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 We present a simple two-stage procedure to define haplotype blocks and construct a statistic to
test whether a polymorphism belongs to a block.  Applying this method to the data of Gabriel
et al. [2002] yielded longer haplotype blocks than were originally reported with a similar
average percentage of common haplotypes in blocks.  Furthermore, across regions of the
genome and among the four populations that were studied, we found that linkage
disequilibrium between a given single nucleotide polymorphism (SNP) and the haplotype
block was a monotonic function of distance.  This correlation was essentially independent of
the minor allele frequency of the putative causal SNP when it fell outside of the block,
however it was strongly dependent on the minor allele frequency when the SNP was internal to
the block.  These results have direct application to the design of candidate gene or region-wide
association studies.

 
 1   Introduction
 

 Since SNPs occur about every 300bp they provide much more information than
other types of sequence variants in mapping complex diseases.  Because the
evolutionary history of common diseases is not known, one promising approach is
to comprehensively test common genetic variants for association with the trait being
studied [1,2]. A large-scale project has recently been initiated to define a “haplotype
map” (HapMap) of genomic blocks that are shared in common across continental
populations [3]. Knowledge of haplotype structure might make it possible to
conduct genome-wide association studies at greatly reduced cost, since haplotype
tagging SNPs can be chosen to capture most of the genetic information in a region
that has a block structure [4-6]. However, debate continues over the plausibility of
the “common disease-common variants” (CDCV) hypothesis as a framework for
understanding the genetic contribution to complex diseases [7-9]. Pritchard [10]
studied an explicit model for the evolution of complex disease loci by incorporating
mutation, random genetic drift, and selection against susceptibility mutations. The
results indicate that neutral susceptibility alleles are likely to be rare and contribute
little for the most plausible range of mutation rates. Allelic heterogeneity at the
associated loci might also be found in complex diseases. Finally, the patterns of LD
are often extremely variable within and among loci and populations [11-13].

 Substantial evidence has already accumulated that the genome can be parsed
into haplotype blocks of variable length [4,14-16]. Within these block-like
segments, LD is strong and only a few common haplotypes are observed, while
between blocks, LD is disrupted, presumably due to historical recombination. The



statistical methods that can best define this structure are still being developed,
however, and relatively little is known about their efficiency in gene mapping.

Gabriel et al. [15] proposed an approach based on the pattern of recombination
across a region. They defined a pair of SNPs to be in “strong LD” if the one-sided
upper 95% confidence bound on D’ is >0.98 (consistent with no historical
recombination) and the lower bound is above 0.7. A pair of SNPs were defined as
having “strong evidence for historical recombination” if the upper confidence bound
on D’ is less than 0.9. Furthermore, informative marker pairs are those where both
minor allele frequencies exceed 0.2. The haplotype block was then defined as a
region over which less than 5% of comparisons among informative SNP pairs show
strong evidence of historical recombination. In defining a haplotype block, this
approach excludes all the SNPs with minor allele frequencies less than 20%,
therefore, may lead to under represent of the genetic variation due to these SNPs.
Zhu et al. [17] also proposed a definition of haplotype blocks based on the pairwise
D’ values. Intervals in which all SNPs have a pairwise D’ value > 0.8 are identified
and it is assumed that they constitute the basic blocks. These intervals are then
expanded by adding SNPs to the ends to find the longest intervals, as follows:  The
observed haplotypes and 95% confidence intervals are bootstrapped before adding a
SNP.  If the haplotype frequencies after adding a SNP fall into the corresponding
95% confidence intervals, it is concluded that the added marker belongs to the same
block.  This procedure was repeated until adding a marker leads to a statistical
change in the haplotype distribution.  No apparent recombination events would
therefore have occurred within a block based on this definition. In this report, we
apply a modified method of Zhu et al. [17] to the data produced by Gabriel et al.
[15] to define haplotype blocks but include all the SNPs with minor allele
frequencies great than 5%. However, our focus is to explore the correlation of LD
with the physical distance and minor allele frequency after haplotype blocks are
defined.

