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Traditionally, the elucidation of genes involved in maturation and aging has been studied 
in a temporal fashion by examining gene expression at different time points in an 
organism’s life as well as by knocking out, knocking in, and mutating genes thought to be 
involved. Here, we propose an in silico method to combine clinical electronic medical 
record (EMR) data and gene expression measurements in the context of disease to 
identify genes that may be involved in the process of human maturation and aging. First 
we show that absolute lymphocyte count may serve as a biomarker for maturation by 
using statistical methods to compare trends among different clinical laboratory tests in 
response to an increase in age. We then propose using the rate of decay for absolute 
lymphocyte count across 12 diseases as a proxy for differences in aging. We correlate the 
differing rates with gene expression across the same diseases to find maturation/aging 
related genes. Among the 53 genes with strongest correlations between expression profile 
and change in rate of decay, we found genes previously implicated in the process of 
aging, including MGMT (DNA repair), TERF2 (telomere stability), POLD1 (DNA 
replication and repair), and POLG (mtDNA replication). 

1. Introduction 

The integration of bioinformatics, basic science, and statistical methods has been 
recognized as being essential to the progression of translational research. 
Advances made in the understanding of biological systems using such an 
integrated approach can have a direct impact at both the bench and bedside to 
further our understanding of human disease [1]. Techniques like gene expression 
microarray measurement and analysis, which has been used extensively with 
research involving model organisms, can be extremely informative about 
diseases, aging and other biological processes. There have been many innovative 
ways of integrating these microarrays with various data sets to identify genes 
and their potential function, but most of these methods have led to a reductionist 
approach to the study of disease, where novel subtypes and features observed in 
microarray analyses are used to describe singular disorders [2]. 
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Against this reductionist trend, recent work has focused on the use of 
measurements across a variety of disorders to find the common elements across 
disease. Daniel Rhodes and colleagues searched for commonalities in cancer in 
2004 [3]. After collecting 40 available sets of microarray data with over 3,700 
samples of cancer, Rhodes calculated a genome-wide signature representative of 
neoplastic transformation. Andrea Bild and colleagues linked cellular models 
with disease samples to find commonly deregulated biological pathways across 
cancers that correspond with worsening survival [4]. Eran Segal and colleagues 
used microarray-based expression measurements annotated with both biological 
and clinical conditions to create modules which were examined across types of 
cancer [5]. In our previous work, we linked gene measurements, as measured by 
microarrays, to phenotypes and responses to environment, as represented by 
biomedical concepts in the Unified Medical Language System (UMLS), to 
create a phenome-genome network [6]. Each of these is an important example of 
how genome-era measurements can be used to quantitate mechanistic 
similarities and differences between diseases previously categorized using 
syndromic or anatomic descriptors. 

An often-overlooked area that can contribute to translational research is 
clinical laboratory data. In the past, data collected during clinical care were 
prone to transcription errors while transferring information from paper forms to 
an electronic format. However, as an increasing number of institutions move 
towards using electronic medical records (EMR) data quality has increased due 
to elimination of transcription and omission errors [7]. While EMRs have 
created a structured environment for reporting of laboratory measurements for 
physicians, they rarely provide data in a manner easily accessible for 
translational researchers. Even when such data is available for clinical research, 
it is typically accessed on a disease-by-disease basis.  Here, we hypothesize that 
these laboratory test measurements can provide an important link between gene 
expression measurements and the physical manifestations of patients. 

