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The study of protein-protein interactions is essential to define the molecular networks that contribute 
to maintain homeostasis of an organism’s body functions. Disruptions in protein interaction 
networks have been shown to result in diseases in both humans and animals. Monogenic diseases 
disrupting biochemical pathways such as hereditary coagulopathies (e.g. hemophilia), provided a 
deep insight in the biochemical pathways of acquired coagulopathies of complex diseases. Indeed, a 
variety of complex liver diseases can lead to decreased synthesis of the same set of coagulation 
factors as in hemophilia. Similarly, more complex diseases such as different cancers have been 
shown to result from malfunctions of common proteins pathways. In order to discover, in high 
throughput, the molecular underpinnings of poorly characterized diseases, we present a statistical 
method to identify shared protein interaction network(s) between diseases. Integrating (i) a protein 
interaction network with (ii) disease to protein relationships derived from mining Gene Ontology 
annotations and the biomedical literature with natural language understanding (PhenoGO), we 
identified protein-protein interactions that were associated with pairs of diseases and calculated the 
statistical significance of the occurrence of interactions in the protein interaction knowledgebase. 
Significant correlations between diseases and shared protein networks were identified and evaluated 
in this study, demonstrating the high precision of the approach and correct non-trivial predictions, 
signifying the potential for discovery. In conclusion, we demonstrate that the associations between 
diseases are directly correlated to their underlying protein-protein interaction networks, possibly 
providing insight into the underlying molecular mechanisms of phenotypes and biological processes 
disrupted in related diseases.  

1. Introduction and Related Work 

Currently, common diseases are mainly defined by their clinical appearance, with little 
reference to their molecular mechanism. For example, syndromes are defined in medicine 
as a set of phenotypes which, occurring together, serve to define a trait or disease. These 
phenotypes overlap in the case of many syndromes. This overlap brought about the 
concept of ‘syndrome families’ though consideration of the commonality of features 
shared between diseases [1]. Conceptually, what we have learned about 2000 human 
single gene diseases with a defined genetic phenotype is that each monogenic disease has 
a specified collection of specific phenotypic features. For example, hemophilias with 
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deficiencies in coagulation factors, otherwise called hereditary coagulopathies, are single 
gene diseases with clear Mendelian inheritance that have provided significant insight in 
the biochemical pathways of acquired coagulopathies. Indeed, a variety of complex liver 
diseases can lead to decreased synthesis of the same set of coagulation factors as in 
hemophilia, leading to the same disease phenotype despite very different causes. In some 
cases, the clustering of syndromes into these families in combination with genetic 
insights has led to the discovery that what were often thought as two different disorders 
were really variable expressions of the same disorder [2-4]. Conversely, it has long been 
known that mutations at different loci can lead to the same genetic disease [5]. It has also 
been hypothesized that this genetic heterogeneity has its roots at the protein interaction 
level, suggesting that other genes associated with the phenotype also have some 
functional role [6]. Therefore, it is plausible to theorize that phenotypic overlap of 
diseases may reflect, at multiple biological scales, the relationships and functional 
properties of shared underlying molecular networks. As signal transduction pathways are 
less understood than biochemical pathways, protein-protein interactions networks provide 
unique opportunities for exploring the signaling pathways of diseases. 

The shift in focus to systems biology has resulted in an increased interest in 
biological pathways and protein-protein interaction networks. As a result, large scale 
knowledge bases representing them are being rapidly developed [7-14]. These resources 
enable us to study complex biological problems using high throughput computational 
tools. While there is a wealth of protein-disease relationships in the published literature 
and a number of readily computable protein-protein interaction resources, there has been 
a paucity of work relating diseases using protein interactions from this kind of 
knowledge. Making use of these networks is a relatively new challenge in the field. 
Network-based analyses have been developed with a number of goals in mind [15], 
including protein function prediction [16], identification of functional modules [17], 
interaction prediction [18-21], and the study of network structure and evolution [22-26]. 

To explore the possibility of using protein-protein interaction networks to identify 
correlations between diseases, we hypothesize that protein-protein interactions shared by 
two diseases or more can be accurately identified in a protein interaction network by 
integrating knowledge from the literature and using statistical methods. 

