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Our limited ability to perform large-scale translational discovery and analysis of disease 
characterizations from public genomic data repositories remains a major bottleneck in 
efforts to translate genomics experiments to medicine. Through comprehensive, 
integrative genomic analysis of all available human disease characterizations we gain 
crucial insight into the molecular phenomena underlying pathogenesis as well as intra-
and inter-disease differentiation. Such knowledge is crucial in the development of 
improved clinical diagnostics and the identification of molecular targets for novel 
therapeutics. In this study we build on our previous work to realize the next important 
step in large-scale translational discovery and analysis, which is to automatically identify 
those genomic experiments in which a disease state is compared to a normal control state. 
We present an automated text mining method that employs Natural Language Processing 
(NLP) techniques to automatically identify disease-related experiments in the NCBI Gene 
Expression Omnibus (GEO) that include measurements for both disease and normal 
control states. In this manner, we find that 62% of disease-related experiments contain 
sample subsets that can be automatically identified as normal controls. Furthermore, we 
calculate that the identified experiments characterize diseases that contribute to 30% of 
all human disease-related mortality in the United States. This work demonstrates that we 
now have the necessary tools and methods to initiate large-scale translational 
bioinformatics inquiry across the broad spectrum of high-impact human disease. 

1. Introduction  

1.1. The Role of Text Mining in Translational Bioinformatics 

As the pace at which genomic data is generated continues to accelerate, 
propelled by technological advances and declining per-experiment costs, our 
ability to utilize these data to address long-standing problems in clinical 
medicine continues to lag behind1. It is only through the correction of this 
disparity that we can overcome one of the major obstacles in translating 
fundamental discoveries from genomic experiments into the world of medicine 
for the benefit of public health and society2, 3.  

Owing to its capabilities as a high-bandwidth molecular quantification and 
diagnostic platform, the RNA expression detection microarray has emerged as a 
premier tool for characterizing human disease4-6 and developing novel 
diagnostics7, 8. Fortunately, the data generated by microarray experiments is 
routinely warehoused in a number of public repositories, providing opportunities 
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to address an unprecedented depth and breadth of data for translational research. 
These repositories include the NCBI Gene Expression Omnibus (GEO)9, 
ArrayExpress at EBI10, and the Stanford Microarray Database11. GEO is the 
largest among these repositories, offering 157,850 samples (microarrays) from 
6,062 experiments as of this writing. Given GEO’s exponential growth, it is 
unlikely to lose this position of predominance for the foreseeable future. In light 
of these characteristics, it is clear that GEO stands as a model public genomic 
data repository against which novel bioinformatics methods for large-scale 
translational discovery may be rigorously designed, evaluated and applied.  

We recently described a method for the automated discovery of disease-
related experiments within GEO using Medical Subject Heading (MeSH) 
annotations derived from associated PUBMED identifiers12. This represented an 
important first step in enabling large-scale translational discovery by providing 
an automated means through which an entire body of publicly available genomic 
data can be mined comprehensively for human disease characterizations. It also 
demonstrated the utility of applying text mining methods in translational 
research, as well as their potential role in realizing a fully automated pipeline for 
translational bioinformatics discovery and analysis of the human “diseasome”. 
The ultimate goal of such an effort is to comprehensively analyze the whole of 
disease-related experiments for the purpose of developing novel therapeutics 
and improved clinical protocols and diagnostics. If such a pipeline were 
realized, we would be able to ask an entirely new class of questions about the 
nature of human disease, e.g., “Which genes are significantly differentially 
expressed across all known autoimmune diseases?”  

In order to uncover the many putative links between gene expression and 
human disease, we must first be able to compare the global gene expression of a 
disease state with that of a comparable disease-free, or normal control state. 
Given the sheer volume of experiments available in repositories like GEO, there 
is a need to develop automated tools and techniques to enable the identification 
of such states on a large-scale. 

