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We describe a quantitative model for predicting the binding affinity of protein-
DNA interactions. The described model is based on templates capable of provid-
ing a global representation of the modelled transcription factor (TF) binding sites.
Templates can capture non independent nucleotide variations and structural prop-
erties present in these sites. Tests carried out on the p50p50 and p50p65 variants
of the transcription factor NF-xB demonstrate a high correlation between the ob-
served binding affinities and the binding affinities predicted by the templates. Only
a small subset of training data spanning the space of the binding sites is required
to train the templates.

1. Introduction

In human and other higher eukaryotes, gene expression is regulated by
the binding of various modulatory transcription factors (TF) onto cis-
regulatory elements near genes. Binding of different combinations of tran-
scription factors may result in a gene being expressed in different tissue
types or at different developmental stages. To fully understand a gene’s
function, therefore, 1t is essential to identify the transcription factors that
regulate the gene and the corresponding TF binding sites.

TF binding sites are relatively short (10-20bp) and highly degener-
ate sequences, which makes their effective identification a computation-
ally challenging task. Early methods for identifying TF binding sites were
mainly non-quantitative binary classifiers. They ranged from consensus
sequences®* and position specific weight matrices?®:?” to approaches such as
rule-based systems?®, Gibbs sampling'?, expectation maximisation®, neural

14,10 35,33

networks and comparative genomics
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Transcription factors, unlike restriction enzymes for example, display
a wide variation of sequence specific binding affinities characterizing the
strength of their interaction with different cis-regulatory elements that con-

32,27 A need for quantitative models for

trol the transcriptional mechanism
predicting the strength of protein-DNA interactions arise from this varia-
tion of binding affinities displayed by different sites to a given transcription
factor. There is evidence to suggest that the binding energy of a protein-
DNA interaction is to some extent intrinsic in the base composition of the
operator DNA. Berg and von Hippel? for example showed, using statistical-
mechanical theory, that given a set of regulatory sites, the logarithm of the
base frequencies of those sites were proportional to their binding affinity. A
more refined version of their calculation, taking into account the base com-
position of the genome in question, was introduced by Stormo & Fields?”
and Sarai & Takeda?? showed that the binding energy of a site was addi-
tive in the free energy changes of individual bases. The binding affinity of a
protein-DNA interaction can be measured experimentally as an equilibrium
constant of its binding reaction®®?2?,

Studies carried out on various domains of TF binding sites have shown
correlated nucleotide variations to exist between different nucleotide posi-
tions of those sites!®3%34  This has led many researchers to question the
base independence assumption on which methods such as consensus se-
quences and weight matrices for identifying TF binding sites are based*'?.
This issue has been addressed by different authors with different techniques
ranging from non-quantitative models such as improved weight matrices
with prior information on correlated nucleotide positions®®37, biophysical
approaches®, non-parametric models!' and neural networks'#1% to quan-
titative models such as principal coordinates analysis®’. The method in-
troduced in this paper, among other things, accounts for nucleotide co-
variations to improve the quantitative prediction of binding affinities of
protein-DNA interactions.

Another feature that plays a role in protein-DNA interactions is nu-
cleotide structure’'67. It is reasonable to expect, given the multitude of
binding sites recognized by the transcription machinery, that there exists
other factors beside sequence similarity that influence the binding process.
It has been shown that the binding of transcription factors cause a sig-
nificant distortion to the regular twist and bending of the DNA double
helix®?326_ This often results in the bound DNA strand changing con-
formation from its B-form to A- or Z- forms'3. It is conceivable that the
binding affinity of a site to a given transcription factor will depend, at least
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to some extent, on its ability to tolerate such structural distortion from the
classical B-form.

