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Comparative biological studies have led to remarkable biomedical discoveries. While genomic science 
and technologies are advancing rapidly, our ability to precisely specify a phenotype and compare it to 
related phenotypes of other organisms remains challenging. This study has examined the systematic 
use of terminology and knowledge based technologies to enable high-throughput comparative 
phenomics.  More specifically, we measured the accuracy of a multi-strategy automated classification 
method to bridge the phenotype gap between a phenotypic terminology (MGD: Phenoslim) and a 
broad-coverage clinical terminology (SNOMED CT). Furthermore,  we qualitatively evaluate the 
additional emerging properties of the combined terminological network for comparative biology and 
discovery science. According to the gold standard (n=100), the accuracies (precision | recall) of the 
composite automated methods were 67% | 97% (mapping for identical concepts) and 85% | 98% 
(classification). Quantitatively, only 2% of the phenotypic concepts were missing from the clinical 
terminology, however, qualitatively the gap was larger:  conceptual scope, granularity and subtle, yet 
significant, homonymy problems were observed. These results suggest that, as observed in other 
domains, additional strategies are required for combining terminologies.  

1   Introduction 

Comparative biological studies have led to remarkable biomedical discoveries such 
as evolutionarily conserved signal transduction pathways (C. elegans) and homeobox 
genes (D. melanogaster). Recently, comparative genomic studies to elucidate 
conserved gene functions have made significant advances principally via 
complementary integrative strategies such as functional genomics and standard 
notations for gene or gene function (e.g., Gene Ontology1). However, there is a 
pressing demand of technologies for greater integration of phenotypic data and 
phenotype-centric discovery tools to facilitate biomedical research2,3,4,5,6,7,8,9,10. While 
automated technologies permit increasingly efficient genotyping of organisms’ cohorts 
across distinct species or individuals with distinct phenotype, our ability to precisely 
specify an observed phenotype and compare it to related phenotypes of other 
organisms remains challenging11 and does not match the throughput capabilities of 
genotypic studies. Further, phenotypic “qualifiers” span biological structures and 



  

functions extending from the nanometer to populations12: proteins, organelles, cell 
lines, tissue, Model Organism, clinical, genetic and epidemiologic databases. This 
diversity of scales, disciplines and database usage 13 has lead to an extensive variety 
of uncoordinated phenotypic notations including 1) differences in the definition of a 
phenotype14 (e.g. trait, quantitative traits, syndromes), 2) differences in the 
terminological granularity and composition15,16,17,18 and 3) distinct usage of identical 
terms according to the context (e.g. organism, genotype, experimental design, etc.). 
For example, there are multiple phenotypic terms that illustrate various granularities 
related to the eye: Iris dysplasia (goniodysgenesis)19 [OMIM] , MP:0002092 eye: 
dysmorphology [Phenoslim] 52, uveitis severity [RGD]20, 368808003 Aberrant retinal 
artery [SNOMED CT], 81745001 Entire eye [SNOMED CT]. Moreover, the lack of 
timely and accurately access to relevant phenotypes across databases is another 
limiting factor that hinders the progress of phenotypic research. 

The heterogeneity of phenotype notation can be found in both the clinical and 
biological databases. While each Model Organism Database Systems has 
standardized the phenotypic notation for its own research community, bridging the gap 
of phenotypic data across species remains a work in progress. In this regard, the 
Phenotype Attribute Ontology (PAtO) is an initiative stemming from the Gene 
Ontology Consortium21 to derive a common standard for various existing phenotypic 
databases. In addition, the standardization of the database schema emerging from the 
PAtO collaboration will considerably increase the interoperability of phenotypic 
databases and may also clarify problems related to the termi nological representation. 
In contrast, while heterogeneous database systems have been shown to unify disparate 
representational database schema22,23, to our knowledge, the semantic modeling of the 
notation representation remains manually edited (e.g., structural naming differences, 
semantic differences and content differences).24 In addition, these general-purpose 
heterogeneous database systems have not been specifically adapted to the complexity 
of phenotypic data reuse for comparative biology and genomics. The most prominent 
barrier to the integration of heterogeneous phenotypic databases is associated with 
the notational (terminological) representation. While terminologies can be manually 
or semi-automatically integrated, as illustrated by the meta-terminologies (e.g. 
Unified Medical Language System), such a process is both time consuming and labor 
expensive25,26. An alternative approach employing ontology27,28 and lexicon-based 
mapping utilizes knowledge-based and semantic-based terminological 
mapping29,30,31,32,33,34. While single-strategy mapping systems have demonstrated 
limited success (only capable of mapping 13 - 60% of terms 35,36,37,38), systems using a 
methodical combination of multiple mapping methods and semantic approaches have 
demonstrated significantly improved accuracy39,40,41,42. 