1.2. Objective and Approach 

In this study we seek to develop a robust text mining method to automatically 
identify disease-related GEO experiments that contain samples for both disease 
and normal control states. To accomplish this, we utilize an upper-level 
representation of an experiment in GEO known as a GEO DataSet (GDS), in 
which samples are organized into biologically informative collections known as 
subsets. These subsets are defined by GEO curators who group samples from a 
particular experiment according to the experimental axis under examination (e.g. 
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Figure 2. Example GDS subset 
designations for GDS402 taken from the 
GEO website. 

disease state or agent). Each subset is annotated with a brief, free-text 
description used to further elucidate the nature of the subset (e.g. disease-free or 
placebo). The pertinent attributes and relationships of the GEO GDS are 
illustrated in Figure 1. The definition of GDS has not kept pace with the addition 
of experiments (GSE), and as of this writing there are 1,936 GDS defined in 
GEO representing 32% of the total GSE. 

We propose that these subset text attributes can be evaluated to determine if 
a particular subset is representative of either a disease state or a normal control. 
While the vocabulary used to denote the experimental axes for a subset is 
principally controlled, currently comprised of twenty-four distinct terms, their 
utilization within a GDS and their application to sample collections is left 
completely to curator discretion. Furthermore we find that the content of the 
descriptions associated with each subset is free-text, constrained by no declared 
or discernable convention or controlled vocabulary. An example of these subset 
annotations is shown in figure 2. It is not possible to elucidate control subsets 
from the experimental axis annotation alone, as these annotations aim to classify 
the experimental variable being measured (e.g. cell type or development stage), 
rather than to describe the context of measurement instances. Thus we are faced 
with the difficult problem of elucidating the context of each subset based on the 
free-text descriptions associated with each subset.  

Fortunately, simple frequency analysis reveals that a small number of terms 
commonly used to describe a normal control state are found in the associated 
subset descriptions for disease-related GDS in high frequency. As shown in 

Figure 3, the distribution of subset 
description phrases follows a Zipf-like 
distribution, with the common used control 
terms control, normal, and wild type 
representing the most frequently used 
phrases by-experiment and by-samples 
across all disease-related GDS subset 
descriptions. Thus, it is reasonable to 
suggest that the problem of large-scale 

Figure 1. The relationship between GEO Samples, GEO DataSets, GDS Subsets, and GEO 
Samples is illustrated. The attributes utilized by the proposed method are shown in bold. The label 
over the arrows indicates the cardinality of the relationship. 
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normal control detection within GEO is tractable by the fact that a simple 
pattern matching approach using three common normal control phrases will 
identify controls in a majority of experiments representing a majority of 
samples. However this technique alone is insufficient as many control subsets 
for unique disease characterizations are found in the “long-tail” of the frequency 
distributions. In some cases common control terms are found within the subset 
description, but they do not represent a disease-free state (e.g. skin cancer 
control). In other cases a control subset is annotated using a disease negation 

(a) 

 
(b) 

 
 

Figure 3. Distribution of GDS subset annotation phrases for all disease-related GDS. The 
distributions are filtered to terms annotating > 5 GDS and > 50 GSM for display purposes. The 
distribution shows that the (a) majority of disease-related GDS contain subsets annotated with a 
small set of common control phrases, (b) representing a major proportion of samples. 
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scheme (e.g. diabetes-free). In such cases the application of a simple pattern 
matching technique would result in either a false positive or a false negative 
respectively.  

To manage such complex cases we make use of the Unified Medical 
Language System (UMLS) Metathesaurus13 to identify terms representing a 
human disease. With disease terms identified, it is possible to infer control 
subsets that are implied rather than explicit, for example the negation of a 
disease term implies a normal control, and avoids incorrectly identifying control 
subsets that are annotated in a contradictory manner (e.g. normal skin cancer). 

1.3. Evaluating the Impact of Translational Text Mining 

The impact of any exercise in translational text mining cannot be fully assessed 
without a clear quantitative evaluation of the clinical impact and overall benefit 
to human health. For it is through such clinical imperatives that translational 
bioinformatics is distinguished. It is tempting to measure the clinical impact of 
the proposed method by way of the total number of unique diseases for which a 
disease vs. normal control state was identified, however not every human 
disease carries the same clinical impact. 

