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Genetic related health problems are often interrelated. Current practices to establish 
associations between diseases are expensive and rarely can reflect underlying molecular 
mechanisms. We propose a general framework to associate diseases by networking pathways. 
By applying our method on association study of non-insulin dependent diabetes mellitus 
(NIDDM) and obesity, we demonstrate that our method can both identify signature pathways 
for each disease and establish valid association of two diseases. 

1. Introduction 

Many diseases are interrelated. Obesity, diabetes, insulin resistance, 
hypertension are just a few examples. Instead of being attributed to a specific 
gene, these diseases are often caused by interaction among multiple genes or 
between genes and environment, and thus are often classified as multifactorial 
disease or complex disease. Great effort has been put on association studies, 
such as case control studies and cohort studies, to discover the potential relation 
between multiple disease conditions in human. Although such association 
studies can often produce very important information, they are either not very 
reliable or not efficient in terms of time and money. For example, of two large 
American Cancer Society cohorts, Cancer Prevention Study I (CPS-I; enrolled 
in 1959 and followed through 1972) and Cancer Prevention Study II (CPS-II; 
enrolled in 1982 and followed through 1996), one shows association of height 
with prostate cancer, the other does not [1]. Most importantly, from such 
association studies on complex diseases involving genetic factors, no matter 
how significant the identified associations are statistically, researchers usually 
cannot gain much insight of the underlying molecular mechanisms. Thus, 
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efficient methods are urgently needed to identify disease associations at the 
molecular level.  

Microarray experiments have been a very popular tool for disease study. 
From microarray data, gene expression signatures that can distinguish a disease 
phenotype from another have often been identified by implementing analytical 
techniques such as differential test. However, in complex diseases like cancer, it 
is not the individual genes but the interaction between many genes and the 
interaction between many genes and environment that are responsible for a 
certain physiological process. Therefore, dozens of suspicious genes included in 
an identified signature are insufficient for understanding the underlying 
mechanisms behind a specific disease phenotype. In order to gain deeper 
understanding of complex diseases from a set of differentially expressed genes, 
one common practice is to convert the information from gene space to 
structured pathway space via enrichment test of the differential expressed genes 
in predefined pathways [2,3]. However, unlike cancers, in which gene 
expression often show larger variation, for complex diseases like diabetes, 
obesity, and atherosclerosis, the changes in gene expression are more likely to 
be modest [4-6]. Yet, the genes vary subtle might be the very responsible ones 
for a disease phenotype [7,8]. Therefore, under such circumstances that no 
genes are selectable from differential tests, the traditional methods depending on 
identification of disease susceptibility genes have lost their power. On the other 
hand, analysis directly performed on pathways has been encouraging in 
providing deeper biological understanding compared with single-gene based 
methods [9-13].  

Observing the success of pathway based analysis in various disease studies, 
we hypothesize that pathway-originated methods are also of great value in 
associating different disease phenotypes. In this paper, we propose a general 
framework to study disease association via networking pathways. As a proof of 
principle, we apply our methods to identify the association between obesity and 
Non-insulin Dependent Diabetes Mellitus (NIDDM, Type II diabetes), the two 
diseases that affects hundreds of millions of people worldwide with widely 
observed connection but with unknown association mechanisms at the 
molecular level. We have identified a number of pathways and gene sets with 
known and unknown functions that are responsible for each disease. More 
importantly, by networking pathways, we have also discovered a set of 
pathways and their interactions that are responsible for the association between 
obesity and NIDDM. 
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Figure 1. The pipeline of multiple disease association by networking pathways. 

2. Methods 

We propose a general framework to identify multiple disease association by 
pathway/gene set association (Figure 1). Here, a gene set is a priori defined set 
of genes such as a set of genes in one pathway, or a set of target genes regulated 
by the same transcription factor. Schematically, given n disease datasets and m 
predefined pathways/gene sets, we first determine its activity level under each 
experimental condition for each pathway/gene set. We then select differentially 
activated pathways/gene sets between disease and control experimental 
conditions in one data set, and we also construct a pathway coordination 
network for each disease dataset, in which each node represents a pathway/gene 
set and each edge connects two pathways/gene sets showing significant 
coordinated activities. A pathway coordination network thus converts its 
corresponding disease data into a relation graph depicting the interplay among 
various functional units (predefined pathways/gene sets in our case). By 
performing comparative network analysis, we finally can generate hypothesis on 
disease association at the molecular pathway level. The methods and techniques 
utilized are detailed in the following subsections.  

