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Genome-wide association studies have become a reality in the study of the genetics of 
complex disease.  This technology provides a wealth of genomic information on patient 
samples, from which we hope to learn novel biology and detect important genetic and 
environmental factors for disease processes.  Because strategies for analyzing these data 
have not kept pace with the laboratory methods that generate the data it is unlikely that 
these advances will immediately lead to an improved understanding of the genetic 
contribution to common human disease and drug response. Currently, no single analytical 
method will allow us to extract all information from a whole-genome association study.  
Thus, many novel methods are being proposed and developed.  It will be vital for the 
success of these new methods, to have the ability to simulate datasets consisting of 
polymorphisms throughout the genome with realistic linkage disequilibrium patterns.  
Within these datasets, we can embed genetic models of disease whereby we can evaluate 
the ability of novel methods to detect these simulated effects.  This paper describes a new 
software package, genomeSIM, for the simulation of large-scale genomic data in 
population based case-control samples.  It allows for single SNP, as well as gene-gene 
interaction models to be associated with disease risk.  We describe the algorithm and 
demonstrate its utility for future genetic studies of whole-genome association. 

1. Introduction 

The identification and characterization of susceptibility genes for common 
complex human diseases, such as cardiovascular disease, is a difficult challenge 
for genetic epidemiologists. This is because many disease susceptibility genes 
exhibit effects that are partially or solely dependent on interactions with other 
genes.  In addition, selection of the appropriate candidate genes limits our 
ability to identify novel genetic factors associated with disease. Whole-genome 
association has been proposed as a solution to these problems; however, the 
appropriate analytical methods for this type of data are unknown.  To deal with 
this issue, many groups, including our own, are in the process of developing 
new computational approaches for the analysis of whole-genome association 
studies, but without a priori knowledge of the genetic model underlying the 
phenotype it is unclear whether a given method is accurate. 

Strategies for analyzing datasets on the scale of whole genome association 
studies data have not kept pace with the laboratory methods that generate the 

 



 

data. Because of this it is unlikely that technological advances will immediately 
lead to an improved understanding of the genetic contribution to common 
human disease and drug response. Currently, no single analytical method will 
allow us to extract all information from a whole-genome association study.  In 
fact, no single method can be optimal for all datasets, especially if the genetic 
architecture for disease is substantially different.   

One way to better design analytical protocols is to have datasets with 
known answers, but this is not possible using real data. When real data are used 
to test new methods, and significant results are found, it is impossible to know if 
they are false positives or true positives.  Similarly, if nothing significant is 
detected, one cannot know if this is a lack of power, or the data had no true 
signal. Thus, it will be vital for the success of genome-wide association 
methods, to have the ability to simulate datasets consisting of polymorphisms 
throughout the genome on the scale of what is technically feasible. Having 
simulated data allows one to evaluate whether a methodology can detect known 
effects, and if the simulations are well-designed one can potentially embed a 
variety of genetic models of disease, making the evaluation of methods robust to 
genetic architecture. 

Data simulations are often criticized because they are much cleaner than 
real data.  However, simulating data remains an important component of most 
new methods development projects.  To this end, any advances to improve the 
complexity of the data simulations will permit investigators to better assess new 
analytical methods. The present study was motivated by this lack of 
appropriately complex simulated data for association studies.  

Several data simulation packages are currently available for family based 
study designs.  SIMLINK1,2, SIMULATE, and SLINK3 will simulate pedigrees 
from an existing dataset.  SIMLA4 is a very nice software package for 
simulating both linkage and association in pedigree data.  However, it does not 
allow for epistasis models or population-based simulations.  Coalescent-based 
methods5 have been used for population based simulation in genetic studies, 
however they do not allow for the tracking of ancestral information.  In recent 
years, forward-time population simulations have been developed including 
easyPOP6, FPG7, and simuPOP8.  simuPOP is the newest simulation package.  It 
performs forward-time population simulations and allows the user to manipulate 
the evolutionary features.  simuPOP is implemented in Python and provides 
flexibility for the user to run interactively using a Python shell or writing batch 
files8. The main weakness of simuPOP is the inability to simulate data based on 
complex gene-gene interaction penetrance functions.  In addition, the 
programming environment is specific to Python, therefore, may not be user-
friendly for all users.   This paper describes a new software package, 



