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General pedigrees can be encoded as Bayesian network thkesommon MPE query corresponds to
finding the most likely haplotype configuration. Based ois thi strategy for grid parallelization of a state-
of-the-art Branch and Bound algorithm for MPE is introdudedependent worker nodes concurrently solve
subproblems, managed by a Branch and Bound master nodeik&hledod functions are used to predict
subproblem complexity, enabling efficient automation efplarallelization process. Experimental evaluation
on up to 20 parallel nodes yields very promising results amygjest the effectiveness of the scheme, solving
several very hard problem instances. The system runs orljoogupled commodity hardware, simplifying
deployment on a larger scale in the future.

1. Introduction

Given a general pedigree expressing ancestral relatiomssanget of individuals, the haplotyping
problem is to infer the most likely ordered haplotypes fartemdividual from measured unordered
genotypes. This has previously been cast as solving an iaation problem over a appropriately
constructed Bayesian netwdtkor which powerful inference algorithms can be exploitedt prac-
tical problems remain infeasible as more data becomesaaajifor example through SNP sequenc-
ing, suggesting a shift to parallel or distributed compuotat

This paper therefore explores parallelization of comlmriat optimization tasks over such
Bayesian networks, which are typically generalized throtighframework of graphical models.
Specifically, we consider one of the best exact search #tgosi for solving the MPE/MAP task
over graphical models, AND/OR Branch and Bound (AOBB). AOBB, whegploits independen-
cies and unifiable subproblems, has demonstrated supenformance for these tasks compared
with other state-of the art exact solvers (e.g., it was rdrikst or second in several competitidf)s

To parallelize AOBB we use the established concept of paraie searchwhere the search
space is explored centrally up to a certain depth and theinamgasubtrees are solved in parallel.
For graphical models this can be implemented straightfotlyeby exploring the search space of
partial instantiations up to a certain depth and solvingéhneaining conditioned subproblems in par-
allel. This approach has already proven successful foliliked computation in Superlink-Online,
which parallelizes cutset conditioning for linkage anaysskst® Our work differs in focusing
on optimization (e.g., MPE/MAP) and in exploiting the ANCRQparadigm, leveraging additional
subproblem independence for parallelism. Moreover, wethisgpower of Branch and Bound in a
central search space that manages (and prunes) the setitfaoed subproblems.

The main difference however is that, compared to likelihcoohputation, optimization presents
far greater challenges with respect to load balancing. ele¢he primary challenge in search tree
parallelization is to determine the “cutoff”, thparallelization frontier Namely, we need a mecha-
nism to decide when to terminate a branch in the central egrace and send the corresponding



September 21, 2010 0:4 WSPC - Proceedings Trim Size: 11in x 8.5in  psb11-parallel-haplotypes-final

subproblem to a machine on the network. There are two prinsanes:(1) Avoid redundancies
caching of unifiable subproblems is lost across the indegrthdsolved subproblems, hence some
work might be duplicated;2) Maintainload balancingamong the grid resources, dividing the total
work equally and without major idling periods. While intrazng redundancy into the search space
can be counterproductive for both tasks, load balancingas greater challenge for optimization,
since the cost function is exploited in pruning the sear@tspCapturing this aspect is essential in
predicting the size of a subproblem and thus the focus ofiduier.

The contribution of this work is thus as follows: We suggesaeallel BaB scheme in a graphical
model context and analyze some of its design trade-offs. &Vesd an estimation scheme that pre-
dicts the size of future subproblems based on cost funcoddearns from previous subproblems
to predict the extent of BaB pruning within future subprobdeMe show that these complexity esti-
mates enable effective load distribution (which was nosps via redundancy analysis only), and
yield very good performance on several very hard practioathlem instances, some of which were
never solved before. Our approach assumes the most geresstdrAvorker scenario with minimal
communication and can hence be deployed on a multitude @fsgtups spanning hundreds, if not
thousands of computers worldwide. While our current emgimeork is tested on up to 20 machines
so far, its potential for scaling up are very promising.

Related work: The idea of parallelized Branch and Bound in general is not betvexisting
work often assumes a shared-memory architecture or exéeimsér-process communicatiéni or
specific grid hierarchiesEarlier results on estimating the performance of searctiigiréhe size of
general backtrack tress through random proBfig Similar schemes have been devised for Branch
and Bound algorithms, where the algorithm is ran for a limtiete and the partially explored tree
is extrapolated. Our method, on the other hand, is not sampling-based but usdg parameters
available a priori and information learned from past subfgms which is facilitated through the
use of depth-first branch and bound to explore the mastecisspace.