2.1. Microarray data sources 

We use microarray experiment data obtained from skeletal muscle. Skeletal 
muscle cells are the largest storage organ for glucose and considered to play the 
major role in glucose homoeostasis. From DGAP (Diabetes Genome Anatomy 
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Project), we downloaded type II diabetic human data containing 18 NIDDM 
samples and 17 Normal Glucose Tolerance samples generated from Human 
skeletal muscle samples of Swedish males for study of type II diabetes by Dr. 
Altshuler’s Lab at MIT. From GEO (Gene Expression Omnibus) at NCBI, we 
also downloaded obesity skeletal muscle data (GDS268) containing 8 skeletal 
muscle samples from non-obese subjects and 8 skeletal muscle samples from 
morbidly obese subjects. All the downloaded gene expression levels were 
measured using Affymetrix Human U133A GeneChip platform. The same 
experimental platform and tissue type enables us to study obesity and NIDDM 
with higher signal to noise ratio. 

2.2. Compilation of pathways/gene sets for human 

We downloaded 187 pathways from KEGG [14], 263 pathways from BioCarta 
[15], 20 pathways related to cancer/immune signaling from NetPath website 
[16], 243 pathways from Rat Genome Database [17], and 1520 gene sets from 
mSigDB (version on Oct, 2006) [10]. Besides, we obtained another 3229 gene 
sets by grouping genes on AFFY-HU133A array according to their GO 
annotation using FatiGO [2]. Additionally, we obtained 2459 gene sets from 
graph clustering using MCL [18] on gene expression profiles in four microarray 
datasets related to NIDDM and obesity [8,19-21]. In total, 7921 pathways/gene 
sets were compiled for this study. 

2.3. Pathway/gene set activity level and coordination network 

We define the activity level profile of a pathway/gene set under a given set of 
experimental conditions using eigengenes generated from singular value 
decomposition (SVD) [9,22]. In detail, for each pathway/gene set containing m 
genes, there is one m×n matrix A consisting of the row normalized 
transcriptional responses of these m genes under n experiments in a microarray 
dataset such that the mean and standard deviation of the expression levels for 
each gene is 0 and 1, respectively. We then performed SVD on the matrix A to 
decompose A into three matrices U, S and V, i.e. A = USVT. The U and VT are 
commonly named as the eigenarray matrix and eigengene matrix respectively. 
The matrix S is a diagonal matrix with singular values of the matrix A as the 
diagonal elements, whose square reflect the variance of the corresponding 
eigengene/eigenarray. By using the top k eigengenes, with each of which 
accounting for no less than (70/n)% of the overall variability [23,24], we define 
activity level l of a pathway/gene set under experiment j as:  

                  .
k

0i

2
ijTVjl ∑

=
=                                                        (1)                    
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Here i is the index of top k eigengenes we used. The intuition that a pathway’s 
activities can be defined from eigengenes is that, linear combination of such 
defined pathway activity level is an optimal approximation of the transcription 
profile matrix A corresponding to all the genes within the pathway, as has been 
explained in [9]. However, unlike the pathway level analysis in [9], where the 
pathway activity level profile is determined from the first one eigengene 
(corresponding to the largest eigenvalue) only, here we utilize multiple 
eigengenes that can explain at least a certain percentage of variance to determine 
pathway activities. The advantage is evident in that the first eigengene is not 
always reflecting the dominant variance of the transcript levels corresponding to 
the genes within a pathway. Thus, given an expression value matrix, the activity 
level of a pathway captures the major components of the variation in the given 
expression matrix. After filtering out the genes not included on the Human 
U133A chip, 7016 out of the compiled 7921 pathways/gene sets containing at 
least two genes for performing SVD remained. With a pathway/gene set’s 
activity level defined above, we define two pathways/gene sets as coordinated if 
the two pathways/gene sets show coordinated activity levels under a given set of 
conditions. Thus, for each disease microarray dataset, we can construct a 
pathway coordination network in which each node represents a pathway/gene 
set, and each edge connects two coordinated pathways/gene sets. In this paper, 
we measure the coordination between any two pathways/gene sets using 
Spearman’s rank correlation. For a given pathway/gene set q, only the top 1% of 
the pathways/gene sets with largest correlations (larger than 0.6) with q are kept 
as coordinated pathways/gene sets of q.  