2 Methods

We modify the block definition by Zhu et al. [17].  In detail, we begin by
generating a block definition in two steps: first, we define a basic block, then we
extend it by sequential addition of the SNPs.  Assuming there are N phase known
chromosomes, at step 1 we bootstrap the original N chromosomes.  For each pair of
SNPs i and j, we calculate the bootstrapped thα  quantile of '

ijD  [18].  A segment

of consecutive SNPs is a basic block if all the thα  quantiles of the pairwise '
ijD  in

the interval are greater than 0.95. Here we choose 0.95 because any recurrent and/or
backward mutation, genotype error or sampling variation can affect the value of
'D [15]. To choose the value α , we consider two SNPs with alleles (A, a) and (B,

b), respectively. We further assume there is no historical recombination between the



two SNPs and no recurrent mutation. The true haplotype frequencies for haplotypes
AB, Ab, aB, ab are 1n , 2n , 3n  and 0 ( Nnnn =++ 321 ), with corresponding
'D =1. Since any genotype error can lead to the change of haplotype frequencies,

the haplotype frequencies that are actually observed for AB, Ab, aB, ab may be '
1n ,

'
2n , '

3n  and '
4n , with Nnnnn =+++ '

4
'
3

'
2

'
1  and '

4n >0.  Therefore, the

probability of 'D =1 (which is the true 'D  value) in the bootstrapped sample is
'
4)1(

'
4 nN e
N

n −≈− , when N  is large. Assuming our genotyping is highly accurate,

we may allow for a small '
4n .  We then choose 

'
41 ne−−=α . Thus, α  is closely

related to the possible genotype error rate from two common haplotypes to the rare
haplotype (For example, the error rate from Ab->ab, aB->ab, or AB->ab).

In the second step, we examine whether or not a SNP nearest the basic block
also falls within its boundaries. To do this, we assume that there are K SNPs in a

basic block with the haplotypes 
Kn

HHH ,...,, 21 , and the corresponding number

of observed haplotypes 
Kn

nnn ,...,, 21 .  We then define a statistic KS  as
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. Then 1+KS  is a minimum

variance unbiased estimate of 1+KT . If the K+1 th SNP falls into the basic block, we

would expect that no new haplotypes would be created. Therefore, we have



1+= KK TT . Thus, a reasonable test to determine if the K+1 th SNP falls into the

basic block is to test the null hypothesis H0: KK TT =+1  vs H1: KK TT <+1 .  Since

KK TT ≤+1  is always true, this test is one-sided.  If we do not reject H 0, the K+1 th

SNP belongs to the block consisting of SNPs 1, 2,…K. We then continue to add the
neighboring SNPs as long as we do not reject the null hypothesis. When the K+1th

SNP is rejected, this SNP is regarded as the putative starting point of a new block
and a new basic block is again sought and expended. This procedure is repeated
until all the SNPs are examined, leading to the initial block partition. We next
examine the SNPs in the blocks consisting of less than 3 SNPs. We would test if
these SNPs fall into the next block by above method to further expend the blocks.
The block size is determined as the sequence length from the beginning to the
ending SNP.

To test the null hypothesis 10 : += KK TTH , we can use the bootstrap

technique to estimate the empirical distribution of KS . That is, we bootstrap the

original N chromosomes and calculate the empirical distribution of KS . If our

observed 1+KS  falls in the left 5% tail of the empirical distribution of KS , we

consider K+1th SNP falls outside the block comprised of SNPs 1,2…,K. Otherwise,
the K+1th SNP is included within the block.

