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Abstract

A generic genotyping assay utilizes a fixed set of reagents, which is
independent of the actual target sample, to determine all present alleles.
An example is the interrogation of several amplicons spanning polymor-
phic sites using an all k-mer array. Due to the high cost associated with
a genotyping experiment, it is desirable to design a set of experiments,
which maximizes the number of SNPs that can be genotyped in parallel
per assay. In this study we investigate algorithmic approaches for opti-
mally multiplexing SNP genotyping using generic assays. We devise a
graph theoretic formulation of the problem and use it to derive an ap-
proximation algorithm for the problem, and several practical heuristics.
We apply our methods to simulated and real data, for evaluating the
multiplexing rates afforded by generic techniques. The results on real
human data show the practicality of generic approaches for genotyping,
allowing, e.g., the genotyping of 5000 SNPs using four all 7-mer arrays.

1 Introduction

Single nucleotide polymorphisms (SNPs) are differences across the pop-
ulation, in a single base, within an otherwise conserved genomic se-
quence®. The sequence variation represented by SNPs is often directly
related to phenotypic traits. Such is the case when the variation oc-
curs in coding or other functional (e.g., regulatory) regions >. Somatic
or native SNPs in oncogenes or in related regions can determine cancer
susceptibility and are often related to pathogenesis %%, SNPs in all
regions of the genome are useful in studies aimed at finding genomic re-
gions linked to clinical or otherwise significant properties. Such studies
are performed by seeking correlations between the inheritance pattern
of the target properties and polymorphic genetic variations. Linkage,



association and linkage disequilibrium studies are examples of specific
methodologies employed for genetic studies ”8.

Genotyping is a process that determines the variants present in a
given sample, over a set of SNPs. In the case of association studies,
a population of samples is jointly measured and the frequencies of the
different variants need to be inferred. The development of efficient SNP
detection, genotyping and measurement techniques is an active research
area as they have great clinical, scientific and commercial value.

Most current SNP genotyping techniques '° are problem specific in

the sense that at least some of the reagents used in the assay have to
be specifically tailored to the set of SNPs under interrogation. Generic
methods are techniques that defer all problem specific components to the
assay planning stage and to the data analysis and result interpretation
stage. For example, Sampson et al.'! present a method that uses natural
and mass modified generic mixtures of oligonucleotides, and a target
mediated enzymatic reaction, to produce a mixture, the mass-spectrum
of which is indicative of the genotype of the sample over a set of sites.

SNP genotyping is time-consuming and may be an expensive pro-
cedure. This cost is directly related to the number of assays actually
performed. Thus, we are interested in minimizing the number of assays
that need to be performed in a given study. Under certain circumstances,
genotyping of multiple SNP sites can be performed simultaneously, in a
single genotyping assay; a process called multiplezed genotyping. Exam-
ples include utilizing primer extension and MALDI-TOF mass spectrom-
etry, relying on the natural masses of the extended specifically designed
primers ''2, Typically, not all SNPs in a set of interest can be geno-
typed together. Specifically, any given genotyping method imposes a
set of constraints regarding which SNPs can be assayed together, and
which cannot. Thus, in order to achieve high multiplexing rates, it is
necessary to carefully plan the genotyping assays, in order to allow si-
multaneous genotyping of as many SNPs as possible, on the one hand,
while conforming to the constraints, on the other.

In this paper we present methods for achieving high multiplexing
rates for a family of generic SNP genotyping techniques. We model all
the applications in a unified framework, in which each SNP is assigned
a set of features and the multiplexing problem translates to partitioning
the SNPs into sets, such that in each set every SNP has a unique feature
(Section 2). We give a constant approximation algorithm for the problem
which is based on graph coloring, and provide several practical heuristics
(Section 3). Finally, we apply our algorithms to simulated data as well
as to real human SNP data (Section 4).