1.1 Related Work 

The method reported in this paper utilizes the PhenoGO database 
[25][www.phenoGO.org] that provides protein-GO-phenotype relations and the human-
curated Reactome knowledgebase [8] that provides protein interactions to link protein-
protein interactions with diseases. The recently developed PhenoGO database  provides 
phenotypic context to protein-GO annotations, as an example, lymphoid tissue (a 
phenotype) is linked to interleukin 2 receptor (a protein) and interleukin 2 receptor 
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activity (a GO concept). It augments Gene Ontology (GO) annotations [27] by extracting 
protein-GO-phenotype relations from the literature using MeSH terms [28] and a natural 
language processing (NLP) system, BioMedLEE, combined with the PhenOS phenotype 
ontology organizer system. The phenotypic information, including diseases, tissues, and 
organs, is encoded into Unified Medical Language System (UMLS) codes as well as 
other ontological coding systems. PhenoGO was evaluated for anatomical and cellular 
context in mice, demonstrating a  recall of 92% and a precision of 91% [29]. PhenoGO 
has since been extended to comprise over 523,000 unique entries associating disease 
phenotypes, ontological concepts, and proteins. In total, PhenoGO now contains data 
from 8,509 distinct PubMed articles, representing 7,016 distinct proteins classified under 
3,214 distinct GO concepts in 3,102 distinct diseases. From a random sample of 120 
Protein-disease-GO ternary annotations, precision was estimated at 85%, and recall at 
76% [unpublished result].  

Figure 1. Method to correlate human diseases based on their underlying protein interactions. M and m 
refer to parameters of the hypergeometric calculations as described in equation 1. 

2. Methods 

In order to identify associations between diseases by mapping their respective protein 
interaction networks with statistical significance values, we took the following steps. An 
overview of the process is pictured in Figure 1.  

Extraction of human protein-disease relationships was achieved though Structured 
Query Language querying of the PhenoGO database. We extracted all UMLS-coded 
diseases classified under the “Disease” semantic type hierarchy along with their 
associated proteins. In this study, we chose to stay on a more conservative side, and only 
extracted diseases associated with more than 4 proteins to avoid errors stemming from 
mis-assignment in PhenoGO and to reduce spurious predictions in the next step from the 
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hypergeometric distribution because a single error contributes proportionally to a larger 
statistical impact on a smaller sample of protein in the statistical method that follows 
(equation 1). These UMLS-coded terms fall under the UMLS semantic types ‘Congenital 
Abnormality’, ‘Disease or Syndrome’, ‘Experimental Model of Disease’, ‘Anatomical 
Abnormality’, and ‘Neoplastic Process’. The resultant set consists of 154 diseases and 
their 1,931 associated proteins (http://phenos.bsd.uchicago.edu/PSB2007/). 