One type of physical manifestation is aging. The mechanisms of aging, 
though still far from being determined, are thought to involve three main 
biological phenomena leading to cellular senescence: DNA damage, telomere 
shortening and mitochondrial dysfunction [8]. Research into these areas has 
focused almost exclusively on in vitro and in vivo models, wherein gene 
expression measurements for different time points in an organism’s lifespan as 
well as the knock-out, overexpression, or mutation of genes suspected of being 
aging-related remain the gold standard to find such genes. However, the study of 
aging is difficult as there are many genetic as well as environmental influences 
that contribute to its progression, not to mention the fact that the mechanisms of 
aging in model organisms may differ from that of humans.  
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In this paper, we introduce a novel translational method that uses clinical 
laboratory measurements in conjunction with gene expression levels to elucidate 
genes that may be involved in the process of human maturation and aging. After 
using clinical laboratory measurements to find a biomarker that correlates with 
an increase in age, we order several diseases based on the accelerated or 
decelerated change in this biomarker. We then use publicly available gene 
expression data sets representative of these diseases to find genes changing in 
expression in the same profile as the rate of change in the biomarker. While we 
find that our set of genes correlating with the change in our aging biomarker are 
over-represented with known genes associated with aging, we are releasing this 
list in the hopes that these results will be validated through biological assays. 
Finally, this method of incorporating clinical laboratory data with gene 
expression microarray data is extensible and we believe it will be useful in 
deciphering and understanding many complex human diseases. 

2. Methods 

2.1. Data Collection and Processing 

Quantitative clinical laboratory data, consisting of 1,104,316 measurements 
across 656 distinct lab tests, originally obtained at the Lucile Packard Children’s 
Hospital, were collected in a de-identified manner from the Stanford 
Translational Research Integrated Database Environment (STRIDE). In total, 
this data represented 4,844 patients across all ages that were diagnosed with one 
or more of a set of 12 chronic diseases (Table 1). The use of de-identified 
clinical laboratory data in this manner was approved by the Institutional Review 
Board of the Stanford University School of Medicine. 

We applied a filter to restrict laboratory measurements to only those 
measured between the ages of 0 and 17 years, in order to restrict our analysis to 
the pediatric samples making up the majority of our data. Although patients with 
certain diseases, like cystic fibrosis, may be seen at a children’s hospital through 
their adult years, we felt that laboratory measurements collected after the 
pediatric years were not representative enough to include in our analysis. This 
filter resulted in 4,086 patients with a distribution of ages between 0 and 17 
years, diagnosed with one or more of our set of 12 diseases. 

We identified 20 microarray experiments within a 2006 snapshot of the 
NCBI Gene Expression Omnibus (GEO), an international repository for gene 
expression data, developed and maintained by the National Library of Medicine 
[9]. Each experiment studied one of 12 diseases using an experimental design in 
which normal samples were compared to disease samples. Experiments were 
manually examined and those lacking normal to disease comparisons as well as 
those not representative of the clinical diagnosis were excluded. A rank based 

Pacific Symposium on Biocomputing 13:243-254(2008)



  

approach was used for normalization of gene expression due to inconsistencies 
between microarray platforms as well as inconsistencies in submitted data. The 
gene expression measurements on each microarray was rank-normalized to 
numbers between 0 and 1, depending on the relative ranking of the expression 
level of a gene compared to all the other measured genes on that microarray. 
The mean rank expression for each gene was calculated for control and disease 
samples, and the difference in these mean rank-normalized expression levels 
was calculated and assigned to each gene. The mean rank difference for a gene 
between control and disease states describes relative change of expression for 
that gene. GEO data sets (GDS) were merged across similar series of microarray 
types. For example, GDS559 has the title “Inflammatory bowel disease (HG-
U133A)” and GDS560 has the title “Inflammatory bowel disease (HG-U133B)”.  
Since the A and B chips are from the same series of microarray, these two data 
sets were combined, and multiple measurements for a gene were averaged. In 
this example, the group of microarrays labeled by the submitter as “ulcerative 
colitis” was compared to the group of microarrays labeled as “control” and the 
difference in mean rank-normalized expression measurements was assigned to 
the disease ulcerative colitis. Finally, genes missing measurements in 2 or more 
of the 12 diseases were dropped. This yielded a matrix of 4,956 genes across 12 
diseases. 

 
Table 1: List of the twelve diseases, the abbreviations used in this paper, and the GEO data sets used 
to represent the genome-wide changes in gene expression seen in each disease. 
 

