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Understanding the role proteins play in regulating DNA replication is essential to
forming a complete picture of how the genome manifests itself. In this work, we
examine the feasibility of predicting the residues of a protein essential to binding
by analyzing protein-DNA interactions from an information theoretic perspective.
Through the lens of mutual information, we explore which properties of protein
sequence and structure are most useful in determining binding residues with a
particular focus on sequence features. We find that the quantity of information
carried in most features is small with respect to DNA-contacting residues, the bulk
being provided by sequence features along with a select few structural features.
Supplemental information for this article is available at http://www.cs.umn.edu/

~kauffman/supplements/psb2008

1. Introduction
Complex behaviors of the genome are now beginning to be understood in
terms of feedback network models in which regulatory elements promote
or inhibit transcription of genes and are themselves affected by the tran-
scription of other elements. Key to this system are interactions between
DNA, the main storage unit for genetic information, and proteins, which
are both products and managers of transcription. To that end, a plethora
of computational methods have been presented to predict which proteins
will bind to DNA1,15, what parts of a protein will bind to DNA2,11,17,18,
and which segments of DNA a protein will favor for binding. These meth-
ods have yet to reach a performance plateau and researchers continue to
apply machine learning and statistical techniques in an attempt reach the
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highest accuracy and sensitivity supported by available information.
We endeavor in this study to provide some insight into the inherent

difficulty of predicting protein-DNA interactions. From a thermodynamic
perspective, the interactions have been found to be quite sensitive. Bind-
ing is marginally favored when considering the whole complex7. This leaves
very little in the way of individual contributions for each residue requiring
methods that predict binding residues to make shrewd use of any available
features to achieve accuracy. Predicting binding residues would benefit
genome studies as mutating them to less favorable analogues gives a mech-
anism to affect a protein’s role in the system. In particular, prediction of
binding residues from sequence alone is desirable as it would open the door
to a wide variety of experiments involving transcription regulatory elements
which have not been co-crystallized with DNA and for which CHIP-Chip
experiments10 are not feasible.

In this paper we focus on sequence and structure features of single pro-
tein residues and how they may describe a residue’s contributions to the
DNA-binding event. We lay out an information theoretic framework in
which to conduct the study, illustrate the features of interest, and report
the most likely candidates for use in prediction methods.

2. Methods and Materials
2.1. Mutual Information (MI)

The main tool we employ for analysis is mutual information (MI)5,14. The
MI between two random variables is a measure of how easily the value of
one may be predicted given the other’s value. That is, mutual information
measures how much information two variables carry about one another. In
the discrete case, it is defined for random variables X and Y as

I(X; Y ) =
∑
x,y

p(x, y) log2

p(x, y)
p(x)p(y)

(1)

where x and y are the discrete values or classes which random variables
X and Y can take on and p(x, y) is the probability of x and y occurring
together. Due to the base-two logarithm, mutual information in this paper
is reported in bits.

2.2. Features

In our setting, each residue of a protein has associated with it features that
are represented by random variables. The first feature considered is always
whether the residue is DNA-contacting or not, a binary feature, while the
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second feature is varied. The MI between the DNA-contacting feature and
other features gives us an idea of how informative these other features will
be for predicting binding residues.

The features we consider are described in Table 1 and include sequence
and structure properties. Only a few of them have a natural discrete defi-
nition (such as the 20 amino acids). Solvent accessible surface area (SASA)
and information per position (IPP), both single continuous values, were
discretized by choosing boundaries to divide the values into bins. These
boundaries were chosen by a grid search so that the resulting class defi-
nitions maximized mutual information with the DNA contacting classes.
Residues were assigned as either DNA contacting or non-contacting based
on distance cutoffs which were varied by 0.25 angstroms. The SASA and
IPP class boundaries were varied in increments of 0.01 and boundaries that
achieved high MI across several DNA-contacting cutoffs were further con-
sidered. The values selected for these boundaries are shown in the rightmost
column of Table 1.

In order to discretize the remaining vector-valued features we employed
clustering techniques. The toolkit CLUTO9, version 2.1.2, was used with
default options to create various numbers of clusters. Each cluster is then
one of the discrete values this feature takes on when calculating mutual
information. Some experimentation was done using similarity measures
other than the default cosine measure, but none yielded a significant change.