2. Background
Our approach is based on the general framework of graphicdéhteasoning:

Definition 2.1 (graphical model). A graphical modelis given as a set of variablesx =
{X1,...,X,}, their respective finite domain® = {D,,...,D,}, a set of cost functiong =
{f1,-.., fm}, €ach defined over a subsetX®f(the function'sscopd, and a combination operator
(typically sum, product, or join) over functions. Togetlhgth a marginalization operator such as
miny andmaxy we obtain areasoning problem

For instance, théMPE problem (most probable explanation) is typically posedravdayesian
Network structure, representing the factorization of atjdistribution into conditional probabilities,
with the goal of finding an assignment with maximum probéabiln the area of constraint reasoning,
aweighted CSKs defined as minimizing the sum of a set of cost functions dwewariables.

Definition 2.2 (primal graph, induced graph, induced width). The primal graphof a graphical
model is an undirected graphy, = (X, E) . It has the variables as its vertices and an edge connecting
any two variables that appear in the scope of the same fundcBwen an undirected grapfi and an
orderingd = X1, ..., X,, of its nodes, the width of a node is the number of neighborsiteatede it
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(a) (b)
Fig. 1: (a) Example primal graph with six variables, (b) it&luced graph along ordering) =
A,B,C,D,E,F, (c) a corresponding pseudo tree, and (d) the resultingegtntinimal AND/OR
search graph.

(d)

in d. Theinduced grapli’ of G is obtained as follows: from last to first ih, each node’s preceding
neighbors are connected to form a clique (where new edgeskea tinto account when processing
the remaining nodes). Thaduced widthw* is the maximum width over all nodes in the induced
graph along orderingi .

Figure 1(a) depicts the primal graph of an example probleth sik variables. The induced graph
for the example problem along orderidg= A, B,C, D, E, F is depicted in Figure 1(b), its induced
width is 2. Note that different orderings will vary in themplied induced width; finding an ordering
of minimal induced width is known to be NP-hard, in practieutistics likeminfill'! are used to
obtain approximations.

2.1. Encoding Pedigrees as Bayesian Networks

Expressing a particular pedigree as a Bayesian Network
utilizes three building blocks: (1) For each individual and
each locus, the two haplotypes are represented by two vari-
ables, with the possible alleles as their domain and a prob-
ability distribution conditioned on the variables represe
ing the parents’ haplotypes at this locus. (2) The measured,
unordered genotypes are captured as phenotype variables,
which are conditioned on the corresponding pair of hap-
lotypes. (3) Auxiliary binary selector variables are lidke
across loci, to capture r_ecombination events.  Fig. 2: Example fragment of a
Figure 2 shows a simple example of such a Bayes'a’Bayesian network encoding of a gen-
network, the displayed fragment includes three individu-g 4 pedigree.
als (two parents and their child) and two loci. For instance,
Gi3p is the paternal haplotype of individual 3 (the child) at Isclt It depends on the father’s
haplotypesGi1, andGi1,,, Where the inheritance is determined by the selector Varigfy, i.e.,
Glgp = an if Sl3p =0 andGlgp = G1im if Slgp =1. Together with the maternal haplotyﬁﬁgm,
G13, determines the genotype 3. The value of the inheritance selectsys, for the paternal
haplotype of individual 3 at locus 2 is dependent on the $etes;s, for locus 1, where the actual
probabilities are recombination fractions between thesedci, provided as input.
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With this construction, the joint distribution of the Bayasinetwork captures the probability
over all haplotype configurations. Given a set of evideneg, (measurements for some or all of the
unordered genotypes), the solution to the common probldmaihg the most probable explanation
(MPE) will yield the most likely haplotype$.

2.2. AND/OR Search Spaces

The concept of AND/OR search spaces has been introducedrafyag framework for advanced
algorithmic schemes for graphical models to better capghgeestructure of the underlying graph.
Its main virtue consists in exploiting conditional indepencies between variables, which can lead
to exponential speedups. The search space is defined upsgudo treewhich captures problem
decomposition:

Definition 2.3 (pseudo tree).Given an undirected grapty = (X, F), a pseudo tre®f G is a di-
rected, rooted tre§” = (X, E’) with the same set of nodes, such that every arc af that is not
included inE’ is a back-arc in7, namely it connects a node fito an ancestor irv . The arcs in
E’ may not all be included i .

