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We propose a statistical method to estimate gene networks from DNA microar-
ray data and protein-protein interactions. Because physical interactions between
proteins or multiprotein complexes are likely to regulate biological processes, us-
ing only mRNA expression data is not sufficient for estimating a gene network
accurately. Our method adds knowledge about protein-protein interactions to the
estimation method of gene networks under a Bayesian statistical framework. In the
estimated gene network, a protein complex is modeled as a virtual node based on
principal component analysis. We show the effectiveness of the proposed method
through the analysis of Saccharomyces cerevisiae cell cycle data. The proposed
method improves the accuracy of the estimated gene networks, and successfully
identifies some biological facts.

1 Introduction

The complete DNA sequences of many organisms, such as yeast, mouse, and
human, have recently become available. Genome sequences specify the gene
expressions that produce proteins of living cells, but how the biological system
as a whole really works is still unknown. Currently, a large number of gene
expression data and protein-protein (p-p) interaction data have been collected
from high-throughput analyses, and estimating gene networks from these data
has become an important topic in systems biology.

Several methods have been proposed for estimating gene networks from
microarray data by using Boolean networks1,30, differential equation models3,7,
and Bayesian networks8,9,12,13,14,15,16,22. However, using only microarray data
is not sufficient for estimating gene networks accurately, because the informa-
tion contained in microarray data is limited by the number of arrays, their
quality, noise and experimental errors. Therefore, the use of other biological
knowledge together with microarray data is a key for extracting more reliable
information. Hartemink et al.13 noticed this idea previously and proposed a
method to use localization data combined with microarray data for estimat-
ing a gene network. There are other works combining microarray data with
biological knowledge, such as DNA sequences of promoter elements23,32 and
transcriptional bindings of regulators26,27,29.

In this paper, we propose a statistical method for estimating gene net-



works from microarray data and p-p interactions by using a Bayesian network
model. We extract 9,030 physical interactions from the MIPS database21 to
add knowledge about p-p interactions to the estimation method of gene net-
works. If multiple genes will form a protein complex, then it is natural to treat
them as one variable in the estimated gene network. In addition, in the esti-
mated gene network, a protein complex is modeled as a virtual node based on
principal component analysis. That is, the protein complexes are dynamically
found and modeled based on the proposed method while we estimate a gene
network.

Previously, Segal et al.28 proposed a method for identifying pathways from
microarray data and p-p interaction data. A different point of our method
is that we model protein complexes directly in the Bayesian network model
aimed at refining the estimated gene network. Also, our method can decide
whether we make a protein complex based on our criterion.

We evaluate our method through the analysis of Saccharomyces cerevisiae
cell cycle gene expression data31. First, we estimated three gene networks, by
microarray data alone, by p-p interactions alone, and by our method. Then, we
compared them with the gene network compiled by KEGG for evaluation. We
successfully show that the accuracy of the estimated gene network is improved
by our approach. Second, among 350 cell cycle related genes, we found 34 gene
pairs as protein complexes. In reality, most of them are likely to form protein
complexes considering biological databases and existing literature. Third, we
show an example to use an additional information “phase” together with the
microarray data and p-p interactions for estimating a more meaningful gene
network.

2 Bayesian Network Model with Protein Complex

Bayesian networks (BNs) are a type of graphical model that represents rela-
tionships between variables. That is, for each variable there is a probability
distribution function whose definition depends on the edges leading into the
variable. A BN is a directed acyclic graph (DAG) encoding the Markov as-
sumption that each variable is independent of its non-descendants, given just
its parents. In the context of BNs, a gene is regarded as a random variable and
shown as a node in the graph, and a relationship between the gene and its par-
ents is represented by the conditional probability. Thus, the joint probability
of all genes can be decomposed as the product of the conditional probabilities.

Suppose that we have n set of microarray data {x1, ..., xn} of p genes. A
BN model is then written as f(xi1, ..., xip|θG) =

∏p
j=1 fj(xij |pij , θj), where pij

is the parent observation vector of jth gene (genej) measured by ith array. For



example, if gene2 and gene3 are parents of gene1, we set pi1 = (xi2, xi3)T . If
we ignore the information of p-p interactions, the relationship between xij and
pij can be modeled by using a nonparametric additive regression model14,16

xij =
∑

k

mjk(p(j)
ik ) + εij , i = 1, ..., n; j = 1, ..., p, (1)

where p
(j)
ik is the kth element of pij , mj is a regression function and εij is a

random variable with a normal distribution with mean 0 and variance σ2
j .