2.4. Differentially Activated Pathways/gene sets 

With the activity levels defined, we used SAM [25] to determine whether a 
pathway/gene set is activated differently between disease and control samples. 
SAM has been validated in a number of studies and has been shown more 
accurate than other differential test methods such as simple t-test [26-29]. SAM 
uses modified t statistic to measure the activity difference of a pathway/gene set 
between two types of samples as a score d. For each pathway/gene set, SAM 
then performs permutation test to determine the statistical significance of the d 
score. In our study, we chose the significant pathways/gene sets by controlling 
the false discovery rate (q-value) at the 0.1 level.  

2.5. Disease-relevant pathways and linking pathways 

First, if a pathway P is differentially activated between disease and control 
samples, then P is called an A-relevant pathway. Given two types of disease A 
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and B, if a pathway P is A-relevant, we define P as a linking pathway between 
diseases A and B if P satisfies one of the following three criteria. (1) P is 
directly connected to at least one of the pathways relevant to disease B; (2) P 
shares at least one first layer neighbor with at least one of the B-relevant 
pathways; (3) there is a cluster containing P shares at least one common element 
with a cluster containing B-relevant pathways. Any two linking pathways from 
different disease networks with coordinated activity profiles with each other or 
the common third party pathways may indicate associations between their 
corresponding diseases. 

3. Results 

3.1. Identified obesity-relevant biological pathways/gene sets  
In total, we systematically identified 92 obesity-relevant pathway/gene sets that 
are differentially activated in obesity and control experiments, including 18 well 
defined pathways from KEGG and BioCarta database (Table 1) [14,15]. Many 
studies have supported the relevance of these pathways to obesity [30,31]. 
 

Table 1 - 18 well-defined pathways out of 92 pathways/gene sets that are differentially activated 
significantly between obesity and control experiments. 

Pathway Description Score(d) q-value(%) 

KEGG: Nicotinate and nictoinamide metabolism 1.83 0 

KEGG: Glycan structures biosynthesis 1.56 6.10 

mSigDB: Genes related to the insulin receptor pathway 1.59 6.10 

α6-β4 Integrin Signaling Pathway 1.55 6.10 

RGD: Prostaglandin and Leukotriene metabolic pathway  1.56 6.10 

KEGG: Fatty acid metabolism 1.36 7.73 

KEGG: Tryptophan metabolism 1.45 7.73 

KEGG: Glycerophospholipid metabolism 1.50 7.73 

KEGG: Arachidonic acid metabolism 1.49 7.73 

KEGG: One carbon pool by folate 1.38 7.73 

KEGG: MAPK signaling pathway 1.36 7.73 

KEGG: mTOR signaling pathway 1.45 7.73 

KEGG: Regulation of actin cytoskeleton 1.45 7.73 

mSigDB: AR mouse plus testo from netaffx 1.37 7.73 

mSigDB: rasPathway from Biocarta 1.43 7.73 

RGD: glycerolipid metabolic pathway 1.41 7.73 

Biocarta: Role of EGF Receptor Transactivation by GPCRs in 
Cardiac Hypertrophy 

1.34 9.95 

KEGG: Arginine and proline metabolism 1.34 9.95 

Pacific Symposium on Biocomputing 13:255-266(2008)



  

3.2. Identified NIDDM-relevant biological pathways/gene sets 
We identified 78 pathways/gene sets to be NIDDM-relevant, covering defined 
pathways in KEGG and BioCarta, expert-curated gene sets, gene sets defined by 
GO categories and gene sets comprised of co-expressed genes. 16 out of the 78 
pathways/gene sets are well defined pathways (Table 2). Most of these 
pathways are related to the three components of carbohydrate catabolism: 
glycolysis, TCA cycle and oxidative phosphorylation, implicating the link 
between NIDDM and mitochondrial dysfunction [32,33]. 
 