 Therefore in addition to traditional performance measures, we propose to 
measure translational impact along the axis of human disease-related mortality. 
In this context, impact is based on the coverage of disease characterizations over 
the total disease-related human mortality, quantified by the number of deaths for 
which a disease is responsible. This impact measure is intuitive, because it is 
reasonable to assume that the diseases causing the greatest number of deaths are 
the diseases that have the greatest impact on clinical practice.  

2. Methods 

2.1. Identifying Disease-Related Experiments 

Similar to our previously described method12, the disease-related experiments 
were identified using a MeSH-based mapping approach. We used a February 
15th, 2007 snapshot of the Gene Expression Omnibus (GEO)9 which was parsed 
into a normalized structure and stored in a relational database. 

For the 1,231 GEO DataSets (GDS) experiments associated with a 
PUBMED identifier, we downloaded the corresponding MEDLINE record and 
extracted the MeSH using the BioRuby toolkit (http://www.bioruby.org). The 
extracted MeSH terms were stored in a relational database along with the 
associated GDS identifier, resulting in 20,654 distinct mappings. These 
mappings were joined with the UMLS (2007AA release) Concept Names and 
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Sources (MRCONSO) and Semantic Types (MRSTY) tables to identify GDS 
associated with MeSH terms having any of the semantic types among Injury or 
Poisoning (T037), Pathologic Function (T046), Disease or Syndrome (T047), 
Mental or Behavioral Dysfunction (T048), Experimental Model of Disease 
(T050), or Neoplastic Process (T191) as disease-related GDS. 

2.2. Control Subset Detection 

For each disease-related GDS we obtained data for the associated subsets 
using the aforementioned relational snapshot of GEO. The subsets of each 
disease-related GDS were enumerated and their descriptions evaluated to 
elucidate control subsets. As previously mentioned, a sizeable proportion of 
disease-related GDS (41%) have subsets annotated with the common control 
terms control, normal and wild type or some slight variation thereof. These 
common control terms were assembled into a set, and any subset with a 
description annotation comprised of a single term from this set was identified as 
a normal control subset. Subset descriptions were also transformed into 
stemmed, word case, spacing and hyphenation variants using porter stemming 
and regular expressions to detect control term variants (e.g. controlled becomes 
control, wild-type becomes wild type), which represented an additional 14% of 
disease-related GDS. If any such variant of a common control term was matched 
in a subset annotation, then the subset was identified as a normal control.  

Curiously, a small proportion of disease-related GDS (3%) did not have any 
subsets defined.  It is not clear as to why this was the case. It could be that these 
GDS are incompletely curated, and subset definitions will be applied in later 
releases of GEO. Consequently these GDS were removed from consideration. 

Subset descriptions not containing common control terms were evaluated 
using more sophisticated techniques to account for negation and lexical 
variation.  

2.3. Handling Negation 

We find that GDS subsets are frequently annotated using a negation scheme in 
which a subset representative of a disease state will be annotated with a UMLS 
disease concept and the control will be expressed as the negation of that disease 
concept (e.g. diabetic vs. non-diabetic). Therefore the identification of control 
subsets was expanded to include subsets that are annotated using this disease-
negation pattern. 

The detection of negations in natural languages is non-trivial14, however 
there are several properties of GDS subset labels that increase the tractability of 
the problem. GDS subset descriptions are typically terse (average of 10.7 
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characters per description), and therefore the word distance between the 
negation signal and the concept is negligible. This aids negation detection by 
minimizing a common source of error in tokenizing negation parsers15, and 
eliminates the need to engage more complex Natural Language Processing 
(NLP) approaches, such as parse tree based negation classification16, to link 
negation symbols to disjoint disease concepts. Given these properties we chose 
to identify negation-based control subsets using a modified version of the 
NegEx algorithm17. The NegEx algorithm is a regular-expression based 
algorithm for the detection of the explicit negation of terms indexed by UMLS.  
NegEx has been shown to have 78% sensitivity and 84.5 % positive predictive 
value when detecting negations in medical discharge summaries17. It is expected 
that NegEx will perform better in the detection of negation-based control 
subsets, as complex syntactic structures, which are not present in terse subset 
labels, were a major source of error in detecting negations in verbose discharge 
summaries.  Additionally, we constrained the NegEx algorithm to detect 
negation for UMLS-mapped terms exhibiting any of the five aforementioned 
disease-related semantic types rather than the broader fourteen semantic type 
categories used by the unmodified algorithm. 