Disease Abbreviation GEO Data 
Sets 

Autoimmune polyendocrinopathy-candidiasis-
ectodermal dystrophy 

AP Dystrophy 167 

Asthma Asthma 13, 14, 42, 56, 
58, 60 

Cystic fibrosis (of pancreas) Cystic Fibrosis 567 
Juvenile spondyloarthropathy JS 711 
Crohn's disease Crohn’s 559, 560 
Familial hypercholesterolemia Fam. Hyperchol. 279 
Down syndrome Down Syndrome 681, 682 
Insulin dependent diabetes mellitus Ins. Dep. Diabetes 10 
Ulcerative colitis Ulcerative Colitis 559, 560 
Duchenne muscular dystrophy DM Dystrophy 639 
HIV infection HIV 171 
Neurofibromatosis type 1 Neurofibromatosis I 604 

 

2.2. Finding Biomarkers for Maturation Using Analysis of Variance  

Each de-identified laboratory measurement was associated with a measurement 
and the age of a patient when the test was obtained, as an integer. To find a 
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biomarker representative of maturation, we examined trends within laboratory 
measurements that corresponded to the age of the patient when the measurement 
was made. We averaged laboratory measurements across each distinct lab for 
individual ages within a patient’s clinical history to generate a laboratory profile 
for that patient at that specific age. This resulted in 8,500 distinct laboratory 
profiles distributed between age 0 and 17 years. 

We examined the variance of individual laboratory measurements within 
each age group binned by year (Mean Square Error, or MSE) and the variance of 
the laboratory measurement means between distinct age groups (Mean Square 
Between, or MSB) to determine whether or not maturation had an effect on the 
laboratory measurement. This was done for each distinct lab test separately by 
using one-way analysis of variance (ANOVA). In order to show that the null 
hypothesis was false and that a biomarker was indeed indicative of maturation, 
we needed to show that the MSB was significantly larger than the MSE. For 
each distinct laboratory we calculated F, the ratio of MSB to MSE. We also 
calculate a corresponding p-value along with each F as a measure of 
significance. The laboratory tests with the smallest p-values were taken to be our 
initial set of prospective biomarkers for human maturation. 

2.3. Using Diseases to Model Maturation 

Rather than looking at gene expression at different time points in an organism’s 
life to study the effects of maturation, we examine maturation in the context of 
disease. We propose that different diseases exhibit different rates of maturation. 
Given a set of biomarkers indicative of maturation, we consider them to be 
proxies for aging, at least for the pediatric age group. We use the measurements 
of the proxy among patients within our set of 12 diseases as a surrogate for 
distinct disease-specific rates of maturation. For patients with multiple 
diagnoses, we assume that their laboratory profile at each age is associated with 
all previously diagnosed diseases. Multiple diagnoses were not common in these 
pediatric patients, as expected. We then attempt to fit the biomarker’s 
measurements across all ages for a given disease to an exponential decay model. 
We arbitrarily chose two models we thought from visual inspection fit the data 
well, namely a linear model and exponential decay model. We found the error 
between an exponential decay model and the actual data is less than that of a 
linear model. The values of the parameters for the curve we fit represent the rate 
at which the biomarker changes, which we use to represent the rate of 
accelerating or decelerating of maturation that a disease emulates. Each disease 
has its own parameters, based on the curve fit to the measurements of a 
biomarker for patients with that disease. We take the value for these parameters 
and measure the correlation of these values across the 12 diseases with the 
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changes in rank-normalized gene expression measurements (described above) 
across the same 12 diseases, using Spearman’s rank correlation. We recorded 
Spearman’s ρ as well as the p-value of the correlation, with the null hypothesis 
of no significant correlation, to inform us of the directionality of both the 
correlation as well as the significance. Literature search was applied to the most 
significant genes to determine if they were previously shown be correlated with 
the aging or maturation. 

3. Results 

3.1. Clinical Biomarkers for Maturation 

After reducing and compiling laboratory measurement data to 8,500 patient 
profiles representing over 4,000 patients at different time points in their clinical 
history, one-way analysis of variance (ANOVA) was used to elucidate the 
differences between laboratory measurements at various ages. This was repeated 
for all lab tests individually. The result of the ANOVA returned prospective 
biomarkers that could be indicative of increasing age. Four of the top results 
were as follows: Total Bilirubin (F = 104.54, p-value = 8.58 x 10-279); Total 
Serum/Plasma Protein (F = 68.66, p-value = 3.15 x 10-193); Mean Corpuscular 
Volume (F = 65.46, p-value = 1.58 x 10-201); Absolute Lymphocyte (F = 59.47, 
p-value = 8.57 x 10-181). The F and p-values show a statistically significant 
connection between increasing age and the prospective biomarkers. 