AND/OR Search Trees : Given a graphical model instance with variable€sand functions
F, its primal graph(X, E), and a pseudo treg, the associateAND/OR search treeonsists of
alternating levels of OR and AND nodes. OR nodes are lah®leghd correspond to the variables
in X . AND nodes are labeledx;, z;) , or justz; and correspond to the values of the OR parent’s
variable. The structure of the AND/OR search tree is basethemnderlying pseudo treg: the
root of the AND/OR search tree is an OR node labeled with tle @07 . The children of an OR
nodeX; are AND nodes labeled with assignmefis, ;) that are consistent with the assignments
along the path from the root; the children of an AND nddg, z;) are OR nodes labeled with the
children of X; in T, representing conditionally independent subproblemsak shown that, given
a pseudo treg of heighth, the size of the AND/OR search tree based7ois O(n - k"), wherek
bounds the domain size of variabfes.

AND/OR Search Graphs : Different nodes may root identical and can be merged through
caching yielding anAND/OR search grapbf smaller size, at the expense of using additional mem-
ory during search. A mergeable node can be identified by itsontex} the partial assignment of
the ancestors aof; which separates the subproblem belgwfrom the rest of the network. Merging
all context-mergeable nodes yields tantext minimaAND/OR search graph.

Proposition 2.1. Given a graphical model, its primal grapfi, and a pseudo tre@ , the size of
the context-minimal AND/OR search grapttig:- k") , wherew* is the induced width of G over a
depth-first traversal of” and k£ bounds the domain size.

Example 2.1. Figure 1(c) depicts a pseudo tree extracted from the indgiageh in Figure 1(b) and
Figure 1(d) shows the corresponding context-minimal ANR/§earch graph. Note that the AND
nodes forB have two children each, representing independent sulgrabénd thus demonstrating
problem decomposition. Furthermore, the OR nodesZiqwith context{B,C}) and F (context
{B, E'}) have two edges converging from the AND level above themmifsitng caching.
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Weighted AND/OR Search Graphs :Given an AND/OR search graph, each edge from an OR
nodeX; to an AND nodez; can be annotated hyeightsderived from the set of cost functiors
in the graphical model: the weightX;, z;) is the sum of all cost functions whose scope includes
X; and is fully assigned along the path from the rootfpevaluated at the values along this path.
Furthermore, each node in the AND/OR search graph can beiassbwith avalue the valuev(n)
of a noden is the minimal solution cost to the subproblem rooted adubject to the current variable
instantiation along the path from the roottov(n) can be computed recursively using the values of
n's SUCCEeSSOr3.

2.3. AND/OR Branch and Bound

AND/OR Branch and Bound is a state-of-the-art algorithm fdvieg optimization problems over
graphical models. Assuming a minimization task, it tragerghe context-minimal AND/OR graph
in a depth-first manner while keeping track of a current ufgoemd on the optimal solution cost. It
interleaves forward node expansion with a backward cossicevor propagation step that updates
node values (capturing the current best solution to thersibgm rooted at each node), until search
terminates and the optimal solution has been found.

3. Setup and Parallel Scheme

We assume a very general parallel framework in which aut@usnhosts are loosely connected
over some network — in our case we use ten dual-core deskioputers, with CPU speeds between
2.33 and 3.0 GHz, on a local Ethernet, thus allowing expartseith up to 20 parallel nodes. We
impose amaster-workethierarchy on the computers in the network, where a specssternode
runs a central process to coordinate Wakers which cannot communicate with each other. This
general model is chosen to accommodate a wide range of glaredlources, where direct node
communication is often either prohibitively slow or enlyrémpossible; it also facilitates flexible
deployment on geographically dispersed, heterogenesosiees in the future.