When a gene is regulated by a protein complex, it is natural that we
consider a protein complex as a direct parent. Therefore, we consider the
use of virtual nodes corresponding to protein complexes in the BN model.
Concretely, if gene2 and gene3 make a protein complex and regulate gene1, we
construct a new variable “complex23” from the expression data of gene2 and
gene3. In the BN model, then, we consider the relation “complex23 → gene1”
instead of “gene2 → gene1 ← gene3”.

If genes make a protein complex, it is expected that there may be a rel-
atively high correlation among the expression values of those genes. For con-
structing a new variable representing a protein complex, therefore, we use prin-
cipal component analysis17 (PCA). By using PCA, we can reduce the dimension
of the data with the least loss of information. Suppose that genes from gene1 to
gened make a protein complex and that the d dimensional vector a

[1−d]
1 is the

first eigenvector of the matrix S[1−d] =
∑

i(x
[1−d]
i −x̄[1−d])(x[1−d]

i −x̄[1−d])T /n

with x
[1−d]
i = (xi1, ..., xid)T and x̄[1−d] =

∑
i x

[1−d]
i /n. Here xT is the trans-

pose of x. The ith observation of the protein complex is then obtained by
c
[1−d]
i = a

[1−d]T
1 (x[1−d]

i − x̄[1−d]). In such case, we use the regression function
mj,[1−d](c

[1−d]
i ) instead of the additive regression function mj1(xi1) + · · · +

mjd(xid). Figure 1 shows an example of modeling a protein complex. SPC97
and SPC98 form a protein complex. The solid line is the first principal com-
ponent and the observations of the protein complex are obtained by projecting
expression data onto this line.

This model can be viewed as an extension of principal component regression2,
in which we choose whether we make protein complexes based on our criterion
that evaluates the goodness of the BN model as a gene network.
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Figure 1: An example of modeling a protein complex by using principal component analysis.
The scatter plot of SPC97 and SPC98, and the first principal component are shown.

3 Criterion and Algorithm for Estimating a Gene Network

From a Bayesian statistical viewpoint, we can choose the graph structure by
maximizing the posterior probability of the graph G

π(G|X) ∝ π(G)
∫ n∏

i=1

f(xi1, ..., xip|θG)π(θG|λ)dθG, (2)

where π(G) is a prior probability of the graph G, π(θG|λ) is the prior distribu-
tion on the parameter θG and λ is the hyperparameter vector. The marginal
likelihood measures the closeness between microarray data and the graph G.
We add the knowledge about p-p interaction into π(G). Following the result
of Imoto et al.15, we can model the knowledge about p-p interaction as a prior
probability of graph G by using the Gibbs distribution10.

Let Uij be the interaction energy of the edge from genei to genej and
categorized into 2 values, H1 and H2 (H1 < H2). If there is a p-p interaction
between genei and genej , we set Uij = Uji = H1. The total energy of the graph
G can then be defined as E(G) =

∑
{i,j}∈G Uij , where the sum is taken over

the existing edges in the graph G. The probability π(G) is naturally modeled
by the Gibbs distribution of the form π(G) = Z−1 exp{−ζE(G)}, where ζ (>
0) is an inverse temperature and Z is the partition function given by Z =∑

G∈G exp{−ζE(G)}. Here G is the set of possible graphs. By replacing ζH1

and ζH2 with ζ1 and ζ2, respectively, the prior probability π(G) is specified by
ζ1 and ζ2. Hence, we have π(G) = Z−1

∏
{i,j}∈G exp(−ζα(i,j)), with α(i, j) = k



for Uij = Hk.
For computing the marginal likelihood represented by the integration in

(2), we used the Laplace approximation for integrals6,19,33 and the result was
shown by Imoto et al.14. Hence, we have a Bayesian information criterion,
named BNRC (Bayesian network and Nonparameteric Regression Criterion),
for evaluating networks

BNRC(G) = 2 log Z + 2
∑

{i,j}∈G

ζα(i,j) + log
∣∣∣ n

2π
Jλ(θ̂G)

∣∣∣− 2nlλ(θ̂G|X), (3)

where

lλ(θG|X) =
1
n

n∑

i=1

log f(xi1, ..., xip|θG) +
1
n

log π(θG|λ),

Jλ(θG) = −∂2{lλ(θG|X)}/∂θG∂θT
G

and θ̂G is the mode of lλ(θG|X). We can choose the graph structure as the
minimizer of BNRC.

