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Mathematical models of calcium release sites derived from Markov chain mod-
els of intracellular calcium channels exhibit collective gating reminiscent of the
experimentally observed phenomenon of stochastic calcium excitability (i.e.,
calcium puffs and sparks). We present a Kronecker structured representation
for calcium release site models and perform benchmark stationary distribu-
tion calculations using numerical iterative solution techniques that leverage
this structure. In this context we find multi-level methods and certain pre-
conditioned projection methods superior to simple Gauss-Seidel type iterations.
Response measures such as the number of channels in a particular state con-
verge more quickly using these numerical iterative methods than occupation
measures calculated via Monte Carlo simulation.

1. Introduction

The stochastic gating of voltage- and ligand-gated ion channels in biological

membranes that is observed by single channel recording techniques is often

modeled using discrete-state continuous-time Markov chains (CTMCs).1,2

While these single channel models can be relatively simple (e.g., two physic-

ochemically distinct states) or complex (hundreds of states), most include

only two conductance levels (closed and open). For example, a transition

state diagram for a three-state calcium (Ca2+)-regulated channel activated

by sequential binding of two Ca2+ions is given by
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where k+
i c and k−

i with i ∈ {a, b} are transition rates with units of reciprocal

time, k+
i is an association rate constant with units of conc−1 time−1, and c is

the [Ca2+] near the channel. If this local [Ca2+] is specified, the transition-

state diagram of the channel (1) defines a CTMC that takes on values in

the state-space (C1, C2, O1). The experimentally observable conductance of

this stochastically gating channel is the aggregated process of transitions

between the closed and open classes of states: C = {C1, C2} and O = {O1}.

The scientific literature developing stochastic models for the behav-

ior of ion channels is largely focused on single channels or populations

of independent channels. One notable exception is the work of Ball and

colleagues analyzing interacting aggregated CTMC models of membrane

patches containing several ion channels.3,4 A second example, the subject of

this paper, are simulations of clusters of intracellular Ca2+-regulated Ca2+

channels—inositol 1,4,5-trisphosphate receptors (IP3Rs) and ryanodine re-

ceptors (RyRs)—located on the surface of the endoplasmic reticulum or

sarcoplasmic reticulum membrane—that give rise to localized intracellular

[Ca2+] elevations known as Ca2+ puffs and sparks.5–9
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Fig. 1. Left: Local [Ca2+] near 3×3 µm ER membrane with Ca2+ channels modeled as
0.05 pA point sources with positions randomly chosen from a uniform distribution on a
disc of radius 2 µm. Buffered Ca2+ diffusion is modeled as in Ref. 10. Middle: Stochastic
Ca2+ excitability reminiscent of Ca2+ puffs/sparks. Right: Probability distribution of
the number of open channels leading to a puff/spark Score of 0.39.

When Markov chain models of Ca2+-regulated Ca2+ channels such as (1)

are coupled via a mathematical representation of buffered diffusion of intra-

cellular Ca2+, simulated Ca2+ release sites may exhibit the phenomenon of

“stochastic Ca2+ excitability” where the IP3Rs or RyRs open and close in a

concerted fashion10,11 (see Fig. 1 for representative simulation) . Such mod-

els are stochastic automata networks (SANs) that involve a large number of

functional transitions, that is, the transition probabilities of one automata

(i.e., an individual channel) may depend on the local [Ca2+] and thus the

state of the other channels. The experimentally observable quantity is ei-
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ther the local [Ca2+] or the number of channels in the open class of states,

NO(t) (see Fig. 1, middle).

The relationship between single channel kinetics of Ca2+-regulated

channels and the emergent phenomenon of Ca2+ puffs and sparks is not

well understood. However, if each release site configuration is known, sev-

eral informative response measures can be determined from the steady-state

probability distribution. For example, the so-called puff/spark Score10 given

by Var[fO]/E[fO] is the index of dispersion of the steady-state fraction of

open channels, fO = NO/N (see Fig. 1, right). This response measure

takes values between 0 and 1, and a puff/spark Score of greater than ap-

proximately 0.3 indicates the presence of Ca2+ excitability. However, Ca2+

release sites are composed of 5–250 channels and this leads to a state-space

explosion that makes numerical calculation of the stationary distribution

of model Ca2+ release sites difficult.