The setup is similar to Superlink-Onlideé,which has been very successful in using large-
scale parallelism in likelihood algorithms for genetiddame analysis, or SETI@homMevhich uses
Internet-connected PCs around the world to search throughmeus amounts of radio data. Like
Superlink-Online, our system is implemented on top of@eadorgrid middleware’

3.1. Parallel AND/OR Branch and Bound

We include here only a brief outline of the master procesgafat to Ref. 15 for details and pseudo
code. As a Branch and Bound scheme, exploration and propagdternate as follows:

Master Exploration. The master process explores the AND/OR graph in a depthimsiner
guided by the start pseudo trée. Upon expansion of a nodeit consults a heuristic lower bound
Ib(n) to make pruning decisions, where the computation of the mppandub(n) can take into
account previous subproblem solutionsiolfz) > ub(n), the current subtree can be pruned. Explo-
ration is halted when the parallelization frontier is ree@hThe master then sends the respective
subproblem, given by the subproblem root variable and it$ed instantiation, to a worker node.

Master Propagation. The master process also collects and processes subpraiigrarss from
the worker nodes. Upon receipt of a solved subproblem, ltgisa is assigned as the value of the
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respective node in the master search space and recursiggdggated upwards towards the root,
updating node values identical to sequential AOBB.

With a fixed number of workersg, the master initially generates only the figssubproblems;
worker nodes solve subproblems using sequential ABBBd send the solution back to the master,
where it is propagated; the central exploration is thenmesilito generate the next subproblem.

Example 3.1. Consider again the AND/OR search graph in Figure 1(d). Givetad pseudo tree
having A and B, we can illustrate the parallelization scheme through fedl the search space of
the master process is marked in gray, and each of the eigipp@mdient subproblems rooted’abr

E can be solved in parallel.

The central decision is obviously where
to place theparallelization frontier i.e., at
which point to cut off the master search
space. Preliminary experiments, conducted
with globally enforced fixed-depth cutoff,
have shown that the parallel scheme car-

ries great potentidf It also became evident, Fig. 3: parallelization scheme applied to the ex-

however, that the issue of load balanCing is amp'e prob'em: master Search Space (gray) and
crucial for the overall performance (while gjght independent subproblems.

structural redundancy, for instance, does not

seem to have a major impact). In particular, the scheme neegisure that the workload is evenly
distributed over all processing units, each of which shdaditilized equally. Secondly, it is critical
to minimize overhead resulting from network communicasoid resource management.

In the fixed cutoff experiments we observed great varianseilproblem complexity with rela-
tive differences of up to three orders of magnitude. In tHiefang section we will therefore focus
on estimating subproblem complexity ahead of fitlnewith this the master can dynamically de-
cide at which point a given subproblem is “simple enough”darallelization (to avoid excessively
hard tasks) and also avoid very easy subproblems, whostaosotime will be dominated by the
distributed system overhead.

4. Predicting Subproblem Size Using the Cost Function

In this section we derive a scheme for estimating the sizé@feikplored search space of a con-
ditioned subproblem using parameters associated withribt@gm’s cost function, allowing us to
enforce an upper bound on the complexity of subproblems.

When considering a particular subproblem rooted at noaee propose to estimate its complex-
ity N(n) (i.e., the number of node AOBB explores to solve it) as a fuomctf the heuristic lower
boundLZ(n) as well as the upper bourid ), which can be computed based on earlier parts of the
search space or through an approximation algorithm likalleearch; we will also use the height
h(n) of the subproblem pseudo tree.
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4.1. Main Assumptions

We consider a node that roots the subproblem(n). If the search space belowwas a perfectly
balanced tree of heigli?, with every node having exactlysuccessors, clearly the total number of
nodes isNV = (bP+1 —1)/(b—1) = bP.

However, even if the underlying search space is balanceddttion expanded by BaB, guided
by some heuristic evaluation function, is not: the more eateuthe heuristic, the more focused
around the optimal solution paths the search space wilhb&ake-based search spaces it is therefore
common to measure effectiveness in post-solution anahgtbeeffective branching factatefined
asb= VN whereD is the length of the optimal solution path andis the actual number of nodes
generated?

Inspired by this approach, for a subproblem rooted &t adopt the idea of approximating the
explored search space by a balanced tree and express itisrsiaghN (n) = b(n)?™ . However, in
place of the optimal solution path length (which correspotadthe pseudo tree height in our case),
we propose to interprdd(n) as the average leaf node depttv) defined as follows:

Definition 4.1 (Average leaf node depth).Letiy, ..., I; denote the leaf nodes generated when solv-
ing subproblemP(n). We define thaverage leaf node deptt P(n) to be D(n) := % e dn(l)
whered,,(1;) denotes the depth of leaf notdeeslative to the subproblem roat

We next aim to expresgn) and D(n) as functions of the subproblem parametefs), U(N),
andh(n) (using other parameters is subject to future research).

