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Genome-wide association studies provide an unprecedented opportunity to identify 
combinations of genetic variants that contribute to disease susceptibility.  The 
combinatorial problem of jointly analyzing the millions of genetic variations accessible 
by high-throughput genotyping technologies is a difficult challenge.  One approach to 
reducing the search space of this variable selection problem is to assess specific 
combinations of genetic variations based on prior statistical and biological knowledge.  In 
this work, we provide a systematic approach to integrate multiple public databases of 
gene groupings and sets of disease-related genes to produce multi-SNP models that have 
an established biological foundation.  This approach yields a collection of models which 
can be tested statistically in genome-wide data, along with an ordinal quantity describing 
the number of data sources that support any given model.  Using this knowledge-driven 
approach reduces the computational and statistical burden of large-scale interaction 
analysis while simultaneously providing a biological foundation for the relevance of any 
significant statistical result that is found.         

1. Introduction  

1.1. Genome-Wide Association Studies (GWAS) 

Over the last five years, genome-wide association studies (GWAS) have become 
a very popular study design for identifying genetic variants that incur disease 
risk in human populations.  The overall strategy of the GWAS approach is 
inherently high-throughput, allowing investigators to blanket the genome with 
hundreds of thousands of single nucleotide polymorphisms (SNPs) in many 
individuals with the general goal of elucidating genetic causes of common 
human phenotypes – complex diseases in particular.     
      Traditional methods of genetic study design and analysis which excelled at 
identifying the rare mutations that cause Mendelian genetic disease have not 
performed as well for common complex disease, such as sporadic breast cancer 
or autism.  Numerous candidate gene studies have been conducted for complex 
diseases, where particular genes of interest are investigated, but in many cases 
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the results of these studies fail to replicate in other samples.  While GWA 
studies are beginning to unravel the genetics of these complex diseases, one 
possible explanation for the lack of consistent findings from traditional studies 
is epistasis, or gene-gene interaction, and unless explicitly assessed, it may 
affect GWA studies also.     

1.2. Epistasis in GWA Studies 

Epistasis was first described by Bateson as the effect of one gene masking (or 
literally standing upon) the effect of another [1].  The Bateson view of epistasis 
has also been described as biological epistasis [2], where variation in the 
physical interaction of biomolecules affects a phenotype [3].  From a statistical 
perspective, epistasis was also observed as multi-allelic segregation patterns by 
Fisher who mathematically described the phenomenon as deviation from 
additivity in a linear model of genotypes [4].  Statistical epistasis and biological 
epistasis eventually converge as scientific understanding progresses.  For 
example Bridges discovered statistical epistasis in Drosophila eye color, where 
collections of alleles Mendelize with various eye color phenotypes [5].  These 
alleles influence a common set of biochemical pathways controlling eye 
pigmentation that was elucidated many years later [6].  Epistasis can cause non-
replication of single-SNP effects.  If the effect of one allele is conditional on the 
presence of a second unknown allele, that second allele may not be present in a 
new population, and the effect of allele one will not replicate.   
        As epistasis is believed to play an important role in the genesis of complex 
disease, analysis strategies for detecting epistasis in large-scale data are 
increasingly important.  A major hurdle in discovering epistasis, however, is the 
variable selection problem.  Exhaustively evaluating all two-marker models in 
whole-genome data is a computational and statistical challenge, as processing 
the 5.00e11 possible two-marker models from a set of 1 million SNPs requires 
extensive computing resources and produces a plethora of statistically 
significant results with limited biological interpretability. 

Two approaches are commonly suggested to address the variable selection 
problem.  One approach is to select SNPs based on the strength of independent 
main effects, evaluating interactions only between SNPs that meet a certain 
effect size threshold.  Another approach is to evaluate multi-marker 
combinations based on biological criteria [7].  Each of these strategies imposes a 
specific bias into the analysis, and neither strategy will be optimal in all cases.  
If we select or filter variables based on their main effects, we bias the analysis 
using statistical information, and assume that relevant interactions occur only 
between markers that independently have some effect on the phenotype alone.  
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Several studies have proposed complex theoretical penetrance models that 
influence the trait only through the interaction of two or more genetic variants 
[8-10], and filtering based on main effects would potentially miss these types of 
discoveries.  If we filter variables using biological information – i.e. only 
examine interactions between SNPs in a common pathway or with a common 
structure or function – we bias the analysis in favor of models with an 
established biological foundation in the literature, and novel interactions 
between SNPs would be missed.  Furthermore, the entire analysis is conditional 
upon the quality of the biological information used.   

