population of random solutions24. GE is a more efficient version of GP 
because the solutions are represented as binary strings, which can be translated into a functional 
solution, or computer program, via grammar rules25.  All of the evolutionary operations that are 
applied to the solutions are done so at the level of the binary string. Below is the algorithm that 
GENN uses to identify the “fittest” solution: 
 
1. Divide the data into five equal parts for cross-validation (4/5 = training set; 1/5 = testing set). 
2. Generate random sub-populations, or demes, of binary strings across multiple processors. 
3. Calculate the fitness (i.e. balanced accuracy or mean squared error) of the solutions using the 

training set. 
4. Select the solutions with the highest fitness, which undergo crossover, mutation, migration 

between demes, and reproduction to create the next generation of solutions. 
5. Repeat Steps 3-4 for a user-defined number of generations.  
6. Test the final best model using the testing set and save the model. 
7. Repeat steps 2-6 for each the other four cross-validation data divisions. 



 
 

 

8. Select the overall best model out of the five models using cross-validation consistency first 
and then testing set fitness to break ties. 
 
The solutions in GENN are artificial neural networks (ANNs).  Briefly, ANNs are directed 

graphs with an input layer (independent variables), hidden layer(s) (processing elements), and an 
output layer that predicts the outcome of interest26.  Figure 2 illustrates an example of a two-layer 
ANN. ANNs are a good candidate for this type of analysis because they are able to model 
complex, non-linear relationships between variables. Traditionally, ANNs are optimized using a 
hill-climbing algorithm, such as back-propagation, which iteratively alters the weights (or 
constants) until prediction no longer improves23.  This optimization technique is not ideal for a 
genetic analysis where the correct variables and the network architecture are not known a priori.  
GENN addresses this issue by evolving the ANNs so that the data drives the optimization of all 
aspects of the network. GENN has been tested on simulated and biological data and was often 
found to outperform other prediction techniques16,22,27. 

 
 
 
 
 
 
 
 
 

 
 

2.1.3.  ATHENA filtering-modeling pipeline  

Figure 3 below summarizes the filtering-modeling pipeline that was used for this analysis.  

 

Fig.  2. An example of a two-layer ANN. X=input variable; 
w=weight; AN=activation node; y=predicted output 

Fig.  3. ATHENA filtering-modeling pipeline for this analysis. Step 1. RJ filtering 
of SNPs and EVs; Step 2. GENN analysis of filtered SNPs only (2.1), EVs only 

(2.3) , and SNPs and EVs together (2.2); Step 3. GENN analysis of SNPs and EVs 
from the best GENN model from Steps 2.1 and 2.3. 

 



 
 

 

In Step 1, we filtered the ~2.7 million SNPs and ~24,000 EVs separately in RJ. This was done 
because RJ has not been sufficiently tested to determine the effect of the overwhelmingly larger 
number of SNPs versus EVs that were present in this data set (~112x more SNPs).  After filtering, 
we analyzed the filtered SNPs (Step 2.1), the filtered EVs (Step 2.3), and the filtered SNPs and 
EVs together (Step 2.2) in GENN.  Because GENN has been shown to outperform other methods 
specifically at prediction modeling when the noise in the data is substantially reduced, we also 
assessed just the SNPs and EVs that were in the best ANN models from Steps 2.1 and 2.3 in a 
final GENN analysis (Step 3). 

2.2.  Cholesterol and Pharmacogenetics Dataset 

The data for this study comes from the simvastatin clinical trial Cholesterol and Pharmacogenetics 
(CAP)28.  The characteristics of the 480 individuals in this analysis are shown in Table 1. The 
genomic data consists of ~2.7 million SNP genotype dosages and ~24,000 gene expression levels.  
SNPs were genotyped on Illumina HumanHap 300K BeadChip and Illumina HumanHap 610-
Quad BeadChip and imputed to HapMap data using the IMPUTE2 software29. Imputation 
probabilities were used to calculate genotype dosages. Gene expression levels were measured in 
patient-derived immortalized lymphoblastoid cell lines (LCLs) using the Illumina HumanRef8v3 
BeadArray. The gene expression data was corrected for potential confounders by extracting the 
residuals from a linear regression model that included known covariates (day of assay, cell count, 
gender, and age) and the top nine principal components for unknown covariates. Our outcome of 
interest was the mean HDL-C level from the first and follow-up visit before any medication was 
administered. HDL-C was adjusted for gender, age, body mass index (BMI), and smoking status. 
All of the individuals in this subset of the cohort were European-American.  