3   Results

To conduct an empirical test we applied this method to the data from Gabriel et
al. [15]; obtained from the public access website of the Whitehead Institute]. The
genotype data were obtained from four population samples: 30 parent-offspring
trios (90 individuals) from Nigeria, 93 individuals from 12 multigenerational CEPH
pedigrees of European ancestry, 42 unrelated individuals of Japanese and Chinese
origin, and 50 unrelated African Americans. A total of 3738 SNPs in 54 autosomal
regions were successfully genotyped in all four groups. The average size of a region
was 250 kb. For family data, we first used MERLIN [19] to reconstruct the
haplotypes and then to estimate the haplotype frequencies vie EM algorithm, while
we directly applied EM algorithm [20] to infer the haplotype frequencies for
unrelated data in each region. Then we applied the proposed method to define
haplotype blocks. Table 1 presents the characteristics of haplotype blocks for the
four populations using α =0.5 and 0.638. Our definition identified more haplotype
blocks in Nigerians and African-Americans than in Europeans and Asians (the
blocks are limited to those covered by more than two SNPs), and encompassed
around two third of the total sequence.  On average we obtained block sizes
somewhat longer than those reported by Gabriel et al. [15], who reported averaged
9 kb in the Nigerian and African-American samples and 18 kb in the European and
Asian samples. The common haplotypes accounted for most of the information on



heterozygosity in a block, representing on average 93% to 96% of all haplotypes
(Table 1). Perhaps somewhat surprising, our method gave similar numbers of
common haplotypes in the different populations.  However, as in previous analyses,
the Europeans and Asians consistently had fewer haplotype blocks and LD extended
over longer intervals than among Africans and African-Americans. Because the
overall results of using α =0.5 and 0.638 are very similar, we only performed our
next analyses based on α =0.5.

Table I. Characteristics of haplotype blocks using the proposed definition
∀=0.5 ∀=0.638
Nig AA EA As Nig AA EA As

# of blocks 510 470 420 324 503 459 396 306
% of sequence
covered by blocks

59.2 52 76 69 62.4 56.7 77.9 71.0

Average block size
(kb)

12.7 13.6 22 26.2 13.6 15.1 23 28.5

Average # of
common haplotypes

3.1 3.4 3.3 3.5 3.2 3.6 3.4 3.7

Average % of
common haplotypes
in blocks

96.5 95.1 95.8 93.4 96.3 94.4 95.2 93.0

Common haplotypes : frequencies>5%; Nig: Nigerian; AA: African American; EA: European American;
As: Asian

To estimate the distribution of block sizes, we performed simulations following
the procedures of Gabriel et al. [15] in which block sizes were exponentially
distributed and markers were randomly spaced. The simulations provided an almost
perfect fit to the observed data for both the African and European samples (Table
2). The definition applied by Gabriel et al. [15], on the other hand, overestimated
the incidence of blocks with sizes less than 5 kb. We also compared the block
boundaries defined in the four populations and found that most of the boundaries
observed among Europeans and Asians were also present among Nigerians. To
obtain a summary of this phenomenon we examined whether a block boundary
among Europeans, Asians and African-Americans was consistent with that found
among Nigerians across all 54 regions.  We assumed consistency if the ending SNP
of a block or the beginning SNP of the adjacent block in the three non-African
populations fell between two SNPs that define the end and the beginning of the
corresponding segment among the Nigerians. Our calculation suggests that 61%,
71% and 72% of block boundaries in the Europeans, Asians and African-Americans
are consistent with those among the Nigerians. The results also suggest that most of
the historical recombination breakpoints are shared across the four populations.



Table II.  Observed and predicted proportion of sequence found in haplotype
blocks. Block span is based on an exponentially distributed random variable with
mean size of 22 kb in the European and 13 kb in the Nigerian samples

Nigerians Europeans
Block size (kb) Obs. Pred. Obs. Pred.
0-5 6.1 (12.4) 5.6 (6.3) 2.0 (4.4) 2.2 (1.8)
5-10 11.8 (15.3) 11.9 (15.1) 5.7 (7.4) 5.5 (5.2)
10-20 26.3 (20) 27.1 (31.5) 15.3 (14.9) 15.3 (15.2)
20-30 19.6 (12.8) 22.6 (21.8) 16.7 (16.6) 16.9 (16.6)
30-50 18 (22.2) 22.2 (19.1) 25.9 (18) 26.7 (26.9)
>50 18.2 (17.4) 10.6 (6.3) 34.4 (38.7) 33.4 (34.2)

() are the values from Gabriel et al. [2002]