Several new tools have recently been developed to incorporate biological 
information with analytical approaches for GWAS data.  Prioritizer is a 
Bayesian approach to incorporate multiple sources of gene interrelationships in 
a global “functional gene network”.  This network is used to prioritize 
significant single-SNP results by gene function [11].  Others methods use 
structured knowledge as a way to guide (but not restrict) variable selection for 
regression-based modeling.  Province and Borecki propose a Bayesian re-
sampling approach to select collections of SNPs that may have very small 
independent effects but function in aggregate explain a more substantial portion 
of trait variance [12].  Conti proposes a hierarchical modeling approach that 
uses an expert knowledge ontology to search for and test complex multi-SNP 
models.  This Bayesian modeling process is flexible, allowing SNPs outside the 
knowledge-base to also be used in models (Pharmacogenomics Research 
Network Presentation 2008). 
       We propose a strategy that steps beyond the annotation and grouping of 
independent SNP effects, but does not attempt to jointly model large numbers of 
SNPs simultaneously.  Also, we believe that ultimately data from multiple 
sources will better facilitate a comprehensive analysis, providing a biological 
foundation for testing specific multi-SNP association models in GWAS data.  In 
this work, we present the Biofilter, a tool for knowledge-driven multi-SNP 
analysis of large scale SNP data.  The Biofilter fundamentally differs from other 
methods in the way knowledge is incorporated into the analysis pipeline.  The 
Biofilter uses biological information about gene-gene relationships and gene-
disease relationships to construct multi-SNP models before conducting any 
statistical analysis.  Rather than annotating the independent effect of each SNP 
in a GWAS dataset, the Biofilter allows the explicit detection and modeling of 
interactions between a set of SNPs.  In this manner, the Biofilter process 
provides a tool to discover significant multi-SNP models with non-significant 
main effects that have established biological plausibility.  This approach has the 
added benefit of reducing both the computational and statistical burden of 
exhaustively evaluating all possible multi-SNP models.   
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Figure 1.  Overview of the Biofilter process.  GWAS platform SNPs are mapped to Ensembl gene 
IDs and related to disease-independent sources (left) and to disease-dependent sources (right).  
Multi-marker models are generated from SNPs within knowledge-related genes.  Derived models are 
overlaid to assess overall model implication. 

2. Methods 

2.1. Overview 

An overview of the Biofilter is show in figure 1.  The Biofilter model generation 
process is gene-centric, and as such, SNPs from GWAS genotyping platforms 
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must first be assigned to genes.  Relationships between the genes represented by 
a platform can then be translated to multi-SNP models.  Structured biological 
knowledge relevant to GWAS interaction analysis can come from various 
sources.  We have partitioned relevant knowledge into two basic types: disease-
dependent and disease-independent.  Disease-dependent knowledge is 
information that relates a gene to the disease phenotype being studied, such as a 
previously associated SNP or a gene that is over-expressed in cases.  Disease-
independent knowledge is information that relates genes to one another, or 
defines collections of genes, such as a metabolic pathway or a common 
structural motif.  These two types of information can be combined to form 
different classes of multi-SNP models and provide a measure of how strongly 
implicated a given model is based on the current available knowledge.   