Table 2 - 16 well-known pathways out of 78 pathways/gene sets that are significantly differentially 
activated between NIDDM and control experiments 
 

Pathway Description Score(d) q-value(%) 

mSigDB: electron transport chain 1.39 0 

KEGG: Oxidative phosphorylation 1.28 0 

mSigDB: Oxidative Phosphorylation 1.08 0 

RGD: Oxidative Phosphorylation 1.04 0 

mSigDB: Mitochondrial genes 1.04 0 

KEGG: Pyruvate metabolism 0.98 0 

mSigDB: Pyruvate metabolism 0.97 0 

mSigDB: Role of Mitochondria in Apoptotic Signaling 0.97 0 

KEGG: Citrate Cycle (TCA cycle) 0.83 2.70 

RGD: Pyruvate metabolic pathway 0.82 2.70 

KEGG: Propanoate metabolism pathway 0.80 4.39 

RGD: glyoxylate and dicarboxylate metabolic pathway 0.80 4.39 

mSigDB: Oxidative phosphorylation pathway from KEGG 0.79 4.39 

mSigDB: Genes 2fold upregulated by insulin 0.76 4.39 

mSigDB: krebPathway 0.75 7.19 

mSigDB: Reactive oxidative species related genes 0.73 8.30 

Although between NIDDM and control subjects, we have witnessed 
statistically significant differences at the pathway level, we have found no much 
difference at the individual gene level. Taking citrate cycle pathway as an 
example, none of the genes in this pathway is significantly differentially 
expressed. The genes ACO2, MDH1 and FH are only slightly down regulated in 
NIDDM and with insignificant fold changes ranging from 0.8 to 0.95; the genes 
SDHA and OGDH only show modest increase in NIDDM (SDHA: fold =1.21, p-
value= 0.776691; OGDH: fold = 1.19, p-value = 0.463948). 
3.3. Identification of association between obesity and NIDDM by 

networking pathways 
By comparing the defined obesity-relevant pathways and NIDDM-relevant 
pathways, we found that obesity-relevant pathways contains a gene set related to 
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the insulin receptor, and coincidentally, there is a NIDDM-relevant gene set 
containing genes 2-fold up-regulated by insulin. Other than that, all relevant 
pathways in obesity and NIDDM are literally different. Besides, the genes 
shared by the two types of pathways are not significantly differentiated between 
disease and control samples and consequently provides no sufficient information 
to determine association between obesity and NIDDM. Thus, we proceed to 
associate obesity and NIDDM in the following steps. We first build a pathway 
coordination network for each disease. For obesity dataset, this resulted in a 
network containing 7016 pathway nodes and 237,226 pathway coordination 
edges, and for NIDDM, this generated a network with 7016 pathway nodes and 
207,571 pathway coordination edges. From the two networks, we attempt to 
associate the two diseases by searching for linking pathways according to their 
three criteria defined in our methods section. 

To search for linking pathways satisfying the first criteria, we examined 
whether there are any direct links between the two types of disease-relevant 
pathways. We found obesity-relevant pathways including arginine and praline 
metabolism pathway and fatty acid metabolism pathway, and tryptophan 
metabolism pathway are directly connected with NIDDM-relevant pyruvate 
metabolism pathway. Besides, actin cytoskeleton regulation in obesity network 
is linked directly to TCA cycle in NIDDM network.  
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Figure 2 - Merged two pathway coordination sub-networks from obesity and NIDDM. (a) All first 
layer neighbors for the 18 obesity-relevant pathways and the 16 NIDDM-relevant pathways are 
included. (b) Only their common first layer neighbors of the 18 obesity-relevant and the 16 NIDDM-
relevant pathways are included. 

We next seek linking pathways satisfying the second criteria. By extracting 
the first-layer neighbor gene sets/pathways of the defined disease-relevant 
pathways from their corresponding networks (Figure 2a), we found totally 77 
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first-layer neighbor pathways/gene sets are in common. Figure 2b shows a sub-
network from network in Figure 2a. This sub-network contains only disease-
relevant pathway and their first layer neighbor pathway nodes, and 430 
coordination edges linking them.   

 
Figure 3 - Summary of identified associations between obesity and NIDDM. 