We further looked at the strength of LD between a given SNP and the
haplotype blocks in each region. For two biallelic markers, there are currently a
number of measures for LD, as reviewed by Devlin and Risch [21]. It may be
difficult to obtain an entirely satisfactory LD measure for two multiallelic markers
using these procedures, however. As an alternative Zhao et al. [22] have proposed a
permutation-based method to measure the LD between two multiallelic markers.
This measure is based on the likelihood ratio test statistic t, which asymptotically
follows a noncentral 2χ  distribution with γ  degrees of freedom, and is defined as

)(
2

σ
µγ

ξ
−

=
t

n
,

where µ  and 2σ  are the mean and variance of the empirical distribution of the

likelihood ratio test statistic t from the permuted samples, n is the number of

individuals in the sample. Consequently ξ  is the measure of the overall deviation

from random association. The test of LD using ξ  to detect overall deviation from

random association is therefore more powerful than one based on asymptotic
distributions [22].

In Figure 1 the LD measure ξ  is presented as a function of distance between a

given SNP and a block in a selected region for the four populations. Each line in
figure 2 represents a given SNP and the data in the figure is centered on that SNP.
ξ  is close to a montonic function of distance and potential noise caused by marker

history almost disappears. The observed decrement of ξ  is presumably due to the

breakdown of LD by recombination. For comparison, we also present LD measured

by the correlations 2r  and D’ using the same marker set (figures 2 and 3). As
expected, very substantial noise was observed as a result of the marker history for

pairwise 2r  or D’ (figures 2 and 3). The results for D’ are particularly erratic,
presumably due to its dependence on the allele frequencies as well as marker



history. We extended this analysis across all the markers by summarizing the
percentage of SNPs where this monotonic property is preserved.  According to Zhao
et al. [22], ξ  > 0.59 indicates at least a weak degree of LD and we used this

definition to determine how often ξ  was a montonic function of the distance

between a SNP and haplotype blocks in regions where ξ  >0.59.  In the European,

African American, Asian and Nigerian population samples, respectively, this
finding was observed in 77% (1352/1758), 77% (1286/1677), 69% (1158/1679) and
90% (1030/1146) of the instances examined. These results demonstrate that
haplotype blocks can potentially be very useful in efforts to localize disease loci
using LD mapping.

While it is necessary to establish consistent patterns of LD under conditions
likely to apply in association studies, variation in the frequency of the marker alleles
being studied can also threaten the validity of the statistical analyses.  We therefore
examined the LD between a SNP with a minor allele frequency >5% and a block.
Here we considered a block as a supermarker and haplotypes as the alleles. We
looped the haplotypes with frequencies less than 5% together.  Figure 4 presents the
scatter plot of LD measured by ξ  vs the minor allele frequency of a SNP when this

SNP falls within the block for the four populations. The scatter plot of ξ  vs the

minor allele frequency of a SNP when the SNP is outside of the boundaries of the
block is presented in figure 5. In general, these data demonstrate that the strength of
LD is significantly dependent on the minor allele frequency. This association is
obviously much stronger if the SNP falls within the block rather than outside it.
Table 3 presents the variance expressed by the minor allele frequency - represented

by 2R  when fitting a linear regression of ξ  on minor allele frequencies. As can be

seen, the 2R  values in the four populations are very similar, ranging from 0.49-
0.76 when a SNP falls within a block, and they decrease to 0.02-0.04 when the SNP
resides outside the block. Since the association between a SNP and a block is
dependent on distance (defined as the number of bp between the SNP and the
middle position of the block), we added distance as an independent variable in the

regression model for external SNPs. 2R  values in this model increased to 0.10-0.14

for the four populations. However, for internal SNPs, 2R  values remain virtually
unchanged even after distance was added to the regression model (data not shown).
Our results indicate that the LD between an internal SNP and a block is strongly
dependent on the minor allele frequency, while distance is the primary determinant
for external SNPs. Furthermore, our defined blocks are also valid because the LD
between an internal SNP and a block does not depend on the position of the SNP.
We also observed that the average values of ξ  for internal SNPS are very similar

among the four populations, ranging from 0.89 to 0.93. This result seems reasonable
since there is presumably little or no historical recombination within these



segments. Figure 3 and 4 also suggest that the variance of ξ  is larger in African-

Americans and Asians than in Europeans and Nigerians. Two aspects of the data set
used in these analyses could potentially explain this result.  First, twice as many
Europeans and Nigerians were studied, compared to the African-Americans and
Asians.  Secondly, family members were included among the Europeans and
Nigerians and therefore haplotypes can be more reliably inferred.