2. Formulation of Model

In this paper we consider two single channel models: the three-state Ca2+-

activated channel described above (1) and a six-state model that includes

both fast Ca2+ activation and slow Ca2+ inactivation, processes that are

important aspects of the dynamics of both IP3Rs and RyRs. The six-state

model assumes two identical channel subunits that both require Ca2+ bind-

ing to enter a permissive state and include a second Ca2+-mediated tran-

sition into a long-lived non-permissive state (for transition state diagram

and parameters see Ref. 12).

In both the three- and six-state models, Ca2+-mediated transitions

out of open states can be accelerated due to the increase in local [Ca2+]

when a Ca2+-regulated Ca2+ channel is open.13,14 Assuming the forma-

tion and collapse of Ca2+ microdomains are fast compared to channel

gating, we can denote the background and domain [Ca2+] experienced by

the channel when closed and open as c∞ and cd, respectively. With this

assumption the three- and six-state single channel models take the form

Q = K− + (c∞I + cdIO) K+ where K− and K+ are M × M matrices

that collect the unimolecular (k−

i ) and bimolecular (k+
i ) transition rates,

IO = diag {eO}, and eO is a M × 1 vector indicating open states of the

single channel model.10 In our model formulation, the interaction between

channels is mediated through the buffered diffusion of intracellular Ca2+

(see Ref. 10 for a complete description). For the purposes of this paper we

do not assume any particular cell type with known release site ultrastruc-

ture (e.g., cardiac myocytes with channels arranged in a dyad) and instead
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consider that the N channels at the Ca2+ release site have positions chosen

from a two-dimensional uniform distribution on a disc of radius 0.1–2.0 µm

(i.e., constant surface density; see Fig. 1, left). When in the open state,

each channel contributes to the landscape of [Ca2+] throughout the Ca2+

release site and influences the local [Ca2+] experienced by other channels.

For simplicity we assume that the formation and collapse of individual peaks

within the Ca2+ microdomain occur quickly compared to channel gating.

We also assume the presence of a single high concentration Ca2+ buffer

and the validity of superposing local [Ca2+] increases due to each of the N

channels.15,16 Thus, channel interactions can be summarized by an N ×N

‘coupling matrix’ C = (cij) that gives the increase over c∞ experienced by

channel j when channel i is open.

2.1. Instantaneous Coupling of Two Ca2+-Regulated Ca2+

Channels

In the case of two identical Ca2+-regulated Ca2+ channels the interaction

matrix takes the form

C =

(

cd c12

c21 cd

)

and the expanded generator matrix is given by Q(2) = Q
(2)
− + Q

(2)
+ where

Q
(2)
− = K− ⊗ I + I ⊗ K− (2)

collects the unimolecular transition rates and ⊗ denotes the Kronecker

product (see Ch. 9 in Ref. 17). The transition rates involving Ca2+ take

the form

Q
(2)
+ = D

(2)
1 (K+ ⊗ I) + D

(2)
2 (I ⊗ K+) , (3)

where the two terms represent Ca2+-mediated transitions of each channel.