Finally, we search for linking pathways satisfying the third criteria. By 
performing graph clustering on both networks using MCL algorithm [18], we 
obtained 239 clusters and 67 clusters containing more than 3 and less than 60 
pathways/gene sets corresponding to obesity and NIDDM pathway coordination 
network respectively. We drew a comparison between the pathway clusters in 
obesity and NIDDM pathway coordination network. If a cluster in disease A’s 
pathway coordination network contains an A-relevant pathway, it is defined as 
an A-relevant cluster. It is interesting to see there are a number of obesity-
relevant clusters and NIDDM-relevant clusters we identified above overlapped. 
For instance, a cluster in the obesity pathway network including 5 gene sets 
related to glycogen/glucan biosynthesis is overlapped with another cluster in the 
NIDDM pathway network containing 16 gene sets involving regulation of 
circadian rhythm, keratin sulfate metabolism. An obesity-relevant cluster 
comprised of 53 gene sets involving PI3K (phosphoinositide 3-kinases) and 
their downstream targets, and SERMs (selective estrogen receptor modulators) 
down regulated genes is overlapped with another NIDDM-relevant cluster 
containing 23 gene sets including atrial natriuretic peptide signaling pathway, 
lipoprotein metabolic pathway, altered lipoprotein metabolic pathway. 
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Taking all the findings together, we provide a summary of all these 
pathway associations between obesity and NIDDM (Figure 3). Many of these 
associations are supported by literature search [33-39]. 

4. Discussion and Conclusion 

We have proposed a general framework for disease association by pathway 
analysis and networking co-activated pathways. To our knowledge, this is the 
first disease association method that can delineate the relationship between any 
two or even more disease phenotypes at the molecular pathway/pathway 
interaction level. In contrast to disease association by case control or cohort 
studies, our method is not only efficient but also can generate deeper insight 
about disease etiology and pathophysiology, especially for complex diseases 
like NIDDM and obesity where the expression differences of genes are often 
trivial and consequently no suspicious genes detectable by conventional 
methods. Besides, our strategy moves beyond single gene/pathway based study, 
and sets off for studying the relationship between pathways or gene sets. In 
order to capture the relationship between any two pathways, we first generate an 
activity level profile reflecting the overall response of a certain pathway under a 
set of experimental conditions. A unique advantage of using pathway activity 
levels to characterize a pathway is that pathway activity levels can be further 
used to establish a quantitative relation between any two pathways. After 
determining the coordination relationship for each pair of pathways/gene sets, a 
disease dataset can then be modeled as a network. The problem of associating 
two diseases is subsequently converted to the problem of network comparison.  

By applying our approach on obesity and NIDDM, We systematically 
obtained important pathways that can characterize each disease phenotype and 
further depicted the association between obesity and NIDDM via linking 
pathways. The coordinated activity of disease-relevant pathway fatty acid 
metabolism and pyruvate metabolism in both obesity and NIDDM samples 
indicates that dysfunction of fatty acid metabolism is intertwined with the 
functioning of pyruvate metabolism, perhaps via TCA cycle. The supporting 
model is the early proposed cellular mechanism of glucose-fatty acid cycle in 
which fatty acid oxidation inhibits glucose utilization by affecting pyruvate 
dehydrogenase activity [34]. Our study also discovered other important 
associations such as insulin relevant pathway, stress related ROS genes 
(Reactive Oxidative Species related genes), cell growth and apoptosis and other 
immune related pathways.  

We need to point out that the accurate interpretation of the association 
between diseases heavily relies on the correct definition of pathways/gene sets. 
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More effort on curating pathways/gene sets in order for disease association by 
networking pathways is essential. Besides, our present study on obesity and 
NIDDM is based on microarray experiments on human skeletal muscle tissue. 
Therefore, the conclusions we drew in this study may not reflect the pathway 
interaction patterns in other tissues. With more and more microarray 
experimental datasets become available in the near future, it will be interesting 
to extend our study to multiple tissue/organs such as pancreatic islets, adipose 
tissue, liver and kidney. It will also be interesting to compare the pathway 
coordination networks across different species, the results of which will make 
the dynamic delineation of function evolution of related pathways and pathway 
interactions possible.  
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