 

genomeSIM, for the simulation of large-scale genomic data in population based 
case-control samples.  It is a forward-time population simulation algorithm that 
allows the user to specify many evolutionary parameters and control 
evolutionary processes.  It allows for single SNP, as well as gene-gene 
interaction models to be associated with disease risk.  We describe the algorithm 
and demonstrate its utility for future genetic studies of whole-genome 
association. 

2. Methods 

2.1. Algorithm 

genomeSIM utilizes two different methods to generate datasets. An initial 
population can be generated on the basis of allele frequencies of the SNPs and 
then further generations are created by crossing the members of successive 
generations.  The simulator assigns affection status only after a specified 
number of generations.  Alternatively, the simulator can construct a case-control 
dataset by generating individuals as above, assigning affection status, and 
selecting cases and controls until the dataset is complete.   

 Fig. 1 illustrates the general steps involved in producing a simulated dataset 
utilizing successive generations. As a first step, genomeSIM establishes the 
genome based on the parameters passed to it.  The total number of SNPs is not 
limited except by hardware considerations.  The user specifies the number of 
SNPs per gene and the total number of genes in the genome.  The simulator 
randomly determines the number of SNPs per gene based on the minimum and 
maximum parameters.  The simulator then randomly determines the 
recombination fraction between adjacent SNPs within each gene based on 
maximum and minimum recombination fraction parameters.  The recombination 
fraction between any pair of SNPs is independent of the recombination fraction 
between other pairs of SNPs within a given gene.  Similarly, recombination 
fractions between genes are independent.  Thus, all recombination fractions are 
random and independent.  SNPs are unlinked across genes.  Finally, the allele 
frequencies are randomly set for each SNP based on preset maximum and 
minimum allele frequency parameters.  For all these parameters, when the 
minimum is set equal to the maximum, the values across the simulated genome 
will be identical.  Specific SNPs can also be set so that the disease SNPs allele 
frequencies will match the expected frequencies for the model used. 

 genomeSIM then generates an initial population based on the genome 
established in the previous step.  Each individual in the population has two 
binary chromosomes.  For each SNP in the genome, the simulator randomly 



 

assigns an allele to each chromosome based on the allele frequencies of the 
SNP.  The dual chromosome representation allows for an efficient 
representation of the genome and for crossover between chromosomes during 
the mating process.  The genotype at any SNP can be determined simply by 
adding the values of the two chromosomes at that position.  As a result, the 
genotypes range from 0 to 2 at any SNP.   

 The initial population forms the basis for the second generation in the 
simulation.  For each cross two individuals are randomly selected with 
replacement to be the parents for a member of the new generation.  Each parent 
contributes one haploid genome to the child.  genomeSIM creates the gametic 
genotype by recombining the parent’s chromosomes.  The total number of 
individuals in each population is constant so the number of crosses conducted 
equals the number of individuals in the population for each generation. 

 A crossover is conducted as follows.  genomeSIM selects one chromosome 
to be the start chromosome and begins copying allele values from that 
chromosome into the new chromosome.  At every interval between SNPs, the 
simulator checks the recombination fraction against a randomly generated 
number.  When the number is less than or equal to the fraction, the simulator 
switches chromosomes (assuming independent assortment) and begins taking 
allele values from the second chromosome.  The simulator continues to check 
each interval and copies the allele values for the current chromosome until it 
reaches the end of the genome or another crossover takes place.   

 genomeSIM continues producing generations for the number specified and 
then assigns affection status to the final generation.  Affection status is 
determined by the penetrance table for the simulation.  To determine status, the 
simulator determines the genotype of the individual at the disease SNPs.  The 
simulation then determines the penetrance for that genotype and generates a 
random number to determine if this individual is affected. 