2 Generic Genotyping Techniques

Polymerase extension is a widely used technique for interrogating DNA
sequences. Typically, all methods based on this technique utilize exten-
sion of specifically designed primers, and are not generic. For example,
in an Array Polymerase EXtension assay (APEX)'3° the target sample
is annealed to array bound probes, that are complementary to subse-
quences upstream the polymorphic site. Four differentially fluorescently
labeled terminator nucleotides are used by DNA polymerase in primer
extension reaction, extending the array probes. As a result each probe
represents a polymorphic site and the fluorescence observed therein in-
dicates the measured genotype there. Note that the array needs to be
specifically designed to address the input set of SNPs.

In a generic Polymerase Extension Assay (PEA), the target sample

reacts with a generic set of features (e.g., primers). These are extended,
or not, depending on the target. A detection step follows, wherein the
extended primers are determined, based on their altered properties. In-
formation on the target is obtained by an interpretation process. We
provide several examples below. Throughout, two alleles that correspond
to the same SNP are called mates.
All k-mer Arrays (Ci). Ben-Dor et al. * study aspects of a system
that uses a generic array design but a specifically designed set of solution
primers. A completely generic approach uses an array of all k-mers,
denoted C%, and no specific reagents, to perform the measurement as
follows. First assume that a single site is to be genotyped:

1. The target region is PCR amplified.

2. The sequence is hybridized to the Cj array and a polymerase reac-
tion is started, in the presence of single labeled dideoxynucleotides.

3. k-mers that are complementary to non-polymorphic parts of the
amplicon will hybridize to the target, get extended and produce
fluorescence signals.

4. The hybridization signals obtained for k-mers that span the site,
depend on the alleles of this SNP in the genotyped individual.

The genotype of the sample, at the interrogated site, can therefore
be determined by analyzing the hybridization signature, provided that
there is at least one k-mer for each allele that does not appear in the
sequence of its mate.

In a multiplexed assay several targets are jointly interrogated. The
set can be jointly interrogated as long as each allele has at least one
unique k-mer that does not occur in the sequence of any other allele-
pair in the set.



PEA and Native/Tagged Mass-Spectrometry. This process in-

volves the following components *:

1. A mixture of primers is applied to the target in the presence of
polymerase and all 4 dideoxynucleotides, allowing for single base
extension to occur in a specific, target mediated manner.

2. Products (extended primers) are separated, e.g by HPLC.
3. The mixture of extended primers is analyzed by mass-spectrometry.

Under complete stringency assumptions the output mass spectrum
will only have peaks at masses that correspond to extended primers that
are Watson-Crick complements of some target subsequence. A set of
SNPs can be jointly interrogated as long as each of the respective alleles
has a corresponding extended primer with a unique mass, different from
that potentially arising from any other allele-pair in the set.

A similar genotyping process uses cleavable mass-tags that are at-
tached to the original primers and then cleaved after the separation of
extended products. (Here we assume that the number of available dis-
tinguishable tags exceeds the number of primers.) The tags, rather than
the extended primers are analyzed by mass-spectrometry. The spectrum
will have peaks at masses of tags that correspond to primers that are
Watson-Crick complements of some target subsequence. Again, a set of
SNPs can be jointly interrogated as long as each of the respective alleles
has a corresponding extended primer with a unique tag, different from
that potentially arising from any other allele-pair in the set.

2.1 Problem Formulation

In any of the embodiments, the target is typically a collection of short
PCR amplicons, spanning bi-allelic SNP sites. A SNP allele in a target
can be determined if and only if the extension event, for one of the k-
mers spanning this site and corresponding to this allele, can be uniquely
detected under the assay conditions. This requirement can be abstracted
as follows: Associate with each target sequence a list of features at which
it registers, e.g., all complementary k-mers, the masses corresponding to
all complementary extended primers in the mixture, etc. This is the set
of features potentially activated by the given target sequence. Further-
more, the set of activated features can be partitioned into informative
ones, spanning the polymorphic nucleotide, and common ones, being
all features activated by the amplicon corresponding to both alleles ex-
pected at this site. A set of allele-pairs is assignable if each allele in the
set has an informative feature that is not potentially activated by any
other allele in the set.