In our current study, we have developed an automated multi-strategy mapping 
method for high throughput combination and analysis of phenotypic data deriving from 
heterogeneous databases with high accuracy. Further, this mapping strategy also 



  

allowed us to assess the qualitative discrepancies of phenotypic information between 
a clinical terminology and a phenotypic terminology. 

2   Materials 

2.1   Phenoslim terminology (PS) 

Phenoslim is a particular subset of the phenotype vocabularies developed by Mouse 
Genome Database52 (MGD) that is used by the allele and phenotype interface of MGD 
as a phenotypic query mechanism over the indexed genetic, genomic and biological 
data of the mouse. We used the 2003 version of PS containing 100 distinct concepts 
in our study. MGD is also currently developing comprehensive mammalian phenotype 
ontology and the Phenotype Attribute Ontology via collaboration with the Gene 
Ontology Consortium. 

2.2  Systematized Nomenclature of Human and Veterinary Medicine—Clinical 
Term® (SNOMED CT)  

The SNOMED CT terminology53  (version 2003) is a comprehensive clinical 
ontology that contains about 344,549 distinct concepts, 913,697 descriptions (test 
string variants for a concept). SNOMED-CT satisfies the criteria of controlled 
computable terminologies and, in addition, provides an extensive semantic network 
between concepts, supporting polyhiearchy and partonomy as directed acyclic graphs 
(DAGs) and twenty additional types of relationships. It also contains a formal 
description of “roles” (valid semantic relationships in the network) for certain 
semantic classes. SNOMED CT has been licensed by the National Library of 
Medicine for perpetual public use as of 2004 and will likely be integrated to UMLS. 

2.3   The Unified Medical Language System® (UMLS) and Norm 

UMLS54 is created and maintained by the National Library of Medicine. The 
2003 version of the UMLS consisting of about 800,000 unique concepts and 
relationships taken from over 60 diverse terminologies were used in our studies. In 
addition, UMLS includes a curated semantic network of about 120 semantic types 
overlying the terminological network. Moreover, it contains an older version of 
SNOMED (SNOMED 3.5, 1998) that houses about half the number of concepts and 
descriptions of the SNOMED –CT. By design, the relationships found in the source 
terminologies in UMLS are not curated. Thus transformations over the unconstrained 
UMLS network are required to obtain a DAG and to control convoluted 
terminological cycles.55   



  

Norm is a lexical tool available from the UMLS.56 As its name implies, Norm 
converts text strings into a normalized form, removing punctuation, capitalization, 
stop words, and genitive markers. Following the normalization process, the remaining 
words are sorted in alphabetical order.  

2.4   Applications and Scripts 

All the applications and scripts pertaining to implementation of the methods 
discussed in this paper were written in Perl and SQL. The Database used was IBM 
BD2 for workgroup, version 7. Additionally, the Norm component of the UMLS 
Lexical Tools was obtained from the National Library of Medicine in 2003. 
Applications were run on a Dual-processor SUN UltraSparc III V880 under the 
SunOS 5.8 operating system.  

