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There has been an increasing amount of research on biomedical named entity recognition, 
the most basic text extraction problem, resulting in significant progress by different 
research teams around the world. This has created a need for a freely-available, open 
source system implementing the advances described in the literature. In this paper we 
present BANNER, an open-source, executable survey of advances in biomedical named 
entity recognition, intended to serve as a benchmark for the field. BANNER is 
implemented in Java as a machine-learning system based on conditional random fields 
and includes a wide survey of the best techniques recently described in the literature. It is 
designed to maximize domain independence by not employing brittle semantic features 
or rule-based processing steps, and achieves significantly better performance than 
existing baseline systems. It is therefore useful to developers as an extensible NER 
implementation, to researchers as a standard for comparing innovative techniques, and to 
biologists requiring the ability to find novel entities in large amounts of text. 

BANNER is available for download at http://banner.sourceforge.net. 

1.   Introduction  

With molecular biology rapidly becoming an information-saturated field, 
building automated extraction tools to handle the large volumes of published 
literature is becoming more important. This need spawned a great deal of 
research into named entity recognition (NER), the most basic problem in 
automatic text extraction. Several challenge evaluations such as BioCreative 
have demonstrated significant progress [19, 20], with teams from around the 
world implementing creative solutions to the known challenges in the field such 
as the unseen word problem and the mention boundary problem. Although there 
are other open-source NER systems such as ABNER [11] and LingPipe [1] 
which are freely available and have been extensively used through the years as 
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baseline systems, the advances since the creation of these systems have mostly 
remained narrated in published papers, and are generally not available as easily 
deployable code. Thus the field now sees a great need for a freely-available, 
open-source system implementing these advances for a more accurate reflection 
of what a baseline system should achieve, allowing researchers to focus on 
alternative approaches or extensions to the known techniques. In other words, 
the field needs an updated measuring stick. 

We present here BANNER, an open-source biomedical named-entity 
recognition system implemented using conditional random fields, a machine 
learning technique. It represents an innovative combination of known advances 
beyond the existing open-source systems such as ABNER and LingPipe, in a 
consistent, scalable package that can easily be configured and extended with 
additional techniques. It is intended as an executable survey of the best 
techniques described in the literature, and is designed for use directly by 
biologists, by developers as a building block, or as a point of comparison when 
experimenting with alternative techniques.  

2.   Background 

Named entity recognition (NER) is the problem of finding references to 
entities (mentions) such as genes, proteins, diseases, drugs, or organisms in 
natural language text, and labeling them with their location and type. Named 
entity recognition in the biomedical domain is generally considered to be more 
difficult than other domains, such as newswire, for several reasons. First, there 
are millions of entity names in use [19] and new ones are added constantly, 
implying that neither dictionaries nor training data will be sufficiently 
comprehensive. Second, the biomedical field is moving too quickly to build a 
consensus on the name to be used for a given entity [6] or even the exact 
concept defined by the entity itself [19], while very similar or even identical 
names and acronyms are used for different concepts [6], all of which results in 
significant ambiguities. Although there are naming conventions, authors 
frequently do not follow them and instead prefer to introduce their own 
abbreviation and use that throughout the paper [2, 19]. Finally, entity names in 
biomedical text are longer on average than names from other domains, it is 
generally much easier – for both humans and automated systems – to determine 
whether an entity name is present than it is to detect its boundaries [7, 19, 20]. 
Named entity recognition is typically modeled as a label sequence problem, 
which may be defined formally as follows: Given a sequence of input tokens x = 
(x1 … xn), and a set of labels L, determine a sequence of labels y = (y1, ..., yn) 
such that yi ∈ L for 1 ≤ i ≤ n. In the case of named entity recognition the labels 
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incorporate two concepts: the type of the entity (e.g. whether the name refers to 
a protein or a disease), and the position of the token within the entity. The 
simplest model for token position is the IO model, which indicates whether the 
token is Inside an entity or Outside of a mention. While simple, this model 
cannot differentiate between a single mention containing several words and 
distinct mentions comprising consecutive words [21]. The next-simplest model 
used is IOB [11], which indicates whether each token is at the Beginning of an 
entity, Inside an entity, or Outside. This model is capable of differentiating 
between consecutive entities and has good support in the literature. The most 
complex model commonly used is IOBEW, which indicates whether each token 
is at the Beginning of an entity, Inside an entity, at the End of an entity, a one-
Word entity, or Outside an entity. While the IOBEW model does not provide 
greater expressive power than the IOB model, some authors have found it to 
provide the machine learning algorithm with greater discriminative power, 
which may translate into higher accuracy [16]. Example sentences annotated 
using each label model can be found in table 1. 
 