Nussinov'®, for example, demonstrated the presence of structural ho-
mology in regions with weak sequence homology at sites —10, —35 and
—16, of the Escherichia coli promoter. Structural properties of a DNA helix
can be expressed in terms of its conformational parameters in di-nucleotide
and tri-nucleotide models. There are many different such parameters re-
ported in the literature. The Property database'®, for example, lists 38
such parameters. Many non-quantitative algorithms have been developed
to analyze binding sites based on their structural homology'®'7?°. The
method described in this paper uses a combination of different structural
parameter representations of a site to account for sequence structure in the
prediction of its binding affinity to a given transcription factor.

2. Method

The key to our method is the use of numerical templates to capture cer-
tain key features of TF binding sites. One of the principle drawbacks of
base-independent models of TF binding sites is their inability to account
for non-independent nucleotide variations. One problem of modelling nu-
cleotide substitutions in a general model of TF binding sites 1s that the
nucleotide positions that exhibit such correlations vary from factor to fac-
tor. As the exact positions on the TF binding sites which are correlated
are unknown in the general case, one would need a model that accounts for
all pairs of positions on the sites to fully represent them, which will need a
very large number of parameters (e.g. a fully connected HMM). Templates
present a compromise between the base independent model and the fully
connected model. They model the correlation of an individual position rel-
ative to the rest of the positions on the site. By restricting the expression of
correlation of a given position on the sites to all the other positions, instead
of individual pairs of positions, templates are able to reduce the number of
parameters required to the length of the sites, while still capturing a global
representation of the positional correlations present in them.

In the template model, each template (defined by its template parame-
ters t) is modelled on a given numerical encoding of the nucleotides forming
the training set of binding sites. The numerical encoding can be some value
assigned to individual nucleotides or a value assigned to a combination of
them. Values can be assigned to single nucleotides to capture sequence
properties (e.g. sequence homology) of the sites. Values can be assigned
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to di- and tri- nucleotides to capture geometric and structural properties
(e.g. propeller twist, stacking energy, protein induced deformability, DNAse
T sensitivity, etc.) of the sites. For a given nucleotide sequence, s, and a
given nucleotide parameter p, the resulting numerical vector will be denoted
r?(s) (see Figure 1.). Each nucleotide sequence is first converted into a table

p = Slide
aa  at ag ac ta tt tg tc ga gt gg gc ca ct  cg cc
0.1 -0.7 -03 -0.6 0.1 0.1 04 01 01 -06 -01 -03 04 -0.3 0.7 -0.1

s=ggcgtgge (r?(s) =-0.1,-0.3,40.7,-0.6,+0.4,—0.1,-0.3 )

Figure 1. The figure shows the encoding r?(s) of sequence s by the dinucleotide step
parameter values p =‘Slide’.

of numerical representations. For each nucleotide sequence s, the represen-
tations of s that we work with will be denoted r'(s),r%(s),...,r™(s) where
m is the number of parameters selected.

The global representation of positional correlations of a TF binding site
s, encoded with parameter p (where p can be for example a mono-, di-
or tri-nucleotide parameter), having encoded length L, is captured by a
template ¢ and is given by the following equations. As we do not know the
contribution of individual bases towards the binding energy of a site, we
make a simplifying assumption that the bases make a uniform contribution
towards it, hence in these equations, the binding energy of a site is modelled
as an external potential fequally distributed across its bases.

(Q diag(xrP(s)) ) t = rP(s) — f — e (1)

Where t = (#[1],2[2],...,t[L])T, is the vector of template parameters, rP(s),
is the vector representing the encoding of nucleotide sequence s with pa-
rameter p, £ = (f, f,..., f)?le), is an equally distributed vector of the
binding affinity of site s, e = (e[1],¢[2], ...,e[L])T, the residual error and
Q(rxr) a square matrix with zeros on the diagonal and ones every where
else.

For any numerical vector r? = (rP[1],rP[2], ..., rP[L]), the template
error of ¥P with respect to a template t¥, denoted as E(xr?, t?), is defined
as the sum of squared residual errors.

