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Identifying and validating biomarkers from high-throughput gene expression data is 
important for understanding and treating cancer. Typically, we identify candidate 
biomarkers as features that are differentially expressed between two or more classes of 
samples. Many feature selection metrics rely on ranking by some measure of differential 
expression. However, interpreting these results is difficult due to the large variety of 
existing algorithms and metrics, each of which may produce different results. 
Consequently, a feature ranking metric may work well on some datasets but perform 
considerably worse on others. We propose a method to choose an optimal feature ranking 
metric on an individual dataset basis. A metric is optimal if, for a particular dataset, it 
favorably ranks features that are known to be relevant biomarkers. Extensive knowledge 
of biomarker candidates is available in public databases and literature. Using this 
knowledge, we can choose a ranking metric that produces the most biologically 
meaningful results. In this paper, we first describe a framework for assessing the ability 
of a ranking metric to detect known relevant biomarkers. We then apply this method to 
clinical renal cancer microarray data to choose an optimal metric and identify several 
candidate biomarkers.  

1. Introduction  

The subjective nature of traditional medical techniques limits the accuracy of 
cancer subtype classification and, subsequently, the effectiveness of therapy. 
Clinicians visually examine cancer specimens to determine their subtypes before 
proposing treatment regimens. However, cancers with similar characteristics 
may behave very differently despite similar treatment conditions [1].  Because 
cancer is the result of genetic anomalies, emerging diagnostic research has 
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primarily focused on genetic and proteomic expression. This research generally 
involves the use of high throughput technology (e.g. microarrays and mass 
spectrometry) to generate large amounts of genetic and proteomic expression 
data. We typically reduce this data using one of many analysis algorithms with 
the goal of identifying a subset of features (corresponding to genes or proteins) 
with high predictive accuracy [2-4]. We hope that these feature subsets will both 
enhance our understanding of the biological mechanisms as well as provide us 
with an accurate diagnostic system. When validated, we call these differentially 
expressed features biomarkers. Unfortunately, even the selection of a ranking 
metric is subjective, as different metrics may identify different subsets of 
features [5]. Feature ranking affects both the efficiency of identifying relevant 
genes and the accuracy of subsequent predictive models. We address this issue 
by presenting a method that uses existing biological knowledge to identify the 
best feature ranking metric for a particular gene expression dataset. The optimal 
metric maximizes the probability of correctly ranking differentially expressed 
and previously validated genes.  

Despite numerous feature selection studies, there is still a lack of clinically 
validated and proven biomarkers for most cancers. Thus, the use of “correct” 
genes as knowledge for algorithm selection is subjective and we should choose 
these genes carefully. Sources of biological knowledge are abundant, but vary in 
terms of reliability. We consider a knowledge source to be reliable if genes (or 
the corresponding expressed proteins) from that source have been clinically 
validated as differentially expressed. The majority of knowledge is contained in 
the literature and roughly falls into four levels of reliability, adapted from a 
review of post-analysis validation methods by Chuaqui et al. [6]: 

 
1. No biological validation. As the lowest level of reliability, this includes 

studies that develop feature selection algorithms and present the selected 
list of genes without a stringent interpretation of the biological results.  

2. In silico validation. Also known as computational validation, these studies 
compare their feature selection results to the results of other studies.   They 
may also identify Gene Ontology (GO) categories that are statistically 
overrepresented as a result of feature selection.  

3. Same-sample validation. These studies validate their microarray 
experiments by performing additional assays on the same samples from 
which their microarrays were derived. These assays typically include 
quantitative real-time PCR (qRT-PCR) or northern analysis and serve to 
validate the technical reliability of the microarrays.  

4. Independent or clinical validation. As the highest level of reliability, 
these studies validate the results of their microarray experiments using 
independent biological samples, usually from a clinical source. Independent 
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validation ensures that the selected features are not a result of over-fitting. 
These validations often take the form of qRT-PCR and in situ hybridization 
(ISH) for RNA products, or immunohistochemistry (IHC) and western 
analysis for protein products.  

 
Despite frequent disagreement between qRT-PCR and microarray results, qRT-
PCR is the most common method for validation of differentially expressed 
genes. Genes with large fold-change in microarray data are consistently 
correlated with qRT-PCR while those with smaller fold change are more 
susceptible to technical variability [7]. The detection of differentially expressed 
genes is generally reproducible across several microarray platforms [8]. 
However, in light of a recent study illustrating the pervasiveness of technical 
artifacts in microarray data [9], we only consider a knowledge source reliable if 
it falls into category three or four.  