Table 1. Example sentences labeled using each of the common labeling models, taken from the 
BioCreative 2 GM training corpus [19]. 

Label model Example 
IO Each|O immunoprecipitate|O contained|O a|O complex|O of|O N1|I-GENE (|I-

GENE 3eltaic|I-GENE )|I-GENE and|O CBF1|I-GENE .|O 
IOB TNFalpha|B-GENE and|O IL|B-GENE -|I-GENE 6|I-GENE levels|O were|O 

determined|O in|O the|O culture|O supernatants|O .|O 
IOBEW CES4|W-GENE on|O a|O multicopy|O plasmid|O was|O unable|O to|O 

suppress|O tif1|B-GENE -|I-GENE A79V|E-GENE .|O 

Conditional random fields (CRF) [14] are a machine learning technique that 
forms the basis for several other notable NER systems including ABNER [11]. 
The technique can be seen as a way to “capture” the hidden patterns of labels, 
and “learn” what would be the likely output considering these patterns. Like all 
supervised machine learning techniques, a CRF-based system must be trained on 
labeled data. In general, a CRF is modeled as an arbitrary undirected graph, but 
linear-chain CRFs, their linear form, are used for sequence labeling. In a CRF, 
each input xi from the sequence of input tokens x = (x1 … xn) is a vector of real-
valued features or descriptive characteristics, for example, the part of speech. As 
each token is labeled, these features are used in conjunction with the pattern of 
labels previously assigned (the history) to determine the most likely label for the 
current token. To achieve tractability, the length of the history used, called the 
order, is limited: a 1st-order CRF uses the last label output, a 2nd-order CRF uses 
the last two labels, and so on. There are several good introductions to 
conditional random fields, such as [14] and [18].  
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As a discriminant model, conditional random fields use conditional 
probability for inference, meaning that they maximize p(y|x) directly, where x is 
the input sequence and y is the sequence of output labels. This gives them an 
advantage over generative models such as Hidden Markov Models (HMMs), 
which maximize the joint probability p(x, y), because generative models require 
the assumption that the input features are independent given the label. Relaxing 
this assumption allows discriminatively trained models such as CRFs to retain 
high performance even though the feature set contains highly redundant features 
such as overlapping n-grams or features irrelevant to the corpus to which it is 
currently being applied. This, in turn, enables the developer to employ a large 
set of rich features, by including any arbitrary feature the developer believes 
may be useful [14]. In addition, tolerating irrelevant features makes the feature 
set more robust with respect to applications to different corpora, since features 
irrelevant to one corpus may be quite relevant in another [6].  

In contrast, another significant machine learning algorithm – support vector 
machines (SVMs) – also tolerate interdependent features, but the standard form 
of SVMs only support binary classification [21]. Allowing a total of only 2 
labels implies that they may only recognize one entity type and only employ the 
IO model for label position, which cannot distinguish between adjacent entities.  

3.   Architecture 

The BANNER architecture is a 3-stage pipeline, illustrated in Figure 1. 
Input is taken one sentence at a time and separated into tokens, contiguous units 
of meaningful text roughly analogous to words. The stream of tokens is 
converted to features, each of which is a name/value pair for use by the machine 
learning algorithm. The set of features encapsulates all of the information about 
the token the system believes is relevant to whether or not it belongs to a 
mention. The stream of features is then labeled so that each token is given 
exactly one label, which is then output. 

The tokenization of biomedical text is not trivial and affects what can be 
considered a mention since generally only whole tokens are labeled in the output 
[20]. Unfortunately, tokenization details are often not provided in the biomedical 
named entity recognition literature. BANNER uses a simple tokenization which 
breaks tokens into either a contiguous block of letters and/or digits or a single 
punctuation mark. For example, the string “Bub2p-dependent” is split into 3 
tokens: “Bub2p”, “-”, and “dependent”. While this simple tokenization generates 
a greater number of tokens than a more compact representation would, it has the 
advantage of being highly consistent. 
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Figure 1.  BANNER architecture. Raw sentences are tokenized, converted to features, and labeled. 
The Dragon toolkit [22] (POS) and Mallet [8] are used for part of the implementation. 