A sensible prediction method will employ a variety of features to decide
whether a residue contacts DNA. To partially address this, we explore joint
features, combinations of two single features, whose values represent every
possible combination of the values of the single features. The size of the
joint feature is the product of the sizes of the two single features, e.g., amino
acids may take on 20 values, secondary structure 3 values, and their joint
feature may take on 60 values.

As it is central to the whole study, the definition of DNA binding and
non-binding residues is treated with special attention. Distances are calcu-
lated between each atom of a residue in a protein and each atom in the DNA
structures of each data file. The minimum distance of these is taken as the
residue-DNA distance. When computing mutual information, the cutoff
distance is varied in increments of 0.2 Å which defines the DNA contact-
ing and non-contacting residues. This allows us to plot a curve for each
feature showing characteristics of the signal separating contacting and non-
contacting residues. If any combination of feature values does not occur,
mutual information becomes undefined. This frequently happens at low
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Table 1. Residue Features Considered for Mutual Information with DNA-contacting
classes.

Feature Description Discrete Values

Amino Acid Amino acid type of the residue 20 values

Positive, Nega-
tive, Neutral
Amino Acids

The 20 amino acids divided into 3 classes for
their charge. Divisions taken from Cline et
al.4

Pos: Arg, Lys His
Neg: Asp, Glu
Neu: All others

Profiles Combination of the position specific scor-
ing matrix (PSSM) and position specific fre-
quency matrix (PSFM) generated from 3-
iterations of PSI-BLAST3 against the NCBI
NR sequence database.

5, 10, and 20 clus-
ters

Concatenated
Profiles

A sliding window of size 5 around each
residue was used to concatenate the full pro-
files of adjacent residues. End residues with-
out enough sequence neighbors were assigned
0 in each column of the profile for a missing
residue.

5, 10, and 20 clus-
ters

PSSMs Only the PSSM from the PSI-BLAST profile. 5, 10, 20 clusters

Concatenated
PSSMs

Only the PSSMs of residues within a sliding
window of size 5 concatenated together.

5, 10, and 20 clus-
ters

Information Per
Position (IPP)

The second to last column in PSI-BLAST
profiles, gives an account of the sequence di-
versity in a column of the profile. Low values
indicate a strong preference for certain amino
acids in that column.

2-value: 0.0-0.62,
>0.62
3-value: 0.0-0.48,
0.48-1.0, >1.0
4-value: 0.0-0.48,
0.48-0.81, 0.81-1.27,
>1.27

Solvent Accessi-
ble Surface Area
(SASA)

Surface area of a residue accessible to solvent
(water) molecules, normalized based on the
maximum SASA of a residue in Gly-X-Gly.
Calculated using DSSP8 and normalized us-
ing the values of Miller et al.13.

2-value: 0.0-0.09,
>0.09
3-value: 0.0-0.09,
0.09-0.20, >0.20
4-value: 0.0-0.01,
0.01-0.07, 0.07-0.20,
>0.20

Structural
Neighbors

Sum of amino acid types within a 14 Å
sphere and with sequence distance ≥3; dis-
tance is between alpha carbons.

5, 10, and 20 clus-
ters

Structural
Neighbor
PSSMs

Sum of the PSSMs of structural neighbors. 5, 10, and 20 clus-
ters

Secondary
Structure

The secondary structure assigned to a
residue, by DSSP and mapped into 3 values
for helix, strand, and coil

3 values, DSSP let-
ters H,G,I are helix,
E is strand, and all
others are coil

Physical Quan-
tities

Features of Wang and Brown17 which are
pKa, a measure of the acidity of side-chains (7
for neutral side-chains), hydropathy accord-
ing to the scale of Kyte and Doolittle12, and
molecular mass. A sliding window of size 11
around each residue was used to create fea-
tures which were then used in clustering.

5, 10, and 20 clus-
ters

and high distance cutoff values, especially for features which take on many
values. In the plots shown subsequently, undefined MI is set artificially to
0.
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Figure 1. Percentage of Contacting Residues vs. Distance Cutoff.