2.2. Database Integration 

We chose Ensembl as our source of gene and SNP positional information due to 
ease of access and its clearly defined database schema.  RS numbers for SNPs 
used in genotyping are matched to records within the Ensembl variation 
database (Release 49) to retrieve position information.  The probe positions 
were joined to gene information tables to determine if the SNPs lie within one 
of the 32,000 known Ensembl genes that physically map to the autosomes or the 
X and Y chromosomes.  This SNP-to-gene mapping is stored as a derived table 
in the Biofilter database.     
       Disease-dependent knowledge sources link individual genes to a disease 
phenotype.  The goal of using disease-dependent knowledge is to identify genes 
that have some prior evidence of putative influence on the phenotype.  One 
systematic source of disease-dependent knowledge is the Genetic Association 
Database (GAD).  GAD is an archive of human genetic association studies of 
complex diseases and disorders established in 2004 [13].  GAD contains a list of 
prior associated genes for a variety of specific disease phenotypes and broader 
phenotype classes.  Other types of disease-dependent knowledge may require 
manual selection from literature.  Previous regions of genetic linkage, studies of 
differential gene expression, and hypothetical disease etiologies are possible 
sources of disease-gene relationships.   

Disease-independent sources link two or more genes together.  The goal of 
using disease-independent knowledge is to identify pairs of genes with some 
prior evidence of putative epistasis.  The Gene Ontology project (GO, accessed 
on 3/16/08) is a collaborative effort to characterize and describe gene products 
in a collection of three hierarchical ontologies: cellular component, biological 
process, and molecular function.  Because of its hierarchical structure, some 
broad ontology categories contain many hundreds of genes.  For this analysis, 
smaller, more precisely defined gene categories (< 30 genes) were used as these 
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presumably contain stronger gene relationships.  The Database of Interacting 
Proteins (DIP, 1/14/08 update) documents experimentally determined protein-
protein interactions from more than 80 organisms [14].  We used the pair-wise 
human protein-protein interaction set contained in DIP to produce gene-gene 
pairs.  The Protein Families Database (PFAM, Release 22) uses multiple 
sequence alignments and hidden Markov models to identify common protein 
domains and families based on structural and functional sequence patterns [15].  
Generating pairs of genes using this data relies on the hypothesis that members 
of the same protein family are more likely to jointly influence disease risk.  As 
such, we generated gene-gene pairs within proteins having the same domain, the 
same protein family, the same structural motif, and the same sequence repeat.  
The Kyoto Encyclopedia of Genes and Genomes (KEGG, 3/6/08 update) 
Pathway set is a collection of manually drawn pathway maps for a variety of 
metabolic and signaling pathways [16].  Reactome (Version 24) is a database of 
curated core pathways and reactions in human biology [17].  Netpath is a 
relatively new source of curated immune signaling and cancer pathways 
provided by the Pandey Lab at Johns Hopkins University and the Institute of 
Bioinformatics [18].  With these pathway collections, all possible gene-gene 
pairs were generated within each pathway-based gene group. 

Relational data sources were downloaded and reconstituted in their original 
form within a MySQL database using Perl scripts.  Using the schema for each 
data source, proteins and/or genes were translated to Ensembl gene IDs, and 
derivative tables containing gene groupings (such as protein families) were 
generated within the Biofilter database.  Non-structured data sources, such as 
gene lists from publications, were manually imported into the Biofilter database.  
These gene lists were then translated to Ensembl gene IDs and used to establish 
gene groupings. 

2.3. Model Types and Generation 

Using both disease-dependent and disease-independent data sources, there are 
four types of two-SNP models possible: disease-independent, disease-
dependent, hybrid with one disease-dependent gene, and hybrid with two 
disease-dependent genes.  Figure 2 illustrates each of these model types.  
Disease-dependent information is based on a set of genes that are related to 
disease, visualized in the figure as a collection of dashed boxes, or unconnected 
nodes of a graph.  Disease-dependent models are generated by exhaustively 
pairing all possible combinations of disease-related genes.  Disease-independent 
information is based on relationships between sets of genes, visualized in the 
figure as a set of lines, or edges in a graph.  To build disease-independent 
models, we generate pair-wise combinations of SNPs located in genes that are 
related, illustrated by as edges in figure 2.  Hybrid models blend disease-
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dependent and disease-independent information, and can contain either one or 
two disease-related genes.  In the figure, one-gene hybrids must be connected by 
an edge (disease-independent connection) and contain at least one dashed square 
(disease-dependent gene).  Two-gene hybrids must contain two dashed squares 
connected by an edge, meaning that there is evidence for biological interaction 
of two disease-related genes.  For each pair-wise combination of genes, all 
possible two-SNP models across the two genes are built.   For example, if there 
are two SNPs (A and B) in gene one and there is one SNP (C) in gene two, two 
models are generated (A,C and B,C).  
 