4.2. Estimating the Effective Branching Factor

For the sake of simplicity we assume an underlying, “truéé&fve branching factor that is con-
stant for all possible subproblems. We feel this is a redsleressumption since all subproblems are
conditioned within the same graphical model. We thus mé@glas a normally distributed random
variable and take its mean as the constanthich we found to be confirmed in experiments. An ob-
vious way to learn this parameter is then to average overftbetiee branching factors of previous
subproblems, which is known to be the right statistic foineating the true average of a population.
Estimating o for new Subproblem P(n): Given a set of already solved subproblems
P(ny),...,P(n,), we can comput®(n;) and derive effective branching degreégs;) = "y/N(n;)
for all i. We then estimatethrought* = 2 377, b(n;) .

4.3. Deriving and Predicting Average Leaf Depth

With each subproblen?(n) rooted at a node we associate a lower bouridnr) based on the heuris-
tic estimate and an upper boubdn) derived from the best solution from previous subprobfems
Both L(n) andU(n) are known before we start solving(n). We can assumé(n) < U(n), since
otherwisen itself could be pruned angét(n) was trivially solved. We denote witlh(n') andub(n')
the lower and upper bounds of nodéswithin the subproblen®?(n) at the time of their expansion
and similarly assert that(n') < ub(n’) for any expanded node.

aW\e assume a graphical model with addition as the combinapemnator. Adaption to multiplication is straightforward.



September 21, 2010 0:4 WSPC - Proceedings Trim Size: 11in x 8.5in  psb11-parallel-haplotypes-final

Since the upper bound is derived from the best solution f@arfdr it can only improve through-
out the search process. Furthermore, assuming a monotmiistic function (that provides for any
noden’ a lower bound on the cost of the best solution path going tiilta(, the lower bounds along
any path in the search space are non-decreasing and we tathataany node’ expanded within
P(n) satisfies:

L(n) < 1b(n’) < ub(n’) < U(n)

Consider now a single path withiA(r), from »n down to leaf nodé, , and denote it byr, =
(AN () wheren{ = n andd, () is again the depth of, with respect ton (and hence
ny )= lk) We will write ib; for 1b(n)) andub; for ub(n’), respectively, and can state th@at> 1b;_,
andub; < ub;_q for all 1 <i < d,(I) (note thatby = L(n) anduby = U(n)). An internal node.’ is
pruned iffib(n’) > ub(n’) or equivalentlyub(n’) —b(n") < 0, hence we consider the (non-increasing)
sequence of valugsb; — 1b;) along the path ; in particular we are interested in the average change
in value from one node to the next, which we capture as follows

Definition 4.2 (Average path increment). Theaverage path increment 8f within P(n) is defined
by the expression:

dn(lk)
ub - lb (ubz;l — lbz;l)) (1)

inc(m)
=1

If we assuméub,, ;) — Ibg,1,)) = 0, the sum reduces 1@/ (n) — L(n)). Thus rewriting Expression
1 for d, (1) and averaging to gd2(n) as in Definition 4.1 yields:

]
=
Il
\H
-
~.
S
S

(2)

<.

We now defingnc(n) of P(n) throughinc(n)=! = ; i; 1 W with which Expression 2 becomes
D(n) = (U(n) — L(n)) - inc(n)~', namely an expression f@r(n) as a ratio of the distance between
the initial upper and lower bounds ana-(n) . Note that in post-solution analysi3(n) is known
andinc(n) can be computed directly, without considering each

One more aspect that has been ignored in the analysis soutawhich is likely to have an
impact, is the actual heighin) of the subproblem pseudo tree. We therefore propose to B¢ale
by a factor of the formh(n)®; in our experiments we found = 0.5 to yield good results The

general expression we obtain is thus:

D(n) _U(n)—L(n)
h(n)>*  inc(n) (3)

Predicting D(n) for New Subproblem P(n): Given previously solved subproblems
P(n1),...,P(n,), we need to estimaté.c(n) in order to predictD(n). Namely, we compute
inc(n;) = (U(n;) — L(ny)) - h(n;)® - D(n;)~! for 1 < i < r. Assuming again thatc(n) is a ran-
dom variable distributed normally we take the sample avetagestimatenc* = 137 | inc(n;).

bEventuallya could be subject to learning as well.
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Using Equation 3, our prediction fdp(n) is:
(U(n) — L(n)) - h(n)*

mnc*

(4)

Predicting N(n) for a New Subproblem P(n): Given the estimates* and inc* as derived
above, we will predict the number of nod&%n) generated withirP(n) as:

N*(n) = b* D" () (5)

D*(n) =

The assumption that.c andb are constant across subproblems is clearly too strict, @wmmglex
dependencies will be investigated in the future. For nowyéwer, even this basic approach has
proven to yield good results, as we will demonstrate in $edhi.

