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In this paper we present a framework for integrating diverse data sets under a coherent 

probabilistic setup. The necessity of a probabilistic modeling arises from the fact that 

data integration does not restrict to compiling information from data bases with data that 

are typically thought to be non-random. Currently wide range of experimental data is also 

available however rarely these data sets can be summarized in simple output data, e.g. in 

categorical form. Moreover it may not even be appropriate to do so. The proposed setup 

allows modeling not only the observed data and parameters of interest but most 

importantly to incorporate prior knowledge. Additionally the setup easily extends to 

facilitate more popular data-driven analysis.  

1. Introduction  

1.1. Challenges in Data Integration  

It has been realized that in order to address biological questions more fully and 

to extract more knowledge from the wealth of data, researchers require tools that 

will allow them to integrate different datasets in a dynamic, hypothesis-driven 

fashion and to analyze them within a biologically meaningful framework13.  

However integration is often mistaken as making vast amount of data 

available to the researcher by warehousing or other methods. It is often seen that 

integration of large number of data sets in such a manner results in a messy 

incomprehensible scenario. Such output might contain vast amount of biological 

information however fails to generate testable hypotheses and theories that with 

proper validation may add to our knowledge. It is also not uncommon that a 

painstaking effort to integrate information sources has produced rather trivial 

observations on the system.  

Advancement in computing abilities makes it plausible to deal with large 

amount of data; unfortunately it is often done in an adhoc manner. On the other 
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hand currently more systematic approaches are also confined to amalgamating 

specific databases to a single experiment. There is a growing support to the idea 

that a more hypotheses driven choice of data sources should be made which then 

needs to be carefully analyzed7.  

1.2. Challenges in Statistics Inference 

High throughput molecular biology techniques have posed new challenges for 

statistics, and with this we have seen some more adventurous use of statistics. 

Although data sets are typically large, the number of features is also large. This 

added to the fact that the features frequently depart from the i.i.d. set-up, makes a 

credible feature level inference near impossible. Moreover if this unstructured 

and unknown dependence is not accounted population level inference also 

becomes inaccurate.  

An additional level of complication is introduced by the fact that the process 

of obtaining meaningful results involves numerous decision-making steps. Apart 

from a few attempts
8,12

 this aspect is generally not discussed and consequently 

not accounted in the analysis and inference.  

1.3. Objective 

The initial findings from an analysis of a high-throughput data are often messy 

due to several reasons. The level of specificity of the phenotype is an important 

factor behind this. For most diseases there would be multiple known factors 

affecting the overall variability. For practical reasons it is difficult to design 

experiments where one would be able to account for all these factors. The hence 

uncontrolled factors would contribute to the observed variability. Additionally 

although we target to study a specific aspect of the system, as cells continue to 

live independent of the experiment or disease under study, changes in normal life 

functions also affect the results
16

. 

Evidently some additional information is needed to identify relevant 

quantities from such an inference. Most experiments are designed and carried out 

using prior knowledge of the conditions, diseases or treatments under study and 

can be used critically to control variation. We would use such experimental data, 

which are complete, meaningful and possibly complementary to each other. This 

can be thought as the hypothesis-driven part of the data fusion. 

For most phenotype/disease there will be limited number of such 

experimental data available which are useful. The knowledge from existing 

databases can then be augmented to obtain a better understanding of our 

findings, which is the purely data driven aspect of the investigation. 
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We will derive an integrated modeling and inference procedure on such 

data, which are high dimensional data sets of varied data types from various 

sources. Integration of these sources utilizes existing knowledge of the 

phenotype of interest. We will carry out population as well as individual level 

inference, in presence of dependence, combining multiple decision-making steps 

that allows for propagation of error. 

2. Data 

The experimental data consists of one time-course data and three other data sets. 

The biological objective behind the choice of these experiments is to study 

developmental behavior of prostate, preferably at cell-type level, highlighting 

behavior of key genes like androgen regulated/responsive ones. These data sets 

were collected as a first part of a two-part study of Prostate cancer. 