Investigators have attempted to improve feature selection by using 
biological knowledge. Their knowledge sources often fall into category two of 
reliability, in silico validation, and include Gene Ontology and pathway 
databases, published literature, microarray repositories, and sequence 
information. Generally, these studies identify genes that cluster or correlate with 
genes from the knowledge sources [10-12]. Another study developed a 
theoretical framework to compare feature ranking metrics in the presence of 
control features [13]. However, this study also neglected to focus on the 
reliability of the control features. Indeed, the wealth of available information in 
the form of gene and protein interactions, functional annotation, and genetic and 
pathways can improve the results of data analysis [14]. Furthermore, microarray 
data analysis has shifted from purely data driven methods to methods that use 
additional knowledge, even in the feature selection process [14].  

We develop a method to quantify the efficiency of detecting biomarkers by 
feature ranking. This method maximizes the biological relevance of feature 
ranking by choosing the best metric from a population of metrics. The chosen 
ranking metric is optimal with respect to knowledge obtained from reliable 
sources. We test the effectiveness of our method using clinical gene expression 
data. Results indicate that the choice of ranking metric significantly affects 
feature ranking, which, in turn, affects the efficiency of discovering and 
validating novel biomarkers.  
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2. Methods 

2.1. Modeling Knowledge in Feature Selection 

Throughout this paper, the term ‘feature set’ denotes a group of one or more 
features or genes that act in concert. A ‘sample’ refers to measurements of a 
feature set from a single microarray or molecular profile. The entire microarray 
sample contains l  features while a feature set may contain p features 
(where l<<p ). We represent samples for feature set i as jointly distributed 
random vectors, piX ℜ∈

r
, and labels, }1,0{∈iY . The class label, Y , 

indicates the clinical source of the microarray sample. In most cancer problems, 
1=Y  indicates, for example, samples measured from patients with cancer and 
0=Y  indicates samples from patients with no cancer. For a microarray dataset 

with N  samples, feature set i for a particular dataset is the vector 
)),(,),,(),,(( 2211
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, which 
represents all feature sets in a dataset. Each feature set is associated with a 
relevance variable, ir , from the random variable }1,0{∈R . ir  represents the 
biological relevance of the feature set and the reliability of the knowledge 
source. D

r
 and R  are jointly distributed.  

For each feature set, we assign a score that represents the predictive ability 
of that feature set: 
 ),( θDhA

r
=  (1) 

where ℜ∈A  is a random variable and θ  is a meta-parameter that 
characterizes the scoring function, or ranking metric. Although θ  may 
represent the space of all ranking methods, we use a reduced set of wrapper-
based methods in our simulations. Specifically, we use a support vector machine 
(SVM) classifier with the linear and radial basis kernels and estimate the 
classification accuracy of biomarkers using the 0.632 bootstrap [5, 15]. The 
SVM classifier depends on a cost parameter, C , which determines the penalty 
of misclassification. The radial basis kernel depends on γ , which is 
proportional to the complexity of the classifier. For the radial basis kernel, the 
pair of parameters, ),( γC , represents θ .  We discretely vary C  and γ  over 
the log scale range of 0.1 to 103 and 0.01 to 105, respectively.  For the linear 
kernel, only the single parameter, C , represents θ . We vary this parameter over 
the log scale range of 0.01 to 102.  
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In practice, a gene expression dataset will have N  samples, each with 
l features. We separately examine m  ( m can be different from l and include, 
for example, all pairs, triplets, or a subset of feature combinations) feature sets, 
corresponding to },,,{ 21 mddd

r
K

rr
 and },,,{ 21 mrrr K . From the mapping 

defined in eq. 1, we compute the set of values },,,{ 21 mααα K where each 

α is an observation from A . Using a simple selection method, we can then 
conclude that the best feature sets and potential biomarkers are in the set 
 }:{ τα <= iiG  (2) 

where τ is a threshold.  
We want to choose a θ  that produces the most biologically relevant 

ranking of the m  feature sets, },,,{ 21 mddd
r

K
rr

, with respect to a given set of 

knowledge. Assuming that lower scores are better, the best θ  assigns scores 
such that ji αα <  for 1=ir and 0=jr , i.e., feature set i is known to be 