2.3. Data Sets

The data that we employ is derived from that used by Tjong and Zhou15

with further culling. Beginning with their 264 PDB files, we separated each
into protein chains according to the PDB chain identifier. Within protein-
DNA co-crystal PDB files, there may exist several chains with identical
sequence. This type of duplication may cause an unfair bias in calcu-
lating mutual information so the chains were submitted to the PISCES
server16 to be culled to less than 30% sequence identity. The remaining
data set comprises 246 chains from 218 different PDB files and includes
51268 residues. Figure 2.3 illustrates the percentage of residues classified
as DNA-contacting according to a sliding distance cutoff. The full list of
PDB chains used and their associated data is available in the online sup-
plement.

2.4. Corrections for Small Sample Size

Calculations of mutual information must be done with care as they may
yield an artificially high estimate particularly with small sample sizes. Two
approaches taken in the literature to overcome this have been to use boot-
strap sampling6 and to calculate the excess mutual information over a ran-
dom shuffling of the data4. We employ the latter method on single features
by leaving the DNA-contacting classes fixed and randomly permuting the
values of the second feature. This shuffling preserves the background prob-
abilities of each value of the feature. Calculating mutual information with
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these shuffled values gives an idea of what MI we can expect to get at ran-
dom for the background probabilities and number of values for the feature.
We compute the average MI over 200 permutations of each feature. Sub-
tracting this quantity led to only a slight drop in MI, about 1% for single
features in the worst case. Based on this, we report raw MIs for the rest of
the paper.

Joint features pose a problem as they are likely to be more inflated due
to the large number of values they take on. We find this difficult to correct
as random permutation of class values often leads to zero probability of
some combinations and an undefined MI. We report raw values for joint
classes here and will attempt to estimate the bias in future works through
sampling methods.

3. Results
3.1. Single Features

None of the features we explore yield a large magnitude of mutual informa-
tion with the DNA-binding feature. The most informative features are on
the order of hundredths of bits for both single and joint features. This is
the same order of magnitude at which previous works have shown contact
potentials4 and aspects of sequence-structure correlations6 to reside.

For features discretized via clustering, an increased number of clusters
leads to an increase in mutual information. In order to give a basis of
comparison to the largest natural set of values, amino acids with 20 discrete
values, we consider 5, 10, and 20 clusters per feature.

Table 2 summarizes the calculated values for single features while Figure
3.1 illustrates how mutual information for some of the features alters as the
distance cutoff defining DNA-contacting residues is altered. The single
features yielding the most information on contact vs. non-contact residues
are entirely sequence based. Amino acid sequence alone yields a maximum
of 0.029 bits at a distance cutoff of 3.37 Å. This is modestly exceeded by
PSSMs with 20 clusters (0.032 bits at 4.97 Å cutoff) and profiles (0.032 bits
at 4.97 Å cutoff) and is succeeded in information by 10 clusters of profiles
(0.027 bits at 4.77 Å cutoff). Using a sliding window of PSSMs or profiles
did not improve mutual information: 20 clusters generated using a sliding
window of 5 full profiles gives a maximum of 0.020 bits at 5.77 Å while
using only the PSSM in clustering yields 0.016 bits at 5.17 Å. Dividing the
20 amino acids into three classes for positive, negative, and neutral residues
significantly reduces the information content to a maximum 0.016 bits at
3.57 Å.
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Table 2. Mutual Information of Single Features. The mutual infor-
mation is with the DNA-contacting/non-contacting class (binary) and
the distance cutoff is at the maximum MI achieved by the feature. The
table is sorted by MI. The column Nval is the number of discrete values
the feature may take.

Feature Nval MI Dist. Cutoff

PSSMs 20 3.1933e-02 4.97
Profiles 20 3.1856e-02 4.97

Amino Acids 20 2.9465e-02 3.37
Profiles 10 2.6765e-02 4.77

Struct. neighbor PSSMs 20 2.6379e-02 10.17
PSSMs 10 2.4402e-02 4.97

Struct neighbors 20 2.2810e-02 8.57
Concat. profiles 20 2.0252e-02 5.77

Struct. neighbor PSSMs 10 1.9237e-02 9.57
PSSMs 5 1.8971e-02 4.97

Struct neighbors 10 1.8597e-02 7.17
Concat. PSSMs 20 1.6257e-02 5.17

Pos/Neg/Neut Amino Acids 3 1.5879e-02 3.57
Solv. Acc. Surf. Area 20 1.5125e-02 3.97