  Alternatively, genomeSIM can produce the final dataset by producing 
individuals using the allele frequencies.  The simulator’s goal in this case is to 
generate the desired number of cases and controls.  Each individual is checked 
against the penetrance table and then kept if there are not enough individuals 
with that affection status in the dataset.  Additional individuals with that status 
are discarded.  For example, if 500 cases and controls are needed, the simulator 
will take the first 500 controls that are generated but will then ignore any more 
while continuing to select the cases as needed.  The simulator initially only 
generates the disease SNPs for each individual.  If the simulator then needs to 
keep the individual based on its status, the rest of the alleles for the individual 
are generated. 



 

 genomeSIM can produce genetic heterogeneity by utilizing multiple 
penetrance tables.  Each table is used for a portion of the final population.  
Datasets can also be produced with no disease model.  If no penetrance table is 
used, then the individual has an equal chance of being a case or control.  In 
addition, the simulator can generate phenocopies by assigning a fraction of the 
unaffected population to be affected at random.  Finally, the simulator can 
introduce genotyping errors into the final population.  The rate determines the 
expected number of errors per SNP.  For each SNP, individuals are randomly 
selected and their genotypes are adjusted in a direction specified by the user if 
possible.  For example, a selected individual may have a genotype of 2 and the 
error direction is specified as -1.  In this case, the reported genotype for the 
individual will be 1.  If the individual had a genotype of 0, no error would occur 
and another individual would be selected. 

2.2. Implementation 

genomeSIM is written in ANSI-C++ and compiled using the GNU compiler 
into a library that can be linked to programs to generate datasets without the 
need for intermediate files.  For the analyses done in this paper, the library was 
linked to a simple driver program that created input files for the Multifactor 
Dimensionality Reduction (MDR)9 analysis software.  The library provides 
simulation classes to be accessed by the main program for simulating both 
generational-based and frequency-based datasets. 

The analysis can be run using functions in the library classes or the library 
can accept a configuration file as input for easy linkage with existing programs.  
The simulator accepts keywords and values as the configuration format.  Table 1 
displays the keywords that control the dataset production.  Some keywords 
(POPSIZE, GENES, NUMGENS, MAXSNP, MINSNP, MAXRECOMB, 
MINRECOMB) are only used when simulating multiple generations to produce 
the final population.  Other keywords (AFFECTED, UNAFFECTED, 
SIMLOCI) are only used when simulating a case-control set based on allele 
frequencies without crossing individuals.  The differences arise from 
optimization of the process in the two cases.  When simulating a case-control 
dataset without generations, the individuals can be set without regard to 
recombination rates between SNPs.  In addition, the final dataset can be set to 
produce the desired number of cases and controls and the simulator will 
continue until it generates those numbers.   The simulator only produces bi-
allelic SNPs.  This limitation allows the simulator to represent each 
chromosome as a series of bits and reduces the memory requirements.   
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Figure 1.  Summary of process involved in producing a simulated dataset.  After the genome is 
constructed, an initial population of individuals is created and individuals cross by contributing one 
chromosome each to the offspring.  These crosses create the next generation and the process repeats 
until the specified number of generations has occurred.  In the last generation, the genotypes for the 
individual are produced by summing the chromosomes at each position.  The genotype at the disease 
SNPs is used to find the penetrance value in the penetrance table.   

 



 

Memory requirements vary with both the number of individuals and number of 
SNPs in the set being produced.  For example, 10,000 individuals and 100,000 
SNPs require slightly less than 400 MB of RAM.  Total numbers of individuals 
and SNPs are only limited by the memory of the system running the software.  
We have successfully simulated 10,000 individuals and 400,000 SNPs on a 
system with 2 GB of RAM. 