more relevant than feature set j for this particular dataset. Although we may 
never know the relevance of all features in a dataset, we may infer from 
literature that the k  feature sets, },,,{ 21 kk gggG K= , are relevant, where 

mk << . This implies that the elements of the set }:{ ki Gi∈α  should 

generally be smaller than those of }:{ kj Gj∉α . If the knowledge is reliable, 

we want to choose a θ  that maximizes the probability that the score of a feature 
set from kG  is less than that of a feature set that is not from kG . Explicitly, this 

probability is 
 )|( θαα jiP <  (3) 

for kGi∈ and kGj∉ . The estimated optimal ranking method is  

 )|(maxargˆ θααθ θ jiP <= , (4) 

keeping in mind that θ̂  is only optimal, or maximizes the probability, with 
respect to the given knowledge set. For m  feature sets, k  of which are in our 
knowledge set, kG , we can empirically approximate the probability of eq. 3 
with   

 ∑∑
∈ ∉

<
−

=<
kGi Gj

jiji I
kmk

P )(
)(

1)|( ααθαα  (5) 
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where )(xI  evaluates to one when x  is true and zero when x  is false. Eq. 5 is 
equivalent to computing the area under an ROC curve (AUC) for classifying 
feature sets as either relevant or irrelevant [13].  

2.2. Iteratively Updating Knowledge 

It may be difficult to compile a comprehensive list of knowledge from literature 
and independent validation. Consequently, we can expect that some feature sets 
that are not in our knowledge set, kGj∉ , are, in fact, relevant biomarkers. If 

V is the set of all relevant biomarkers, regardless of whether their relevance is 
known, we define the knowledge update function, 

θ̂
S , as 

 },:}minarg,{{)(ˆ1 kiikkk GiViGGSG ∉∈==+ αθ . (6) 

This function adds to kG  a relevant biomarker with the best rank according to 

the estimated optimal metric,θ̂ . Of course, a feature set is known to be in the 
set V only after performing a validation procedure such as qRT-PCR.  

If we know all feature sets in V , we can quantify any improvement in 
efficiency due to optimization of the ranking metric. Using bootstrap 
resampling, we randomly and repeatedly partition the feature sets in V into a 
group of known relevant feature sets (training) and a group of unknown relevant 
feature sets (testing). If there are K  elements in V , we randomly select 
K elements with replacement, resulting in *K  )( * KK <  unique elements for 

the testing set. We use the group of *KK −  known relevant feature sets to 
optimize the ranking metric, then iteratively detect feature sets from the 
unknown set of *K  features and update our knowledge using eq. 6. Every 
validation test requires a finite amount of time and resources. Plotting the 
fraction of correctly validated biomarkers (y-axis) vs. total validation time (x-
axis), reveals that higher detection efficiency corresponds to a larger area under 
this curve. This curve is similar to a ROC curve, so we also call the area under 
this curve the AUC. We repeat this bootstrap sampling of feature sets 100 times 
in order to compute the significance of the differences among three conditions: 
optimal metric selection, sub-optimal metric selection, and sub-optimal initial 
knowledge. For the sub-optimal metric selection condition, we use correct initial 
knowledge selected from V via bootstrap, but use a modified equation to 

choose θ̂  with median AUC: 
 )|(argˆ θααθ θ jiPmedian <= . (7) 
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Selection of a ranking metric with median AUC represents the common practice 
of arbitrarily selecting a metric with no regard for biological relevance and 
efficiency. This median AUC algorithm also serves as a reference point for 
assessing the potential improvement of efficiency when using the optimal 
algorithm.  

For the sub-optimal initial knowledge condition, we begin the simulation 
with incorrect knowledge selected via bootstrap and use eq. 4 to optimize the 
ranking algorithm before updating the current knowledge set. We expect the 
average AUC of the optimal selection condition to be higher than that of both of 
the sub-optimal conditions. Figure 1 illustrates this process.  

To determine whether the optimization procedure is over-fitting to the 
knowledge set, we conduct additional tests using randomly selected knowledge 
sets. If over-fitting is occurring, results of the optimal, suboptimal, and 
suboptimal knowledge tests for randomly selected knowledge should be similar 
to those of the true knowledge set.  