Based on the BN model with protein complex and the information criterion
described above, we can naturally obtain the greedy hill-climbing algorithm
for finding and modeling protein complexes and estimating a gene network as
follows:

Step1. For genei, perform one of four procedures, “add a parent”, “remove a
parent”, “reverse the parent-child relationship” and “none”, which gives
the lowest BNRC score. If directed cycles are formed, we cancel the
operation.

Step2. In Step1, if “add a parent” was performed, go to Step3. Otherwise,
go to Step6.

Step3. If the relation between genei and the added gene (we denote gene(i))
is listed in p-p interactions, go to Step4. Otherwise, go to Step6.

Step4. Construct a protein complex from the expression values of genei and
gene(i) based on the principal component analysis.

Step5. If the protein complex works better than only using genei or gene(i)

as a parent of each child of genei or gene(i), we use this protein complex
in the estimated network. Otherwise, we ignore this protein complex.

Step6. If the BNRC score becomes unchanged, the learning is finished. Oth-
erwise, go to Step1 and continue the greedy hill-climbing algorithm.



Table 1: Comparison result of the cell cycle pathway in KEGG. “agree”, “reverse”, “false
negative” and “false positive” edges are counted by comparing the estimated networks with
the KEGG pathway. Note that edges among protein complexes are not counted in this table.

using only using only our method
edge type microarray data p-p interactions
agree 4 19 16
reverse 2 (directions unknown) 4
false negative 20 26 18
false positive 55 11 14

4 Computational Experiments

We apply our method to Saccharomyces cerevisiae cell cycle microarray data31,
and 9,030 p-p interaction data extracted from MIPS database21. For the prior
probability π(G) given in Section 3, we choose 0.5 for ζ1 and 25.0 for ζ2 ex-
perimentally. This point is where the maximum number of protein complexes
is observed in the estimated gene networks. When we use a larger ζ1 and a
smaller ζ2, p-p interactions did not contribute to the gene network refinement.
On the other hand, when we used a smaller ζ1 and a larger ζ2, the resulting
network reflected the p-p interactions too strongly.

4.1 Cell Cycle Pathway in KEGG

For evaluating the accuracy of estimated gene networks, we choose 99 genes
from KEGG pathway database of Saccharomyces cerevisiae cell cycle18. In this
analysis, we focus on how the accuracy of the estimated network increases by
adding the information of p-p interactions. We estimated three gene networks,
by using only microarray data, by using only p-p interactions, and by using the
proposed method. Then, we compared them with the gene network compiled
by KEGG for evaluation.

Table 1 summarizes the result of the comparison among three networks.
Note that in this table, edges among protein complexes are not counted, be-
cause these edges should not be considered as “gene regulation” in the gene
network. By comparing the network estimated by microarray data alone with
the network estimated by our method, we can immediately find that the num-
ber of edges that agree with KEGG pathway, denoted as agree, adequately
increases by adding p-p interactions to microarray data. We can also observe
that the proposed method can reduce the false positive edges drastically. By
comparing the network estimated by p-p interactions alone with the network
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Figure 2: Cell cycle gene network estimated by our method.

estimated by our method, we can find that several false negative edges of p-p
interactions are newly estimated by adding microarray data, though the num-
ber of agree edges is almost the same. As for false positive edges, we could not
observe apparent improvements by adding microarray data.

Figure 2 shows a part of the estimated gene network based on the pro-
posed method. We can find that the proposed method succeeded in find-
ing APC (Anaphase Promoting Complex), MCM (Mini-Chromosome Mainte-
nance) complex, and clb5-cdc28p complex.

4.2 Gene Network with 350 Cell Cycle Genes

For evaluating our method in the sense of modeling a protein complex, we
chose 350 genes from the MIPS functional category “mitotic cell cycle and cell
cycle control”, and searched protein complexes while learning gene networks.
We found 34 candidate protein complexes listed in Table 2.

Among 34 candidate protein complexes, 22 pairs are also listed in the
MIPS complex catalogue, and six pairs are reported in existing literature.



Table 2: Detected protein complexes among 350 cell cycle genes. The word rate means the
contribution rate of the 1st principal component of two genes, and eval. means the evaluation
of the results. “©” shows that the MIPS protein complexes catalogue contains the pair as
a protein complex. “4” shows that while the MIPS catalogue does not contain those pairs,

existing literature supports them. “?” shows that the result has not been reported yet.