2.1. Molecular Characteristics of Developing Mouse Prostate 

To identify genes potentially involved with prostate development, temporal 

expression changes were determined by measuring transcript abundance levels in 

cDNA libraries constructed from distinct stages of maturation.  A purpose-built 

cDNA microarray
4,5

 enriched for genes in the developing mouse prostate, which 

serves as a unique resource for molecular studies of prostate development were 

utilized.   
Table 1. Summary of biological samples used for timecourse microarray experiment, where  

UGS: Uro-genital-sinus, DLP: dorsolateral prostate, VP: ventral prostate AP: anterior prostate. 

Time point Tissue Developmental Process Androgen level 1 

E15.5 ♂UGS Undifferentiated 2 days exposure 

E16.5 ♂UGS Undifferentiated 3 days exposure 

E17.5 ♂UGS Prostate buds High 

E18.5 ♂UGS Branching morphogenesis High  

Day 7 DLP,VP,AP Branching morphogenesis (Peak) Low 

Day 30 DLP,VP,AP Puberty Very High 

Day 90 DLP,VP,AP Adult, fully differentiated Very High 

The transcriptional program of prostate development was characterized by 

profiling gene expression at seven time points corresponding to critical stages of 

prostate differentiation (Table 1).  For each time point three biological samples 

were generated and each sample was hybridized twice for a total of 42 

microarrays.  The samples were hybridized with a common reference RNA 

consisting of embryonic age 14.5 days (E14.5) male UGS. At E14.5, UGS is 

undifferentiated and has not been exposed to significant levels of androgens, 

therefore is thought as ‘start’ for prostate development.  Thus, the microarray 

ratios depict the unfolding program of prostate development in relationship to 

the most undifferentiated state.  
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2.2. Characterizing cell-type specific expression heterogeneity 

The interpretation of temporal changes in gene expression from whole tissue is 

complicated by cell heterogeneity.  The developing prostate can be roughly 

broken down into two major cell compartments:  epithelium and mesenchyme/ 

stroma.  Reciprocal signaling between mesenchyme and epithelium is critical for 

prostate differentiation.  Mesenchyme is the precursor to the adult stroma, 

Urogenital sinus mesenchyme (UGM) induces epithelial budding and the 

epithelium, in turn, stimulates mesenchymal differentiation.  In subsequent tissue 

recombination experiments it was shown that several different types of 

epithelium of endodermal origin can form prostate in combination with an 

inducing mesenchyme.  Thus, there is some inductive promiscuity in both 

epithelial and mesenchymal compartments.   

2.3. Androgen Response Program of the Developing Mouse Prostate 

Androgens act via the UGS mesenchyme to induce prostatic epithelial 

development, presumably through a paracrine mechanism.  Yet no androgen-

regulated genes have been identified in the UGS mesenchyme.   

Using a custom cDNA microarray enriched for genes expressed in the 

developing mouse prostate, three in vivo strategies were adopted to identify 

androgen-regulated genes at the time of prostate induction.  We compared (1) 

male UGS to female UGS, (2) female UGS dosed with testosterone in vivo to 

female dosed with placebo, and (3) wild-type male UGS to androgen receptor-

deficient (tfm) male UGS. Each comparison is a distinct way of assessing 

androgen-regulated genes in the UGS. Three biological replications and two 

array replications were performed for each comparison at both E16.5 and E17.5 

for thirty-six total microarray experiments.   

2.4. Gene-Ontology and KEGG pathways data 

The Gene Ontology consortium (GO)3 and Kyoto Encyclopedia of Genes and 

Genomes (KEGG)2 databases enable statistical analysis of biological processes 

or pathways that may be enriched or depleted in a certain experiments.   

We considered 208 Biological process, 64 Cell components and 151 

Molecular functions from the Gene Ontology database. Data for the present 

analysis was from all nodes up to level 6 that were represented by at least ten 

genes to ensure that functional conclusions were not drawn from very few genes. 

As GO terms have multiple parents, the completed trees based on these nodes 

consisted of 462 nodes for Biological processes, 84 nodes for Cellular 

Components and 185 nodes for Molecular Functions. From the KEGG database 
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20 specialized pathways were chosen based on their relevance to the biological 

problem undertaken here.  

