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We have developed a challenge task for the second BioCreAtIvE (Critical Assessment of 
Information Extraction in Biology) that requires participating systems to provide lists of the 
EntrezGene (formerly LocusLink) identifiers for all human genes and proteins mentioned in a 
MEDLINE abstract.  We are distributing 281 annotated abstracts and another 5,000 noisily 
annotated abstracts along with a gene name lexicon to participants.  We have performed a 
series of baseline experiments to better characterize this dataset and form a foundation for 
participant exploration. 

1. Background  

The first Critical Assessment of Information Extraction in Biology's (BioCreAtIvE) 
Task 1B involved linking mentions of model organism genes and proteins in 
MEDLINE abstracts to their corresponding identifiers in three different model 
organism databases (MGD, SGD, and FlyBase).  The task is described in some detail 
in [1], along with descriptions of many different approaches to the task in the same 
journal issue. There has been quite a bit of past work associating text mentions of 
human genes and proteins with unique identifiers including the early work by Cohen 
et al. [2] and the AZURE system [3].  Very recently, Fang et al. [4] reported 
excellent results on a data set they created using one hundred MEDLINE abstracts.  
This widespread community interest in the issue and our experience with the first 
BioCreAtIvE motivated us to prepare another evaluation task for inclusion in the 
second BioCreAtIvE [5].  This task will require systems to link mentions of human 
genes and proteins with their corresponding EntrezGene (LocusLink) identifiers.   
We hope that researchers in this area can use this data set to compare techniques and 
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gauge performance gains.  It can also be used to address issues in the general 
portability of normalization techniques and to investigate the relationships between 
co-mentioned genes and proteins. 

2. Task Definition  

The most important part of evaluating system performance is, of course, a very 
careful definition of the task.  The original Task 1B required each system to provide 
a list of all the model organism database identifiers for the species-specific (mouse, 
fly or yeast) genes and gene products mentioned in a MEDLINE abstract.  There are 
a number of possible uses for such a system, such as improved document retrieval 
for specific genes, data mining over gene/protein co-mentions, or direct support of 
relation extraction (e.g., protein-protein interaction) and/or attribute assignment 
(e.g., assignment of Gene Ontology annotations).  The latter might be immediately 
useful to researchers attempting to analyze high throughput experiments, performing 
whole genome or comparative genomics analyses, or data-mining for relationship 
discovery, all of which require links to the unique identifiers. 

Our initial investigations into a human gene/protein task suggested that UniProt 
identifiers [6] might be a good target to which we might normalize mentions of 
human proteins and their coding genes, and we hoped that this might bring the task 
into closer alignment with other efforts such as BioCreAtIvE I Task 2 [7] which 
required associating GO codes with human proteins identified through protein 
identifiers.  UniProt provides a unified set of protein identifiers and represents a 
great leap forward for bioinformatics research, but it contains many redundancies: 
different fragments of the same polypeptide, polypeptide sequences derived from the 
same gene that differ in non-synonymous polymorphisms, and alternate transcripts 
from the same gene all may have separate entries and unique identifiers.  We 
eventually settled on EntrezGene identifiers as unique target identifiers, despite 
incomplete mappings of UniProt to EntrezGene identifiers and what can be a 
complex many-to-many (e.g. alternate transcripts and gene duplications) relationship 
between genes and proteins.  As described in [8], our annotation viewed genes and 
their products as equivalent because experience has found their typical usage 
interchangeable and/or indistinguishable.  This is, of course, a simplification for 
purposes of evaluation; we recognize that this distinction is important in other cases.  