E(x? t7) = e[1)* + e[2)* + ... + ¢[L]? (2)

Given a numerical vector r?, we can find a set of template parameters
)
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t? that minimises the template error E(r?, tP) for that vector. This min-
imisation process is referred to as ‘training the template’. The template t?
that minimises F(r?, t?) for the vector r? is obtained as follows:

E(r?,t7) = argtgnin (e[112+e[2)® + ...+ ¢[L]?)

= arg min (eTe)
tr
making the substitution e = (¥ — f) — ( Q diag(rf) ) tP

:argmin( (rP —f — Qp tP )T (rP —f—Qp t?) )
t
Where Q, = ( Q diag(x?) ).

For any set of numerical vectors, {r},r},... r2}, the mean value of the
template error with respect to a fixed template t? is given by

LS B ) (3

The template that minimises this mean error value for this set of vectors
can be obtained by calculating the partial derivatives of Equation 3 with
respect to tP[1],#[2], ..., t?[L] and setting each of these equal to zero. This
gives the following set of L linear equations:

t = l ZQT% Qrk] [ ZQT% (I‘Z - fk) (4)

Where Q. = Q diag(r?).

These equations are symmetric and can be solved efficiently to find the
set of template parameters tP[1],¢7[2],... ,tP[L] that minimises the mean
template error for the set of vectors. These parameters represent the tem-
plate that best describe the relationship between the encoded sites and
their binding affinity. Templates are created for all the different parametric
encodings p, of the sites in the training data. Given a template t? and
any site of the appropriate length x, we can compute the projected binding
affinity fp of that site from

f7 = rP(x) — (Q diag(r"(x))) t” (5)

Where the projected binding affinity fp is taken as the mean value of the
vector f7.

The predictive power of a set of templates depends on the specific nu-
cleotide parameters the templates are modelled on. As mentioned before,
for a given set of training data, we first create templates from all available
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nucleotide parameters. We then use a greedy approach for selecting the
best subset of templates from this set for the final predictor. The predictor
output will be the average over all selected templates. The templates are
selected based on the degree of correlation displayed between the predicted
and observed values of binding affinity of the training data. The correlation
coefficient between the predicted and observed values of binding affinity is
computed for each template representing a specific nucleotide parameter.
Then, starting with the template with the highest correlation coefficient
of prediction vs. observed, we add templates, one at a time in descending
order of their correlation coefficient of prediction with the observed values
to an expanding set of templates. This process i1s continued until the cor-
relation coefficient of prediction of the combine set of templates drop as a
result of the addition of a new template to the set. In that case we select all
the templates excluding the last template added, as our set of templates.

3. Results

The di-nucleotide parameters, representing structural properties of the se-
quences, were obtained from the Property database!®. In its current release
this database lists 38 different parameter values. We used all 38 of these
parameters. The tri-nucleotide parameters were obtained from Brukner et
al.3

There isn’t much published quantitative experimental data available on
the binding affinities of different protein-DNA interactions. One study is
reported in Udalova et. al.3! which reports on the binding affinities of NF-
% B binding sites. We tested the predictive capability of the templates for
predicting the binding affinities of these sites. The authors list the binding
affinities of 52 of the possible 256 variants of the ‘GGRRNNYYCC"” NF-kB
motif to the recombinant p50p50 homodimer and p50p65 heterodimer com-
plexes. There were two estimations of the experimental binding affinities
listed for each oligo varying in rang from 0 to 2431 normalised to the con-
trol sequence ‘GGGGTTCCCC’ which was given the value 227. We used
the average of these two measurements as the observed binding affinities
of the sites. Templates were modelled on the log binding affinities of the
sites. Figure 2 (a) shows the predicted log binding affinities of the p50p50
variant of the NF-x B sites plotted against the observed log binding affini-
ties of those sites. The templates were trained on the first 72 sites listed in
Udalova et. al.3! (the data had no particular arrangement so can be con-
sidered random). The correlation coefficient of the test data (i.e. observed
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Figure 2. The predicted binding affinity (y axis) plotted against the observed
values (x axis) of the (a) p50p50 binding sites (b) p50p65 binding sites. These
predictions are based on templates modelled using 12 sites (the sites shown
with crosses).