4.4. Parameter I nitialization

To find an initial estimate of both the effective branchingtéa as well as the average increment, the
master process performs 15 seconds of sequential seakaeps track of the largest subproblem
P(ng) solved within that time limit and extractgn,) as well asinc(ng), which will then be used
as initial estimates for the first set of cutoff decisionsdaidnally, we perform a 60 second run
of stochastic local searéwhich returns a solution that is not necessarily optimat,ibypractice
usually close to it. This provides an initial lower bound satbproblem estimation and pruning.

5. Experiments

We conducted experiments with our parallel AOBB scheme usiegabove prediction scheme to
make the cutoff decision fully automatically. The cutoffébhold was set t@ = 12 - 108, which
corresponds to roughly 20 minutes of processing time anddeamed to be a good compromise
between subproblem granularity and parallelization oxad

Overall solution times are given in Table i, k&, andw denote the number of variables, max.
domain size, and induced width of the problem’s Bayesian odtw~or reference we include the
sequential solution timeeg and the timepar;,, of the best-performing parallel run with fixed cutoff
depth from previous work® seq/sis is then the time of the sequential scheme prefaced by 60 dscon

Table 1: Results of the automated parallel scheme (pFedprkers, mm:10 workers).

’ instance \ n \ k \ w H seq \ DPar fiz \ seq/sls \ par*/sls ‘
ped7 (25/20) | 1068 | 4 | 32 || 19,114| 3,352 | 19,369 2,843
ped13 (20/20)| 1077 | 3 | 32 2,752 379 2,856 419
ped19 (15/20) 793 | 5| 25| time| 27,372 time| 10,671
ped31 (25/20) 1183 | 5 | 30 || 77,580| 15,230| 37,904 3,970
ped4l (25/20)| 1062 | 5 | 33 || 14,643| 2,173| 14,059 2,311
ped51 (25/20)| 1152 | 5 | 39 time | 65,818 time 59,975
mm3.8.5-11 | 3612 | 2 | 37 9,715| 1,443 3,003 1,145
mm3.8.5-12 | 3612 | 2 | 37 7,568 | 1,430 2,090 1,644
mm6.8.3-00 | 1814 | 2 | 31 || 12,595| 1,797 319 288
mm10.8.3-11 | 2558 | 2 | 47 || 84,920| 10,044 | 39,821 6,906
mm10.8.3-12 | 2558 | 2 | 47 5,630 1,357 2,549 814
mm10.8.3-13 | 2558 | 2 | 46 || 10,385| 2,413 5,397 2,208
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Fig. 4: Subproblem statistics for the first 75 subproblemexf3i and ped51.

of stochastic local search providing an initial lower bouRthally, columnpar* /sis contains the
overall solution time of the automated parallel schemei{smnincluding SLS preprocessing).

Pedigree Networks :The first set of problems consists of some very hard pedigegeanks,
encoded as Bayesian networks as described in Section 2hlth@ihumber of individuals and loci,
respectively, given after the instance name in Table 1. Weese® that in all cases the automatic
scheme does at least as good as the best fixed cutoff, in se@&®aen better. Again it is important
to realize thapar s, in Table 1 is the result of trying various fixed cutoff depthslaelecting the best
one, whereagar*/sls requires no such “trial and error”. In case of pedigree31Sh8 initialization
is quite effective for the sequential algorithm, cuttingmgutation from 21 to approx. 10 hours —
yet the automated scheme improved upon this by a factor obstlh0, to just above one hour.
Furthermore, for ped51 and in particular ped19, both of Wwidould not be solved sequentially,
par*/sls marks a good improvement ovgtr s, .