 The library outputs data in a simple text format.  Each line consists of one 
individual with the first column being the case or control status of the 
individual.  Each additional column lists the genotype of the individual (0, 1, 2).  
This information is available through accessor functions of the library so that 
the output can be easily formatted to meet the needs of multiple software 
packages. 

 
Table 1. Descriptive list of simulator parameters 

Parameter Example  Description 
RAND 712 Sets random seed for creating dataset 
MODELFILES Model1.smod 0.7 

Model2.smod 0.3 
Lists model files that detail the penetrance table.  Also 
indicates fraction of population that uses indicated 
model. 

GENOTYPEERROR .02 Per SNP error rate 
PHENOCOPY .05 Phenocopy rate in final population 
AFFECTED 200 Number of cases in final population when only 

generating case-control set without crossing 
UNAFFECTED 200 Number of controls in final population when only 

generating case-control set without crossing 
SIMLOCI 500 Number of SNPs to simulate in a case-control set 

without crossing 
ALLELELIMITS 0.05 0.50 Sets the range for the minor allele frequency of the 

SNPs in the simulation 
ALLELEFREQS 1 0.7 0.3 Specifies allele frequencies for specific SNPs 

(overrides ALLELELIMITS for the SNP) 
POPSIZE 1000 Size of simulated population 
NUMGENS 100 Number of generations to simulate 
GENES 100 Number of genes to simulate 
MINSNP 5 Minimum number of SNPs per gene 
MAXSNP 10 Maximum number of SNPs per gene 
MINRECOMB 0.005 Minimum recombination rate between adjacent SNPs  
MAXRECOMB 0.05 Maximum recombination rate between adjacent SNPs 

2.3. Benchmarks 

To test the genomeSIM’s performance we simulated a dataset with 10,000 
individuals and varying numbers of SNPs.  The population underwent 100 
generations of mating.  We ran the tests on a PC with Intel Xeon 3.06 GHz 
CPUs and 2GB of RAM running Red Hat Enterprise Linux WS release 3 
(Taroon Update 5).  The simulator produces the dataset in 2 hours 48 minutes 



 

when simulating 100,000 SNPs and 12 hours 17 minutes when simulating 
400,000 SNPs. 

 We also tested the data simulator’s performance in producing a set of 500 
cases and 500 controls without mating generations.  For 100,000 SNPs, the 
simulator produced the dataset in 11.7 seconds on the system listed above.  For 
400,000 SNPs the simulator produced the set in 48.8 seconds. 

2.4. Data Simulations 

For this paper, we performed several data simulations to demonstrate the utility 
of our new data simulation software.  First, we simulated a single SNP recessive 
model with the penetrance table shown in Table 2. The allele frequency of the 
functional SNP was p=0.7, q=0.3, where p is the frequency of the A allele. 
Next, we simulated the two SNP gene-gene interaction model shown in Table 3. 
For this model, the allele frequencies of both functional SNPs were p=0.6, 
q=0.4.   
 

Table 2. Single SNP recessive model with reduced penetrance 

   
Genotype Probability(disease|genotype) 

AA 0.0 
Aa 0.0 
aa 0.9 

 
 
 
 

 Table 3. Two SNP gene-gene interaction model  

 BB Bb bb 
AA 0.177 0.080 0.005 
Aa 0.074 0.150 0.017 
aa 0.014 0.013 0.569 

 

Table 4. Parameters for data simulations for MDR analysis 

Population size 10,000 
Total SNPs 50,000 
Genes 5,000 
SNPs per gene 10 
Generations 150 
Minimum recombination between SNPs 0.0 
Maximum recombination between SNPs 0.10 
Minimum minor allele frequency 0.05 
Maximum minor allele frequency 0.5 

 



 

We used one set of simulation parameters for these simulations (shown in Table 
4).  A total of 500 cases and 500 controls were extracted from the simulated 
population. 