vs predicted binding affinities of sites 13 to 52) was 0.8104 (p = 107°).
The templates selected by the predictor in obtaining the above results were
the two twist parameters (P0000018, P0000026), the two roll parameters
(P0000014, P0000028), the propeller twist parameter (P0000030) and the
tilt parameter (P0000016). The values listed in brackets refer to the Prop-
erty database!® ID of these parameters.

Figure 2 (b) shows the predicted log binding affinities of the p50p65
variant of the NF-kB sites plotted against the observed log binding affini-
ties of those sites. As with the p50p50 sites, the templates were trained on
the first 12 sites listed in Udalova et. al.3'. For this variant, the correlation
coefficient of the test data (i.e. sites 13 to 52) was 0.7547 (p = 1076).
The templates selected by the predictor in obtaining the above results were
the two twist parameters (P0000018, P0000026), the two roll parameters
(P0000014, PO000028), and the propeller twist parameters (P0000030). Tt
is interesting that the predictor selected templates modelled on similar pa-
rameters in both cases except for the tilt parameter in the prior case (i.e.
for the p50p50 sites). Tt could be that the di-nucleotide step values of roll
and twist express the flexibility of the DNA strand which facilitates its
orientation when binding to proteins. We believe, as observed from these
results, that this flexibility of the DNA strand, to orient itself around the
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binding protein, in tern may have a direct correlation to the binding affinity
of the protein-DNA interaction. It is also interesting to note that templates
modelled on sequence were not selected by the predictor.

To further ascertain the robustness of the templates to predict the bind-
ing affinity of a given site, we performed a recursive randomised prediction
experiment for both the p50p50 and p50p65 variants of the 52 NF-x B bind-
ing sites. We forecasted the binding affinities of the 52 sites for both these
variants 100 times with each time seeing its prediction based on a new
template created from a set of 72 randomly selected sites and tested on
the remaining sites. The results of these experiments are listed in Table 1.
Also shown in Table 1 are the results of the above experiment carried out
with an increase from 12 to 21 of the number of sites used to train the
templates. The results produced by the template method described here
are compared with three other methods. The first is the matrix similarity
score computed as described in Quandt et. al.?®. The second is the log-
arithm of the base frequencies as described by Berg and von Hippel? and
the third is the non-parametric model described by King et. al.ll(with de-
fault parameters). These tests were done exactly as the tests carried out
for the templates where predictions were performed 100 times with a new
frequency matrix created from the training sites (both for 72 and 21 sites)
selected randomly from the 52 sites and tested on the remaining sites, for
each test. These results are also listed in Table 1. The standard deviation
of each experiment is given in brackets.

Table 1. Performance statistics of templates for the NF-x B sites with training
sets of 72 and 271 examples. The mean values are taken over 100 randomised
trials. The standard deviations are given in brackets.

Mean correlation coefficient (Predicted vs. Observed)

p50p50
Number of training examples 12 21
Templates 0.7809 0.0469) 0.8124 (0.0370
Matrix similarity score?° 0.3535 (0.3167)  0.4559 (0.2851

AAAA
Py
~— e e

Logarithm of base frequencies? 0.2033 (0.3087)  0.2880 (0.2781
Non-parametric model!? 0.2686 (0.1691)  0.2758 (0.1727
p50p65
Number of training examples 12 21
Templates 0.6444 (0.0869)  0.6941 (0.0883)
Matrix similarity score?’ 0.1896 (0.2732)  0.3338 (0.2121)
Logarithm of base frequencies? 0.1302 (0.2583)  0.1719 (0.2397)
Non-parametric model'! 0.2413 (0.1589)  0.2414 (0.1601)
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4. Discussion

We have described a novel approach for predicting the binding affinity of
protein-DNA interactions. The approach described is based on templates
that are sensitive to positional co-variations. These can be co-variations
expressing sequence or structural polymorphisms as described by the dif-
ferent parametric encodings of the nucleotide sequence. Templates work in
sets, usually containing more than one element, with each template char-
acterising a different sequence or structural property of the sites. The
amalgamation of different templates optimally selected to work in unison
endows a synergic effect on the predictive capabilities of the system.