Concat. PSSMs 10 1.4767e-02 4.97
Struct. neighbors 5 1.4166e-02 6.97

Solv. Acc. Surf. Area 4 1.4060e-02 3.77
Concat. profiles 10 1.3289e-02 5.17

Solv. Acc. Surf. Area 2 1.2471e-02 3.97
Info per position 4 1.1519e-02 9.57

Profiles 5 1.1500e-02 3.57
Concat. PSSMs 5 1.1399e-02 4.97

Struct. neighbor PSSMs 5 1.1114e-02 9.57
Info per position 3 1.0934e-02 9.57
Concat. profiles 5 1.0788e-02 5.17
Info per position 2 9.4190e-03 13.97

pKa/hydropathy/mass 20 3.0624e-03 5.17
pKa/hydropathy/mass 10 2.7191e-03 5.17
Secondary structure 3 2.4700e-03 5.77

pKa/hydropathy/mass 5 2.1319e-03 7.17

The lowest information content for single features came from secondary
structure assignment (max of 0.002 bits at 5.77 Å) and clusters formed from
the combination of pKa, hydropathy, and molecular mass in sliding window
of 11 residues (20 clusters, max of 0.003 bits at 5.17 Å).

3.2. Joint Features

The large number of combinations prevents a full discussion of joint fea-
tures. For brevity, we mention a few interesting cases and include the full
numerical results in the online supplement. These cases are summarized in
Table 3 and Figure 3. Unsurprisingly, combinations of the most informa-
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Figure 2. Single Features: Distance Cutoff for DNA-contacting residues versus Mutual
Information. The cutoff distance which defines DNA-contacting versus non-contacting
residues is varied by small increments to show the character of some single features and
their mutual information with the DNA-contacting classes.

Table 3. Selected Mutual Information of Joint Features. The mutual information is with the DNA–
contacting/not-contacting class (binary) and the distance cutoff is at the maximum MI achieved by
the joint features. Nval1 and Nval2 are the number of discrete values features 1 and 2 may take on
respectively while Ntot is their product, the number of discrete values the joint feature may take.

Feature 1 Nval1 Feature 2 Nval2 Ntot MI Dist. Cutoff

PSSMs 20 Struct neighbors 20 400 5.2781e-02 5.77
PSSMs 20 Struct neighbors 10 200 4.7563e-02 5.37
Profiles 20 Struct neighbors 10 200 4.6912e-02 6.57
Profiles 10 Struct neighbors 20 200 4.5558e-02 5.97
PSSMs 20 Info. per pos. 4 80 4.4948e-02 4.97
Profiles 20 SASA 3 60 4.4649e-02 4.17

Amino Acids 20 SASA 4 80 4.0379e-02 3.77
PSSMs 20 SASA 4 80 4.3894e-02 3.97

Amino Acids 20 Info. per position 4 80 4.2580e-02 3.57
Profiles 10 Info. per position 4 40 4.2397e-02 5.37
Profiles 20 Struct. neigh. PSSMs 5 100 3.9513e-02 5.37
Profiles 20 Second. Struct. 3 60 3.6432e-02 4.97

Concat. PSSMs 10 Struct. neigh. PSSMs 20 200 3.3650e-02 6.97
Amino Acids 20 Second. struct. 3 60 3.2341e-02 3.57

Struct neighbors 20 pKa/hydropathy/mass 5 100 2.3224e-02 13.77
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Figure 3. Joint Features: Distance Cutoff for DNA-contacting residues versus Mutual
Information. The cutoff distance which defines DNA-contacting versus non-contacting
residues is varied by small increments to show the character of some joint features and
their mutual information with the DNA-contacting classes.
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tive single features lead to the highest MIs, the best pairs being PSSMs or
profiles with structural neighbors (first rows of Table 3). The next major
combination that proved fruitful was between PSSMs, profiles, or sequence
with SASA. Combining information per position with sequence or profiles
provides the next highest mutual information followed by combinations
of profiles or sequence with the PSSMs of structural neighbors. The lower
quality single features result mostly in low joint MI, profiles with secondary
structure being one exception.