Table III.  The total linkage disequilibrium variance between a SNP and a block
expressed by the minor allele frequency and the distance between the SNP and the

block. The numbers in the table are the 2R  values from fitting a linear regression.
European African-American Asia Nigerian

SNP within a block 0.65 0.56 0.48 0.76
SNP outside a block 0.04 0.02 0.04 0.03
SNP outside a block,
adding distance

0.14 0.10 0.13 0.13

4   Discussion

Limitations of the empirical test of the method presented here must be
recognized.  Our analyses are based on an average marker density of 1 SNP/ 7 kb
and a relatively small number of individuals (less than 100 unrelated chromosomes).
As noted earlier, sample size, frequency and inter-marker interval may alter the
scale on which patterns are discerned. As reported recently by Phillips et al. [23],
block length may be dependent on the density of SNPs that are typed.  Increased
density of SNPs may yield shorter haplotype blocks in fact if such dense SNPs exist
across the genome. That issue will clearly require further study in large empirical
samples. Our proposed method requires that haplotype phase information be
available. It may affect the haplotype block partition if only unrelated individuals
are studied. However such an effect should be limited because our studied regions
are small and therefore strong LD exists [24]. Furthermore, it should be noted that
haplotype block partition only serves a tool for mapping a complex disease, which
is our ultimate goal.

Although the selection of α  may be interpreted as the genotype error rate, it is
ad hoc.  Our results suggest that the selection of α  is not sensitive to the definition
of haplotype blocks. In conclusion, our results provide a robust statistical method to
define the haplotype structure of the human genome using SNP markers. The
method can include the SNPs with minor allele frequencies >5%. By applying this
method to a large empirical data set we obtained a highly consistent description of
the properties of blocks across 54 genomic regions.  Our results support the
contention that in most instances LD between a SNP and neighboring haplotype
blocks is a monotonic function of the distance. Using this strategy a disease locus
could be mapped with high resolution in an appropriately designed association



study if the distribution of haplotype blocks in the region has been well defined.  On
the other hand, to localize a functional SNP within a block, additional
considerations may be critical, especially if the assumption of CDCV fails and the
putative causal mutation is infrequent. This is because the LD between a SNP and
the block is strongly dependent on the minor allele frequencies. In this case, a
design that enriches the sample for the rare disease variants will be an important
determinant of the chances of success.  Although our results demonstrate that the
individual block boundaries overlap across populations, this conclusion should be
further investigated using SNPs at higher density.
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Figure 1.   Linkage disequilibrium measured by ξ  [21] between a SNP and haplotype blocks. 10 SNPs,

represented by 10 lines, were used in each sample. The lines are centered on the selected SNPs.  The
distance measure is the physical distance between a SNP and the center of a haplotype block. A montonic
relationship between the linkage disequilibrium and physical distance is observed.

Figure 2.   Linkage disequilibrium measured by correlation 
2r  between a pair of SNPs. The 10 SNPs

used in figure 1 are plotted. All the lines are centered by the 10 SNPs. Much variation is observed due to
the marker history.



Figure 3.  Linkage disequilibrium measured by correlation D’ between a pair of SNPs. The 10 SNPs
used in figure 2 are plotted. All the lines are centered by the 10 SNPs.  Considerable variation is observed
due to marker history.

Figure 4.  Linkage disequilibrium measured by ξ  [21] between a SNP and a block as a function of the

SNP’s minor allele frequency when the SNP falls within the index block.   A substantial proportion of the
variance is accounted for by the minor allele frequency.



Figure 5.   Linkage disequilibrium measured by ξ  [21] between a SNP and a block as a function of the

SNP’s minor allele frequency when the SNP falls outside of the index block.  Only a small part of the
variance is accounted for by the minor allele frequency.