2.5. Overall data summary 

In the overall analysis the data comes from a varied source and is schematically 

presented in Figure 1. The current practice of handling multiple experimental 

data would be to work with very crude summaries, e.g. list if differential (or 

otherwise interesting) genes, ignoring the fact that almost always such lists were 

outcome of decision-making and decisions were not taken with 100 percent 

confidence. Some associated measure of confidence should be utilized. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Schematic Presentation of all data sources used for integrated modeling 

Moreover in some aspects of analysis such summarization is potentially 

misleading. For example, many have experienced that normalization affects 

subsequent biological conclusions from a microarray data analysis. One solution 

would be carry out a model based normalization and use the joint distribution of 

the (distinct) genes for further analysis
6,8

. Similarly while integrating gene 

characteristics from one experiment to another the joint distribution of genes 

with respect to the (conditioning) characteristic could be used in the subsequent 

experiment. 

Such probabilistic summarization is denoted as inferred data and it reflects 

our knowledge and confidence on the data. The best possible usage of one 

source of data would be using the whole joint distribution, if that is too large or 

complex then a summary (possibly first two marginal moments for each feature) 

can be used. In some situations we might have to use the categorical (typically 

binary) summarization of a data. 
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3. Model 

We will describe the model for the time course data. For the three additional 

experiments the models are similar in principle with appropriate 

parameterization for eliciting the desired characteristics. We will derive the 

model in a stepwise manner aiming to describe the parameters along with their 

utilities. Note that in order to exploit conjugacy we parameterized the Normal 

distributions using mean and precision (i.e. inverse-variance).  

3.1. Normalization of individual data set  

 Normalization is carried out at block level for each array using constrained 

piecewise linear models (in Bayesian framework). The range of values of the 

log-intensities from the reference sample was divided into three windows, with 

breakpoints chosen to be at 5 and 7. The normalized data thus produced is highly 

comparable with standard loess type normalization
8
, however has the advantage 

of being model based hence allows for propagation of error to next stage of 

analysis. The linear model parameters for the normalization are denoted (and 

described) as follows:  

 βljkm ~ N( 1 , 0.1 ) and αljk2 ~ N( 0 , 0.1 ) where  

 αljk1 = αljk2 +( βljk2 - βljk1)*5 and  αljk3 = αljk2 +( βljk2 - βljk3)*7,  l:tissue/time-point, 

 j:array,  k:blocks on each array and  m:1, 2 and 3 (number of windows). 

Let LIR and LIE denote the Log intensities from reference and experimental 

samples respectively. In the rest of model description, following notation will be 

used,   l: tissue,  i: spot,   j: array within l-th tissue,   b(i): print tip/ block number of 

i-th spot,  w(lij): window number for LIRlij  for the l-th tissue, i-th sopt on j-th 

array, d(i): distinct gene corresponding to i-th spot on the array. Note the arrays 

contain multiple spots/probes for several genes; however this was not designed 

in a balanced manner. The (incomplete) models for LIR and LIE experimental 

samples were:   

LIRlij ~ N( µd(i) , 0.1) and  LIElij ~N( ( αljb(i)w(lij) + βljb(i)w(lij) *LIRlij ) , ).  

3.2. Characterizing gene-expression behavior within an experiment: 

Assume that, a priori each gene has its own expression ratio, say θ0
k, where 

 θ0
k ~ N(0, 0.1), with k = 1,…, no. of distinct genes. Let the expression ratio for 

the k-th gene from the l-th tissue be θ1
lk, where θ1

lk are assumed to be drawn from 

a Normal distribution with mean θ0
k, i.e.  

θ1
lk ~ Normal(θ0

k, τ
0
k) and let   τ0k ~Gamma( 1 , 1 ).  

The completed model for LIElij is as follows: 

LIElij ~ Normal( ( αljb(i)w(lij) + βljb(i)w(lij) (LIRlij + θl
ld(i) )), τ

l
ld(i) ). 
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The available knowledge indicated several possible profiles for cohorts of 

genes during mouse prostate differentiation that would be of interest. Such 

profiles could be explored based on posterior behavior of different functions of 

the parameters (θ1
lk , τ

1
lk) and also possibly other parameters. For example for  

any time point upregulated genes can be identified by the posterior probability of 

(studentized) θ1
lk exceeding a pre-specified cut-off (e.g. Normal-distribution 

percentile) and such probability estimates have been noted8 to be monotonically 

related to the d-scores obtained using well-known SAM.  