Assume we are given a set of target sequences, each containing a
bi-allelic polymorphic site. To genotype this set of SNPs we need to



partition them into assignable subsets. This partition constitutes a mul-
tiplexzing scheme. We seek a multiplexing scheme under which the num-
ber of assignable subsets in the partition is minimum. W.l.o.g., we shall
assume that for every given target sequence, each of the two alleles of
the corresponding SNP has at least one informative feature that is not
shared by its mate.

The objective of the multiplexing scheme can be modeled in two ways.
Both formulations reflect the fact that when a specific site is genotyped,
both its alleles may activate features (indeed, this will be the case if
the sample is heterozygous) and there is no easy way to separate these
sets of features one from the other. In the first formulation we seek
a partition of the SNPs into a minimum number of assignable subsets.
The basic units here are allele-pairs (corresponding to SNPs). In the
second variant we seek a partition of the alleles into a minimum number
of assignable subsets. The basic units here are single alleles, dropping
the constraint that two mates should be put in the same subset in a
partition. Solutions to the first variant have the advantage that they
require a smaller number of PCR reactions, compared to the second
variant. However, when studying the multiplexing problem in isolation,
the latter formulation is the more general one.

3 Algorithmic Approaches

In this section we provide theoretical analysis and practical heuristics
for the multiplexing problem.

3.1 An Approzimation Scheme

We present an approximation algorithm for the multiplexing problem
under the single-allele variant. First, we devise a graph-theoretic for-
mulation of the problem: We view the input allele sequences and list of
features as a bipartite graph G(U,V, E, F), where U is the set of alleles
and V is the set of features. We put an edge (u,v) € E, connecting an
allele w € U and a feature v € V, if v is an informative feature of w.
We put an edge (u,v) € F, if v is a common feature of w or if v is an
informative feature of u’s mate. We call this graph the Alleles-Features
(AF) graph. We call E the set of informative edges in G. Note that every
allele with a sequence of length ! has k' (at most k) informative edges
incident to it, corresponding to the k-mers spanning the polymorphic
site; and at most (I — k + 1) non-informative edges in F, corresponding
to (I —k+1—k') k-mers that do not involve the polymorphic site and k'
additional k-mers that constitute the informative features of the allele’s
mate.



Consider a set of alleles X C U of cardinality ¢t. The set X is called
assignable if there exists an induced matching over X consisting of only
informative edges. That is, there exists a set R C E of ¢ informative
edges that form a matching between X and a set of ¢ features. In addi-
tion, the matching R is induced, that is, no two edges in R have a third
edge adjacent to both of them. Clearly, if a set of alleles is assignable, it
can be assayed together. We define the following two decision problems:
Maximum Assignable Set (MAS): Given an AF graph G and an
integer k, is there an assignable set of size at least k?

Minimum Assignable Cover (MAC): Given an AF graph G and an
integer k, is there a set of k assignable subsets that together cover its
allele set?

Observe that for a given set of alleles X, one can test in linear time
whether X is assignable, by checking if each allele in X has an informa-
tive edge to a unique feature. By considering only the informative edges,
MAS is equivalent to the maximum induced matching problem on an ap-
propriate bipartite graph. For general bipartite graphs, the maximum
induced matching problem is known to be NP-hard '5. However, not all
bipartite graphs can be realized as AF graphs. The complexity of MAS
on AF graphs is currently open.

We now show a lower bound for the MAC problem. A good matching
in G is a matching which consists of informative edges only. Clearly, any
assignable subset of alleles corresponds to a good induced matching in
G between the alleles and their unique features. If we restrict attention
to informative edges only, and drop the requirement that the matching
should be an induced one, our problem variant can be stated as follows:
Minimum Matching Cover (MMC): Given a bipartite graph
G'(U,V, E), find a minimum number of matchings that cover U.

Given an instance G(U, V, E, F) of MAC, the cardinality of an optimum
solution to MMC on G'(U, V, E) is a lower bound on the cardinality of any
solution to MAC on G and, in particular, a lower bound on the optimum
MAC solution. We can compute this lower bound in polynomial time using
the algorithm of Aumann et al. for MMC !2.

The following theorem states our approximation result for MAC.

