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Abstract

This paper introduces the first integrated algorithm designed to dis-
cover novel motifs in heterogeneous sequence data, which is comprised of
coregulated genes from a single genome together with the orthologs of
these genes from other genomes. Results are presented for regulons in
yeasts, worms, and mammals.

1 Regulatory Elements and Sequence Sources

An important and challenging question facing biologists is to understand
the varied and complex mechanisms that regulate gene expression: how,
when, in what cells, and at what rate is a given gene turned on and
off? This paper focuses on one important aspect of this challenge, the
discovery of novel binding sites in DNA (also called regulatory elements)
for the proteins involved in such gene regulation. This is an important
first step in determining which proteins regulate the gene and how.



Until the present, nearly all regulatory element discovery algorithms
have focused on what will be called homogeneous data sources, in which
all the sequence data is of the same type (see Section 1.1). This paper
introduces the first integrated algorithm designed to exploit the richer
potential of heterogeneous sequence data, which is comprised of coregu-
lated genes from a single genome together with the orthologs of these
genes from other genomes.

1.1 Regulatory Elements from Homogeneous Data

A number of algorithms have been proposed for the discovery of novel
regulatory elements in nucleotide sequences. Most of these try to deduce
the regulatory elements by considering the regulatory regions of several
(putatively) coregulated genes from a single genome. Such algorithms
search for overrepresented motifs in this collection of regulatory regions,
these motifs being good candidates for regulatory elements. Some exam-
ples of this approach include Bailey and Elkan®, Brazma et al.?, Buhler
and Tompa 3, Hertz and Stormo *, Hughes et al. °, Lawrence et al. ®,
Lawrence and Reilly 7, Rigoutsos and Floratos ®, Rocke and Tompa ?,
Sinha and Tompa!°, van Helden et al. ', and Workman and Stormo !2.

An orthogonal approach deduces regulatory elements by considering
orthologous regulatory regions of a single gene from multiple species.
This approach has been used in phylogenetic footprinting (Tagle et al.®,
Loots et al.'*) and phylogenetic shadowing (Boffelli et al.'%). The sim-
ple premise underlying these comparative approaches is that selective
pressure causes functional elements to evolve at a slower rate than non-
functional sequences. This means that unusually well conserved sites
among a set of orthologous regulatory regions are good candidates for
functional regulatory elements.

The standard method that has been used for phylogenetic footprint-
ing is to construct a global multiple alignment of the orthologous regula-
tory sequences using a tool such as CLUSTAL W (Thompson et al.'%),
and then identify well conserved regions in the alignment. An algorithm
designed specifically for phylogenetic footprinting without resorting to
global alignment has been developed by Blanchette et al.'™'®

1.2 Regulatory Elements from Heterogeneous Data

As more related genomes are sequenced and our understanding of reg-
ulatory relationships among genes improves, we will find ourselves in a
situation with richer data sources than in the past. Namely, the data to
be analyzed will often be heterogeneous, a collection of coregulated genes
from one genome together with their orthologous genes in several related
genomes. There is an obvious advantage to considering heterogeneous



data when it is available: namely, motifs may not be detectable when
one considers only the coregulated regions from one genome or only the
orthologous regions of one gene (McGuire et al.'?, Wang and Stormo?°).

The most obvious way to handle heterogenous data is to treat all the
regulatory regions identically: pool all the input sequences, and search
for overrepresented motifs. This is precisely what was done in studies
by Gelfand et al. 2* and McGuire et al. '° There are several reasons
why treating the heterogenous data homogeneously in this way discards
valuable information that may be necessary for accurate prediction of
regulatory elements:

1. This method ignores the phylogeny underlying the data so that, for
example, similar sequences from a subset of closely related species
will have an unduly high weight in the choice of motifs predicted.

2. Phylogenetic studies such as that of Lane et al. > show that in-
stances of orthologous regulatory elements, because they evolved
from a common ancestral sequence, tend to be better conserved
than instances across coregulated genes of the same genome. By
pooling all the sequences, this distinction is lost.