3.3. Characterizing gene-expression behavior across experiments: 

For k-th gene let µ1
k, µ

2
k be the expression parameter describing epithelium 

& mesenchyme specific behavior.  Similarly νj
k be androgen response of gene k 

in platform j, j=1, 2, 3. To infer whether a gene exhibits branching 

morphogenesis profile while being epithelium specific and androgen regulated 

we use posterior distribution of the variable I(θ1
1k<θ

1
2k<θ

1
3k<θ

1
4k<θ

1
5k and 

θ1
7k<θ

1
6k, µ

1
k>φ0.95, ν

*
k>φ0.95), where ν*

 is function of νj
’s and φ is Normal 

percentile. If the data sets and genes exhibit varied precision then standardized 

parameters are used for the indicators. These may still be biased by the size (or 

variability) of any particular data set. Hence as a cautionary measure the 

information flow was allowed only from individual experimental data to the 

integrated analysis and not otherwise. This is easily implemented in WinBUGS 

framework using “cut”-function appropriately. 

3.4. Probabilistic assessment of biological processes enrichment  

For expression profile of interest the basic functional enrichment analysis is as 

described in (8). Apart from enrichment testing we utilized several summary 

assessment of functional enrichment. For example, the log-ratio of proportions of 

genes with certain functionality in S and Sc can be thought as similar to 

“expression” ratio for that functionality. These can then be visualized as heat 

map. These we have further analyzed using standard clustering techniques which 

have provided useful insight into functional pattern over time. 

3.5. Overall analysis setup  

The overall setup allows us to analyze each microarray based experiment in quite 

extensive manner. For each of these data sets can be analyzed individually, 

additionally our setup allows for modeling these data sets where desired output 

from one analysis along with it the uncertainty involved in decision 

making/inference is carried to analysis of another data.  
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One major achievement of this data analysis is the magnitude of the 

statistical problem that we succeeded in implementing using freely available 

software WinBUGS without having to write custom MCMC codes. This opens 

up numerous modeling possibilities to address complex biological questions.  

To give an idea of the number of  parameters being jointly monitored in this 

implementation, consider the following: normalization parameters 12 000+, 

hyperparameters 40 000+, expression parameters 220 000+, for each of 10 000+ 

genes 13 expression profiles from individual dataset analyses and 30 expression 

profiles using two datasets at a time and 20 profiles for all three data sets, 750+ 

GO-KEGG processes enrichment for each of these profiles.  Approximately 

posterior distributions of 1 million variables of interest are jointly monitored 

under this setup. Additionally all missing data points are augmented which 

typically increases with size of experiments. 

4. Results 

The analyses of individual experimental data sets and different combination of 

their integration brought out many interesting results. This is due to the nature of 

these experiments and also due to the flexibility of the model parameterization. 

In the following we describe a few such outputs from the analyses. 
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Figure 2. The critical profiles (known from pathological information) were translated into functions 

of expression parameters. The figures present (log) expression change of top genes with high 

posterior probability of having these profiles during mouse prostate differentiation. 

4.1. Analysis of time course data  

By deriving the posterior distribution of different constrained combinations of 

the parameters we can identify genes having specific expression profiles over 

time. In Figure-2 we present some of the genes estimated to have high 

probability of having some known profiles. Some of the genes thus identified 

were already known and some new ones have been verified subsequently. 

In the joint analysis of the Gene Ontology information and the time course 

data, several functionalities clearly depict the distinctly different behavior in the 

two phases of life, namely embryonic and otherwise. However our model treats 

all time points were equally, which gives us more confidence in our findings. 
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By analyzing the heat map of functional enrichment on time course, we were 

able to identify very interesting clusters of functions whose profile correspond to 

the known prostate development profiles (see Figure 3). 
  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 3. Examples of GO terms of interest are listed according to the time-point of peak 

representation and position in the heat-map, with a detailed plot of their behavior over the time-

course. The data for the heatmap was generated by the methods described in Section 3.4. 