The diagonal matrices D
(2)
1 and D

(2)
2 give the [Ca2+] experienced by channel

1 and 2, respectively, in every configuration of the release site, that is,

D
(2)
1 = diag {c∞ (e ⊗ e) + cd (eO ⊗ e) + c21 (e ⊗ eO)}

= c∞ (I ⊗ I) + cd (IO ⊗ I) + c21 (I ⊗ IO)

and similarly for D
(2)
2 . Using the Kronecker identities such as

(I ⊗ IO) (I ⊗ K+) = I ⊗ IOK+, Eq. 3 can be rearranged as

Q
(2)
+ = c∞K

(2)
+ + cd (IOK+ ⊗ I) + c12 (IO ⊗ K+)

+ c21 (K+ ⊗ IO) + cd (I ⊗ IOK+) (4)
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where K
(2)
+ = K+ ⊗ I + I ⊗ K+. Combining Eqs. 2 and 4 and simplifying,

Q(2) can be written compactly as

Q(2) = Ad ⊗ I + IO ⊗ A12 + A21 ⊗ IO + I ⊗ Ad (5)

where Ad = K− + c∞K+ + cdIOK+, and Aij = cijK+.

2.2. Instantaneous Coupling of N Ca2+-Regulated Ca2+

Channels

In the case of N channels coupled at the Ca2+ release site, the expanded

generator matrix—i.e., the SAN descriptor—is given by

Q(N) = Q
(N)
− + Q

(N)
+ (6)

Q
(N)
− =

N
⊕

n=1

K− =

N
∑

n=1

I(n−1) ⊗ K− ⊗ I(N−n) (7)

Q
(N)
+ = c∞K

(N)
+ +

N
∑

i,j=1

cij

(

Y 1
ijZ

1
ij ⊗ · · · ⊗ Y N

ij ZN
ij

)

(8)

Y n
ij =

{

IO for i = n

I otherwise
Zn

ij =

{

K+ for j = n

I otherwise
(9)

where I(n) is an identity matrix of size Mn and K
(N)
+ = ⊕N

n=1K+ . Com-

bining Eqs. 7 and 8 and simplifying, Q(N) can be written as

Q(N) =
N

∑

i,j=1

X1
ij ⊗ · · · ⊗ XN

ij (10)

Xn
ii =

{

Ad for i = n

I otherwise.
and Xn

ij =







IO for i = n

Aij for j = n

I otherwise

for i 6= j

where Ad = K− + c∞K+ + cdIOK+, and Aij = cijK+. Note that all states

of the expanded Markov chain Q(N) are reachable, the matrices I, IO , Ad,

Aij , and Xn
ij are all M × M , and 2N2 − N of the N3 matrices denoted by

Xn
ij are not identity matrices.

3. Stationary Distribution Calculations

The limiting probability distribution of a finite irreducible CTMC is the

unique stationary distribution π
(N) satisfying global balance,17 that is,

π
(N)Q(N) = 0 subject to π

(N)
e

(N) = 1 (11)
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where Q(N) is the Ca2+ release site SAN descriptor (Eq. 10) and e
(N) is an

MN×1 column vector of ones. Although Monte Carlo simulation techniques

such as Gillespie’s Method18 can be implemented to estimate response mea-

sures such as the puff/spark Score, this is an inefficient approach when the

convergence of the occupation measures to the limiting probability distribu-

tion is slow. This problem is compounded by the state-space explosion that

occurs when the number of channels (N) or number of states per chan-

nel (M) is large (i.e., physiologically realistic). Both space requirements

and quality of results can be addressed using the Kronecker representation

(Eq. 10) and various iterative numerical methods to solve for π
(N).

Many methods are available to solve Eq. 11 with different ranges of

applicability (see Ref. 17 for review). For larger models, a variety of iter-

ative methods are applicable including the method of Jacobi, and Gauss-

Seidel, along with variants that use relaxation, e.g., Gauss-Seidel with relax-

ation (SOR). Such methods require space for iteration vectors and Q(N) but

usually converge quickly. More sophisticated projection methods—e.g., the

generalized minimum residual method (GMRES) and the method of Arnoldi

(ARNOLDI)—have better convergence properties but require more space.