3. Perhaps most importantly, the number of occurrences of a given
regulatory element will vary greatly across putatively coregulated
genes: some regulatory regions will contain no occurrences, while
others will contain multiple occurrences. This variance in number
should be much less across orthologous genes, again because they
are evolved from a single ancestral sequence. By pooling all the
sequences, this distinction too is lost.

Another method for exploiting heterogeneous data involves two sep-
arate passes. For instance, Wasserman et al. ?®, Kellis et al.?*, Cliften et
al.?®, and Wang and Stormo *° search for well conserved motifs across
the orthologous genes and then, among these, search for overrepresented
motifs. GuhaThakurta et al. 2% do the opposite, searching for overrep-
resented motifs in one species and eliminating those that are not well
conserved in the orthologs. In both cases, the first pass acts as a filter
before performing the second pass, and a drawback is that the true motif
may be filtered out because it is not conserved well enough in the dimen-
sion of the first pass. In other words, these algorithms do not integrate
all the available information from the very beginning.

In this paper we propose the first algorithm that uses the hetero-
geneous sequence data in an integrated manner. We focus on the 2-
species case for concreteness and efficiency, but also because of its time-
liness for the study of regulons in important sequenced pairs such as
human/mouse, fruitfly/mosquito, and C.elegans/ C.briggsae.



2 Expectation-Maximization for Heterogeneous Data

The Expectation-Maximization algorithm of MEME ! is very well suited
for the discovery of regulatory elements in single-species regulons. We
have generalized MEME’s framework and algorithm so that it is suited
for the two-species heterogeneous data problem. We call the new algo-
rithm OrthoMEME.

The inputs to OrthoMEME are sequences Xi,Xos,...,X,,
Y1,Ys,...,Y,, where X;,X>,...,X, are the regulatory regions of n
genes from species X, and Y; is X;’s orthologous sequence from species
Y. For ease of discussion we will assume that the motif width W is
fixed but, like MEME, OrthoMEME iterates over different values of W
and chooses the best result. Also like MEME, OrthoMEME can be run
in any of three modes: OOPS (One Occurrence Per Sequence), ZOOPS
(Zero or One Occurrence Per Sequence), or TCM (zero or more occur-
rences per sequence). TCM mode is particularly appropriate for most
regulatory element problems.

In the heterogeneous data setting, a motif occurrence in sequence ¢
means an occurrence in X; and an orthologous occurrence in Y;. That
is, even in TCM mode every motif occurrence consists of an orthologous
pair. Accordingly, the hidden random variables are Z;,ji, defined to
be 1 if there are orthologous motif occurrences that begin at position j
of X; and position k of Y;, both occurrences in orientation s (either +
or —), and 0 otherwise. (An underlying assumption is that sequences
outside motif occurrences are drawn from the background distributions
and, in particular, are not orthologous. This is in general untrue, but
for sufficiently diverged sequences the resulting inaccuracy should be
minimal.)

OrthoMEME’s objective is to maximize the expected log likelihood
of the model, divided by the motif width, given the input sequences and
hidden variables. The model parameters specify how well conserved the
motif is among the sequences of species X (parameter 6, a position weight
matrix), and how well conserved orthologous pairs of motif instances are
(parameter 7, a vector of 4 x 4 transition probability matrices). More
specifically,

9. — Pr(residue r in background distribution) ifj=0
" Pr(residue 7 at position j of X’s occurrences) if1<j<W,

njrs = Pr(at position j of motif, residue r of X maps to residue s of ).

There is also a corresponding parameter 6, that specifies the back-
ground distribution in species Y. In ZOOPS and TCM modes, there is
an additional parameter A that specifies the expected frequency of motif
occurrences. Let ¢ be a vector containing all the model parameters.



In classic expectation-maximization fashion, OrthoMEME alternates
between E-steps (which update the expected values of the hidden vari-
ables) and M-steps (which update the model parameters). More specif-
ically, the E-step computes E(Z;q;r | Xi,Yi, ¢), where ¢ consists of the
values of the model parameters computed in the previous M-step. The
M-step finds the values of the model parameters ¢ that maximize the
log likelihood of the model, given the input sequences and the expected
values of Z;,;1 computed in the previous E-step.