3.  Results 

3.1.  Random Jungle  

Table 2 below lists the important parameter setting values that were used for RJ for each analysis. 
Table 2 also displays the computation times and the number of variables that remained after 
backward elimination. The values for bootstrap sample size and number of trees were previously 
tuned for each data set as suggested by the method developers18.    
 

Table 1.  Data set characteristics 

Clinical trait Value 

Age in years (mean [sd]) 54.4 [12.7] 
BMI (mean [sd]) 27.6 [5.3] 
HDL-C in mg/dl (mean [sd]) 53.4 [16.3] 
Smoker (% smoker) 13.2 
Gender (% male) 54.1 

 



 
 

 

 
 
 
 
 
 
 
 
 

 In order to have a comparable threshold for both data sets, we chose an importance score 
cut-off because it has the same statistical meaning for both the SNPs and EVs.  The threshold of 
10 was chosen because it generated similar distributions of scores in both data sets.  This cut-off 
resulted in a filtered data set that consisted of 418 SNPs and 241 EVs. 

3.2.  GENN 

The filtered EV and SNP variables were analyzed both separately and simultaneously by GENN.  
In addition, the SNPs and EVs from the best GENN models were analyzed together.  Table 3 
shows the GENN parameters that were used for these analyses.  These parameters were selected 
based on a tuning analysis where we swept over various settings and selected based on prediction 
optimization. A detailed description of the parameters can be found in a previous ATHENA 
publication14.  The fitness function used by GENN for analysis of quantitative outcomes is shown 
below: 
 

 (1) 

 
where y is the observed value, y-hat is the predicted value, and y-bar is the mean value for the 
quantitative outcome.  

 
 
 
 
 
 
 
 
 
 

Table 3. GENN parameter settings 

Parameter Steps 2.1, 2.3 Steps 2.2, 3 
Number of demes (processors) 100 100 
Population Size / Deme 3000 1000 
Number of generations 1125 250 
Number of migrations 45 10 
Probability of Crossover 0.9 0.9 
Probability of Mutation 0.01 0.01 
Fitness r-squared r-squared 
Analysis time (hours) 8 1 

 

Table 2. RJ filtering parameter settings 

Parameter EV analysis SNP analysis 

Bootstrap Sample Size 11250 684342 
Number of Trees 4000 4032 
Tree Type Regression trees Regression trees 
Importance Score Permutation-based Permutation-based 
Backward Elimination Discard negative scores Discard negative scores 
Number of Processors 4 (500 trees  / processor) 64 (63 trees / processor) 
Compute Time (hours) 0.6 52 
Remaining Variables 1447 209346 

 



 
 

 

 
 
 

Figure 4 shows the resulting best ANN models from each of the following analyses: a. 
SNPs only (Step 2.1), b. EVs only (Step 2.3), and c. SNPs and EVs together (Step 2.2).  The r-
squared values from the testing cross-validation set for each of the models were 0.16, 0.11, and 
0.18, respectively.  

 

 
Fig.  4. Best GENN models from the a. SNP, b. EV, and c. SNP and EV integrated analyses. The asterisks 

in the integrated model denote variables that were present in at least one of the top five cross validation 
models from the separate SNP and EV analyses.  (w = constant and variable are multiplied; PADD = 

additive activation node) 

Fig.  5. Best model GENN analysis of variables from best SNP and 
EV models. Testing r-squared value = 0.32. 



 
 

 

 
 
 
 
Finally, we ran GENN with only the 6 SNPs and 5 EVs that were present in the top models 

shown Figure 4a. and 4b.  Figure 5 shows the resulting network from this analysis (Step 3).  The 
ANN consisted of 3/6 SNPs and 4/5 EVs from the best models and the testing r-squared value was 
0.32.  This is substantially greater than the three previous networks (Figure 4).  Additionally, we 
tested the same variables using a more traditional statistical prediction method--multivariable 
linear regression.  The adjusted r-squared value from the regression model that included all 6 
SNPs and 5 expression variables was 0.23. The full regression model was highly significant, with 
a p-value of 2.2x10-16. 