3. Results 

To validate that the data simulations are indeed functioning as expected, we 
analyzed the datasets simulated to determine if statistical methodologies are able 
to detect the effects simulated. We applied the Multifactor Dimensionality 
Reduction (MDR)9-11approach to detect all single SNP and two-SNP models. 
We performed the MDR analysis without cross-validation due to the 
computation time required to analyze 50,000 SNPs. We selected the model with 
the minimum classification error and calculated a chi-square test for association.  
The results of the analyses are shown in Table 5.  These results show 
uncorrected chi-square p-values.  In the dataset with a recessive model 
simulated, MDR identified the correct model, SNP 5, as the optimal model.  In 
the dataset with a two-SNP model simulated, MDR identified the optimal model 
as the two SNP model (SNP 5 and SNP 10).  The best single SNP model in that 
dataset was not as significant as the two-SNP model.  Thus, we would select the 
two-SNP model as the best model. 
 

Table 5. Results of MDR analysis on simulated data 

Model SNPs Classification error Chi Square p-value 
Recessive 5 1.10 0.00000000 
Two SNP 7792 42.9 0.00001822 
Two SNP 5 10 30.50 0.00000000 
 

In addition to demonstrating the ability to simulate known effects, we also 
wanted to determine if our simulation algorithm was able to simulate linkage 
disequilibrium across the genome.  Figure 2 shows a Haploview plot generated 
on one dataset simulated with our new software12.  The data simulation 
parameters used for this particular dataset are shown in Table 6.  There are 
several blocks of strong LD across this particular area of the genome.  This 
indicates that this software is able to simulate LD in addition to specified 
genetic models. 
 



 

 
Figure 2. Plot generated by Haploview on one simulated dataset. 

 
Table 6. Parameters for data simulations for Haploview plot 

Population size 500 
Total SNPs 50 
Genes 5 
SNPs per gene 10 
Generations 500 
Minimum recombination between SNPs 0.001 
Maximum recombination between SNPs 0.001 
Minimum minor allele frequency 0.05 
Maximum minor allele frequency 0.5 

 

4. Discussion 

Detecting disease susceptibility genes for common disease is a major focus of 
study in human genetics.  The ability to achieve success in this endeavor is 
dependent upon intelligent study design, accurate genotyping, and efficient 
algorithms for analysis.  Methodology development in statistical and 
computational genetics continues to advance the field, and novel approaches are 
being developed in an attempt to keep pace with the development of genotyping 
technology.  Evaluating and comparing these methods requires the ability to 
perform complex data simulations to efficiently test the new algorithms.  
Several methods currently exist for the simulation of family-based data 
including SIMLINK, SIMULATE, and SIMLA.  Coalescent-based and forward-
time population based algorithms have also been developed, however, to our 
knowledge, none have the flexibility of genomeSIM.  genomeSIM is a new data 



 

simulation package that uses forward-time population based simulations, user-
specified evolutionary features, and the ability to specify simple or complex 
penetrance functions to assign disease status, including gene-gene interaction 
models.  We believe that since interactions are likely to be an important 
component of complex disease13,14 having the capability of evaluating new 
methods in this type of data will be a true test of the method’s success. 

While we believe that genomeSIM is an advance over current data 
simulation methods, we will continue to add additional features.  There are 
currently no family based simulation algorithms that allow for the simulation of 
complex gene-gene interaction models.  We are in the process of allowing 
genomeSIM to generate pedigree data under such penetrance functions.  We 
plan on simulating larger sets more quickly by parallelizing the algorithm.  In 
addition, there are many evolutionary features that could be parameter options 
in the algorithm including random genetic drift, population bottlenecks, and 
selection that we plan to implement.  genomeSIM is freely available from the 
authors upon request.  It will also be available via the internet at 
http://chgr.mc.vanderbilt.edu/ritchielab.   
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