The formulas for these steps depend on the mode (OOPS, ZOOPS,
TCM). For simplicity, we present only the formulas for OOPS mode.
Let X;s,p be the residue present at position p of strand s in sequence
X, and let m be the length of each input sequence. Then the E-step for
OOPS mode is computed as follows:

Pr(Xi | Zisjr =1, ) Pr(Yi | Xi, Zisjr = 1, ¢)
Z Pr(Xz | Zisuv = 1;¢) Pr(YZ | Xi’ Zisuv = 17 ¢)7

E(Zisjx | Xi,Yi,¢) =

ERTRY
where
m w
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p=1 p=1
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!
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The model parameters are evaluated in the M-step as follows. Let My ¢q
denote the expected number of times residue f of X is mapped to residue
g of Y at position h in the motif.

Myyg = E E(Zisjr | Xi, Y3, ),
8.5,k

i,s,j+h—1=F

is,k+h—1=9

<

hfg = =y -
Nhig Zg My s,

f is updated as in MEME.

Each E-step and M-step runs in time O(nm?W), since the number of
hidden variables is 2nm?. This causes the algorithm to run slowly when
the input sequences are long, which is an aspect of the algorithm that
we are striving to improve. MEME’s running time per step is O(nmW).

The algorithm needs a measure to compare solutions found, in or-
der to choose the best motif among all those found from different initial



values of ¢ and different choices of motif width W. Unlike MEME, Or-
thoMEME compares solutions on the basis of the expected log likelihood
of the model, divided by the motif width, given the input sequences and
hidden variables. That is, it uses the very evaluation function that it is
optimizing. (MEME instead uses the p-value of the relative entropy of
the motif instances predicted.)

There is an interesting algorithmic problem that arises only in
the TCM mode of OrthoMEME and not at all in MEME. In or-
der to produce actual motif occurrences from the final values Zj ;; of
E(Zisjr | Xi,Yi,¢), OrthoMEME must choose 0 or more good orthol-
ogous pairs (j1, k1), (j2,k2), ... for each value of 7. These pairs should
represent nonoverlapping occurrences whose order is conserved between
the two species, that is, j, + W < jp41 and kp, + W < kp41, for all h.
For each value of ¢, OrthoMEME does this by retaining only those pairs
(4, k) such that Zj;; exceeds a threshold, and then using dynamic pro-
gramming (quite similar to that for optimal alignment) to choose those
pairs that represent nonoverlapping occurrences with conserved order
and maximum total value of Z;, ;.
3 Experimental Results

OrthoMEME is implemented and we intend to make it publicly available.
This section reports initial results of OrthoMEME on several heteroge-
neous data sets. All MEME and OrthoMEME motifs discussed below
were among the top 3 motifs reported on those input sequences.

Tables 1-3 show the predictions of OrthoMEME on yeast regulons
from Saccharomyces cerevisiae and their orthologs in Saccharomyces
bayanus. The S. cerevisiae target genes and binding sites for these tran-
scription factors come from SCPD %7,

The homogeneous S. cerevisiae data sets of Tables 1 and 2 are known
to be particularly difficult: the motif discovery tools YMF '°, MEME !,
and AlignACE® all failed to find the known transcription factor binding
sites in these S. cerevisiae regulons (Sinha and Tompa ).

Table 1 shows OrthoMEME’s predictions on the genes known to be
regulated by HAP2;HAP3;HAP4. There are 5 known binding sites con-
tained in 4 target genes. MEME predicted only 1 of these binding sites
(whether run on just S. cerevisiae sequences or on the pooled sequences
of both species), whereas OrthoMEME predicted 3 using the same pa-
rameters. In this and all subsequent tables, the underlined portions of
the predicted motif occurrences are the subsequences that overlap the
known binding sites.