4.2. Integrated analyses of multiple experimental data sources  

The integrated analysis of the cell-type specific and the time course experiments 

yielded fascinating expression diversity within the developing tissues. In Table-2 

we present a GO-based interpretation of these expression behaviors. The 

resulting findings of this integrated analysis were in high concordance with 

existing knowledge and our hypothesis. The distinctive nature of the two cell 

types is clearly visible along with their time stochastic nature. The tree structure 

of GO provides additional information on change in pattern over time. 

By jointly analyzing all the experiments we are able to explore in each cell-

type the expression profiles over time of the Androgen responsive genes. The 

major Androgen responsive genes showed two distinct expression profiles over 
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time, one with highest expression observed at E16.5 and another where highest 

expression occurs in adult state (D90). The cell-type specific expression data 

indicated that the early expressing gene was in Messenchymal/Stromal  cells 

(e.g. Sfrp2) where as the adult ones were expressed in Epithelium (e.g. Agr2 and 

Mmp7).  
Table 2:  Functional analysis of cell-type specific genes up-regulated at a certain time 

point. The entries represent estimated (log) change in enrichment. Upregulated functions 

have been highlighted in white against dark-grey-background and those downregulated in 

black against light grey-background (“###” indicates high negative value). 
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Amongst the Androgen-responsive genes that are epithelium specific we 

noticed three major expression patterns (see figure 4), 1) higher expression in 

late embryonic state (e.g. Anxa1, Psca) 2) higher expression at infant stage (e.g. 

Itgb4, Sox9) and 3) high expression in adult stage (e.g. Aldh1a1, Agr2, Cldn8).  
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Figure 4. Developmental expression profile of Androgen-responsive genes expressed in Epithelium. 
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4.3. Experimental and literature based cross-validation  

For Sfrp2 real-time RT-PCR at each of the seven time points were performed 

and results were highly concordant with the microarray measurements. In situ 

hybridization confirmed mesenchymal expression of Sfrp2. Quantitative PCR 

confirmed that Sfrp2 is up regulated with androgen in the UGS. Agr2 is a gene 

that is thought to be involved in breast cancer metastasis14. Subsequent analysis 

with prostate cancer related data has shown this gene to be significant. Mmp7 is 

a gene that has been previously shown to influence cancer progression
15

.  

Psca is a known to be androgen regulated and is associated with prostate 

cancer. A further experiment using whole mount in situ hybridization showed 

Psca was highly expressed in epithelium. Sox9 have been shown to be directly 

relevant for tumor suppression in Prostate
10

 and in some organs domain of 

expression of Sox9 protein is normally known to be the distal epithelial 

compartment
9,11

.  

5. Discussion 

The composite data we consider for this analysis comprises of data from several 

experiments, which are meaningful and complete by themselves. The hypothesis 

driven fusion of these enabled us to reduce the experiment size from 7x2x3 to 

7+2+3 experiment for time points, cell-types and Androgen-platforms. Even if 

we had the resource to do the full experiment some of these may not have been 

biologically feasible to do in reality.  

The biological hypotheses were translated in statistical framework as 

functions of parameters (e.g. expression) and were assessed a-posteriori. The 

different functional combinations of the model parameters cover a wide range of 

biological characteristics to be studied. This is another aspect of our modeling 

setup that is not easily available in the commonly used statistical tools, simply 

because complex hypotheses would require specialized testing procedure which 

may not be available readily. Complexity of individual modeling units was kept 

moderate to optimize computation time and parameter space of interest. 

While analyzing using existing models quite often we observe that even 

moderate change in analysis technique for one data set & for any single step of 

analysis can influence overall biological conclusions. It is well-known that this 

happens due to not propagating uncertainties in these analysis steps to 

subsequent steps. The Bayesian setup proposed in (8) enables us to avoid this 

problem and was extended here to a much larger problem. Analytic intractability 

is a common consequence of such complex models. In this respect a mentionable 

achievement here is being able to implement this integrated model using 

available software, opening up varied modeling and input data-type possibilities.  
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Our objective was to be able to balance between quantity of data and quality 

of inference. Although one would be tempted to use as much data as possible we 

need to remember a few aspects of these data. Most experimental data come with 

a lot of error/noise. Using only a summary from each of these ignoring the noise 

potentially can (and often does) lead to non-reproducible results. This is where 

robust inference method is crucially needed and is provided by our method.  
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