A significant difference between the normalized gene list task (BioCreAtIvE 
Task 1B) and general entity normalization/grounding is that each gene list is 
associated with the abstract as a whole, whereas general entity grounding requires 
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the annotation of each mention in the text.  The advantage of the “gene list” 
approach is that it avoids the issue of how to delimit the boundaries when annotating 
gene and protein mentions [9].  This becomes more of a problem in normalization 
when mentions are elided under various forms of conjunction.  For example, it is 
difficult to identify the boundaries for the names of the different forms of PKC in 
"PKC isoforms alpha, delta, epsilon and zeta".  Then there is the more difficult 
example of ellipsis: "AKR1C1-AKR1C4".  Clearly AKR1C2 and AKR1C3 are 
being included in this mention, and functional information extracted about that 
group should include them.  Fang et al. [4] excluded these cases from consideration, 
but we feel that these are important instances that need to be annotated and 
normalized.  Equally difficult is the large gray area in gene and protein nomenclature 
between a description and a name and the related question of what should be tagged.  
The text "Among the various proteins which are induced when human cells are 
treated with interferon, a predominant protein of unknown function, with molecular 
mass 56 kDa, has been observed" mentions the protein also known as "interferon-
induced protein 56", but the text describes the entity rather than using the listed 
name derived from this description.  Our compromise was to keep the gene list task, 
but to provide a richer data set that associates at least one text string with each entry 
in the gene list, a significant addition over the first BioCreAtIvE Task 1B.  

Polysemy in gene and protein names creates additional complexity, both within 
and between organisms [10]. Determination of the gene or protein being described 
may require the interpretation of the whole abstract – or several genes may be 
described with one “family name” term (see the Discussion section for further 
exploration of this issue).  The particular species can be intentionally under-specified 
when the text is meant to refer to all the orthologues in relevant species, but in other 
cases, a name is meant to be highly species specific.  For example: "Anoxia activates 
AMP-activated protein kinase (AMPK), resulting in the inhibition of biosynthetic 
pathways to conserve ATP. In anoxic rat hepatocytes or in hepatocytes treated with 
5-aminoimidazole-4-carboxamide (AICA) riboside, AMPK was activated and 
protein synthesis was inhibited." The mention of the properties of AMPK in the first 
sentence is meant to be general and to include activity in humans, but the subsequent 
experimental evidence is, of course, in rats.  
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3. Corpus Construction  
3.1. Abstract Collection  

To identify a collection of abstracts with a high likelihood of mentions of human 
genes and proteins, we obtained the gene_association.goa_human file [11] on 10 
October 2005.  This provided us with 11,073 PubMed identifiers for journal articles 
likely to have mentions of human genes and proteins.  We obtained abstracts for 
10,730 of these.  The file gene2pubmed obtained from NCBI [12] on 21 October 
2005 was used, along with the GO annotations, to create the automatic/noisy 
annotations in the 5,000 abstracts set aside as a noisy training set as described in [8].  
This is further described in the Evaluation of Noisy Training Data section.  We 
selected our abstracts for hand annotation from the 5,730 remaining abstracts.  

3.2. Lexicon Creation 

The basic gene symbol and gene name information corresponding to each human 
EntrezGene identifier was taken from the gene_info file from NCBI [12].  This was 
merged with name, gene and synonym entries taken from UniProt [6]. Suffixes 
containing "_HUMAN", "1_HUMAN", "H_HUMAN", "protein", "precursor", 
"antigen" were stripped from the terms and added to the lexicon as separate terms in 
addition to the original term.  HGNC [13] symbol, name, and alias entries were also 
added.  We identified the phrases most repeated across identifiers and those that had 
numerous matches in the 5000 abstracts of noisy training data; we then used these to 
create a short (381 term) list to remove the most common terms that were unlikely to 
be gene or protein names but which had entered the lexicon as full synonyms.  
Examples of entries in this list are "recessive", "neural", "Zeta", "liver", "glycine", 
and "mediator".  This list is available from the CVS archive [5].  This left us with a 
lexicon of 32,975 distinct EntrezGene identifiers linked to a total of 163,478 unique 
terms.  The majority of identifiers have more than one term attached (average 5.5), 
although 8,385 had only one. For example, identifier 1001 has the following 
synonyms: "PCAD;   CDHP;  CDH3;  cadherin 3, type 1, P-cadherin (placental); 
HJMD".  It is important to note that many of these terms are unlikely to be used as  
mentions in abstracts for the given proteins and genes. 