Integration and Discovery. The second step is to correlate diseases with their 
underlying protein-protein interaction networks using a statistical approach. In this study, 
we used the Reactome protein interaction dataset [8] to define the underlying topological 
networks associated with these diseases. The common proteins between disease-
associated proteins in PhenoGO and proteins in the Reactome were identified by using 
the identifiers in the UniProt [30]. The Reactome data set defines four distinct types of 
reactions: 1) neighboring reactions, which define interactions that occur consecutively; 2) 
indirect complexes, which define interactions which involve subcomplex interaction, but 
not direct binding/interaction; 3) direct complex, defining protein-protein complexes; and 
4) reaction, representing situations where the two proteins participate in the same reaction 
[8]. The Reactome dataset was normalized to a set of paired Swiss-Prot accession 
numbers, and filtered to remove neighboring reactions and indirect complexes, leaving 
only entries for binary interactions and direct complexes. This data set contains 20,317 
distinct interactions corresponding to 1,140 distinct proteins. From the 154 diseases, we 
generated combinations of pairs of diseases, and for each pair of diseases, proteins in 
both diseases were also paired for all potential combinations. These protein pairs were 
then cross-referenced with our filtered Reactome data set to determine if they participated 
in reactions or formed direct complexes with one another. There are two basic types of 
relationships used in calculations in our methods. These relationships correspond to the 
two scenarios we considered to determine whether two diseases share interaction 
networks: 1) an identity relationship where common proteins are shared by two diseases, 
and 2) direct interactions between protein A in one disease and protein B in the other 
disease. As related diseases can share both types of relations, and due to the requirements 
of the hypergeometric distribution, we consider both in the underlying protein-protein 
interaction network in diseases. Based on this, we calculated the correlations between all 
possible pairs of diseases by applying the hypergeometric distribution function to identify 
significantly correlated diseases (equation 1) and adjustments for multiple a posteriori 
comparisons (equation 2), as shown below: 
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In equation 1, ‘N’ represents the total number of all pair combinations between 
proteins of any two diseases in the experiment that includes the possibility of sharing the 
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same proteins (identical protein pair between two diseases), ‘M’, as the sum of number of 
observed distinct pairs of interacting proteins that exist in the Reactome database for all 
the diseases in the experiment (direct interaction only), ‘n’ as the putative total number of 
pairs of proteins that could exist in a pair of disease, and ‘m” as the sum of the observed 
number of common proteins shared between two specific diseases and the number of 
distinct pairs of interacting proteins observed in the Reactome database for these two 
specific diseases (M ∩ n). This measure gives a p-value which is then adjusted for 
multiple comparisons with the Dunn-Sidak method (a derivative of the Bonferroni 
method):  

rpp )1(1' −−= (Equation 2) 
In equation 2, p’ and p represent the corrected and uncorrected p-values, 

respectively, and r represents the number of independent comparisons, which is the 
number of disease pairs (r=11,703) used in the study. These corrected p-values are then 
thresholded at p<0.05 to determine the final set of significantly correlated disease-disease 
relationships. Multiple diseases and genes sharing the same PubMed IDs can  artificially 
boost the statistical significance of these disease pairs, therefore relationships mapping to 
more than 2 overlapping PubMed IDs were removed to reduce the this artifact.  A total of 
11,703 disease pairs  passed the filter out of 11,780 candidates. 77 combinations had 
more than two PMID overlaps and were filtered out as a result of this process. An 
example of values used for the calculation is described in the results section. 

Evaluations. Two evaluations were conducted. The first one, a quantitative 
evaluation, was designed to control for the error rate in either assigning a protein disease 
relationship in PhenoGO or a protein-protein interaction in Reactome. It consisted of 
establishing the reliability of the predictions if we introduced noise in the integrated 
database network (10% more protein-protein interactions in the same set of diseases). 
The second one, a qualitative evaluation, consisted of carefully examining the 
discovered protein interactions shared by two diseases and identifying references in the 
scientific literature that validate the phenotypic overlap and potentially the protein 
interactions. 

Distribution of potential protein interactions in pairs of diseases
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 Figure 2. Distribution of the number of disease pairs from PhenoGO according to the number of  
possible protein interactions observed between their proteins in the Reactome. 
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3. Results 

In this study, we examined a subset of PhenoGO pertaining to human diseases in order to 
identify relationships between these diseases according to criteria described in the 
methods. This filtering resulted in a set of 154 diseases and their 1,931 associated 
proteins. The intersection between the proteins of the Reactome and those of PhenoGO 
further reduced the set of proteins to 286. The number of candidate proteins per disease 
was greatly reduced by the need to be present in the Reactome dataset, and therefore the 
totals are smaller than observed in the PhenoGO database alone. We lose approximately 
70% of the proteins in this process due to the limited content of the Reactome. In order to 
identify relationships between these diseases, we analyzed their underlying protein-
protein interaction maps by applying a statistical method (details of equations in the 
Method Section). Of the 154 selected diseases, there are (285*286/2+286) = 41,041 
distinct combinations of protein pairs and identical protein overlap (term N, equation 1) 
possible for all possible disease pairs, of which only 4,857 exist in the Reactome (term M, 
equation 1). Figure 2 summarizes the distribution of protein-protein pairs per 
combination of diseases in our set. In ~60% of the 11,703 disease pairs under 
consideration, the number of potential protein-protein interactions is five or less (no 
significant predictions from this category), and about 40% of them have more than five 
interactions. We then proceeded in calculating the correlation between groups of pairs of 
interacting proteins associated with every pair of diseases according to equations 1 and 2 
(file available at http://phenos.bsd.uchicago.edu/PSB2007/). Based on the correlations of the 
shared protein interacting pairs between diseases, we identified 10 pairs of diseases that 
are significantly correlated due to their shared proteins and protein-protein interactions 
out of 11,703 disease pairs examined in this study (Table 1). 