The training phase of the system requires a subset of binding sites
along with their experimentally verified binding affinities. One advantage
of the method described above, unlike other approaches such as, for exam-
ple, those based on base frequencies which are susceptible to small-sample
uncertainties?, is its ability to learn quite well from a minimal number of
training data. This is a feature that has many practical advantages when
we a dealing with a dearth of properly annotated examples.

Binding assays of transcription factors such as NF-kB, Zif268 zinc fin-
gers and Mnt repressor-operator proteins suggest strong evidence to the ex-
istence of non-independent effects on positional interactions when at least

A30:15:4 " The exact positions that exhibit such

some proteins bind to DN
interdependent effects vary from one factor to another, and there is no ev-
idence that all transcription factors exhibit a similar pattern of behaviour.
This makes 1t difficult to capture such properties in a general model. The
requirement is for models that can learn such variations from a set of train-
ing data.

The sensitivity of templates described above to positional co-variations
is not based on any prior knowledge of which positions exhibit correlated
behaviour. This is an important characterisation, especially in the absence
of such prior knowledge individualising a family of binding sites, which
is usually the case. It 1s not always practical to build exhaustive models
detailing the different co-variations present between individual positions.
Models such as neural networks and HMMs that are able to account for
such information suffer from the practical drawback of balancing between
the complexity of the systems and the number of examples required to
train them well. In these systems, the complexity of the model architecture
imposes lower bounds on the number of examples required to form a good
training set. These bounds usually increase exponentially with the increase
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in complexity of the system.

1,166 that suggests the presence of structural homolo-

There is evidence
gies in DNA sequences that interact with some transcription factors. What
these structural homologies are and exactly what geometric features play a
part in them is not always very clear or easy to ascertain. Programs that
incorporate such features do so with an implicit assumption of the pres-
ence of these properties in the sequences that they analyse. This is a weak
assumption that may be tentative in the absence of specific knowledge of
their presence and would not hold for the general case. It is possible for
different binding sites to exhibit different structural properties intrinsic to
the particular factor that they bind to. It is also possible for some binding
sites not to display any significant structural homology for any of the known
structural parameters. In such cases, one has only got sequence homology
to rely on.

Templates used here for predicting binding affinity can model both se-
quence and structural homology. The important fact when modelling tem-
plates for a particular family of TF binding sites is that we do not make
any prior decision on which structural parameters to use. The selection of
the best set of parameters is done automatically during the training phase
of the system, though in a greedy fashion.

References

1. T. Aoyama and M. Takanami. Essential structure of E. coli promoter II.
Effect of the sequences around the RNA start point on promoter function.
Nucleic Acids Res., 13 (11):4085-4096, 1985.

2. O. G Berg and P. H von Hippel. Selection of DNA binding sites by regula-
tory proteins. Statistical-mechanical theory and application to operators and
promoters. J Mol Biol, 193(4):723-750, Feb 20 1987.

3. 1. Brukner, R. Sanchez, D. Suck, and S. Pongor. Sequence-dependent bending
propensity of DNA as revealed by DNase I: parameters for trinucleotides.
EMBO Journal, 14:1812-1818, 1995.

4. M. L. Bulyk, P. L. F. Johnson, and G. M. Church. Nucleotides of transcrip-
tion factor binding sites exert interdependent effects on the binding affinities
of transcription factors. Nucleic Acids Research, 30(5):1255-1261, 2002.