BANNER uses the CRF implementation of the latest version of the Mallet 
toolkit (version 0.4) [8] for both feature generation and labeling using a second 
order CRF. The set of machine learning features used primarily consist of 
orthographic, morphological and shallow syntax features and is described in 
table 2. While many systems use some form of stemming, BANNER instead 
employs lemmatization [16], which is similar in purpose except that words are 
converted into their base form instead of simply removing the suffix. Also 
notable is the numeric normalization feature [15], which replaces the digits in 
each token with a representative digit (e.g. “0”). Numeric normalization is useful 
since entity names often occur in series, such as the gene names Freac1, Freac2, 
etc. The numeric-normalized value for all these names is Freac0, so that forms 
not seen in the training data have the same representation as forms which are 
seen. The entire set of features is used in conjunction with a token window of 2 
to provide context, that is, the features for each token include the features for the 
previous two tokens and the following two tokens. 
 
Table 2. The machine learning features used in BANNER (aside from the token itself), primarily 
based on orthographic, morphological and shallow syntax features. 

Feature set description Notes 
The part of speech which the token plays in 
the sentence 

Provided by the Dragon toolkit [22] 
implementation of the Hepple tagger [5] 

The lemma for the word represented by the 
token, if any 

Provided by the Dragon toolkit [22] 

A set of regular expression features Includes variations on capitalization and 
letter/digit combinations, similar to [9, 11, 
15] 

2, 3 and 4-character prefixes and suffixes  
2 and 3 character n-grams 
 

Including start-of-token and end-of-token 
indicators 

Word class Convert upper-case letters to “A”, lower-
case letters to “a”, digits to “0” and other 
characters to “x” [11] 

Numeric normalization Convert digits to “0” [15] 
Roman numerals  
The names of the Greek letters  

Labeling 
engine 

Feature 
generator 

Labeled 
text 

Raw 
text Tokenizer 

Mallet: 
CRF 

Dragon Toolkit: 
Part of speech 
Lemmatization 
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There are features discussed in the literature which are not implemented in 

BANNER, particularly semantic features such as a match to a dictionary of 
names and deep syntactic features, such as information derived from a full parse 
of each sentence. Semantic features generally have a positive impact on overall 
performance [20] but often have a deleterious effect on recognizing entities not 
in the dictionary [11, 21]. Moreover, employing a dictionary reduces the 
flexibility of the system to be adapted to other entity types, since comparable 
performance will only be achieved after the creation of a comparable dictionary. 
While such application-specific performance increases are not the purpose of a 
system such as BANNER, this is an excellent example of an adaptation which 
researchers may easily perform to improve BANNER’s performance for a 
specific domain. 

Deep syntactic features are derived from a full parse of the sentence, which 
is a noisy and resource-intensive operation with no guarantee that the extra 
information derived will outweigh the additional errors generated [6]. The use of 
deep syntactic features in biomedical named entity recognition systems is not 
currently common, though they have been used successfully. One example is the 
system submitted by Vlachos to BioCreative 2 [16], where features derived from 
a full syntactic parse boosted the overall F-score by 0.51.  

Unlike many similar-performing systems, BANNER does not employ rule-
based post-processing steps. Rules created for one corpus tend to not generalize 
well to other corpora [6]. Not using such methods therefore enhances the 
flexibility of the system and simplifies the process of employing it on different 
corpora or for other entity types [9].  

There are, however, two types of general post-processing which have good 
support in the literature and are sufficiently generic to be applicable to any 
biomedical text. The first of these is detecting when matching parenthesis, 
brackets or double quotation marks receive different labels [4]. Since these 
punctuation marks are always paired, detecting this situation is useful because it 
clearly demonstrates that the labeling engine has made a mistake. BANNER 
implements this form of processing by dropping any mention which contains 
mismatched parenthesis, brackets or double quotation marks. 

The second type of generally-applicable post-processing is called 
abbreviation resolution [21]. Authors of biomedical papers often introduce an 
abbreviation for an entity by using a format similar to “antilymphocyte globulin 
(ALG)” or “ALG (antilymphocyte globulin)”. This format can be detected with 
a high degree of accuracy by a simple algorithm [12], which then triggers 
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additional processing to ensure that both mentions are recognized. The 
implementation of this form of post-processing is left as future work.  

Extending BANNER for use in a specialized context or for testing new 
ideas is straightforward since the majority of the complexity in the 
implementation resides in the conversion of the data between different formats. 
For instance, most of the upgrades above the initial implementation (described 
in the next section) required only a few lines of code. Configuration settings are 
provided for the common cases, such as changing the order of the CRF model or 
adding a dictionary of terms. 