gene A gene B rate eval. annotation
RSC6 RSC8 0.91 © RSC complex
MCM5 MCM7 0.89 © MCM complex
SPC97 SPC98 0.80 © gamma-tubulin complex
CIK1 KAR3 0.70 © kinesin-related motor proteins
CLB5 CDC28 0.69 © clb5-cdc28p complex
GIM3 PAC10 0.67 © gim complex
SKP1 CDC53 0.66 © SCF complex
CDC11 CDC12 0.80 © septin filaments
CDC3 SHS1 0.55 © septin filaments
CDC10 SHS1 0.54 © septin filaments
APC1 APC10 0.75 © APC complex
APC4 CDC23 0.74 © APC complex
APC4 APC11 0.73 © APC complex
APC10 APC11 0.72 © APC complex
APC9 APC10 0.71 © APC complex
APC1 CDC23 0.66 © APC complex
APC2 CDC16 0.66 © APC complex
APC9 CDC16 0.66 © APC complex
APC1 CDC26 0.64 © APC complex
APC2 APC5 0.63 © APC complex
APC3 CDC16 0.63 © APC complex
APC11 CDC26 0.55 © APC complex
SMC1 SMC3 0.84 4 cohesin complex11

SCC3 SMC3 0.63 4 cohesin complex11

BIM1 TUB1 0.69 4 tublin complex25

CLN2 CDC53 0.64 4 G1/S transition34

CKS1 CDC28 0.57 4 cyclin-dependent kinase24

HSL7 SWE1 0.55 4 septin assembly checkpoint5

RAD23 RPT6 0.82 ? proteasome
NUF2 NUM1 0.80 ? nuclear migration
NUF1 SPC97 0.79 ? nuclear migration
NUF2 SMC1 0.77 ? nuclear migration
CBF2 YGR179C 0.65 ? centromere/kinetochore-associated
CDC24 SWE1 0.55 ? serine/threonine protein kinase



Although six pairs, denoted as “?” in Table 2, are unknown, they may suggest
that each pair forms a protein complex. For example, RAD23 and RPT6 may
form a protein complex that involves in proteasome activity. In a similar way,
NUF2 and NUM1 may work together for nuclear migration. There are 309 p-p
interactions among 350 cell cycle related genes, in which only 119 interactions
are in fact protein complex related. These results suggest that our method
successfully models the protein complexes, and finds the biologically plausible
protein complexes.

4.3 Using Phase Information together with Microarrays and P-P Interactions

In this section, we show a case to use an additional information “phase” to-
gether with the microarray data and p-p interactions. It is known that cyclins
“CLN1 and CLN2”, “CLB5 and CLB6”, and “CLB1 and CLB2” are activated
in G1/S, S, and M phases, respectively4. Before estimating a gene network, we
choose phase-specific genes whose expression levels are highly correlated with
each cyclin listed above. We collected 33 genes from the correlations, i.e., the
correlation is greater than 0.75. Also, we selected 93 genes that show p-p inter-
actions with 33 genes and six cyclins. That is, in this analysis, we focus on the
gene network with 132 genes. Figure 3 shows the expression patterns of genes
that are divided into three groups by the correlations and p-p interactions.

At first, we estimate a gene network for each phase, i.e., G1/S, S and M
phases. We then combine those three networks and obtain a final network
shown in Figure 4. Genes that are on the dotted line are selected as a member
of both phases, i.e., YOX1 belongs to G1/S phase and also S phase. In this
analysis, we can find biologically important genes, such as HCM1, FKH2 and
ACE2. These genes are transcription factors20,35, and FKH2 was reported36

as a regulator of CLB2, SWI5, and HST3. Although KEGG pathway does
not include those genes, we succeeded in finding those important relationships
based on our approach.

5 Discussion

In this paper we proposed a statistical method for estimating gene networks by
combining microarray gene expression data and p-p interactions. We also pro-
posed a method for modeling protein complexes in the estimated gene network
by using principal component analysis. An advantage of our method is that
not only p-p interactions, but also protein complexes are naturally modeled
under a Bayesian statistical framework. By adding p-p interaction data into
our Bayesian network estimation method, we successfully estimated the gene
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network more accurately than using only microarray data. We also observed
that protein complexes were correctly found and modeled while learning gene
networks.

We consider the following topics as our future works: First, currently our
greedy algorithm only merges protein pairs based on PCA. Modeling a larger
protein complex in the gene network will be an important problem. Second,
as real biological processes are often condition specific, it is important to take
“conditions” or “environments” into account. Third, in the last experiment,
we showed an example that we added an additional information “phase” to the
microarray data and p-p interaction data, and estimated a gene network based
on those three types of data. We expect that estimating an accurate gene
network by using further genomic data, including DNA-protein interactions,
binding site information, and so on, will give us more meaningful information
about biological processes. We would like to investigate these topics in our
future papers.
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