 
Figure 1: Boxplots showing the distribution of laboratory measurements at different ages. Top left, 
absolute lymphocyte count; top right, total bilirubin; bottom left, total protein; bottom right, mean 
corpuscular volume. 

As shown in Figure 1, for three out of the four labs, the wide distribution of 
measurements specifically between age 0 and 1 years could unduly influence the 
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F and p-value. To examine this influence, an ANOVA was run again on the 
same data set with all measurements before age 1 excluded. The results show 
that Total Bilirubin (F = 1.85, p-value = 1.99 x 10-2), Total Serum/Plasma 
Protein (F = 7.92, p-value = 1.78 x 10-18), and Mean Corpuscular Volume 
(F=25.90, p-value = 4.57 x 10-85) were influenced more than Absolute 
Lymphocyte (F = 44.60, p-value = 1.11 x 10-128). This was also verified by 
applying Bonferroni correction to a pairwise t-test between all age groups. 
Absolute lymphocyte returned the highest number of significant pairwise 
comparisons. Based on these results, we selected absolute lymphocyte count as a 
proxy for maturation and aging. 

3.2. Finding Maturation and Aging Related Genes 

There were 4,045 distinct relations between absolute lymphocyte measurements, 
patient age, and disease identifier. These profiles were distributed across 12 
diseases. We used nonlinear least squares to fit the absolute lymphocyte 
measurements for each disease across all ages to a model of exponential decay: 
 

ageetmeasuremen ** λα=  
 
where α represents the magnitude and λ the rate of decay. We excluded the 
disease autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy, due 
to a paucity of measurements. 

For our purpose, we ignore α and focus on λ as it represents the rate at 
which the absolute lymphocyte count decreases. Each disease has a distinct λ. A 
smaller λ, as λ is negative, represents a faster drop in the biomarker. We 
propose, that if our conjecture holds true and that absolute lymphocyte count is 
representative of maturation, a change in the biomarker rate of decline could be 
suggestive of a change in the rate of maturation, so that we can use the same λ to 
model these differences (Figure 2). We measure the correlation of the set of λ’s 
with the change in rank-normalized expression measurements for each gene, 
across the same set of diseases. The correlation was done using Spearman’s rank 
correlation. Out of 4956 genes, 53 had p-values less than 0.02 (Table 2) 

Spearman’s ρ represents how good the gene expression correlates with the 
changes in λ while also informing us of the directionality of the correlation. A 
positive Spearman’s ρ implies that lower gene expression indicates a faster rate 
of maturation/aging whereas an increase in gene expression indicates a lower 
rate of maturation/aging. In contrast, a negative Spearman’s ρ implies that a 
lower gene expression indicates a slower rate of maturation/aging and an 
increase in gene expression indicates a faster rate of maturation/aging. We 
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investigated the significant genes returned by using literature search. Among the 
most biologically relevant genes were MGMT, POLD1, POLG and TERF2 

 
Figure 2: Comparison of different rates of decay across 11 diseases and the baseline. 

 
Table 2: Genes with the best Spearman’s Rank Correlation between λ and expression measurements 
(p-values < 0.02). Genes in bold are in the GenAge database, known to be involved in aging. Stars 
indicate genes where evidence exists for involvement in aging, yet not appearing in the GenAge 
database 
 