 

 
Figure 1.  Quantifying the efficiency of detecting relevant feature sets. For clinical data, we define V 
as the set of K known differentially expressed feature sets. Using bootstrap cross validation, we 
partition V into K* and K-K* samples. K* is the number of unique samples after sampling from V K 
times with replacement. We optimize the ranking algorithm using K-K* feature sets and assess the 
algorithm’s efficiency in detecting the remaining K* feature sets. For each of the three conditions—
optimal metric selection, sub-optimal metric selection, and sub-optimal initial knowledge—we 
perform this bootstrap sampling 100 times in order to compute the significance of any differences 
between mean AUC values.  
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2.3. Microarray Data Analysis and qRT-PCR Validation 

We examine two clinical case studies using renal tumor microarray datasets. 
The first dataset, from a study by Schuetz et al., uses Affymetrix microarrays 
(HG-Focus, 8793 probesets) to profile samples from three subtypes of renal 
tumors: 13 clear cell (CC) renal cell carcinoma (RCC), 4 chromophobe (CHR) 
RCC, and 3 oncocytoma (ONC, benign) [2]. The second dataset, from a study 
by Jones et al., uses a different model of Affymetrix microarrays (HG-U133A, 
22283 probesets reduced to 8793 that are common to HG-Focus) to examine 
similar renal tumor subtypes with 32 CC, 6 CHR, and 12 ONC samples [16]. 
We are interested in biomarkers that differentiate the CC class from the 
combined group of ONC and CHR.  

Using literature, we identify genes that have been validated (via qRT-PCR 
or IHC) as differentially expressed between the CC and ONC/CHR subtypes.  
We then validate an additional 94 genes using qRT-PCR (using RNA from 34 
CC and 18 CHR tissue samples). These 94 genes were selected by a renal cancer 
pathologist based on his knowledge and previous research. Only some of the 94 
genes assayed with qRT-PCR are differentially expressed as assessed by a linear 
SVM with classification error estimated using 0.632 bootstrap. Genes measured 
with qRT-PCR are categorized as differentially expressed if the estimated 
classification error is less than 10%. Using the set of knowledge from both 
literature and qRT-PCR validation, we examine the efficiency of detecting these 
biomarkers by optimizing the ranking metric under various conditions, as 
illustrated in figure 1.  

3. Results and Discussion 

As described in the methods, we identify five genes from literature that are 
differentially expressed between the CC and ONC/CHR renal tumor subtypes 
(table 1). Each of these genes had been validated using either qRT-PCR or IHC. 
Additionally, we validate several other potential biomarkers using qRT-PCR 
and select genes with estimated classification errors of less than 10% (table 2).  

Combining all knowledge from both literature and qRT-PCR validation, we 
examine the effect of optimizing the feature ranking metric using the method 
illustrated in figure 1. Box plots of the 100 iterations for each of the three tests 
indicate that optimal selection outperforms sub-optimal selection (figure 2, left 
column). The comparison of optimal to suboptimal metrics may seem to always 
favor the optimal metric. However, the optimal metric is not always a simple 
linear classifier. In fact, during the iterative gene detection process, θ  changes 
frequently as V  is updated. Moreover, suboptimal selection may represent the 
common practice of arbitrarily selecting ranking metrics with no regard to their 
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potential disadvantages for particular datasets. The box plots represent the 
median and quartiles of the AUC values for each of the 100 iterations. 
Correspondingly, the ROC curves also indicate that the optimal selection 
method improves the efficiency of biomarker detection (figure 2, right column).  

For the Schuetz data (figure 2, top row), the performance difference 
between the optimal and suboptimal ranking metrics seems small according to 
the box plots. However, the ROC curve of the optimal metric initially rises 
much more quickly compared to that of the suboptimal. The region of low 
specificity boosts the performance of the suboptimal metric. However, this 
region should be neglected when assessing performance since the number of 
false positives at this point is very high. Validation procedures would likely 
consider only the biomarkers detected in the high specificity region. Results are 
similar for the Jones data (figure 2, bottom row).  

The high variance of the suboptimal initial knowledge condition indicates 
that optimization of the ranking metric is sensitive to the initial conditions. 
Some of the randomly selected initial knowledge may, in fact, be differentially 
expressed, resulting in good performance. However, these random initial 
knowledge sets are more likely to be irrelevant. Thus, box plots for this 
condition illustrate this mixture of knowledge quality. These results stress the 
importance of the quality of biomarker knowledge.  

The control tests using random knowledge sets for V  show that our 
method does not over-fit to the knowledge (figure 2, box plots CO, CSO, and 
CSK). None of the algorithms considered in our space of θ are able to favorably 
rank these randomly selected genes. AUCs of these control tests are close to 0.5 
as expected for random classification.  