5. M Djordjevic, A. M Sengupta, and B. | Shraiman. A biophysical approach
to transcription factor binding site discovery. Genome Res., 13(11):2381-90,
Nov 2003.

6. M. A. El Hassan and C. R. Calladine. Propeller-twisting of base-pairs and
the conformational mobility of dinucleotide steps in DNA. Journal Molecular
Biology, 259(1):95-103, 1996.

7. M. A. El Hassan and C. R. Calladine. Two distinct modes of protein-induced
bending in DNA. Journal Molecular Biology, 282(2):331-343, 1998.



September 22, 2005 15:24 Proceedings Trim Size: 9in x 6in psb

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. W. N. Grundy, T. L. Bailey, and C. P. Elkan. ParaMEME: A parallel imple-

mentation and a web interface for a DNA and protein motif discovery tool.
Computer Applications in the Biological Sciences (CABIOS), 12(4):303-310,
1996.

. T Gustafson, A Taylor, and L. Kedes. DNA bending is induced by a transcrip-

tion factor that interacts with the human c-FOS and alpha-actin promoters.
Proc Natl Acad Sci U S A, 86(7):2162-6, 1989.

P. B. Horton and M. Kanehisa. An assessment of neural network and sta-
tistical approaches for prediction of E. coli promoter sites. Nucleic Acids
Research, 20:4331-4338, 1992.

0. D King and F. P Roth. A non-parametric model for transcription factor
binding sites. Nucleic Acids Res., 31(19):e116, Oct 2003.

C. E. Lawrence, S. F. Altschul, M. S. Boguski, J. S. Liu, A. F. Neuwald, and
J. C. Wootton. Detecting subtle sequence signals: a Gibbs sampling strategy
for multiple alignment. Science, 262(5131):208-14, 1993.

S. Lisser and H. Margalit. Determination of common structural features in Es-
cherichia coli promoters by computer analysis. Eur J Biochem., 223(3):823-
830, 1994.

I. Mahadevan and I. Ghosh. Analysis of E.coli promoter structures using
neural networks. Nucleic Acids Res., 22 (11):2158-2165, 1994.

T. K. Man and G. D. Stormo. Non-independence of Mnt repressor-operator
interaction determined by a new quantitative multiple fluorescence relative
affinity (QuMFRA) assay. Nucleic Acids Research, 29(12):2471-8, 2001.

R. Nussinov. Promoter helical structure variation at the Escherichia coli poly-
merase interaction sites. Journal of Biological Chemistry., 259:6798-6805,
1984.

U. Ohler, H. Niemann, G. C. Liao, and G. M. Rubin. Joint modeling of DNA
sequence and physical properties to improve eukaryotic promoter recognition.
Bioinformatics, 17:199-206., 2001.

J. V. Ponomarenko, M. P. Ponomarenko, A. S. Frolov, D. G. Vorobyev,
G. C. Overton, and N. A. Kolchanov. Conformational and physicochemical
DNA features specific for transcription factor binding sites. Bioinformatics,
15(7/8):654-668, 1999.

M. P. Ponomarenko, J. V. Ponomarenko, A. E. Kel, and N. A. Kolchanov.
Search for DNA conformational features for functional sites. Investigation of
the TATA box. . In: Biocomputing: proceedings of the 1997 Pacific Sympo-
stum. (Altman, R., et al., eds.), Word Sci. Publ., Singapore, pages 340-351.,
1997.

K. Quandt, K. Frech, H. Karas, E. Wingender, and T. Werner. MatInd and
Matinspector: new fast and versatile tools for detection of consensus matches
in nucleotide sequence data. Nucleic Acids Res., 23:4878-4884, 1995.

E. Ragnhildstveit, A. Fjose, P. B. Becker, and J. P. Quivy. Solid phase tech-
nology improves coupled gel shift/footprinting analysis. Nucleic Acids Re-
search, 25(2):453-454, 1997.