Symbol Gene name p-value Spearman's ρ 

PPIC peptidyl-prolyl isomerase c 0 -0.9182 

* CYP1B1 Cytochrome P450, family 1, subfamily B, 
polypeptide 1 

0.0025 -0.8363 

TIPARP TCDD-inducible poly(ADP-ribose) polymerase 0.0027 -0.8667 
POLD1 Polymerase (DNA directed), delta 1, catalytic 

subunit 
0.0041 0.8091 

CES2 carboxylesterase 2 0.0044 -0.8091 
* MGMT O-6-methylguanine-DNA methyltransferase 0.0048 0.8 
CENTG2 centaurin, gamma 2 0.0050 0.8303 
PNN pinin, desmosome associated protein 0.0056 0.7909 
HGF hepatocyte growth factor 0.0061 -0.7909 
KLKB1 kallikrein B, plasma 1 0.0061 -0.7909 
POLG Polymerase (DNA directed), gamma 0.0061 -0.7909 
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GPD1 glycerol-3-phosphate dehydrogenase 1 0.0062 0.8182 
ICT1 immature colon carcinoma transcript 1  0.0065 0.7818 
DLG1 discs, large homolog 1 (Drosophila) 0.0065 0.7818 
PUM2 pumilio homolog 2 (Drosophila) [ 0.0065 0.7818 
TNA C-type lectin domain family 3, member b 0.0070 -0.7818 
HGD Homogentisate 1,2-dioxygenase (homogentisate 

oxidase) 
0.0086 0.7636 

RBMS2 RNA binding motif, single stranded interacting 
protein 2  

0.0092 -0.7636 

MAPK10 mitogen-activated protein kinase 10  0.0098 0.7545 
PRC1 protein regulator of cytokinesis 1  0.0108 -0.8167 
MYH10 myosin, heavy chain 10, non-muscle 0.0108 -0.8167 
MMP15 matrix metallopeptidase 15 0.0112 0.7454 
THRB thyroid hormone receptor, beta 0.0119 -0.7454 
IL10RA interleukin 10 receptor, alpha 0.0126 0.7364 
GZMM granzyme M 0.0126 0.7364 
RGS9 regulator of G-protein signalling 9 0.0126 0.7697 
GUCA1A guanylate cyclase activator 1A 0.0134 -0.7364 
GFRA2 GDNF family receptor alpha 2 0.0134 -0.7364 
NEUROD1 neurogenic differentiation 1 0.0134 -0.7364 
UEV3 UEV and lactate/malate dehyrogenase domains 0.0135 -0.7782 
LRP6 low density lipoprotein receptor-related protein 6 0.0137 -0.7697 
CRYZ crystallin, zeta 0.0138 0.8 
CLCN1 chloride channel 1 0.0142 0.7273 
EIF3S6 eukaryotic translation initiation factor 3, subunit 6 

48kDa  
0.0142 0.7273 

MBNL1 Muscleblind-like (Drosophila) 0.0148 0.7576 
EHD1 EH-domain containing 1  0.0148 0.7576 
PTX3 pentraxin-related gene 0.0150 -0.7273 
P2RY2 purinergic receptor P2Y 0.0159 0.7182 
PDK1 pyruvate dehydrogenase kinase, isozyme 1 0.0159 0.7182 
POU5F1 POU domain, class 5, transcription factor 1 0.0159 0.7182 
SPOCK2 sparc/osteonectin, cwcv and kazal-like domains 

proteoglycan 
0.0159 0.7182 

ATP1B3 ATPase, Na+/K+ transporting, beta 3 polypeptide 0.0168 -0.7182 
CYB5 Cytochrome b-5 0.0168 -0.7182 
CSF1R colony stimulating factor 1 receptor, 0.0168 -0.7182 
KIAA0101 KIAA0101 0.0168 -0.7182 
CYP2E1 Cytochrome P450, family 2, subfamily E, 

polypeptide 1  
0.0168 -0.7182 

EXOC7 exocyst complex component 7 0.0171 0.7454 
SRP68 signal recognition particle 68kDa  0.0172 0.7833 
CETN1 centrin, EF-hand protein, 1 0.0177 0.7091 
NCL Nucleolin 0.0177 0.7091 
TERF2 telomeric repeat binding factor 2 0.0177 0.7091 
CSNK1G2 casein kinase 1, gamma 2 0.0197 0.7 
APOC4 Apolipoprotein C-IV 0.0197 0.7 
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4. Discussion 

We have shown the ability to use statistical methods to infer biomarkers and 
predict genes implicated in maturation by integrating clinical laboratory 
measurements with gene expression measurements. The most significant 
biomarker from our analysis, absolute lymphocyte count, has not previously 
been shown to be a biomarker for aging. However, there is evidence that 
suggests a decrease in lymphocyte function, as well as a decrease in certain 
lymphocyte cell types, as age increases [10]. We believe that this method of 
using clinical laboratory measurements can be extended to find trends within 
complex diseases and other biological phenomena. 