We found that in some cases, a subset description will exhibit the negation 
of a valid disease term, but does in fact lead to a false positive since the negation 
is also a valid disease state (i.e. non-Hodgkins Lymphoma). To correct for this 
case, we first query UMLS to ensure that description does not represent a 
disease state. 

2.4. Handling Lexical Variations 

In some cases the description for a control subset was expressed in a manner that 
is lexically inconsistent with the terms used to describe the disease state. For 
example, GDS887 defines the following subset labels for the disease state axis: 
type 1 diabetes, type 2 diabetes, and non-diabetic. In order to automatically link 
the subset labeled non-diabetic as the negated control of the subset labeled type 
1 diabetes, we must derive that these lexically incompatible labels are in fact 
semantically related. 

Lexical variations were automatically reconciled using the Normalized 
Word Index table (MRXNW_ENG) in UMLS.  The Normalized Word Index 
contains tokenized, uninflected forms of UMLS terms, derived either 
algorithmically or through the SPECIALIST lexicon. Using this table we find 
that the terms type 1 diabetes and diabetic share a common association with at 
least one Concept Unique Identifier (CUI) (C0011854). Therefore we can infer 
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that the subset labeled non-diabetic is in fact a valid negated control of the 
subset labeled type 1 diabetes. 

2.5. Performance Evaluation 

To evaluate performance we used an expert human reviewer as a “gold 
standard”, and divided control subsets into two distinct groups. The first group, 
Group A, represents control subsets identified using common control terms, and 
the second group, Group B, represents control subsets that did not contain 
common control terms, and therefore were evaluated using the negation-based 
approach. We randomly sampled positively and negatively identified control 
subsets from both groups and calculated True Positive (TP), False Positive (FP), 
True Negative (TN), and False Negative (FN) counts after each subset from the 
random samples was evaluated by the expert human evaluator, who positively or 
negatively identified control subsets. From these counts we calculated sensitivity 
= TP/TP+FN, specificity = TN/TN+FP, Positive Predictive Value (PPV) = 
TP/TP+FP, Negative Predictive Value (NPV) = TN/TN+FN, and F1 score = 
2⋅(PPV⋅(TP/TP+FN))/PPV+(TP/TP+FN). These values were also computed 
across both groups to provide an overall evaluation of performance for the 
proposed method. 

2.6. Evaluating Clinical Impact from Mortality Data 

U.S. mortality data from 1999 to 2004 were obtained from the Centers for 
Disease Control and Prevention (CDC) using the Wide-ranging Online Data for 
Epidemiologic Research (WONDER) system (http://wonder.cdc.gov). Causes of 
Death were specified using International Classification of Disease (ICD) codes 
(10th edition). These codes were mapped to their corresponding MeSH using the 
MRCONSO table in UMLS. We acknowledge that many ICD10 codes have no 
direct mapping to MeSH in UMLS, with only ~15% of ICD10 directly linked to 
MeSH terms. Computational translation between UMLS source vocabularies is 
an active area of research, with several promising approaches emerging19, 20. 
However it is beyond the scope of this paper to participate in this budding area 
of research. Therefore we only map ICD10 codes to MeSH terms when they are 
directly related under the same concept identifier (CUI) in UMLS to provide a 
minimum estimate of impact. The number of deaths mapped to disease-related 
GDS in this manner was used to calculate the total disease-related mortality 
impact. 
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3. Results 

In mapping GDS to MeSH terms, we find that 1,231 (78%) of the 1,588 GDS in 
our GEO database snapshot were associated with a PUBMED identifier. From 
the resulting 20,654 GDS to MeSH mappings, we find that 513 GDS are 
associated with MeSH terms having at least one of the six semantic types 
considered to be disease-related (T037, T046, T047, T048, T050 or T191). 

In detecting common normal control phrases in subset annotations, we find 
that control subsets are identified in 56% of disease-related GDS.  Using the 
negation and lexical variation compensation techniques, we are able to identify 
control subsets in an additional 33 GDS, resulting in the automated 
identification of control subsets in a total of 62% of disease-related GDS. This 
results in a set of 13,840 samples spanning 141 unique disease-related concepts. 