Many of the terms/synonyms were not unique among the identifiers, with the 
terms often being shared across a handful of identifiers (Table 1).  Sometimes this 
reflects noise inherited from the source databases; the most egregious example is 
"hypothetical" which shows up as a name for 89 genes. Similarly, "human" (alone) 
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shows up 15 times, "g protein coupled receptor" 12 times, and "seven 
transmembrane helix receptor" 30 times.  Each normalized (Section 4) phrase 
included as a synonym in this relatively noisy lexicon is linked to an average of 1.1 
different unique identifiers, although 80% of phrases link to only one identifier.  
These synonyms average 16.5 characters in length if whitespace is removed.  

3.3. Annotation Tool and Annotation Process 

We developed a simple annotation tool using dynamic webpages with PHP and 
MySQL to support the creation of the normalized gene lists and extraction of the 
associated mention excerpts from the text.  Annotators could annotate via their own 
web browsers.  We could also make rapid changes to the interface as soon as they 
were requested without needing to update anything but the scripts on the server.   

The simple annotation guidelines and the PHP scripts used for the annotation 
are available for download from the Sourceforge CVS archive [5].  The interface 
presented the plain text of the title and abstract to the annotators, along with 
suggested annotations (based on the automatic/noisy process). Using these 
resources, annotators had to provide the EntrezGene identifiers and supporting text 
for all mentions of human genes and proteins. All annotations then went through a 
review process to examine  abstracts marked with comments and to merge the 
differences between annotators before inclusion in the gold standard set.   

A total of 300 abstracts were annotated for the freely distributed training set, 
although 19 were removed for a variety of reasons, such as, having mentions which 
could not be normalized to EntrezGene, leaving 281 for distribution.  The annotators 
found of an average of 2.27 different human genes mentioned per abstract.  We have 
annotated another ~263 for use as an evaluation set.  We plan to correct errors in 
these annotations based on pooling of the participants' submissions, as was done in 
the previous BioCreAtIvE [8]. The Sourceforge CVS archive will allow us to track 
corrections to these datasets [5].  

Table 1.  Lexicon statistics         
Unique Gene ID's 32,975 Avg Term Length (Characters) 16.51

Unique Un-Normalized Terms 177,200 Avg Gene Identifiers per Term 1.12

Unique Normalized Terms 163,478 Avg Term Length (Words) 2.17

Avg Terms per Identifier 5.55  
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3.4. Inter-annotator Agreement 

We studied the agreement between different annotators on the same abstracts.  The 
annotation was done by three annotators (two with PhD's in biological sciences, one 
with an MS; none are specialists in human biology, but all had previous experience 
in annotation).  There was one annotator (primary) who did annotations for all 
abstracts.  Our first pass of agreement studies was done on the first abstracts in the 
training set and was done mostly to check our annotation guidelines.  Two 
annotators annotated the same 30 abstracts.  There were 71 annotations (same 
EntrezGene identifiers for the abstract) in common and 7 differences (91% 
agreement).   A second agreement experiment was performed with 26 new abstracts.  
There was only 87% agreement, but all disagreements were missed mentions or 
incorrect normalizations by the non-primary annotator.   Unfortunately, these small 
sample sizes can only be suggestive of the overall level of agreement. 

4. Characterizing the Data 

In order to better characterize the properties of this dataset and task, we performed 
some baseline experiments, described below, to generate the list of EntrezGene 
identifiers for each abstract using the lexicon. We evaluated this using simple match 
against the gold standard annotations.  For matching the terms from the lexicon, we 
ignored case and any punctuation or internal whitespace in the terms matched to the 
lexicon, but required match of start and end token boundaries as described in [14].  

4.1. Evaluation of Noisy (Automatically Generated) Training Data 

We wanted to estimate the quality of the noisy training data and to evaluate our 
assumption that the document level annotations from the gene2pubmed file were 
indicative of a high likelihood of the mention of those genes in the abstract.  To do 
this, we evaluated the gene lists derived from the gene2pubmed file (automatic/noisy 
data process) against those derived from human annotation (see Table 2). However, 
many genes may be mentioned in the abstract and paper but may not included in the 
gene2pubmed file causing our noisy training data to systematically underreport 

Table 2.  Properties of the Data         

Experiment

True

Positive

False

Positive

False

Negative Precision Recall

Noisy Training Data Quality 348 49 292 0.877 0.544

Coverage of Lexicon 530 7941 110 0.063 0.828  
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genes mentioned, and we estimate from this result that only half of all genes 
mentioned are included in the automatic/noisy data annotations (recall 0.544).   