We acknowledge the following caveats in the way we proceeded with this 
research. The clinical laboratory information we used came from patients 
ranging in age from 0 to 17 years, which only is able to model a certain aspect of 
aging, namely the process of maturation. We understand that aging revolves 
around the complete lifespan of an organism and thus our future work will 
attempt to reproduce these results using a larger data set of clinical laboratory 
data spanning across more decades of life. We also have speculated that the rate 
of absolute lymphocyte change is representative of disease-specific rates of 
maturation, which is currently only conjecture.  

There were a handful of diseases that had significantly fewer measurements 
than other diseases. We excluded the disease autoimmune polyendocrinopathy-
candidiasis-ectodermal dystrophy but kept the others as there were enough data 
points to fit an exponential decay curve. Ideally we would gather more 
measurements from patients having these diseases. However, as these diseases 
tend to be rarer in comparison to conditions like asthma, they will ultimately be 
less represented. We also acknowledge that we binned patients with different 
diseases to identify biomarkers related to aging. However, as clinical data rarely 
consists of “normal” data we are limited to such analyses. We note, however, 
that the majority of absolute lymphocyte counts across patients with varying 
diseases all lay in the normal range. Lastly, we would hope to increase the 
number of diseases to more than 12 to increase the power of our correlations. 
We also acknowledge that the sample sizes were not large enough to enable 
sufficient permutation testing and q-value calculation for our Spearman’s rank 
correlations.  

The biological relevance of measuring the correlation between rate of 
acceleration or deceleration of maturation that a disease emulates to changes in 
rank-normalized gene expression measurements can be expressed via 
Spearman’s ρ. For example, MGMT, a DNA repair gene, has been implicated in 
the aging of mice and trials have been underway to determine whether or not 
transgenic MGMT mice live longer [11]. Given the Spearman’s ρ we calculated, 
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we would predict that an increase in MGMT would slow aging and thus increase 
longevity. Spearman’s rank correlation was used to account for the possibilities 
of non-linear correlations. There remain a plethora of statistical methods which 
can be applied to examine both linear and non-linear relationships between 
change in gene expression rank and rates of aging that Spearman’s rank 
correlation may not be capturing.  

Out of 53 genes that returned a p-value less than the arbitrary cut-off of 
0.02, we found three that were represented in 253 aging-related genes from the 
curated GenAge database [12]. Using a hypergeometric distribution with 253 
known genes involved in aging and the number of genes in the human genome 
conservatively estimated at 20,000 [13], we find that retrieving 3 aging-related 
genes out of 53 is statistically significant at p = 0.023. Although this is 
encouraging, a better validation strategy must be developed. The absence of the 
50 remaining genes from our gold standard could be due to GenAge’s lack of 
comprehensiveness as well as may include numerous false positives. Future 
work revolves around developing better validation strategies as well as 
increasing sample size to perform more robust analysis including false discovery 
rates and q-values. 

We set out to use a translational approach linking basic science, clinical 
electronic medical records, and statistical methods to examine phenomena, 
maturation and aging, which have been and continue to be difficult to study. Our 
method returned results that were previously known to be aging-related; 
although that in and of itself is an accomplishment, what is more notable is the 
fact that we were able to integrate these disparate fields of the study of disease 
into a cohesive method of research that has been proselytized as being necessary 
for the advancement of knowledge about human health. These methods can 
prove to be invaluable in the future of translational research. As more clinical 
and hospital environments have moved towards EMRs, the amount of patient 
data available for translational research will only increase. This must be 
leveraged and used in conjunction with basic science methods in order to 
explain biological phenomena in humans that cannot be explained by model 
organisms. 
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