Using all knowledge from literature and the first round of qRT-PCR, we 
optimize the ranking metric and select the top genes that have not been 
previously validated and that have estimated classification errors of less than 5% 
(table 3). We can link a few of these genes directly to previous literature 
pertaining to renal cancer. For example, CXCR4 has been linked to kidney 
cancer. Using qRT-PCR, Schrader et al. shows that this gene is over-expressed 
in kidney cancer tissue compared to normal kidney tissue [17]. IGFBP3 and 
KLF10 has also been linked to renal cell carcinoma [18, 19]. Validation of these 
genes using qRT-PCR may yield additional knowledge to iteratively refine the 
biomarker selection process. However, since we want to primarily focus on the 
methodology here, we reserve the actual validation of these results for a future 
study.  
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Table 1. Genes validated as differentially expressed between CC and ONC/CHR renal tumor 
subtypes from various knowledge sources.  

Gene Symbol Knowledge Source Validation Method 
CA9 Chen et al., Clin Cancer Res, 2005 qRT-PCR 

CLCNKB Chen et al., Clin Cancer Res, 2005 qRT-PCR 
DEFB1 Schuetz et al., J Mol Diagn, 2004 qRT-PCR, IHC 
LRP2 Schuetz et al., J Mol Diagn, 2004 qRT-PCR, IHC 

PVALB Chen et al., Clin Cancer Res, 2005 qRT-PCR 
 

Table 2. Genes that we validated with qRT-PCR. These genes have estimated classification errors of 
less than 10% as assessed by a linear SVM classifier using 0.632 bootstrap estimation.  

Gene Symbol Error Gene Symbol Error 
STC1 2.43E-05 COX5A 0.0394058 

SLC25A4 0.00186696 BAG1 0.0548365 
CFTR 0.00279081 LY6E 0.0596081 

PDHA1 0.0133316 CD99 0.0600892 
PFKM 0.0279739 AKAP12 0.0624445 
NNMT 0.0289622 ACAT1 0.0687972 

CP 0.0300157 SPTBN2 0.077287 
CFB 0.0387219 GOT1 0.0784855 

 

 

 
Figure 2.  Box plots of AUC areas over 100 iterations for each test (left). AUCs for the optimal test 
(O) are higher than both the sub-optimal (SO) and sub-optimal knowledge (SK) tests (differences are 
statistically significant with p-values very close to 0). The control tests, using randomly selected 
knowledge indicate that optimizing the ranking metric does not over-fit (CO=control optimal, 
CSO=control suboptimal, CSK=control suboptimal knowledge). Average ROC curves for each test, 
illustrate the differences in biomarker detection efficiency (right). The ROC for the optimal metric 
test (solid line) indicates more accurate biomarker detection for both the Schuetz (top row) and Jones 
(bottom row) renal cancer datasets.  
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Table 3.  Proposed list of genes for further qRT-PCR validation. 

Gene Symbol Error Gene Symbol Error 
ACLY 0 PCCB 0.03274 

CXCR4 0.013907 TMSB10 0.034201 
C4A /// C4B 0.0187 HCLS1 0.034415 

FLNA 0.019903 ACTA2 0.039398 
PMP22 0.023798 IGFBP3 0.040989 

PFKFB3 0.026506 NFKBIA 0.042332 
KLF10 0.027801 CD44 0.049095 
PRG1 0.03003 IER3 0.049571 

LGALS1 0.030617   

4. Conclusion 

We have shown that biomarker identification by feature ranking benefits from 
knowledge integration at key points. Using this knowledge—whether from 
clinical observations, laboratory experiments, or existing literature—we can 
intelligently choose an optimal ranking metric for a specific gene expression 
dataset. The use of an optimal metric for ranking and identifying novel 
biomarkers reduces the number of false discoveries, increases the number of 
true discoveries, reduces the required time for validation, and increases the 
overall efficiency of the process.  

The results of our simulations indicate that knowledge integration improves 
biomarker selection for clinical microarray data. Although this study assumes 
independent gene expression, the method is general and we can use it to rank 
combinatorial gene expression data as well. Furthermore, we test this method 
using only a limited set of wrapper-based feature ranking metrics. However, it is 
easily expandable to encompass a variety of metrics, including the commonly 
used filter methods such as t-tests and fold change. We hope that the proposed 
method will impact biomarker identification practices and improve the 
effectiveness of resulting clinical applications.  
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