4.   Analysis 

BANNER was evaluated with respect to the training corpus for the 
BioCreative 2 GM task, which contains 15,000 sentences from MEDLINE 
abstracts and mentions over 18,000 entities. The evaluation was performed by 
comparing the system output to the human-annotated corpus in terms of the 
precision (p), recall (r) and their harmonic mean, the F-measure (F). These are 
based on the number of true positives (TP), false positives (FP) and false 
negative (FN) returned by the system: 
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The entities in the BioCreative 2 GM corpus are annotated at the individual 
character level, and approximately 56% of the mentions have at least one 
alternate mention annotated, and mentions are considered a true positive if they 
exactly match either the main annotation or any of the alternates. The evaluation 
of BANNER was performed using 5x2 cross-validation, which Dietterich shows 
to be more powerful than the more common 10-fold cross validation [3]. 
Differences in the performance reported are therefore more likely to be due to a 
real difference in the performance of the two systems rather than a chance 
favorable splitting of the data. 

The initial implementation of BANNER included only a naïve tokenization 
which always split tokens at letter/digit boundaries and employed a 1st-order 
CRF. This implementation was improved by changing the tokenization to not 
split tokens at the letter/digit boundaries, changing the CRF order to 2, 
implementing parenthesis post-processing and adding lemmatization, part-of-
speech and numeric normalization features. Note that both the initial and final 
implementations employed the IOB label model. In table 3 we present 
evaluation results for the initial and final implementations, as well as several 
system variants created by removing a single improvement from the final 
implementation. 
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Table 3. Results of evaluating the initial version of the system, the final version, and  several system 
variants created by removing a single improvement from the final implementation. 

BANNER System Variant Precision (%) Recall (%) F-Measure 
Initial implementation 82.39 76.21 79.18 
Final implementation 85.09 79.06 81.96 

With IO model instead of IOB 84.71 79.40 81.96 
Without numeric normalization 84.56 79.09 81.74 
With IOBEW model instead of IOB 85.46 78.15 81.64 
Without parenthesis post-processing 84.05 79.27 81.59 
Using 1st order CRF instead of 2nd order 84.49 78.72 81.50 
With splitting tokens between letters and digits 84.54 78.35 81.33 
Without lemmatization 84.44 78.00 81.09 
Without part-of-speech tagging 84.02 77.83 80.81 

The only system variant which had similar overall performance was the IO 
model, due to an increase in recall. This setting was not retained in the final 
implementation, however, due to the fact that the IO model cannot distinguish 
between adjacent entities. All other modifications result in decreased overall 
performance, demonstrating that each of the improvements employed in the 
final implementation contributes positively to the overall performance. 

5.   Comparison 

We compare the performance of BANNER against the existing freely-
available systems in use, we compare its performance against ABNER [11] and 
LingPipe [1], chosen because they are the most commonly used baseline 
systems in the literature [17, 19]. The evaluations are performed using 5x2 cross 
validation using the BioCreative 2 GM task training corpus, and reported in 
table 4. To demonstrate portability we also perform an evaluation using 5x2 
cross validation on the disease mentions of the BioText disease-treatment corpus 
[10]. These results are reported in table 5. We believe that the relatively low 
performance of all three systems on the BioText corpus is due to the small size 
(3655 sentences) and the fact that no alternate mentions are provided. 
 

Table 4. Results of comparing BANNER against existing freely-available software, using 5x2 cross-
validation on the BioCreative 2 GM task training corpus. 

System Precision (%) Recall (%) F-Measure 
BANNER 85.09 79.06 81.96 
ABNER [11] 83.21 73.94 78.30 
LingPipe [1] 60.34 70.32 64.95 

Table 5. Results of comparing BANNER against existing freely-available software, using 5x2 cross-
validation on the disease mentions from the BioText disease/treatment corpus [10]. 

System Precision (%) Recall (%) F-Measure 
BANNER 68.89 45.55 54.84 
ABNER [11] 66.08 44.86 53.44 
LingPipe [1] 55.41 47.50 51.15 
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Like BANNER, ABNER is also based on conditional random fields; 
however it uses a 1st-order model and employs a feature set which lacks part-of-
speech, lemmatization and numeric normalization features. In addition, it does 
not employ any form of post-processing, though it does use the same IOB label 
model. ABNER employs a more sophisticated tokenization than BANNER, 
however this tokenization is incorrect for 5.3% of the mentions in the 
BioCreative 2 GM task training corpus.  