While the best method for a particular Markov chain is unclear in gen-

eral, several options are available for exploration including the iterative

methods described above that can be also enhanced with precondition-

ing, aggregation-disaggregation (AD), or Kronecker-specific multi-level (ML)

methods that are inspired by multigrid and AD techniques. Unfortunately,

we cannot acknowledge all relevant work on iterative methods due to lim-

ited space.19,20

A number of software tools are available that implement methods for

Kronecker representations, and we selected the APNN toolbox21 and its nu-

merical solution package Nsolve for its rich variety of numerical techniques

for the steady state analysis of Markov chains. Nsolve provides more than 70

different methods and comes with an ASCII file format for a SAN descriptor

easily interfaced with our MATLAB modeling environment. Nsolve mainly

supports hierarchical Markovian models that include a trivial hierarchy

with a single macrostate such as Eq. 10 as a special case (see Refs. 21–24).

4. Results

In order to investigate which numerical techniques work best for the Kro-

necker representation of our Ca2+ release site models, we wrote a script

for the matrix computing tool MATLAB that takes a specific Ca2+ release

site model—defined by K+, K−, eO, c∞, and C—and produces the input
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files needed to interface with Nsolve. Using 10 three-state channels (1) we

performed a preliminary study to determine which of the 70-plus numerical

methods implemented in Nsolve were compatible with Eq. 10.

4.1. Benchmark Stationary Distribution Calculations

Table 1 lists those solvers that converged in less than 20 minutes CPU

time with a maximum residual less than 10−12 for one configuration of 10

three-state channels. For each method we report the maximum and sum

of the residuals, the CPU and wall clock times (in seconds), and the total

number of iterations performed. We find that traditional relaxation meth-

ods (e.g., JOR, RSOR) work well for this problem with 310 = 59, 049 states,

but the addition of AD steps is not particularly helpful. AD steps do however

greatly improve the performance of the GMRES solver and to a smaller extent

the DQGMRES and ARNOLDI methods. The separable preconditioner (PRE) of

Buchholz23 and the BSOR preconditioner are very effective and help to re-

duce solution times to less than 50 seconds for several projection methods.

Among ML solvers, a JOR smoother gives the best results and dynamic (DYN)

or cyclic (CYC) ordering is better than a fixed (FIX) order where V, W, or F

indicate the type of cycle used.19,20

4.2. Problem Size and Method Performance

In Sec. 4.1 we benchmarked the efficiency of several different algorithms that

can be used to solve for the stationary distribution of Ca2+ release site mod-

els. To determine if this result depends strongly on problem size, we chose

representatives of four classes of solvers (JOR, PRE ARNOLDI, BSOR BICGSTAB,

and ML JOR F DYN) that worked well for release sites composed of 10 three-

state channels (see Table 1). Using these four methods, Fig. 2 shows the

wall clock time required for convergence of π
(N) as a function of the num-

ber of channels (N) for both the three- and six-state models (circles and

squares, respectively). Because the N channels in each Ca2+ release site

simulation have randomly chosen positions that may influence the time to

convergence, Fig. 2 shows both the mean and standard deviation (error

bars) of the wall clock time for five different release site configurations.

Note that for each value of N in Fig. 2, the radius of each Ca2+ release

site was chosen so that stochastic Ca2+ excitability was observed. Due to

irregular release site ultrastructure, these calculations can not be simplified

using spatial symmetries.

Figure 2 shows that the time until convergence is shorter when the Ca2+
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Table 1. Benchmark calculations for 10 three-state channels computed using Linux
PCs with dual core 3.8GHz EM64T Xeon processors and 8GB RAM solving Eq. 10.