Theorem 1 Let G(U,V, E, F) be an instance of MAC with allele sequences
of length l. Then there is a (21 + 1)-approzimation algorithm to MAC on
G.

Proof: We find the approximate solution in two stages. The reader
is referred to the example in Figure 3.1 for further explanation and in-
tuition about the algorithm. First, we construct the graph G'(U,V, E)
by removing the non-informative edges from G. We find a minimum
matching cover E1, Ea,..., E, of G' using the algorithm of Aumann et
al. '2. Next, we show below that for each matching E;, its set of alleles



can be partitioned into at most (2/ + 1) assignable subsets. Overall, the
cardinality of our solution is bounded above by optmmc(G')- (21 +1) <
optuac(G) - (21 +1).

A. The Alleles-Features graph
Alleles
Features
B. The graph induced by the matching E; C. The auxiliary directed graph H
(a,f)
(a,.fy)
(ayf;) 44

=&
©

(aefs)

Figure 1: An example demonstrating the approximation algorithm for MAC. A. The Alleles-
Features graph. Informative edges are solid, common edges are dashed. E1 and E; represent
one possible optimal matching cover. B. The graph induced by the matching E; in part A.
C. The auxiliary directed graph H constructed from the graph in part B. The outdegree < 1,
and thus H can be colored with 3 colors. Each color class corresponds to a set of independent
edges in E;. For example, the red color corresponds to the edges (a1, f1), (as, f5). These
edges corresponds to the assignable allele set {a1,a6}.



It remains to show how to partition the alleles included in a matching
E; into at most (2 + 1) assignable sets. To this end we use the coloring
approach of Ben-Dor et al. *: We build an auxiliary directed graph H,
whose vertices correspond to the edges in the matching E;. We direct
an edge in H from (u,v) to (u',v') if (u,v') € E;. Note that since each
allele has at most [ + 1 incident edges in the original graph G, by the
construction of H, each of its vertices has outdegree at most . Therefore,
H can be colored using smallest-last ordering (SLO) coloring '® by at
most 21 + 1 colors. Each color class represent an independent set of
vertices, which correspond to an independent set of informative edges.
Thus, each color class induces an assignable set, and together they cover
the alleles of E;. m

3.2 Practical Heuristic Approaches

In this section we propose two greedy heuristic procedures for the mul-
tiplexing problem. Both approaches work on allele-pairs as well as on
single alleles. We describe them only in their allele-pair version, but
apply both variants in the sequel.

The first heuristic is called minimal partition (MP). We allocate one
SNP at a time, inserting it into the subset that best accommodates it:
This is a subset which after adding the allele-pair remains assignable and
has the smallest number of activated features. We start a new subset
only when the target cannot be accommodated in an existing subset.
In the following we denote by o(.S) the number of activated features in
a set of allele-pairs S. We let ¢i1,...,¢n be the input allele-pairs. The
algorithm is given in Figure 2.

Randomly order the allele-pairs g1, ..., gn-
Qi=0,k=1
For ¢ = 1...n consider the pair ¢;:
Find an index jp s.t. @j, U {g;} is assignable
and o(Qj, U {¢;}) is minimal.
If such jo exists then Q;, = Qj, U {gi}-
Else Qk+1 = {QZ} and k =k + 1.

Figure 2: The minimal partition (MP) algorithm.

The second heuristic is called mazimal set (MS). We attempt to con-
struct the largest assignable subset of SNPs. When this set cannot be
extended anymore, we iteratively call the process on the remaining SNPs.
The algorithm is given in Figure 3.



Ql :07 U= {qla"'7Qn}a k=1.
While U # 0
Find a pair ¢ € U s.t. @ U {q} is assignable
and o(Q U {q}) is minimal.
If such q exists then Qr = Qr U {q}, U =U\ {q}.
Else Qxy1 =0and k =k + 1.

Figure 3: The Maximal Set (MS) algorithm.

The complexity of the MP algorithm is O(nr) for a solution of cardi-
nality ». The complexity of the MS algorithm is O(n?), which is higher
than the former since, typically, r < n.

