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Abstract

We present a new symbolic computational approach to elucidate the
biochemical networks of living systems de novo and we apply it to an im-
portant biomedical problem: xenobiotic metabolism. A crucial issue in
analyzing and modeling a living organism is understanding its biochem-
ical network beyond what is already known. Our objective is to use the
available metabolic information in a representational framework that en-
ables the inference of novel biochemical knowledge and whose results can
be validated experimentally. We describe a symbolic computational ap-
proach consisting of two parts. First, biotransformation rules are inferred
from the molecular graphs of compounds in enzyme-catalyzed reactions.
Second, these rules are recursively applied to different compounds to gen-
erate novel metabolic networks, containing new biotransformations and
new metabolites. Using data for 456 generic reactions and 825 generic
compounds from KEGG we were able to extract 110 biotransformation
rules, which generalize a subset of known biocatalytic functions. We
tested our approach by applying these rules to ethanol, a common sub-
stance of abuse and to furfuryl alcohol, a xenobiotic organic solvent,
which is absent in metabolic databases. In both cases our predictions on
the fate of ethanol and furfuryl alcohol are consistent with the literature
on the metabolism of these compounds.

Introduction

The objective of this work is to develop a predictive strategy for elucidat-
ing metabolism. We mold available metabolic information in an expressive
symbolic representation and employ a novel inference framework to explore
unchartered pathways. We hypothesize that biochemical rules can be inferred
from the databases of endogenous metabolism and that we can use these rules
to predict the metabolism of unknown xenobiotics through detoxification path-
ways. In particular, we focus on xenobiotic pathways in mammalian systems.

What is the importance of discovering new pathways? Our knowledge
of metabolism is essentially incomplete and it can be argued that cataloging



all possible mammalian xenobiotic pathways is infeasible. With the availabil-
ity of the complete genomic blueprint for living systems and a large set of
known biotransformations, it is becoming possible to theoretically elucidate
metabolism. This includes the analysis of endogenous as well as xenobiotic
pathways. Drugs, substances of abuse and environmental pollutants are ex-
amples of compounds that may not occur naturally in a living system. Since
these compounds and/or their metabolic by-products can be potentially toxic,
investigating xenobiotic metabolism is important for human health and the
environment.

Pathway inference is a computationally challenging problem even with
the availability of the genomic blueprint for a living system and the func-
tional annotations of its putative genes. Since the availability of the first
microbial genome, Haemophilus influenza? a number of metabolic reconstruc-
tion tools have been developed. These include PathoLogic/ MAGPIE2* and
PathFinder®. These methods focused on matching putatively identified en-
zymes with known, or “reference”, pathways. Although reconstruction is an
important starting point for metabolic processes it does not enable the dis-
covery of new pathways. To overcome some of these issues we have recently
developed a new pathway inference system to search for novel metabolic routes
called PathMiner’. PathMiner uses known biotransformations to synthesize
new pathways and employs heuristics to contain the combinatorial complex-
ity of the search. This paper delves into a deeper biological problem: de novo
pathway inference and its practical application to a biomedical problem: xeno-
biotic metabolism.

The metabolic potential of a living system depends on biocatalysis. How-
ever, understanding the mechanisms of enzymatic catalysis is an extremely
difficult problem, and knowledge in this area is limited to a handful of well-
studied examples. Generally, biochemists can abstract empirical “rules” for the
biotransformation of metabolites by enzymes. For instance, consider the broad
range of substrates for Saccharomyces cerevisae (yeast) alcohol dehydrogenase
(YADH), which reduces acetaldehyde and a variety of other aldehydes', and
oxidizes ethanol, and other acyclic primary alcohols. Yet an alcohol dehy-
drogenase from Thermoanaerobium brokii (TADH) catalyzes the stereospecific
reduction of ketones and the oxidation of secondary alcohols. The functions of
YADH and TADH share common attributes and have some unique differences:
they are both alcohol dehydrogenases but their specificities for the alcohols
are different. The functions of these enzymes can be expressed in terms of the
functional groups modified (alcohol to aldehyde or ketone), and the backbone
structure of the molecule (primary or secondary alcohol). This is essentially a
symbolic description of biocatalysis and we believe that it can be applied to



complete metabolic systems.