3   Methods 

3.1   Mapping of the Phenotypic Terminology to SNOMED CT  

Phenoslim was mapped to SNOMED CT using the Molecular Medical Matrix (M3) 
tools that we have developed57,39,40,41, an architecture that integrates lexical, 
terminological/conceptual and semantic approaches to methodically take advantage of 
pre-coordination and post-coordination mechanisms. The specific methods used 
sequentially were a) decomposition of Phenoslim concepts in components, b) 
normalization of Phenoslim and SNOMED CT, c) mapping of PS components to 
SNOMED CT, d) conceptual processing, and e) semantic processing. Steps a), b) and 
c) are “term processing” steps that have been separated for clarity. Retired concepts 
and descriptions of SNOMED were not used in the study, though they are present in 
the SNOMED files. 
a. Decomposition of Phenoslim concepts in components. Each Phenoslim concept 

is represented by one unique text string consisting of several words. Every 
combination of word was generated for each unique text string (including the full 
string) and mapped back to the original concept. A terminological component 
(TC) is a string of text consisting of one of these combinations.  

b. Normalization of Phenoslim and SNOMED CT. Each terminological component 
of Phenoslim and each term associated with a SNOMED CT concept (SNOMED 
descriptions) was normalized using Norm (ref. material section). 

c. Mapping of PS components to SNOMED CT. Subsequently, each normalized 
TC was mapped against each normalized SNOMED description using the DB2 
database.  



  

Table 1   Included Semantic Classes of SNOMED CT 

Concept 
Identifier 

SNOMED CT Concept Name 

257728006 Anatomical Concepts 
118956008 Morphologic Abnormality 
64572001 Disease (disorder) 
363788007 Clinical history/examination 
246188002 Finding  
246464006 Functions 
105590001 Substance  
243796009 Context-dependent categories  
246061005 Attribute 
254291000 Staging and scales  
71388002 Procedure  
362981000 Qualifier value  

d. Conceptual Processing. This process simplifies the output of the mapping 
methods. The Conceptual Processor is a database method that identifies all 
distinct pairs of conceptual identifiers of Phenoslim and SNOMED CT (PS-CT 
Pairs) that have been mapped by the previous terminological processes.  

e. Semantic Processing. The semantic processing consists of two successive 
subprocesses:  (i) semantic inclusion criteria, and (ii) Subsumption. For 
Inclusion criteria, mapped SNOMED CT concepts were sorted according to the 
criteria “that they must be a descendant of at least one semantic class shown in 
table 1”. This process eliminates erroneous pairs arising from homonymy of 
terms due to the presence of a variety of semantic classes in SNOMED that are 
irrelevant to phenotypes. An inclusion criteria was chosen since valid concepts 
may inherit multiple semantic classes. The list of SNOMED codes related PS 
concept was further reduced by subsumption with the relationships found in the 
relationship table of SNOMED as follow: two ancestor-descendant tables (one 
from the “is-a” relationship of the relationship table of SNOMED CT and 
another one from the partonomy relationships “is part of”) were constructed. 
Each network of SNOMED CT concepts paired to a unique PS concept was then 
recursively simplified by removing “is-a” ancestors that subsume other concepts 
of the network concept, based on the hypothesis that most specific match is also 
the most relevant.  The same procedure was repeated for the “is part of” 
relationship. Further, additional relationships of the disease and finding 
categories were explored in the relationship table and the concept related to a 
disease or finding was considered subsumed and then removed (within the scope 
of SNOMED concepts paired to the same PS concept). The remaining set of PS-
CT pairs were considered valid for the evaluation.  



  

3.2  Quantitative Evaluation of the Mapping Methods 

The mapping methods previously described produces from none to multiple putative 
SNOMED concepts for every Phenoslim concept. Every group of distinct SNOMED 
concepts related to a unique PS concept was further assessed according to the 
following criteria: (i) classification - the SNOMED CT concepts are valid classifier 
or descriptor of part of the Phenoslim concept (Good/Poor), (ii) identity - the 
meaning of the SNOMED CT concept is exactly the same as that of the Phenoslim 
concept, (iii) completeness of representation of the meaning by SNOMED concepts, 
(iv) redundancy of representation of SNOMED concepts, (v) presence of erroneous 
matches. In addition, SNOMED CT was looked up to find an identical identifier or a 
class that could represent every PS concept that was not paired using the automated 
method. The problem of organizing the post-coordinated set of SNOMED concept 
was not addressed. We measured the efficacy of the mapping method using precision 
and recall. 3.1   Mapping of the Phenotypic Terminology to the Clinical one 

3.3   Qualitative Evaluation of Mapping Problems between the Clinical and 
Phenotypic Terminologies 

The qualitative evaluation and discussions focus on the description of types of 
mapping problems encountered, their methodological cause and proposed avenues of 
further research.  