LingPipe is a well-developed commercial platform for various information 
extraction tasks that has been released free-of-charge for academic use. It is 
based on a 1st-order Hidden Markov Model with variable-length n-grams as the 
sole feature set and uses the IOB label model for output. It has two primary 
configuration settings, the maximum length of n-grams to use and whether to 
use smoothing. For the evaluation we tested all combinations of max n-
gram={4…9} and smoothing={true, false} and found that the difference 
between the maximum and the minimum performance was only 2.02 F-measure. 
The results reported here are for the maximum performance, found at max n-
gram=7 and smoothing=true. Notably, LingPipe requires significantly less 
training time than either BANNER or ABNER. 

The large number of systems (21) which participated in the BioCreative 2 GM 
task in October of 2006 provides a good basis for comparing BANNER to the 
state of the art in biomedical named entity recognition. Unfortunately, the 
official evaluations for these systems used a test corpus that has not yet been 
made publicly available. The conservative 5x2 cross-validation used for 
evaluating BANNER still allows a useful direct comparison, however, since 
BANNER achieves higher performance than the median system in the official 
BioCreative results, even with a significant handicap against it: the BioCreative 
systems were able to train on the entire training set (15,000 sentences) while 
BANNER was only trained on half of the training set (7,500 sentences) because 
the other half was needed for testing. These results are reported in table 6. 
 
Table 6. Comparison of BANNER to select BioCreative 2 systems [19]. A difference in the F-
measure of 1.23 or more is significant and a difference of 0.35 or less is not (p < 0.05).  

System or author Rank at 
BioCreative 2 

Precision 
(%) 

Recall 
(%) 

F-Measure 

Ando [19] 1 88.48 85.97 87.21 
Vlachos [16, 19] 9 86.28 79.66 82.84 
BANNER – 85.09 79.06 81.96 
Baumgartner et. al. [19] 11 (median) 85.54 76.83 80.95 
NERBio [15, 19] 13 92.67 68.91 79.05 

Unlike BANNER, most of the systems submitted to BioCreative 2 were 
competitive systems employing features or post-processing rules specific to 
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genes [19], a notable exception being the system submitted by Vlachos [16]. The 
results reported for those systems may therefore not generalize to other entity 
types or corpora. Moreover the authors are unaware of any of the BioCreative 2 
GM systems being publicly available, as of July 2007, except for NERBio [15], 
which is available for limited manual testing over the Internet*, but not for 
download. 

6.   Conclusion & Future Work 

We have shown that BANNER, an executable survey of advances in named 
entity recognition, achieves significantly better performance than existing open-
source systems. This is accomplished using features and techniques which are 
well-supported in the more recent literature. In addition to confirming the value 
of these techniques and indicating that the field of biomedical named entity 
recognition is making progress, this work demonstrates that there are sufficient 
known techniques in the field to achieve good results using known techniques. 

We anticipate that this system will be valuable to the biomedical NER 
community both by providing a benchmark level of performance for comparison 
and also by providing a platform upon which more advanced techniques can be 
built. We also anticipate that this work will be immediately useful for 
information extraction experiments, possibly by including minimal extensions 
such as a dictionary of names of types of entities to be found.  

Future work for BANNER includes several general techniques which have 
good support in the literature but have not yet been incorporated. For example, 
authors have noted that part-of-speech systems trained on biomedical text gives 
superior performance to taggers such as the Hepple tagger which are not 
specifically intended for biomedical text [6]. We performed one experiment 
using the Dragon toolkit implementation of the MedPost POS tagger [13], which 
resulted in slightly improved precision (+0.18%), but significantly lower recall 
(-1.44%), degrading overall performance by 0.69 F-measure. We plan to test 
other taggers trained on biomedical text and anticipate achieving a small 
improvement to the overall performance. 

A second technique which has strong support in the literature but is not yet 
implemented in BANNER is feature induction [7, 9, 15]. Feature induction is 
the creation of new compound features by forming a conjunction between 
adjacent singleton features. For example, knowing that the current token 
contains capital letters, lower-case letters and digits (a singleton pattern 
probably indicating an acronym) and knowing that next token is “gene” is a 
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stronger indication that the current token is part of a gene mention than either 
fact alone. Feature induction employs feature selection during training to 
automatically discover the most useful conjunctions, since the set of all 
conjunctions of useful length is prohibitively large. While this significantly 
increases the amount of time and resources required for training, McDonald & 
Pereira [9] report an increase in the overall performance of their system by 2% 
F-measure and we anticipate BANNER would experience a similar 
improvement. 
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