4. Discussion
Most significant among the results are the contributions of sequence based
features. Utilizing PSSMs, full profiles, or even simply sequence yields the
most information about the differences between residues with high propen-
sities for contacting DNA. It is well known that the negatively charged
phosphate backbone of DNA prefers proximity to residues which have a
positive charge such as arginine and lysine rather than neutral or positive
alternatives. However, limiting the division of amino acids to simply posi-
tive, negative, and neutral types severely diminishes MI, giving only 0.016
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bits versus 0.029 bits for all amino acid. Counter to intuition, the use of
a sliding window with concatenated profiles does not increase MI over the
single profile column. The reasons for this are unclear and are worth inves-
tigating further. Information per position, when combined with a PSSM,
provides a surprisingly informative joint feature. The two together likely
amplify the conservation signal present in many DNA contacting residues.
With the majority of the information present coming from sequence sources,
we can begin to understand why the performance of sequence-based meth-
ods such as Ahmad and Sarai2 have produced prediction results that are
nearly as good as those incorporating structure features.

The poor mutual information given by structural features such as SASA
and secondary structure class may seem surprising as it is expected that
most DNA-contacting residues at least have a high SASA and probably
prefer a helix (a common binding motif is helix-turn-helix). However, con-
sidering that there are many surface residues with high SASA which do
not contact DNA and that helices are a very common secondary structure
element, these features are quite noisy. Combining profile information with
SASA improves MI significantly, underscoring their reinforcement of one
another.

Structural features which do carry information appear to come in the
form of the local environment, i.e., descriptions of other residues proximal
in space. This is evidenced by the relatively high MI of the structural neigh-
bor feature. Information of this sort is used in a number of DNA-protein
prediction methods1,11,15 and seems to improve performance though not
spectacularly. From the standpoint of sequence only predictions, these
properties would need to be predicted in order to be used for DNA-contact
predictions. Based on the fact they carry a moderate amount of infor-
mation, there may be some hope that using predicted values would yield
improvement.

The physical features of pKa, hydropathy, and molecular mass did not
yield much information and were uniformly lowest both on their own and in
combinations. Wang and Brown report quite promising results using sup-
port vector machines with only these features17 indicating that the cluster-
ing method used to discretize the feature may not be appropriate. We will
explore alternatives in the future to verify that a signal is indeed present in
these features as they are some of the easiest to utilize in the protein-DNA
interaction prediction.

The literature pertaining to binding residue prediction has defined the
binding class using cutoffs in the range of 3.5-5.0 Å. The ideal cutoff dis-

Pacific Symposium on Biocomputing 13:477-488(2008)



September 20, 2007 19:53 Proceedings Trim Size: 9in x 6in kauffman

tances for both single and joint features seem to support this definition
with preference towards the higher end.

5. Conclusion
Armed with the knowledge that signals pertaining to DNA proximity are
weak but present, we can understand why prediction methods have en-
joyed only marginal success thus far. Incorporating additional features
that have not, as of yet, been explored may be the only way to boost per-
formance. From the structure standpoint, this likely involves more compli-
cated geometric information about residues or the consideration of multi-
ple residues interacting with DNA simultaneously. This direction precludes
DNA-binding protein with no available structure information. Including
features of the DNA being contacted might be the only route as yet un-
explored for sequence-only features. Training prediction methods with the
knowledge that residues with specific characteristics favor a specific DNA
sequence may lead to visible improvements. Approaching the problem from
this side will also allow us to incorporate knowledge generated by DNA-
binding motif studies.

As for an immediate extension of the present work, we plan to expand
the study to account for several shortcomings. Previously mentioned is the
issue of properly estimating bias in mutual information for the case of joint
features with many values. Sampling techniques and additional compute
time are likely to provide the remedy. Also, we have not yet incorporated
truly non-contacting residues, only those that are in a DNA-binding protein
but far from the interaction site. Adding proteins known not to bind to
DNA, especially if they bind to something else such as a small molecule
or another protein, will solve this problem and give a better assessment
of those characteristics separating DNA-contacting residues from general
interaction sites. Finally, the techniques applied here need not be limited
to DNA but can also be applied to RNA interactions with proteins.
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