Methods

Our strategy for elucidating de novo xenobiotic metabolism consists of two
main steps. First, we use biotransformation data to derive symbolic chemi-
cal substructural rules that generalize the action of enzymes on specific com-
pounds. Second, we apply these rules iteratively to a compound to generate a
plausible metabolic system. We describe these steps in the following sections
but first we discuss our metabolic representation.

Representing biotransformations and rules

Our abstraction of metabolic concepts is based on work by Karp’ in terms
of the high-level concepts including pathways, enzyme-catalyzed reactions and
transformations. At the level of biotransformations we are motivated by Kazi®
in that we focus on the specific chemical substructural details of metabolites
that are modified through biocatalysis. In our system, compounds are repre-
sented as X. Compounds in our abstraction have a chemical structure which
is represented as a molecular graph, I'; in which nodes are atoms and edges
are bonds. In the context of a biotransformation the pattern of substructural
changes from the input compound to the output compound is represented as
arule, U. A rule captures the concept of functional group changes that occur
in a biotransformation. Rules are implicitly unidirectional so reversible trans-
formations are represented as two separate rules. The two molecular graphs
of a rule are indicated by the input graph, A~, and the output graph, A™T.
For instance, the rule for the conversion of a primary alcohol to an aldehyde
is shown in Figure 1. In this case A~ is an alcohol moiety, which is converted
to AT, an aldehyde moiety.

Rvd-l /OH §O R/\O
X, A~ AT Xp

PrimaryAlcohol Aldehyde

Figure 1: Alcohol dehydrogenase (EC 1.1.99.9) Transformation from abstract PrimaryAlco-
hol to abstract Aldehyde showing the computed A~ and A1 moieties. The A~ moeity is the
subgraph that is in Xgbut not in Xp. The At moeity is the subgraph that is in Xpbut not
in Xg.

In the present work we focus on changes at the level of functional groups



between pairs of compounds. We represent the conversion of one input com-
pound to one output compound as a transformation. This simplifies our repre-
sentation of reactions in terms of the main metabolites. In this work we obtain
this data from the KEGG distribution, but we are also exploring automated
methods for identifying the main metabolites in a reaction.

Extracting transformation rules from reaction data

One strategy for identifying rules is to curate them manually, however, our
goal is to use the available metabolic data®’ to derive biotransformation rules
automatically. This is a difficult problem in general as the information about
reactive moieties is not explicitly available. In this paper we have used a simple
strategy for extracting rules automatically from “general” reactions. In KEGG,
for instance, general reactions are defined when the input and the output com-
pounds are both Markush structures. We find 741 general reactions in KEGG,
which constitute 20% of the reactions annotated as being human-specific. For
example a gene that is extremely important in xenobiotic metabolism and en-
codes cytochrome P-450 enzyme, CYP2D6, is implicated in the disposition of
over thirty toxins. In KEGG, the P-450 enzyme (EC 1.14.14.1) is associated
with only four reactions as shown in Figure 2. There are two specific reactions
involved in endogenous functions associated with tryptophan metabolism and
gamma-hexachlorocyclohexane degradation. The other two operate on general
compounds denoted by their Markush structures (these are abstract structures
containing a wildcard “R” group and specific functional groups). We convert
these general reactions automatically to rules as described above. This is done
by replacing the wildcard of the substrate with “C” and storing it as the A~
subgraph in the resulting rule; similarly, the “R” in the product graph is re-
placed and the resulting graph is stored as A*. To our knowledge no one has
taken advantage of this annotation before in metabolic pathway inference.