4   Results and Discussion 

Using the mapping methods of M3, every combination of words contained in each 
term associated with the 100 concepts of Phenoslim were computed yielding 4,016 
terminological components. These components were processed in Norm by every 
possible mapping with a SNOMED –CT description calculated in DB2 in less than 2 
minutes (about 3,5 billion possible pairs). 4,842 distinct terminological pairs were found. 
The conceptual processing reduced this number to 1,387 pairs between Phenoslim and 
SNOMED CT concepts. As shown in table 2, the final semantic processing provided the 
final set consisting of 740 distinct pairs (426 pairs did not meet the semantic inclusion 
criteria and 221 pairs were removed by subsumption). Three Phenoslim concepts were not 
mapped, one of which could not be mapped or classified in SNOMED CT (the only true 
negative map). 79 PS concepts were fully mapped to a valid composition of SNOMED 
concepts, 15 of which also contained one erroneous and superfluous SNOMED code. 18  
PS concepts were incompletely mapped, two of which also contained an erroneous and 
superfluous concept. Overall, 18 concepts were also redundantly mapped (not shown in



  

 Table 2. Evaluation of the Quality of the Mapping between each  

Group of SNOMED Concepts associated to each Concept of Phenoslim 
Validity of the Mapping to a 

Cluster of SNOMED Concepts  
Valid False 

Complete Map 
(identity  and  
classification) 

64 15 Phenoslim’s 
Concepts 
Mapped by M3 Incomplete Map  

(classification) 18 2 
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figure 1.  Proportion of Phenoslim Concepts that can be mapped to the  

Semantic Types of SNOMED CT described in Table 1 (%) 

the table) – having more than one representation of the same concept or an overlapping 
group of concepts. Figure 1 shows the proportion of Phenoslim concepts that can be 
classified to the semantic types of SNOMED, on average each concept is mapped to 2.9 
semantic classes. 

4.1   Quantitative Evaluation 

Norm and the conceptual processing performed together at a precision of 11% 
(TP=64+18, FP=15+426+221). The precision of M3’s terminological classification 
accuracy is 98% (TP=725, FP=15). The precision and recall of M3 to classify 
Phenoslim concepts in SNOMED CT are 85% and 98%, respectively (TP= 64+18, 
FP=15, FN=2); while the accuracy scores are 67%(precision) and 97%(recall)  for 
M3 used to map the full meaning in SNOMED (TP= 64, FP= 15+18, FN=2).  



  

Table 3. Examples of Problematic Mappings 

Examples 
Mapping Problem Phenoslim SNOMED 
(i) erroneous mapping “…premature death” “immature” + “death”  

(ii) partial mapping  “Hematology…” Partially mapped missing 
“hematological system” 

(iii) relevant mappings 
omitted by M3 

“…postnatal lethality”” “postneonatal death” 

(iv) redundancy “coat: hair texture defects” 

“hair texture (body 
structure)”, “Texture of hair 
(observable entity), Hair 
texture, function (observable 
entity)  

(v) ambiguity “renal system…”,  Including the bladder, the 
urogenital? 