 
Figure 2.  Two-gene model types.  Each box represents a gene, and each line a connection between 
genes.  Boxes that are dashed have been previously linked to disease by at least one data source.       

2.4. Model Implication 

Each model constructed has a set of Biofilter data sources that support it.  If 
a combination of genes is supported by multiple data sources, it is likely more 
accepted by the scientific community and therefore may be more biologically 
plausible.  We quantify the degree of knowledge-based support for a model with 
an implication index.  The implication index is simply the number of data 
sources that provide evidence of gene-gene interaction or gene-disease 
relationship, and is calculated simply by summing the number of data sources 
supporting each of the two genes and the connection between them.  For 
example, if one disease-related gene supported by two data sources is connected 
to another non-disease related gene, and that connection is supported by three 
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data sources, the implication index of the model is five.  In this manner, the 
implication index provides an ordinal value representing the strength of the 
biological plausibility of a multi-SNP model. 

 
Table 1.  General GWAS platform statistics 

 Illm1M Affy60 
Total SNPs (with RS IDs) 1,055,373 924,689 

SNPs within genes 493,854 353,913 
Genes represented 21,024 17,418 

Common SNPs 267,900 
Common SNPs within genes 118,355 
Common genes represented 16,908 

3. Results 

3.1. GWAS Platform Representation 

Two large-scale genotyping platforms were assessed in this study: the Illumina 
Human1M-Duo BeadChip (Ilmn1M) and the Affymetrix Genome-Wide Human 
SNP Array 6.0 (Affy60).  For the purposes of our assessment, only probes with 
vendor-specified Reference Sequence (RS) numbers were used in order to 
assure continuity of genomic position.  General statistics for these two platforms 
are shown in Table 1.   
      As described in the methods, genes can be defined as disease-dependent and 
disease-independent.  Because the disease-independent genes can be used in an 
analysis of any phenotype, we focused on how those genes are represented in 
the different data sources.  Table 2 shows the number of gene pairs represented 
from each platform in each disease-independent data source.  Table 3 shows the 
pair-wise overlap across the six different public databases.   

3.2. Generalized Disease Independent Models 

As disease-independent models are universally applicable to any phenotype, we 
provide files containing all derived gene-gene pairs, and platform specific two-
SNP models for the Illm1M and Affy60 (available: 
http://chgr.mc.vanderbilt.edu/ritchielab/method.php?method=biofilter).  Counts 
of these two-SNP models by implication index are shown in table 4.  The 
Illm1M platform covers over a million more two-SNP models than the Affy60.  
This is most likely due to a lack of RS numbers for many Affymetrix probes, 
rather than a lack of gene coverage.       
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Table 2.  Gene pairs represented by platform. 

Data Source Illm1M Affy60 
PFAM 14911 12837 

DIP 747 638 
GO 6129 5359 

KEGG 4058 3543 
Reactome 1799 1610 
Netpath 3704 3246 

 
Table 3.  Pair-wise overlap of all known genes in disease-independent Biofilter data sources.  The 
data source listed on each row contains genes that overlap the data source listed on each column.  
Cell values indicate the proportion of the genes in the column source that are represented in the row 
source. 

  PFAM DIP GO KEGG Reactome Netpath 

PFAM 1 0.95 0.92 0.95 0.95 0.92 

DIP 0.05 1 0.09 0.08 0.15 0.12 

GO 0.37 0.73 1 0.63 0.64 0.56 

KEGG 0.01 0.02 0.01 1 0.02 0.02 

Reactome 0.12 0.36 0.19 0.25 1 0.21 

Netpath 0.22 0.6 0.34 0.41 0.41 1 

         
      Performing an exhaustive analysis of all possible two-SNP models within 
genes represented by these two platforms would result in 1.22e11 models for the 
Illumina 1M and 6.26e10 models for the Affymetrix 1M.  By reducing the 
interaction search space to only models with established biological plausibility 
via the disease-independent data sources, only 2.23e9 (Illm1M) and 1.2e9 
(Affy60) model evaluations are required.  Applying a Bonferroni correction to 
the exhaustive approach would require a model fit p-value of 4.10e-13 (Illm1M) 
and 7.98e-13 (Affy60) to be statistically significant.  In contrast, using the 
knowledge-based approach, a Bonferroni correction of 2.25e-11 (Illm1M) or 
4.16e-11 (Affy60) is required.  In this manner, reducing the search space not 
only improves computation time, but also reduces the statistical burden of 
conducting biologically non-relevant statistical tests.  Further model restriction 
(such as using models with an implication index > 1) would further reduce the 
Bonferroni adjusted significance threshold.   