A Sarai and Y Takeda. Lambda repressor recognizes the approximately 2-fold
symmetric half-operator sequences asymmetrically. Proc Natl Acad Sci U S



September 22, 2005 15:24 Proceedings Trim Size: 9in x 6in psb

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

A, 86(17):6513-6517, Sep 1989.

R Schreck, H Zorbas, E. L. Winnacker, and P. A Baeuerle. The NF-kappa B
transcription factor induces DNA bending which is modulated by its 65-kD
subunit. Nucleic Acids Res., 18(22):6497-502, 1990.

J. Schug and G. C. Overton. TESS: Transcription Element Search Software
on the WWW. Technical Report CBIL-TR-1997-1001-v0.0, of the Compula-
tional Biology and Informatics Laboratory, School of Medicine, Universilty of
Pennsylvania, 1997.

S. E. Shadle, D. F. Allen, H. Guo, W. K. Pogozelski, J. S. Bashkin, and
T. D. Tullius. Quantitative analysis of electrophoresis data: novel curve fit-
ting methodology and its application to the determination of a protein-DNA
binding constant. Nucleic Acids Research, 25(4):850-860, 1997.

V. Y Stefanovsky, D. P Bazett-Jones, G Pelletier, and T Moss. The DNA
supercoiling architecture induced by the transcription factor xUBF requires
three of its five HMG-boxes. Nucleic Acids Res., 24(16):3208-15, 1996.

G. D. Stormo and D. S. Fields. Specificity, energy and information in DNA-
protein interactions. Trends Biochemical Sciences, 23:109-113, 1998.

G. D. Stormo, T. D. Schneider, L. Gold, and A. Ehrenfeucht. Use of the
‘Perceptron’ algorithm to distinguish translational initiation sites in E. coli.
Nucleic Acids Research, 10:2997-3011, 1982.

K. M. Thayer and D. .. Beveridge. Hidden Markov models from molecu-
lar dynamics simulations on DNA. Proceedings of the National Academy of
Sciences, 99(13):8642-8647, 2002.

I. A. Udalova, R. Mott, D. Field, and D. Kwiatkowski. Quantitative pre-
diction of NF-kB DNA-protein interactions. Proceedings of the National
Academy of Sciences USA, 99:8167-8172, 2002.

I. A. Udalova, R. Mott, D. Field, and D. Kwiatkowski. Quantitative pre-
diction of NF-kB DNA-protein interactions. Proceedings of the National
Academy of Sciences USA, 99:8167-8172, 2002.

I. A Udalova, A Richardson, A Denys, C Smith, H Ackerman, B Foxwell,
and D Kwiatkowski. Functional consequences of a polymorphism affecting
NF-kappa B p50-p50 binding to the TNF promoter region. Molecular and
Cellular Biology, 20(24):9113-9119, Dec 2000.

W. Wasserman and A Sandelin. Applied bioinformatics for the identification
of regulatory elements. Nat Rev Genet., 5(4):276-87, Apr 2004.

S. A. Wolfe, H. A. Greisman, E. [. Ramm, and C. O. Pabo. Analysis of Zinc
Fingers Optimized Via Phage Display: Evaluating the Utility of a Recogni-
tion Code. Journal of. Molecular Biology, 285:1917-1934, 1999.

X Xie, J Lu, E. J Kulbokas, T. R Golub, V Mootha, K Lindblad-Toh,
E. S Lander, and M Kellis. Systematic discovery of regulatory motifs in
human promoters and 3° UTRs by comparison of several mammals. Nature,
434(7031):338-45, Mar 2005.

Q. M. Zhang and T. G. Marr. A weight array method for splicing signal
analysis. Computer Applications in Biosciences, 9(5):499-509, 1993.

Q Zhou and J. S Liu. Modeling within-motif dependence for transcription
factor binding site predictions. Bioinformatics, 20(6):909-16, Apr 2004.