 

4.  Discussion 

In this study, we demonstrate a filtering-modeling pipeline for integrating different types of high-
throughput data to generate meta-dimensional prediction models. We were able to build a model 
that includes variables from different levels of biological regulation and explained more variation 
than either data-type alone (Figures 4 and 5).  Additionally, our best model was more predictive 
than the commonly used additive modeling technique.  Due to its flexibility, this approach is 
easily extendible to other types of high-throughput data. For example, another quantitative high-
throughput measurement such as proteomic data could be added to this analysis by filtering the 
data using the same RJ method and then adding in these filtered proteomic levels to the GENN 
analysis.  
 Notably, although the ANN from the integrated analysis had a higher r-squared value than the 
analyses that only included SNPs or EVs (Figure 4), it was still less predictive than the analysis 
that only included just the top SNPs and EVs (Figure 5). This could be a result of the combined 
increase in pressure on variable selection due to the larger number of predictor variables and on 
modeling due to the different scales of the EV and SNP values.  When we reduced the variable 
selection pressure by only including the top variables from the EV-only and SNP-only best 
models, the r-squared value went up substantially.  This highlights the ability of GENN to model 
the variables in an informative way when presented with a limited number of noise variables.  
Additionally, the GENN model was able to account for more outcome variation than the linear 
regression model indicating that the more complex modeling method of GENN identifies 
relationships between the variables that an additive model does not. 

One caveat to our approach is that we are not able to explore conditional relationships between 
the different types of predictor variables. An example would be a model where a SNP in a 
transcription factor binding site reduces the expression of the targeted gene, which, in turn, affects 
the phenotype. These types of relationships could be tested by first examining significant 
correlations between SNPs and EVs and then using this information to guide the modeling 
analysis.  Also, some groups are applying Bayesian networks (BNs) to data integration studies 
because they are able to capture this type of directionality30.  Future work will involve 



 
 

 

incorporating BNs into ATHENA as one of the analysis methods. Other study designs specifically 
address the hypothesis that SNPs are affecting the phenotype via their association with gene 
expression levels, such as eQTLs31–34.  These studies have provided some interesting findings but 
would not identify SNPs and EVs that have an effect on the phenotype independently of one 
another. 

Interpreting the biological significance of statistical models is not a trivial task for several 
reasons.  First, due the correlation patterns that exist in SNPs and EV data, the variables in the best 
models could be functional variables or variables that are highly correlated with the functional 
variables. There is no simple way to determine which is the case.  One initial approach could be to 
map the top ranked SNPs and EVs back to genes to determine if the variables in the best models 
are representative of any given biological pathway or have similar biological function. We 
assessed this possibility by analyzing the RJ filtered SNPs and EVs with an online annotation tool 
called DAVID35,36.  The most significant biological groups after accounting for redundant pathway 
information in the databases were those related to immune function. This is interesting because 
HDL has been shown to play a role in innate and adaptive immune responses37. 

Notably, we did not identify any of the genes known to be highly associated with HDL-C.  The 
gene that is arguably most strongly associated with HDL-C is CETP38,39.  To determine if our 
method was not able to find the effects or if the effects were simply not there, we performed a 
univariate linear regression analysis on each of the SNPs and then ranked the p-values.  None of 
the SNPs in CETP were significantly associated with HDL-C in our data set (data not shown).  
This suggests that in this subset of individuals, other genes could be more strongly contributing to 
the variation in HDL-C. 

Once a meta-dimensional model has been identified and shown to be predictive, the next step 
is to replicate the finding in an independent data set.  For single SNPs, this process is relatively 
straightforward.  For meta-dimensional models, however, it becomes less trivial due to the 
increased difficulty of replicating the exact effects of numerous data points simultaneously, 
especially if the identified variables are not completely correlated with the functional variants.   
One part of model validation will be to determine if the model is predictive in another data set. 
Additionally, the functionality of these genes could be tested in vitro or in vivo to determine if 
perturbation has any phenotypic effect.  

The ultimate goal of identifying models that explain the genetic variability of a trait is to use 
this information to improve therapy or prediction and prevention in a clinical setting.  Methods 
robust to the true nature of complex traits, like the meta-dimensional analysis pipeline presented 
here, are an initial step towards a more thorough understanding of the genetic architecture of 
complex human traits like cardiovascular disease. 
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