4. Discussion 

When examining epistasis in genome-wide association studies, there are several 
variable selection strategies.  Exhaustive evaluation of all multi-SNP models is 
generally computationally impractical.  Exploring epistasis within a set of SNPs 
with detectable main effects may prevent the discovery of complex genetic 
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models where trait variance is explained largely by the interaction of SNPs.  
Using biological knowledge to perform SNP selection provides two key benefits 
simultaneously: it reduces the multi-SNP model search space, and it provides a 
biologically plausible foundation for the models to be evaluated.  We developed 
the Biofilter to systematically reduce model search space based on multiple 
sources of structured biological knowledge.   

We mapped the disease-independent models generated by the Biofilter to 
two GWAS genotyping platforms, the Affymetrix 1M and the Illumina 1M.  
The final evaluated model search space was 0.241% of the exhaustive model 
space for Affy60 and 0.40% of the exhaustive model space for Illm1M when 
requiring at least one source of structured biological knowledge connecting the 
two genes in a two-SNP model, with further reductions possible by adjusting the 
number of required knowledge sources implicating the model.        
 
Table 4.  Disease-independent gene pairs and model counts by implication index. 

Implication 
Index 

Illm1M Gene 
Pairs 

Illm1M Two- 
SNP Models 

Affy60 
Gene Pairs 

Affy60 Two-
SNP Models 

1 4,679,363 2,174,328,700 3,505,773 1,162,090,222 

2 87,163 44,960,600 67,341 36,825,703 

3 8,065 6,425,788 6,094 4,102,173 

4 715 397,966 546 171,075 

5 45 11,033 40 4,122 

6 1 569 1 757 

Total 4,775,352 2,226,124,656 3,579,795 1,203,194,052 

  
The Biofilter method of variable selection can be implemented with a 

variety of analysis techniques, including logistic regression, classification and 
regression trees, and basic categorical statistics, among many others.  To this 
end, the Biofilter is being developed as a knowledge-based filter in part of a 
larger analysis framework.  The collection of multi-SNP models generated by 
the Biofilter can be passed seamlessly to several analytical methods.  Statistical 
properties of each multi-SNP model are then stored, allowing retrieval of results 
with complete annotation of the SNPs, genes, gene grouping information, and in 
some cases, PubMed references to the original articles implicating the model.  
The end result of this analysis pipeline is a set of biologically plausible, 
statistically relevant multi-SNP genetic models.      

Some approaches may be adapted to incorporate the implication index into 
the analysis plan.  Prioritized subset analysis, for example, partitions statistical 
results based on prior biological knowledge.  The false discovery rate (FDR) for 
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the “prioritized subset” is estimated separately, improving power when the prior 
knowledge is accurate [19].  Applying this strategy to subsets defined by the 
implication index could improve statistical power via p-value correction.   

Ranking models based on the number of supporting data sources may 
introduce unknown literature-based biases.  Some data sources may have inter-
dependencies, where one source was referenced in the creation of another.  The 
breakdown of gene overlap for the 6 disease-independent data sources shows 
the diversity of gene-pairs represented, though notably PFAM contains nearly 
all of the gene-pairs established by the other sources.  This is likely because 
PFAM contains the largest number of genes.  When using disease-dependent 
data sources, there are certainly many factors that influence the inclusion and 
promotion of specific genes in relation to a phenotype, such as reporting bias.     

Overall, the Biofilter provides a systematic way to assess the level of 
knowledge-based support for a given genetic model, provide a ranked list of all 
possible knowledge-based models, and to statistically test each of these 
hypotheses in genome-wide association data.   
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