Quantitative Evaluation. We added 2031 “false positive” interactions between 
random nodes in the network to evaluate the robustness of the method to 10% noise in the 
network. We found that even with the introduced noise, none of the p-values in the top 10 
entries changed. We also attempted adding 10% noise (46 “false” interactions) in just the 
286 proteins under study, which changed the p-values of the top 10 entries, but left their 
rank order relatively intact (results available at http://phenos.bsd.uchicago.edu/PSB2007/). 

Qualitative evaluation. The top ranked disease pairs are shown in Table 1, all of 
which have a significant adjusted pvalue less than 5%. The last column of Table 1 
provides strong scientific evidence in support of the predictions. We have manually 
examined all the significant disease pairs, and confirmed their correlations in the 
literature, demonstrating our method can successfully predict non trivial correlations 
between different diseases. Among these pairs of diseases, Cockayne Syndrome (CS) and 
Xeroderma Pigmentosum (XP) provide a very interesting example on how two diseases 
are correlated through their protein-protein interaction networks. Xeroderma 
Pigmentosum is a disorder conferring susceptibility of the skin to ultraviolet radiation,  
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Figure 3: Protein interactions between Xeroderma Pigmentosum and Cockayne Syndrome. Shared 
proteins between the two diseases are represented (top), proteins in the Cockayne syndrome (right), and those in 
the Xeroderma Pigmentosum (left). Protein interactions between the two diseases are linked by lines. 

Table 1. Top ranked significantly correlated diseases. 
UMLS ID Disease 1 UMLS ID Disease 2 P-PI 

(#) pvalue Corrected 
pvalue Ref 

C0009207 Cockayne Syndrome C0043346 Xeroderma Pigmentosum 38 7.3e-22 8.5e-18 [31] 

C0043346 Xeroderma Pigmentosum C0085390 Li-Fraumeni Syndrome 24 6.7e-11 4.9e-06 [32] 

C0007001 Carbohydrate Metabolism, 
Inborn Errors C0002514 Amino Acid Metabolism, 

Inborn Errors 9 8.3e-10 6.2e-05 * 

C0009404 Colorectal Neoplasms C0950123 Genetic Diseases, Inborn 16 6.7e-10 5.0e-05 [33] 

C0085390 Li-Fraumeni Syndrome C0009207 Cockayne Syndrome 16 2.7e-09 1.9e-04 NA 

C0009404 Colorectal Neoplasms C0015625 Fanconi's Anemia 8 1.5e-05 6.7e-01 [9] 

C0009404 Colorectal Neoplasms C0085413 Polycystic Kidney, 
Autosomal Dominant 8 1.5e-05 6.7e-01 [21] 

C0024141 Lupus Erythematosus, 
Systemic (LES) C0004364 Autoimmune Diseases 4 9.3e-05 9.9e-01 * 

C0024314 Lymphoproliferative 
Disorders (LD) C0004364 Autoimmune Diseases 6 1.3e-04 9.9e-01 [34] 

C0024314 LD C0024141 LES 6 1.3e-04 9.9e-01 [35] 
* self-evident relations between disease pairs.    Ref = references confirming the predictions, P-PI = Protein –Protein Interaction # 

Xeroderma  
Pigmentosum 

Cockayne 
Syndrome 
 

DNA excision repair protein 
ERCC-6 (Q03468) 

DNA excision repair protein 
ERCC-5 (P28715) 