Table 2 shows OrthoMEME’s predictions on the genes known to be
regulated by UASCAR. There are 4 known binding sites contained in 3
target genes, all 4 of which are predicted by OrthoMEME. MEME pre-



Table 1: HAP2;HAP3;HAP4 predicted motif, OOPS mode, sequence length 600. The column
labeled “Mut” shows the number of mismatches between the orthologous motif occurrences.
The underlined portions of the motif occurrences are the subsequences that overlap the
known binding sites. OrthoMEME missed one occurrence in each of SPR3 and CYCI.
Source: SCPD 27,

S. cerevisiae S. bayanus
Gene Str  Pos Instance Pos Instance Mut
CYC1 + -284 TTGGTTGG | -319 TTGGTTGG 0
SPR3 - -485 ATGGTTGC | -377 ATGGTTGA 1
QCRS8 - -211  TTCATTGG | -225 TTTATTGG 1
COX6 - -286 CTGATTGG | -283 CTGATTGG 0

Table 2: UASCAR predicted motif, TCM mode, sequence length 300. OrthoMEME missed
no occurrences. Source: SCPD 27,

S. cerevisiae S. bayanus
Gene Str  Pos Instance Pos Instance Mut
CAR2 + -218 CTCTGTTAAC | -222 CTCTGTTAAC 0
CAR2 + -154  TGCCCTTGCC | -153 TGCCCTTGCC 0
ARG5,6 + -114 TTCCATTAGG | -122 TTCCATTAGG 0
CAR1 + -169 TTCACTTAGC | -176 TTCACTTAGC 0
ARG5,6 + -52  TGCCTTTAGT -56  TGCCTTTAGT 0
ARG5,6 + -286  TTCACTTAAA | -294 TTCACTTAAG 1
CAR2 + -189 TGCCGTTAGC | -193 TGCCGTTAGC 0
CAR2 - -252  TTGCGTGTGG | -257 TTGCGTGCGG 1
ARG5,6 + -224  ATGACTCAGT | -228 ATGACTCAGT 0
CARI1 - -209 TGCCATTAGC | -216 TGCCGTTAGC 1
CARI1 + -232  TGCCCTTCGC | -239 TGCCCTTGGC 1
CAR1 + -86 TTCTCTTCTC -73 TTCTCCTCTC 1

dicted none of these binding sites when run on the S. cerevisiae sequences
alone, and all 4 when run on the pooled sequences of both species.

Table 3 summarizes the performance of OrthoMEME on some less
difficult yeast regulons ?®. On all three regulons OrthoMEME had few
true negatives. On the SCB and PDR3 regulons, OrthoMEME’s num-
ber of false positives was comparable to that of MEME. On the MCB
regulon, OrthoMEME had many more false positives than MEME, but
many fewer true negatives to compensate.

Tables 4 and 5 give examples of OrthoMEME run on heterogeneous
human/mouse data. Table 4 shows target genes of the human transcrip-
tion factor SRF together with their mouse orthologs. TRANSFAC **
reports one known binding site in each of these 4 regulatory sequences.



Table 3: Summary of other yeast regulons, S. cerevisiae vs. S. bayanus, TCM mode, sequence
length 1000. Column headings: “genes”, the number of target genes in the regulon; “known”,
the number of known S. cerevisiae binding sites in these target genes; “MEME, S. cer.”,
MEME run on the S. cerevisiae sequences; “MEME, pooled”, MEME run on the pooled
sequences of both species; “FP”, the number of false positives (predictions that were not
binding sites); “TN”, the number of true negatives (binding sites that were not predicted).
Source: SCPD 27.

OrthoMEME | MEME, S. cer. | MEME, pooled
factor genes known | FP TN FP TN FP TN

SCB 3 8 6 2 8 2 13 4
MCB 5 11 10 1 5 7 6 5
PDR3 4 11 7 2 6 1 13 1

Table 4: SRF predicted motif, OOPS mode, sequence length 1000. OrthoMEME missed one
occurrence in each of B-ACT and apoE. Source: TRANSFAC 29.

H. sapiens M. musculus
Gene Str  Pos Instance Pos Instance Mut
B-ACT + -73 CCTTTTATGG -65 CCTTTTATGG 0
c-fos - -314 CCTAATATGG | -459 CCTAATATGG 0
apoE - -43 CCAATTATAG | -855 CCAATTATAG 0
CA-ACT - -850 CCTTATTTGG | -111 CCTTATTTGG 0

OrthoMEME predicted 2 of these 4 known binding sites. MEME, us-
ing the same parameters, found none of them, whether run on just the
human sequences or on the pooled human and mouse sequences.