In this work we focus on the rules important in xenobiotic metabolism
in mammalian systems, including oxidation, reduction, hydrolysis and con-
jugation to mention a few. There are generally two phases in xenobiotic
metabolism. In phase 1 the compounds are ’functionalized’, which means that
a reactive functional group is exposed. Detoxification occurs in phase 2 by
further action on the functional groups, which is the form in which the com-
pound is excreted. For instance, the first phase activates a molecular oxygen
in the input compound, and the second phase conjugates it. Glucuronidation
is the most common conjugate and can be attached to any labile oxygen. In
the case of alcohol metabolism, both the alcohol and the acid can usually be
conjugated.



Melatonin < 6 — Hydroxymelatonin
FattyAcid < alphaHydroxyFattyAcid
Alkane < ROH
Parathion < Paraoxon

Figure 2: CYP2D6 (EC 1.14.14.1) reactions in KEGG. Compounds are either
Abstract(contain one or more Markush “R” groups) or Normal (have unique structure).

Biotransformation rule application

Our rule application algorithm is illustrated in Algorithm 1. A rule is applied
to a substrate X by searching the graph of X, 'y for the subgraph A—. If
the subgraph A~ is found, it is replaced by the A™ graph to yield the product
graph, I'). This is summarized as follows:

Is— A"+ AT =T,

This is graphically illustrated in Figure 3.

\/d'l . /d-l X0

Xs A~ AT Xp
Ethanol

Figure 3: Application of alcohol dehydrogenase rule to ethanol

The product of applying a rule to a compound can be a completely novel
compound or a known compound. We use subgraph isomorphism to search
the product molecular graph against the database of known compounds. If
the compound is not found, a novel compound XII, is created and given a
unique identifier (Nxxxxxx in which x is a digit from 0-9). The corpus of all
rules is designated U. We have a top-level function metabolize(X,U,n) which
takes a compound X and systematically applies each rule in the rule-base U
through n iterations.



input : X, compound to metabolize
U, list of rules
n, iterations

output : Graphical visualization
Products

Products < ¢

I's « molecular-graph(X;)

for (A=,A%) « U do

I', « graph-replace(I';,A™,A™")

if I';, then

Xp < find-compound-by-graph(I',)

if X, = ¢ then X, + make-novel-compound(I'p)

| pushnew (X, Products)

if n > 1 then

for X in Products do ~
| append(metabolize(X,Un —1),Products)

Algorithm 1: metabolize(X,U/,n). Algorithm to create a network of pathways
length n from input compound X by applying rules U. Initially the list of Products
is set to null. The molecular graph, I'y, of the input compound is obtained from
the KEGG mol file representation. For every rule in the rulebase U, we obtain
the A~ and A" subgraphs. The product graph, I', is obtained by performing a
graphical search/replace on the input graph, I's. If T', is non, i.e., a match was
found and applied, then the product graph T', is searched against the database of
known compounds and the database of novel compounds to see if an isomorphic graph
exists. If the graph matches an existing compound, then X, is returned. If there is
no identified compound with the graph, then a novel compound, X,, is generated and
given a unique identifier (the Nxxxxx symbols in the diagrams). In either case, the
product, X, is pushed onto the Products list for this metabolite Xs. This process can
occur iteratively for every product, X in the Products list. The metabolize function
is simply called again with the recursion level reduced. The results are appended to
the Products list.