Mastermind Networks : While not as practically relevant, these hard problems eingdabard
game states can provide further insight into the parallefopmance. Here we find that for most
problems the automated scheme performs at least as wek &g fixed cutoff (determined after
trying various depths); in general, however, we believé tha overall problem complexity is too
close to the subproblem threshold, inhibiting better parakerformance.

5.1. Subproblem Statistics

Figures 4(a) and (b) contain detailed subproblem stagisbicthe first 75 subproblems generated by
the automated parallelization scheme on ped31 and pediieatvely. Each plot shows actual and
predicted number of nodes as well as the (constant) thréshat was used in the parallelization
decision. The cutoff depth of the subproblem root is deglicigainst a separate scale to the right.
As expected, the scheme does not give perfect predictianist keliably captures the trend.
Furthermore, the actual subproblem complexities are alladgned within an interval of roughly one
order of magnitude, which is significantly more balancedttiee results for fixed cutoff depff.
We also note that “perfect” load balancing is impossiblelitam in practice, because subproblem
complexity can vary greatly from one depth level to the néahg a single path. In particular, if a
subproblem at depthis deemed too complex, most of this complexity might stermfamly one of
its child subproblems at depth-1, with the remaining ones relatively simple — yet solved saiedy.
In light of this, we consider the above results very prongsin
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5.2. Performance Scaling 45

‘ped51 -

At this time we only have a limited set of computational reses 2l
at our disposal, yet we wanted to perform a preliminary exalu
tion of how the system scales with the number of workers. We
hence ran the automated parallel scheme with{5, 10, 15,20}
workers and recorded the overall solution time in each case.
Figure 5 plots the relative overall speedup in relatiop to5
workers. For nearly all instances the behavior is as exgeete
times improving linearly with the number of workers, altigtu
not always at a 1:1 ratio. It is evident that relatively coexpl 1 » " o
problem instances profit more from more resources; in partic Number of workers p
lar ped51 sees a two-, three-, and fourfold improvementgyton Fig. 5:
twice, thrice, and four times the number of workers, respelsgt
For simpler instances, we think the subproblem thresholapef
prox. 20 minutes is too close to the overall problem compyeitiereby inhibiting better scaling.

Speedup vs. 5 workers

Performance relative
to p = 5 workers.

6. Conclusion & Future Work

This paper presents a new framework for parallelization SDAOR Branch and Bound (AOBB),
a state-of-the-art optimization algorithm over graphicaddels, with applications to haplotyping
for general pedigrees. In extending the known idea of parake search to AOBB, we show that
generating independent subproblems can itself be doneghran AOBB procedure, where previous
subproblem solutions are dynamically used as bounds faripguew subproblems.

The underlying parallel framework is very general and make@smal assumptions about the
available parallel infrastructure, making this approacble on many different parallel and dis-
tributed resource pools (e.g., a set of networked desktogaters in our case).

Experiments have shown that the central requirement fod gecformance lies in effective load
balancing. We have therefore derived an expression thatireegpsubproblem complexity using an
exponential functional form using three subproblem patansgincluding the cost function. We then
proposed a scheme for learning this function’s free pararadtom previously solved subproblems.
We have demonstrated empirically the effectiveness of shimates, leading to far better workload
balancing and improved solution times when computing thetrikely haplotypes on a number of
hard pedigree instances.

We acknowledge that this initial estimation scheme, whikified and effective, still includes
some ad hoc aspects. We aim to advance the scheme by talorgcecdunt additional parameters
and by providing firm theoretical grounds for our approachsi@es extending the scheme itself,
future work will also more thoroughly investigate the issafeparallel scaling, using larger grid
setups than what we had access to so far (or performing dionszao that effect).

Furthermore, we plan to conduct more experiments on largdrhearder problems from the
haplotyping domain. In that context we are currently alsokivig on a more in-depth analysis
relating the size and structure of the pedigree and the nuailbeci in the problem to our scheme’s
performance. And while some problems may remain out of relaehto their inherent complexity,
we do believe that our scheme will scale to many instanceg@fast; our confidence is in part based
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on the results obtained with the Superlink Online systémhich exploits a very similar strategy in
the context of linkage analysis tasks and has proven veigesstul.

Finally, we note that in practice a small loss in accuracy ctien be tolerated if it leads to

significant time savings or better scaling. To that end, wenid to extend our current exact inference
scheme to approximate reasoning; in particular, our pErnatiplementation should adapt very well
to the concept of anytime search.
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