4.2. Evaluating the Coverage of the Lexicon  

We also evaluated the coverage of the lexicon by using it to do simple pattern 
matching.  This mirrors some of our early experiments in developing normalized 
gene lists for Drosophila melanogaster [15].  Our goal was to estimate a recall 
ceiling on performance for systems requiring exact match to the lexicon.  The recall 
of 0.828 clearly shows the limits of the simple lexicon (Table 2).  This demonstrates 
the need to extend exact lexical match beyond such simple rules as ignoring case, 
punctuation and white space.   In some cases, very small affixes (e.g. h-, -p, -like), 
either in the lexicon or the text, caused a failure to match.  There were numerous 
cases of acronyms, often embedded in longer terms, which caused problems 
("actinin-1" vs. "ACTN1" or "GlyR alpha 1" vs. "Glycine receptor alpha-1 chain 
precursor" or  "GLRA1").  The various modifiers indicating subtypes were a serious 
problem, e.g. "collagen, type V, alpha 1"; modifiers such as "class II", "beta 
subtype", "type 1", and "mu 1" varied in orthography and placement, and the 
modifier "1" is often optional.  Conjunctions such as "freac1-freac7" are particularly 
costly from an evaluation perspective since it can count as several false negatives at 
once.  There was a considerable amount of name paraphrase (see Discussion 
section), involving word ordering and term substitutions or insertions and deletions.  
This arises because the long phrases in the lexicon are often more descriptive than 
nominal, although the associated acronyms can give some indication as to how a 
mention might actually occur in text.  For example, the text contains "kappa opioid 
receptor", whereas the lexicon contains "KOR" and "opioid receptor, kappa 1").   
Lan Aronson has investigated these issues in term variation while mapping concepts 
to text extensively [16].  Interestingly, self-embedded terms (e.g. "insulin-like 
growth factor-1 (IGF-I) receptor") seem to be a relatively rare problem at the level 
of the whole abstract.   As expected, the precision based on lexical pattern matching 
(Table 2, row 2) was very low due to false positive matches of terms in the lexicon 
against common English terms, ambiguous acronyms, and so forth.   
4.3. Biological Context of Co-Mentioned Genes and Proteins 

As an example of how this dataset might be used outside of the evaluation, we 
looked at the biological relationships between genes and proteins which are 
mentioned together in the same abstracts.   Our experience annotating the abstracts 
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indicated that genes or proteins are typically co-mentioned because of sequence 
homology and/or some functional relationship (e.g., interaction), although cell 
markers (e.g., CD4) may be mentioned in a variety of contexts.  Many sophisticated 
techniques have arisen for comparing genes based on functional annotations and 
sequence, but for this initial analysis we intentionally used something naïve and 
simple.  We computed two different similarity measurements for each pair of genes 
mentioned together in our dataset.  For a sequence similarity computation, we used 
BioPython's pairwise2 function [17]: 

pairwise2.align.globalxs (seq1,seq2,-1,.1,penalize_end_gaps=0,score_only=1). 

For the sequence, we used the longest protein RefSeq for each gene.  For a measure 
based on functional annotations, we computed the Jacquard set similarity (1-
Tanimoto distance) for the set of all GO annotations for each gene:  

! 
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We excluded all GO codes that had an accompanying qualifier, which for human 
genes, is restricted to "contributes_to", "colocalizes_with", and "NOT".  This GO-
derived similarity measure is a poor one for many reasons, including mixing 
experimental and homology based GO codes, ignoring the structure of GO, and 
ignoring the fact that the three main hierarchies are very different. 

 Figure 1 shows the result of computing these similarity measures for the 737 
pairs of genes that are co-mentioned in our hand annotated training set and for 1,630 
pairs of randomly selected genes which are explicitly not co-mentioned.   Of the  
737 co-mentioned pairs, 100 have both similarity measures above 0.3, while none of 
the 1,630 non co-mentioned pairs do.  This suggests that in the context of the 
evaluation, even simple biological knowledge may be helpful in such tasks as 
disambiguation (dealing with polysemy) for normalization or in ascertaining if co-
mention suggests functional and/or physical interaction or simply homology.  It is 
hoped that this dataset can encourage the use of greater exploration into the use of 
biological knowledge to improve text mining. 