Implementation

The system is implemented in Allegro Common Lisp. The metabolic databases
areread in and parsed into CLOS structures. For visualization, the transforma-
tions are exported to the AT&T graphviz program neato which does a simple
force-based layout of the metabolic graph. This network is read back in and
presented with the nodes replaced by compound structures using our internal
visualization system. The novel compounds that are produced by the appli-



[[Uz | Reactant [ Product [ E.C. [ Enzyme

ALCOHOL B-L-ARABINOSIDE

1 ROH RCgHgO5 3.2.1.88 VICIANOSIDASE

2 ALKYL SULFATE ALCOHOL 2.3.1.84 ALCOHOL
RO4HS ROH e ACETYLTRANSFERASE

3 ALCOHOL ACETYL ESTER 231.84 ALCOHOL
ROH RCpH309 o ACETYLTRANSFERASE
ALCOHOL GLUCURONIDE

4 ROH RCgHoO7 3.2.1.31 KETODASE
FATTY ACID a-OH FATTY ACID

5 RCHO RC3H503 1.14.14.1 MICROSOMAL P-450
R-CN MCA AMIDE

6 RON RCHyNO 4.2.1.84 NHASE

- 1-ALCOHOL ALDEHYDE 11.99.20 ALKAN-1-OL
RCH30 RCHO e DEHYDROGENASE

s ALDEHYDE FATTY ACID 1.2.99.3 ALDEHYDE
RCHO RCHOqg e DEHYDROGENASE
ALDEHYDE R-COOH

9 ROHO RCOy 1.2.3.1 ALDEHYDE OXIDASE
R-COOH ALDEHYDE

10 RCOs ROHO 1.2.3.1 ALDEHYDE OXIDASE

Table 1: Simplest 10 of 110 rules inferred from KEGG generic reactions

cation of the rules are simply graphs. In order to visualize the compounds,
we require 2D coordinates. To achieve this, we export the graph as a mol
file with the 2D coordinates as zeroes and then layout the mol file using the
JChem molconvert package. The mol files are read back in and stored with
the compounds as they are created.

Results and Discussion

We used a recent version of the KEGG database which had 10,635 compounds,
out of which 825 are generic. Of the 5,428 reactions in the KEGG database,
741 operate on the generic compounds. From this data, we infer 110 biotrans-
formation rules, and the 10 simplest ones are summarized in Table 1. These
rules correspond to enzymes which have flexibility in the substrates they can
transform.

Using our symbolic computational approach described in the previous sec-
tions we elucidate the de novo metabolism of two compounds. First, we con-
sider ethanol, which is a common substance of abuse and for which we have
some data of human metabolism.

Second, we demonstrate the fate of furfuryl alcohol, which is is an indus-
trial organic solvent used as a paint thinner and is absent in our database.
Experimental evidence suggests that prolonged exposure to furfuryl alcohol
may have significant toxicological effects. We first apply the rules to the
compound ethanol which is in the database. The graph is shown in Figure
4. Next, we apply the rules to a new compound, furfuryl alcohol, which is
not in the database. The result is shown in Figure 5. That some of the
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Figure 4: The de novo prediction of ethanol metabolism. Ethanol is in the center of the
figure. The highlighted transformations are the activation of the alcohol to an aldehyde by
alcohol dehydrogenase (EC 1.1.99.20), then to an acid by aldehyde oxidase (EC 1.2.3.1),
respectively. Not shown, but in the next iteration is the O-glycosylation of the aldehyde by
beta-Glucuronidase (EC 3.2.1.31).

nodes in our ethanol metabolism graph match to known compounds in the
database is encouraging. Additionally, we were able to identify the pathway,
alcohol = aldehyde = acid = conjugation, which recapitulates the standard
ethanol detoxification pathway. We are also able to predict metabolites for a
compound previously unknown to the system. The furfuryl alcohol metabolic
predictions are consistent with literature. Martin, et. al., report that furfuryl
alcohol can be O-glycosylated by beta-Glucuronidasé® as we predict (shown
as compound N00482 in Figure 5). Additionally, the acid of furfurol, 2-furoate,
is actually in the KEGG database and is identified as such by the algorithm.
Nomeir, et. al., report that the initial step in furfuryl alcohol metabolism in
rat is the oxidation to furoic acid, which is excreted unchanged and decarboxy-