We manually inspected the 38% of disease-related GDS for which normal 
control subsets could not be identified, and found that they fell into a handful of 
general categories. A number of GDS experiments were designed to characterize 
or differentiate among disease subtypes (e.g. expression profiling across 
different cancer cell lines), and therefore contain no true control subsets. Others 
annotated subsets using proprietary identifiers for cell lines and animal strains. 
The latter accounts for a major source of sensitivity dampening in evaluating 
control subsets. Detailed performance metrics are illustrated in Table 1. 
Table 1. Performance Evaluation of Control Detection. 

 Sensitivity Specificity PPV NPV F1 

Group A (common control terms) (n=100) 0.979 1.000 1.000 0.980 0.989 
Group B (negation-based controls) (n=100) 0.428 0.983 0.937 0.750 0.588 

Combined (Group A+Group B) (n=200) 0.750 0.911 0.984 0.840 0.851 

We were successful in mapping 2,019 ICD10 codes to MeSH terms, 
covering 18% of the ICD10 codes represented in the mortality data, and 42% of 
the total mortality. Using MeSH headings, we were able to map 42% the 
disease-related GDS with normal controls to ICD10 codes. These ICD10 codes 
mapped to 77 unique ICD10 codes in the mortality data representing 4,219,703 
combined deaths over 5 years, or 30% of the total human disease-related 
mortality in the United States in the same period. Note that this is a minimum 
estimation given the limited mapping between ICD10 and MeSH in UMLS.  

4. Discussion 

Given the current pace of growth experienced by international genomic data 
repositories, it may be only six years before researchers have access to more 
than a million microarray samples. Yet, even with less than half that amount 
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available today, it has not been possible to link any significant portion of these 
genomic measurements to the broad molecular characteristics underlying the 
broad spectrum of human disease.  Here we describe a method that enables the 
creation of such links, and lays the groundwork for the development of a robust 
translational bioinformatics pipeline that can be applied to both current and 
forthcoming volumes of public genomic data. 

Through this method we find that we can automatically identify normal 
control subsets in GDS representing 141 unique disease states and conditions. 
While cancers make up a significant proportion of the associated diseases, 
afflictions such as Alzheimer’s disease, heart disease, diabetes and other 
diseases having a major impact on human mortality are also represented. 

The techniques developed for the identification of negated control subsets 
and the reconciliation of lexical variations will become increasingly important as 
GEO continues its exponential growth. Even if the percentage of disease-related 
GDS experiments containing non-obvious control subset designations remains 
the same (17%) or even slightly less, these techniques could enable the 
automated translational analysis of thousands of disease-related microarray 
samples.  

We have now proven that it is not only possible, but also completely 
tractable to apply these methods to our current public data collections in an 
attempt to characterize the broad spectrum of high-impact human disease. 
Despite the fact that we were only able to identify control subsets in 20% of the 
total GDS found in GEO, and ultimately only 6% of the total experiments 
contained within GEO, we were able to associate these GDS experiments with 
diseases contributing to 30% of the total human mortality in the United States.  

The next critical step is to develop a means by which those experiments 
without associated PUBMED identifiers can be automatically evaluated to 
identify additional disease-related experiments. In addition, these techniques 
must be further generalized so that they can be applied to additional public 
repositories containing data from microarrays and other genome-scale measures. 

We acknowledge that while this study provides a successful proof of 
concept and demonstration of utility, it does not provide a finished product. 
Therefore the method will not be made available as a public resource, however it 
will enable the creation of more biologically relevant downstream resources. 

Conclusion 

Using GEO as a model public data repository, we have developed text mining 
techniques that enable completely new types and scales of translational research. 
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As these techniques are applied to new and expanding public data repositories, 
by means of translational bioinformatics, we will be given the opportunity to 
discover the fundamental molecular principals and dynamics that underlie the 
whole of high-impact human disease. It is from this vantage that we will begin 
to realize the novel diagnostics and therapeutics long-promised in this post-
genomic era. 
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