Table 5 shows target genes of the human transcription factor NF-xB
together with their mouse orthologs. TRANSFAC *° reports 11 known
binding sites in these 10 genes. Because OrthoMEME was run in OOPS
mode, it missed one of the two occurrences in IL-2. It also missed the
known occurrences in SELE and IL-2Ra. MEME, using the same pa-
rameters, performed as well on this regulon.

Table 6 shows an example of OrthoMEME’s predictions on a worm
regulon. This is a collection of Caenorhabditis elegans genes regulated
by the transcription factor DAF-19 (Swoboda et al. ®°), together with
orthologs from Caenorhabditis briggsae. Each regulatory region in C.
elegans is known to contain one instance of the “x-box”, which is the
binding site of DAF-19. OrthoMEME predicted all five of the docu-
mented x-boxes *°, as did MEME. (The full x-box has width 14 bp, of
which OrthoMEME omitted the somewhat less conserved first 4 bp.)



Table 5: NF-kB predicted motif, OOPS mode, sequence length 1000. OrthoMEME missed
one occurrence in each of SELE, IL-2Re, and IL-2. Source: TRANSFAC 29,

H. sapiens M. musculus
Gene Str  Pos Instance Pos Instance Mut
SELE - -285 CCCGGGAATATCCAC | -262 TCTGGGAATATCCAC 2
ICAM-1 - -228 CTCCGGAATTTCCAA | -250 TCTAGGAATTTCCAA 4
GRO-v + -160 TCCGGGAATTTCCCT | -140 TCCGGGAATTTCCCT 0
GRO-« + -160 TCCGGGAATTTCCCT | -140 TCCGGGAATTTCCCT 0
IL-2Ra - -306 TGCGGTAATTTTTCA | -276 TGCGGTAATTTTTCA 0
GRO-3 + -156 TCCGGGAATTTCCCT | -146 TCAGGGAATTTCCCT 1
TNF-8 + -274 CCTGGGGGCTTCCCC | -251 CCTGGGGGCTTCCCC 0
IL-6 + -139 TGTGGGATTTTCCCA | -125 TGTGGGATTTTCCCA 0
IFN-3 - -140 CAGAGGAATTTCCCA | -137 CAGAGGAATTTCCCA 0
IL-2 + -255  AGAGGGATTTCACCT | -257 AGAGGGATTTCACCT 0

Table 6: DAF-19 predicted motif, OOPS mode, sequence length 1000. OrthoMEME missed
no occurrences. Source: Swoboda et al.30.

C. elegans C. briggsae
Gene Str  Pos Instance Pos Instance Mut
che-2 + -126 TCATGGTGAC | -178 CCATGGCAAC 3
osm-1 - -86 CCATGGTAGC -79 CCATGGCAAC 2
£02d8.3 - -79 CCATGGAAAC -93 CCATGGAAAC 0
osm-6 - -100 CTATGGTAAC | -764 CGATGACAAA 4
daf-19 - -109 CCATGGAAAC | -243 CTTTGGCAAA 4

4 Conclusion

As more genomes are sequenced and our understanding of regulatory
relationships among genes improves, algorithms for motif discovery from
the rich source of heterogeneous sequence data will become prevalent.
We have introduced the first algorithm to deal with heterogeneous data
sources in a truly integrated manner, using all the data from the onset
of analysis.

We are still in the early stages of experimenting with the implemen-
tation and its parameters. There is much room for improved prediction
accuracy and we are optimistic that, with more experience, we will con-
sistently be able to solve problems with OrthoMEME that cannot be
solved from homogeneous data alone.

There is a reasonably straightforward extension to K > 2 species in
which the transition matrices n; are replaced by rate matrices and one
assumes that the phylogeny and its branch lengths are given. For this



extension the running time would be O(nm™ W), which is prohibitive.
We are working on faster algorithms for this case and also the important
case K = 2.

For the case K = 2, it seems important to have a better under-
standing of how evolutionary distance between the species affects Or-
thoMEME’s accuracy.
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