lated, or conjugated with glycine or condensed with acetic acid'!. In this case,
the limitations in our system to predict the condensation with acetic acid, for
instance, lie in the breadth of the rules, not in the fundamental methodology.
By extending our method for inferring new rules based on known biochemistry
we can overcome this limitation.
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Figure 5: The de novo prediction of furfuryl metabolism. Furfurol is in the center of the fig-
ure. The highlighted transformation between compound furfurol and compound N00482 (up
and to the left) is an O-glycosylation by beta-Glucuronidase (EC 3.2.1.31). The highlighted
transformations below furfurol are the activation of the alcohol to an aldehyde (N00479,
furfural) by alcohol dehydrogenase (EC 1.1.99.20), then to an acid by aldehyde oxidase (EC
1.2.3.1), respectively. The acid is identified by the algorithm as being in the KEGG database
(by graph similarity) as 2-Furoate (C01546). In the next iteration, not shown, the acid is
finally O-glycosylated by beta-Glucuronidase (EC 3.2.1.31).

Most of the complex products of furfuryl alcohol are simply consecutive
glucurodinations by the rule:
Alcohol = [ — D — Glucuronide

Due to the lack of specificity of this rule to primary alcohols, glucuronidation is
applied to the hydoxyl groups on the 8— D —Glucuronide. While this might be



biologically valid, in reality, glucuronidation renders a compound water soluble
after which it is eliminated by excretion. This limitation is beyond the scope of
the current work but can be addressed in the future by considering the physical
properties of compounds, like water-solubility.

That a biotransformation rule can be applied does not imply that it is
biochemically valid. For instance, consider the biotransformation rules that
apply to a hydroxyl functional group. Compounds containing this functional
group include primary alcohols, secondary alcohols, and also carboxylic acids.
Enzymes that act on alcohols may not act on carboxylic acids and vice-versa.
To capture the substrate specificity of enzymes we are working on a more
sophisticated representation of rules that can improve their biological validity.
Though this is a limitation of our present algorithm, our predictions are still
useful for elucidating potential xenobiotic metabolism, which can be tested
experimentally.

It is important to contrast our approach to other rule-based approaches’®
in pathway prediction. One of the main advantages of our strategy is auto-
mated biotransformation rule extraction from available resources of metabolic
data. As opposed to the manual curation-based efforts, our approach will
scale gracefully with increasing data for two important reasons. First, our
algorithm for rule extraction can be extended to utilize most of the available
enzyme-catalyzed reaction data beyond the generic reactions in KEGG. Sec-
ond, we can control the combinatorial explosion of plausible biotransformations
by extending our existing algorithm on pathway search’. Another advantage of
our approach is that we can relate our biotransformation predictions to the
organism-specific enzymes and genes, which is crucial for in vivo or in vitro
experimental validation.

Conclusion

We have developed a symbolic inference approach and demonstrated the de
novo elucidation of metabolism. This was accomplished by representing bio-
catalysis, which is the basis of metabolism, in terms of expressive symbolic
biotransformation rules. These biotransformation rules generalize the biocat-
alytic functions of enzymes and enable the discovery of new metabolic poten-
tial in living systems. We developed an algorithm to extract these rules from
known enzyme-catalyzed reactions and to apply these rules to elucidate the
metabolism of new compounds. We successfully tested this concept to pre-
dict the xenobiotic metabolism of ethanol and furfuryl alcohol. The results
are encouraging because furfuryl alcohol is absent in our database and yet we
can correctly identify its products through O-glycosidation and oxidation to



furoic acid in agreement with the literature. These results are also biologi-
cally interesting because they support the notion that xenobiotic metabolism
is a manifestation of endogenous biocatalytic abilities in an organism. Though
there are a some limitations in our approach the method is quite general and
scalable for investigating the metabolic network of any living system.

This work supports the relevance of symbolic approaches in discovering the
biochemical capabilities of living systems. Our results on xenobiotic metabolism
offer a prelude to the potential discoveries that can be made in combination
with high-throughput or traditional experimental strategies.
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