TFIIH basal transcription 
factor complex helicase 
subunit (P18074) 

Cellular tumor 
antigen p53 
(P04637) 

TFIIH basal transcription 
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DNA repair protein 
RAD51 homolog 1 
(Q06609) 

DNA damage-binding protein 1 
(Q16531) 

DNA repair endonuclease XPF (Q92889) 

DNA damage-binding protein 2 
(Q92466) 
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group A-complementing 
protein (P23025) 

DNA excision 
repair protein 
ERCC-8 
(Q13216) 

Xeroderma pigmentosum 
group C-complementing 
protein (Q01831) 

Proteins Common to Both Diseases
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due to deficiencies in one of the XPA-XPG complementation group genes involved in 
nucleotide excision repair [36]. Similarly, Cockayne Syndrome involves deficiencies in 
transcription-coupled repair genes ERCC6 and ERCC8 leading to a number of conditions 
including abnormal sensitivity to sunlight. As shown in Figure 3, there are 27 direct 
protein-protein interactions and 5 common proteins (term m =27+5, equation 1) that are 
shared by these two diseases. A total of 66 potential combinations of protein-protein 
interaction pairs (term n, equation 1) can be formed between the 11 proteins of XP and 
the 6 proteins of CS.  

As shown in the Figure 3 and described in Table 2, we find that most proteins in the 
common networks between the two diseases are related to DNA repair processes, which 
are Global Genomic Nucleotide Excision Repair (NER) and Transcription-coupled NER.  
The Global Genomic NER repairs lesions from non-transcribed regions of genome, a 
process independent to transcription, and the Transcription-coupled NER repairs UV-
induced damage in the transcribed strands of active genes. Both Cockayne syndrome and 
Xeroderma Pigmentosum are associated with these processes, suggesting defects in the 
repair of DNA damage are the cause of the diseases, as indicated in the literature [36]. 
Our computational approach allows us to quickly identify the shared networks between 
these two diseases, demonstrating the method we used is able to identify the underlying 
molecular basis shared by these diseases. 

In some cases, disruptions in any of the proteins or genes lying on a pathway can 
lead to a disease phenotype. This is the case with both Xeroderma Pigmentosum and 
Cockayne syndrome. At a higher classification level, these two previous diseases are a 
result of deficiencies in the DNA repair pathway, a class also shared with Li-Fraumeni 
Syndrome [37]. Though these three single gene diseases have a known initial molecular 
cause, how this cause is related to DNA repair pathways and whether the diseases share 
the same pathway or related disjoint pathways may be poorly understood. 

In another example, Fanconi’s Anemia (FA) is a hereditary DNA-repair deficiency 
characterized by hypersensitivity to DNA damaging agents. This disorder is caused by a 
mutation in any one of genes in the Fanconi’s Anemia complementation group: FANCA, 
FANCB, FANCC, FANCD1, FANCD2, FANCE, FANCF, FANCG, FANCJ, FANCL, 
or FANCM [38-40]. Its phenotype is complex and includes anemia, several congenital 
malformations, and a strong predisposition to cancers [38, 39]. Kutler et al. (2003) 
analyzed clinical data from 754 FA patients from North America enrolled in the 
International Fanconi Anemia Registry, of whom 173 (23%) had a total of 199 neoplasms 
(28 distinct types of cancers) [9]. Among 14 potential protein interactions between 
Fanconi’s Anemia and Colorectal Neoplasms, 8 were found to exist in the Reactome.  

An evaluation of the relationship between the generality of a disease class (based on 
graph-theoretic distance from the “MeSH Descriptor” node in the UMLS) and the 
number of proteins annotated to it found no correlation (available at 
http://phenos.bsd.uchicago.edu/PSB2007/). 
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4. Discussion 

The protein-protein interaction network constructed by the Reactome dataset provides us 
a framework for structuring the knowledge of human diseases, which enables an 
objective approach to examine the molecular underpinnings of diseases in the context of 
their known molecular interactions on genomic scale. This method not only allows us to 
conduct high throughput computational analysis of the relations between diseases, but 
also reveals the underlying molecular relationships between diseases. Furthermore, new 
relationships between well-known diseases and new diseases could be revealed based on 
their overlapping molecular networks.  