Solver Max Res Sum Res CPU Wall Iters

JOR 9.49E-13 5.16E-12 279 279 1840

SOR 9.49E-13 5.16E-12 435 436 1840

RSOR 8.76E-13 2.40E-12 1190 1197 990

JOR AD 9.44E-13 5.13E-12 415 415 1550

SOR AD 9.44E-13 5.13E-12 413 414 1550

DQGMRES 9.87E-13 6.78E-10 490 492 2940

ARNOLDI 2.42E-13 4.04E-11 214 215 1440

BICGSTAB 8.66E-13 4.89E-11 146 148 602

GMRES AD 6.43E-13 3.61E-11 88 89 900

DQGMRES AD 1.03E-12 1.84E-10 184 184 2008

ARNOLDI AD 7.23E-13 7.60E-11 109 109 1280

PRE POWER 9.37E-13 5.27E-12 246 247 1670

PRE GMRES 8.62E-15 3.73E-12 45 46 180

PRE ARNOLDI 8.62E-15 1.82E-12 26 27 160

PRE BICGSTAB 4.44E-16 2.49E-14 28 28 188

BSOR BICGSTAB 8.22E-15 5.29E-13 19 19 52

BSOR GMRES 3.05E-13 7.73E-12 20 20 49

BSOR TFQMR 1.83E-13 1.39E-12 17 17 48

PRE GMRES AD 1.29E-13 1.52E-11 36 36 140

PRE ARNOLDI AD 4.32E-13 7.18E-12 27 28 140

ML JOR V FIX 9.69E-13 3.54E-11 105 105 372

ML JOR W FIX 9.12E-13 1.14E-10 156 157 326

ML JOR F FIX 9.93E-13 1.01E-10 146 146 330

ML JOR V CYC 8.35E-13 6.36E-12 42 43 168

ML JOR W CYC 4.36E-13 5.41E-11 26 26 38

ML JOR F CYC 6.76E-13 1.39E-11 18 19 56

ML JOR V DYN 8.07E-13 6.09E-12 58 59 152

ML JOR W DYN 2.81E-13 5.15E-11 14 15 38

ML JOR F DYN 5.87E-13 1.68E-10 15 15 46

release site is composed of three-state as opposed to six-state channels re-

gardless of the numerical method used (compare circles to squares). Consis-

tent with Table 1 we find that for large values of N the ML JOR F DYN (black)

method requires the shortest amount of time, followed by BSOR BICGSTAB

(dark gray), PRE ARNOLDI (light gray), and finally JOR (white). Though

there are important differences in the speed of the four solvers, the wall

clock time until convergence is approximately proportional to the number

of states (MN ), that is, the slope of each line in Fig. 2 is nearly M = 3 or

6 depending on the single channel model used.

We also experienced substantial differences in the amount of memory

needed to run those solvers. While simple methods like JOR and SOR allo-

cate space mainly for a few iteration vectors, Krylov subspace methods like
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Fig. 2. Circles and error bars show the mean ± SD of wall clock time for five release site
configurations of the three-state model (1) using: JOR (white), PRE ARNOLDI (light gray),
BSOR BICGSTAB (dark gray), and ML JOR F DYN (black). Three-state model parameters: k+

a

= 1.5 µM−1 ms−1, k−
a = 50 ms−1, k+

b
= 150 µM−1 ms−1, k−

b
= 1.5 ms−1. Squares and

error bars give results for the six-state model (parameters as in Ref. 12). Calculations
performed using 2.66 GHz Dual-Core Intel Xeon processors and 2 GB RAM.

GMRES, DQGMRES and ARNOLDI use more vectors (20 in the default Nsolve

configuration), and this can be prohibitive for large models. For projection

methods that operate on a fixed and small set of vectors like TFQMR and

BICGSTAB, we observe that the space for auxiliary data structures and vec-

tors is on the order of 7–10 iteration vectors for these models. In general we

find that the iterative numerical methods that incorporate pre-conditioning

techniques are quite fast compared to more traditional relaxation techniques

such as JOR. However, the power of pre-conditioning is only evident when

problem size is less than some threshold that depends upon memory limi-

tations. On the other hand, ML methods are constructed to take advantage

of the Kronecker representation and to have very modest memory require-

ments. This is consistent with our experiments that indicate ML methods

have the greatest potential to scale well with problem size, whether that

be an increase in the number of channels (N) or the number of states per

channel (M).