(vi) inconsistency “neurological/behavioral: … movement anomalies” 
“neurological/behavioral: … nociception abnormalities” 

(vii) Not in SNOMED “Coat…”, “Vibrissae…” - 
(viii) Context / 
Representation Scope 

“Embryonic…” “Fetal…” + “Embryonic…” 

4.2   Qualitative Evaluation and Discussion 

Table 3 illustrates examples of mapping problems . Erroneous mapping occurred for 
primarily due to slightly different meanings of related concepts with taken out of their 
context. For example, the conepts “human fetus” (>8wks gestation) and  “human 
embryo” (<8wks) are subsumed by the concept “mammalian embryo” (vertebrate at 
any stage of development prior to birth). In SNOMED, the parent of fetus and embryo 
is “developmental body structure” which is the one desired for mapping this 
mammalian concept. In addition, SNOMED is used for human and veterinary 
purposes, thus the representation of “embryo” probably requires reengineering as 
well. The absence of “unaccompanied” adjectival forms of anatomical locations and 
systems contributed to the majority of the partial mapping problems . In contrast to 
SNOMED CT, SNOMED 98 in the current UMLS version contains adjectives 
mapped to the anatomical structure for corneal, skeletal, cellular, etc. In SNOMED 
CT, these adjectival forms are “accompanied” of the qualifier “structure” or “system 
structure” or “entire” as in “skeletal system”, “skeletal system structure” or “entire 
skeleton”. With additional semantic information in the phenotype terminology (e.g., 
anatomical location, or system), one could easily pre-process and extend terms with 
this contextual information before submitting them to norm.  Some redundancy can be 
solved by enriching SNOMED CT with a complete network of relationship: “the 
entire central nervous system” does not have a partonomy relationship with the 
“entire nervous system” which led to an overlap of mapping. More specifically for 



  

phenotypes of model organisms and genetics, the following concepts are incompletely  
conceptualized in SNOMED:  “normal embryogenesis”,  “tumor resistance”, 
“tumor sensitivity”,  or “maternal effect”.  

While significant efforts have been put forward to address the problems arising 
from context, scale and granularity in mediated schema, interoperability of 
databases and integration of ontologies, these three issues afflict the manual mapping 
of terminologies and, as demonstrated in this study, become daunting in presence of 
automated mapping methods due to rapid amplification. A careful modeling of 
semantic criteria could further improve the accuracy but may require machine 
learning approaches to avoid overtraining. For example, a phenotype must 
necessarily have an anatomical local coded or explicitly mapped from the 
relationships of its coded concept, to help discriminate between completely and 
incompletely mapped concepts. Context and scale from the source terminology can be 
processed as additional semantic criteria: phenotypes from the yeast should map to 
cellular and smaller SNOMED concepts, etc.  

Finally, once coded in SNOMED, additional classification properties emerge 
from the associated anatomical locations: regional anatomy, tissular anatomy, 
cellular, subcellular anatomies, functional anatomy, organ/system anatomy. IN 
addition, the whole network can be considered as a semantic filter as it is generally 
consistent due to the rigorous representation language underlying the development of 
SNOMED CT.  

6   Caveats and Implications for Future Work 

It is important to point out that the manual curation used in the present evaluation was 
carried by one expert and employed a relatively small, domain-specific subset of the 
mammalian phenotypes. Mapping the phenotypes of yeast, worm or Drosophila may 
not yield as good accuracies and are currently investigated. The redundancy of 
terminological representation has not been addressed and remains necessary for 
automated processing. Knowledge engineering and additional studies are required to 
understand how phenotypes can be automatically integrated across species. 
Nonetheless, venues such as semantic constraints on the scale of the mapping appear 
promising: mapping yeast to structures and morphologies smaller than a cell, etc. 
Finally, more comprehensive approaches than lexical ones are required to 
interoperate the intricate combinations of implicit and explicit semantics nested in the 
database schema of complex biomedical databases. 



  

7   Conclusions 

Phenotypic analyses are critical to unlock the gene-disease relationships of complex 
diseases. The requirements for high throughput phenotypic genomics in which very 
large numbers of phenotype variants are related to a wide range of genes or gene 
patterns further motivate our research and development of the proposed methods. In 
addition, while manual mapping and the methathesaurus approaches  remain the gold 
standards for accuracy, they are rate limiting. M3 will require additional 
improvements to provide accurate solutions to the obstacles of phenotypic research, 
yet in its present condition it can automatically keep pace with new representations of 
phenotypes as they appear in databases. We are concurrently addressing the 
limitations of M3 with additional semantic and language understanding tools. 
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