Figure  1:  Biological similarity between co-mentioned genes vs. not co-mentioned genes  
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Table 3: A comparison of gene mention normalization 

Noisy 

Data

Recall

Noisy 

Data

Precision

Max Recall

Approach

Recall

Max Recall

Approach

Precision

Average

Synonym

Length

in Words

Number 

of 

Unique 

ID's

Average #

Synonyms/

Identifier

Average #

Identifiers/

Synonym

(ambiguity)

BioCreAtIvE 1

Max 

Submitted

F-measure

Human 0.54 0.86 0.83 0.06 2.17 32,975 5.55 1.12

Mouse 0.55 0.99 0.83 0.19 2.77 52,494 2.48 1.02 0.79

Yeast 0.86 0.99 0.93 0.33 1.00 7,928 1.86 1.01 0.92

Fly 0.81 0.86 0.85 0.07 1.47 27,749 2.94 1.09 0.82  

5. Discussion 

It is interesting to compare this new corpus with Task 1B of BioCreAtIvE 1 for 
insights into portability of normalization techniques.  One set of measures in Table 3 
seems to indicate that human may be easier than mouse; it has over twice the 
number of terms for each identifier, it has many fewer unique identifier targets, and 

only slightly more ambiguity.  However, this does not really represent how the terms 
in the lexicon map to the text.  The synonyms in the model organism databases are 
drawn from text, whereas the lexicon that we created for human genes includes 
database identifiers or descriptive forms that have very little overlap with actual text 
mentions. This overestimates the number of useful term variants in the lexicon and 
probably underestimates ambiguity in practice.  The affects of polysemy/ambiguity 
in gene/protein mention identification is discussed in detail in [10]. 

An important contrast between human and mouse nomenclature on the one 
hand, and yeast and fly on the other, is that the nomenclature is often much more 
descriptive than nominal as mentioned in the Task Definition section.  In 
Drosophila, the gene rather whimsically named "Son of sevenless" ("Sos") is named 
just that.  It would never be called "child of sevenless" or "Sevenless' son".  
However, the names of human genes may vary quite a bit.  The Alzheimer's disease 
related "APP" gene is generally known as "beta-amyloid precursor protein", 
although "beta-amyloid precursor polypeptide" may be used as well.  Many other 
equivalent transformations are also acceptable, such as "amyloid beta-protein 
precursor", and "betaAPP".  In general, any semantically equivalent description of 
the gene or protein may be used as a name.  However, the regularity of the allowed 
transformations suggests that it might be possible to design or automatically learn 
transformation rules to permit better matching, something investigated by past 
researchers [18]. 

As Vlachos et al. observed [19], in biomedical text there is a high occurrence of 
families of genes and proteins being mentioned by a single term such as: "Mxi1 
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belongs to the Mad (Mxi1) family of proteins, which function as potent antagonists 
of Myc oncoproteins".  In future work in biomedical entity normalization, we 
suggest that normalizing entity mentions to family mentions may be an effective 
way to support other biomedical text mining tasks.  Possibly the protein families in 
InterPro [6] could be used as normalization targets for mentions of families.  For 
example, the mention of "Myc oncoproteins" could link to InterPro:IPR002418.  
This would enable information extraction systems that extract facts (relations, 
attributes) on gene families to attach those properties to all family members.    

 

6. Conclusion 

In summary, we have described the motivation and development of a dataset for 
evaluating the automatic mapping of the mention of human genes/proteins to unique 
identifiers, which will be used as part of the second BioCreAtIvE.  We have 
elucidated some of the properties of this data set, and made some suggestions about 
how it may be used in conjunction with biological knowledge to investigate the 
properties of co-mentioned genes and proteins.  Anonymized submissions by 
evaluation participants along with the evaluation set gold standard annotations will 
be made publicly available [5] after the workshop, tentatively scheduled for the 
spring of 2007. 
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