4.3. Comparison of Iterative Methods and Monte Carlo

Simulation

Although there may be problem size limitations, we expected that the sta-

tionary distribution of our Ca2+ release site models could be found more

quickly using iterative methods than Monte Carlo simulation. This is con-

firmed in the convergence results of Fig. 3 using a release site composed of
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Fig. 3. Convergence of response measures for a release site composed of 10 three-state
channels using ML JOR F DYN and Monte Carlo (filled and open symbols, respectively).
Circles and squares give 1- and ∞-norms of the residual errors, upper pointing triangles

give the relative error in the puff/spark Score for Monte Carlo (mean of 50 simulations
shown) compared with the Score given by ML JOR F DYN upon convergence. Similarly, the
lower pointing triangles give the relative error in the probability that all N channels are
closed. Parameters as in Fig. 1.

10 three-state channels for both ML JOR F DYN (filled symbols) and Monte

Carlo simulation (open symbols). We run a Monte Carlo simulation to es-

timate the stationary distribution and that estimate depends on the length

of the simulation measured in seconds of wall clock time (our implemen-

tation averaged 1,260 transitions per second). The simulation starts with

all N channels in state C1—chosen because it is the most likely state at

the background [Ca2+] (c∞). Figure 3 shows the maximum and sum of 1-

and ∞-norms of the residuals averaged over 50 simulations. As expected,

the residuals associated with the Monte Carlo simulations converge much

slower than those obtained with ML JOR F DYN. Interestingly, Fig. 3 shows

that even coarse response measures can be more quickly obtained using nu-

merical iterative methods than Monte Carlo simulation. We find that the

relative errors of the puff/spark Score (upwards pointing triangles) and the

probability that all N channels were closed (downwards pointing triangles)

obtained via Monte Carlo simulation did not converge significantly faster

than the maximum residual error (open squares).

5. Conclusions

We have presented a Kronecker structured representation for Ca2+ release

sites composed of Ca2+-regulated Ca2+ channels under the assumption that

these channels interact instantaneously via the buffered diffusion of intra-
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cellular Ca2+ (Sec. 2). Because informative response measures such as the

puff/spark Score can be determined if the steady-state probability of each

release site configuration is known, we have identified numerical interative

solution techniques that perform well in this biophysical context.

The benchmark stationary distribution calculations presented here indi-

cate significant performance differences among iterative solution methods.

Multi-level methods provide excellent convergence with modest additional

memory requirements for the Kronecker representation of our Ca2+ release

site models. When the available main memory permits, BSOR-preconditioned

projection methods such as TFQMR and BICGSTAB are also effective, as is the

method of Arnoldi combined with a simple preconditioner. In case of tight

memory constraints, Jacobi and Gauss-Seidel iterations are also possible

(but slower). When numerical iterative methods apply, they outperform

our implementation of Monte Carlo simulation for estimates of response

measures such as the puff/spark Score and the probability of a number of

channels being in a particular state.

Single channel models of IP3Rs and RyRs can be significantly more

complicated than the three- and six-state models that are the focus of

this manuscript. For example, the well-known DeYoung-Keizer IP3R model

includes four eight-state subunits per channel for a total of 330 distin-

guishable states.25 Because biophysically realistic Ca2+ release site simu-

lations can involve tens or even hundreds of intracellular channels, we ex-

pect that the development of approximate methods for our SAN descriptor

(Eq. 10) will be an important aspect of future work. Of course, some puff

and spark statistics—such as puff/spark duration and inter-event interval

distributions—cannot be determined from the Ca2+ release site stationary

distribution. Consequently, it will be important to determine if transient

analysis can also be accelerated by leveraging the Kronecker structure of

Ca2+ release sites composed of instantanteously coupled Ca2+-regulated

Ca2+ channels. Furthermore, although the SAN conceptual framework and

its associated analysis techniques presented in this manuscript have focused

solely on the emergent dynamics of Ca2+ release sites, it is also important

to note that these techniques should be generally applicable to our under-

standing of signaling complexes of other kinds.26,27
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