4 Results

In this section we report on the performance of the two algorithmic
schemes, MP and MS, on simulated and real SNP data.

The synthetic data was generated as follows: We generated at ran-
dom 41-long sequences for varying number of SNPs (between 1000 and
5000). For each sequence we chose at random two distinct nucleotides,
representing two alleles, to occupy the 21-st base of the sequence. We
used as features all k-mers of an array, where k ranged from 6 to 8. The
results of applying both algorithms to the data, when using the allele-
pair version, are summarized in Table 1. The total running time of one
simulation was less than a minute on a single processor. Notably, the
maximal set algorithm outperforms the minimal partition algorithm in
all simulations.

Next, we applied the algorithms in their single-allele version to the
synthetic data. The results are summarized in Table 2. Again the MS
heuristic outperforms the MP heuristic. Overall, the results are compa-

Table 1: A comparison between Algorithms MP and MS, in their allele-pair version, on
simulated data for different parameter combinations. Each entry contains the solution’s
cardinality, averaged over 10 runs. All respective standard deviations were smaller than 1.

Array
SNPs Cﬁ 07 Cs
MP MS | MP MS | MP MS
1000 7 5 3 22 2 13
2000 | 11.7 71 45 3.1 2.1 2
5000 24 12.7 | 8.1 5| 35 25




Table 2: Comparison between Algorithms MP and MS, in their single-allele version, on
simulated data for different parameter combinations. Each entry contains the solution’s
cardinality, averaged over 10 runs. All respective standard deviations were smaller than 1.

Array

SNPs Ce 07 Cg
MP MS |MP MS | MP MS
1000 7.1 49 3 23 2 13
2000 | 10.9 7| 4.7 3| 23 2
5000 | 22.5 12 8 5] 3.6 26

rable to those obtained for allele-pairs. This is a result of the assignment
criterion employed by the algorithms, which is strongly biased towards
assigning mates to the same set in the solution.

We complemented our analyses by designing multiplexing schemes
for 5000 SNPs taken from human chromosome 21. We extracted from
the public SNP database '” 41-long sequences flanking the first 5000
reference SNPs of chromosome 21 (with the polymorphic site at the
middle position). We then applied our algorithms to the data, again
using as features all k-mers of an array, where k ranged from 6 to 8. The
best results were obtained using the MS heuristic with pairs: 7 assays
for Cs, 9 assays for C7 and 19 assays for Cs.

When comparing to the above simulation results, we observed that
the solutions on real data had higher cardinality than the corresponding
solutions on simulated data. Looking more closely at the results, we
observed that the real data solutions contained several large sets covering
most of the SNPs and some small sets containing only few SNPs each.
Specifically, if one wishes to cover at least 95% of the SNPs then the
following numbers of assays are required: 2 assays for Cs, 4 assays for
C7 and 11 assays for Cs. We could further see that most of the SNPs
that were included in small sets had very degenerate sequences, often
consisting of repeats of a single nucleotide around the polymorphic site.

5 Concluding Remarks

In this paper we studied the problems arising in designing multiplexing
schemes for SNP genotyping using generic assays. We devised a graph
theoretic formulation for the multiplexing problem and used it to find a
constant approximation algorithm for the problem. We also suggested
two practical heuristics to approach the problem. We applied our algo-
rithms to simulated and real SNP data. The results on real data show
the practicality of generic approaches for genotyping, allowing, e.g., the



genotyping of about 5000 SNPs using four C7 arrays.

It is important to note that the procedure described in the paper
assumes full stringency of the C} array measurements, and that current
assays do not support this assumption. The multiplexing methods that
we presented here can be modified to handle non-perfect hybridization
under weaker assumptions. For example, one could define a measure of
similarity between k-mers, and solve the multiplexing problem assuming
that a k-mer may hybridize to its complement or to any other sufficiently
similar k-mer.

While focusing here on the application of our algorithmic approaches
to SNP genotyping, multiplexing problems arise in other domains, e.g.,
primer design, gene expression measurements, etc. Our algorithmic ap-
proaches could be applicable to multiplexing problems in other domains
that have graph theoretic models similar to the ones presented here.
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