Although many diseases have been associated with their genetic and proteomic 
underpinnings, little research has been focused on bridging the gap between protein 
interactions and the relationships between diseases. Phenotype clustering methods 
achieve this to some extent. For example, Brunner and van Driel used a text mining 
approach based on MeSH terms as keywords over the OMIM database [6] to cluster 
similar disease phenotypes. Our implementation of the hypergeometric distribution 
significantly differs from its common use in bioinformatics. Other authors have used this 
distribution in large scale gene expression studies to identify “over-represented” gene 
classes (e.g. Gene Ontology classes) and find systemic patterns [41]. This classical 
implementation would be efficient in recognizing overlapping proteins or proteins 
sharing annotated pathways in GO, but would not recognize novel protein interaction 
based on newly discovered or predicted protein interactions.  In contrast, we focused on 
protein interactions and thus counted the protein pairs rather than the genes’ assignments 
to categories. The proposed analytical approach could scale up in two ways. First, we 
could extend it to proteins interacting indirectly through a pathway rather than directly 
interacting in the Reactome (through additional join operations in the database in order to 
determine those interacting with one or more intermediate proteins in pathways). In doing 
this, the Bonferroni-type adjustment would have to be replaced with a data-derived 
control for multiple comparisons such as bootstrap or permutation resampling in order to 
interpret the results. A second, probably more useful way in which this analysis can scale 
up is its use with the rapidly expanding number of protein-interaction databases, many of 
which are not publicly available.  The subset of the PhenoGO database used in this study 
can readily be reused in a similar manner over another protein interaction database 
containing more genes and provide other specialized predictions.   

Limitations. One question about the use of this technique is its reliability when 
conditions change. Since we used well established statistics and one of the most severe 
multiple comparison criteria for controlling for false predictions, we believe this method 
is robust. As this technique relies on integrating accurate protein-protein interactions with 
accurate gene-disease associations, and both of these datasets likely contained at least 
10% false positive relationships, we conducted an evaluation adding false relationships in 
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the network and confirmed that the identified disease pairs sharing protein networks were 
reliable in spite of the noise. Nonetheless, this approach remains limited by the quality of 
the underlying protein networks, and the accuracy of protein-disease mapping. Currently, 
the protein-protein interaction network is still at the early developmental stage. In this 
study, we extracted 1,931 proteins from 154 diseases, of which only 288 proteins exist in 
the Reactome dataset that contains 1,140 proteins. Therefore, the interaction network we 
used to correlate relationship between diseases is relatively small. Certainly, as 
bioinformatics databases become larger and more accurate this discovery method could 
become a valuable tool to identify relationships between diseases. 

Future studies. We intend to explore a permutation based resampling in order to 
unveil additional valid relationships. A resampling-based approach would help determine 
the optimal relationship between quantity and quality in the dataset. We also plan to 
significantly extend the protein-disease associations by mining additional genetic 
datasets. Besides using the Reactome, we also demonstrated we could use DIP [7], 
although it is smaller than Reactome [results not shown]. Since the UMLS is used to 
encode the diseases, we plan to compare related diseases and their associated protein-
protein interactions in order to establish the molecular basis of disease relationships in 
ontologies. 

5.  Conclusion  

We developed and evaluated an automatic system to predict protein interactions shared 
by two or more diseases. It augments current protein interaction networks by integrating 
literature-based knowledge of protein-disease associations and systematically identifying 
the statistically significant Protein Interactions of Diseases (PID). Results demonstrated 
that the PID system provides accurate predictions and is scalable in a number of 
dimensions: (i) it enables high throughput predictions, and (ii) it scales across different 
protein-interaction datasets. Beyond direct protein-protein interactions, it also provides 
the theoretical framework to compare shared pathways between diseases.  In the future, 
this framework could be applied to more complex diseases to determine if their shared 
phenotypes are a result of the shared molecular mechanism and pathways. 
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